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p-Sidon Sets and a Uniform Property 

GORDON S. WOODWARD 

Let G be a compact abelian group with dual group r. Denote by LP(E) and 
M (E) the usual spaces of Haar-measurable functions and bounded regular 
Borel measures, respectively, which are supported on the subset E of G or r. 
The Haar measure on G is normalized and its dual is the Haar measure on r. 
Let tP denote the Fourier or Fourier-Stieltjes transform of the function or 
measure I{). A subset E C r is said to be p-Sidon for some 1 ~ P < 2 (not interest
ing for p ~ 2) if there is an a > 0 such that IltPllp ~ a I II{)I I", for all trigonometric 
polynomials I{) on G with supp tP C E. This is equivalent to the dual statement: 
E is p-Sidon if and only if VeE) C M(GnE , where I/p + I/q = 1 and "IE" 
denotes restriction to E. Hereafter p and q will always be as above. 

The concept of a p-Sidon set was independently introduced in [2, 4, and 5] 
as a natural generalization of the classical Sidon sets (i.e., I-Sidon sets). In each 
of these articles, the various equivalent definitions for p-Sidon sets are given. 
They correspond to the classical equivalent definitions of a Sidon set as presented 
in [8, Theorem 5.7.3]. In [5], Hahn extends a theorem of J. P. Kahane to give the 
best known necessary conditions for a set to be p-Sidon when r = Z, the integers. 
Edwards and Ross present the most comprehensive treatment of the subject 
in [4]. It is there that the first non Sidon p-Sidon set is constructed via an 
extremely ingenious application of the tensor algebraic techniques of Varapoulos. 
Their methods are extended in [6] to prove that the classes of all 2n/(n + 1)
Sidon sets are distinct for n = 1, 2, .... One will also find in [6] all known non 
Sidon p-Sidon sets to date (except for unions with finite sets). For a somewhat 
more skillful application of the Varapoulos techniques to this problem, we refer 
the reader to [1]. 

In this paper, we adapt an idea of Rider [7] in defining the class of uniform
izable p-Sidon sets. The class is, by design, closed under finite unions. Of course, 
its members are p-Sidon sets. Our main result is that Sidon sets are uniformizable 
p-Sidon sets for all p. Its proof is a variant of Drury's famous technique which 
resembles most closely the approach found in [3]. As a corollary we prove that 
the union of a Sidon set with any p-Sidon set is again p-Sidon, thus enabling 
one to exhibit many new non Sidon p-Sidon sets. We conclude with a slight 
extension of the results in [6], using an argument similar to the one presented 
there, and a list of open questions. 
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996 G. S. WOODWARD 

In what follows, £P(rh denotes the L"(r) functions supported on E C r 
and IE denotes the characteristic function of E. We begin with a useful technical 
result of a standard type. 

Lemma 1. E C r is a p-Sidon set if and only if there exist{j > 0 and 0 < 0 < 1 
such that for each q; t LO(rh there is a I-' t M(G) satisfying 

(i) 111-'11 ~ (j 1Iq;lIo ; and 
(ii) II#E - q;lIo < 0 1Iq;1I •. 
Proof. Suppose E is a p-Sidon set. Define the relation "-' on M(G) by I-' "-' " 

if P- - p == 0 on E. Let M(G)/"-' denote the usual Banach quotient space. By 
definition LO(r)E naturally embeds in M(G)/,,-,. Moreover, the uniqueness of 
the Fourier-Stieltjes transform yields that the graph of this map is closed; 
hence (i). Of course, (ii) holds for any 0 > o. 

For the converse, let q; t LO(r)E . Then (i) and (ii) yields inductively a sequence 
{I-'nl C M(G) with 1-'1 satisfying 111-'111 ~ {j 1Iq;lIo and liP-lIE - q;lIo ~ 0 1Iq;lIo and 
continuing 

and 

Since :Em IIl-'kll ~ {j 1Iq;lIo (1 - 0)-\ the sum I-' = :Em I-'k converges in M(G); 
clearly P- = q; on E. D 

Definition. E C r is a uniformizable p-Sidon set if for each 0 > 0 there 
exists a (j > 0 such that for any q; t LO(rh there is a I-' t M(G) satisfying 

(i) 111-'11 ~ {j 1Iq;lIo ; and 
(ii) lip- - q;1I. ~ 0 1Iq;1I •. 

Denote by 'Up the class of all uniformizable p-Sidon sets on r. 
It is clear that each element of 'Up is p-Sidon. The full strength of the definition 

is summed up in the following theorem. 

Theorem 1. E t 'U" if and only if for each 0 > 0 there exists a (j > 0 such that 
for any q; t L"(rh there is a I-' t M(G) satisfying 

(i) 111-'11 ~ {j 1Iq;1I. ; 
(ii) P- == q; on E; and 

(iii) (:E 1p-(-y)I·)I/O ~ 0 1Iq;1I •. 
-y,E 

Proof. Suppose E t 'U" . Let q; t LO(rh and choose any 0 < 00 < 1. Set 
o = 00/2. According to the definition of'll", there is a (j > 0 and a 1-'1 t M(G) 
such that 111-'111 ~ {j 1Iq;1I. and lip-I - q;1I. ~ 0 1Iq;lIo . Apply the definition again to 
q; - P-JE with the same 0 and continue in this manner. This gives rise to a 
sequence {I-'nl C M(G) as in Lemma 1. Thus 
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00 

iJ- = L iJ-n t 111 (G), 

and A == cp on E. But this time 

11-1 

~ 0" Ilcpll. + L 0" Ilcpll. < 00 Ilcpll" . 
1 

In particular, (iii) is valid. Of course, (i)-(iii) are sufficient to imply E t 'Up. 0 

Our next theorem is rather trivial at this point, hut worth mentioning. 

Theorem 2. 'Up is closed under finite un'ions for 1 ~ P < 2. 

Proof. Suppose El ,E2 £ 'Up and set E = El U E2 . Since subsets of elements 
in 'Up are also in 'Up , we can assume that EJ n E2 = 0. Let cp t L"(r)E , let 
cp, = cpIEi for i = 1,2, and choose any 00 > O. By definition there exist {3 > 0 
and measures iJ-I , iJ-z such that 0 = 00/2, {3, iJ-i , CPi satisfy (i) and (ii) of the 
definition for a 'Up set. Thus IIiJ-J + iJ-zll ~ 2{3 Ilcpll. and 

IIAI + A2 - cpll. ~ IIAI - cpdl. + IIAz - CP211. < 00 Ilcpll.· 0 

Remark. This author had originally announced [Notices Amer. Math. 
Soc. 21 (1974), A-163] a somewhat different definition for 'Up . Specifically, 
replace "for each 0 > 0" by "for some 0 < 0 < I" in Theorem 1. Under this 
change, Theorem 2 would read "the union of any two elements of 'Up is p
Sidon." The formally stronger definition that we are now using seems to better 
reflect the structure of p-Sidon sets. 

We now turn to the question of existence of nontrivial uniformizable p-Sidon 
sets. Fortunately, Drury's theorem implies that 'U I consists of all Sidon sets. 
But this yields no information about 'Up for p ¥- 1. In fact, the relationship 
between 'Up and 'U T for 1 ~ p ¥- r < 2 is not at all clear. Our next theorem sheds 
some light on the matter by showing 'U1 C 'Up . The key is the observation 
that 'Up contains all dissociate sets for 1 ~ p < 2. For, Drury's techniques allow 
us in this context to essentially consider any Sidon set as a dissociate set. We 
emphasize that many of the techniques used in our next proof parallel those 
of [3]. A subset E of an abelian group A is dissociate if the only solutions to 
L 0.,:'1 = 0 (finite sum) with "I £ E and o~ t 1-2, -1,0, 1, 2} are o~ = 0 for 
all "I. As is custom, we denote by B(r) the space 1I1(G( with the norm, 
IIAIIB == 11iJ-11 . 

Theorem 3. Sidon sets are uniformizable p-Sidon sets for all p. 

Proof. Let E C r be a Sidon set. Following Drury [3], fix a positive integer n 
and let "II , ... ,"In t E be any choice of n distinct nonzero elements. Let A be 
the discrete abelian group generated by F == hi , ... ,"In} over, say, Z mod (3) 
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where /'1 , /,,, are simply considered as n independent symbols. That is 
A '" (Z mod (3)r. The dual H of A is isomorphic to A but it can also be realized 
as the set of all maps h : F -t Ta where Ta is the set of 3rd roots of unity. The 
group operation, represented by +, is just pointwise multiplication. We insist 
that H have Haar measure 1. Then the dual Haar measure on A is simply 
the counting measure. 

Consider first the group r X H which has dual 0 X A. Since E is I-Sidon, 
there exists an a > 0 such that for each h .: H there is a J.J.h .: M (0) satisfying 
I lJ.J.hl I ~ a and Ah == h on F. Set O(/" h) = Ah(')')' Then O(/'i , .) is a character 
on H. Together with the properties of J.J.h , this yields 

(I') g(·,h).:B(r) with Ilg(-,h)IIB~a forall h.:H 

and 

(2') O(/" .) .: B(H) with 110(/,,' )lln = 1 for all /'.: F. 

We adjust these two statements as follows. Define the function 

r(/" .) == O(/" . );0(/,,0) (convolution over H). 

Since 110(')', .)11." ~ a, it follows that 110(')', . )112 ~ ai hence Ilr(/" . )IIB ~ a" 
for all /' .: r. Since 1'(', h) is a convex linear combination of products of the 
At, C.: H, it follows that-r(·, h).: B(r) and 111'(" h)lln ~ a 2 for h.: H. That is, 

(1) Ilr(·,h)IIB ~ a 2 forallh.:Hi 
(2) Ilr(/" ')I[B ~ a 2 for all')'.: ri and 
(3) r(/" h) = he/,) on F for all h.: Hi 

where (3) is immediate from the definition of r. 
At this point we fix a real-valued cp .: £"(rh with Ilcpll. = 1. Let 0 < e ~ 1 

and set Xi = (/, i , /' i) .: r X A for 1 ~ j ~ n. Define the Riesz polynomials 
p. and Po on G X H by 

" 
p.(z) = II [1 + e/2cp(/,;)(x;(z) + x;(z»] 

i=1 

and 

" 
Po(z) = II [1 + e/2icp(/,;)(x;(z) - x;(z»]. 

i=1 

Since these functions are nonnegative IIP.111 = P.(O) and l!Polll = PoCO). Their 
formal expansions can be described in the following terms. Set fl = {-I, 0, 1 r, 
let 0 = (01 , ... , On) be a generic point of fl, and adopt the convention 00 = 1. 
Then, using the additive group notation, we have 

Pe(z) = ~ [11 (e/2cp(/,;»I Oi!}0IX l + ... + Onx,,)(Z) 

and 
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Note that by definition of A the set lXI, ••• , x .. } is dissociate; hence distinct 
h (2 give distinct characters ~IXI + ... + ~nxn on G X H. In particular, IIP.II I = 
l!Polll = 1. Moreover, P. ,Po are supported on points of the form 

n n 

y = :E ~;x; with P.(y) = II (E/2~(-y;)y!11 
and 

" 
Po(y) = II (~iE/2i~('Yi»I!jl. 

Also note, Po(±x;) = ±E/2i~('j'i). 
For a continuous P on G X H, denote its transform with respect to the jth 

variable by pi (j = 1, 2). It follows that (pl(2 = P and that IIPl('j', . )111 ;?; l!Pdl. 
In particular, the functions 

s.('Y) = (P.('Y,.) _1(1 *r('Y, ·)(0) 
II 

and 

s,h) = (iPo(-Y, .) - i(1 * 1'(1', . )(0) 
II 

are convex linear combinations of B(r) functions with norm bounded by 2a2 • 

Thus 

(4) 

Moreover, since l'('j'i , h) = h('j'i) for 1 ;?; j ;?; n, 

(5) 

We now want to estimate lis - E~II" . To this end, denote the Dirac point 
measure at 0 a: A by ~o • Then applying Parseval's formula (relative to H) to the 
definition of s('Y) yields 

Is('Y) I = IL [P.('Y, h) + iPo('Y, h) - (1 + i)er('Y, -h) dhl 

= Ii [P.('Y, X) + iPo('Y, X) - (1 + i)~o]f2('Y, X) dxl 

;?; IIP.('Y, .) + iPo('Y, .) - (1 + i)~oll .. a2 for all I' a: r 
by (2). Set R = P. + iPo - (1 + i)~o . The preceding inequalities and (5) yield 

(6) lis - E~II" = :E IS('Y)I" ;?; a2" :E IR(x)i" = a 2QUIRII: - EQII~II"l. 
-r;F z,rXA 

x~:ti.i:rii::iiin 

To estimate IIRII. , partition {2 by the equivalence relation ~ "" u if and only if 
I~il = lUi I for 1 ;?; j ;?; n. Call this partition S. Given u a: S and any ~ a: u, define 

n n 

lui = :E I~il and Au = II 1~('Y)illail . 
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Both symbols are well defined. Let z = (XI, , xn). Then the expansions 
obtained earlier for p. and Po yield 

IR(!5·z)1 = (E/2) lu1 Au 11 + ,8al for !5 r. U £ e, 
where !5. z denotes the usual vector inner product and ,8a £ I ± 1, ±i}. It is im
portant to note that R(x;) = Er,o('Yi) and R(O) = R( -Xi) = 0 for 1 ~ j ~ n. 
Since the cardinality of each u £ e is 21ul , it follows that 

L: IR(!5·z)IQ ~ 2Iul(E/2)lul"AuQ2Q if lui> 1, 
81:1.1. 

L: IR(!5·z)l" = (E/2)l ul"A u "2Q if lui = 1, 
ow 

and 

L: IR(!5,z)IQ = 0 if lui = o. 
OtU 

Thus 

/lR/I: = L: L: IR(!5,z)l" 
ute Stu 

~ L: 2Iul(E/2)lul"AuQ2" - L: (E/2)"Au"2" - 2" 
Ute 11.1.1 =1 

= 2"(L:2Iul(E/2)lul"Au"- (E/2)" -1), 
utE 

where the second line of the inequality reflects, via subtraction, the differences 
between the cases lui> 1, lui = 1, and lui = O. We have also used 

L: (Au)" = (/110/1")" = 1. 
lul-1 

This can be further simplified with the aid of the equation 
n 

L: 2Iul(E/2)luIQA: = IT (1 + 2 IE/2r,o('Y;)IQ) 
Ul'e ;=1 

and the inequality 
n 1t 

In IT (1 + 2 IE/2r,o('Yi)I") = L: In (1 + 2 IE/2r,o('Yi)I") 
;=1 ;=1 

n 

~ L: 2 IE/2r,o('Yi)l" = 2(E/2)" /110/1: = 2(E/2)". 
;=1 

In fact a slight computation yields 

/lR/I: ~ 2"[exp (2(E/2)") - 1 - (E/2)"]. 

Together with (6), this yields 

/Is - Er,o/l" ~ 2a2 [exp (2(E/2)") - (1 + 2(E/2)")fIQ 
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Now apply (4) and (5). We conclude: (i) E-IS I: B(r) and IIE-IsIIB ~ 4E-\lj 
(ii) E-IS = <p on Fj (iii) liE-Is - <p11. ~ Eol. In particular, given any 1/1 I: L·(rh 
we can apply (i)-Ciii) to its normalized real and imaginary parts. It follows that 
there is a p- I: M (G) satisfying 

(a) lip-II ~ 8E- Ia2 111/111. , 
(7) (b) P. = 1/1 on F, and 

(c) lip. - 1/111. ~ 2 I: a 2 111/111 •. 
The argument extends from finite sets F to E via a standard weak* compact

ness argument. 0 

We can now describe a large variety of new p-Sidon sets. Just consider the 
sets in [6] together with the following corollary. 

Corollary. Suppose S C r is Sidon and E C r is p-Sidon. 7'hen S IJ E 
is p-Sidon. 

Proof. We can assume S (\ E = 0. The p-Sidon property and Theorem 3 
imply that there exists {j > 0 such that for any <p I: L·(r)SVE there are measures 
p-, P-I , P-2 I: M (G) satisfying 
(1) lip-II ~ {j, p. = 1 on S, 1p.1 < 1/4 off Sj 
(2) lip-III ~ {j II<pI,~II. ,P.I = <p on S, 11p.1 - <pIsll. ~ 1/411<pI sll. j 
(3) 11p-211 ~ {j II<pIEII. , P.2 = <p on E. 
Set v = (1 - p.)P.2 + P.l . Then v I: M(G) and Ilvll ~ (1 + {j)2{j 11<p11 •. :\1oreover 

IlvIs - <pIsll. = 0 

and 

Thus 

IlvIsvF. - <p11. ~ ! 11<p11 •. 
Now apply Lemma 1. 0 

Our last result exhibits some additional p-Sidon sets as an extension to the 
result in [6]. We outline much of the proof and refer the reader to [6] for the 
details. By ±A ±B we mean laa + a'b : a, 15'1: 1-1, 1} and a I: A, b I: B}. 

Theorem 4. Suppose Al , ... ,An are mutually disjoint infinite subsets of r 
whose union is dissociate. Then E = ±AI ± A2 ± ... ± An is p-Sidon if and 
only if p ~ 2n/(n + 1). 

Proof. Lemma 1 in [6] implies that p ~ 2n/(n + 1) if E is p-Sidon. Thus 
we need only prove that E is p == 2n/(n + 1)-Sidon. To begin note that the 2ft 
sets of the form E fJ = L: {j jA j where {j = ({j I , ••• ,(jn) I: I -1, I} n are mutually 
disjoint since IJAj is dissociate. Choose any {j and a <p I: L"(r)E# . We shall show 
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that there is a p,p t M (G) such that jlp = cP on E p while jlp == 0 on E a for a ;of /3. 
The theorem then follows by considering sums of the form L p'fJ • It is sufficient 
to restrict our attention to real-valued cP and to /3 == (-1,1, ... ,1) t {-I, I}". 
Fix such a cpo As argued in [6], it follows that cP t C(A I ) ® ... ® C(A .. ); hence 
we need only prove the following fact concerning basic tensor elements: there 
exists a constant K > 0 such that for any choice of real-valued functions 
CPI , ... , CPn on Al , ... , An , respectively, there is a p, t M(G) with 11p,11 ~ 
K Ilcptll., ... IIcp"ll., satisfying jl = 0 on Ea for a ;of /3 and 

jl( -'YI + 'Y2 + ... + 'Yn} = CPI('YI) ... CPn('Y,,) 

on Ell = -AI + A2 + ... + An . 
To this end, assume for the moment that each A j is finite and fix a choice 

of CPI , ... , cP" • We consider the Riesz polynomials 

p/(x) = II [1 + (2 Ilcp; 11.,)-lcp;("()('Y(x) + 'Y(x»], 1 ~ j ~ n, 
'YtAj 

ql(X) = II [1 + (2i Ilcplll.,)-lcpl('Y)( -'Y(x) + 'Y(;)], 
"(rAl 

and 

q/(x) = II [1 + (2i Ilcp;ll.,r-lcp;("()('Y(x) - 'Y(;)], 2 ~ j ~ n. 
"'(tAj 

The discussion of such polynomials in Theorem 3 implies that IIp;111 = Ilq;111 = 1 
and thatp;(±'Y) = cp;('Y)/(21Icp;II.,), ~I(±'Y) = =FCPI('Y)/(2i IlcpIII.,), and q;(±'Y) = 
±cp;('Y)/(2i Ilcp;II.,)(j ;of 1), for all 'Y in the corresponding A; , 1 ~ j ~ n. In 
particular, the polynomials 

and 
n 

Il = II (P; + Q;) 
i=1 

satisfy 

(1) (P; + Q;f(O) = 0, 

(2) (PI + Ql)-('Y) =0 and (PI+Qlf(-'Y)=CPI('Y) for 'YtAI' 

(3) (P; + Q;('Y) = cP;("() and (P; + Q;f (-'Y) = 0 

for 'Y t A; , 2 ~ j ~ n, and 

" 
(4) IIIlIII ~ 22n II IIcp;ll., . 

i=l 

Here (1)-(3) are immediate from the definitions and the fact that UA; is 
dissociate. To see (4) observe that Il is the sum of 2" terms, each of which has 
precisely n factors consisting of some combination of P /s and Q ;'s-each 
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appearing only once. Since IIPill1 , IIQill1 ~ 2 II!pill", , it follows that each of 
those terms has Ll-norm bounded by 2" IIi II!pill", ; whence (4). Again we use 
the dissociate property of VA i , this time in conjunction with (1)-(3) to conclude 

fl( -'YI + 'Y2 + ... + 'Yn) = !PI ('YI) ... !p,,('Y,,) for 'Y i e Ai 

and 

(5) fl = 0 on E", for a ¢ (3. 

In light of (4), a weak* compactness argument extends (5) to infinite Ai for 
some R e M(G). 0 

Open questions. 
1. Are all p-Sidon sets uniformizable r-Sidon sets for some 1 ¢ p ~ r < 2? 

Indeed, do there exists uniformizable p-Sidon sets which arc not Sidon sets? 
To be specific, let A = 132"11~ and B = 132nHII~' Is A + B a uniformizable 
p-Sidon set? 

2. Is the union of two p-Sidon sets (p ¢ 1) an r-Sidon set for some p ~ r < 2? 
This is open even if one of the sets is assumed to be a uniformizable p~Sidon set. 

3. There is a form of the Kahane and Salem necessary condition for Sidon sets 
for p-Sidon subsets of Z (see [5]). It extends immediately to any discrete r for 
which every 'Y ¢ 0 has infinite order and actually improves somewhat for other 
discrete r's. The condition appears fairly tight. But what about sufficient condi
tions? For Sidon sets we at least have the Steckin type conditions (see [7] or 
[8, Section 5.7.5]). For p-Sidon sets (p ¢ 1) the best result so far in this direction 
is our Theorem 4. Is there some analogue to the Steckin condition for p-Sidon 
sets? 

4. Let Sp be the class of all p-Sidon subsets of r. It is immediate that Sp C S. 
if p ~ r. Moreover, if P .. = 2n/(n + 1), then [6] tells us that SfIn g;; Sp.+ • . If 
1 ~ P ¢ r < 2 must it follow that S" ¢ ST ? 
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