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p-Sidon Sets and a Uniform Property

GORDON S. WOODWARD

Let G be a compact abelian group with dual group I'. Denote by L*(E) and
M (E) the usual spaces of Haar-measurable functions and bounded regular
Borel measures, respectively, which are supported on the subset £ of G or T.
The Haar measure on @ is normalized and its dual is the Haar measure on T.
Let ¢ denote the Fourier or Fourier-Stieltjes transform of the function or
measure ¢. A subset £ C T is said to be p-Sidon for some 1 £ p < 2 (not interest-
ing for p = 2) if there is an &« > 0 such that ||@||, = a||¢||» for all trigonometric
polynomials ¢ on G with supp ¢ C E. This is equivalent to the dual statement:
E is p-Sidon if and only if L*(E) C M(G)" |z , where 1/p + 1/¢ = 1 and “|3"
denotes restriction to E. Hereafter p and ¢ will always be as above.

The concept of a p-Sidon set was independently introduced in [2, 4, and 5]
as a natural generalization of the classical Sidon sets (i.e., 1-Sidon sets). In each
of these articles, the various equivalent definitions for p-Sidon sets are given.
They correspond to the classical equivalent definitions of a Sidon set as presented
in [8, Theorem 5.7.3]. In [5], Hahn extends a theorem of J. P. Kahane to give the
best known necessary conditions for a set to be p-Sidon when I' = Z, the integers.
Edwards and Ross present the most comprehensive treatment of the subject
in [4]. It is there that the first non Sidon p-Sidon set is constructed via an
extremely ingenious application of the tensor algebraic techniques of Varapoulos.
Their methods are extended in [6] to prove that the classes of all 2n/(n + 1)-
Sidon sets are distinct for n = 1, 2, --- . One will also find in [6] all known non
Sidon p-Sidon sets to date (except for unions with finite sets). For a somewhat
more skillful application of the Varapoulos techniques to this problem, we refer
the reader to [1].

In this paper, we adapt an idea of Rider {7] in defining the class of uniform-
izable p-Sidon sets. The class is, by design, closed under finite unions. Of course,
its members are p-Sidon sets. Our main result is that Sidon sets are uniformizable
p-Sidon sets for all p. Its proof is a variant of Drury’s famous technique which
resembles most closely the approach found in [3]. As a corollary we prove that
the union of a Sidon set with any p-Sidon set is again p-Sidon, thus enabling
one to exhibit many new non Sidon p-Sidon sets. We conclude with a slight
extension of the results in [6], using an argument similar to the one presented
there, and a list of open questions.
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In what follows, L°(T'); denotes the L°(T") functions supported on £ C T
and I; denotes the characteristic function of E. We begin with a useful technical
result of a standard type.

Lemmal. E C T isa p-Sidon setif and only if there exist3 > 0and0 < § < 1
such that for each ¢ € L°(T)g there is a u e M(G) satisfying

@ lull = 8 llell. ; and

(ii) ”p'IE - ‘p“a < é H‘P”q .

Proof. Suppose E is a p-Sidon set. Define the relation ~ on M (G) by u ~ v
if 3 — %= 0onE. Let M(G)/~ denote the usual Banach quotient space. By
definition L*(T"); naturally embeds in M (G)/~. Moreover, the uniqueness of
the Fourier-Stieltjes transform yields that the graph of this map is closed;
hence (i). Of course, (ii) holds for any 6 > 0.

For the converse, let e L*(T") . Then (i) and (ii) yields inductively a sequence
{un} C M(G) with p, satisfying [|u|| = 8 |lell, and [|a.Jz — ¢ll. = 8 [|¢l|, and
continuing

“l“nH = ﬁ‘sn—l |l¢||a

and

< & lella -

n—1
ﬁ'nIE - <¢ - Z ﬁkIE)
0 a

Since 2" [|uxl| = B8 llelle (1 — 8)7', the sum u = )" . converges in M (G);
clearly o = pon E. O

Definition. E C T is a uniformizable p-Sidon set if for each § > 0 there
exists a 8 > 0 such that for any ¢ ¢ L*(T); there is a u ¢ M (G) satisfying

@) |lull = 8 llelle ; and

() [la — elle = 6 llell -
Denote by a1, the class of all uniformizable p-Sidon sets on T

It is clear that each element of U, is p-Sidon. The full strength of the definition
is summed up in the following theorem.

Theorem 1. E ¢ U, if and only if for each § > 0 there exists a 3 > 0 such that
for any ¢ e L*(T)g there is a u ¢ M(G) satisfying
@) llell = 8llell. ;
(i) o = pon E; and

(iii) (WZE M) = 8 llell. -

Proof. Suppose E ¢ U, . Let ¢ ¢ L°(T")z and choose any 0 < §, < 1. Set
8 = 8o/2. According to the definition of U, , thereisa 8 > 0 and a u, ¢ M(G)
such that {|u|| = 8 ||ell, and ||& — ¢|l, = 8 |lell, . Apply the definition again to
¢ — f,I; with the same 6 and continue in this manner. This gives rise to a
sequence {u,} C M(G) as in Lemma 1. Thus
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p= 2 ue M@, |kl =8 llell. @ — 87,
and i = ¢ on E. But this time
n—1 n—1 n-1
ﬂn - (ﬁa - Z ﬁk) = ﬁn - <§0 - 12 ﬂkIE> + Z ﬁk(l - IE)
1 q q 1

n—1
< 0" flelle + 22 8" llelle < o llell. -

In particular, (iii) is valid. Of course, (1)—(iii) are sufficient to imply Ee u,. O
Our next theorem is rather trivial at this point, but worth mentioning.
Theorem 2. A, is closed under finite unions for 1 < p < 2.

Proof. Suppose E, , E,e U, and set E = E, \U E, . Since subsets of elements
in U, are also in U, , we can assume that E, N\ E, = . Let ¢ ¢ L‘(T")g , let
¢, = olg, for i = 1,2, and choose any 8§, > 0. By definition there exist 8 > 0
and measures p; , pe such that & = 60/2, 8, u: , ¢, satisfy (1) and (ii) of the
definition for a U, set. Thus ||u, + || = 28 ||¢||, and

o + fe — olle = 1o — aille + oz — ealle < 80 llell.. O

Remark. This author had originally announced [Notices Amer. Math.
Soc. 21 (1974), A-163] a somewhat different definition for U, . Specifically,
replace “for each § > 0" by ‘‘for some 0 < & < 1" in Theorem 1. Under this
change, Theorem 2 would read “‘the union of any two elements of U, is p-
Sidon.” The formally stronger definition that we are now using seems to better
reflect the structure of p-Sidon sets.

We now turn to the question of existence of nontrivial uniformizable p-Sidon
sets. Fortunately, Drury’s theorem implies that U, consists of all Sidon sets.
But this yields no information about U, for p # 1. In fact, the relationship
between U, and U, for 1 £ p ¥ r < 2is not at all clear. Our next theorem sheds
some light on the matter by showing U, C U, . The key is the observation
that U, contains all dissociate sets for 1 £ p < 2. For, Drury’s techniques allow
us in this context to essentially consider any Sidon set as a dissociate sct. We
emphasize that many of the techniques used in our next proof parallel those
of [3]. A subset E of an abelian group A is dissociate if the only solutions to
> 6,y = O (finite sum) with y ¢ E and 6, ¢ {—2, —1, 0, 1, 2} are 5, = O for
all v. As is custom, we denote by B(T') the space M(G)  with the norm,
Halls = lull .

Theorem 3. Sidon sets are uniformizable p-Sidon sets for all p.

Proof. Let E C T be a Sidon set. Following Drury (3], fix a positive integer n
and let v, , -+ , ¥, ¢ E be any choice of n distinct nonzero elements. Let A be
the discrete abelian group generated by F = {v,, - -+ ,v.} over, say, Z mod (3)
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where v, , +++ , v, are simply considered as n independent symbols. That is
A 22 (Z mod (3))". The dual H of A is isomorphic to A but it can also be realized
as the set of all maps h : F — T3 where T is the set of 3rd roots of unity. The
group operation, represented by -+, is just pointwise multiplication. We insist
that H have Haar measure 1. Then the dual Haar measure on A is simply
the counting measure.

Consider first the group T' X H which has dual G X A. Since £ is 1-Sidon,
there exists an @ > 0 such that for each h ¢ H there is a u, ¢ M (G) satisfying
lu]l £ @ and 4, = hon F. Set g(v, h) = fiu(y). Then g(y; , ) is a character
on H. Together with the properties of w, , this yields

1) g(-, ) e B(T) with ||lg(-, ®)||s < @ forall heH
and
(2 gy, ) e BH) with ||lg(v, )||z =1 forall yeF.

We adjust these two statements as follows. Define the function

(v, ©) = gly, )gg(y, 0) (convolution over H).

for all ¥ ¢ T'. Since 7(-, h) is a convex linear combination of products of the
G, £ e H, it follows that (-, h) ¢ B(T') and ||r(-, h)||s < & for he H. That is,

) l|r(-, h)||s < o for all he H;

@) |lrty, )|z S o for ally e I'; and

3) r(v, h) = h(y) on F for all he H;
where (3) is immediate from the definition of r.

At this point we fix a real-valued ¢ ¢ L(T')r with ||¢]|, = 1. Let 0 < e £ 1
and set 2; = (y; ,v;) e X Afor1l £ j £ n. Define the Riesz polynomials
P, and P,on G X H by

Since |lg(y, )|« £ @, it follows that ||g(y, )|l < «; hence ||r(y, ‘)|[s £ o

P& = TL 11 + ¢/200)@ ) + m:)]

i=1

and

Po@) = T1 11 + e/2ier)0,@) — 7))

Since these functions are nonnegative ||P,||, = P,(0) and ||P,||; = Po(0). Their
formal expansions can be described in the following terms. Set @ = {—1, 0, 1}",
let 6 = (3, -+, 3,) be a generic point of 2, and adopt the convention 0° = 1.
Then, using the additive group notation, we have

P,(2) = Z I:I"I (5/2(9(7:'))'6”](511'1 + oo 4 )@

de Q i=1

and

Py(z) = Z I:’:l (5:'5/2@“/’(’)’:'))]5”](51% + o+ 6.

8e Q
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Note that by definition of A the set {z,, --- , x,} is dissociate; hence distinect
d e @ give distinct characters 8,2, + - -+ + 8,2, on G X H. In particular, ||P,||, =
[|Po]l, = 1. Moreover, P, , P, are supported on points of the form

y= 3 s with B.) = I (/200"

and

Putw) = 1T (re/2ipty))"".

Also note, Py(£2;) = e¢/2p(y;).

For a continuous P on ¢ X H, denote its transform with respect to the jth
variable by P’ (j = 1, 2). It follows that (P')"2 = P and that ||P'(y, -)||. < ||P)|| .
In particular, the functions

8.0v) = Py, ) = 1) :7'(7, ()
and
so(y) = @GPy, 1) = )" * 1€y, )(0)

are convex linear combinations of B(T') functions with norm bounded by 2qa°.
Thus

4) s=3s,+ seB(I') and ||s||; < 4o
Moreover, since 7(y; , h) = h(y;) for1 < j < n,
() s(y;) = Pc(xi) + ipo(@‘i) = ep(v,).

We now want to estimate ||s — eg||, . To this end, denote the Dirac point
measure at 0 e A by 8, . Then applying Parseval’s formula (relative to H) to the
definition of s(y) yields

sl = |[ 120, 1)+ P, 1) = @4 T, =

= IfA [Py, N) + iy, ) — A + D)8} (v, V) dk'

< ||P.(v, *) + iPuly, ©) — (1 + ©)8o||o a® forall yel
by (2). Set R = P, + iP, — (1 + 14)5, . The preceding inequalities and (5) yield
®)  ls—eelld= 2 s =™ X [R@I[ = [R][ — ¢ [le]l).

T¢F ze'XA
z#zj,1<isSn

To estimate ||R]|, , partition © by the equivalence relation § ~ ¢ if and only if
|8;] = |o,] for 1 < j < n. Call this partition & Given u ¢ & and any § e u, define

ul = 3 18] and 4, = IT e .
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Both symbols are well defined. Let z = (x, , --- , x,). Then the expansions
obtained earlier for P, and P, yield

|R(5-2)| = (¢/2)"'A. |1 + B;| for beuces,

where §-2 denotes the usual vector inner product and 8; ¢ {1, =¢}. It is im-
portant to note that R(x;) = ep(y;) and R(0) = R(—=z;) = 0forl £ j < n.
Since the cardinality of each u ¢ & is 2'*', it follows that

2 RG)" = 2" (e/2) A2 i fu] > 1,
deu

2 [BG-2)|"

i

€/2)" 42" if |u| =1,

and
gu) R(3-2)|" =0 if |u] = 0.
Thus
[[R]]." = Z) ; [R(5-2)["
= X2V A2 = 3 (2 -

ue

241(2 2|u|(6/2)luIaAua _ (6/2)0 _ 1)’

ued

where the second line of the inequality reflects, via subtraction, the differences
between the cases [u| > 1, |u| = 1, and |u| = 0. We have also used

> (4)" = (lell)* = 1.

lul =1

This can be further simplified with the aid of the equation

> 2(e/2) M4, = H (1 + 2 le/2e(r)])

ued

and the inequality

in T+ 2 Jo/260)09 = 310 (1 + 2 [e/20))

< Z 2 le/ 20" = 2e/2)" o]l = 2(e/2)".

In fact a slight computation yields
[IR]|." = 2exp (2(¢/2)") — 1 — (¢/2)°].
Together with (6), this yields
lls — ep|l. = 2o’[exp (2(¢/2)") — (1 + 2(e/2))]""

2 2
=< €.

IA
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Now apply (4) and (5). We conclude: (i) ¢ 's ¢ B(T') and ||e7's||z < 4¢ '
(i) €'s = ¢ on F; (iii) ||e's — ¢||, £ e’. In particular, given any ¢ ¢ L*(T")»
we can apply (i)-(iii) to its normalized real and imaginary parts. It follows that
there is a u ¢ M (G) satisfying

@) llull = 8¢'a [yl ,
) (b) g =y on F,and
© lla =¥l = 2ea [l

The argument extends from finite sets F to E via a standard weak* compact-
ness argument. [

We can now describe a large variety of new p-Sidon sets. Just consider the
sets in [6] together with the following corollary.

Corollary. Suppose S C T s Sidon and E C T is p-Sidon. Then S \J I
18 p-Sidon.

Proof. We can assume S M E = . The p-Sidon property and Theorem 3
imply that there exists 3 > 0 such that for any ¢ ¢ L*(T")sur there are measures
i, p1 , me & M(G) satisfying
() |lull = 8,8 =1o0ns8,[a] < 1/40ff S;

@) lwll = B lleslles 8 = eon S, [l — elslle S 1/4 |leIslla ;
3) lluall = B lleIulle, 82 = ¢ on E.

Set » = (1 — @)y + 4, . Thenve M(G) and ||v|]| £ (1 4+ 8)28 ||¢||, . Morcover
[9Is — elsll, =0
and
My — elyll, = ||=ppals + 2Ll £ 5 llella -
Thus

Hf’Isur: - ‘P”a <3 “ﬂOHa .
Now apply Lemma 1. O

Our last result exhibits some additional p-Sidon sets as an extension to the
result in [6]. We outline much of the proof and refer the reader to [6] for the
details. By +A4 +B we mean {éa + 6'b : 5, 8 ¢ {—1, 1} and a e A, b e B}.

Theorem 4. Suppose 4, , -+ , A, are mutually disjoint infinite subsets of T
whose unton is dissociate. Then E = +A, &+ A, &= --- &+ A, is p-Sidon if and
only if p = 2n/(n + 1).

Proof. Lemma 1 in [6] implies that p = 2n/(n + 1) if E is p-Sidon. Thus
we need only prove that E is p = 2n/(n + 1)-Sidon. To begin note that the 2"
sets of the form B, = Y 8,;4; where 8 = (8,, -, 8,) ¢ { —1, 1}" are mutually
disjoint since \JA; is dissociate. Choose any 8 and a ¢ ¢ L*(I")z, . We shall show
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that there is a us ¢ M ((F) such that gg = ¢ on E; while gg = 0 on E,, for a = 8.
The theorem then follows by considering sums of the form D us . It is sufficient
to restrict our attention to real-valued g and tog = (—1,1, --- , 1) e {—1, 1}".
Fix such a ¢. As argued in [6], it follows that ¢ ¢ C(4,) ® -+ &® C(4,); hence
we need only prove the following fact concerning basic tensor elements: there
exists a constant K > 0 such that for any choice of real-valued functions
€1, ,e.on A, , --- A, respectively, there is a u ¢ M(G) with ||u|] =
K ||eille « - ||enll~ satisfying g = 0 on E, for @ 5 3 and

Bl=vi+ v+ -+ 7)) = elyr) o ealyn)

onkyg=—A,+4,+ -+ +4,.
To this end, assume for the moment that each 4; is finite and fix a choice

of o1, +++, ¢, . We consider the Ricsz polynomials
mm=gyLHmww%mmw+mm,1§jgu
%@=HUHMMMMWﬂw+WM

and

0@ = TL 0+ @i llosll) 00 —4@),  2=j<n

The discussion of such polynomials in Theorem 3 implies that ||p,||, = ||g;||. = 1

and that p,(£v) = ¢;(v)/ 2 lleill»), .(£7) = Fei(v)/ (20 |leill=), and ¢;(£v) =
+0;04)/(2¢ ||eill«)(G # 1), for all ¥ in the corresponding 4; , 1 < j £ n. In
particular, the polynomials

P;=(p,— 1) ||‘Pi”°° ’ Qi = (¢; — 1) ”%‘Hw

and
R=ﬁdﬁ+%
satisfy
O P+ Q)0 =0,
2 P, +Q) () =0 and (P, + Q) (=) =eily) for ved,,
B) P+ Q) () =ey) and (P, + Q) (—y) =0

for ye A, , 2=<j=<mn, and

@) 1Rl = 2% 1T lleill- -

Here (1)-(3) are immediate from the definitions and the fact that \UA; is
dissociate. To see (4) observe that R is the sum of 2" terms, each of which has
precisely n factors consisting of some combination of P;’s and Q,s—each
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appearing only once. Since ||P;||, , ||Q:|l; = 2 |l¢;l| , it follows that each of
those terms has L'-norm bounded by 2" []; ||¢;||~ ; whence (4). Again we use
the dissociate property of \UA4 ; , this time in conjunction with (1)-(3) to conclude

R(=vi+v+ - +7) =el) - euly.) for v,ed;
and
5) R=0 on E, for as8.

In light of (4), a weak* compactness argument extends (5) to infinite A; for
some Re M(G). O

Open questions.

1. Are all p-Sidon sets uniformizable r-Sidon sets for some 1 # p < r < 2?
Indeed, do there exists uniformizable p-Sidon sets which arc not Sidon sets?
To be specific, let A = {3™},” and B = {3"""'},". Is A + B a uniformizable
p-Sidon set?

2. Is the union of two p-Sidon sets (p = 1) an r-Sidon set for some p < r < 2?
This is open even if one of the sets is assumed to be a uniformizable p-Sidon set.

3. There is a form of the Kahane and Salem necessary condition for Sidon sets
for p-Sidon subsets of Z (see [5]). It extends immediately to any discrete I' for
which every v 0 has infinite order and actually improves somewhat for other
discrete I'’s. The condition appears fairly tight. But what about sufficient condi-
tions? For Sidon sets we at least have the Stetkin type conditions (see [7] or
[8, Section 5.7.5]). For p-Sidon sets (p 5= 1) the best result so far in this direction
is our Theorem 4. Is there some analogue to the Ste¢kin condition for p-Sidon
sets?

4. Let 8, be the class of all p-Sidon subsets of T'. It is immediate that S, C S,
if p < r. Moreover, if p, = 2n/(n + 1), then [6] tells us that S,, € S,.,, . If
1 = p# r < 2 must it follow that S, = S, ?
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