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Abstract
Recent simulation modeling has shown that species can coevolve toward clusters of
coexisting consumers exploiting the same limiting resource or resources, with nearly
identical ratios of coefficients related to growth and mortality. This paper provides a
mathematical basis for such as situation; a full analysis of the global dynamics of a new
model for such a class of n-dimensional consumer–resource system, in which a set
of consumers with identical growth to mortality ratios compete for the same resource
and in which each consumer is mutualistic with the resource. First, we study the sys-
tem of one resource and two consumers. By theoretical analysis, we demonstrate the
expected result that competitive exclusion of one of the consumers can occur when the
growth tomortality ratios differ.However,when these ratios are identical, the outcomes
are complex. Either equilibrium coexistence or mutual extinction can occur, depend-
ing on initial conditions. When there is coexistence, interaction outcomes between
the consumers can transition between effective mutualism, parasitism, competition,
amensalism and neutralism. We generalize to the global dynamics of a system of one
resource and multiple consumers. Changes in one factor, either a parameter or initial
density, can determine whether all of the consumers either coexist or go to extinction
together. New results are presented showing that multiple competing consumers can
coexist on a single resource when they have coevolved toward identical growth to
mortality ratios. This coexistence can occur because of feedbacks created by all of the
consumers providing amutualistic service to the resource. This is biologically relevant
to the persistence of pollination–mutualisms.

Keywords Principle of competitive exclusion · Cooperation · Global stability ·
Bifurcation · Coexistence
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1 Introduction

Competition is a ubiquitous, fundamental interaction that structures ecological com-
munities and drives the evolution of natural selection. Exploitative competition can
occur when two or more species compete for the same limiting resource and in the pro-
cess reduce the abundance of that resource in the environment. Mathematical theory
has shown that in general, two species competing for the same limiting resource cannot
coexist, and n consumers competing form resources with n > m cannot subsist. Only
the consumer species that can reduce the limiting resource to a lower level than any
other consumer species will survive in the long run. This has been referred to as the R∗
rule (Tilman 1982). This principle of competitive exclusion has been demonstrated in
many mathematical studies where interspecific competition is greater than intraspe-
cific competition of the consumers [e.g., Freedman and Waltman (1984), Hofbauer
and Sigmund (1998), Cantrell et al. (2004), Li and Smith (2007), and Nguyen and Yin
(2017)].

For example, Llibre andXiao (2014) considered aLotka–Volterramodel of one prey
and two predators in which the predators depend linearly on the prey, but growth of the
prey is characterized by a logistic equationwhen in isolation.Using dynamical systems
theory, they exhibited the phase portrait of the model near all equilibria at infinity and
gave the global dynamical behavior of the three species in the first octant. The global
dynamics demonstrate necessary and sufficient conditions under which competitive
exclusion holds; that is, when one predator goes to extinction. They found that the two
predators could persist only if the ratios of growth to mortality were exactly equal.
Because the conditions for coexistence of two consumers on a resource appear to
require the ‘knife-edge’ identity of ratios of growth to mortality, which seems initially
to be unrealistic, ecologists have tried to explain biodiversity in terms of species having
different niches, such as different resources, and when exploiting the same resources
doing so in ways that did not overlap too much. This is despite the fact that many
coexisting species seem to play very similar roles.

Recent research, however, has refuted previous theory that highly similar species
could not coexist on the same resource. Scheffer andvanNes (2006) and,more robustly,
Sakavara et al. (2018) have shown, through intensive simulations, that it is possible for
multiple species competing on a set of common resources to coexist by coevolving into
a ‘lumpy’ distribution in which different clusters of consumers self-organize towards
similar sets of traits for exploiting different limiting resources. A given cluster of
species in these simulations will evolve towards almost identical values of R∗ for their
limiting resource, and have nearly identical values of ratios of parameters related to
propagation and mortality. Any competitive exclusion would require too long a time
period to be relevant, which is an assumption in the neutral theory of Hubbell (2001).
Scheffer et al. (2018) have termed the simulated lumpy distribution of clusters of
species along a trait axis to be a step towards unifying biodiversity theory.

The results of Scheffer and van Nes (2006) and Sakavara et al. (2018) showing
species coexistence of similar species are the result of simulations, and not mathe-
matical analysis, and are for generic consumer–resource systems. Our goal is to both
provide amathematical basis for such coevolvedmulti-consumer systems, and to apply
it in a new model of a system that is a specific system in which the consumers not only
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compete for the common resource, but also provide the resource some benefit; that is,
the relationships of the consumers to the resource can be mutualistic. For example, in
pollination–mutualisms, the flowering plant provides food (e.g., nectar and pollen) for
its pollinator, while the pollinator supplies pollination service for the plant in return.
The act of pollination is a net benefit to the plant. But pollinator species are also com-
peting exploitatively with each other for the nectar and pollen from the plants. This
type of relationship occurs broadly in nature. Thus, it is natural to ask if the principle
of competitive exclusion holds for consumers when two or more are mutualistic with
the same resource.

A breakthrough in analyzing the effects of multiple species of mutualists, such as
pollinators, interacting with a single resource, such as a species of flowering plant,
was recently made by Revilla (2015). The model used in this case was based on the
exchange of food for service. Thus, the relationship between the pollinator and plant is
mutualism. Numerical simulations displayed that the mutualism between the species
promotes persistence of the system. Then the two-species model was extended to that
with one plant and (n−1) pollinators, in which pollinators compete for the same plant
for food but each of them is mutualistic with the plant. It was also suggested that the
resulting model could be generalized from species pairs to larger communities.

This model of Revilla (2015) has not been fully analyzed but has far-reaching
implications. In this paper, we use Eqs. (5), (8–9) and (11) established by Revilla
(2015) to study whether the principle of competitive exclusion holds for a particular
case in which mutualism and competition are combined by analyzing the mutualism–
competition model with one plant species and multiple pollinators established by
Revilla (2015). The effects of one pollinator on another in the system are indirect
since they are interacting through the intermediary plant. We are able to show that
the indirect effects of competing pollinators through their mutualisms with the plant
species can lead to coexistence of multiple pollinators. This appears to us to be a new
result.

To review the basic interactions between species, the interaction outcomes between
pollinators i and j are determined by positive (+), neutral (0), or negative (−) effects
of one species on the other (Bronstein 1994; Wang and DeAngelis 2016). Assume that
species i (resp. j) can approach a density of x1 (resp. y1 ) in the absence of j (resp.
i), while in the presence of species j (resp. i), species i (resp. j) approaches a density
of x2 (resp. y2 ). Here, the density of species represents the population abundance
of the species. The outcomes are mutualism (+,+) if x2 − x1 > 0 and y2 − y1 >

0. Similar definitions can be given for outcomes of parasitism (+,−), competition
(−,−), amensalism (−, 0), commensalism (+, 0), and neutralism (0, 0). When we
replace the species i and j with communities�i and� j that have no common species,
we obtain a similar set of definitions for interaction outcomes between communities
�i and � j .

We first consider the system of one resource and two consumers. By applying the
method in Llibre andXiao (2014), we completely demonstrate the qualitative behavior
of themodel. It is shown that global dynamics of themodel depend on the ratio of death
rate and propagation rate of the consumer, while necessary and sufficient conditions
can be obtained for the principle of competitive exclusion to hold (see Theorem 4.10).
If the principle of competitive exclusion holds, then one consumer goes to extinction,
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and the other consumer and the resource coexist at a positive steady state in R2+. If
the principle of competitive exclusion does not hold, then either the three species will
coexist at a positive equilibrium in the positive octant R3+ or all competing consumers
go to extinction and the resource persists. Thenwe study the systemof one resource and
multiple consumers, and the following cases are proven. (a) Assume that the ratios of
death rate andpropagation rate of the consumers are equal.When the coexistenceof one
consumer and the resource is density-dependent, the consumer goes to extinction if its
initial population is small. However, in the presence of other consumers, all consumers
can coexist because of the consumer–resource mutualisms, even though each of the
consumers cannot coexist with the resource along. Moreover, if one of the consumers
(with a large initial density) can coexist with the resource along, it can drive all other
survivors into survival. (b) Assume that the ratios of consumers are different and
coexistence of each consumer and resource is density-dependent. Then the consumer
with a small initial density and the lowest ratio can drive all other consumers into
extinction, even though each of the other consumers (with large initial densities) can
coexist with the resource alone, which implies extinction of all consumers. Thus,
the invasion of a competitive consumer could result in extinction of all consumers,
including the invader itself. When the consumers come from different communities,
similar discussions can be given for interactions between the communities.

The paper is organized as follows. In the next section, we describe the n-species
model. Section 3 exhibits dynamics of subsystems of the three-species system, while
the global stability of the three-species system is shown in Sect. 4. Section 5 is devoted
to analysis of the n-species model, and Sect. 6 is the Discussion.

2 Model

Let us assume that species 1 is a plant and species 2 an animal that interacts mutual-
istically with the plant through pollination. As shown in Eqs. (8–9) of Revilla (2015),
the dynamical model for the plant-animal system can be described by

dN1

dt
= G1(·)N1 + σ1β0FN0 + σ1β2FN2

dN2

dt
= G2(·)N2 + σ2β2FN2

dF

dt
= αN1 − (ω + β0N0 + β2N2)F

(2.1)

where N1 and N2 represent population densities of the plant and animal, respectively.
The function Gi (·) is the per-capita rate of change of species i when it does not
interact with species j by means of the mutualism. The function F is the number of
flowers or fruits produced by the plant. The parameter β2 is the rate of pollination
by the animal, and σ2 its conversion ratio into biomass. The parameter σ1 represents
the plant’s conversion ratio into new adult plants from a flower or fruit (Fagan et al.
2014). The term “σ1β0FN0” represents that pollination could be performed by abiotic
factors like wind, where β0 and N0 would be proxies of, e.g. wind flux.
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Since flowers or fruits are ephemeral compared with the lives of plant and animals,
F will rapidly reach a steady state (dF/dt ≈ 0) compared with the much slower
demographies. Thus the number of flowers or fruits can be characterized by a function
of plant and animal abundances:

F = αN1

ω + β0N0 + β2N2

where α is the per-capita rate of the plant in producing resources, and ω is the loss or
decay rate of the resources.

When there are (n − 1) species of animals, the two-species model can be extended
to the following n-species system by applying Eqs. (5) and (11) of Revilla (2015):

dN1

dt
= G1(·)N1 + σ1β0FN0 + σ1

n∑

i=2

βi FNi

dNi

dt
= Gi (·)Ni + σiβi FNi , 2 ≤ i ≤ n

(2.2)

where Ni represents population density of the i th species of animals. The parameter
βi is the rate of pollination by the animal, σi its conversion ratio into biomass, and
F = αN1/(ω + β0N0 + ∑n

j=2 β j N j ).
For simplicity, we assume

G1(N1) = r1 − d1N1, Gi (Ni ) = −ri , 2 ≤ i ≤ n

where parameter r1 represents the intrinsic growth rate of the plant, and d1 its
intraspecific competition degree. For i ≥ 2, parameter ri represents the death rate
of the i th species. We consider solutions of (2.2) under the initial value conditions
N (0) = (N1(0), N2(0), . . . , Nn(0)) ≥ 0.

Before considering the general n-species system (2.2), we focus on the case of
n = 3, i.e., there are one plant and two animal species. Let

r̄1 = r1 + σ1α, b12 = σ1αω

ω + β0N0
, αi1 = ασiβi

ω + β0N0
, N̂i = βi

ω + β0N0
Ni , i = 2, 3.

By dropping hats in N̂i , system (2.2) becomes

dN1

dt
= N1

(
r̄1 − d1N1 − b12

1 + N2 + N3

)

dN2

dt
= N2

(
− r2 + a21N1

1 + N2 + N3

)

dN3

dt
= N3

(
− r3 + a31N1

1 + N2 + N3

)
.

(2.3)

Then r̄1 > b12 and solutions of system (2.3) are nonnegative. Boundedness of the
solutions is shown as follows, the proof of which is in Appendix A.
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Proposition 2.1 Solutions of system (2.3) are bounded in R3+.

3 Subsystems

System (2.3) has three invariant planes Ni = 0, i = 1, 2, 3. On the invariant plane
N1 = 0 (i.e., the (N2, N3)-plane), system (2.3) has a unique equilibrium O(0, 0, 0),
which is globally asymptotically stable for all parameters. The biological reason is
that it is assumed that pollinators depend on the plant for survival. Thus we need to
consider dynamics of system (2.3) on the (N1, N2)-plane and (N1, N3)-plane.

On the invariant (N1, N2)-plane, the restricted system of (2.3) can be written as

dN1

dt
= N1

(
r̄1 − d1N1 − b12

1 + N2

)

dN2

dt
= N2

(
− r2 + a21N1

1 + N2

)
.

(3.1)

Dynamics of system (3.1) have been studied by Jang (2002) except two cases. Now
we cite the results and consider the two cases.

Proposition 3.1 Jang (2002) Solutions of system (3.1) in R2+ are nonnegative and
bounded, and there is no periodic orbit of (3.1) in R2+.

Stability of equilibria of (3.1) is as follows. Let g = 1/(1+ N2). Then the Jacobian
matrix of (3.1) is

J =
(
r̄1 − 2d1N1 − b12g b12N1g2

a21N2g −r2 + a21N1g − a21N1N2g2

)
. (3.2)

There are two equilibria on the axes, namely O(0, 0) and E1(N̄1, 0) with

N̄1 = (r̄1 − b12) /d1. (3.3)

By (3.2), equilibrium O is a saddle point with eigenvalues r̄1 − b12 and −r2, and
E1 has eigenvalues

λ
(1)
1 = −(r̄1 − b12), λ

(2)
1 = −r2 + a21 N̄1. (3.4)

There are at most two positive equilibria E−
12(N

−
1 , N−

2 ) and E+
12(N

+
1 , N+

2 ), which
satisfy the following conditions when they exist:

N±
1 = r̄1

2d1
±

√
�

2d1a21
, N±

2 = a21
r2

(
N±
1 − r2

a21

)

� = r̄21a
2
21 − 4d1r2b12a21.

(3.5)
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Then system (3.1) has positive equilibria if N−
1 > r2/a21 or N

+
1 > r2/a21. Let

a021 = 4d1r2b12
r̄21

, a∗
21 = r2d1

r̄1 − b12
, a121 = 2r2d1

r̄1
. (3.6)

From (3.4) and (3.5), we obtain that � > 0 corresponds to a21 > a021; λ
(2)
1 > 0

corresponds to a21 > a∗
21; a21 > a121 corresponds to

r̄1
2d1

> r2
a21

. A direct computation

shows that a∗
21 ≥ a021, in which the equality holds if b12 = r̄1/2.

The following result was given by Jang (2002) except the case of λ
(2)
1 = 0. In order

to obtain the necessary and sufficient conditions, we prove the whole result.

Proposition 3.2 (i) E−
12 is a positive equilibrium of (3.1) if and only if

λ
(2)
1 < 0, � ≥ 0, a21 > a121. (3.7)

(ii) E+
12 is a positive equilibrium of (3.1) if and only if one of the following conditions

is satisfied: (1) λ
(2)
1 > 0; (2) � > 0 and a21 ≥ a121; (3) � = 0 and a21 > a121.

Proof (i) Assume that E−
12 is a positive equilibrium. Then a21 > a121 and � ≥ 0,

which implies a21 ≥ a021. If a21 > a021, then a21 < a∗
21 by N−

1 > r2/a21. Thus

λ
(2)
1 < 0. If a21 = a021 > a121, then b12 > r̄1/2, which implies that a21 = a021 <

a∗
21. Thus λ

(2)
1 < 0. The reverse is similar.

(ii) Assume that E+
12 is a positive equilibrium. Then� ≥ 0, which implies a21 ≥ a021.

If a21 > a021 and a21 < a121, then a21 > a∗
21 by N+

1 > r2/a21. From a∗
21 ≥ a021,

we obtain the condition of a∗
21 < a21 < a121, which can be written as a21 > a∗

21

(i.e., λ(2)
1 > 0). The reason is that if a21 > a∗

21 and a21 ≥ a121 then N+
1 > r2/a21.

When a21 > a021 and a21 ≥ a121, it is clear that N
+
1 > r2/a21. If a21 = a021, then

a21 > a121 by N+
1 > r2/a21. The reverse is similar. ��

Dynamics of system (3.1) were given by Jang (2002) except the cases of λ
(2)
1 = 0

and λ
(2)
1 < 0,� = 0, a21 > α1

21. We exhibit the dynamics as follows and give the
proof for the two cases in Appendix B.

Theorem 3.3 (i) Assume λ
(2)
1 > 0. There is a unique positive equilibrium

E+
12(N

+
1 , N+

2 ) in system (3.1), which is globally asymptotically stable in intR2+.
(ii) Assume λ

(2)
1 = 0. If a21 > a121, the unique positive equilibrium E+

12 is globally
asymptotically stable in intR2+. If a21 ≤ a121, there is no positive equilibrium in
system (3.1) and the boundary equilibrium E1(N̄1, 0) is globally asymptotically
stable in intR2+.

(iii) Assume λ
(2)
1 < 0. Then equilibrium E1 is locally asymptotically stable in intR2+.

When a21 ≤ a121, E1 is globally asymptotically stable. When a21 > a121, saddle-
node bifurcation occurs at � = 0: (I) If � > 0, there are two positive equilibria
E−
12 and E+

12: E−
12 is a saddle point while E+

12 is asymptotically stable. (II) If
� = 0, the equilibria E−

12 and E+
12 coincide and form a saddle-node point. In
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cases (I–II), the separatrices of E−
12 subdivide intR

2+ into two regions: one is the
basin of attraction of E1, while the other is that of E

+
12. (III) If � < 0, there is no

positive equilibrium and E1 is globally asymptotically stable in intR2+.

Theorem 3.3 provides criteria for persistence of the pollinator. Recall that � < 0
can be written as a21 < a021.When the energetic reward for the pollinator is small (e.g.,
a21 < a021), the benefit for searching such a plant is small in comparison with other
plants, which implies extinction of the pollinator in this system. When the energetic
reward is intermediate (e.g., max{a021, a121} < a21 < a∗

21), there are two fates for
the pollinator. The system has two positive equilibria and the stable manifold of the
unstable one becomes the threshold condition for persistence of the pollinator. The
plant and pollinator can survive if their initial densities are not below the threshold.
Otherwise, the pollinator goes to extinction. When the energetic reward is large (i.e.,
a21 > a∗

21), the pollinator can be attracted by the plant and both species persist in
the system. That is, the pollinator will increase rapidly when rare because of the rich
reward. Evenwhen the pollinator is not rare, itwill persist in the plant-pollinator system
because of the rich reward and pollination–mutualisms as shown by Theorem 3.3(i).

On the invariant (N1, N3)-plane, the restricted system of (2.3) is

dN1

dt
= N1

(
r̄1 − d1N1 − b13

1 + N3

)

dN3

dt
= N3

(
− r3 + a31N1

1 + N3

) (3.8)

where b13 = b12.
Since equations in (3.8) have the same form as those in (3.8), their dynamics can

be described by Theorem 3.3 with the following replacements:

r2 → r3, a21 → a31, b12 → b13, λ
(2)
1 → λ

(3)
1 , � → �̆

N±
1 → N̆±

1 , N±
2 → N̆±

3 , E±
12

(
N±
1 , N±

2

) → E±
13

(
N̆±
1 , N̆±

3

)
.

Denote

a031 = 4d1r3b13
r̄21

, a∗
31 = r3d1

r̄1 − b13
, a131 = 2r3d1

r̄1
. (3.9)

A direct computation shows that

r2
a021

= r3
a031

,
r2
a∗
21

= r3
a∗
31

,
r2
a121

= r3
a131

. (3.10)

From (3.10), we conclude the following result.

Proposition 3.4 Assume r2
a21

= r3
a31

. Then we obtain � = r22 �̆/r23 . Moreover, a21 >

a021 if and only if a31 > a031; a21 > a∗
21 if and only if a31 > a∗

31; a21 > a121 if and only
if a31 > a131.

123



Global dynamics of a mutualism–competition model…

4 Global dynamics

In this section,we completely characterize global dynamics of the three-species system
(2.3) in R3+. We show that for some values of parameters, mutualism between the
consumer and resource can lead to survival of one or both consumers, while the
invasion of a competitive consumer could result in extinction of all consumers that
include the invader itself. For other values of parameters, the principle of competitive
exclusion holds, which implies that one of the consumers goes to extinction and the
other consumer and the resource coexists at a positive steady state in R2+.

Proposition 4.1 If r2
a21

= r3
a31

, system (2.3) has a first integral V (N1, N2, N3) =
N−a31
2 Na21

3 .

Proof Since r2
a21

= r3
a31

, we have

dV (N1, N2, N3)

dt
|(2.3) = a21a31

(
r2
a21

− r3
a31

)
V (N1, N2, N3) = 0,

which implies that the function V (N1, N2, N3) is a first integral of (2.3). ��
On the invariant surface

V (N1, N2, N3) = c0

with c0 = N−a31
2 (0)Na21

3 (0) > 0, we obtain N3 = cNs
2 with c = c1/a210 , s = a31/a21.

Without loss of generality, we assume s ≥ 1. Then system (2.3) on the invariant
surface can be written as

dN1

dt
= N1

(
r̄1 − d1N1 − b12

1 + N2 + cNs
2

)

dN2

dt
= N2

(
− r2 + a21N1

1 + N2 + cNs
2

)
. (4.1)

The boundedness of solutions of (4.1) can be obtained directly fromProposition 2.1.
Existence of periodic orbits can be excludedby theBendixson-DulacTheorem. Indeed,
let F̂ = (F̂1, F̂2)T be the right-hand side of (4.1). Let φ(N1, N2) = 1/(N1N2). Then
we have

∂(φ F̂1)

∂N1
+ ∂(φ F̂2)

∂N2
= − d1

N2
− a21(1 + csNs−1

2 )

(1 + N2 + cNs
2)

2 < 0.

Thus, we conclude the following results.

Proposition 4.2 Solutions of system (4.1) are bounded and there is no periodic orbit
of (4.1) in R2+.
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Stability of equilibria of (4.1) is as follows. Let ĝ = (1+N2+cNs
2 )

2. The Jacobian
matrix of (4.1) is

J =
⎛

⎝ r̄1 − 2d1N1 − b12 ĝ b12N1

(
1 + scNs−1

2

)
ĝ2

a21N2 ĝ −r2 + a21N1ĝ − a21N1N2

(
1 + scNs−1

2

)
ĝ2

⎞

⎠ .

(4.2)
There are two equilibria on the axes, namely O(0, 0) and E1(N̄1, 0) where N̄1 is

defined in (3.3). O is a saddle point with eigenvalues r̄1 − b12 and −r2, and E1 has
eigenvalues λ

(1)
1 and λ

(2)
1 defined in (3.4).

There are at most two positive equilibria Ê−
12(N

−
1 , N̂−

2 ) and Ê+
12(N

+
1 , N̂+

2 ), which
satisfy the following conditions when they exist

N1 = ĥ(N2) = r2
a21

(1 + N2 + cNs
2 ), N±

1 = r̄1
2d1

±
√

�

2d1a21
, (4.3)

where � is defined in (3.5). Since the function ĥ(N2) ≥ r2/a21 is monotonically
increasing, system (4.1) has positive equilibria if N−

1 > r2/a21 or N
+
1 > r2/a21.

Let a021, a
∗
21 and a

1
21 be those defined in (3.6). By a proof similar to that for Propo-

sition 3.2, we conclude the following result.

Proposition 4.3 (i) Ê−
12 is a positive equilibrium of (4.1) if and only if λ(2)

1 < 0,� ≥
0, a21 > a121.

(ii) Ê+
12 is a positive equilibrium of (4.1) if and only if one of the following conditions

is satisfied: (1) λ
(2)
1 > 0; (2) � > 0 and a21 ≥ a121; (3) � = 0 and a21 > a121.

Dynamics of system (4.1) are shown as follows, the proof ofwhich is inAppendixC.

Theorem 4.4 (i) Assume λ
(2)
1 > 0. There is a unique positive equilibrium Ê+

12(N
+
1 ,

N̂+
2 ) in system (4.1), which is globally asymptotically stable in intR2+, as shown

in Fig. 1a.
(ii) Assume λ

(2)
1 = 0. If a21 > a121, the unique positive equilibrium Ê+

12 is glob-
ally asymptotically stable in intR2+. If a21 ≤ a121, then the boundary equilibrium
E1(N̄1, 0) is globally asymptotically stable in intR2+.

(iii) Assume λ
(2)
1 < 0. Then equilibrium E1 is locally asymptotically stable. When

a21 ≤ a121, E1 is globally asymptotically stable in intR2+. When a21 > a121, saddle-
node bifurcation occurs at � = 0: (I) If � > 0, there are two positive equilibria
Ê−
12 and Ê+

12. Ê
−
12 is a saddle point while Ê+

12 is asymptotically stable, as shown

in Fig. 1b. (II) If � = 0, Ê−
12 and Ê+

12 coincide and form a saddle-node point, as

shown in Fig. 1c. In cases (I–II), the separatrices of Ê−
12 subdivide intR

2+ into two

regions: one is the basin of attraction of E1, while the other is that of Ê
+
12. (III) If

� < 0, then E1 is globally asymptotically stable in intR2+, as shown in Fig. 1d.

In the three-dimensional system (2.3), there exist equilibria O(0, 0, 0) and
P1(N̄1, 0, 0) for all values of the parameters. Apart from the two boundary equi-
libria, system (2.3) may have other boundary equilibria and positive equilibria in R3+
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Fig. 1 Phase-plane diagram of system (4.1). Stable and unstable equilibria are identified by solid and open
circles, respectively. Vector fields are shown by gray arrows. Let r̄1 = r2 = r3 = d1 = s = c = 1, b12 =
0.6. Then a021 = 2.4, a121 = 2, a∗

21 = 2.5. a Let a21 = 3. All positive solutions of (4.1) converge to

equilibrium E+
12(0.723, 0.583). b, c Let a21 = 2.45 and a21 = 2.4, respectively. There are two positive

equilibria E−
12 and E+

12. The separatrices (the black line) of E−
12 subdivide the plane into two regions.

The region below them is the basin of attraction of E1 while the region above them is that of E+
12. d Let

a21 = 2.3. All positive solutions of (4.1) converges to equilibrium E1(0.4, 0)

for some parameter values. Doing easy algebra calculations and citing Proposition 3.4,
Theorems 3.3 and 4.4, we obtain the following result.

Proposition 4.5 System (2.3) always has the boundary equilibria O(0, 0, 0) and
P1(N̄1, 0, 0) in R3+.

(i) If λ(2)
1 > 0, system (2.3) has additional boundary equilibria P+

12(N
+
1 , N+

2 , 0) in

R3+. Ifλ
(3)
1 > 0, system (2.3) has additional boundary equilibria P+

13(N̆
+
1 , 0, N̆+

3 )

in R3+. If
r2
a21

= r3
a31

and λ
(2)
1 > 0, then system (2.3) has infinitely many positive

equilibria P+(N1, N2, N3) in intR3+, which fill up a segment L+ with endpoints
at the boundary equilibria P+

12 and P+
13; more precisely,
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L+ =
{

(N1, N2, N3) ≥ 0 : N1 = r̄1
2d1

+
√

�

2d1a21
,

a21N1

1 + N2 + N3
= r2

}
.

(ii) If λ
(2)
1 < 0, a21 > a121 and � ≥ 0, then system (2.3) has additional boundary

equilibria P±
12(N

±
1 , N±

2 , 0). If λ(3)
1 < 0, a31 > a131 and �̆ ≥ 0, then system (2.3)

has additional boundary equilibria P±
13(N̆

±
1 , 0, N̆±

3 ).

(iii) Assume r2
a21

= r3
a31

, λ
(2)
1 < 0, a21 > a121 and � ≥ 0. Then system (2.3) has

infinitely many positive equilibria P±(N1, N2, N3) in intR3+, which fill up two
segments L± with endpoints at the boundary equilibria P±

12 and P±
13; more pre-

cisely,

L± =
{

(N1, N2, N3) ≥ 0 : N1 = r̄1
2d1

±
√

�

2d1a21
,

a21N1

1 + N2 + N3
= r2

}
.

Summarizing Theorems 3.3, 4.4 and Proposition 4.5, we conclude global dynamics
of system (2.3) as follows.

Theorem 4.6 Let r2
a21

= r3
a31

.

(i) Assume λ
(2)
1 > 0, or λ

(2)
1 = 0 and a21 > a121. System (2.3) has infinitely many

positive equilibria P+ filling up a segment L+ which attract all solutions of
system (2.3) with positive initial conditions, the endpoints of L+ attract all solu-
tions of system (2.3) with initial conditions (N1, N2, 0) or (N1, 0, N3) satisfying
N1N2N3 > 0, equilibrium P1(N̄1, 0, 0) attracts all solutions of system (2.3)with
initial conditions (N1, 0, 0) satisfying N1 > 0, and the origin O(0, 0, 0) attracts
all solutions of system (2.3) with nonnegative initial conditions (0, N2, N3). The
phase portrait is sketched in Fig. 2.

(ii) Assume λ
(2)
1 < 0,� ≥ 0 and a21 > a121. The equilibrium P1 is locally asymp-

totically stable in intR3+ and system (2.3) has infinitely many positive equilibria
P± filling up two segments L±. The separatrices of equilibria on L− form a
2-dimensional separatrix surface S−, which subdivides intR3+ into two regions:
one is the basin of attraction of P1, while the other is that of L+. The separa-
trices of endpoints of L− subdivide the corresponding plane in intR2+ into two
regions: one is the basin of attraction of P1, while the other is that of the end-
points of L+. P1 also attracts all solutions of system (2.3) with initial conditions
(N1, 0, 0) satisfying N1 > 0, while the origin O attracts all solutions of sys-
tem (2.3) with nonnegative initial conditions (0, N2, N3). The phase portrait is
sketched in Fig. 3.

(iii) Assume � < 0, or λ
(2)
1 ≤ 0 and a21 ≤ a121. System (2.3) has only two equilibria

O and P1, the equilibrium P1 attracts all solutions of system (2.3) in R3+ except
the orbits in the (N2, N3)-plane, and the origin O attracts all solutions of (2.3)
in the (N2, N3)-plane. The phase portrait is sketched in Fig. 4.

Theorem 4.6 reveals that two competing consumers either coexist or coextinct if
they have the same ratio of death rate and propagation rate. Recall that λ(2)

1 > 0 can be
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Fig. 2 Global diagram of system (2.3) when r2
a21

= r3
a31

and a21 > a∗
21

written as r2
a21

< N̄1, where N̄1 is the carrying capacity of the resource in the absence
of consumers. Thus, when the ratio of death rate and propagation rate of the consumer
is less than the carrying capacity of the resource (i.e., r2

a21
< N̄1), two competing

consumers coexist at a positive equilibrium. When the ratio is large (e.g., r2
a21

> r2
a021

),

the two competing consumers eventually go to extinction even though the resource
persists.

When the ratio is intermediate (e.g., N̄1 < r2
a21

< min{ r2
a021

, r2
a121

}), the competing

consumers could coexist at a steady state if initial densities of the three species are not
small, i.e., not below the stable manifold of L−. However, if the densities are below
the threshold, both consumers go to extinction and the resource persists. This delicate
threshold phenomenon is also observed by Lundberg and Ingvarsson (1998) for which
an obligate plant-pollinator model is considered. Moreover, the resource approaches
a density larger than N̄1 when in coexistence with consumers, which would promote
survival of more consumers in the n-species system as shown in Sect. 5.

From Theorem 4.6(ii), we obtain conditions under which interaction outcomes
between the consumers can transition between mutualism, parasitism, competition
and neutralism as the initial population densities vary.

Theorem 4.7 Assume r2
a21

= r3
a31

. Let λ(2)
1 < 0,� ≥ 0 and a21 > a121.

(i) Interaction outcomes between species N2 and N3 are mutualism if and only if
the initial values (N1(0), N2(0), 0) and (N1(0), 0, N3(0)) are below the sepa-
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Fig. 3 Global diagram of system (2.3) when r2
a21

= r3
a31

, a021 < a21 < a∗
21 and a21 > a121

Fig. 4 Global diagram of system (2.3) when r2
a21

= r3
a31

and a21 < a021

123



Global dynamics of a mutualism–competition model…

0 200 400 600
0

0.05

0.1

0.15

0.2

0.25

 p
op

ul
at

io
n 

de
ns

ity
 

0 200 400 600
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 200 400 600
0

0.1

0.2

0.3

0.4

0.5

 t−time 

po
pu

la
tio

n 
de

ns
ity

 

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

(a)  Mutualism (+, +) (b)  Competition (−, −)

(c)  Parasitism (+, −) (d)  Amensalism (−, 0)

  t−time  

N
2
(t) in (2.3)

N
2
(t) in (3.1)

N
2
(t) in (2.3)

N
3
(t) in (2.3)

N
2
(t) in (3.1)

N
3
(t) in (3.1)

N
2
(t) in (2.3)

N
2
(t) in (3.1)

N
2
(t) in (2.3)

N
2
(t) in (3.1)

Fig. 5 Transition of interaction outcomes between species N2 and N3 in system (2.3). Let r̄1 = r2 =
r3 = d1 = 1, b12 = 0.6. Thus a021 = 2.4, a121 = 2, a∗

21 = 2.5. a, b Let a21 = a31 = 2.45. When
N (0) = (0.45, 0.023, 0.023), neither species N2 nor N3 can survive in the absence of the other, while
they can coexist and each species approaches a density 0.2. Thus their relationship is mutualism. When
N (0) = (0.45, 0.2, 0.2), each species of N2 and N3 can approach a density 0.4 in the absence of the other.
However, when they coexist, each species approaches a density 0.2. Thus their relationship is competition.
c Let a21 = a31 = 2.45. When N (0) = (0.45, 0.2, 0.04), species N2 approaches a density 0.4 in the
absence of N3, while species N3 goes to extinction in the absence of N2. When they coexist, species N2
approaches the density 0.14 and species N3 persists at 0.028. Thus their relationship is parasitism. d Let
a21 = 2.45, a31 = 2.46, N (0) = (0.45, 0.2, 0.02). Species N2 approaches a density 0.4 in the absence
of N3, while it goes to extinction in the presence of N3. Species N3 always goes to extinction. Thus their
relationship is amensalism

ratrices of E−
12 and E−

13 respectively, but (N1(0), N2(0), N3(0)) is not below the
separatrix surface S− of L−, as shown in simulations of Fig. 5a.

(ii) Interaction outcomes between species N2 and N3 are competition if and only if the
initial values (N1(0), N2(0), 0)and (N1(0), 0, N3(0))are not below separatrices
of E−

12 and E−
13 respectively, and (N1(0), N2(0), N3(0)) is also not below S−, as

shown in simulations of Fig. 5b.
(iii) Interaction outcomes between species N2 and N3 are neutralism if and only if the

initial values (N1(0), N2(0), 0) and (N1(0), 0, N3(0)) are below the separatrices
of E−

12 and E−
13 respectively, and (N1(0), N2(0), N3(0)) is also below S−.

(iv) Interaction outcomes between species N2 and N3 are parasitism if and only if
one of the initial values (N1(0), N2(0), 0) and (N1(0), 0, N3(0)) is below the
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corresponding separatrices of E−
12 or E

−
13, the other is not below that separatri-

ces, and (N1(0), N2(0), N3(0)) is also not below S−, as shown in simulations of
Fig. 5c.

Proof (i) In this case, neither species N2 nor N3 can survive in the absence of the
other, while they coexist at P+(N+

1 , N+
2 , N+

3 ). Thus their relationship is mutual-
ism.

(ii) In this case, species N2 and N3 can respectively approach positive densities N
+
2

and N+
3 in the absence of the other, while they coexist at P+(N+

1 , N̂+
2 , N̂+

3 ). Since

N+
1 = h

(
N+
2

) = r2
a21

(
1 + N+

2

)
, N+

1 = ĥ
(
N̂+
2

)
= r2

a21

(
1 + N̂+

2 + c
(
N̂+
2

)s)
,

we obtain N+
2 > N̂+

2 . A similar discussion can show N+
3 > N̂+

3 . Thus their
relationship is competition.

(iii) In this case, both species cannot survive in the absence of the other, and cannot
survive in the presence of the other. Thus their relationship is neutralism.

(iv) Without loss of generality, we assume that in the absence of species N3, species
N1 and N2 can approach positive densities N

+
1 and N+

2 respectively, while species
N3 goes to extinction in the absence of species N2. When species N2 and N3
coexist at P+(N+

1 , N̂+
2 , N̂+

3 ), we have N+
2 > N̂+

2 by a proof similar to that in (ii).
Thus their relationship is parasitism. ��
By a proof similar to that for Theorem 4.7, we conclude the following result.

Theorem 4.8 Assume N (0) > 0 and r2
a21

= r3
a31

.

(i) Interaction outcomes between species N2 and N3 are competition if λ
(2)
1 > 0, or

λ
(2)
1 = 0 and a21 > a121.

(ii) Interaction outcomes between species N2 and N3 are neutralism if � < 0, or
λ

(2)
1 = 0 and a21 ≤ a121.

Now we consider conditions under which the principle of competitive exclusion
holds for system (2.3). We focus on the case of r2

a21
< r3

a31
, while a similar discussion

can be given for the case of r2
a21

> r3
a31

. We first give the dynamics of system (2.3) in

intR3+.
Theorem 4.9 If r2

a21
< r3

a31
, the principle of competitive exclusion may hold for system

(2.3). More precisely, orbits of system (2.3) in intR3+ are asymptotic to the orbits on
the (N1, N2)-plane in forward time.

Proof Let

V1(N1, N2, N3) = N−a31
2 Na21

3 .

Since r2
a21

< r3
a31

, we have

dV1 (N1, N2, N3)

dt
|(2.3) = a21a31

(
r2
a21

− r3
a31

)
V1 (N1, N2, N3) ≤ 0.
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Let dV1(N1,N2,N3)
dt |(2.3) = 0, we obtain N3 = 0. By the LaSalle principle, all solutions

of system (2.3) in intR3+ are asymptotic to the orbits on the (N1, N2)-plane in forward
time, which leads to the statement. ��

When r2
a21

< r3
a31

and λ
(2)
1 < 0, we obtain λ

(3)
1 < 0 by (3.10) and the saddle point

E−
12 has a two-dimensional stable manifold S− in intR3+. Summarizing Theorems 3.3,

4.9, we obtain the following result.

Theorem 4.10 Assume r2
a21

< r3
a31

. The principle of competitive exclusion holds for
system (2.3) if and only if one of the following conditions is satisfied.

(i) λ
(2)
1 > 0, or λ

(2)
1 = 0 and a21 > a121; λ

(3)
1 > 0, or λ

(3)
1 = 0 and a31 > a131.

In this case, orbits of system (2.3) in intR3+ converge to P+
12, which implies that

species N3 goes to extinction and species N2 survives. Thus, interaction outcomes
between the species is amenalism (−, 0).

(ii) λ
(2)
1 > 0, λ

(3)
1 < 0, a31 > a131 and �̆ ≥ 0, while the initial value of

(N1(0), N3(0)) is not below the separatrice of E−
13. In this case, orbits of system

(2.3) in intR3+ converge to P+
12. Thus species N3 goes to extinction and species

N2 survives.
(iii) λ

(2)
1 < 0, � ≥ 0, a21 > a121; a31 > a131 and �̆ ≥ 0, (N1(0), N2(0)) and

(N1(0), N3(0)) are not below the separatrice of E−
12 and E−

13 respectively, while
(N1(0), N2(0), N3(0)) is also not below the stable manifold S− of E−

12 in intR
3+.

In this case, orbits of system (2.3) in intR3+ converge to P+
12. Thus species N3

goes to extinction and species N2 survives.

When the principle of competitive exclusion does not hold for system (2.3), both com-
peting consumers go to extinction, and all orbits of system (2.3) converge to the
equilibrium P1 except the orbits in the (N2, N3)-plane.

5 The n-dimensional system

In this section, we thoroughly demonstrate global dynamics of the one-plant and
(n − 1)-pollinator system, which shows that all of the results for the one-plant and
two-pollinator system can be extended to the n-species system.

Let

G1(N1) = r1 − d1N1, Gi (Ni ) = −ri , ai1 = σiαβi

ω + β0N0

r̄1 = r1 + σ1α, b12 = σ1αω

ω + β0N0
, N̂i = βi

ω + β0N0
Ni , 2 ≤ i ≤ n.

By dropping hats in N̂i , system (2.2) becomes

dN1

dt
= N1

(
r̄1 − d1N1 − b12

1 + ∑n
j=2 N j

)
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dNi

dt
= Ni

(
− ri + ai1N1

1 + ∑n
j=2 N j

)
, 2 ≤ i ≤ n. (5.1)

Then r̄1 > b12 and solutions of system (5.1) in Rn+ are nonnegative.
By a proof similar to that for Proposition 2.1, we conclude the following result.

Proposition 5.1 Solutions of system (5.1) are bounded in Rn+.

Without loss of generality, we assume that there is 3 ≤ m ≤ n such that

r2
a21

= ri
ai1

,
r2
a21

<
r j
a j1

, 3 ≤ i ≤ m, m + 1 ≤ j ≤ n.

By a proof similar to that for Theorem 4.9, we conclude the following result by
constructing Lyapunov function Vj (N ) = N

−a j1
2 Na21

j .

Theorem 5.2 Orbits (N1, N2, . . . , Nn) of system (5.1) in intRn+ satisfy limt→∞ N j (t)
= 0 with m + 1 ≤ j ≤ n, and are asymptotic to the (N1, N2, . . . , Nm)-space in
forward time.

Now we focus on the m-dimensional subsystem of (5.1) consisting of
(N1, N2, . . . , Nm):

dN1

dt
= N1

(
r̄1 − d1N1 − b12

1 + ∑m
j=2 N j

)

dNi

dt
= Ni

(
− ri + ai1N1

1 + ∑m
j=2 N j

)
, 2 ≤ i ≤ m (5.2)

where r2
a21

= ri
ai1

.
By a proof similar to that for Proposition 4.1, we conclude the following result.

Proposition 5.3 System of (5.2) has first integrals Vi (N ) = N−ai1
2 Na21

i , 3 ≤ i ≤ m.

Let si = ai1/a21. Without loss of generality, we assume si ≥ 1 for 3 ≤ i ≤ m. On
the invariant set Ni = ci N

si
2 with ci > 0, system (5.2) can be written as

dN1

dt
= N1

(
r̄1 − d1N1 − b12

1 + N2 + ∑m
i=3 ci N

si
2

)

dN2

dt
= N2

(
− r2 + a21N1

1 + N2 + ∑m
i=3 ci N

si
2

)
. (5.3)

Dynamics of system (5.3) can be obtained by a proof similar to that for (4.1). Thus
we exhibit the results in Propositions 5.4 and 5.5 and Theorem 5.6, but omit their
proofs.

Proposition 5.4 Solutions of system (5.3) are bounded in R2+ and there is no periodic
orbit of (5.3) in R2+.
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There are two equilibria on the axes, namely O(0, 0) and E1(N̄1, 0) where N̄1 is
defined in (3.3). O is a saddle point with eigenvalues r̄1 − b12 and −r2, and E1 has
eigenvalues λ

(1)
1 and λ

(2)
1 defined in (3.4).

There are at most two positive equilibria Ẽ−
12(N

−
1 , Ñ−

2 ) and Ẽ+
12(N

+
1 , Ñ+

2 ), which
satisfy the following conditions when they exist

N1 = h̃ (N2) = r2
a21

(
1 + N2 +

m∑

i=3

ci N
si
2

)
, N±

1 = r̄1
2d1

±
√

�

2d1a21
, (5.4)

where � is defined in (3.5).
Let a021, a

∗
21 and a

1
21 be those defined in (3.6). Then we have:

Proposition 5.5 (i) Ẽ−
12 is a positive equilibrium of (5.3) if and only if λ(2)

1 < 0,� ≥
0, a21 > a121.

(ii) Ẽ+
12 is a positive equilibrium of (5.3) if and only if one of the following conditions

is satisfied: (1) λ
(2)
1 > 0; (2) � > 0 and a21 ≥ a121; (3) � = 0 and a21 > a121.

Theorem 5.6 (i) Assume λ
(2)
1 > 0. There is a unique positive equilibrium

Ẽ+
12(N

+
1 , Ñ+

2 ) in system (5.3), which is globally asymptotically stable in intR2+.
(ii) Assume λ

(2)
1 = 0. If a21 > a121, the unique positive equilibrium Ẽ+

12 is glob-
ally asymptotically stable in intR2+. If a21 ≤ a121, then the boundary equilibrium
E1(N̄1, 0) is globally asymptotically stable in intR2+.

(iii) Assume λ
(2)
1 < 0. Then equilibrium E1 is locally asymptotically stable. When

a21 ≤ a121, E1 is globally asymptotically stable in intR2+. When a21 > a121, saddle-
node bifurcation occurs at � = 0: (a) If � > 0, there are two positive equilibria
Ẽ−
12 and Ẽ+

12. Ẽ
−
12 is a saddle point while Ẽ+

12 is asymptotically stable. (b) If
� = 0, then Ẽ−

12 and Ẽ+
12 coincide and form a saddle-node point. In cases (a-

b), the separatrices of Ẽ−
12 subdivide intR2+ into two regions: one is the basin of

attraction of E1, while the other is that of Ẽ
+
12. (c) If � < 0, then E1 is globally

asymptotically stable in intR2+.

From Proposition 5.5, we obtain existence of the boundary and positive equilibria
of (5.2).

Proposition 5.7 System (5.2) always has the boundary equilibria O(0, 0, . . . , 0) and
P1(N̄1, 0, . . . , 0) in Rm+ .

(i) If λ
(2)
1 > 0, system (5.2) has infinitely many positive equilibria P̃+ in intRm+ ,

which fill up an (m − 2)-dimensional superplane L̃+ with endpoints at the cor-
responding boundary; more precisely,

L̃+ =
{

(N1, N2, . . . , Nm) ≥ 0 : N1 = r̄1
2d1

+
√

�

2d1a21
,

a21N1

1 + N2 + ∑m
j=3 N j

= r2

}
.
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(ii) If λ(2)
1 < 0, a21 > a121 and � ≥ 0, then system (5.2) has infinitely many positive

equilibria P̃± in intRm+ , which fill up two (m − 2)-dimensional superplane L̃±
with endpoints at the corresponding boundary; more precisely,

L̃± =
{

(N1, N2, . . . , Nm) ≥ 0 : N1 = r̄1
2d1

±
√

�

2d1a21
,

a21N1

1 + N2 + ∑m
j=3 N j

= r2

}
.

From Theorem 5.6, we obtain global dynamics of system (5.2):

Theorem 5.8 (i) If λ
(2)
1 > 0, or λ

(2)
1 = 0 and a21 > a121, then system (5.2) has

infinitelymany positive equilibria P̃+ filling up an (m−2)-dimensional superplane
L̃+ which attract all solutions of system (5.2) with positive initial conditions.

(ii) If λ(2)
1 < 0, a21 > a121 and � ≥ 0, then equilibrium P1 is locally asymptotically

stable and system (5.2) has infinitely many positive equilibria P̃± filling up two
(m − 2)-dimensional superplane L̃±. The separatrices of equilibria on L̃− form
an (m − 1)-dimensional separatrix surface S̃−, which subdivides intRm+ into two
regions: one is the basin of attraction of P1, while the other is that of L̃+.

(iii) If λ
(2)
1 ≤ 0, a21 ≤ a121 or � < 0, then system (5.2) has only two equilibria O

and P1, the equilibrium P1 attracts all solutions of system (5.2) in Rm+ except the
orbits in the (0, N2, . . . , Nm)-plane, and the equilibrium O attracts all solutions
of system (5.2) in the (0, N2, . . . , Nm)-plane.

(iv) On the boundary N1 = 0, the origin O is globally asymptotically stable. On the
boundary Ni0 = 0 for 2 ≤ i0 ≤ m, system (5.2) becomes (m−1)-dimensional, and
its dynamics can be described by those similar to (i)–(iii) in this theorem. Similar
discussions can also be given for the boundary of system (5.2) with dimensions
smaller than m − 1.

Theorem 5.8 provides criteria for persistence of pollination–mutualisms when pol-
linators have the same ratio of death rate and propagation rate. Notice that λ

(2)
1 > 0

is equivalent to r2
a21

< N̄1. If the ratio of death rate and propagation rate of the

pollinator is less than the carrying capacity of the plant (i.e., r2
a21

< N̄1), all com-
peting pollinators coexist at a positive steady state, which implies the persistence of
pollination–mutualisms. If the ratio is large (e.g., r2

a21
> r2

a021
), all pollinators eventu-

ally go to extinction even though the plant persists, which implies the extinction of
pollination–mutualisms.

If the ratio is intermediate (e.g., N̄1 < r2
a21

< min{ r2
a021

, r2
a121

}), there are two fates

for pollinators. The system has infinite positive equilibria and the stable manifold L̃−
of the unstable positive equilibria becomes the threshold condition for persistence of
pollination–mutualisms. When initial densities of them species are not small, i.e., not
below the threshold, the competing pollinators will coexist at a positive steady state.
However, when the densities are below the threshold, all pollinators go to extinction
and the plant persists. This conflicts with the principle of competitive exclusion but
coincides with our intuition. Here, we can see that varying one initial population
density of the species can lead to survival/extinction of all consumers.
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Letm−1→ ∞, i.e., the kinds of pollinators are sufficiently large. Then the Eq. (5.4)
implies that some of the pollinators would approach an extremely small density that
the species can be regarded as going to extinction (e.g., the number of individuals of a
pollinator is less than one). This is because their competition for the same plant. Thus,
extremely large kinds of pollinators would imply extinction of some pollinators under
the condition of pollinators’ coexistence in the above cases of small and intermediate
ratios.

Let �i be the community of animals without species i . It is clear that system (5.2)
restricted on (N1, Ni )-plane has the dynamics as shown in Theorem 3.3, which implies
that it has separatrices of the saddle point E−

1i when E−
1i exists. Similarly, system (5.2)

restricted on the superplane Ni = 0 has the dynamics similar to those described in
Theorem 5.8, which implies that it has separatrix surface S̃−

i when the corresponding
L̃− exists. Thus, transition of interaction outcomes between species i and community
�i can be described by Theorems 4.7, 4.8 when the following replacements are taken:

species N2 → species i, species N3 → community �i , E−
12 → E−

1i , E−
13 → L̃−.

The principle of competitive exclusion for system (5.1) can be described by Theo-
rem 4.10 when we regard the competing species Ni and N j in (5.1) as species N2 and
N3 in (2.3), S̃− as S−, and (N1(0), N2(0), . . . , Nn(0)) as (N1(0), N2(0), N3(0)), etc.

Remarks The relationship between two communities of animals in system (5.2) can
transition in a way similar to that in Theorems 4.7 and 4.8. Indeed, assume that the
animals in system (5.2) come from two communities: �1 and �2. Then consider two
subsystems: one consists of species 1 and �1 while the other consists of species 1 and
�2. System (5.2) restricted on the two subsystems has the dynamics similar to those
described in Theorem 5.8, which implies that it has separatrix surface S̃−

i when the

corresponding L̃i
−
exists, i = 1, 2. Thus, Theorems 4.7 and 4.8 hold for system (5.2)

in two communities after taking the following replacements:

species N2 → community �1, species N3 → community �2, E−
12 → L̃1

−
, E−

13 → L̃2
−
.

6 Discussion

In this paper, we consider a mutualism–competition system with one resource and
multiple consumers, in which consumers compete for the same resource and each
consumer is mutualistic with the resource. We assume, consistent with Scheffer and
van Nes (2006) and Sakavara et al. (2018), that clusters of consumers can coexist on
the same limiting resources, with nearly identical propagation to mortality ratios.

The most important result is that multiple consumers can coexist on a single
resource. But the detailed results for the system consumer-mutualist system stud-
ied are complex and coexistence is not guaranteed. Global dynamics of the model
demonstrate that interaction outcomes between the consumers can transition between
mutualism, parasitism, competition, amensalism and neutralism, while in the previ-
ous literature, interaction outcomes between competitive consumers could transition
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only between competition, amensalism and neutralism (e.g., Hofbauer and Sigmund
1998; Llibre and Xiao 2014). Moreover, it is shown here that mutualism between
the consumer and resource tends to promote the survival of one or more consumers,
while competition between the consumers could result in extinction of one or all con-
sumers. Thus, our analysis implies interesting biological results, which are described
as follows.

In the one-plant and two-pollinator system, as shown in Theorem 4.7 and Fig. 5,
(a) when the initial density of each pollinator is intermediate, one pollinator cannot
coexist with the plant in the absence of the other, while the three species can coexist and
pollination–mutualisms persist. The underlying reason is that each of the pollinators
promotes growth of the plant and thus benefits the other pollinator. However, when
the initial density of one pollinator is small, both pollinators go to extinction. Thus,
varying the initial density can lead to survival/extinction of both pollinators. (b) When
both of the initial densities are large, each pollinator can coexist with the plant in the
absence of the other, while the three-species system persists at an equilibrium in which
each pollinator approaches a low density. The underlying reason is that the plant can
approach its maximal density in the presence of one pollinator and the existence of
the other cannot increase the plant’s population density any further. (c) When one of
the initial densities is large but the other is small, the first pollinator can coexist with
the plant in the absence of the second, while the second one cannot in the absence of
the first. When they coexist, the first one approaches a high density. The underlying
reason is that the plant can approach its maximal density in the presence of the first
pollinator, which leads to survival of the second, while the existence of the second
pollinator cannot increase the plant’s density further. (d) As shown in Theorem 4.9 and
Fig. 5d, species N3 dominates N2 in their competition for the plant. When the initial
density of N2 is large but that of N3 is small, species N2 can coexist with the plant in the
absence of species N3, while species N3 cannot. However, in the presence of species
N3, species N2 is driven into extinction by species N3, followed by species N3 finally
going to extinction. The underlying reason is that species N3 has a competitive ability
stronger than N2, which drives species N2 into extinction, but its initial density is not
large enough for its own persistence. Moreover, further numerical simulations show
that when a31 = a21 = 2.45 and N (0) = (0.45, 0.2, 0.02), the three species coexist
at a steady state P+ = (0.5714, 0.3637, 0.0364), which means that the relationship
between the consumers returns to parasitism as shown in Fig. 5c. Thus, varying one
parameter (i.e., a31) can lead to survival/extinction of both consumers.

In the one-plant andmulti-pollinator system as shown in Sect. 5, global dynamics of
the model demonstrate that results for the three-species system can be extended to the
n-species system. If the principle of competitive exclusion holds, then one consumer
and the resource coexist at a positive steady state in Rm+ , and other consumers go to
extinction. If the principle of competitive exclusion does not hold, then either more
than one consumer and the resourcewill coexist at a positive equilibrium in the positive
octant Rn+ or all competing consumers go to extinction and the resource persists. Here,
mutualism between the consumer and resource can lead to survival of all consumers,
while competition between the consumers could result in extinction of one or all con-
sumers. Interaction outcomes between one consumer and the other consumers could
transition between mutualism, parasitism, competition, amensalism and neutralism,
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while varying one parameter or initial density can lead to survival/extinction of all
consumers. When the consumers come from two different groups �1 and �2, then
similar phenomena would occur in interactions between the groups.

Of course, such an n-species system is only a part, or a module, within real
pollinator-plant networks that exist in nature. Plant-pollinator networks in nature have
been studied for decades (e.g., Gilbert 1980) and continue to be an area of active
research (e.g., Vanbergen et al. 2017). The larger networks consist of many inter-
acting plant host and pollinator species. However, study of such parts, or modules,
within the overall community is valuable. Plant-pollinator networks are not randomly
assembled, but consist of tightly interacting modules that are weakly linked to the
larger community (e.g., Oleson et al. 2007). Some of these modules are similar to
that studied here. For example, studies of the cycad (Macrozamiacommunis), which
has a several pollinators, the two most effective of which are specialist pollinating
beetles, Cycadothripschadwicki and Traneslyterioides (Terry 2001). Therefore, there
exist pollinator-plant modules that are at least qualitatively similar to that which we
studied, and might possibly even be used to test some of our results.

With pollinators under threat world-wide Vanbergen (2013), better understanding
of how various disturbances affect existing plant-pollinator networks is needed. For
example, how tolerant are particular specialist pollinators, and larger networks, to
the extinction of other pollinators (e.g., Memmott et al. 2004)? Alternatively, how
stable are models and larger networks to invasion by a new plant or pollinator (e.g.,
Traveset and Richardson 2006)? Is it possible to manipulate systems, by actions that
favor a plant or pollinator species, to promote the coexistence of other pollinators
(e.g., Albrecht et al. 2014; Bascompte et al. 2003; Campbell et al. 2015)? All of these
questions can at least be partially addressed through modeling. It is our hope that
theoretical studies like ours can provide the mathematical basis for insights into the
conditions influencing coexistence or extinction of pollinators.
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Appendix A. Proof of Proposition 2.1

Proof Let N (t) = (N1(t), N2(t), N3(t)) be a solution of (2.3) with a fixed initial value
N (0) ≥ 0. It follows from the first equation of (2.3) that

dN1

dt
≤ N1 (r̄1 − d1N1) .

Let K1 = r̄1/d1. The comparison principle (Hale 1969) implies lim supt→∞ N1(t) ≤
K1. Then for δ0 > 0 small, there is T1 > 0 such that if t > T1, then N1(t) ≤ K1 + δ0.

It follows from the second equation of (2.3) that if t > T1, then
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dN2

dt
= N2

1 + N2 + N3
[−r2(1 + N2 + N3) + a21N1]

≤ N2

1 + N2 + N3
[−r2(1 + N2 + N3) + a21(K1 + δ0)]

≤ N2

1 + N2 + N3
[a21(K1 + δ0) − r2 − r2N2)].

Let K2 = [a21(K1 + δ0) − r2]/r2. If K2 ≤ 0, then limt→∞ N2(t) = 0, which
implies that there is T21 > T1 > 0 such that when t > T21, we have N2(t) < δ0. If
K2 > 0, then

dN2

dt
≤ N2

r2(1 + N2 + N3)
(K2 − N2) < 0 as N2 > K2

which implies lim supt→∞ N2(t) ≤ K2. Then there is T22 > T1 > 0 such that when
t > T22, we have N2(t) < K2 + δ0. Thus, there exists T2 > 0 such that if t > T2, then
N2(t) < |K2| + δ0.

Let K3 = [a31(K1 + δ0) − r3]/r3. By the third equation of (2.3) and a discussion
similar to that for K2, we obtain that there is T3 > T2 such that if t > T3, then
N3(t) < |K3| + δ0.

Let T = T3. If t > T , then ||N (t)|| = ∑3
i=1 Ni (t) ≤ ∑3

i=1 Mi with Mi =
|Ki | + δ0. Thus solutions of (2.3) are bounded. ��

Appendix B. Proof of two cases in Theorem 3.3

Proof (ii) The case of λ
(2)
1 = 0.

From λ
(2)
1 = 0, we have a21 = a∗

21. If a
∗
21 < a121, there is no positive equilibrium

in system (3.1) by Proposition 3.2. If a∗
21 = a121, we have b12 = r̄1/2 and a21 = a021,

which implies that � = 0 and there is no positive equilibrium in system (3.1). Thus,
E1 is globally asymptotically stable.

If a21 > a121, E
+
12 is the unique positive equilibrium by Proposition 3.2. We apply

the central manifold theorem to show that E1 has no stable manifold in intR2+, which
implies that E+

12 is globally asymptotically stable. The following transformation can
change system (3.1) into a standard form near E1:

(
x1
x2

)
=

(
N1 − N̄1
N2

)
,

(
y1
y2

)
= 1

d1

(
d1 −b12
0 1

)(
x1
x2

)
.

Then system (3.1) can be written as

dy1
dt

= λ
(1)
1 y1 − d1 (y1 + b12y2)

2 + b12d1 (y1 + b12y2) y2

− b12d
2
1 N̄1y

2
2 − b12r2y2

N̄1
[y1 + y2 (2b12 − r̄1)] + o

(
|y|2

)
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dy2
dt

= r2y2

[
−1 +

(
y1 + b12y2 + N̄1

)
d1

N̄1(d1 + y2)

]

= r2y2
N̄1

[y1 + y2 (2b12 − r̄1)] + o
(
|y|2

)
(6.1)

which implies that the solution y2 = 0 is a stable manifold of equilibrium (0, 0) in
system (6.1). Let y1 = φ(y2) = ay22 + o(y22 ) be the central manifold of (6.1) at
(0, 0). From a21 = a∗

21 > a121, we have b12 = r̂1 − r2d1/a21 > r̂1/2. A long but
straightforward computation shows that

a = b12

λ
(1)
1 N̄1

[
d21 N̄

2
1 + r2 (2b12 − r̄1)

]
< 0.

Thus equilibrium (0, 0) is a saddle-node point. On the central manifold y1 = φ(y2),
we have dy2/dt > 0. Then equilibrium (0, 0) has no stable manifold in intR2+. Thus,
E1 has no stable manifold in intR2+ and E+

12 is globally asymptotically stable.

(iii) The case of λ
(2)
1 < 0,� = 0 and a21 > a121.

From λ
(2)
1 < 0, we have a21 < a∗

21 and equilibrium E1 is locally asymptotically
stable.

Since � = 0 and a21 > a121, the two positive equilibria E−
12 and E+

12 coincide
by Proposition 3.2. By (3.2), the Jacobian matrix of (3.1) at a positive equilibrium
(N1, N2) is

J =
(−d1N1 b12N1g2

a21N2g −a21N1N2g2

)
, (6.2)

which implies trJ (E±
12) < 0. A direct computation shows that

det J (E±
12) = ±N1N2g

2
√

� = 0, (6.3)

which implies that there is a simple zero eigenvalue of J (E−
12). We apply Sotomayor’s

theorem Perko (2001) to show that saddle-node bifurcation occurs at E−
12 when� = 0.

For the simple zero eigenvalue, we have the left and right eigenvectors of J (E−
12) by

(6.2):

w = (a21N2g, d1N1)
T , v =

(
b12g

2, d1
)T

.

Let μ = a21 be the parameter in Sotomayor’s theorem. Let F = (F1, F2)T be the
righthand side of (3.1). Thenwehave Fμ = (0, N1N2g)T .ThuswT Fμ = d1N 2

1 N2g >

0 at E−
12 and μ = a021. Direct computations show that

∂2F1
∂N 2

1

= −2d1,
∂2F1

∂N1∂N2
= b12g

2,
∂2F1
∂N 2

2

= −2b12N1g
3,

∂2F2
∂N 2

1

= 0,
∂2F2

∂N1N2
= a21g[1 − N2g], ∂2F2

∂N 2
2

= 2r2g(−1 + N2g).
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A long but straightforward computation shows that

w · D2F(v, v) = −2d21a21b12N1N2g
4 < 0.

Thus, the Sotomayor’s theorem implies that saddle-node bifurcation occurs at E−
12

when a21 = a021: (1) If a21 > a021, then det J (E+
12) > 0 and det J (E−

12) < 0, which
implies that E+

12 is a stable node and E−
12 is a saddle point. (2) If a21 = a021, E

−
12 is a

saddle-node point. (3) If a21 < a021, there is no positive equilibrium and E1 is globally
asymptotically stable.

It follows from Proposition 3.1 that when E−
12 and E+

12 exist, the separatrices of E
−
12

subdivide the interior of (N1, N2)-plane into two regions: one is the basin of attraction
of E1, while the other is that of E

+
12. Thus, the result in the second case is proven. ��

Appendix C. Proof of Theorem 4.4

Proof Since the proof for (ii) is similar to that for (ii) in Theorem 3.3, we omit the
details.

(i) Since λ
(2)
1 > 0, equilibrium E1 is a saddle point and has no stable manifold in

intR2+. From λ
(2)
1 > 0 we have a21 > a∗

21 and a21 > a021. By Proposition 4.3, Ê
+
12

is the unique positive equilibrium. By Proposition 4.2, Ê+
12 is globally asymptot-

ically stable.
(ii) It follows from λ

(2)
1 < 0 that the equilibrium E1 is asymptotically stable. From

λ
(2)
1 < 0 we obtain a21 < a∗

21. When a21 ≤ a121, there is no positive equilibrium
in system (4.1) by Proposition 4.3. Thus E1 is globally asymptotically stable.

Assume a21 > a121. If � ≥ 0, then a21 ≥ a021 and there are two positive equilibria
Ê−
12 and Ê

+
12 by Proposition 4.3. Let ĝ(N2) = 1/(1+N2+cNs

2 ). By (4.2), the Jacobian
matrix of (4.1) at a positive equilibrium (N1, N2) is

J =
⎛

⎝−d1N1 b12
(
1 + csNs−1

2

)
N1ĝ2

a21N2 ĝ −a21N1N2

(
1 + csNs−1

2

)
ĝ2

⎞

⎠ , (6.4)

which implies trJ (Ê±
12) < 0. A direct computation shows that

det J
(
Ê±
12

)
= ±N1N2

(
1 + csNs−1

2

)
ĝ2

√
�. (6.5)

Thus, if � > 0, then Ê−
12 is a saddle point and Ê+

12 is asymptotically stable.
When � = 0, equilibria Ê−

12 and Ê+
12 coincide and det J (Ê−

12) = 0, which implies
that there is a simple zero eigenvalue of J (Ê−

12). We apply Sotomayor’s theorem to
show that saddle-node bifurcation occurs at Ê−

12 when � = 0, i.e., a21 = a021. For the
simple zero eigenvalue, we have the left and right eigenvectors of J (Ê−

12) by (6.4):
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w = (
a21N2 ĝ, d1N1

)T
, v =

(
b12

(
1 + csNs−1

2

)
ĝ2, d1

)T
.

Let μ = a21 be the parameter in Sotomayor’s theorem. Let F̂ = (F̂1, F̂2)T be
the righthand side of (4.1). Then F̂μ = (0, N1N2 ĝ)T , which implies that wT F̂μ =
d1N 2

1 N2 ĝ > 0 at Ê−
12 and μ = a021. Direct computations show that

∂2 F̂1
∂N 2

1

= −2d1,
∂2 F̂2
∂N 2

1

= 0,
∂2 F̂1
∂N 2

2

= b12N1 ĝ
2
[
cs (s − 1) Ns−2

2 − 2ĝ
(
1 + csNs−1

2

)2]
,

∂2 F̂1
∂N1∂N2

= b12
(
1 + csNs−1

2

)
ĝ2,

∂2 F̂2
∂N1N2

= a21 ĝ
[
1 − N2 ĝ

(
1 + csNs−1

2

)]
,

∂2 F̂2
∂N 2

2

= 2r2 ĝ
(
1 + csNs−1

2

) [
−1 + N2 ĝ

(
1 + csNs−1

2

)]
− r2 ĝcs (s − 1) Ns−2

2 .

A long but straightforward computation shows that

w · D2 F̂(v, v) = −2d21a21b12N1N2 ĝ
4
(
1 + csNs−1

2

)
< 0.

Thus, the Sotomayor’s theorem implies that saddle-node bifurcation occurs at Ê−
12

when � = 0. By a discussion similar to the proof for Theorem 3.3(iii), the result in
(iii) is proven. ��
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