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p-Sidon Sets and a Uniform Property 

GORDON S. WOODWARD 

Let G be a compact abelian group with dual group r. Denote by LP(E) and 
M (E) the usual spaces of Haar-measurable functions and bounded regular 
Borel measures, respectively, which are supported on the subset E of G or r. 
The Haar measure on G is normalized and its dual is the Haar measure on r. 
Let tP denote the Fourier or Fourier-Stieltjes transform of the function or 
measure I{). A subset E C r is said to be p-Sidon for some 1 ~ P < 2 (not interest­
ing for p ~ 2) if there is an a > 0 such that IltPllp ~ a I II{)I I", for all trigonometric 
polynomials I{) on G with supp tP C E. This is equivalent to the dual statement: 
E is p-Sidon if and only if VeE) C M(GnE , where I/p + I/q = 1 and "IE" 
denotes restriction to E. Hereafter p and q will always be as above. 

The concept of a p-Sidon set was independently introduced in [2, 4, and 5] 
as a natural generalization of the classical Sidon sets (i.e., I-Sidon sets). In each 
of these articles, the various equivalent definitions for p-Sidon sets are given. 
They correspond to the classical equivalent definitions of a Sidon set as presented 
in [8, Theorem 5.7.3]. In [5], Hahn extends a theorem of J. P. Kahane to give the 
best known necessary conditions for a set to be p-Sidon when r = Z, the integers. 
Edwards and Ross present the most comprehensive treatment of the subject 
in [4]. It is there that the first non Sidon p-Sidon set is constructed via an 
extremely ingenious application of the tensor algebraic techniques of Varapoulos. 
Their methods are extended in [6] to prove that the classes of all 2n/(n + 1)­
Sidon sets are distinct for n = 1, 2, .... One will also find in [6] all known non 
Sidon p-Sidon sets to date (except for unions with finite sets). For a somewhat 
more skillful application of the Varapoulos techniques to this problem, we refer 
the reader to [1]. 

In this paper, we adapt an idea of Rider [7] in defining the class of uniform­
izable p-Sidon sets. The class is, by design, closed under finite unions. Of course, 
its members are p-Sidon sets. Our main result is that Sidon sets are uniformizable 
p-Sidon sets for all p. Its proof is a variant of Drury's famous technique which 
resembles most closely the approach found in [3]. As a corollary we prove that 
the union of a Sidon set with any p-Sidon set is again p-Sidon, thus enabling 
one to exhibit many new non Sidon p-Sidon sets. We conclude with a slight 
extension of the results in [6], using an argument similar to the one presented 
there, and a list of open questions. 
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In what follows, £P(rh denotes the L"(r) functions supported on E C r 
and IE denotes the characteristic function of E. We begin with a useful technical 
result of a standard type. 

Lemma 1. E C r is a p-Sidon set if and only if there exist{j > 0 and 0 < 0 < 1 
such that for each q; t LO(rh there is a I-' t M(G) satisfying 

(i) 111-'11 ~ (j 1Iq;lIo ; and 
(ii) II#E - q;lIo < 0 1Iq;1I •. 
Proof. Suppose E is a p-Sidon set. Define the relation "-' on M(G) by I-' "-' " 

if P- - p == 0 on E. Let M(G)/"-' denote the usual Banach quotient space. By 
definition LO(r)E naturally embeds in M(G)/,,-,. Moreover, the uniqueness of 
the Fourier-Stieltjes transform yields that the graph of this map is closed; 
hence (i). Of course, (ii) holds for any 0 > o. 

For the converse, let q; t LO(r)E . Then (i) and (ii) yields inductively a sequence 
{I-'nl C M(G) with 1-'1 satisfying 111-'111 ~ {j 1Iq;lIo and liP-lIE - q;lIo ~ 0 1Iq;lIo and 
continuing 

and 

Since :Em IIl-'kll ~ {j 1Iq;lIo (1 - 0)-\ the sum I-' = :Em I-'k converges in M(G); 
clearly P- = q; on E. D 

Definition. E C r is a uniformizable p-Sidon set if for each 0 > 0 there 
exists a (j > 0 such that for any q; t LO(rh there is a I-' t M(G) satisfying 

(i) 111-'11 ~ {j 1Iq;lIo ; and 
(ii) lip- - q;1I. ~ 0 1Iq;1I •. 

Denote by 'Up the class of all uniformizable p-Sidon sets on r. 
It is clear that each element of 'Up is p-Sidon. The full strength of the definition 

is summed up in the following theorem. 

Theorem 1. E t 'U" if and only if for each 0 > 0 there exists a (j > 0 such that 
for any q; t L"(rh there is a I-' t M(G) satisfying 

(i) 111-'11 ~ {j 1Iq;1I. ; 
(ii) P- == q; on E; and 

(iii) (:E 1p-(-y)I·)I/O ~ 0 1Iq;1I •. 
-y,E 

Proof. Suppose E t 'U" . Let q; t LO(rh and choose any 0 < 00 < 1. Set 
o = 00/2. According to the definition of'll", there is a (j > 0 and a 1-'1 t M(G) 
such that 111-'111 ~ {j 1Iq;1I. and lip-I - q;1I. ~ 0 1Iq;lIo . Apply the definition again to 
q; - P-JE with the same 0 and continue in this manner. This gives rise to a 
sequence {I-'nl C M(G) as in Lemma 1. Thus 
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00 

iJ- = L iJ-n t 111 (G), 

and A == cp on E. But this time 

11-1 

~ 0" Ilcpll. + L 0" Ilcpll. < 00 Ilcpll" . 
1 

In particular, (iii) is valid. Of course, (i)-(iii) are sufficient to imply E t 'Up. 0 

Our next theorem is rather trivial at this point, hut worth mentioning. 

Theorem 2. 'Up is closed under finite un'ions for 1 ~ P < 2. 

Proof. Suppose El ,E2 £ 'Up and set E = El U E2 . Since subsets of elements 
in 'Up are also in 'Up , we can assume that EJ n E2 = 0. Let cp t L"(r)E , let 
cp, = cpIEi for i = 1,2, and choose any 00 > O. By definition there exist {3 > 0 
and measures iJ-I , iJ-z such that 0 = 00/2, {3, iJ-i , CPi satisfy (i) and (ii) of the 
definition for a 'Up set. Thus IIiJ-J + iJ-zll ~ 2{3 Ilcpll. and 

IIAI + A2 - cpll. ~ IIAI - cpdl. + IIAz - CP211. < 00 Ilcpll.· 0 

Remark. This author had originally announced [Notices Amer. Math. 
Soc. 21 (1974), A-163] a somewhat different definition for 'Up . Specifically, 
replace "for each 0 > 0" by "for some 0 < 0 < I" in Theorem 1. Under this 
change, Theorem 2 would read "the union of any two elements of 'Up is p­
Sidon." The formally stronger definition that we are now using seems to better 
reflect the structure of p-Sidon sets. 

We now turn to the question of existence of nontrivial uniformizable p-Sidon 
sets. Fortunately, Drury's theorem implies that 'U I consists of all Sidon sets. 
But this yields no information about 'Up for p ¥- 1. In fact, the relationship 
between 'Up and 'U T for 1 ~ p ¥- r < 2 is not at all clear. Our next theorem sheds 
some light on the matter by showing 'U1 C 'Up . The key is the observation 
that 'Up contains all dissociate sets for 1 ~ p < 2. For, Drury's techniques allow 
us in this context to essentially consider any Sidon set as a dissociate set. We 
emphasize that many of the techniques used in our next proof parallel those 
of [3]. A subset E of an abelian group A is dissociate if the only solutions to 
L 0.,:'1 = 0 (finite sum) with "I £ E and o~ t 1-2, -1,0, 1, 2} are o~ = 0 for 
all "I. As is custom, we denote by B(r) the space 1I1(G( with the norm, 
IIAIIB == 11iJ-11 . 

Theorem 3. Sidon sets are uniformizable p-Sidon sets for all p. 

Proof. Let E C r be a Sidon set. Following Drury [3], fix a positive integer n 
and let "II , ... ,"In t E be any choice of n distinct nonzero elements. Let A be 
the discrete abelian group generated by F == hi , ... ,"In} over, say, Z mod (3) 
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where /'1 , /,,, are simply considered as n independent symbols. That is 
A '" (Z mod (3)r. The dual H of A is isomorphic to A but it can also be realized 
as the set of all maps h : F -t Ta where Ta is the set of 3rd roots of unity. The 
group operation, represented by +, is just pointwise multiplication. We insist 
that H have Haar measure 1. Then the dual Haar measure on A is simply 
the counting measure. 

Consider first the group r X H which has dual 0 X A. Since E is I-Sidon, 
there exists an a > 0 such that for each h .: H there is a J.J.h .: M (0) satisfying 
I lJ.J.hl I ~ a and Ah == h on F. Set O(/" h) = Ah(')')' Then O(/'i , .) is a character 
on H. Together with the properties of J.J.h , this yields 

(I') g(·,h).:B(r) with Ilg(-,h)IIB~a forall h.:H 

and 

(2') O(/" .) .: B(H) with 110(/,,' )lln = 1 for all /'.: F. 

We adjust these two statements as follows. Define the function 

r(/" .) == O(/" . );0(/,,0) (convolution over H). 

Since 110(')', .)11." ~ a, it follows that 110(')', . )112 ~ ai hence Ilr(/" . )IIB ~ a" 
for all /' .: r. Since 1'(', h) is a convex linear combination of products of the 
At, C.: H, it follows that-r(·, h).: B(r) and 111'(" h)lln ~ a 2 for h.: H. That is, 

(1) Ilr(·,h)IIB ~ a 2 forallh.:Hi 
(2) Ilr(/" ')I[B ~ a 2 for all')'.: ri and 
(3) r(/" h) = he/,) on F for all h.: Hi 

where (3) is immediate from the definition of r. 
At this point we fix a real-valued cp .: £"(rh with Ilcpll. = 1. Let 0 < e ~ 1 

and set Xi = (/, i , /' i) .: r X A for 1 ~ j ~ n. Define the Riesz polynomials 
p. and Po on G X H by 

" 
p.(z) = II [1 + e/2cp(/,;)(x;(z) + x;(z»] 

i=1 

and 

" 
Po(z) = II [1 + e/2icp(/,;)(x;(z) - x;(z»]. 

i=1 

Since these functions are nonnegative IIP.111 = P.(O) and l!Polll = PoCO). Their 
formal expansions can be described in the following terms. Set fl = {-I, 0, 1 r, 
let 0 = (01 , ... , On) be a generic point of fl, and adopt the convention 00 = 1. 
Then, using the additive group notation, we have 

Pe(z) = ~ [11 (e/2cp(/,;»I Oi!}0IX l + ... + Onx,,)(Z) 

and 
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Note that by definition of A the set lXI, ••• , x .. } is dissociate; hence distinct 
h (2 give distinct characters ~IXI + ... + ~nxn on G X H. In particular, IIP.II I = 
l!Polll = 1. Moreover, P. ,Po are supported on points of the form 

n n 

y = :E ~;x; with P.(y) = II (E/2~(-y;)y!11 
and 

" 
Po(y) = II (~iE/2i~('Yi»I!jl. 

Also note, Po(±x;) = ±E/2i~('j'i). 
For a continuous P on G X H, denote its transform with respect to the jth 

variable by pi (j = 1, 2). It follows that (pl(2 = P and that IIPl('j', . )111 ;?; l!Pdl. 
In particular, the functions 

s.('Y) = (P.('Y,.) _1(1 *r('Y, ·)(0) 
II 

and 

s,h) = (iPo(-Y, .) - i(1 * 1'(1', . )(0) 
II 

are convex linear combinations of B(r) functions with norm bounded by 2a2 • 

Thus 

(4) 

Moreover, since l'('j'i , h) = h('j'i) for 1 ;?; j ;?; n, 

(5) 

We now want to estimate lis - E~II" . To this end, denote the Dirac point 
measure at 0 a: A by ~o • Then applying Parseval's formula (relative to H) to the 
definition of s('Y) yields 

Is('Y) I = IL [P.('Y, h) + iPo('Y, h) - (1 + i)er('Y, -h) dhl 

= Ii [P.('Y, X) + iPo('Y, X) - (1 + i)~o]f2('Y, X) dxl 

;?; IIP.('Y, .) + iPo('Y, .) - (1 + i)~oll .. a2 for all I' a: r 
by (2). Set R = P. + iPo - (1 + i)~o . The preceding inequalities and (5) yield 

(6) lis - E~II" = :E IS('Y)I" ;?; a2" :E IR(x)i" = a 2QUIRII: - EQII~II"l. 
-r;F z,rXA 

x~:ti.i:rii::iiin 

To estimate IIRII. , partition {2 by the equivalence relation ~ "" u if and only if 
I~il = lUi I for 1 ;?; j ;?; n. Call this partition S. Given u a: S and any ~ a: u, define 

n n 

lui = :E I~il and Au = II 1~('Y)illail . 
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Both symbols are well defined. Let z = (XI, , xn). Then the expansions 
obtained earlier for p. and Po yield 

IR(!5·z)1 = (E/2) lu1 Au 11 + ,8al for !5 r. U £ e, 
where !5. z denotes the usual vector inner product and ,8a £ I ± 1, ±i}. It is im­
portant to note that R(x;) = Er,o('Yi) and R(O) = R( -Xi) = 0 for 1 ~ j ~ n. 
Since the cardinality of each u £ e is 21ul , it follows that 

L: IR(!5·z)IQ ~ 2Iul(E/2)lul"AuQ2Q if lui> 1, 
81:1.1. 

L: IR(!5·z)l" = (E/2)l ul"A u "2Q if lui = 1, 
ow 

and 

L: IR(!5,z)IQ = 0 if lui = o. 
OtU 

Thus 

/lR/I: = L: L: IR(!5,z)l" 
ute Stu 

~ L: 2Iul(E/2)lul"AuQ2" - L: (E/2)"Au"2" - 2" 
Ute 11.1.1 =1 

= 2"(L:2Iul(E/2)lul"Au"- (E/2)" -1), 
utE 

where the second line of the inequality reflects, via subtraction, the differences 
between the cases lui> 1, lui = 1, and lui = O. We have also used 

L: (Au)" = (/110/1")" = 1. 
lul-1 

This can be further simplified with the aid of the equation 
n 

L: 2Iul(E/2)luIQA: = IT (1 + 2 IE/2r,o('Y;)IQ) 
Ul'e ;=1 

and the inequality 
n 1t 

In IT (1 + 2 IE/2r,o('Yi)I") = L: In (1 + 2 IE/2r,o('Yi)I") 
;=1 ;=1 

n 

~ L: 2 IE/2r,o('Yi)l" = 2(E/2)" /110/1: = 2(E/2)". 
;=1 

In fact a slight computation yields 

/lR/I: ~ 2"[exp (2(E/2)") - 1 - (E/2)"]. 

Together with (6), this yields 

/Is - Er,o/l" ~ 2a2 [exp (2(E/2)") - (1 + 2(E/2)")fIQ 
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Now apply (4) and (5). We conclude: (i) E-IS I: B(r) and IIE-IsIIB ~ 4E-\lj 
(ii) E-IS = <p on Fj (iii) liE-Is - <p11. ~ Eol. In particular, given any 1/1 I: L·(rh 
we can apply (i)-Ciii) to its normalized real and imaginary parts. It follows that 
there is a p- I: M (G) satisfying 

(a) lip-II ~ 8E- Ia2 111/111. , 
(7) (b) P. = 1/1 on F, and 

(c) lip. - 1/111. ~ 2 I: a 2 111/111 •. 
The argument extends from finite sets F to E via a standard weak* compact­

ness argument. 0 

We can now describe a large variety of new p-Sidon sets. Just consider the 
sets in [6] together with the following corollary. 

Corollary. Suppose S C r is Sidon and E C r is p-Sidon. 7'hen S IJ E 
is p-Sidon. 

Proof. We can assume S (\ E = 0. The p-Sidon property and Theorem 3 
imply that there exists {j > 0 such that for any <p I: L·(r)SVE there are measures 
p-, P-I , P-2 I: M (G) satisfying 
(1) lip-II ~ {j, p. = 1 on S, 1p.1 < 1/4 off Sj 
(2) lip-III ~ {j II<pI,~II. ,P.I = <p on S, 11p.1 - <pIsll. ~ 1/411<pI sll. j 
(3) 11p-211 ~ {j II<pIEII. , P.2 = <p on E. 
Set v = (1 - p.)P.2 + P.l . Then v I: M(G) and Ilvll ~ (1 + {j)2{j 11<p11 •. :\1oreover 

IlvIs - <pIsll. = 0 

and 

Thus 

IlvIsvF. - <p11. ~ ! 11<p11 •. 
Now apply Lemma 1. 0 

Our last result exhibits some additional p-Sidon sets as an extension to the 
result in [6]. We outline much of the proof and refer the reader to [6] for the 
details. By ±A ±B we mean laa + a'b : a, 15'1: 1-1, 1} and a I: A, b I: B}. 

Theorem 4. Suppose Al , ... ,An are mutually disjoint infinite subsets of r 
whose union is dissociate. Then E = ±AI ± A2 ± ... ± An is p-Sidon if and 
only if p ~ 2n/(n + 1). 

Proof. Lemma 1 in [6] implies that p ~ 2n/(n + 1) if E is p-Sidon. Thus 
we need only prove that E is p == 2n/(n + 1)-Sidon. To begin note that the 2ft 
sets of the form E fJ = L: {j jA j where {j = ({j I , ••• ,(jn) I: I -1, I} n are mutually 
disjoint since IJAj is dissociate. Choose any {j and a <p I: L"(r)E# . We shall show 
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that there is a p,p t M (G) such that jlp = cP on E p while jlp == 0 on E a for a ;of /3. 
The theorem then follows by considering sums of the form L p'fJ • It is sufficient 
to restrict our attention to real-valued cP and to /3 == (-1,1, ... ,1) t {-I, I}". 
Fix such a cpo As argued in [6], it follows that cP t C(A I ) ® ... ® C(A .. ); hence 
we need only prove the following fact concerning basic tensor elements: there 
exists a constant K > 0 such that for any choice of real-valued functions 
CPI , ... , CPn on Al , ... , An , respectively, there is a p, t M(G) with 11p,11 ~ 
K Ilcptll., ... IIcp"ll., satisfying jl = 0 on Ea for a ;of /3 and 

jl( -'YI + 'Y2 + ... + 'Yn} = CPI('YI) ... CPn('Y,,) 

on Ell = -AI + A2 + ... + An . 
To this end, assume for the moment that each A j is finite and fix a choice 

of CPI , ... , cP" • We consider the Riesz polynomials 

p/(x) = II [1 + (2 Ilcp; 11.,)-lcp;("()('Y(x) + 'Y(x»], 1 ~ j ~ n, 
'YtAj 

ql(X) = II [1 + (2i Ilcplll.,)-lcpl('Y)( -'Y(x) + 'Y(;)], 
"(rAl 

and 

q/(x) = II [1 + (2i Ilcp;ll.,r-lcp;("()('Y(x) - 'Y(;)], 2 ~ j ~ n. 
"'(tAj 

The discussion of such polynomials in Theorem 3 implies that IIp;111 = Ilq;111 = 1 
and thatp;(±'Y) = cp;('Y)/(21Icp;II.,), ~I(±'Y) = =FCPI('Y)/(2i IlcpIII.,), and q;(±'Y) = 
±cp;('Y)/(2i Ilcp;II.,)(j ;of 1), for all 'Y in the corresponding A; , 1 ~ j ~ n. In 
particular, the polynomials 

and 
n 

Il = II (P; + Q;) 
i=1 

satisfy 

(1) (P; + Q;f(O) = 0, 

(2) (PI + Ql)-('Y) =0 and (PI+Qlf(-'Y)=CPI('Y) for 'YtAI' 

(3) (P; + Q;('Y) = cP;("() and (P; + Q;f (-'Y) = 0 

for 'Y t A; , 2 ~ j ~ n, and 

" 
(4) IIIlIII ~ 22n II IIcp;ll., . 

i=l 

Here (1)-(3) are immediate from the definitions and the fact that UA; is 
dissociate. To see (4) observe that Il is the sum of 2" terms, each of which has 
precisely n factors consisting of some combination of P /s and Q ;'s-each 



p-SIDON SETS 1003 

appearing only once. Since IIPill1 , IIQill1 ~ 2 II!pill", , it follows that each of 
those terms has Ll-norm bounded by 2" IIi II!pill", ; whence (4). Again we use 
the dissociate property of VA i , this time in conjunction with (1)-(3) to conclude 

fl( -'YI + 'Y2 + ... + 'Yn) = !PI ('YI) ... !p,,('Y,,) for 'Y i e Ai 

and 

(5) fl = 0 on E", for a ¢ (3. 

In light of (4), a weak* compactness argument extends (5) to infinite Ai for 
some R e M(G). 0 

Open questions. 
1. Are all p-Sidon sets uniformizable r-Sidon sets for some 1 ¢ p ~ r < 2? 

Indeed, do there exists uniformizable p-Sidon sets which arc not Sidon sets? 
To be specific, let A = 132"11~ and B = 132nHII~' Is A + B a uniformizable 
p-Sidon set? 

2. Is the union of two p-Sidon sets (p ¢ 1) an r-Sidon set for some p ~ r < 2? 
This is open even if one of the sets is assumed to be a uniformizable p~Sidon set. 

3. There is a form of the Kahane and Salem necessary condition for Sidon sets 
for p-Sidon subsets of Z (see [5]). It extends immediately to any discrete r for 
which every 'Y ¢ 0 has infinite order and actually improves somewhat for other 
discrete r's. The condition appears fairly tight. But what about sufficient condi­
tions? For Sidon sets we at least have the Steckin type conditions (see [7] or 
[8, Section 5.7.5]). For p-Sidon sets (p ¢ 1) the best result so far in this direction 
is our Theorem 4. Is there some analogue to the Steckin condition for p-Sidon 
sets? 

4. Let Sp be the class of all p-Sidon subsets of r. It is immediate that Sp C S. 
if p ~ r. Moreover, if P .. = 2n/(n + 1), then [6] tells us that SfIn g;; Sp.+ • . If 
1 ~ P ¢ r < 2 must it follow that S" ¢ ST ? 
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