University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Faculty Publications, Department of Mathematics

Mathematics, Department of

1976

p-Sidon Sets and a Uniform Property

Gordon S. Woodward University of Nebraska - Lincoln, gwoodward@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/mathfacpub

Woodward, Gordon S., "p-Sidon Sets and a Uniform Property" (1976). *Faculty Publications, Department of Mathematics*. 137. http://digitalcommons.unl.edu/mathfacpub/137

This Article is brought to you for free and open access by the Mathematics, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications, Department of Mathematics by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

p-Sidon Sets and a Uniform Property

GORDON S. WOODWARD

Let G be a compact abelian group with dual group Γ . Denote by $L^p(E)$ and M(E) the usual spaces of Haar-measurable functions and bounded regular Borel measures, respectively, which are supported on the subset E of G or Γ . The Haar measure on G is normalized and its dual is the Haar measure on Γ . Let $\hat{\varphi}$ denote the Fourier or Fourier-Stieltjes transform of the function or measure φ . A subset $E \subset \Gamma$ is said to be *p*-Sidon for some $1 \leq p < 2$ (not interesting for $p \geq 2$) if there is an $\alpha > 0$ such that $||\hat{\varphi}||_p \leq \alpha ||\varphi||_{\alpha}$ for all trigonometric polynomials φ on G with supp $\hat{\varphi} \subset E$. This is equivalent to the dual statement: E is p-Sidon if and only if $L^q(E) \subset M(G)^{\widehat{}}|_E$, where 1/p + 1/q = 1 and " $|_E$ " denotes restriction to E. Hereafter p and q will always be as above.

The concept of a *p*-Sidon set was independently introduced in [2, 4, and 5] as a natural generalization of the classical Sidon sets (*i.e.*, 1-Sidon sets). In each of these articles, the various equivalent definitions for *p*-Sidon sets are given. They correspond to the classical equivalent definitions of a Sidon set as presented in [8, Theorem 5.7.3]. In [5], Hahn extends a theorem of J. P. Kahane to give the best known necessary conditions for a set to be *p*-Sidon when $\Gamma = \mathbb{Z}$, the integers. Edwards and Ross present the most comprehensive treatment of the subject in [4]. It is there that the first non Sidon *p*-Sidon set is constructed via an extremely ingenious application of the tensor algebraic techniques of Varapoulos. Their methods are extended in [6] to prove that the classes of all 2n/(n + 1)-Sidon sets are distinct for $n = 1, 2, \cdots$. One will also find in [6] all known non Sidon *p*-Sidon sets to date (except for unions with finite sets). For a somewhat more skillful application of the Varapoulos techniques to this problem, we refer the reader to [1].

In this paper, we adapt an idea of Rider [7] in defining the class of uniformizable p-Sidon sets. The class is, by design, closed under finite unions. Of course, its members are p-Sidon sets. Our main result is that Sidon sets are uniformizable p-Sidon sets for all p. Its proof is a variant of Drury's famous technique which resembles most closely the approach found in [3]. As a corollary we prove that the union of a Sidon set with any p-Sidon set is again p-Sidon, thus enabling one to exhibit many new non Sidon p-Sidon sets. We conclude with a slight extension of the results in [6], using an argument similar to the one presented there, and a list of open questions.

995

Indiana University Mathematics Journal, O, Vol. 25, No. 10 (1976)

In what follows, $L^{p}(\Gamma)_{E}$ denotes the $L^{p}(\Gamma)$ functions supported on $E \subset \Gamma$ and I_{E} denotes the characteristic function of E. We begin with a useful technical result of a standard type.

Lemma 1. $E \subset \Gamma$ is a p-Sidon set if and only if there exist $\beta > 0$ and $0 < \delta < 1$ such that for each $\varphi \in L^{q}(\Gamma)_{E}$ there is a $\mu \in M(G)$ satisfying

- (i) $||\mu|| \leq \beta ||\varphi||_{q}$; and
- (ii) $||\hat{\mu}I_E \varphi||_q < \delta ||\varphi||_q$.

Proof. Suppose E is a p-Sidon set. Define the relation \sim on M(G) by $\mu \sim \nu$ if $\hat{\mu} - \hat{\nu} \equiv 0$ on E. Let $M(G)/\sim$ denote the usual Banach quotient space. By definition $L^{\mathfrak{q}}(\Gamma)_{E}$ naturally embeds in $M(G)/\sim$. Moreover, the uniqueness of the Fourier-Stieltjes transform yields that the graph of this map is closed; hence (i). Of course, (ii) holds for any $\delta > 0$.

For the converse, let $\varphi \in L^q(\Gamma)_E$. Then (i) and (ii) yields inductively a sequence $\{\mu_n\} \subset M(G)$ with μ_1 satisfying $||\mu_1|| \leq \beta ||\varphi||_q$ and $||\hat{\mu}_1 I_E - \varphi||_q \leq \delta ||\varphi||_q$ and continuing

$$||\mu_n|| \leq \beta \delta^{n-1} ||\varphi||_q$$

and

$$\left|\left|\hat{\mu}_n I_E - \left(arphi - \sum\limits_{0}^{n-1} \hat{\mu}_k I_E \right)\right|\right|_q \leq \delta^n ||arphi||_q \;.$$

Since $\sum_{k=0}^{\infty} ||\mu_{k}|| \leq \beta ||\varphi||_{q} (1 - \delta)^{-1}$, the sum $\mu = \sum_{k=0}^{\infty} \mu_{k}$ converges in M(G); clearly $\hat{\mu} = \varphi$ on E. \Box

Definition. $E \subset \Gamma$ is a uniformizable p-Sidon set if for each $\delta > 0$ there exists a $\beta > 0$ such that for any $\varphi \in L^{\alpha}(\Gamma)_{E}$ there is a $\mu \in M(G)$ satisfying

- (i) $||\mu|| \leq \beta ||\varphi||_q$; and
- (ii) $||\hat{\mu} \varphi||_{q} \leq \delta ||\varphi||_{q}$.

Denote by \mathfrak{U}_p the class of all uniformizable *p*-Sidon sets on Γ .

It is clear that each element of \mathfrak{U}_p is *p*-Sidon. The full strength of the definition is summed up in the following theorem.

Theorem 1. $E \in \mathfrak{U}_p$ if and only if for each $\delta > 0$ there exists a $\beta > 0$ such that for any $\varphi \in L^q(\Gamma)_E$ there is a $\mu \in M(G)$ satisfying

- (i) $||\mu|| \leq \beta ||\varphi||_q$;
- (ii) $\hat{\mu} \equiv \varphi$ on E; and
- (iii) $(\sum_{\gamma \notin E} |\hat{\mu}(\gamma)|^{a})^{1/a} \leq \delta ||\varphi||_{a}$.

Proof. Suppose $E \in \mathfrak{U}_p$. Let $\varphi \in L^q(\Gamma)_E$ and choose any $0 < \delta_0 < 1$. Set $\delta = \delta_0/2$. According to the definition of \mathfrak{U}_p , there is a $\beta > 0$ and a $\mu_1 \in M(G)$ such that $||\mu_1|| \leq \beta ||\varphi||_q$ and $||\hat{\mu}_1 - \varphi||_q \leq \delta ||\varphi||_q$. Apply the definition again to $\varphi - \hat{\mu}_1 I_E$ with the same δ and continue in this manner. This gives rise to a sequence $\{\mu_n\} \subset M(G)$ as in Lemma 1. Thus

$$\mu = \sum_{n=1}^{\infty} \mu_n \varepsilon M(G), \qquad ||\mu|| \leq \beta ||\varphi||_q (1 - \delta)^{-1},$$

and $\hat{\mu} \equiv \varphi$ on *E*. But this time

$$egin{aligned} & \left|\left|\hat{\mu}_n\,-\,\left(arphi\,-\,\sum\limits_1^{n-1}\,\hat{\mu}_k
ight)
ight|
ight|_q &\leq \left|\left|\hat{\mu}_n\,-\,\left(arphi\,-\,\sum\limits_1^{n-1}\,\hat{\mu}_kI_E
ight)
ight|
ight|_q + \left|\left|\sum\limits_1^{n-1}\,\hat{\mu}_k(1\,-\,I_E)
ight|
ight$$

In particular, (iii) is valid. Of course, (i)–(iii) are sufficient to imply $E \in \mathfrak{U}_p$. \Box

Our next theorem is rather trivial at this point, but worth mentioning.

Theorem 2. \mathfrak{U}_p is closed under finite unions for $1 \leq p < 2$.

Proof. Suppose E_1 , $E_2 \in \mathfrak{A}_p$ and set $E = E_1 \cup E_2$. Since subsets of elements in \mathfrak{A}_p are also in \mathfrak{A}_p , we can assume that $E_1 \cap E_2 = \emptyset$. Let $\varphi \in L^q(\Gamma)_E$, let $\varphi_i = \varphi I_{E_i}$ for i = 1, 2, and choose any $\delta_0 > 0$. By definition there exist $\beta > 0$ and measures μ_1 , μ_2 such that $\delta = \delta_0/2$, β , μ_i , φ_i satisfy (i) and (ii) of the definition for a \mathfrak{A}_p set. Thus $||\mu_1 + \mu_2|| \leq 2\beta ||\varphi||_q$ and

$$||\hat{\mu}_1 + \hat{\mu}_2 - arphi||_q \leq ||\hat{\mu}_1 - arphi_1||_q + ||\hat{\mu}_2 - arphi_2||_q < \delta_0 ||arphi||_q$$
. \Box

Remark. This author had originally announced [Notices Amer. Math. Soc. 21 (1974), A-163] a somewhat different definition for \mathfrak{U}_p . Specifically, replace "for each $\delta > 0$ " by "for some $0 < \delta < 1$ " in Theorem 1. Under this change, Theorem 2 would read "the union of any two elements of \mathfrak{U}_p is *p*-Sidon." The formally stronger definition that we are now using seems to better reflect the structure of *p*-Sidon sets.

We now turn to the question of existence of nontrivial uniformizable *p*-Sidon sets. Fortunately, Drury's theorem implies that \mathfrak{U}_1 consists of all Sidon sets. But this yields no information about \mathfrak{U}_p for $p \neq 1$. In fact, the relationship between \mathfrak{U}_p and \mathfrak{U}_r for $1 \leq p \neq r < 2$ is not at all clear. Our next theorem sheds some light on the matter by showing $\mathfrak{U}_1 \subset \mathfrak{U}_p$. The key is the observation that \mathfrak{U}_p contains all dissociate sets for $1 \leq p < 2$. For, Drury's techniques allow us in this context to essentially consider any Sidon set as a dissociate set. We emphasize that many of the techniques used in our next proof parallel those of [3]. A subset *E* of an abelian group Λ is *dissociate* if the only solutions to $\sum \delta_{\gamma} \gamma = 0$ (finite sum) with $\gamma \in E$ and $\delta_{\gamma} \in \{-2, -1, 0, 1, 2\}$ are $\delta_{\gamma} = 0$ for all γ . As is custom, we denote by $B(\Gamma)$ the space M(G) with the norm, $||\hat{\mu}||_B \equiv ||\mu||$.

Theorem 3. Sidon sets are uniformizable p-Sidon sets for all p.

Proof. Let $E \subset \Gamma$ be a Sidon set. Following Drury [3], fix a positive integer n and let $\gamma_1, \dots, \gamma_n \in E$ be any choice of n distinct nonzero elements. Let Λ be the discrete abelian group generated by $F \equiv \{\gamma_1, \dots, \gamma_n\}$ over, say, $\mathbb{Z} \mod (3)$

where γ_1 , \cdots , γ_n are simply considered as *n* independent symbols. That is $\Lambda \cong (\mathbb{Z} \mod (3))^n$. The dual *H* of Λ is isomorphic to Λ but it can also be realized as the set of all maps $h: F \to T_3$ where T_3 is the set of 3rd roots of unity. The group operation, represented by +, is just pointwise multiplication. We insist that *H* have Haar measure 1. Then the dual Haar measure on Λ is simply the counting measure.

Consider first the group $\Gamma \times H$ which has dual $G \times \Lambda$. Since E is 1-Sidon, there exists an $\alpha > 0$ such that for each $h \in H$ there is a $\mu_h \in M(G)$ satisfying $||\mu_h|| \leq \alpha$ and $\hat{\mu}_h \equiv h$ on F. Set $g(\gamma, h) = \hat{\mu}_h(\gamma)$. Then $g(\gamma_i, \cdot)$ is a character on H. Together with the properties of μ_h , this yields

(1')
$$g(\cdot, h) \in B(\Gamma)$$
 with $||g(\cdot, h)||_B \leq \alpha$ for all $h \in H$

and

(2')
$$g(\gamma, \cdot) \varepsilon B(H)$$
 with $||g(\gamma, \cdot)||_B = 1$ for all $\gamma \varepsilon F$.

We adjust these two statements as follows. Define the function

$$r(\gamma, \cdot) \equiv g(\gamma, \cdot)_{H}^{*}g(\gamma, o)$$
 (convolution over H).

Since $||g(\gamma, \cdot)||_{\infty} \leq \alpha$, it follows that $||g(\gamma, \cdot)||_{2} \leq \alpha$; hence $||r(\gamma, \cdot)||_{B} \leq \alpha^{2}$ for all $\gamma \in \Gamma$. Since $r(\cdot, h)$ is a convex linear combination of products of the $\hat{\mu}_{\ell}$, $\ell \in H$, it follows that $r(\cdot, h) \in B(\Gamma)$ and $||r(\cdot, h)||_{B} \leq \alpha^{2}$ for $h \in H$. That is, (1) $||r(\cdot, h)||_{B} \leq \alpha^{2}$ for all $h \in H$;

- (1) $||r(\gamma, \cdot)||_B \leq \alpha^2$ for all $\gamma \in \Gamma$; and
- $(2) ||f(\gamma, \gamma)||_B \leq a \text{ for all } \gamma \in I, \text{ and}$
- (3) $r(\gamma, h) = h(\gamma)$ on F for all $h \in H$;

where (3) is immediate from the definition of r.

At this point we fix a real-valued $\varphi \in L^{\alpha}(\Gamma)_{F}$ with $||\varphi||_{\alpha} = 1$. Let $0 < \epsilon \leq 1$ and set $x_{i} = (\gamma_{i}, \gamma_{i}) \in \Gamma \times \Lambda$ for $1 \leq j \leq n$. Define the Riesz polynomials P_{ϵ} and P_{0} on $G \times H$ by

$$P_{\epsilon}(z) = \prod_{j=1}^{n} \left[1 + \epsilon/2\varphi(\gamma_j)(x_j(z) + \overline{x_j(z)})\right]$$

and

$$P_0(z) = \prod_{i=1}^n \left[1 + \epsilon/2i\varphi(\gamma_i)(x_i(z) - \overline{x_i(z)})\right].$$

Since these functions are nonnegative $||P_{\epsilon}||_{1} = \hat{P}_{\epsilon}(0)$ and $||P_{0}||_{1} = \hat{P}_{0}(0)$. Their formal expansions can be described in the following terms. Set $\Omega = \{-1, 0, 1\}^{n}$, let $\delta = (\delta_{1}, \dots, \delta_{n})$ be a generic point of Ω , and adopt the convention $0^{0} = 1$. Then, using the additive group notation, we have

$$P_{\epsilon}(z) = \sum_{\delta \in \Omega} \left[\prod_{j=1}^{n} (\epsilon/2\varphi(\gamma_{j}))^{|\delta_{j}|} \right] (\delta_{1}x_{1} + \cdots + \delta_{n}x_{n})(z)$$

and

$$P_0(z) = \sum_{\delta \in \Omega} \left[\prod_{j=1}^n \left(\delta_j \epsilon/2i\varphi(\gamma_j) \right)^{\lfloor \delta_j \rfloor} \right] (\delta_1 x_1 + \cdots + \delta_n x_n)(z).$$

p-SIDON SETS

Note that by definition of Λ the set $\{x_1, \dots, x_n\}$ is dissociate; hence distinct $\delta \epsilon \Omega$ give distinct characters $\delta_1 x_1 + \dots + \delta_n x_n$ on $G \times H$. In particular, $||P_{\epsilon}||_1 = ||P_0||_1 = 1$. Moreover, \hat{P}_{ϵ} , \hat{P}_0 are supported on points of the form

$$y = \sum_{i=1}^{n} \delta_{i} x_{i}$$
 with $\hat{P}_{\epsilon}(y) = \prod_{i=1}^{n} (\epsilon/2\varphi(\gamma_{i}))^{|\delta_{i}|}$

and

$$\hat{P}_0(y) = \prod_{i=1}^{n} (\delta_i \epsilon/2i\varphi(\gamma_i))^{|\delta_i|}.$$

Also note, $\hat{P}_0(\pm x_i) = \pm \epsilon/2i\varphi(\gamma_i)$.

For a continuous P on $G \times H$, denote its transform with respect to the *j*th variable by \hat{P}^i (j = 1, 2). It follows that $(\hat{P}^1)^{2} = \hat{P}$ and that $||\hat{P}^1(\gamma, \cdot)||_1 \leq ||P_1||$. In particular, the functions

$$s_{\epsilon}(\gamma) = (P_{\epsilon}(\gamma, \cdot) - 1)^{1} * r(\gamma, \cdot)(0)$$

and

$$s_0(\gamma) = (iP_0(\gamma, \cdot) - i)^{-1} * r(\gamma, \cdot)(0)$$

are convex linear combinations of $B(\Gamma)$ functions with norm bounded by $2\alpha^2$. Thus

(4)
$$s \equiv s_{\epsilon} + s_0 \epsilon B(\Gamma)$$
 and $||s||_B \leq 4\alpha^2$.

Moreover, since $r(\gamma_i, h) = h(\gamma_i)$ for $1 \leq j \leq n$,

(5)
$$s(\boldsymbol{\gamma}_i) = \hat{P}_{\boldsymbol{\epsilon}}(\boldsymbol{x}_i) + i\hat{P}_{\boldsymbol{0}}(\boldsymbol{x}_i) = \boldsymbol{\epsilon}\varphi(\boldsymbol{\gamma}_i).$$

We now want to estimate $||s - \epsilon \varphi||_{\alpha}$. To this end, denote the Dirac point measure at $0 \epsilon \Lambda$ by δ_0 . Then applying Parseval's formula (relative to H) to the definition of $s(\gamma)$ yields

$$\begin{aligned} |s(\gamma)| &= \left| \int_{\Pi} \left[P_{\epsilon}(\gamma, h) + i P_{0}(\gamma, h) - (1+i) \right]^{1} r(\gamma, -h) dh \right| \\ &= \left| \int_{\Lambda} \left[\hat{P}_{\epsilon}(\gamma, \lambda) + i \hat{P}_{0}(\gamma, \lambda) - (1+i) \delta_{0} \right] \hat{r}^{2}(\gamma, \lambda) d\lambda \right| \\ &\leq ||\hat{P}_{\epsilon}(\gamma, \cdot) + i \hat{P}_{0}(\gamma, \cdot) - (1+i) \delta_{0}||_{\infty} \alpha^{2} \text{ for all } \gamma \in \Gamma \end{aligned}$$

by (2). Set $R = \hat{P}_{\epsilon} + i\hat{P}_{0} - (1 + i)\delta_{0}$. The preceding inequalities and (5) yield

(6)
$$||s - \epsilon \varphi||_q^q = \sum_{\gamma \notin F} |s(\gamma)|^q \leq \alpha^{2q} \sum_{\substack{x \in \Gamma \times \Lambda \\ x \neq x_j, i \leq j \leq n}} |R(x)|^q = \alpha^{2q} [||R||_q^q - \epsilon^q ||\varphi||_q^q].$$

To estimate $||R||_{\mathfrak{a}}$, partition Ω by the equivalence relation $\delta \sim \sigma$ if and only if $|\delta_i| = |\sigma_i|$ for $1 \leq j \leq n$. Call this partition \mathcal{E} . Given $u \in \mathcal{E}$ and any $\delta \in u$, define

$$|u| = \sum_{i=1}^{n} |\delta_i|$$
 and $A_u = \prod_{i=1}^{n} |\varphi(\gamma)_i|^{|\delta_i|}$.

G. S. WOODWARD

Both symbols are well defined. Let $z = (x_1, \dots, x_n)$. Then the expansions obtained earlier for P_e and P_0 yield

$$|R(\delta \cdot z)| = (\epsilon/2)^{|u|} A_u |1 + \beta_{\delta}| \quad \text{for} \quad \delta \varepsilon \, u \, \varepsilon \, \varepsilon,$$

where $\delta \cdot z$ denotes the usual vector inner product and $\beta_{\delta} \in \{\pm 1, \pm i\}$. It is important to note that $R(x_i) = \epsilon \varphi(\gamma_i)$ and $R(0) = R(-x_i) = 0$ for $1 \leq i \leq n$. Since the cardinality of each $u \in \delta$ is $2^{|u|}$, it follows that

$$\begin{split} \sum_{\delta \iota u} & |R(\delta \cdot z)|^a \leq 2^{|u|} (\epsilon/2)^{|u|q} A_u^{\ q} 2^q \quad \text{if} \quad |u| > 1, \\ \sum_{\delta \iota u} & |R(\delta \cdot z)|^a = (\epsilon/2)^{|u|q} A_u^{\ q} 2^q \quad \text{if} \quad |u| = 1, \end{split}$$

and

$$\sum_{\delta \in u} |R(\delta \cdot z)|^a = 0 \quad \text{if} \quad |u| = 0.$$

Thus

$$\begin{split} ||R||_{q}^{a} &= \sum_{u \in \mathcal{E}} \sum_{\delta \in u} |R(\delta \cdot z)|^{q} \\ &\leq \sum_{u \in \mathcal{E}} 2^{|u|} (\epsilon/2)^{|u|q} A_{u}^{a} 2^{q} - \sum_{|u|=1} (\epsilon/2)^{q} A_{u}^{a} 2^{q} - 2^{q} \\ &= 2^{q} (\sum_{u \in \mathcal{E}} 2^{|u|} (\epsilon/2)^{|u|q} A_{u}^{a} - (\epsilon/2)^{q} - 1), \end{split}$$

where the second line of the inequality reflects, via subtraction, the differences between the cases |u| > 1, |u| = 1, and |u| = 0. We have also used

$$\sum_{|u|=1} (A_u)^a = (||\varphi||_a)^a = 1.$$

This can be further simplified with the aid of the equation

$$\sum_{u\in\mathcal{E}} 2^{|u|} (\epsilon/2)^{|u|q} A_u^{q} = \prod_{j=1}^n (1+2 |\epsilon/2\varphi(\gamma_j)|^q)$$

and the inequality

$$\ln \prod_{i=1}^{n} (1+2 |\epsilon/2\varphi(\gamma_i)|^q) = \sum_{i=1}^{n} \ln (1+2 |\epsilon/2\varphi(\gamma_i)|^q)$$
$$\leq \sum_{i=1}^{n} 2 |\epsilon/2\varphi(\gamma_i)|^q = 2(\epsilon/2)^q ||\varphi||_q^q = 2(\epsilon/2)^q.$$

In fact a slight computation yields

 $||R||_{q}^{a} \leq 2^{q} [\exp (2(\epsilon/2)^{q}) - 1 - (\epsilon/2)^{q}].$

Together with (6), this yields

$$||s - \epsilon \varphi||_{q} \leq 2\alpha^{2} [\exp((2(\epsilon/2)^{q}) - (1 + 2(\epsilon/2)^{q}))]^{1/q}$$
$$\leq \alpha^{2} \epsilon^{2}.$$

Now apply (4) and (5). We conclude: (i) $\epsilon^{-1}s \epsilon B(\Gamma)$ and $||\epsilon^{-1}s||_B \leq 4\epsilon^{-1}\alpha^2$; (ii) $\epsilon^{-1}s = \varphi$ on F; (iii) $||\epsilon^{-1}s - \varphi||_{\mathfrak{q}} \leq \epsilon\alpha^2$. In particular, given any $\psi \epsilon L^{\mathfrak{q}}(\Gamma)_F$ we can apply (i)-(iii) to its normalized real and imaginary parts. It follows that there is a $\mu \epsilon M(G)$ satisfying

(7)
(a)
$$||\boldsymbol{\mu}|| \leq 8\epsilon^{-1}\alpha^2 ||\boldsymbol{\psi}||_{q}$$
,
(b) $\hat{\boldsymbol{\mu}} = \boldsymbol{\psi}$ on F , and
(c) $||\hat{\boldsymbol{\mu}} - \boldsymbol{\psi}||_{q} \leq 2\epsilon \alpha^2 ||\boldsymbol{\psi}||_{q}$.

The argument extends from finite sets F to E via a standard weak* compactness argument. \Box

We can now describe a large variety of new p-Sidon sets. Just consider the sets in [6] together with the following corollary.

Corollary. Suppose $S \subset \Gamma$ is Sidon and $E \subset \Gamma$ is p-Sidon. Then $S \cup E$ is p-Sidon.

Proof. We can assume $S \cap E = \emptyset$. The *p*-Sidon property and Theorem 3 imply that there exists $\beta > 0$ such that for any $\varphi \in L^q(\Gamma)_{S \cup E}$ there are measures $\mu, \mu_1, \mu_2 \in M(G)$ satisfying

(1) $||\mu|| \leq \beta$, $\hat{\mu} = 1$ on S, $|\hat{\mu}| < 1/4$ off S; (2) $||\mu_1|| \leq \beta ||\varphi I_S||_q$, $\hat{\mu}_1 = \varphi$ on S, $||\hat{\mu}_1 - \varphi I_S||_q \leq 1/4 ||\varphi I_S||_q$; (3) $||\mu_2|| \leq \beta ||\varphi I_E||_q$, $\hat{\mu}_2 = \varphi$ on E. Set $\hat{\nu} = (1 - \hat{\mu})\hat{\mu}_2 + \hat{\mu}_1$. Then $\nu \in M(G)$ and $||\nu|| \leq (1 + \beta)2\beta ||\varphi||_q$. Moreover

$$||\hat{\nu}I_s - \varphi I_s||_q = 0$$

and

$$||\hat{\nu}I_{E} - \varphi I_{E}||_{q} = ||-\hat{\mu}\hat{\mu}_{2}I_{E} + \hat{\mu}_{1}I_{E}||_{q} \leq \frac{1}{2} ||\varphi||_{q}$$

Thus

 $||\hat{\nu}I_{S\cup E} - \varphi||_q \leq \frac{1}{2} ||\varphi||_q.$

Now apply Lemma 1. \Box

Our last result exhibits some additional *p*-Sidon sets as an extension to the result in [6]. We outline much of the proof and refer the reader to [6] for the details. By $\pm A \pm B$ we mean $\{\delta a + \delta' b : \delta, \delta' \in \{-1, 1\}$ and $a \in A, b \in B\}$.

Theorem 4. Suppose A_1, \dots, A_n are mutually disjoint infinite subsets of Γ whose union is dissociate. Then $E = \pm A_1 \pm A_2 \pm \cdots \pm A_n$ is p-Sidon if and only if $p \ge 2n/(n+1)$.

Proof. Lemma 1 in [6] implies that $p \ge 2n/(n+1)$ if E is p-Sidon. Thus we need only prove that E is $p \equiv 2n/(n+1)$ -Sidon. To begin note that the 2^n sets of the form $E_{\beta} = \sum \beta_j A_j$ where $\beta = (\beta_1, \dots, \beta_n) \in \{-1, 1\}^n$ are mutually disjoint since $\bigcup A_j$ is dissociate. Choose any β and a $\varphi \in L^q(\Gamma)_{E_\beta}$. We shall show

G. S. WOODWARD

that there is a $\mu_{\beta} \in M(G)$ such that $\hat{\mu}_{\beta} = \varphi$ on E_{β} while $\hat{\mu}_{\beta} \equiv 0$ on E_{α} for $\alpha \neq \beta$. The theorem then follows by considering sums of the form $\sum \mu_{\beta}$. It is sufficient to restrict our attention to real-valued φ and to $\beta \equiv (-1, 1, \dots, 1) \in \{-1, 1\}^n$. Fix such a φ . As argued in [6], it follows that $\varphi \in C(A_1) \otimes \dots \otimes C(A_n)$; hence we need only prove the following fact concerning basic tensor elements: there exists a constant K > 0 such that for any choice of real-valued functions $\varphi_1, \dots, \varphi_n$ on A_1, \dots, A_n , respectively, there is a $\mu \in M(G)$ with $||\mu|| \leq K ||\varphi_1||_{\infty} \cdots ||\varphi_n||_{\infty}$ satisfying $\hat{\mu} = 0$ on E_{α} for $\alpha \neq \beta$ and

$$\hat{\mu}(-\gamma_1 + \gamma_2 + \cdots + \gamma_n) = \varphi_1(\gamma_1) \cdots \varphi_n(\gamma_n)$$

on $E_{\beta} = -A_1 + A_2 + \cdots + A_n$.

To this end, assume for the moment that each A_i is finite and fix a choice of φ_1 , \cdots , φ_n . We consider the Riesz polynomials

$$p_{i}(x) = \prod_{\gamma \in A_{j}} [1 + (2 ||\varphi_{j}||_{\infty})^{-1} \varphi_{j}(\gamma)(\gamma(x) + \overline{\gamma(x)})], \quad 1 \leq j \leq n,$$

$$q_{i}(x) = \prod_{\gamma \in A_{j}} [1 + (2i ||\varphi_{1}||_{\infty})^{-1} \varphi_{i}(\gamma)(-\gamma(x) + \overline{\gamma(x)})],$$

and

$$q_i(x) = \prod_{\gamma \neq A_j} [1 + (2i ||\varphi_j||_{\infty})^{-1} \varphi_j(\gamma)(\gamma(x) - \overline{\gamma(x)})], \qquad 2 \leq j \leq n.$$

The discussion of such polynomials in Theorem 3 implies that $||p_i||_1 = ||q_i||_1 = 1$ and that $\hat{p}_i(\pm \gamma) = \varphi_i(\gamma)/(2 ||\varphi_i||_{\infty})$, $\hat{q}_1(\pm \gamma) = \mp \varphi_1(\gamma)/(2i ||\varphi_1||_{\infty})$, and $q_i(\pm \gamma) = \pm \varphi_i(\gamma)/(2i ||\varphi_i||_{\infty})(j \neq 1)$, for all γ in the corresponding A_i , $1 \leq j \leq n$. In particular, the polynomials

$$P_{i} = (p_{i} - 1) ||\varphi_{i}||_{\infty}, \qquad Q_{i} = (q_{i} - 1)i ||\varphi_{i}||_{\alpha}$$

and

$$R = \prod_{i=1}^{n} \left(P_i + Q_i \right)$$

satisfy

(1)
$$(P_i + Q_i)(0) = 0,$$

(2) $(P_1 + Q_1)(\gamma) = 0$ and $(P_1 + Q_1)(-\gamma) = \varphi_1(\gamma)$ for $\gamma \in A_1,$

(3)
$$(P_i + Q_i)(\gamma) = \varphi_i(\gamma)$$
 and $(P_i + Q_i)(-\gamma) = 0$

for $\gamma \in A_i$, $2 \leq j \leq n$, and

(4)
$$||R||_1 \leq 2^{2^n} \prod_{j=1}^n ||\varphi_j||_{\infty}$$

Here (1)-(3) are immediate from the definitions and the fact that $\bigcup A_i$ is dissociate. To see (4) observe that R is the sum of 2^n terms, each of which has precisely n factors consisting of some combination of P_i 's and Q_i 's—each

p-SIDON SETS

appearing only once. Since $||P_i||_1$, $||Q_i||_1 \leq 2 ||\varphi_i||_{\infty}$, it follows that each of those terms has L^1 -norm bounded by $2^n \prod_i ||\varphi_i||_{\infty}$; whence (4). Again we use the dissociate property of $\bigcup A_i$, this time in conjunction with (1)–(3) to conclude

$$\hat{R}(-\gamma_1 + \gamma_2 + \cdots + \gamma_n) = \varphi_1(\gamma_1) \cdots \varphi_n(\gamma_n)$$
 for $\gamma_i \in A_i$

and

(5)
$$\hat{R} = 0$$
 on E_{α} for $\alpha \neq \beta$.

In light of (4), a weak* compactness argument extends (5) to infinite A_i for some $R \in M(G)$. \Box

Open questions.

1. Are all *p*-Sidon sets uniformizable *r*-Sidon sets for some $1 \neq p \leq r < 2$? Indeed, do there exists uniformizable *p*-Sidon sets which are not Sidon sets? To be specific, let $A = \{3^{2n}\}_1^{\infty}$ and $B = \{3^{2n+1}\}_1^{\infty}$. Is A + B a uniformizable *p*-Sidon set?

2. Is the union of two *p*-Sidon sets $(p \neq 1)$ an *r*-Sidon set for some $p \leq r < 2$? This is open even if one of the sets is assumed to be a uniformizable *p*-Sidon set.

3. There is a form of the Kahane and Salem necessary condition for Sidon sets for *p*-Sidon subsets of **Z** (see [5]). It extends immediately to any discrete Γ for which every $\gamma \neq 0$ has infinite order and actually improves somewhat for other discrete Γ 's. The condition appears fairly tight. But what about sufficient conditions? For Sidon sets we at least have the Stečkin type conditions (see [7] or [8, Section 5.7.5]). For *p*-Sidon sets ($p \neq 1$) the best result so far in this direction is our Theorem 4. Is there some analogue to the Stečkin condition for *p*-Sidon sets?

4. Let S_p be the class of all p-Sidon subsets of Γ . It is immediate that $S_p \subset S_r$ if $p \leq r$. Moreover, if $p_n = 2n/(n+1)$, then [6] tells us that $S_{p_n} \subseteq S_{p_{n+1}}$. If $1 \leq p \neq r < 2$ must it follow that $S_p \neq S_r$?

References

- 1. R. BLEI, A tensor approach to interpolation phenomena in discrete abelian groups, Proc. Amer. Math. Soc. (to appear).
- 2. M. BOZËKO & T. PYTLIK, Some types of lacunary Fourier series, Colloq. Math. 25 (1972), 117-124.
- 3. S. DRURY, The Fatou-Zygmund property for Sidon sets, Bull. Amer. Math. Soc. 80 (1974), 535-538.
- 4. R. E. EDWARDS & K. A. Ross, p-Sidon sets. J. of Functional Analysis 15 (1974), 404-427.
- 5. L. S. HAHN, Fourier series with gaps, preprint (1973).
- 6. G. W. JOHNSON & G. S. WOODWARD, On p-Sidon sets. Indiana Univ. Math. J. 24 (1974), 161-167.
- 7. D. RIDER, Gap series on groups and spheres, Canad. J. Math. 18 (1966), 389-398.
- 8. W. RUDIN, Fourier analysis on groups, Interscience Publishers, New York, New York, 1967.

University of Nebraska, Lincoln Date communicated: APRIL 23, 1975