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PROCEEDINGS Open Access

Prediction of peptides binding to MHC class I and II
alleles by temporal motif mining
Cem Meydan1, Hasan H Otu2,3, Osman Uğur Sezerman1*

From The Eleventh Asia Pacific Bioinformatics Conference (APBC 2013)
Vancouver, Canada. 21-24 January 2013

Abstract

Background: MHC (Major Histocompatibility Complex) is a key player in the immune response of most vertebrates.
The computational prediction of whether a given antigenic peptide will bind to a specific MHC allele is important
in the development of vaccines for emerging pathogens, the creation of possibilities for controlling immune
response, and for the applications of immunotherapy. One of the problems that make this computational
prediction difficult is the detection of the binding core region in peptides, coupled with the presence of bulges
and loops causing variations in the total sequence length. Most machine learning methods require the sequences
to be of the same length to successfully discover the binding motifs, ignoring the length variance in both motif
mining and prediction steps. In order to overcome this limitation, we propose the use of time-based motif mining
methods that work position-independently.

Results: The prediction method was tested on a benchmark set of 28 different alleles for MHC class I and 27
different alleles for MHC class II. The obtained results are comparable to the state of the art methods for both MHC
classes, surpassing the published results for some alleles. The average prediction AUC values are 0.897 for class I,
and 0.858 for class II.

Conclusions: Temporal motif mining using partial periodic patterns can capture information about the sequences
well enough to predict the binding of the peptides and is comparable to state of the art methods in the literature.
Unlike neural networks or matrix based predictors, our proposed method does not depend on peptide length and
can work with both short and long fragments. This advantage allows better use of the available training data and
the prediction of peptides of uncommon lengths.

Background
MHC (Major Histocompatibility Complex) is a large gene
family with an important role in the immune system,
autoimmunity, and reproduction. MHC molecules
assume roles in the presentation of peptides, including
self and non-self (antigenic) on their surface to T-cells.
T-cells recognize antigenic peptides and trigger a cascade
of events which leads to the destruction of pathogens and
infected cells. Since MHCs have a key role in immune
response, they are critical in many diseases, and can be
used for controlling specific immunological processes by
creating peptides to bind to specific MHC alleles. This

binding affinity to specific peptides may be exploited for
creating peptide vaccines for emerging pathogens [1],
suppressing specific alleles in organ transplants [2,3], and
many other possible areas in immunotherapy.
MHC class I molecules bind short peptides, whose N-

and C-terminal ends are anchored into the pockets
located at the ends of the peptide binding groove [4].
While the majority of the peptides are of length 9, longer
peptides can be accommodated by the bulging of their
central portion [5,6], resulting in binding peptides of
length 8 to 15 [7]. Peptides binding to class II proteins
are not constrained in size [8,9] and can vary from 11 to
30 amino acids long [10]. The peptide binding groove in
the MHC class II molecules is open at both ends, which
enables binding of peptides with relatively longer length.
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Though the “core” nine residues long segment contri-
butes the most to the recognition of the peptide, the
flanking regions are also important for the specificity of
the peptide to the class II allele [11,12]. MHC molecules
bind peptides with high promiscuity; it is estimated that
each HLA (human leukocyte antigen system) protein can
bind between 1000 and 10,000 peptides for class I allo-
types [13] and more than 2000 peptides for class II allo-
types [14]. Thus, the large number of possible structures
makes it unfeasible to find peptides that will bind to a
specific allele using solely an experimental approach.
Computational methods for prediction of the binding

affinity of a peptide to an MHC allele are based on three
main artificial learning systems: statistical, structural, and
neural methods [13,15,16]. The combination of these
models is also common [17]. Computational approaches
available for predicting MHC binding peptides from
amino acid sequences include: (i) Motif-based methods
such as methods that use a position weight matrix (PWM)
to model a gapless multiple sequence alignment of MHC
binding peptides [4-8], and a statistical approach based on
Hidden Markov Models (HMMs) [9,10]; (ii) Machine
learning methods based on Artificial Neural Networks
(ANN) [6,11-13] and Support Vector Machines (SVMs)
[14-17]; (iii) Semi-supervised machine learning methods
[18,19]. Existing methods are reviewed in detail in [18,19].
The formation of bulges and loops may allow peptides

that are shorter or longer than 9 amino acids to bind to
class I alleles. This length variance shifts the positions of
amino acids in anchor locations, causing position-specific
scoring matrices or other position-dependent methods to
fail. Most existing methods enforce a length constraint of
9 peptides for class I prediction. ANN, quantitative
matrices and similar methods require the peptides to be of
the same length, with appropriate peptides aligned in the
same location. Peptides of different lengths are either
ignored or grouped into separate datasets by their length.
This step may not always be feasible if the data is limited,
especially for short and variable peptides.
Unlike MHC class I prediction methods, most of the

MHC class II prediction methods can utilize peptides of
variable length. However, the prediction strategy requires
the determination of the core 9-mer region of the peptide.
This core segment is assumed to be fixed-length and the
possibility of longer binding core sequences is disregarded.
Although peptides bind to MHC class II alleles mostly by
the anchor residues, the interactions of the flanking
regions may be important for specificity and therefore
have to be taken into account [20].
In order to overcome these obstacles, we suggest a

method using partial periodic pattern mining, which does
not require the peptides to be of same length or the
anchor positions to be specific. We propose a novel
method for extracting the motifs on peptides with variable

lengths by finding partial motifs in sequence data. Our
method, called MHC-PPM, may capture aforementioned
variations in peptides, without filtering or pre-processing
the shorter/longer peptides or treating them as separate
datasets. Additionally, the information in the flanking
regions of the core 9-mers is taken into account without
any information loss that may have arisen due to length
constraints.

Methods
Dataset
We used 28 different alleles from the Immune Epitope
Database (IEDB) benchmark dataset by Peters et al. [21,22]
for MHC class I prediction (total of 36,829 peptides). For
MHC class II, we used two benchmark sets from Wang et
al., 16 alleles containing 10,017 peptides [19] (referred to as
Wang2008), and 26 alleles containing 44,541 peptides [23]
(referred to as Wang2010). Wang2010 contains data from
several different human alleles, including HLA DR, DP and
DQ. Wang2010 data also contains a similarity reduced sub-
set (SR), where sequence similarity is minimized in order
to reduce the overlap between cross-validation folds. In
Peters and Wang2010 datasets, the same cross-validation
folds are used for comparison to the benchmark values.
10-fold cross-validation was used in Wang2008 dataset.
The peptides from these alleles are assigned into posi-

tive and negative classes by the IC50 = 500 nM cut-off.
Unlike other MHC prediction methods, no filtering was
made with regard to length during the motif mining and
prediction steps.

Motif mining
i-) Apriori method
Our motif mining method is based on the apriori algo-
rithm used in frequent association rule discovery [24].
An “itemset” is defined as a set of items or events that
co-occur frequently. The Apriori algorithm uses the prin-
ciple that all subsets of a frequent itemset must also be
frequent. Accordingly, the algorithm has a bottom-up
approach where the shorter frequent itemsets are
extended to create longer candidates, which are then fil-
tered by frequency of occurrence [24-26]. This iterative
extension process continues until no frequent itemsets of
a certain length can be found.
Due to the context difference, the formal statement of

the problem in the Apriori algorithm [26] is slightly modi-
fied. Let I = {i1, i2,..., im} be an alphabet of items called
events (amino acids in our case). Let D be a set of
sequences, where each sequence S is an ordered set of
items such that S ⊆ I. A sequence S contains itemset X, an
ordered set of some items in I, if X ⊆ S. A rule is of the
form, where X ⊂ I, Y ⊂ I. With temporal information,
{X®Y} also implies that the events in X occur before Y in
a sequence S containing the rule.
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The ratio of the sequences containing the association
rule to all of the sequences is called the support of the
rule. The ratio of the sequences containing a new rule
created by the combination of two rules to the
sequences containing the previous rule is called the con-
fidence. That is,

Conf (X → Y) =
Support(X ∪ Y)
Support(X)

Our motif mining method (MHC-PPM) is similar to
temporal event mining in time-related databases [27]. In
general, the partial periodic pattern mining algorithms
for time series data will attempt to find frequently co-
occurring events, or causality relationships between
them. These methods try to capture the patterns which
occur in an order which is not necessarily a consecutive
one. In the domain of protein motifs, the amino acids
become the “events” and the causality/future prediction
aspects become the motifs that are sought [28].
In the proposed approach, each sequence is taken as a

separate time series, with many parallel events occurring
at the same time, with each event related only to the
sequence upon which it is found. In these time series, if
an event happens frequently after another one within a
given time window, this frequent occurrenceis consid-
ered an episode of events, a motif. To exploit the apriori
principle for performance, the motifs begin from length
1. A longer motif including a specific amino acid will
have support less than or equal to the support of that
amino acid. Hence, if an amino acid is infrequent, any
motif that includes that amino acid will also be infre-
quent. Thus, iteratively LN (frequent itemset of size N)
is created from filtering of CN, candidate itemset of size
N by CN = LN-1®L1.
First L1, the frequent itemsets of size 1 (i.e. amino acids)

are found. The first step is straightforward: only the amino
acids within the sequences are counted, and if an amino
acid’s frequency (support of the rule) is below the given
threshold, the amino acid is filtered out.
Then the candidate set of size 2, C2 is created from the

amino acids by L1®L1, that is, the combination of any two
frequent itemsets of size 1. For example, if all of the 20
amino acids were frequent, we would have 400 candidate
rules at C2 for the given parameters. Those candidate
rules would then be filtered according to the preset mini-
mum support values, yielding L2. Only a handful of those
400 rules would be frequent in the data. An example rule
of size 2 would be {L®V}, which represents Leucine fol-
lowed by Valine in a window specified by parameters. The
support of this candidate rule will be the ratio of occur-
rence of L®V to all of the sequences, and the confidence
of the rule would be the ratio of occurrence of L®V to all
of the sequences that contain “L” at some point. In other
words, confidence would be the conditional probability of

seeing Valine in the window, given that we observed a
Leucine.
To account for the position variations in the alleles, a

specific window should be defined. If an amino acid X
is followed by Y after at least MinS and at most MaxS
positions, then the rule {X ® Y} is present in that
sequence. If these amino acids co-occur within this win-
dow by this specific order at least minimum support
times, then it is considered frequent.
In the motif mining context, the frequent rules are not

simply association rules as in a shopping basket analysis;
items also have a temporal value, which is used for rela-
tions such as “before” and “after” ("simultaneously” is
not used in protein motifs since at each time point, that
is a specific position in the sequence, only one amino
acid can occur). The episode A®B then becomes,
“whenever the events in the rule A occur in a given
sequence, event B is likely to occur within n to m posi-
tions after A, with P(A ® B) as p (support) and P(B |
A) as c (confidence)“.
There are two parameters, the slack length (s), which

is the length after an event within which we do not look
for a rule, and the window size (w), in which the conse-
quent event may occur. Thus, MinS = s and MaxS = s +
w - 1, and the rule is given as A®B (p, c) for para-
meters (s, w). An example motif mining step is given in
Figure 1 and Additional File 1 the pseudocode of the
algorithm is given in Figure 2.
In our simulations, we used a window size of 1 to 3 and
slack length of -8 to 8, producing different rulesets.
Negative slack values are taken by reversing the input
sequences and applying the algorithm with the absolute
value of the slack.
For s = 1 and s = -1, the rules that consist of consecu-

tive/nearby amino acids were mined whereas for the larger
values of s, the motifs consisting of amino acids at separate
ends of the peptide were found. Since the anchor positions
of MHC motifs may be different, different slack lengths
are needed to mine them all.
ii-) Position dependent 1-rules
With the addition of position information, single amino
acids can be employed as rules for anchors. When mining
1-rules, the position information is kept along with the
window size. Thus, an example rule with window size of 2
may be {L, between positions 3-4 (support: p, confidence:
c)}. This rule will be counted as present in a peptide which
includes a Leucine between the positions 3 and 4.
iii-) Recursive rule mining on training set
In the rule mining process, the rules are mined for differ-
ent slack lengths and finally 1-rules are added to the col-
lection of rules. Following the rule mining process, all of
the peptides in the training set are scored by the rules
according to the Support-based prediction described
below. After scoring every peptide in the training data,

Meydan et al. BMC Bioinformatics 2013, 14(Suppl 2):S13
http://www.biomedcentral.com/1471-2105/14/S2/S13

Page 3 of 11



any peptide scoring below a predefined threshold is sepa-
rated. Those separated peptides that are not sufficiently
explained by the motifs are fed into the motif mining
recursively.
This process can be thought of as mining rules for dif-

ferent clusters of sequences; the first iteration will try to
capture the motifs for the cluster with the most sequences.
After that, sequences that scored poorly will be used in
motif mining again in the second iteration, and since the
data is only a subset of the previous iteration, the limit for
reaching minimum support will be lower. This process is
repeated until the number of peptides that score lower
than the threshold is below a predefined limit, until no
more improvement can be gained by dividing the dataset
or until a hard limit on iteration is reached. The supports
for the newly mined rules are updated to reflect the sup-
port in all of the data, not the subset. An overall view of
the recursive rule mining steps are given in Figure 3.
The recursive rule mining has advantages compared to

setting the minimum support and confidence threshold
to lower values and mining the rules in one pass. If the
rules are mined in one pass with a very low support
threshold, a greater number of rules will be found.
Unless those rules are significant, the signal-to-noise

ratio will decrease. By using a greater initial support
value and progressively decreasing it on only a subset of
data, the number of possible rules is reduced; if the first
pass can capture motifs that are present in 70% of all
sequences, we will only mine rules for explaining the
remaining 30%, not the entire dataset. Hence, we end
up with a lower number of more significant rules that
explain the majority of the data.

Prediction
Before prediction, rules from both the binding and non-
binding sequences are mined separately. During classifi-
cation of an unknown peptide, the peptide is scored
independently by both the binding and non-binding
rules. The simplest classification method is the direct
comparison of the scores for binding/non-binding rules.
To calculate the scores, the support values of the rules
that occur in the given peptide are summed for both
classes. The peptide is predicted to belong to the class
with a higher score. This naïve approach is called Sup-
port-based prediction and only used during the recur-
sive rule mining step.
The presence of one significant negative motif can turn

an otherwise strongly binding peptide to a non-binding

Figure 1 An example of the temporal rule mining process. a-) Schematic representation of the sliding windows approach on a sample set
of sequences binding to MHC class I allele HLA A*0201. The windows are shifted with the given s and w values until all sequences are covered.
The resulting rules are then filtered by their support. This process is repeated for all s values from -8 to -1 and 1 to 8. b-) Representation of the
L®V rule captured with the parameters s = 6 and w = 3. For HLA A*0201, Leucine in 2nd position and Valine around 9th position is a well-
known binding motif [40]. Although this motif is present in 6 of the 7 sequences (support of 0.86), it is unlikely to be captured by position
specific methods due to length variance and positional shifts.
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one. For example, in the allele H-2Kd, charged or bulky
amino acids inhibit binding when they are present at the
5th position, even though the binding motif may also be
present [29]. In a naïve prediction method, if the binding

motifs are strong enough, the large number of binder
rules will overpower the single negative motif, causing a
false positive. Consequently, there is need for a way to
predict these enhancing/inhibiting effects of the rules.

Figure 2 Pseudocode of the temporal apriori motif mining algorithm.
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Non-linear classification methods that intrinsically find
the discriminant function on the feature space would fare
better in such data.
For SVR-based prediction, motif mining is employed

on the training data as described above. Using the
motifs, a dataset is built by creating a binary matrix,
where each row is a peptide and each column (feature)
represents a motif. A cell has the value 1 if the peptide
corresponding to that row includes the motif, otherwise
0. As additional columns, the sums of support and con-
fidence scores for both the positive and negative classes
are given. This data matrix is built for both the training
and the test sets. Then, an SVR is trained on the train-
ing set, and the binding affinities of the peptides in the
test set are predicted by the support vectors. The result-
ing binding affinity values can be converted into a bin-
ary class using an IC50 threshold where a binary class is
required, such as feature selection methods or AUC
calculation.
Since the training set is used in all of the rule mining,

SVR training and parameter optimization steps, the pre-
diction of the test set does not include any bias and repre-
sents the actual predictive performance of MHC-PPM.
The overall view of the prediction workflow can be

seen in Figure 4.

Results and conclusions
MHC class I
The prediction results of the proposed method are given
in Table 1 along with the benchmark results for compari-
son [22]. The given values represent the area under the
ROC curve (AUC) for the 5-fold cross validation using
the same fold splits in the benchmark set.
Note that for some alleles (given in the top part of

Table 1) the AUC values between the methods are not
directly comparable because filtering of the data differs
based on the prediction method in use. ANN [30] use
only the 9-mers, the peptides of other lengths are filtered
out. SMM uses 9-mers and 10-mers, but trained and
tested independently (i.e. 9-mers belonging to an allele
and 10-mers belonging to the same allele are taken as
separate sets and are fed to different predictors). As sta-
ted, our method uses peptides of all lengths in the same
classifier, without any filtering or separation. For the
comparison in Table 1 the weighted average of AUC
values using the 9-mer and 10-mer peptide counts are
given for SMM [31] and ARB [32]. The results are
directly comparable for alleles with only 9-mers.
Although superior in 9-mers, the main limitation of

ANN is the need for the peptides to be of fixed length.
The same constraint is also present in SMM and is

Figure 3 Overall flow of the recursive rule mining step.
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overcome by using separate datasets for 9-mers and 10-
mers. The main advantage of MHC-PPM is giving com-
parable and superior results to other methods without
enforcing any constraints on peptide length. This flexible
approach allows the use of information from all of the
available data. Peptides that do not have enough represen-
tation in the dataset to train a separate classifier (e.g. 8 or
11 amino acids long) can still be predicted using the data
from the 9 and 10-mers.

MHC class II
Results for Wang2008 [19] and Wang2010 [23] datasets
are given in Table 2 and Table 3 respectively. Each
method in the Table 3 has results for both all of the data-
set (ALL) and a similarity-reduced version of the dataset
(SR), used to decrease the sequence similarity between
data folds.
In case of class II peptides, MHC-PPM is the top perfor-

mer by the average score in the Wang2008 dataset bench-
mark results. However, as can be seen in the Wang2010
dataset, NN-align [33] outperforms all other methods when
included in the comparison. Nonetheless, even though
MHC-PPM is designed only to find position independent
rules, and there are no external steps for core region detec-
tion (or any information about the core region length), it
still performs exceptionally well with an average AUC value
of 0.858, slightly above SMM-align [31] (AUC of 0.849)
and only <0.03 lower than NN-align (AUC of 0.882).
Unlike what has been observed in class I molecules,

class II molecules are believed to bind only to the core

9-mer region of a peptide. Although the core region
occupies the peptide binding groove, the non-bound N-
and C-terminus residues that lie outside the MHC
anchor residues, called peptide flanking residues (PFRs),
have been shown to affect the binding affinity and stabi-
lity [11,34]. NN-align and SMM-align use the length and
composition of the peptide flanking residues in addition
to the peptide binding core sequence. However, to keep
the same length of the input throughout the data, the
flanking residues are encoded in a summarized form,
decreasing the information content. Due to nature of our
algorithm, the differences in affinity due to the PFRs can
be captured without losing any information. To test that
hypothesis, we used experimental affinity values of 9
sequences which have the same core sequence and differ
only in the flanking regions [11] and tried to predict the
binding affinity values from the sequence (Table 4).
Although available data is limited, MHC-PPM has the
lowest root mean squared error (RMSE). MHC-PPM also
significantly outperforms ARB, SMM-align and NN-align
in correlation of the predictions with the actual affinity
values.

Discussions
In this study we present a position independent motif
mining method representing amino acid sequences as
time series data to predict peptides binding to MHC
class I and class II proteins.
In class I MHC-peptide complexes, peptides have been

observed to bulge out of the binding groove [5,6], shifting

Figure 4 Overview of the experimentation process.
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the peptide side chains in the binding pockets. The main
shortcoming of the existing prediction methods is their
dependence on fixed length motifs, even though peptides
of various lengths are known to bind to class I molecules
[7]. Although a separate predictor can be created by apply-
ing the same method on a dataset of peptides of a different
length, there is usually not enough available data for
uncommon sequence lengths. There have been methods
that use random sampling of insertions and deletions to fit
the peptide into the 9-length window for prediction [35],
however the fixed length limitation still present in the
core.
For MHC class I predictions, MHC-PPM has been

shown to slightly outperform other methods on the aver-
age. However, all methods have very close scores and per-
form equally well. Our main advantage is the ability to use

peptides of any length during both training and prediction
phases. While the curated benchmark dataset contains
only 9-mers and 10-mers for the given alleles, we expect
MHC-PPM to fare better in a more diverse dataset.
Commonly used prediction servers give the consensus

prediction of different algorithms. The addition of our pre-
dictions into a consensus-decision step with other state-
of-the-art algorithms will almost certainly benefit the
end-users; the overall accuracy for the 9-mers will increase,
and longer peptides that would have been previously
ignored (or treated as 9-mers) will also be evaluated.
On MHC class II molecules, MHC-PPM was the top

performing one in Wang2008 dataset by average AUC
and just below NN-align in Wang2010 dataset. Even
though NN-align outperforms all other methods includ-
ing ours, the difference in performance values are not as

Table 1 Results of MHC-PPM in class I predictions in Peters dataset [22].

Allele # Peptides ANN ARB SMM MHC-PPM

9 10

9-mers + 10-mers HLA-A*0201 3089 1316 - 0.919 0.939 0.931

HLA-A*0202 1447 1056 - 0.851 0.879 0.871

HLA-A*0203 1443 1055 - 0.838 0.878 0.882

HLA-A*0301 2094 1082 - 0.883 0.915 0.911

HLA-A*0206 1437 1054 - 0.849 0.890 0.885

HLA-A*1101 1985 1093 - 0.897 0.932 0.937

HLA-A*2402 197 78 - 0.722 0.809 0.833

HLA-A*3101 1869 1057 - 0.881 0.903 0.878

HLA-A*3301 1140 1055 - 0.866 0.888 0.863

HLA-A*6801 1141 1055 - 0.827 0.874 0.864

HLA-B*0702 1262 205 - 0.925 0.952 0.954

HLA-B*3501 736 177 - 0.833 0.886 0.866

HLA-B*5101 244 177 - 0.782 0.875 0.886

HLA-B*5301 254 177 - 0.758 0.854 0.847

9-mers HLA-A*0101 1157 - 0.982 0.964 0.980 0.963

HLA-A*2601 672 - 0.956 0.907 0.931 0.901

HLA-A*2902 160 - 0.935 0.755 0.911 0.907

HLA-A*6802 1434 - 0.899 0.865 0.898 0.867

HLA-B*0801 708 - 0.955 0.936 0.943 0.926

HLA-B*1501 978 - 0.941 0.900 0.952 0.922

HLA-B*1801 118 - 0.838 0.573 0.853 0.906

HLA-B*2705 969 - 0.938 0.915 0.940 0.938

HLA-B*4002 118 - 0.754 0.541 0.842 0.891

HLA-B*4402 119 - 0.778 0.533 0.740 0.891

HLA-B*4403 119 - 0.763 0.461 0.770 0.847

HLA-B*5401 255 - 0.903 0.847 0.921 0.883

HLA-B*5701 59 - 0.826 0.428 0.871 0.929

HLA-B*5801 988 - 0.961 0.889 0.964 0.944

Average (All) 0.888 0.798 0.893 0.897

Average (9mers) 0.888 0.751 0.894 0.908

Weighted Avg 0.932 0.872 0.910 0.901

The best-performing method for each allele is underlined. The given AUC values for ARB and SMM are the weighted averages of the AUC values for 9-mers and
10-mers based on the given peptide counts for a specific allele. The alleles in the bottom part of the table were only trained & tested in 9-mers and are directly
comparable.
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Table 2 Results of MHC-PPM in class II predictions in Wang2008 dataset [19].

Allele # RANKPEP ARB PROPRED SMM-align MHCMIR MHC-PPM

HLA-DRB1*0101 3882 0.700 0.760 0.740 0.770 0.810 0.878

HLA-DRB1*0301 502 0.670 0.660 0.650 0.690 0.640 0.712

HLA-DRB1*0401 512 0.630 0.670 0.690 0.680 0.730 0.666

HLA-DRB1*0404 449 0.660 0.720 0.790 0.750 0.730 0.792

HLA-DRB1*0405 457 0.620 0.670 0.750 0.690 0.730 0.734

HLA-DRB1*0701 505 0.580 0.690 0.780 0.780 0.830 0.893

HLA-DRB1*0802 245 - 0.740 0.770 0.750 0.740 0.827

HLA-DRB1*0901 412 0.610 0.620 - 0.660 0.620 0.666

HLA-DRB1*1101 520 0.700 0.730 0.800 0.810 0.810 0.817

HLA-DRB1*1302 289 0.520 0.790 0.580 0.690 0.720 0.679

HLA-DRB1*1501 520 0.620 0.700 0.720 0.740 0.730 0.759

HLA-DRB3*0101 420 - 0.590 - 0.680 - 0.712

HLA-DRB4*0101 245 0.650 0.740 - 0.710 0.760 0.829

HLA-DRB5*0101 520 0.730 0.700 0.790 0.750 0.710 0.845

H-2 IAb 500 0.740 0.800 - 0.750 0.690 0.786

H-2 IEd 39 0.830 - - - - 0.867

Average 0.661 0.705 0.733 0.727 0.732 0.779

Weighted Avg 0.671 0.722 0.738 0.743 0.760 0.780

The (#) column gives the total number of peptides for the given allele. The best-performing method for each allele is underlined.

Table 3 Results of MHC-PPM in MHC class II predictions in Wang2010 dataset [23].

Allele # Peptides ARB SMM-align NN-align MHC-PPM

ALL SR ALL SR ALL SR ALL SR ALL SR

HLA-DPA1*0103-DPB1*0201 1404 603 0.823 0.745 0.921 0.767 0.943 0.793 0.931 0.772

HLA-DPA1*01-DPB1*0401 1337 540 0.847 0.746 0.930 0.767 0.947 0.802 0.935 0.751

HLA-DPA1*0201-DPB1*0101 1399 604 0.824 0.743 0.909 0.786 0.944 0.818 0.938 0.806

HLA-DPA1*0201-DPB1*0501 1410 586 0.859 0.709 0.923 0.728 0.956 0.787 0.948 0.773

HLA-DPA1*0301-DPB1*0402 1407 602 0.821 0.771 0.932 0.818 0.949 0.828 0.935 0.815

HLA-DQA1*0101-DQB1*0501 1739 584 0.871 0.741 0.930 0.783 0.945 0.805 0.949 0.754

HLA-DQA1*0102-DQB1*0602 1629 593 0.777 0.708 0.838 0.734 0.880 0.762 0.842 0.730

HLA-DQA1*0301-DQB1*0302 1719 596 0.748 0.637 0.807 0.663 0.851 0.693 0.845 0.709

HLA-DQA1*0401-DQB1*0402 1701 585 0.845 0.643 0.896 0.761 0.922 0.742 0.920 0.778

HLA-DQA1*0501-DQB1*0201 1658 589 0.855 0.700 0.901 0.736 0.932 0.777 0.919 0.766

HLA-DQA1*0501-DQB1*0301 1689 602 0.844 0.756 0.910 0.801 0.927 0.811 0.915 0.771

HLA-DRB1*0101 6427 3504 0.770 0.710 0.798 0.756 0.843 0.763 0.821 0.758

HLA-DRB1*0301 1715 1136 0.753 0.728 0.852 0.808 0.887 0.829 0.828 0.747

HLA-DRB1*0401 1769 1221 0.731 0.668 0.781 0.721 0.813 0.734 0.763 0.711

HLA-DRB1*0404 577 474 0.707 0.681 0.816 0.789 0.823 0.803 0.885 0.717

HLA-DRB1*0405 1582 1049 0.771 0.716 0.822 0.767 0.870 0.794 0.831 0.734

HLA-DRB1*0701 1745 1175 0.767 0.736 0.834 0.796 0.869 0.811 0.846 0.804

HLA-DRB1*0802 1520 1017 0.702 0.649 0.741 0.689 0.796 0.698 0.752 0.687

HLA-DRB1*0901 1520 1042 0.747 0.654 0.765 0.696 0.810 0.713 0.762 0.671

HLA-DRB1*1101 1794 1204 0.800 0.777 0.864 0.829 0.900 0.847 0.858 0.811

HLA-DRB1*1302 1580 1070 0.727 0.667 0.797 0.754 0.814 0.732 0.768 0.717

HLA-DRB1*1501 1769 1171 0.763 0.696 0.796 0.741 0.852 0.756 0.813 0.745

HLA-DRB3*0101 1501 987 0.709 0.678 0.819 0.780 0.856 0.798 0.782 0.718

HLA-DRB4*0101 1521 1011 0.785 0.747 0.816 0.762 0.870 0.789 0.860 0.772

HLA-DRB5*0101 1769 1198 0.760 0.697 0.832 0.776 0.886 0.795 0.843 0.812

H-2-Iab 660 546 0.800 0.775 0.855 0.830 0.858 0.847 0.824 0.807

Average 0.785 0.711 0.849 0.763 0.882 0.782 0.858 0.755

WeightedAverage 0.784 0.709 0.843 0.762 0.879 0.778 0.853 0.754

Each method contains results from all of the peptides (ALL) and the similarity reduced data (SR). The best-performing method for each allele in ALL dataset is
marked by bold and the best performing method in SR dataset is underlined.
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drastic. Due to the fixed size core region, length inde-
pendence is not much of an issue during score calcula-
tion. On the other hand, the position independence
allows the inherent detection of the core region and
allows better representation of the peptide flanking resi-
dues. During the prediction of the effects of PFRs on
binding affinity (Table 4), MHC-PPM resulted in the
highest agreement with the experimental data, though
more data is required for conclusive results.
On the subject of peptides binding to MHC class II

molecules, the current view is that the peptides lie on a
shallow groove with multiple contacts along the entire
length of the peptide binding groove [9,36]. This view
does not address the possibility of peptides bulging out
from the groove. There have been studies that proposed
examples of peptide bulging (i.e. core binding region
longer than 9 amino acids) in class II molecules for several
alleles [9,37-39]. Even though it is not known whether this
is a general phenomenon for all class II alleles, it is possi-
ble that certain alleles can anchor peptides sufficiently at
their N- and C-terminals to allow bulges, similar to class I
molecules. If that is the case, a length insensitive method
is required to correctly identify such examples, since NN-
align and other methods require a fixed length core
sequence.
The strength of MHC-PPM is its ability to capture

length independent short motifs that are in close vicinity.
Because the motif mining and prediction steps are
uncoupled, the method can be used for different purposes.
We have shown that the rules mined from the data can be
used in conjunction with support vector machines or
neural networks for non-linear prediction of any label (or
quantitative value) that is correlated with the sequence
motifs. However, the actual output of the algorithm is a
collection of human-understandable rules and those
motifs can be used as templates during sequence analysis

or synthesis. Other than MHC binding predictions, the
MHC-PPM method can also be applied to find motifs in
gapped sequences, such as TCR recognition or receptor-
ligand prediction problems. It is straightforward to extend
the method to mine multiple groups of short sequence
motifs (separated by relatively long distances) which
co-occur frequently. We believe this approach can help
uncover previously overlooked subtle sequence motifs in
any large scale data.

Additional material

Additional File 1: The candidate and frequent itemsets of all
lengths for the given example sequences in Figure 1, for minimum
support value of 0.4. Red/bold values represent rules above the
support threshold. At each step a candidate set Ck is generated by
extending the last frequent itemset Lk-1, then the candidates are filtered
according to the support values to generate the frequent itemset Lk. This
process is repeated until no frequent itemsets of a certain size can be
found. Afterwards, the resulting frequent sets of different sizes (except L1)
are merged together and filtered according to a given minimum
confidence boundary.
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Table 4 Effect of flanking peptides on the binding affinity to HLA DRB1*1501 allele.

Experimental ARB NetMHCIIpan SMM_align NN_align MHC-PPM

Sequence IC50(nM) IC50(nM) IC50(nM) IC50(nM) IC50(nM) IC50(nM)

ENPVVHFFKNIVTPR 33 21.9 10 21 8 11

VVHFFKNIVHAAA 33 21.9 9.2 52 10.7 139

VVHFFKNIVTAAA 45 21.9 9.5 20 11.5 224

VVHFFKNIVTKAA 35 21.9 8.1 20 10.5 142

VVHFFKNIVTAKA 4 21.9 8.1 20 9.8 83

VVHFFKNIVTAAK 5 21.9 8.9 20 11.1 263

DAVVHFFKNITVA 326 82.5 23.6 25 23.8 316

ADVVHFFKNITVA 454 82.5 23.8 25 23.9 320

AADVHFFKNITVA 264 1286.7 45 30 74.4 392

RMSE 371.90 190.78 191.84 187.13 134.35

Pearson’s Corr. 0.349 0.728 0.041 0.540 0.721

Experimental affinity measurements are from [11]. Predictions of other values calculated from the IEDB website[21]. MHC-PPM has the lowest root mean squared
error (RMSE) and has a correlation score approximately equal to the top performing method.
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