University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

USDA National Wildlife Research Center - Staff Publications

U.S. Department of Agriculture: Animal and Plant Health Inspection Service

2018

Genetic evidence supports sporadic and independent introductions of subtype H5 low pathogenic avian influenza A viruses from wild birds to domestic poultry in North America

Lei Li Mississippi State University

Andrew S. Bowman Ohio State University, bowman.214@osu.edu

Thomas J. DeLiberto USDA APHIS Wildlife Services, Thomas.J.DeLibertot@aphis.usda.gov

Mary L. Killian USDA, Veterinary Services

Scott Krauss St. Jude Children's Research Hospital

Selevent his and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc

Li, Lei; Bowman, Andrew S.; DeLiberto, Thomas J.; Killian, Mary L.; Krauss, Scott; Nolting, Jacqueline M.; Torchetti, Mia Kim; Ramey, Andrew M.; Reeves, Andrew B.; Stallknecht, David E.; Webby, Richard J.; and Wan, Xiu-Feng, "Genetic evidence supports sporadic and independent introductions of subtype H5 low pathogenic avian influenza A viruses from wild birds to domestic poultry in North America" (2018). USDA National Wildlife Research Center - Staff Publications. 2169. https://digitalcommons.unl.edu/icwdm_usdanwrc/2169

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Authors

Lei Li, Andrew S. Bowman, Thomas J. DeLiberto, Mary L. Killian, Scott Krauss, Jacqueline M. Nolting, Mia Kim Torchetti, Andrew M. Ramey, Andrew B. Reeves, David E. Stallknecht, Richard J. Webby, and Xiu-Feng Wan

JVI Accepted Manuscript Posted Online 25 July 2018 J. Virol. doi:10.1128/JVI.00913-18 Copyright © 2018 American Society for Microbiology. All Rights Reserved.

- 1 Genetic evidence supports sporadic and independent introductions of subtype H5
- 2 low pathogenic avian influenza A viruses from wild birds to domestic poultry in
- 3 North America
- 4
- 5 Lei Li^a, Andrew S. Bowman^b, Thomas J. DeLiberto^c, Mary L. Killian^d, Scott Krauss^e,
- 6 Jacqueline M. Nolting^b, Mia Kim Torchetti^d, Andrew M. Ramey^f, Andrew B. Reeves^f,
- 7 David E. Stallknecht^g, Richard J. Webby^e, and Xiu-Feng Wan^{a*}
- ^aDepartment of Basic Sciences, College of Veterinary Medicine, Mississippi State 8 9 University, Mississippi State, Mississippi 39762, USA 10 ^bDepartment of Veterinary Preventive Medicine, The Ohio State University, Columbus, 11 Ohio 43210, USA 12 13 ^cNational Wildlife Disease Program, Wildlife Services, Animal and Plant Health 14 15 Inspection Service, U.S. Department of Agriculture, Fort Collins, Colorado 80521, USA 16 17 ^dNational Veterinary Services Laboratories, Veterinary Services, U.S. Department of
- 17 National Vetermary Services Laboratories, Vetermary Services, U.S. D
 18 Agriculture, Ames, Iowa 50010, USA
 19
- ^eDepartment of Infectious Diseases, St. Jude Children's Research Hospital, Memphis,
 Tennessee 38105, USA
- 22
- ^tU.S. Geological Survey, Alaska Science Center, Anchorage, Alaska 99508, USA
- ^gSoutheastern Cooperative Wildlife Disease Study, Department of Population Health,
- College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA
- ^{*}Address correspondence to Dr. Xiu-Feng Wan by wan@cvm.msstate.edu.
- 29 **Running title:** Introduction of H5 LPAIVs into US domestic poultry
- 30 Key words: low pathogenic avian influenza; subtype H5; wild birds; domestic poultry;
- 31 backyard poultry; live bird market; dabbling duck; goose; swan; evolutionary network;
- 32 reassortment; phylogenetic; United States

Σ

33

Downloaded from http://jvi.asm.org/ on September 27, 2018 by guest

35	Wild bird-origin influenza A viruses (IAVs or avian influenza) have led to
36	sporadic outbreaks among domestic poultry in the United States (US) and Canada,
37	resulting in economic losses through the implementation of costly containment practices
38	and destruction of birds. We used evolutionary analyses of virus sequence data to
39	determine that 78 H5 low pathogenic avian influenza viruses (LPAIVs) isolated from
40	domestic poultry in the US and Canada during 2001–2017 resulted from 18 independent
41	virus introductions from wild birds. Within the wild bird reservoir, the hemagglutinin
42	gene segments of H5 LPAIVs exist primarily as two co-circulating genetic sublineages,
43	and our findings suggest the H5 gene segments flow within each migratory bird flyway
44	and among adjacent flyways, with limited exchange between the non-adjacent Atlantic
45	and Pacific Flyways. Phylogeographic analyses provided evidence that IAVs from
46	dabbling ducks and swans/geese contributed to emergence of viruses among domestic
47	poultry. H5 LPAIVs isolated from commercial farm poultry (i.e. turkey) were descended
48	from a single introduction typically remain a single genotype, whereas those from live
49	bird markets sometimes led to multiple genotypes, reflecting the potential for
50	reassortment with other IAVs circulating within live bird markets. H5 LPAIV introduced
51	from wild birds to domestic poultry represent economic threats to the U.S. poultry
52	industry, and our data suggest that such introductions have been sporadic, controlled
53	effectively through production monitoring and a stamping-out policy, and are, therefore,
54	unlikely to result in sustained detections in commercial poultry operations.
55	

3

Journal of Virology

Σ

57

Downloaded from http://jvi.asm.org/ on September 27, 2018 by guest

58 Importance

59	Integration of viral genome sequencing into influenza surveillance for wild birds
60	and domestic poultry can elucidate evolutionary pathways of economically costly poultry
61	pathogens. Evolutionary analyses of H5 LPAIVs detected in domestic poultry in US and
62	Canada during 2001–2017 suggest that these viruses originated from repeated
63	introductions of IAVs from wild birds, followed by various degrees of reassortment.
64	Reassortment was observed where biosecurity was low and there were opportunities for
65	more than one virus to circulate existed (e.g. congregations of birds from different
66	premises such as live bird markets). None of the H5 lineages identified were maintained
67	long term in domestic poultry, suggesting that management strategies have been effective
68	in minimizing the impacts of virus introductions on US poultry production.
69	
70	

71

Accepted Manuscript Posted Online

73	Influenza A viruses (IAVs) are single-stranded, negative sense RNA viruses with
74	eight genomic segments. Wild waterbirds, especially migratory waterfowl, such as geese
75	and ducks, along with gulls and shorebirds are purported to be the natural reservoir for
76	IAVs of the hemagglutinin (HA) subtypes H1-16 and neuraminidase (NA) subtypes N1-
77	9. IAVs are maintained in wild waterbirds, and those of low pathogenicity result in
78	enteric infections with rare evidence of clinical illness. In contrast, IAVs typically result
79	in respiratory disease in gallinaceous birds, such as chickens and turkeys; clinical signs
80	and disease severity vary and are strain-dependent. Subtypes H5 and H7 low pathogenic
81	avian influenza A viruses (LPAIVs) demonstrate the potential to evolve from low to
82	highly pathogenic avian influenza A viruses (HPAIVs) through increased HA cleavability
83	by acquiring multiple basic amino acids (1-3) or insertions (4-8) at the cleavage site
84	during replication (8, 9). H5 and H7 HPAI causes high mortality among domestic poultry
85	leading to large economic losses.
86	Reassortment is another mechanism that can contribute to the generation of novel
87	and economically costly IAVs in domestic birds. For example, H7N9 and H10N8 IAVs
88	recently identified in China appear to have wild bird-origin HA and NA genes and
89	internal genes from IAVs circulating among domestic poultry (10, 11). Both of these
90	reassortant viruses have been associated with human disease that may have resulted from
91	contact with infected birds at live bird markets (LBMs). A H7N9 IAV that most likely

92 resulted from reassortment of H7, N9, and H9N2 avian IAVs has caused >1,566 human

93 infections and at least 613 deaths in China (11, 12); a H10N8 avian-origin IAV also

 \sum

95

infections (10, 13).

96 In the United States (US) and Canada (collectively referred to as North America for the purposes of this study), poultry production systems include large commercial 97 98 poultry farms (CPFs), backyard poultry operations (BYPs), game bird poultry farms 99 (GBPs), and LBMs. CPFs are defined as large-scale commercial poultry farms 100 with >1,000 domestic birds per year. BYPs are defined as residential farms raising small 101 flocks of domestic birds; these, typically produce ≤1,000 birds per year. GBPs are poultry 102 operations raising small flocks of game birds, such as pheasants and quail, often released 103 for sport harvest. LBMs are operations that typically supply live birds for on-site 104 slaughter to consumers. Some, such as botanicas, may sell live birds as well. LBMs may 105 acquire birds from both non-CPF and CPF sources. In the US, CPFs are located primarily 106 in the southern and midwestern regions, while many LBMs are located in urban areas of 107 the western and northeastern regions; and BYPs and GBPs are present in all regions (14-108 16).

originated from reassortant of H10N8 and H9N2 IAVs in LBMs and caused human

109 Detections of IAVs in domestic poultry are not uncommon (17); wild bird-origin 110 IAVs are usually identified as the source of virus across a variety of North American 111 poultry production systems (3, 9, 17-21). In rare cases, LPAIVs circulating in LBMs have 112 been associated with outbreaks at commercial farms (22). However, there is limited 113 information regarding the evolutionary patterns of IAVs detected in North American 114 poultry. Such information is necessary to improve our collective understanding of the 115 natural reservoirs (location and wild bird taxa) in which viruses that ultimately lead to 116 poultry outbreaks are maintained, how evolutionary mechanisms for IAVs might vary

Downloaded from http://jvi.asm.org/ on September 27, 2018 by guest

between poultry production systems, and the frequency with which IAVs are sharedamong CPFs, BYBs, GBPs, and LBMs.

In this study, we genetically characterized and compared inferred evolutionary
pathways of 78 H5 LPAIVs from the US and Canada during 2001–2017. This study

seeks to explore the evolutionary pathways of IAVs that move from wild birds into

122 domestic poultry. Better understanding of viruses at this interface will help improve

123 influenza surveillance and management strategies, reduce economic and animal losses,

124 and decrease opportunities for the generation of novel pathogens including those that can

125 infect humans and cause pandemic influenza threats.

126

127 Results

128 H5 LPAIVs were sporadically detected in CPFs and LBMs. In this study, an isolate is 129 defined as an IAV recovered from wild birds or domestic poultry, and an introduction is 130 defined as a case of IAV infection in domestic poultry; one or more isolates may be 131 recovered from the same introduction. A total of 78 H5 LPAI isolates from domestic 132 poultry in North America during 2001–2017 were included in the study. Isolates were 133 recovered from CPFs (n = 11), BYPs (n = 3), GBPs (n = 2), and LBMs (n = 62) (Table 1). 134 H5 isolates were identified on CPFs in turkey (n = 11, commercial turkey growers are 135 indoor operations with curtain-sides); from BYPs in a mallard duck, a domestic duck and 136 a guinea fowl; from GBPs in a pheasant and a quail; and in LBM samples collected from 137 domestic ducks (n = 42), chicken (n = 7), guinea fowl (n = 6), turkey (n = 1), quail (n = 1) 138 2), pheasant (n=1), and unknown species (n = 3) (Table 1). Based upon the inferred 139 phylogenetic relationships and nucleotide identities for the HA gene segment, these 78

140	H5 poultry isolations result from 18 independent introductions (details in Materials and
141	Methods) (Figure 1A; Figure S1. Among the 18 introductions, 5 were detected in CPFs, 9
142	in LBMs, 2 from a BYP, and 2 from a GBP (Figure 1A). Each introduction event was
143	identified by the operation type, state, year, and HA/NA subtype from the first isolate; for
144	example 'CPF-WI-2017(H5N2)' denotes an H5N2 event in commercial turkeys from
145	Wisconsin during 2017. Where more than one event occurred in a state within one year,
146	the events are distinguished by a letter; for example 'LBM-NJ-2006(H5N2)a' and 'LBM-
147	NJ-2006(H5N2)b' represent two independent H5N2 events in New Jersey LBMs during
148	2006.

150	H5 LPAIVs from US and Canadian domestic poultry are of North American lineage
151	and share genetic ancestry with wild bird-origin IAVs. Geographic lineage was
152	assigned based upon phylogenetic analyses of the HA gene for the 78 H5 LPAIVs; we
153	considered this lineage to be comprised primarily of four distinct sublineages (Figure 1B).
154	A total of 70 of the 78 domestic poultry isolates characterized in this study, as well as the
155	majority of the wild bird-origin H5 LPAIVs identified in the US and Canada from 2001
156	to 2017 clustered within sublineages 1 and 2. Viruses causing enzootic outbreaks of IAVs
157	among domestic poultry in Mexico are clustered in sublineage 3, whereas IAVs
158	circulating in both wild birds and domestic poultry in the US and Canada during 1966-
159	1990 were grouped in sublineage 4 (Figure 1B). Eight additional H5 subtype IAVs
160	identified in poultry from the US and Canada, along with a relatively small number of
161	wild bird-origin IAVs isolated from samples collected during 1987-2008, clustered in
162	clades not assigned to these four sublineages (Figure 1B).

163	We used the relationships inferred by phylogenetic and nucleotide sequence
164	identities to further distinguish genetic groups within sublineages 1 and 2. The 78 H5
165	isolates from North American poultry clustered into 18 distinct genetic groups. Five
166	genetic groups contained isolates detected in domestic birds sampled on CPFs, nine
167	genetic groups contained isolates detected in birds sampled from LBMs, two genetic
168	groups contained isolates detected in birds sampled from BYPs, and two genetic groups
169	contained isolates detected in birds sampled from GBPs. For most poultry isolates (67%),
170	nucleotide sequence identity at the HA gene segment of H5 LPAIVs was >99% similar to
171	that for wild bird-origin viruses (Figure 1B; Figure S1; Table S1); however, within a
172	genetic group, the poultry isolates were most similar to each other, suggesting a common
173	introduction event with subsequent spread (Figure S1). Based upon this analysis, each of
174	the 18 genetic groups was determined to represent discrete introduction events of IAVs
175	from wild birds to domestic poultry. Additionally, only one production system was
176	affected in each of the 18 inferred introduction events (e.g., CPFs, BYPs, GBPs, or LBMs)
177	(Table 1).
178	Based upon phylogenetic analyses, the NA and internal gene segments of the H5
179	LPAI from poultry (including CPFs, LBMs, GBPs and BYPs) were genetically diverse
180	(Figure 2). Phylogenetic analyses also identified potential precursor strains for 15 of the
181	18 purported introductions; three events were excluded: CPF-CA-2002(H5N2) had an
182	incomplete genome, LBM-NY-2016(H5N2) lacked wild bird progenitor genes and LBM-
183	NY-2007(H5N2) lacked wild bird precursors (Table 2). For 13 of the inferred
184	introductions, potential wild bird progenitor strains shared similar phylogenetic positions
185	in tree topologies with high nucleotide sequence similarity for 3 to 4 gene segments

 \sum

(Table 2). Potential wild bird progenitor viruses across all eight gene segments were
identified for two purported introductions: a Canada goose (*Branta canadensis*) virus for
CPF-MO-2016(H5N1) and an American wigeon (*Mareca americana*) for BYP-OR-

190

189

2006(H5N2) (Table 2).

191 Geographic and temporal patterns of H5 LPAIV lineages in North America. Fifteen 192 of the 18 introductions were detected in only one flyway: seven within the Atlantic 193 Flyway (one CPF and six LBM detections), three within the Mississippi Flyway (two 194 CPF and one BYP detection); one in the Central Flyway (a CPF detection); and four 195 within the Pacific Flyway (one CPF, one BYP, and two GBP detections). The remaining 196 three introductions were LBM-associated detections in the Atlantic and Mississippi 197 Flyways. Of the LBM events, eight were genetically related other IAVs detected in 198 Canadian provinces or US states (Table 1). 199 To further evaluate gene flow for the H5 HA gene segment, we performed 200 phylogeographic analyses for viruses in sublineages 1 and 2. Viruses in sublineage 1, 201 which included viruses associated with 13 introduction events, were predominantly from 202 the Central (5.36%), Mississippi (31.07%), and Atlantic (63.57%) Flyways. Most 203 (81.03%) of the viruses in sublineage 2, associated with three introduction events, were 204 from wild birds sampled within the Pacific Flyway (Figure 1C). Two events were not 205 associated with either lineage 1 or 2: CPF-CA-2002(H5N2), and LBM-NY-2007(H5N2), 206 the latter of which involved seven LPAIVs detected during 2007-2009. Bayesian 207 analyses of viruses in sublineage 1 and 2 indicated unilateral or bilateral state transitions 208 suggestive of H5 HA gene flow among the Atlantic, Mississippi, and Central Flyways

11

Downloaded from http://jvi.asm.org/ on September 27, 2018 by guest

Journal of Virology

 \sum

209

210	no state transitions suggestive of H5 HA gene flow were supported between the Atlantic
211	and Pacific Flyways (Bayes factor <3, no significant transition was observed) (Table S2;
212	Figure S2). In summary, phylogeographic analyses suggested H5 HA gene flow across
213	adjacent or nearby flyways but not between the Atlantic and Pacific Flyways.
214	
215	H5 LPAIVs detected in domestic poultry are likely descendant from those in
216	dabbling ducks or geese/swans. To understand whether specific hosts were associated
217	with virus introductions detected in domestic poultry, we categorized bird host species
218	into 9 functional groups based on taxonomic and ecologic attributes: dabbling duck,
219	diving/sea duck, goose/swan, gull/tern/seabird, raptor, shorebird, other avian, unknown,
220	and poultry (see Materials and Methods section for details). Phylogeographic analyses
221	were performed to estimate Bayes factors between the domestic poultry viruses and
222	viruses from each functional group. A combination of Bayes factor ≥ 3 and mean
223	indicator ≥ 0.5 was used as the threshold of statistical significance; a larger Bayes factor
224	indicates a higher probability that a specific functional group is associated with an
225	introduction event (3, 23).
226	Using phylogeographic analyses, we assessed the genetic origins for 16 of the 18
227	purported introduction events; two events were excluded: CPF-CA-2002(H5N2) had an
228	incomplete genome, and LBM-NY-2016(H5N2) lacked related wild bird samples. Our
229	results suggest that IAVs in wild waterfowl (dabbling ducks, swans/geese, or diving/sea
230	ducks) were the probable progenitor for at least one viral gene segment for 15 of 16
231	investigated introduction events; no probable wild bird IAV progenitor was identified for

and among the Mississippi, Central, and Pacific Flyways (Bayes factor >3). However,

LBM-NY-2007(H5N2) (Tables S3 and S4). Neither gulls/terns/seabirds nor raptors were
supported as probable sources of gene segments for H5 IAVs detected in domestic
poultry, and shorebirds were supported as a probable progenitor for only one gene
segment for a single introduction event [MP gene of CPF-VA-2007(H5N1)]. Dabbling
ducks, in particular, were associated with numerous gene segments from North American
poultry viruses, including all gene segments of viruses involved in the following
outbreaks: CPF-WI-2017(H5N2) (Bayes factor 6.59 to 35.12), CPF-MB-2010(H5N2)
(Bayes factor 3.24 to 189.74), LBM-NJ-2015(H5N1) (Bayes factor 4.65 to 138.71),
LBM-NY-2006(H5N2) (Bayes factor 6.89 to 1,244.25), and LBM-NJ-2006a(H5N2)
(Bayes factor 12.21 to >10,000) (Table S4). For recent introductions (2015–2017): CPF-
WI-2017(H5N2) was associated with dabbling duck origin viruses across all eight
segments (Bayes factor 6.59 to 35.12) (Table S3); CPF-MO-2016(H5N1) was associated
with goose/swan origin viruses across six segments (PB2, PB1, PA, HA, MP, and NS)
(Bayes factor 15.69 to 149.91) (Figure 3; Table S3); and LBM-NJ-2015(H5N1) was
associated with dabbling duck viruses (HA and NA; Bayes factor 53.98 and 8.12,
respectively), diving/sea duck virus (NP; Bayes factor 169.25), and goose/swan virus (NS;
Bayes factor 0.55) (Table S2) Eurotional groups associated with all eight gaps segments

248	Bayes factor 9.55) (Table S3). Functional groups associated with all eight gene segments

were identified for only four of the 18 purported introductions into North American

poultry during 2001–2017. Among them, all gene segments were associated with

dabbling duck, goose/swan, or unknown functional groups (Tables S3 and S4).

H5 LPAIVs in LBMs have potential opportunities for reassortment. The opportunity

for reassortment exists whenever two or more viruses circulate simultaneously. For CPFs,

255	only a single genotype was associated with each introduction event, whereas, multiple
256	genotypes were identified among viruses associated with two of the LBM introductions
257	[LBM-NY-2006(H5N2) and LBM-NJ-2001(H5N2)]; (Figure 2). Neither LBM virus was
258	found to be related to other poultry introduction events in this study. Reassortment may
259	have played a role in the evolutionary pathways of viruses associated with LBM-NY-
260	2006(H5N2) and LBM-NJ-2001(H5N2). Phylogeographic analyses suggest that viruses
261	from several functional groups may have contributed to the evolution of viruses detected
262	in LBMs (Table S4). The viruses from the unknown group could include other reservoirs
263	(e.g. wild bird) for which we lack data or uncontrolled viruses in the LBMs. Thus, these
264	H5 viruses can be associated with a single introduction of H5 gene, but NA or internal
265	genes could be associated with viruses (all HA/NA subtypes rather than only H5 subtype)
266	that may circulate in LBMs or with introductions from other reservoirs (e.g. wild birds).
267	Compared with H5 viruses detected on CPFs, those detected in LBMs were more
268	temporally and spatially diverse. For example, four LBM introductions events included
269	detections over several years and/or multiple states [LBM-NJ-2007(H5N2), LBM-NY-
270	2006(H5N2), LBM-NJ-2006(H5N2)b, and LBM-NJ-2001(H5N2)], whereas CPF
271	introduction events did not occur across years.
272	
273	Temporal gaps exist between emergence and detection of H5 LPAIVs in domestic
274	poultry in North America. The temporal gap between the time of H5 virus introduction

276 determine the time of most recent common ancestor (TMRCA) between inferred wild

277 bird progenitors and poultry isolates, and documented detection dates were obtained for 9

into poultry and flock detection was estimated. Molecular clock analysis was used to

279 146, 80, and 142 days (average 123 [±37 standard deviation] days) (Table 3). The 280 temporal gaps for seven LBM introductions varied from 97 to 487 days (average 231 281 $[\pm 137 \text{ standard deviation}] \text{ days})$ (Table 3). 282 283 Discussion 284 We investigated evolutionary pathways for 78 H5 LPAIVs detected in North 285 American domestic poultry across CPFs, BYPs, GBPs, and LBMs during 2001–2017; our 286 data suggest that the events were the result of 18 discrete virus introductions from wild 287 birds. The H5 LPAIVs from North American poultry in this study share ancestry with 288 viruses circulating among wild waterfowl, a finding generally consistent with those from 289 other investigations of outbreaks in US poultry production systems (3, 9, 17-21). Our 290 findings support that H5 LPAVs maintained in certain wild bird species represent an 291 ongoing threat to domestic poultry in North America. 292 A previous study investigating the ancestral origins of H7 HPAIV reported among 293 turkeys in Indiana, US, suggested that IAVs from diving ducks were associated with 294 evolution of the virus ultimately introduced into the CPFs resulting in an outbreak (3). 295 Our results show limited evidence for diving duck-associated IAVs contributing to the 296 ancestry of H5 IAVs detected in North American poultry; instead, we found 297 proportionally more evidence for contributions from dabbling ducks and geese/swans 298 (Figure 3; Table S4). These findings suggest multiple potential evolutionary pathways for 299 IAVs that are introduced to domestic poultry, and they highlight one of the challenges for 300 avian influenza surveillance in wild birds: identifying the most pertinent wild bird species

introduction events (Table 3). Estimated temporal gaps for three CPF introductions were

278

lournal of Virology

302	understanding the emergence of IAVs among poultry (24, 25).
303	We explored the time and location of H5 IAV introductions detected in various
304	poultry production systems, including multiple introductions into CPFs and LBMs but
305	did not identify any clear patterns for introductions. Instead, H5 IAV introductions
306	appeared to be sporadic throughout the year and occur in states/provinces in multiple
307	regions of the US and Canada. However, it is possible that the number of purported H5
308	introductions identified in this study was too small to detect patterns or that our data were
309	of insufficient resolution to accurately identify the true times/locations of introduction
310	events.
311	Our results suggest that sublineages of contemporary North American-origin H5
312	gene segments have different geographic distributions: sublineage 1 was predominantly
313	detected in the Atlantic Flyway but was also detected at a lower frequency in other
314	flyways, whereas sublineage 2 was most frequently detected in the Pacific Flyway but
315	was also identified at lower relative abundance in other flyways. Recent genomic
316	evidence indicates that viruses initially have modest fidelity to migratory bird flyways;
317	however, over multiple years, IAV lineages tend to disperse flyways (26, 27).
318	Sublineages 1 and 2 have been co-circulating in wild birds in the North America since
319	2002, so their restricted gene flow appears to be atypical. Post-hoc phylogeographic
320	analyses did not show similar geographic patterns for other HA gene segment sublineages
321	or for those of other genes (data not shown). Additional research is needed to identify
322	genetic barriers in North America for these two H5 sublineages.

to target for sample collection to obtain meaningful reference information for better

Journal of Virology

 \sum

324	American LBMs, those in each CPF introduction had a single genotype and more recent
325	estimated TMRCA with viruses circulating among wild birds. This may indicate that
326	poultry management activities in North America have successfully identified and quickly
327	stamped out low pathogenic H5 IAVs in domestic birds raised on CPFs before the viruses
328	have reassorted or become highly pathogenic. IAVs associated with introductions in
329	LBMs sometimes had more than one genotype and, compared with CPF-associated IAVs,
330	had longer mean TMRCAs with inferred wild bird predecessor viruses. Thus, viruses in
331	North American LBMs may have a longer opportunity to co-circulate with other IAVs
332	and subsequently form reassortants. Furthermore, the detection of genetically similar
333	viruses associated with a single introduction event across multiple years and US
334	states/Canadian provinces suggests that management activities relative to the detection
335	and stamping out of H5 IAVs may be less efficient in LBMs than on CPFs.
336	On the basis of our results, we propose a conceptual model (Figure 4) describing
337	generalized evolutionary pathways for low pathogenic H5 avian IAVs detected in North
338	American domestic poultry. Our results suggest that H5 viruses detected in domestic
339	poultry in the US and Canada are descended from IAVs circulating among wild birds,
340	typically waterfowl, that are periodically introduced into poultry production systems. It
341	appears that, on CPFs, H5 IAVs are detected relatively quickly through surveillance
342	efforts and that the viruses are effectively eradicated through slaughter and additional
343	preventative measures, as witnessed by apparent independent evolutionary pathways for
344	viruses of a single genotype associated with each introduction event. In contrast, our
345	study provides evidence that viruses in LBMs are not detected as rapidly as those on

Our results provide evidence that, compared with H5 IAV introductions in North

 \sum

346	CPFs and, therefore, may have a greater potential for genetic reassortment with other
347	wild bird-associated IAVs. The high mobility of birds sold in LBMs also facilitates the
348	geographic spread of viruses in the US states and Canada.
349	In summary, the apparent repeated introduction of H5 IAVs from wild birds to
350	domestic poultry in North America highlights the importance of avian IAV surveillance,
351	particularly at the interface of wild birds and domestic poultry. Proactive and strategic
352	surveillance covering multiple wild bird species and integrating genomic sequencing
353	approaches is critical to understanding the evolutionary pathways of IAVs; such
354	knowledge will be valuable in efforts to refine monitoring activities and optimize early
355	warning systems. In addition, our findings support the premise that avian H5 IAVs
356	introduced from wild birds present an ongoing threat to domestic poultry and can be
357	controlled effectively through management practices, particularly those implemented in
358	North American CPFs.
359	
360	Materials and Methods
361	Data. To understand the genesis of low pathogenic avian H5 IAVs in North America, we

America, we 362 sequenced 37 isolates recovered from domestic poultry samples collected during 2001-363 2017 (Table S5); 27 of the isolates were H5N2 viruses (including mixed viruses) from 364 LBMs, five were H5N2 viruses from CPFs, one was H5N2 virus from a BYP, one was 365 H5N2 virus from a GBP, and three were H1N1viruses from turkeys (n = 2) and a chicken 366 (n = 1). Of note, if multiple isolates identified from the same case report had identical 367 genomic sequences, only one of the isolates was selected for this study. We analyzed 368 sequence data for these 34 poultry H5 isolates and 44 other North American poultry-

Journal of Virology

 \leq

Downloaded from http://jvi.asm.org/ on September 27, 2018 by guest

505	origin in (v) deposited in public databases (total of 76 115 isolates) (Table 1).in addition,
370	we sequenced 127 H5 IAV isolates originating from wild birds (mostly during 2015 and
371	2016, $n = 116$) in 30 US states (Table S5); the isolates were from dabbling ducks ($n = 94$),
372	shorebirds ($n = 16$), geese/swans ($n = 10$), gulls/terns/seabirds ($n = 3$), diving/sea ducks
373	(n = 1), and unknown avian species $(n = 3)$. Genomic sequencing and sequence assembly
374	were performed as previously described (3); the GenBank accession numbers are listed in
375	Table S5. The geographic, temporal, and host distribution of all viruses we sequenced are
376	shown in Figure S3. In this study, the IAVs from commercial flocks and LBMs were
377	isolated during poultry pre-movement monitoring activities, suspected IAV outbreaks or
378	surveillance activities; the IAVs from wild birds were isolated during active influenza
379	surveillance.
380	To perform systematic analyses, we retrieved the genomic sequences for all
381	avian-origin IAVs from the following public databases in April 2017: the Influenza Virus
382	Resources (28) (<u>https://www.ncbi.nlm.nih.gov/genomes/FLU</u>), the Influenza Research
383	Database (29) (https://www.fludb.org), and GISAID (30) (https://www.gisaid.org). For
384	those viruses for which we obtained redundant sequences, we only included the longest
385	sequence contig per gene segment in analyses. In total, we used sequences from $\sim 20,000$
386	influenza viruses worldwide, including >9,000 IAVs of North American origin (Table
387	S6). Because our preliminary phylogenetic analyses of these genomic sequences
388	suggested that the low pathogenic H5 IAV isolates in domestic poultry were genetically
389	related to North American lineage IAVs (data not shown), we focused subsequent data
390	analyses only on sequences for IAVs detected in North America. The temporal and host

origin IAVs deposited in public databases (total of 78 H5 isolates) (Table 1).In addition,

369

 \sum

Journal of Virology

Downloaded from http://jvi.asm.org/ on September 27, 2018 by guest

391 distribution of all viruses of North American origin included in this study are shown in

Figure S4.

393

394	Sequence alignment and phylogenetic analysis. Multiple sequence alignments were
395	generated using MAFFT v7.273 (31). Phylogenic analyses were performed using an
396	approximate maximum-likelihood method with a generalized time-reversible substitution
397	model and 'CAT' approximation rate model by using FastTree v2.1 (32). These
398	preliminary trees provided initial inference regarding tree topology among all sequences
399	in the public databases, specifically to differentiate gene segment sequences of North
400	American lineages from those of Eurasian lineages. A refined phylogenetic tree for each
401	gene segment was then re-constructed using a maximum-likelihood method by running
402	RAxML v 8.2.9 (33). A gamma model of rate heterogeneity and a generalized time-
403	reversible substitution model were used for these phylogenetic analyses, and
404	bootstrapping was conducted using the same rate and substitution model. Phylogenetic
405	trees were visualized by ggtree v1.6.11 (34) and FigTree v1.4.3
406	(http://tree.bio.ed.ac.uk/software/figtree/). Topologies of phylogenetic trees were
407	validated using MrBayes 3.2.7 (35), PAUP* 4.0 (36), and PHYLIP 3.6 (37).
408	
409	Genotype analyses and assignment of possible progenitor gene and potential
410	precursor viruses for low pathogenic H5 avian IAVs. Genotypes for IAVs were
411	assigned through analyses assessing genetic similarity among viral genome constellations.
412	Gene segments were considered to be genotypically similar if they co-occurred in clades

20

 $\overline{\leq}$

413	with other gene segment sequences (as determined using inferred tree topology) with a
414	minimum bootstrap value of 70 and shared nucleotide sequence identities \geq 95% (18).
415	Possible progenitor gene segments and precursor viruses for H5 IAVs of North
416	American poultry origin were also assessed using tree topology and sequence identities.
417	Possible progenitor gene segments were inferred when the following criteria were met: 1)
418	the candidate gene segment shared a phylogenetic clade with a minimum bootstrap value
419	of 70 with a North American poultry gene segment; 2) the candidate progenitor gene
420	segment and North American poultry gene segment shared ≥98% nucleotide sequence
421	identity; 3) the candidate gene segment shared the highest nucleotide sequence identity
422	with the poultry-origin IAV gene segment in its genetic cluster; and 4) the putative
423	progenitor gene segment was detected prior to detection of the North American poultry
424	IAV gene segment. A potential precursor virus was inferred when a virus had three or
425	more possible progenitor gene segments from an H5 IAV identified in North American
426	poultry.
427	

IAVs detected in North American domestic poultry were inferred to have resulted from
the same introduction event if the following criteria were met: 1) the genetic sequence for
the H5 HA gene segment of these two viruses shared a common clade with a minimum
bootstrap value of 70; 2) the H5 HA gene segment of these two viruses shared ≥98%
nucleotide sequence identity; and 3) the nucleotide sequence identity shared with H5 HA
gene segments from IAVs originating from North American poultry was greater than that
shared with gene segments from wild bird–origin IAVs.

Definition of purported H5 introduction into North American poultry. Multiple H5

~
ିଳ
Ř
<u> </u>
- 2
.Ξ
>
4
0
-
σ
5
1

436

437	Phylogeographic analyses to infer transition of viruses between wild birds and
438	domestic poultry and between North American migratory bird flyways. To enable
439	inference of wild bird hosts associated with H5 IAV introductions in North American
440	domestic poultry, we performed phylogeographic analyses to assess support for
441	associations between specific functional groups of wild bird IAV hosts and H5 IAV gene
442	segments detected in domestic poultry. Hosts of influenza viruses were categorized into 9
443	functional groups: dabbling duck, diving/sea duck, goose/swan, gull/tern/seabird, raptor,
444	shorebird, other avian (i.e., American coot, double-crested cormorant, red-necked grebe,
445	rock dove, and western grebe; $n = 5$), and unknown (i.e., hosts for whom the species was
446	unclear or for which the domestic status was ambiguous, including ducks, geese, feces,
447	fowl, and poultry; $n = 22$). To minimize sampling bias, we balanced the number of
448	sequences in each host group by resampling: for each year, we randomly selected a
449	maximum of 10 sequences from each functional group.
450	Phylogeographic analyses were performed as previously described (3, 23). An
451	asymmetric substitution model with Bayesian stochastic search variable selection and a
452	strict clock model were applied in the analyses. We used Markov chain Monte Carlo
453	methods, setting the chain length to 100 million with sampling every 10,000 states. The
454	convergence of each run was checked by Tracer v1.6 (http://beast.community/tracer)
455	before continuing to the next step. All poorly configured states were removed according
456	to a 10% burn-in rate. After that, maximum clade credibility phylogenetic trees were
457	generated using TreeAnnotator v1.8.4 (38) (http://beast.community/treeannotator). Bayes
458	factor was calculated to indicate the statistical support level. Significant transition was

support levels were interpreted from Bayes factors as follows: Bayes factor <3 indicates		
no support; $3 \le Bayes$ factor <10 indicates support; $10 \le Bayes$ factor <100 indicates		
strong support; $100 \le$ Bayes factor <1000indicates very strong support; and Bayes factor		
≥1,000 indicates decisive support. Maximum clade credibility phylogenetic trees were		
visualized by FigTree v1.4.3 (<u>http://tree.bio.ed.ac.uk/software/figtree/)</u> .		
In addition to the above analyses on the potential sources of wild bird hosts for		
the H5 IAV gene segments detected in domestic poultry, we also inferred the transition		
patterns of influenza A viruses across North American migratory bird flyways. We first		
designated each US state and Canadian province into either the Atlantic, Mississippi,		
Central, or Pacific Flyway based on the administrative definition of North American		
migratory bird flyways (https://www.fws.gov/birds/management/flyways.php) (Figure		
1C). Phylogeographic analyses were then performed to assess support for transitions of		
IAVs between among migratory bird flyways. To minimize the biases for sample		
selection, we included all viruses in sublineages 1 and 2 (identified from phylogenetic		
tree of H5 gene) in the phylogeographic analyses. Phylogeographic analyses and data		
interpretation are the same as described above.		

indicated by a combination of Bayes factor \geq 3 and mean indicator \geq 0.5. Statistical

TMRCA estimation. The Bayesian Markov Chain Monte Carlo method implemented in BEAST v1.8.4 (38) was used to estimate the substitution rates and TMRCA between inferred predecessor HA gene segments of IAVs identified in the wild bird reservoir and H5 IAVs detected in poultry for which specific dates of detection were available. SRD06 partitioned substitution model, uncorrelated lognormal relaxed clock model, and

- 482 Bayesian skyline coalescent tree prior were implemented in the molecular clock analyses. 483 Two independent runs with 100 million chain length (sampling frequency = 10,000) were 484 combined by LogCombiner v1.8.4 (http://beast.community/logcombiner) and then 485 analyzed by Tracer v1.6 using a 10% burn-in rate 486 (http://tree.bio.ed.ac.uk/software/tracer/). 487 488 Accession number(s). Sequence were deposited in GenBank under accession numbers 489 CY235315 to CY235322, KU310460 to KU310475, KY131302 to KY131333, 490 KY131357 to KY131364, KY550909 to KY550916, MF046190, MF046211, MF046222, 491 MF046227, MF046237, MF046275, MF046276, MF046280, MF046298, MF046299, 492 MF046306, MF046330, MF046351, MF046361, MF046366, MF046376, MF046389, 493 MF046403, MF046406, MF046412, MF046415, MF046416, MF046434, MF046442, 494 MF046448, MF046452, MF046468, MF046472, MF046481, MF046490, MF046496, 495 MF046504, MF046507, MF046509, MF046514, MF046523, MF046531, MF046536, 496 MF046544, MF046547, MF046556, MF046567, MF046570, MF359819 to MF359890, 497 MF613674, MF613685, MF613713, MF613716, MF613724, MF613731, MF613745, 498 MF613747, MF613753, MF613755, MF613762, MF613766, MF613772, MF613776, 499 MF613777, MF613792, MF613809, MF613812, MF613817, MF613823, MF613869, 500 MF613881, MF613903, MF613905, MF613918, MF613924, MF613928, MF613937, 501 MF613940, MH341739 to MH341906, and MH546139 to MH547031. 502 503

 - 504

Downloaded from http://jvi.asm.org/ on September 27, 2018 by guest

Journal of Virology

505

506

507

508

509

510

511

512

513

514

Acknowledgments

Department of Environmental Protection, and Conserve Wildlife, LLC for sample collection. We also thank numerous wildlife professionals at state and federal agencies who collected wild bird samples and the National Animal Health Laboratory Network facilities that performed diagnostics on those samples.

515 This work was funded by the National Institutes of Health (NIH) [grant number

516 R01AI116744]; the U.S. Geological Survey through the Wildlife Program of the

517 Ecosystem Mission Area; Centers of Excellence for Influenza Research and Surveillance,

We acknowledge Angela Danner and Karlie Woodard for their technical expertise;

Kimberly Friedman for data management; and Canadian Wildlife Services, New Jersey

518 National Institute of Allergy and Infectious Diseases, NIH, Department of Health and

519 Human Services contract HHSN272201400006C; the American Lebanese Syrian

520 Associated Charities; and the U.S. Department of Agriculture. Any use of trade, firm, or

521 product names is for descriptive purposes only and does not imply endorsement by the

522 US Government.

523

524 ASB, TJD, SK, MKT, AMR, DES, RJW, and X-FW initiated and designed this study;

525 ASB, TJD, MLK, SK, JMN, MKT, AMR, ABR, and DES collected data; LL and X-FW

526 performed experiments; LL and X-FW wrote the first draft of the manuscript; and ASB,

527 TJD, SK, JMN, MKT, AMR, ABR, DES, RJW, and X-FW revised the manuscript.

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

10:693.

124:37-44.

Journal of Virology

Garcia M, Crawford JM, Latimer JW, Rivera-Cruz E, Perdue ML. 1996. Heterogeneity in the haemagglutinin gene and emergence of the highly pathogenic phenotype among recent H5N2 avian influenza viruses from Mexico. Journal of General Virology 77:1493-1504. Killian ML, Kim-Torchetti M, Hines N, Yingst S, DeLiberto T, Lee D-H. 2016. Outbreak of H7N8 low pathogenic avian influenza in commercial turkeys with spontaneous mutation to highly pathogenic avian influenza. Genome announcements 4:e00457-00416. Xu Y, Ramey AM, Bowman AS, DeLiberto TJ, Killian ML, Krauss S, Nolting JM, Torchetti MK, Reeves AB, Webby RJ, Stallknecht DE, Wan XF. 2017. Low-Pathogenic Influenza A Viruses in North American Diving Ducks Contribute to the Emergence of a Novel Highly Pathogenic Influenza A(H7N8) Virus. J Virol 91. Suarez DL, Senne DA, Banks J, Brown IH, Essen SC, Lee C-W, Manvell RJ, Mathieu-Benson C, Moreno V, Pedersen JC. 2004. Recombination resulting in virulence shift in avian influenza outbreak, Chile. Emerging infectious diseases Pasick J, Handel K, Robinson J, Copps J, Ridd D, Hills K, Kehler H, Cottam-Birt C, Neufeld J, Berhane Y. 2005. Intersegmental recombination between the haemagglutinin and matrix genes was responsible for the emergence of a highly pathogenic H7N3 avian influenza virus in British Columbia. Journal of General Virology 86:727-731. Khatchikian D, Orlich M, Rott R. 1989. Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. Nature 340:156-157. Maurer-Stroh S, Lee RT, Gunalan V, Eisenhaber F. 2013. The highly pathogenic H7N3 avian influenza strain from July 2012 in Mexico acquired an extended cleavage site through recombination with host 28S rRNA. Virology journal 10:139. Lee DH, Torchetti MK, Killian ML, Berhane Y, Swayne DE. 2017. Highly Pathogenic Avian Influenza A(H7N9) Virus, Tennessee, USA, March 2017. Emerg Infect Dis 23. Senne DA, Suarez DL, Stallnecht DE, Pedersen JC, Panigrahy B. 2006. Ecology and epidemiology of avian influenza in North and South America. Dev Biol (Basel) Xu Y, Cao H, Liu H, Sun H, Martin B, Zhao Y, Wang Q, Deng G, Xue J, Zong Y, Zhu

J, Wen F, Long LP, Wong SS, Zhao N, Fu X, Liao M, Hu G, Webby R, Gao GF, Wan

568		XF. 2015. Identification of the source of A (H10N8) virus causing human infection.
569		Infect Genet Evol 30: 159-163.
570	11.	Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, Chen J, Jie Z, Qiu H, Xu K, Xu X, Lu H,
571		Zhu W, Gao Z, Xiang N, Shen Y, He Z, Gu Y, Zhang Z, Yang Y, Zhao X, Zhou L, Li X,
572		Zou S, Zhang Y, Li X, Yang L, Guo J, Dong J, Li Q, Dong L, Zhu Y, Bai T, Wang S,
573		Hao P, Yang W, Zhang Y, Han J, Yu H, Li D, Gao GF, Wu G, Wang Y, Yuan Z, Shu Y.
574		2013. Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl
575		J Med 368: 1888-1897.
576	12.	WHO. 2018. Influenza at the human-animal interface, Summary and assessment,
577		8 December 2017 to 25 January 2018, January 25, 2018 ed.
578	13.	Zhang T, Bi Y, Tian H, Li X, Liu D, Wu Y, Jin T, Wang Y, Chen Q, Chen Z. 2014.
579		Human infection with influenza virus A (H10N8) from live poultry markets, China,
580		2014. Emerging infectious diseases 20 :2076.
581	14.	Cardona C, Yee K, Carpenter T. 2009. Are live bird markets reservoirs of avian
582		influenza? Poultry science 88: 856-859.
583	15.	Senne D, Suarez D, Pedersen J, Panigrahy B. 2003. Molecular and biological
584		characteristics of H5 and H7 avian influenza viruses in live-bird markets of the
585		northeastern United States, 1994–2001. Avian diseases 47:898-904.
586	16.	Suarez DL, Garcia M, Latimer J, Senne D, Perdue M. 1999. Phylogenetic analysis
587		of H7 avian influenza viruses isolated from the live bird markets of the Northeast
588		United States. Journal of virology 73: 3567-3573.
589	17.	Halvorson DA, Frame DD, Friendshuh KAJ, Shaw DP. 1997. Outbreaks of Low
590		Pathogenicity Avian Influenza in U.S.A. Avian Dis 47: 36-46.
591	18.	Krauss S, Stucker KM, Schobel SA, Danner A, Friedman K, Knowles JP, Kayali G,
592		Niles LJ, Dey AD, Raven G. 2015. Long-term surveillance of H7 influenza viruses
593		in American wild aquatic birds: are the H7N3 influenza viruses in wild birds the
594		precursors of highly pathogenic strains in domestic poultry? Emerging microbes
595		& infections 4 :e35.
596	19.	Lee CW, Senne DA, Linares JA, Woolcock PR, Stallknecht DE, Spackman E,
597		Swayne DE, Suarez DL. 2004. Characterization of recent H5 subtype avian
598		influenza viruses from US poultry. Avian Pathol 33: 288-297.
599	20.	Lebarbenchon C, Pedersen JC, Sreevatsan S, Ramey AM, Dugan VG, Halpin RA,
600		Ferro PJ, Lupiani B, Enomoto S, Poulson RL. 2015. H7N9 influenza A virus in
601		turkeys in Minnesota. Journal of General Virology 96: 269-276.
602	21.	Ramey AM, Torchetti MK, Poulson RL, Carter D, Reeves AB, Link P, Walther P,
603		Lebarbenchon C, Stallknecht DE. 2016. Evidence for wild waterfowl origin of
604		H7N3 influenza A virus detected in captive-reared New Jersey pheasants.
605		Archives of virology 161 :2519-2526.
606	22.	Yee KS, Novick CA, Halvorson DA, Dao N, Carpenter TE, Cardona CJ. 2011.
607		Prevalence of low pathogenicity avian influenza virus during 2005 in two US live
608		bird market systems. Avian diseases 55: 236-242.
609	23.	Lemey P, Rambaut A, Drummond AJ, Suchard MA. 2009. Bayesian
610		phylogeography finds its roots. PLoS computational biology 5 :e1000520.
		· · · ·

 \leq

611	24.	Brown JD, Stallknecht DE. 2008. Wild bird surveillance for the avian influenza
612		virus. Methods Mol Biol 436: 85-97.
613	25.	Spackman E. 2009. The ecology of avian influenza virus in wild birds: what does
614	~ ~	this mean for poultry? Poult Sci 88:847-850.
615	26.	Lam TT, Ip HS, Ghedin E, Wentworth DE, Halpin RA, Stockwell TB, Spiro DJ,
616		Dusek RJ, Bortner JB, Hoskins J, Bales BD, Yparraguirre DR, Holmes EC. 2012.
617		Migratory flyway and geographical distance are barriers to the gene flow of
618		influenza virus among North American birds. Ecol Lett 15: 24-33.
619	27.	Fries AC, Nolting JM, Bowman AS, Lin X, Halpin RA, Wester E, Fedorova N,
620		Stockwell TB, Das SR, Dugan VG, Wentworth DE, Gibbs HL, Slemons RD. 2015.
621		Spread and Persistence of Influenza A Viruses in Waterfowl Hosts in the North
622		American Mississippi Migratory Flyway. J Virol 89:5371-5381.
623	28.	Bao Y, Bolotov P, Dernovoy D, Kiryutin B, Zaslavsky L, Tatusova T, Ostell J,
624		Lipman D. 2008. The influenza virus resource at the National Center for
625		Biotechnology Information. Journal of virology 82:596-601.
626	29.	Squires RB, Noronha J, Hunt V, García-Sastre A, Macken C, Baumgarth N,
627		Suarez D, Pickett BE, Zhang Y, Larsen CN. 2012. Influenza research database: an
628		integrated bioinformatics resource for influenza research and surveillance.
629		Influenza and other respiratory viruses 6:404-416.
630	30.	Bogner P, Capua I, Lipman DJ, Cox NJ. 2006. A global initiative on sharing avian
631		flu data. Nature 442: 981-981.
632	31.	Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software
633		version 7: improvements in performance and usability. Molecular biology and
634		evolution 30: 772-780.
635	32.	Price MN, Dehal PS, Arkin AP. 2010. FastTree 2–approximately maximum-
636		likelihood trees for large alignments. PloS one 5: e9490.
637	33.	Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-
638		analysis of large phylogenies. Bioinformatics 30: 1312-1313.
639	34.	Yu G, Smith DK, Zhu H, Guan Y, Lam TTY. 2017. ggtree: an R package for
640		visualization and annotation of phylogenetic trees with their covariates and
641		other associated data. Methods in Ecology and Evolution 8:28-36.
642	35.	Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference
643		under mixed models. Bioinformatics 19: 1572-1574.
644	36.	Swofford DL. 2003. PAUP*: phylogenetic analysis using parsimony, version 4.0
645		b10.
646	37.	Plotree D, Plotgram D. 1989. PHYLIP-phylogeny inference package (version 3.2).
647		cladistics 5: 6.
648	38.	Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by
649		sampling trees. BMC evolutionary biology 7: 214.
650		,

Σ

28

Downloaded from http://jvi.asm.org/ on September 27, 2018 by guest

Accepted Manuscript Posted Online

Journal of Virology

654 Figure 1. Detections of low pathogenic H5 avian influenza A viruses in domestic poultry 655 in the United States and Canada (2001–2017). A) The temporal distributions of 656 introductions of H5 viruses detected on commercial poultry farms (CPFs), backyard 657 poultry (BYPs), game bird poultry (GBPs,) and in live bird markets (LBMs) during 658 2001-2017. An introduction was defined by a tree topology of the H5 gene with a 659 bootstrap value \geq 70 (Figure S1) and shared nucleotide sequence identity >98%. B) 660 Simplified phylogenetic tree displaying general topology for North American sequence of 661 influenza A viruses at the H5 hemagglutinin gene. The distribution of functional groups 662 of wild bird hosts for influenza A viruses in the tree are summarized by pie charts. C) US 663 state and Canadian province of origin for H5 subtype influenza A virus isolates detected 664 in North American domestic poultry during 2001–2017 and geographic distribution of the 665 influenza A viruses of H5 sublineages 1 and 2 in wild birds based on the North American 666 administrative definition of migratory bird flyways 667 (https://www.fws.gov/birds/management/flyways.php). Circle sizes indicate the number 668 of H5 influenza A virus isolates in the corresponding US state/Canadian province. Based 669 on ecologic attributes, the hosts of influenza viruses were categorized into 9 different 670 groups: dabbling duck, diving/sea duck, goose/swan, gull/tern/seabird, poultry, raptor, 671 shorebird, other avian, and unknown. Viruses from avian species that did not fit into any 672 of these functional groups were categorized as 'other avian', and viruses for which the 673 species sampled were unclear or for which the domestic status was ambiguous were 674 categorized as 'unknown'.

676	Figure 2. Summary of genotypic analysis of low pathogenic H5 avian influenza A
677	viruses detected in domestic poultry in the United States (2001–2017). Genotypes were
678	assigned by unique combinations of sublineages for each gene, which were determined
679	based on tree topology with a bootstrap value \geq 70 and a nucleotide sequence identity \geq
680	95%. To simplify the illustration, only the representative viruses were selected for each
681	genotype including those with unique combinations of location of detection
682	(state/province) and year. Numbers on the tree indicate individual H5 low pathogenic
683	introductions and were linked to unique IDs of those introductions to the right.
684	
685	Figure 3. Summary of analyses to assess transition of influenza A viruses from a specific
686	functional group of wild birds to the low pathogenic H5 avian influenza A viruses
687	detected in domestic poultry. In this figure, phylogeographical analyses showed one
688	recent and representative H5 low pathogenic introduction in North American poultry,
689	CPF-MO-2016(H5N1), which is an introduction of virus in Missouri turkey as an
690	example. The trees shown in the figure are constructed on the basis of the maximum
691	clade credibility phylogenetic trees. Phylogeographical analyses were performed using all
692	isolates for each inferred H5 introduction. Branches of the phylogenetic trees were
693	colored according to the estimated ancestral state of the functional group of wild birds
694	from discrete trait reconstruction. Arrow widths are based on the Bayes Factor support
695	levels. Statistical support is provided in greater detail in Table S3.
696	

697	Figure 4. Conceptual model summarizing the generalized inferred evolutionary pathways
698	for low pathogenic (LP) H5 avian influenza A viruses (IAVs) detected on commercial
699	poultry farms and in live bird markets (LBMs) in the United States and Canada during
700	2001–2017. H5 viruses introduced by wild waterfowl were inferred to circulate for a
701	longer time in LBMs than on commercial poultry farms. Furthermore, we found evidence
702	suggesting reassortment between H5 viruses and other influenza A viruses in LBMs,
703	resulting in multiple genotypes associated with a single introduction event. The blue and
704	red lines denote genetically distinct gene segments; in each virus, the segments were
705	vertically sorted in the order of PB2, PB1, PA, HA, NP, NA, MP, and NS.

Downloaded from http://jvi.asm.org/ on September 27, 2018 by guest

		Table 1. H5 LPAI viruses detected in domestic	poultr	y in the	United	States and	Canada	(2001-
--	--	---	--------	----------	--------	------------	--------	--------

Introduction ^a	Host	Region	Introduction ^a Host Region Year Isolate name ^a		Sample date	Subtype
BYP-MI-2015(H5N2)	mallard	Michigan	2015	A/mallard/Michigan/15-031493-1orig/2015	2015-10-01	H5N2
	duck	0	2006	A/duck/Oregon/459674-3/2006	2006-09-29	H5N2
BYP-OR-2006(H5N2)	guinea fowl	Oregon	2006	A/guineafowl/Oregon/459674-5/2006	2006-09-29	H5N2
GBP-CA-2014(H5N8)	quail	California	2014	A/quail/California/K1400794/2014	2014-04	H5N8
GBP-ID-2008(H5N8)	pheasant	Idaho	2008	A/pheasant/Idaho/08-002590-63/2008	2008	H5N8
				A/turkey/Wisconsin/17-007146-1/2017	2017-03-02	H5N2
				A/turkey/Wisconsin/17-007146-2/2017	2017-03-02	H5N2
CPF-WI-2017(H5N2)	turkey	Wisconsin	2017	A/turkey/Wisconsin/17-007146-3/2017	2017-03-02	H5N2
				A/turkey/Wisconsin/17-007319-3/2017	2017-03-03	H5N2
				A/turkey/Wisconsin/17-007981-6/2017	2017-03-09	H5N2
CPF-MO-2016(H5N1)	turkey	Missouri	2016	A/turkey/Missouri/16-014037-7/2016	2016-04-29	H5N
CDE MD 2010/USN2)		Manitoba	2010	A/turkey/MB/FAV11/2010	2010-11-25	H5N2
CPF-MB-2010(H5N2)	turkey	Manitoba	2010	A/turkey/MB/FAV10/2010	2010-11-26	H5N2
CDE VA 2007(UENI)		Vincinia	2007	A/turkey/VA/505477-18/2007	2007-07-11	H5N
CPF-VA-2007(H5N1)	turkey	Virginia	2007	A/turkey/Virginia/505477-17/2007	2007-07-11	H5N
CPF-CA-2002(H5N2)	turkey	California	2002	A/turkey/CA/D0208651-C/02	2002	H5N2
				A/domesticduck/ON/FAV-18CS46/2016	2016	H5N2
				A/duck/NewYork/16-020978-2orig/2016	2016	H5N2
LBM-NY-2016(H5N2)	duck	Ontario		A/duck/NewYork/16-021467-1orig/2016	2016	H5N
	muscovy	New York	2016	A/duck/NewYork/16-021916-1orig/2016	2016	H5N
	duck	New Jersey		A/duck/NewYork/16-021920-1orig/2016	2016	H5N
				A/muscovyduck/NewJersey/16-021456-4/2016	2016	H5N
				A/muscovyduck/NewJersey/16-021457-2/2016	2016	H5N
LBM-NJ-2015(H5N1)	chicken	New Jersey	2015	A/chicken/New Jersey/15 002659 2/2015	2015-01-20	H5N

LBM-NJ-2011(H5N2)	duck	New Jersey	2011	A/duck/NewJersey/11-064045-002/2011	2011-12-20	H5N
				A/duck/NewYork/07-002127-001/2007	2007-10-30	H5N
				A/muscovyduck/NewYork/08-000560-002/2008	2008-03-13	H5N
	duck			A/duck/NewYork/08-000759-001/2008	2008-04-22	H5N
LBM-NY-2007(H5N2)	muscovy	New York	2007-2009	A/duck/NewYork/08-000937-001/2008	2008-05-22	H5N
	duck			A/muscovyduck/NewYork/09-002670-002/2009	2009-03-04	H5N
				A/duck/NewYork/09-005059-001/2009	2009-04-14	H5N
				A/muscovyduck/NewYork/09-005059-002/2009	2009-04-14	H5N
				A/duck/Pennsylvania/07-002198-003/2007	2007-11-09	H5N
				A/muscovyduck/NewJersey/07-002376-001/2007	2007-12-05	H5N
LBM-PA-2007(H5N2)		Pennsylvania New York New Jersey	2007-2008	A/guineafowl/NewYork/08-000170-003/2008	2008-01-07	H5N
	chicken duck guinea fowl muscovy duck pleasant			A/pheasant/NewYork/08-000170-002/2008	2008-01-07	H5N
				A/guineafowl/NewYork/08-000238-001/2008	2008-01-28	H51
				A/chicken/NewJersey/251-4/2008	2008-02-01	H51
				A/chicken/NewJersey/577-6/2008	2008-03-27	H5N
				A/chicken/NewJersey/08-000640-006/2008	2008-04-03	H5N
				A/guineafowl/NewJersey/08-000640-008/2008	2008-04-03	H5N
				A/guineafowl/NewJersey/08-000841-001/2008	2008-05-14	H5N
				A/muscovyduck/NewJersey/08-000912-001/2008	2008-05-28	H5N
				A/duck/NewYork/465571/2006	2006-10-23	H5N
				A/duck/NewYork/465976/2006	2006-10-24	H51
				A/duck/NewYork/466787/2006	2006-10-31	H51
	duck	N7 N7 I	2006-2007	A/turkey/NewYork/465977/2006	2006-10-31	H51
LBM-NY-2006(H5N2)	quail	New York Pennsylvania		A/duck/NewYork/470179/2006	2006-11-07	H51
	turkey	i chiisyivallia		A/avian/NewYork/466812/2006	2006-11-09	H51
				A/duck/Pennsylvania/07-467189-1/2006	2006-11-09	Mix
				A/duck/NewYork/469961/2006	2006-11-13	H51
				A/duck/NewYork/489761/2007	2007	H51

Downloaded from http://jvi.asm.org/ on September 27, 2018 by guest

				A/duck/NewYork/481172/2007	2007-01-23	H5N2					
				A/duck/NewYork/483239/2007	2007-02-02	H5N2					
				A/duck/NewYork/484057/2007	2007-02-06	H5N2					
				A/duck/NewYork/484680/2007	2007-02-12	H5N2					
				A/duck/NewYork/490722/2007	2007-03-21	H5N2					
				A/duck/NewYork/492652/2007	2007-04-05	H5N2					
				A/duck/NewYork/494165/2007	2007-04-18	H5N2					
				A/quail/NewYork/07-501360-1/2007	2007-06-02	H5N2					
				A/quail/NewYork/501360/2007	2007-06-12	H5N2					
				A/duck/NewYork/504371/2007	2007-06-22	H5N2					
				A/duck/NewYork/504372/2007	2007-06-22	H5N2					
				A/avian/NewJersey/437109/2006	2006-05-09	H5N2					
				A/chicken/NewYork/439236/2006	2006-05-10	H5N2					
				A/chicken/NewYork/439235/2006	2006-05-15	H5N2					
	chicken			A/muscovyduck/NewYork/62095-1/2006	2006-05-15	H5N2					
I DM NI 2006(115N/2)	duck muscovy duck	New York	2006	A/duck/NewYork/440410/2006	2006-05-17	H5N2					
LBM-NJ-2006(H5N2)a		New Jersey Pennsylvania		A/duck/NewYork/440409/2006	2006-05-23	H5N2					
				A/duck/NewYork/445743/2006	2006-06-19	H5N2					
				A/chicken/Pennsylvania/446080-7/2006	2006-07	H5N2					
				A/duck/Pennsylvania/446080-6/2006	2006-07	H5N2					
				A/duck/Pennsylvania/446080-7/2006	2006-07	H5N2					
		N7 N7 1		A/avian/NewYork/448534/2006	2006	H5N2					
LBM-NJ-2006(H5N2)b	guinea fowl	New York	2006-2007	A/guineafowl/NewJersey/447114/2006	2006-07-19	H5N2					
		New Jersey		A/guineafowl/NewJersey/07-002030-001/2007	2007-10-23	H5N2					
LDM NI 2001/USNO	de l	Maine	2001 2002	A/duck/NJ/117228-7/2001	2001-07-16	H5N2					
LBM-NJ-2001(H5N2)	duck	New Jersey	2001-2002	A/duck/ME/151895-7A/2002	2002-01-29	H5N2					
^a An isolate is defined as	s an avian inf	luenza virus re	covered from	wild birds or domestic poultry. An introduction	n describes a ca	ise of					

^aAn isolate is defined as an avian influenza virus recovered from wild birds or domestic poultry. An introduction describes a case of avian influenza infection detected in domestic poultry, and one or multiple isolates can be recovered from the same introduction.

Journal of Virology

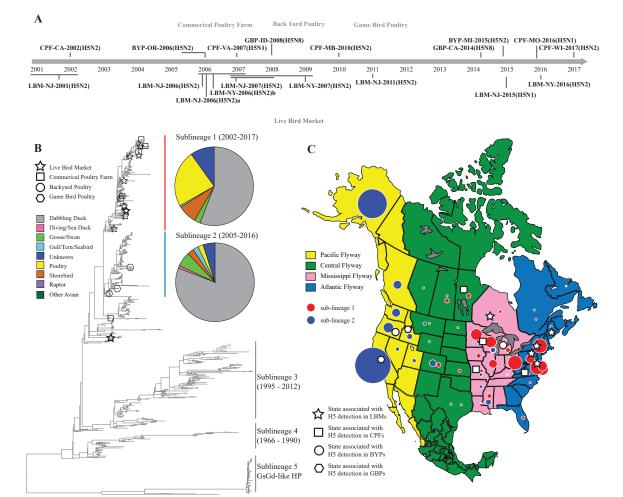
 Table 2. Potential precursor viruses for predominate genotype of low pathogenic H5 avian influenza virus introductions in domestic poultry in in the United States and Canada (2001-2017)

Demonstration in Late	Introduction Potential precursor virus ^a		No. ^b	Sequence Identity (%) ^c							
Representative isolate	Introduction	Potential precursor virus ^a	No.º	HA	NA	PB2	PB1	PA	NP	MP	NS
A/turkey/Wisconsin/17-007146-1/2017	CPF-WI-2017(H5N2)	A/northernpintail/Ohio/15OS5861/2015(H5N2)	4	99.14	98.81			98.26	98.96		
A/turkey/Missouri/16-014037-7/2016	CPF-MO-2016(H5N1)	A/canadagoose/DelawareBay/601/2016(H5N1)	8	98.82	99.29	99.43	99.56	99.35	99.53	99.47	99.52
A/turkey/MB/FAV10/2010	CPF-MB-2010(H5N2)	A/americangreen-wingedteal/Illinois/2975/2009(Mixed)	4		98.74		98.18		98.88		99.29
A/turkey/VA/50547718/2007	CPF-VA-2007(H5N1)	A/mallard/PA/454069-9/2006(H5N1)	4	98.74	99.39		98.31			99.40	
A/turkey/CA/D0208651C/02	CPF-CA-2002(H5N2)			ND^d							
A/duck/NewYork/16-020978-2orig/2016	LBM-NY-2016(H5N2)			ND							
A/chicken/NewJersey/150026592/2015	LBM-NJ-2015(H5N1)	A/americangreen-wingedteal/Wisconsin/11OS3580/2011 (H11N2)	4					98.18	98.33	98.55	99.16
A/duck/NewJersey/11-064045-002/2011	LBM-NJ-2011(H5N2)	A/mallard/Ohio/11OS1961/2011(H5N2)	4	99.60	99.86		98.92			99.80	
A/duck/NewYork/08-000759-001/2008	LBM-NY-2007(H5N2)			ND							
A/chicken/NewJersey/2514/2008	LBM-NJ-2007(H5N2)	A/mallard/Maryland/07OS2433/2007(H5N2)	3	98.90	98.25						98.24
A/turkey/NewYork/465977/2006	LBM-NY-2006(H5N2)	A/americanwigeon/Iowa/463993/2006(H5N2)	4	99.08	98.54		98.53	98.29			
A/chicken/Pennsylvania/4460807/2006	LBM-NJ-2006(H5N2)a	A/mallard/Maryland/897/2004(H5N2)	4	98.63	98.75		99.01		99.29		
A/avian/NewYork/448534/2006	LBM-NJ-2006(H5N2)b	A/mallard/Ohio/468158/2006(H5N2)	4	98.34	98.63			98.14		98.30	
A/duck/NJ/1172287/2001	LBM-NJ-2001(H5N2)	A/mallard/Maryland/302/2001(H5N2)	3		98.58			98.48			99.42
A/mallard/Michigan/15-031493-1orig/2015	BYP-MI-2015(H5N2)	A/mallard/Ohio/11OS2156/2011(H5N2)	4	98.68	98.96				98.57		99.30
A/duck/Oregon/4596743/2006	BYP-OR-2006(H5N2)	A/americanwidgeon/Oregon/467919/2006(H5N2)	8	99.60	100.00	99.83	99.78	99.86	99.81	99.73	99.88
A/quail/California/K1400794/2014	GBP-CA-2014(H5N8)	A/mallard/California/1479/2013(mixed)	3		98.05			98.07		99.20	
A/pheasant/Idaho/08-002590-63/2008	GBP-ID-2008(H5N8)	A/ruddyturnstone/NewJersey/AI06-582/2006(H6N7)	3			98.40	98.78			98.40	

^aA potential precursor virus was defined by the virus with at least three possible progenitor genes (see method section for details); ^b Number of possible progenitor genes; 'Only sequence identity >98% are shown: ^dND, not done because complete genome was not available.

 $\overline{\leq}$

Accepted Manuscript Posted Online


Journal of Virology

Source	Introduction ^a	Mean TMRCA	95% HPD ^b low	95% HPD high	First detected ^c	Difference ^d (days)	Average (days)	Standard deviation
	CPF-WI-2017(H5N2)	2016-10-07	2016-01-01	2016-06-18	2017-03-02	146		
Commercial Farms	CPF-MB-2010(H5N2)	2010-09-06	2010-11-16	2010-06-02	2010-11-25	80		
	CPF-VA-2007(H5N1)	2007-02-19	2007-06-10	2006-10-09	2007-07-11	142	123	37
	LBM-NY-2007(H5N2)	2007-07-24	2007-10-18	2007-04-02	2007-10-30	97		
	LBM-PA-2007(H5N2)	2007-06-23	2007-09-23	2007-03-14	2007-11-09	138		
Live Bird Markets	LBM-NY-2006(H5N2)	2006-02-12	2006-06-17	2005-10-09	2006-10-23	253		
Live bitu Markets	LBM-NJ-2006(H5N2)a	2005-09-26	2006-01-18	2005-05-17	2006-05-09	225		
	LBM-NJ-2006(H5N2)b	2006-01-09	2006-06-22	2005-07-10	2006-07-19	191		
	LBM-NJ-2001(H5N2)	2000-03-16	2001-03-01	1999-01-23	2001-07-16	487	231	137

Table 3. Time to most recent common ancestor estimation of HA gene for low pathogenic H5 avian influenza A virus introductions from commercial farms (CPFs) and live bird markets (LBMs) in the United States and Canada (2001-2017).

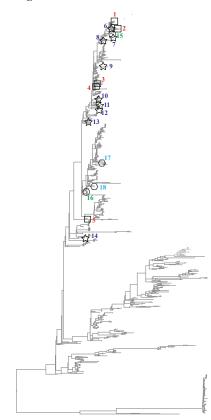

^a For each introduction, all isolates with exact sampling date were included in analysis; ^bFirst detected date of an introduction was defined as the earliest sampling date among all isolates within this introduction; e HPD, highest posterior density; ^dDifference between date of first detection and mean time to most recent common ancestor.

Figure 1

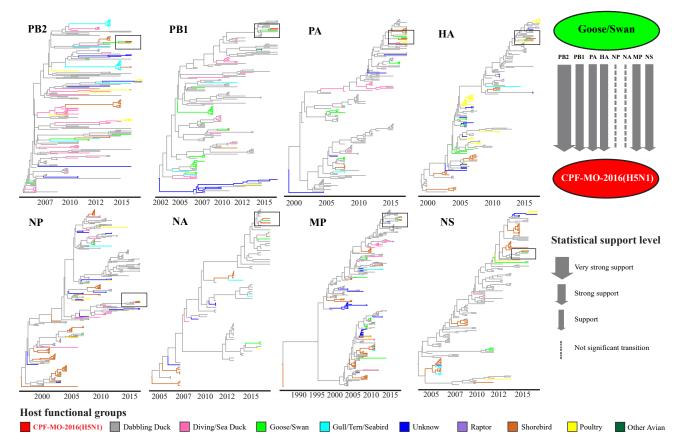
 \sum

Journal of Virology

H5 IAVs detected in CPFs ☆ H5 IAVs detected in LBMs

H5 IAVs detected in GBPs

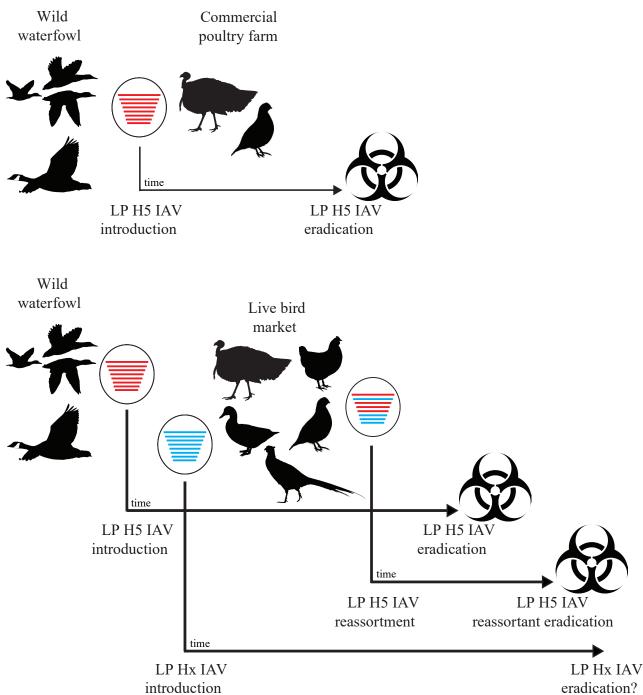
H5 IAVs detected in BYPs


Ο

ID	Introduction Name	HA NA PB2 PB1 PA NP MP NS	Isolates(r	n) Representative Isolate Name	Subtype	Year
_		Commercial poultry farm	11			
1	CPF-WI-2017(H5N2)		5	A/turkey/Wisconsin/170071461/2017	H5N2	2017
2	CPF-MO-2016(H5N1)		1	A/turkey/Missouri/160140377/2016	H5N1	2016
3	CPF-MB-2010(H5N2)		2	A/turkey/MB/FAV10/2010	H5N2	2010
4	CPF-VA-2007(H5N1)		2	A/turkey/VA/50547718/2007	H5N1	2007
5	CPF-CA-2002(H5N2)		1	A/turkey/CA/D0208651C/02	H5N2	2002
		Live bird market	62			
6	LBM-NJ-2015(H5N1)		1	A/chicken/NewJersey/150026592/2015	H5N1	2015
7	LBM-NY-2016(H5N2)		7 A	A/duck/NewYork/16-020978-20rig/2016 A/domesticduck/ON/FAV-18CS46/2016 /muscovyduck/NewJersey/16-021456-4/2016	H5N2	2016
8	LBM-NJ-2011(H5N2)		1	A/duck/NewJersey/11-064045-002/2011	H5N2	2011
			17	A/turkey/NewYork/465977/2006 A/quail/NewYork/501360/2007	H5N2	2006 2007
9	LBM-NY-2006(H5N2)		2	A/duck/NewYork/492652/2007	H5N2	2007
			1	A/duck/Pennsylvania/07-467189-1/2006	Mixed H5/H11 N2/N9	2007
				A/duck/Pennsylvania/07-002198-003/2007		
10	LBM-PA-2007(H5N2)		11 A	A/muscovyduck/NewJersey/07-002376-001/200 A/chicken/NewJersey/2514/2008 A/guineafowl/NewYork/08-000170-003/2008	⁷ H5N2	2007 2008
				A/chicken/Pennsylvania/4460807/2006		
11	LBM-NJ-2006(H5N2)a		10	A/duck/NewYork/445743/2006 A/avian/NewJersey/437109/2006	H5N2	2006
12	LBM-NJ-2006(H5N2)b		3	A/guineafowl/NewJersey/447114/2006 A/guineafowl/NewJersey/07-002030-001/2007	H5N2	2006 2007
13	LBM-NJ-2001(H5N2)		1	A/duck/ME/1518957A/2002	H5N2	2002
15	LBM-103-2001(115102)		1	A/duck/NJ/1172287/2001	H5N2	2001
14	LBM-NY-2007(H5N2)		7	A/duck/NewYork/492652/2007 A/duck/NewYork/08-000759-001/2008 A/Muscovyduck/NewYork/09-005059-002/2009	H5N2	2007 2008 2009
		Backyard flock poultry	3			
15	BYP-MI-2015(H5N2)		1 .	A/mallard/Michigan/15-031493-1orig/2015	H5N2	2015
16	BYP-OR-2006(H5N2)		2	A/duck/Oregon/4596743/2006 A/guineafowl/Oregon/459674-5/2006	H5N2	2006
		Game bird flock poultry	2			
17	GBP-CA-2014(H5N8)		1	A/quail/California/K1400794/2014	H5N8	2014
18	GBP-ID-2008(H5N8)		1	A/pheasant/Idaho/08-002590-63/2008	H5N8	2008

 \leq

Journal of Virology


Figure 3

 \sum

Accepted Manuscript Posted Online

Journal of Virology

 \leq