p-Sidon Sets and a Uniform Property

Gordon S. Woodward

University of Nebraska - Lincoln, gwoodward@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/mathfacpub

Woodward, Gordon S., "p-Sidon Sets and a Uniform Property" (1976). Faculty Publications, Department of Mathematics. 137.
http://digitalcommons.unl.edu/mathfacpub/137

This Article is brought to you for free and open access by the Mathematics, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications, Department of Mathematics by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

p-Sidon Sets and a Uniform Property

GORDON S. WOODWARD

Let G be a compact abelian group with dual group Γ. Denote by $L^{p}(E)$ and $M(E)$ the usual spaces of Haar-measurable functions and bounded regular Borel measures, respectively, which are supported on the subset E of G or Γ. The Haar measure on G is normalized and its dual is the Haar measure on Γ. Let $\hat{\varphi}$ denote the Fourier or Fourier-Stieltjes transform of the function or measure φ. A subset $E \subset \Gamma$ is said to be p-Sidon for some $1 \leqq p<2$ (not interesting for $p \geqq 2$) if there is an $\alpha>0$ such that $\|\hat{\varphi}\|_{p} \leqq \alpha\|\varphi\|_{\infty}$ for all trigonometric polynomials φ on G with supp $\hat{\varphi} \subset E$. This is equivalent to the dual statement: E is p-Sidon if and only if $\left.L^{a}(E) \subset M(G)^{\wedge}\right|_{E}$, where $1 / p+1 / q=1$ and " $\left.\right|_{E}$ " denotes restriction to E. Hereafter p and q will always be as above.

The concept of a p-Sidon set was independently introduced in [2, 4, and 5] as a natural generalization of the classical Sidon sets (i.e., 1-Sidon sets). In each of these articles, the various equivalent definitions for p-Sidon sets are given. They correspond to the classical equivalent definitions of a Sidon set as presented in [8, Theorem 5.7.3]. In [5], Hahn extends a theorem of J. P. Kahane to give the best known necessary conditions for a set to be p-Sidon when $\Gamma=\mathbf{Z}$, the integers. Edwards and Ross present the most comprehensive treatment of the subject in [4]. It is there that the first non Sidon p-Sidon set is constructed via an extremely ingenious application of the tensor algebraic techniques of Varapoulos. Their methods are extended in [6] to prove that the classes of all $2 n /(n+1)$ Sidon sets are distinct for $n=1,2, \cdots$. One will also find in [6] all known non Sidon p-Sidon sets to date (except for unions with finite sets). For a somewhat more skillful application of the Varapoulos techniques to this problem, we refer the reader to [1].

In this paper, we adapt an idea of Rider [7] in defining the class of uniformizable p-Sidon sets. The class is, by design, closed under finite unions. Of course, its members are p-Sidon sets. Our main result is that Sidon sets are uniformizable p-Sidon sets for all p. Its proof is a variant of Drury's famous technique which resembles most closely the approach found in [3]. As a corollary we prove that the union of a Sidon set with any p-Sidon set is again p-Sidon, thus enabling one to exhibit many new non Sidon p-Sidon sets. We conclude with a slight extension of the results in [6], using an argument similar to the one presented there, and a list of open questions.

In what follows, $L^{p}(\Gamma)_{E}$ denotes the $L^{p}(\Gamma)$ functions supported on $E \subset \Gamma$ and I_{E} denotes the characteristic function of E. We begin with a useful technical result of a standard type.

Lemma 1. $E \subset \Gamma$ is a p-Sidon set if and only if there exist $\beta>0$ and $0<\delta<1$ such that for each $\varphi \varepsilon L^{a}(\Gamma)_{E}$ there is a $\mu \varepsilon M(G)$ satisfying
(i) $\|\mu\| \leqq \beta\|\varphi\|_{\Phi}$; and
(ii) $\left\|\hat{\mu} I_{E}-\varphi\right\|_{q}<\delta\|\varphi\|_{q}$.

Proof. Suppose E is a p-Sidon set. Define the relation \sim on $M(G)$ by $\mu \sim \nu$ if $\hat{\mu}-\hat{\nu} \equiv 0$ on E. Let $M(G) / \sim$ denote the usual Banach quotient space. By definition $L^{a}(\Gamma)_{E}$ naturally embeds in $M(G) / \sim$. Moreover, the uniqueness of the Fourier-Stieltjes transform yields that the graph of this map is closed; hence (i). Of course, (ii) holds for any $\delta>0$.

For the converse, let $\varphi \in L^{a}(\Gamma)_{E}$. Then (i) and (ii) yields inductively a sequence $\left\{\mu_{n}\right\} \subset M(G)$ with μ_{1} satisfying $\left\|\mu_{1}\right\| \leqq \beta\|\varphi\|_{q}$ and $\left\|\hat{\mu}_{1} I_{E}-\varphi\right\|_{q} \leqq \delta\|\varphi\|_{a}$ and continuing

$$
\left\|\mu_{n}\right\| \leqq \beta \delta^{n-1}\|\varphi\|_{q}
$$

and

$$
\left\|\hat{\mu}_{n} I_{E}-\left(\varphi-\sum_{0}^{n-1} \hat{\mu}_{k} I_{E}\right)\right\|_{a} \leqq \delta^{n}\|\varphi\|_{a}
$$

Since $\sum^{\infty}\left\|\mu_{k}\right\| \leqq \beta\|\varphi\|_{Q}(1-\delta)^{-1}$, the sum $\mu=\sum^{\infty} \mu_{k}$ converges in $M(G)$; clearly $\hat{\mu}=\varphi$ on E.

Definition. $E \subset \Gamma$ is a uniformizable p-Sidon set if for each $\delta>0$ there exists a $\beta>0$ such that for any $\varphi \varepsilon L^{a}(\Gamma)_{E}$ there is a $\mu \varepsilon M(G)$ satisfying
(i) $\|\mu\| \leqq \beta\|\varphi\|_{\varphi}$; and
(ii) $\|\hat{\mu}-\varphi\|_{a} \leqq \delta\|\varphi\|_{a}$.

Denote by \mathcal{u}_{p} the class of all uniformizable p-Sidon sets on Γ.
It is clear that each element of \mathfrak{U}_{p} is p-Sidon. The full strength of the definition is summed up in the following theorem.

Theorem 1. $E \varepsilon \mathcal{U}_{p}$ if and only if for each $\delta>0$ there exists $a \beta>0$ such that for any $\varphi \varepsilon L^{4}(\Gamma)_{E}$ there is $a \mu \varepsilon M(G)$ satisfying
(i) $\|\mu\| \leqq \beta\|\varphi\|_{a}$;
(ii) $\hat{\mu} \equiv \varphi$ on E; and
(iii) $\left(\sum_{\gamma \neq E}|\hat{\mu}(\gamma)|^{\alpha}\right)^{1 / a} \leqq \delta\|\varphi\|_{a}$.

Proof. Suppose $E \varepsilon \mathcal{U}_{p}$. Let $\varphi \varepsilon L^{q}(\Gamma)_{E}$ and choose any $0<\delta_{0}<1$. Set $\delta=\delta_{0} / 2$. According to the definition of \mathcal{U}_{p}, there is a $\beta>0$ and a $\mu_{1} \varepsilon M(G)$ such that $\left\|\mu_{1}\right\| \leqq \beta\|\varphi\|_{q}$ and $\left\|\hat{\mu}_{1}-\varphi\right\|_{q} \leqq \delta\|\varphi\|_{q}$. Apply the definition again to $\varphi-\hat{\mu}_{1} I_{E}$ with the same δ and continue in this manner. This gives rise to a sequence $\left\{\mu_{n}\right\} \subset M(G)$ as in Lemma 1. Thus

$$
\mu=\sum^{\infty} \mu_{n} \varepsilon M(G), \quad\|\mu\| \leqq \beta\|\varphi\|_{q}(1-\delta)^{-1}
$$

and $\hat{\mu} \equiv \varphi$ on E. But this time

$$
\begin{aligned}
&\left\|\hat{\mu}_{n}-\left(\varphi-\sum_{1}^{n-1} \hat{\mu}_{k}\right)\right\|_{a} \leqq\left\|\hat{\mu}_{n}-\left(\varphi-\sum_{1}^{n-1} \hat{\mu}_{k} I_{E}\right)\right\|_{q}+\left\|\sum_{1}^{n-1} \hat{\mu}_{k}\left(1-I_{E}\right)\right\| \\
& \leqq \delta^{n}\|\varphi\|_{a}+\sum_{1}^{n-1} \delta^{k}\|\varphi\|_{a}<\delta_{0}\|\varphi\|_{a}
\end{aligned}
$$

In particular, (iii) is valid. Of course, (i)-(iii) are sufficient to imply $E \varepsilon \mathcal{U}_{p}$.
Our next theorem is rather trivial at this point, but worth mentioning.
Theorem 2. \mathfrak{u}_{p} is closed under finite unions for $1 \leqq p<2$.
Proof. Suppose $E_{1}, E_{2} \varepsilon \mathcal{U}_{p}$ and set $E=E_{1} \cup E_{2}$. Since subsets of elements in \mathcal{U}_{p} are also in \mathcal{U}_{p}, we can assume that $E_{1} \cap E_{2}=\varnothing$. Let $\varphi \varepsilon L^{a}(\Gamma)_{E}$, let $\varphi_{i}=\varphi I_{E_{i}}$ for $i=1,2$, and choose any $\delta_{0}>0$. By definition there exist $\beta>0$ and measures μ_{1}, μ_{2} such that $\delta=\delta_{0} / 2, \beta, \mu_{i}, \varphi_{i}$ satisfy (i) and (ii) of the definition for a χ_{p} set. Thus $\left\|\mu_{1}+\mu_{2}\right\| \leqq 2 \beta\|\varphi\|_{q}$ and

$$
\left\|\hat{\mu}_{1}+\hat{\mu}_{2}-\varphi\right\|_{a} \leqq\left\|\hat{\mu}_{1}-\varphi_{1}\right\|_{a}+\left\|\hat{\mu}_{2}-\varphi_{2}\right\|_{a}<\delta_{0}\|\varphi\|_{Q}
$$

Remark. This author had originally announced [Notices Amer. Math. Soc. 21 (1974), A-163] a somewhat different definition for \mathfrak{u}_{p}. Specifically, replace "for each $\delta>0$ " by "for some $0<\delta<1$ " in Theorem 1. Under this change, Theorem 2 would read "the union of any two elements of \mathcal{U}_{p} is p Sidon." The formally stronger definition that we are now using seems to better reflect the structure of p-Sidon sets.

We now turn to the question of existence of nontrivial uniformizable p-Sidon sets. Fortunately, Drury's theorem implies that \mathfrak{u}_{1} consists of all Sidon sets. But this yields no information about \mathfrak{u}_{p} for $p \neq 1$. In fact, the relationship between \mathfrak{U}_{p} and \mathcal{U}_{r} for $1 \leqq p \neq r<2$ is not at all clear. Our next theorem sheds some light on the matter by showing $\mathcal{U}_{1} \subset \mathfrak{U}_{p}$. The key is the observation that \mathfrak{u}_{p} contains all dissociate sets for $1 \leqq p<2$. For, Drury's techniques allow us in this context to essentially consider any Sidon set as a dissociate set. We emphasize that many of the techniques used in our next proof parallel those of [3]. A subset E of an abelian group Λ is dissociate if the only solutions to $\sum \delta_{\gamma} \gamma=0$ (finite sum) with $\gamma \varepsilon E$ and $\delta_{\gamma} \varepsilon\{-2,-1,0,1,2\}$ are $\delta_{\gamma}=0$ for all γ. As is custom, we denote by $B(\Gamma)$ the space $M(G)^{\wedge}$ with the norm, $\|\hat{\mu}\|_{B} \equiv\|\mu\|$.

Theorem 3. Sidon sets are uniformizable p-Sidon sets for all p.
Proof. Let $E \subset \Gamma$ be a Sidon set. Following Drury [3], fix a positive integer n and let $\gamma_{1}, \cdots, \gamma_{n} \in E$ be any choice of n distinct nonzero elements. Let Λ be the discrete abelian group generated by $F \equiv\left\{\boldsymbol{\gamma}_{1}, \cdots, \boldsymbol{\gamma}_{n}\right\}$ over, say, $\mathbf{Z} \bmod (3)$
where $\gamma_{1}, \cdots, \gamma_{n}$ are simply considered as n independent symbols. That is $\Lambda \cong(\mathbf{Z} \bmod (3))^{n}$. The dual H of Λ is isomorphic to Λ but it can also be realized as the set of all maps $h: F \rightarrow T_{3}$ where T_{3} is the set of 3 rd roots of unity. The group operation, represented by + , is just pointwise multiplication. We insist that H have Haar measure 1. Then the dual Haar measure on Λ is simply the counting measure.

Consider first the group $\Gamma \times H$ which has dual $G \times \Lambda$. Since E is 1-Sidon, there exists an $\alpha>0$ such that for each $h \in H$ there is a $\mu_{h} \varepsilon M(G)$ satisfying $\left\|\mu_{h}\right\| \leqq \alpha$ and $\hat{\mu}_{h} \equiv h$ on F. Set $g(\gamma, h)=\hat{\mu}_{h}(\gamma)$. Then $g\left(\gamma_{i}, \cdot\right)$ is a character on H. Together with the properties of μ_{h}, this yields

$$
g(\cdot, h) \varepsilon B(\Gamma) \text { with }\|g(\cdot, h)\|_{B} \leqq \alpha \text { for all } h \in H
$$

and

$$
g(\gamma, \cdot) \varepsilon B(H) \quad \text { with } \quad\|g(\gamma, \cdot)\|_{B}=1 \quad \text { for all } \quad \gamma \varepsilon F
$$

We adjust these two statements as follows. Define the function

$$
r(\gamma, \cdot) \equiv g(\gamma, \cdot)_{H}^{*} g(\gamma, o) \quad(\text { convolution over } H)
$$

Since $\|g(\gamma, \cdot)\|_{\infty} \leqq \alpha$, it follows that $\|g(\gamma, \cdot)\|_{2} \leqq \alpha$; hence $\|r(\gamma, \cdot)\|_{B} \leqq \alpha^{2}$ for all $\gamma \varepsilon \Gamma$. Since $r(\cdot, h)$ is a convex linear combination of products of the $\hat{\mu}_{\ell}, \ell \in H$, it follows that $r(\cdot, h) \varepsilon B(\Gamma)$ and $\|r(\cdot, h)\|_{B} \leqq \alpha^{2}$ for $h \varepsilon H$. That is,
(1) $\|r(\cdot, h)\|_{B} \leqq \alpha^{2}$ for all $h \varepsilon H$;
(2) $\|r(\gamma, \cdot)\|_{B} \leqq \alpha^{2}$ for all $\gamma \varepsilon \Gamma$; and
(3) $r(\gamma, h)=h(\gamma)$ on F for all $h \varepsilon H$;
where (3) is immediate from the definition of r.
At this point we fix a real-valued $\varphi \varepsilon L^{a}(\Gamma)_{F}$ with $\|\varphi\|_{Q}=1$. Let $0<\epsilon \leqq 1$ and set $x_{i}=\left(\gamma_{i}, \gamma_{j}\right) \varepsilon \Gamma \times \Lambda$ for $1 \leqq j \leqq n$. Define the Riesz polynomials P_{e} and P_{0} on $G \times H$ by

$$
P_{e}(z)=\prod_{i=1}^{n}\left[1+\epsilon / 2 \varphi\left(\gamma_{i}\right)\left(x_{i}(z)+\overline{x_{i}(z)}\right)\right]
$$

and

$$
P_{0}(z)=\prod_{i=1}^{n}\left[1+\epsilon / 2 i \varphi\left(\gamma_{i}\right)\left(x_{i}(z)-\overline{x_{i}(z)}\right)\right] .
$$

Since these functions are nonnegative $\left\|P_{e}\right\|_{1}=\widehat{P}_{e}(0)$ and $\left\|P_{0}\right\|_{1}=\hat{P}_{0}(0)$. Their formal expansions can be described in the following terms. Set $\Omega=\{-1,0,1\}^{n}$, let $\delta=\left(\delta_{1}, \cdots, \delta_{n}\right)$ be a generic point of Ω, and adopt the convention $0^{0}=1$. Then, using the additive group notation, we have

$$
P_{e}(z)=\sum_{\delta \varepsilon \Omega}\left[\prod_{i=1}^{n}\left(\epsilon / 2 \varphi\left(\gamma_{i}\right)\right)^{\left|\delta_{i!}\right|}\right]\left(\delta_{1} x_{1}+\cdots+\delta_{n} x_{n}\right)(z)
$$

and

$$
P_{0}(z)=\sum_{\delta \in \Omega}\left[\prod_{i=1}^{n}\left(\delta_{i} \epsilon / 2 i \varphi\left(\gamma_{j}\right)\right)^{\left|\delta_{i}\right|}\right]\left(\delta_{1} x_{1}+\cdots+\delta_{n} x_{n}\right)(z)
$$

Note that by definition of Λ the set $\left\{x_{1}, \cdots, x_{n}\right\}$ is dissociate; hence distinct $\delta \varepsilon \Omega$ give distinct characters $\delta_{1} x_{1}+\cdots+\delta_{n} x_{n}$ on $G \times H$. In particular, $\left\|P_{e}\right\|_{1}=$ $\left\|P_{0}\right\|_{1}=1$. Moreover, \hat{P}_{e}, \hat{P}_{0} are supported on points of the form

$$
y=\sum^{n} \delta_{i} x_{j} \quad \text { with } \quad \hat{P}_{e}(y)=\prod^{n}\left(\epsilon / 2 \varphi\left(\gamma_{i}\right)\right)^{\left|\delta_{i j}\right|}
$$

and

$$
\hat{P}_{0}(y)=\prod^{n}\left(\delta_{i} \epsilon / 2 i \varphi\left(\gamma_{i}\right)\right)^{\left|\delta_{i}\right|}
$$

Also note, $\hat{P}_{0}\left(\pm x_{i}\right)= \pm \epsilon / 2 i \varphi\left(\gamma_{i}\right)$.
For a continuous P on $G \times H$, denote its transform with respect to the j th variable by $\hat{P}^{i}(j=1,2)$. It follows that $\left(\hat{P}^{1}\right)^{\wedge}=\hat{P}$ and that $\left\|\hat{P}^{1}(\gamma, \cdot)\right\|_{1} \leqq\left\|P_{1}\right\|$. In particular, the functions

$$
s_{e}(\gamma)=\left(P_{e}(\gamma, \cdot)-1\right)^{\wedge}{ }_{u}^{1} * r(\gamma, \cdot)(0)
$$

and

$$
s_{0}(\gamma)=\left(i P_{0}(\gamma, \cdot)-i\right)_{H}^{\wedge_{1}^{1}}{ }_{H} r(\gamma, \cdot)(0)
$$

are convex linear combinations of $B(\Gamma)$ functions with norm bounded by $2 \alpha^{2}$. Thus

$$
\begin{equation*}
s \equiv s_{e}+s_{0} \varepsilon B(\Gamma) \quad \text { and } \quad\|s\|_{B} \leqq 4 \alpha^{2} \tag{4}
\end{equation*}
$$

Moreover, since $r\left(\gamma_{i}, h\right)=h\left(\gamma_{i}\right)$ for $1 \leqq j \leqq n$,

$$
\begin{equation*}
s\left(\gamma_{i}\right)=\hat{P}_{e}\left(x_{i}\right)+i \hat{P}_{0}\left(x_{i}\right)=\epsilon \varphi\left(\gamma_{i}\right) \tag{5}
\end{equation*}
$$

We now want to estimate $\|s-\epsilon \varphi\|_{\rho}$. To this end, denote the Dirac point measure at $0 \varepsilon \Lambda$ by δ_{0}. Then applying Parseval's formula (relative to H) to the definition of $s(\gamma)$ yields

$$
\begin{aligned}
|s(\gamma)| & =\left|\int_{H}\left[P_{e}(\gamma, h)+i P_{0}(\gamma, h)-(1+i)\right]^{\hat{1}^{1}} r(\gamma,-h) d h\right| \\
& =\left|\int_{\Lambda}\left[\hat{P}_{e}(\gamma, \lambda)+i \hat{P}_{0}(\gamma, \lambda)-(1+i) \delta_{0}\right] \hat{r}^{2}(\gamma, \lambda) d \lambda\right| \\
& \leqq\left\|\hat{P}_{e}(\gamma, \cdot)+i \widehat{P}_{0}(\gamma, \cdot)-(1+i) \delta_{0}\right\|_{\infty} \alpha^{2} \text { for all } \gamma \varepsilon \mathrm{I}
\end{aligned}
$$

by (2). Set $R=\hat{P}_{e}+i \hat{P}_{0}-(1+i) \delta_{0}$. The preceding inequalities and (5) yield

To estimate $\|R\|_{a}$, partition Ω by the equivalence relation $\delta \sim \sigma$ if and only if $\left|\delta_{i}\right|=\left|\sigma_{j}\right|$ for $1 \leqq j \leqq n$. Call this partition \mathcal{E}. Given $u \varepsilon \mathcal{E}$ and any $\delta \varepsilon u$, define

$$
|u|=\sum^{n}\left|\delta_{i}\right| \quad \text { and } \quad A_{u}=\prod^{n}\left|\varphi(\gamma)_{i}\right|^{\left|\delta_{i}\right|} .
$$

Both symbols are well defined. Let $z=\left(x_{1}, \cdots, x_{n}\right)$. Then the expansions obtained earlier for P_{e} and P_{0} yield

$$
|R(\delta \cdot z)|=(\epsilon / 2)^{|u|} A_{u}\left|1+\beta_{\delta}\right| \quad \text { for } \quad \delta \varepsilon u \varepsilon \varepsilon,
$$

where $\delta \cdot z$ denotes the usual vector inner product and $\beta_{\boldsymbol{j}} \boldsymbol{\varepsilon}\{ \pm 1, \pm i\}$. It is important to note that $R\left(x_{j}\right)=\epsilon \varphi\left(\gamma_{i}\right)$ and $R(0)=R\left(-x_{i}\right)=0$ for $1 \leqq j \leqq n$. Since the cardinality of each $u \varepsilon \mathcal{E}$ is $2^{|u|}$, it follows that

$$
\begin{aligned}
& \sum_{\delta z u}|R(\delta \cdot z)|^{a} \leqq 2^{|u|}(\epsilon / 2)^{|u| q} A_{u}{ }^{a} 2^{q} \quad \text { if } \quad|u|>1, \\
& \sum_{\delta \in u}|R(\delta \cdot z)|^{a}=(\epsilon / 2)^{|u| q} A_{u}{ }^{q} 2^{a} \quad \text { if } \quad|u|=1,
\end{aligned}
$$

and

$$
\sum_{\delta z u}|R(\delta \cdot z)|^{a}=0 \quad \text { if } \quad|u|=0
$$

Thus

$$
\begin{aligned}
\|R\|_{q}{ }^{q} & =\sum_{u \varepsilon \varepsilon} \sum_{\delta \varepsilon u}|R(\delta \cdot z)|^{a} \\
& \leqq \sum_{u \in \varepsilon} 2^{|u|}(\epsilon / 2)^{|u| q} A_{u}{ }^{a} 2^{q}-\sum_{|u|=1}(\epsilon / 2)^{q} A_{u}{ }^{a} 2^{q}-2^{q} \\
& =2^{a}\left(\sum_{u \in \varepsilon} 2^{|u|}(\epsilon / 2)^{|u| q} A_{u}{ }^{a}-(\epsilon / 2)^{a}-1\right),
\end{aligned}
$$

where the second line of the inequality reflects, via subtraction, the differences between the cases $|u|>1,|u|=1$, and $|u|=0$. We have also used

$$
\sum_{|u|=1}\left(A_{u}\right)^{q}=\left(\|\varphi\|_{q}\right)^{q}=1 .
$$

This can be further simplified with the aid of the equation

$$
\sum_{u \leftarrow \delta} 2^{|u|}(\epsilon / 2)^{|u| q} A_{u}{ }^{q}=\prod_{i=1}^{n}\left(1+2\left|\epsilon / 2 \varphi\left(\gamma_{i}\right)\right|^{q}\right)
$$

and the inequality

$$
\begin{aligned}
\ln \prod_{i=1}^{n}\left(1+2\left|\epsilon / 2 \varphi\left(\gamma_{i}\right)\right|^{q}\right)=\sum_{j=1}^{n} & \ln \left(1+2\left|\epsilon / 2 \varphi\left(\gamma_{i}\right)\right|^{\alpha}\right) \\
& \leqq \sum_{i=1}^{n} 2\left|\epsilon / 2 \varphi\left(\gamma_{i}\right)\right|^{\alpha}=2(\epsilon / 2)^{\alpha}\|\varphi\|_{q}{ }^{a}=2(\epsilon / 2)^{a}
\end{aligned}
$$

In fact a slight computation yields

$$
\|R\|_{a}^{a} \leqq 2^{a}\left[\exp \left(2(\epsilon / 2)^{a}\right)-1-(\epsilon / 2)^{a}\right] .
$$

Together with (6), this yields

$$
\begin{aligned}
\|s-\epsilon \varphi\|_{Q} & \leqq 2 \alpha^{2}\left[\exp \left(2(\epsilon / 2)^{q}\right)-\left(1+2(\epsilon / 2)^{q}\right)\right]^{1 / \psi} \\
& \leqq \alpha^{2} \epsilon^{2} .
\end{aligned}
$$

Now apply (4) and (5). We conclude: (i) $\epsilon^{-1} s \varepsilon B(\Gamma)$ and $\left\|\epsilon^{-1} s\right\|_{B} \leqq 4 \epsilon^{-1} \alpha^{2}$; (ii) $\epsilon^{-1} s=\varphi$ on F; (iii) $\left\|\epsilon^{-1} s-\varphi\right\|_{a} \leqq \epsilon \alpha^{2}$. In particular, given any $\psi \varepsilon L^{\alpha}(\Gamma)_{F}$ we can apply (i)-(iii) to its normalized real and imaginary parts. It follows that there is a $\mu \varepsilon M(G)$ satisfying

$$
\begin{align*}
& \text { (a) }\|\mu\| \leqq 8 \epsilon^{-1} \alpha^{2}\|\psi\|_{q} \\
& \text { (b) } \hat{\mu}=\psi \text { on } F \text {, and } \tag{7}\\
& \text { (c) }\|\hat{\mu}-\psi\|_{\sigma} \leqq 2 \varepsilon \alpha^{2}\|\psi\|_{q} .
\end{align*}
$$

The argument extends from finite sets F to E via a standard weak* compactness argument.

We can now describe a large variety of new p-Sidon sets. Just consider the sets in [6] together with the following corollary.

Corollary. Suppose $S \subset \Gamma$ is Sidon and $E \subset \Gamma$ is p-Sidon. Then $S \cup E$ is p-Sidon.

Proof. We can assume $S \cap E=\varnothing$. The p-Sidon property and Theorem 3 imply that there exists $\beta>0$ such that for any $\varphi \varepsilon L^{q}(\Gamma)_{S \cup E}$ there are measures $\mu, \mu_{1}, \mu_{2} \varepsilon M(G)$ satisfying
(1) $\mid\|\mu\| \leqq \beta, \hat{\mu}=1$ on $S,|\hat{\mu}|<1 / 4$ off S;
(2) $\left\|\mu_{1}\right\| \leqq \beta\left\|\varphi I_{S}\right\|_{q}, \hat{\mu}_{1}=\varphi$ on $S,\left\|\hat{\mu}_{1}-\varphi I_{S}\right\|_{q} \leqq 1 / 4\left\|\varphi I_{S}\right\|_{q}$;
(3) $\left\|\mu_{2}\right\| \leqq \beta\left\|\varphi I_{E}\right\|_{q}, \hat{\mu}_{2}=\varphi$ on E.

Set $\hat{\nu}=(1-\hat{\mu}) \hat{\mu}_{2}+\hat{\mu}_{1}$. Then $\nu \varepsilon M(G)$ and $\|\nu\| \leqq(1+\beta) 2 \beta\|\varphi\|_{q}$. Moreover

$$
\left\|\hat{\nu} I_{S}-\varphi I_{S}\right\|_{a}=0
$$

and

$$
\left\|\hat{\nu} I_{E}-\varphi I_{E}\right\|_{q}=\left\|-\hat{\mu} \hat{\mu}_{2} I_{E}+\hat{\mu}_{1} I_{E}\right\|_{\varphi} \leqq \frac{1}{2}\|\varphi\|_{q} .
$$

Thus

$$
\left\|\hat{\nu} I_{S \cup F}-\varphi\right\|_{a} \leqq \frac{1}{2}\|\varphi\|_{Q} .
$$

Now apply Lemma 1.
Our last result exhibits some additional p-Sidon sets as an extension to the result in [6]. We outline much of the proof and refer the reader to [6] for the details. By $\pm A \pm B$ we mean $\left\{\delta a+\delta^{\prime} b: \delta, \delta^{\prime} \varepsilon\{-1,1\}\right.$ and $\left.a \varepsilon A, b \varepsilon B\right\}$.

Theorem 4. Suppose A_{1}, \cdots, A_{n} are mutually disjoint infinite subsets of Γ whose union is dissociate. Then $E= \pm A_{1} \pm A_{2} \pm \cdots \pm A_{n}$ is p-Sidon if and only if $p \geqq 2 n /(n+1)$.

Proof. Lemma 1 in [6] implies that $p \geqq 2 n /(n+1)$ if E is p-Sidon. Thus we need only prove that E is $p \equiv 2 n /(n+1)$-Sidon. To begin note that the 2^{n} sets of the form $E_{\beta}=\sum \beta_{i} A_{i}$ where $\beta=\left(\beta_{1}, \cdots, \beta_{n}\right) \varepsilon\{-1,1\}^{n}$ are mutually disjoint since $\cup A_{j}$ is dissociate. Choose any β and a $\varphi \varepsilon L^{Q}(\Gamma)_{E_{\beta}}$. We shall show
that there is a $\mu_{\beta} \varepsilon M(G)$ such that $\hat{\mu}_{\beta}=\varphi$ on E_{β} while $\hat{\mu}_{\beta} \equiv 0$ on E_{α} for $\alpha \neq \beta$. The theorem then follows by considering sums of the form $\sum \mu_{\beta}$. It is sufficient to restrict our attention to real-valued φ and to $\beta \equiv(-1,1, \cdots, 1) \varepsilon\{-1,1\}^{n}$. Fix such a φ. As argued in [6], it follows that φ ع $C\left(A_{1}\right) \hat{\otimes} \cdots \hat{\otimes} C\left(A_{n}\right)$; hence we need only prove the following fact concerning basic tensor elements: there exists a constant $K>0$ such that for any choice of real-valued functions $\varphi_{1}, \cdots, \varphi_{n}$ on A_{1}, \cdots, A_{n}, respectively, there is a μ ع $M(G)$ with $\|\mu\| \leqq$ $K\left\|\varphi_{1}\right\|_{\infty} \cdots\left\|\varphi_{n}\right\|_{\infty}$ satisfying $\hat{\mu}=0$ on E_{α} for $\alpha \neq \beta$ and

$$
\hat{\mu}\left(-\gamma_{1}+\gamma_{2}+\cdots+\gamma_{n}\right)=\varphi_{1}\left(\gamma_{1}\right) \cdots \varphi_{n}\left(\gamma_{n}\right)
$$

on $E_{\beta}=-A_{1}+A_{2}+\cdots+A_{n}$.
To this end, assume for the moment that each A_{i} is finite and fix a choice of $\varphi_{1}, \cdots, \varphi_{n}$. We consider the Riesz polynomials

$$
\begin{aligned}
& p_{i}(x)=\prod_{\gamma \in A_{i}}\left[1+\left(2\left\|\varphi_{i}\right\|_{\infty}\right)^{-1} \varphi_{i}(\gamma)(\gamma(x)+\overline{\gamma(x)})\right], \quad 1 \leqq j \leqq n, \\
& q_{1}(x)=\prod_{\gamma \in A_{1}}\left[1+\left(2 i\left\|\varphi_{1}\right\|_{\infty}\right)^{-1} \varphi_{1}(\gamma)(-\gamma(x)+\overline{\gamma(x)})\right],
\end{aligned}
$$

and

$$
q_{i}(x)=\prod_{\gamma \in A_{i}}\left[1+\left(2 i\left\|\varphi_{i}\right\|_{\infty}\right)^{-1} \varphi_{i}(\gamma)(\gamma(x)-\overline{\gamma(x)})\right], \quad 2 \leqq j \leqq n .
$$

The discussion of such polynomials in Theorem 3 implies that $\left\|p_{i}\right\|_{1}=\left\|q_{i}\right\|_{1}=1$ and that $\hat{p}_{i}(\pm \gamma)=\varphi_{i}(\gamma) /\left(2\left\|\varphi_{i}\right\|_{\infty}\right), \hat{q}_{1}(\pm \gamma)=\mp \varphi_{1}(\gamma) /\left(2 i\left\|\varphi_{1}\right\|_{\infty}\right)$, and $q_{i}(\pm \gamma)=$ $\pm \varphi_{i}(\gamma) /\left(2 i\left\|\varphi_{i}\right\|_{\infty}\right)(j \neq 1)$, for all γ in the corresponding $A_{i}, 1 \leqq j \leqq n$. In particular, the polynomials

$$
P_{i}=\left(p_{i}-1\right)\left\|\varphi_{i}\right\|_{\infty}, \quad Q_{i}=\left(q_{i}-1\right) i\left\|\varphi_{i}\right\|_{\infty}
$$

and

$$
R=\prod_{i=1}^{n}\left(P_{i}+Q_{i}\right)
$$

satisfy
(1) $\quad\left(P_{i}+Q_{i}\right)^{\wedge}(0)=0$,
(2) $\quad\left(P_{1}+Q_{1}\right)^{\wedge}(\gamma)=0$ and $\left(P_{1}+Q_{1}\right)^{\wedge}(-\gamma)=\varphi_{1}(\gamma)$ for $\gamma \varepsilon A_{1}$,
(3) $\quad\left(P_{i}+Q_{i}\right)^{\wedge}(\gamma)=\varphi_{i}(\gamma)$ and $\left(P_{i}+Q_{i}\right)^{\wedge}(-\gamma)=0$

$$
\text { for } \gamma \varepsilon A_{i}, \quad 2 \leqq j \leqq n, \quad \text { and }
$$

$$
\begin{equation*}
\|R\|_{1} \leqq 2^{2 n} \prod_{i=1}^{n}\left\|\varphi_{i}\right\|_{\infty} \tag{4}
\end{equation*}
$$

Here (1)-(3) are immediate from the definitions and the fact that $\cup A_{j}$ is dissociate. To see (4) observe that R is the sum of 2^{n} terms, each of which has precisely n factors consisting of some combination of P_{i} 's and Q_{i} 's-each
appearing only once. Since $\left\|P_{i}\right\|_{1},\left\|Q_{i}\right\|_{1} \leqq 2\left\|\varphi_{i}\right\|_{\infty}$, it follows that each of those terms has L^{1}-norm bounded by $2^{n} \prod_{i}\left\|\varphi_{j}\right\|_{\infty}$; whence (4). Again we use the dissociate property of $\cup A_{i}$, this time in conjunction with (1)-(3) to conclude

$$
\hat{R}\left(-\gamma_{1}+\gamma_{2}+\cdots+\gamma_{n}\right)=\varphi_{1}\left(\gamma_{1}\right) \cdots \varphi_{n}\left(\gamma_{n}\right) \text { for } \gamma_{i} \varepsilon A_{i}
$$

and

$$
\begin{equation*}
\hat{R}=0 \quad \text { on } \quad E_{\alpha} \quad \text { for } \quad \alpha \neq \beta \tag{5}
\end{equation*}
$$

In light of (4), a weak* compactness argument extends (5) to infinite A_{i} for some R ع $M(G)$.

Open questions.

1. Are all p-Sidon sets uniformizable r-Sidon sets for some $1 \neq p \leqq r<2$? Indeed, do there exists uniformizable p-Sidon sets which are not Sidon sets? To be specific, let $A=\left\{3^{2 n}\right\}_{1}{ }^{\infty}$ and $B=\left\{3^{2 n+1}\right\}_{1}{ }^{\infty}$. Is $A+B$ a uniformizable p-Sidon set?
2. Is the union of two p-Sidon sets $(p \neq 1)$ an r-Sidon set for some $p \leqq r<2$? This is open even if one of the sets is assumed to be a uniformizable p-Sidon set.
3. There is a form of the Kahane and Salem necessary condition for Sidon sets for p-Sidon subsets of \mathbf{Z} (see [5]). It extends immediately to any discrete Γ for which every $\gamma \neq 0$ has infinite order and actually improves somewhat for other discrete Γ 's. The condition appears fairly tight. But what about sufficient conditions? For Sidon sets we at least have the Stečkin type conditions (see [7] or [8, Section 5.7.5]). For p-Sidon sets $(p \neq 1)$ the best result so far in this direction is our Theorem 4. Is there some analogue to the Stečkin condition for p-Sidon sets?
4. Let S_{p} be the class of all p-Sidon subsets of Γ. It is immediate that $S_{p} \subset S_{r}$ if $p \leqq r$. Moreover, if $p_{n}=2 n /(n+1)$, then [6] tells us that $S_{p_{n}} \Phi S_{p_{n+1}}$. If $1 \leqq p \neq r<2$ must it follow that $S_{p} \neq S_{r}$?

References

1. R. Blei, A tensor approach to interpolation phenomena in discrete abelian groups, Proc. Amer. Math. Soc. (to appear).
2. M. Bozëкo \& T. Pytlik, Some types of lacunary Fourier series, Colloq. Math. 25 (1972), 117-124.
3. S. Drury, The Fatou-Zygmund property for Sidon sets, Bull. Amer. Math. Soc. 80 (1974), 535-538.
4. R. E. Edwards \& K. A. Ross, p-Sidon sets. J. of Functional Analysis 15 (1974), 404-427.
5. L. S. Hahn, Fourier series with gaps, preprint (1973).
6. G. W. Johnson \& G. S. Woodward, On p-Sidon sets. Indiana Univ. Math. J. 24 (1974), 161-167.
7. D. Rider, Gap series on groups and spheres, Canad. J. Math. 18 (1966), 389-398.
8. W. Rudin, Fourier analysis on groups, Interscience Publishers, New York, New York, 1967.
