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Sublethal exposure, insecticide resistance, and
community stress
Raul Narciso C Guedes1,2, Spencer S Walse2 and
James E Throne2

Insecticides are an invaluable pest management tool and

anthropogenic stressors of widespread environmental

occurrence that are subject to biased perceptions based on the

targeted application, market value of use, and regulatory

requirements. As a result, short-term and simplistic efforts

focusing on lethal effects toward individual species and

populations prevail. Holistic and comprehensive studies

exploring rather common sublethal insecticide exposures are

rare, particularly considering their potential role in structuring

populations and communities in diverse environmental settings

and potentially interfering in a range of ecological interactions.

Studies on insecticide resistance, for example, do not go

beyond population-based studies, disregarding temporal and

spatial effects in the associated community, and rarely

considering the whole of sublethal exposure. Some of these

knowledge gaps are here recognized and explored.
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Insecticides, sublethal exposure, and stress
response
Popular concepts and their perception have far-reaching

consequences. Such seems to be the case with insecti-

cides, which are popularly defined as a substance or

chemical that kills insects. Curiously, this prevailing

notion is at odds with the technical definition of an

insecticide used by regulatory agencies as “any substance

or mixture of substances intended for preventing,

destroying, repelling, or mitigating any insect pest”

(e.g., US Federal Insecticide, Fungicide, and Rodenticide

Act). The latter tends to be overshadowed by the former

even within professional circles [1,2]. The subliminal

message and appeal of the popular notion of insecticides

is an overemphasis on the killing of insects leading to a

relative neglect in recognizing the importance of

sublethal effects of these compounds [3–5,6��]. This

shortcoming exists not only for conventional (synthetic)

insecticides, but also for bioinsecticides, reduced-risk

insecticides, and insecticidal proteins.

Although frequently intended to cause the quick mor-

tality of a targeted pest species, insecticide residue

degrades over time reducing the initial (lethal) deposit

to a (sublethal) residue, and/or may generate new

structurally-derived residues exhibiting biological activ-

ity. Furthermore, the initial application is aimed at a

particular target or limited number of target species, but

non-target species will be subjected to sublethal doses

and/or exposure at the onset of the application (Figure 1).

This (sublethal) insecticide exposure can lead to adverse

consequences to the exposed organisms, but not

necessarily so. Responses to such a stress are bound to

vary in a dose/concentration-dependent manner

between lower and upper thresholds (i.e., the basic

dose/concentration–response relationship of toxicology),

outside of which the organism is unaffected by the

exposure, or too much affected reaching around 100%

response. However, within the said thresholds and apart

from the expected detrimental effects, an inverted

response trend may occur, potentially benefiting either

the exposed organism or its progeny, depending on the

physiological trade-off involved [8,9].

A hierarchical view of insecticide stress response is

helpful in recognizing the potential consequences of

insecticide exposure, and particularly of sublethal expo-

sure [6�� [49_TD$DIFF]]. Upon reaching and penetrating an organism,

the insecticide will likely affect its physiology or that of

associated symbiont(s) [6��,9]. Interacting conspecifics

are also likely to be affected, eliciting a population-level

response (e.g., insecticide resistance and control failure),

that can eventually be translated into a community-level

consequence via direct or indirect effects of insecticide

exposure [6��] (Figure 2). The recently conceived

conceptual construct of the adverse outcome pathway reflects
the concern of linking a direct molecular initiating event
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to an adverse outcome at a higher biological level of

organization relevant to risk assessment [10,11]. This

promising construct, which recognizes the progress of

toxicity events across hierarchical scales of biological

organization, does have its limitations including its overly

(unrealistic) simplicity and reductionism (e.g., ignoring
parallel cascades and intercrossing pathways) [10,11].

An additional shortcoming of this conceptual construct

is that it neglects to recognize that a stress response does

not necessarily lead to an adverse outcome, but may also

hierarchically elicit non-toxic (and non-adverse)

responses [7,8,10–12]. The stress response will vary with

the individual and its susceptibility, the insecticide and

its dose/concentration, and the environmental context in

which exposure takes place. Insecticide resistance pro-

vides an illustrative context worthy of exploring [51_TD$DIFF].

Insecticide resistance under sublethal
exposure
Insecticide resistance is essentially a genetic change in

response to selection by a toxicant, the insecticide, among

individuals of a given species, the potential consequence

of which is impaired chemical control in the field [13].

Although selection for insecticide resistance is frequently

associated with differential mortality among individuals,

the phenomenon refers to differential survival and repro-

duction. Therefore, insecticide resistance can be

achieved not only by the use of lethal insecticide con-

centrations eliminating susceptible individuals, but also

by sublethal exposure favoring survival and reproduction

of the resistant individuals.

The role and potential consequences of sublethal insec-

ticide exposure for insecticide resistance are frequently

neglected, but their relevance may be recognized on

three fronts. First, sublethal exposure may delay selection

for major single gene resistance while favoring multifac-

torial or polygenic resistance [14]. This is the likely

consequence of the accumulation of low-level resistance

genes and mechanisms (e.g., reduced penetration, behav-

ioral avoidance, etc.) allowing small increases in the mag-

nitude of insecticide resistance distinct from the selection

of a major mutation (e.g., altered target site sensitivity)

leading to a high resistance [14,15]. Furthermore, suble-

thal stress may also contribute to resistance by promoting

increased mutation rates of genes involved in DNA

repair, as observed in bacteria and weeds [14,16� [50_TD$DIFF],17].
Insecticides involved in oxidative stress, such as the

fumigant phosphine, seem like good candidates for inves-

tigation as they may directly or indirectly compete for

energy from NAD(P)H and nucleotide triphosphates

necessary for performance of DNA repair enzymes

[14,18,19].

Sublethal insecticide exposure may influence insecticide

resistance beyond selection of resistant individuals via

two additional phenomena: insecticide-induced horm-

esis, and induction/cross-induction of detoxification

enzymes. Neither is usually considered in studies of
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The nature of insecticide stress arising from the potential interactions

between an insecticide and environmental components, as well as the

potential interactions among environmental components under the

direct influence of the insecticide.
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The chain of potential hierarchical interactions and responses sparked by an insecticide.
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insecticide resistance, but both have management and

environmental implications. Insecticide-induced

hormesis is a biphasic dose–response relationship

characterized by a reversal in response between low

and high doses of a stressor, such as an insecticide

[6��,8,9]. The direct relevance of hormesis to insecticide

resistance is its occurrence in insecticide-resistant popu-

lations, as demonstrated by pyrethroid-resistant weevils

[20]. This may take place upon failure of the insecticide

to suppress the insecticide-resistant population, with the

sublethal exposure falling in the range of hormesis for that

population. The end result is the field application rate not

only leading to control failure, but actually boosting the

growth of the resistant population.

The possibility of induction and cross-induction of

detoxification enzymes is also of interest. These are

broadly recognized as important insecticide resistance

mechanisms upregulated (and overexpressed) in several

resistant populations and prevailing against certain

insecticides like neonicotinoids [21]. However, these

detoxification enzymes are inducible, and the induction

may still take place in insecticide-resistant populations

sublethally exposed to insecticide, priming the insects

against further exposure to the same or even other

compounds, a phenomenon also referred to as hormetic

priming or conditioning [22,23�,24]. Imidacloprid priming

was recently recognized in the green peach aphid with the

involvement of esterases (E4) and cytochrome P450

(CYP6CY3) [23�]. The priming may take place between

distinct stressors following a cross-induction pattern and

may occur in non-resistant populations as well, allowing

enhanced insecticide tolerance [23�,24,25]. This risk is

already an expressed concern for mosquito control where

prior exposure to urban pollutants and agriculture pesti-

cides can shape the response to insecticide exposure and

eventual selection for resistance [26–28]. As in hormetic

priming, forewarned is forearmed. The implications of

the phenomenon deserve attention as it may contribute to

and even shape inadvertent selection for insecticide

resistance in non-targeted pest species, as observed in

indoxacarb-resistant maize weevils and Bt-resistant fall

armyworm [29,30], apart from potentially leading to cross-

tolerance in insecticide-resistant populations.

Dual species interactions
Insecticide resistance is a broadly recognized ecological

backlash resulting from intensive insecticide use and

overuse/misuse. Therefore its study is a priority, where

the proactive role of the Insecticide Resistance Action

Committee is but an industry response to the challenge

[31]. Curiously though, the investigative effort on insec-

ticide resistance focuses solely on the target species

neglecting its interactive context and the chemical land-

scape in which it takes place. This reductionist approach

is understandable from an experimental perspective,

since it is simpler and cheaper. However, it is wholly

unrealistic, because single isolated species and/or chemi-

cals do not exist alone in nature, and sublethal exposure to

chemicals prevails.

Among co-occurring species, heterospecific interactions

may be affected by insecticides. Host–parasite interac-

tions allow for good examples, as does interspecific com-

petition between arthropod pest species. Although exam-

ples of insecticides affecting arthropod-natural enemy

interactions are frequent, the potential insecticide effects

on host plant-arthropod pest interactions and plant-pest-

natural enemy tri-trophic interactions are also potentially

important [6��]. For example, there is only preliminary

evidence that insecticides may interfere with volatile

emission by host plants either enhancing or compromis-

ing arthropod pest foraging [32–34], a growing concern

with anthropogenic compounds in general [35,36�]. The

potential pesticide induction of (and de novo) extrusion of

linear furanocoumarins to the leaf surface of host plants is

but an example deserving of attention [37]. Furthermore,

insecticides can of course impair stimuli reception and/or

processing by insects, compromising such interactions

[6��,38], the specifics of which will vary with the level

of insecticide resistance and underlying mechanism

involved.

Shifts in species dominance may also be mediated by

sublethal insecticide exposure due to differences in tol-

erance, and resistance, between insect species and popu-

lations. Insecticides, as agents of disturbance or stress,

may alter ecological relationships leading to shifts in

dominance of competing species, as reported among

mosquitoes and grain beetles [39,40�]. Such direct evi-

dence is rare, but gives credence to the intermediate

disturbance hypothesis: intermediate levels of environ-

mental disturbance are predicted to result in increased

species diversity while compromising the previously

dominant species [6��,40�]. The rationale is the same if

insecticide-resistant populations of different species are

involved.

Insecticide resistance and sublethal exposure may also

contribute to secondary pest outbreaks, which is the

increase in abundance of a non-targeted pest species after

insecticide application against the targeted species. Pyre-

throid-induced hormesis for instance seems to favor out-

breaks of the southern red mite in coffee plantations upon

pyrethroid use against the coffee leafminer [41]. In addi-

tion, insecticide application against a targeted species will

also likely lead to sublethal insecticide exposure of an

already resistant population of another co-existing pest

species, promoting its outbreak. Current use of Bacillus
thuringiensis toxins (Bt toxins; or Bt for short) in transgenic

soybean in Brazil, for instance, might be favoring further

increase in stink bug outbreaks in the country, a non-

targeted group of pest species. Past use of Bt maize

expressing Cry1A toxins against budworms likely allowed

Sublethal exposure, resistance, and community stress Guedes, Walse and Throne 49
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inadvertent cross-selection to Cry1F in the fall army-

worm. Both circunstances likely aggravated recent out-

breaks of stink bugs and armyworm in the country since

the introduction of this technology justifying the stated

concern.

Community stress
Anthropogenic stress agents, particularly insecticides, are

rather frequent components of urban and agricultural

ecosystems, combining to form a complex chemical land-

scape where an assemblage of species populations coex-

ist. If these populations do interact with one another, they

integrate as a community that is subject to the landscape

and its (biologically-active) chemical components. Thus,

these biologically-active chemicals are potential contri-

butors to shaping community structure. The underlying

mechanisms involved in this process are a focus of debate

in ecotoxicology, besides constituting an unplanned evo-

lutionary experiment based on the adaptive mismatch

between undisturbed and anthropogenically disturbed

environments [42]. Research with bacterial communities

and aquatic ecosystems has been intensive, giving cre-

dence to this notion [42–46], in sharp contrast with the

attention paid to pesticides and arthropods in urban and

agricultural ecosystems [6��].

Sublethal (insecticide) exposure and insecticide resis-

tance are important components in shaping community

stress through inadvertent selection, hormesis, hormetic

priming, induced shift in dominance, impairment of

species interactions, and eventual pest outbreaks, as

already discussed. Most research on insecticide-induced

community stress carried out with terrestrial arthropods

has focused on natural enemies of arthropod pest species,

frequently even neglecting their associated host complex

[6��,47,48]. Besides non-targeted pest species, insecti-

cides are also likely to affect direct and indirect compe-

titors, their host organisms, detritivorous species, and

pollinators, organisms potentially important to agricul-

tural yield and disease transmission. The few available

studies on terrestrial arthropod communities are relatively

short-term, encompassing no more than two or three

seasons, and thus less likely to detect community-wide

effects since such effects usually take longer to express.

Among these studies, the impact of Bt toxins in transgenic

crops have received the bulk of recent attention.

Pre-market assessments of the risk associated with Bt

crops are a current regulatory requirement in several

countries, which encourages assessment of community

stress. However, their community effects tend to be

negligible, and the short-term assessment is a likely

reason for that [45,49–52]. Nonetheless, post-marketing

5–10 year assessments of community effects are also

required in some countries, and such data sets still must

be duly explored. As with any modification in cultivation

system, community changes are expected, but they may

be negligible. Nonetheless, considering the intended

negative impact on at least one key arthropod pest species

targeted by the transgenic Bt plants, changes in this

targeted species and associated food-web are expected

and should be evident, particularly in long-term assess-

ments. Curiously, we are aware of only a single study

exploring food web analysis in community stress by Bt

crops [53��]. This laudable effort was a short-term study

focusing on broad trophic groups and taxa, compromising

the potential resolution of the analyses for detecting

species-associated food-web effects, while understand-

ably favoring the search for broader patterns across Cen-

tral Europe. Nevertheless, the approach is most welcome

and merits further use.

Knowledge gaps & future perspectives
The prevailing negative perception of insects in human

society [54,55] and use of insecticides as killing agents

arguably contribute to the insecticide debate, as well as

research biased towards oversimplified lethal assessments

and short-term studies focusing on individual organisms

and populations of arthropod pests, some of their natural

enemies, and pollinators. The market value of insecti-

cides as the dominant pest management tool in use for the

last 70+ years, the associated agrochemical industry and

user interests, together with regulatory demands, have

largely reinforced and shaped insecticide research along

the current lines.

The inherent conflict of interest existing in insecticide

research, where the agrochemical companies are the main

research sponsors, and a user-oriented focus favor

short-term studies on efficacy and on immediate localized

(and suspected) impacts directly influencing pest control

or yield production. This scenario neglects the prevalence

of sublethal exposure in nature, and the complex

environmental context in which this exposure takes place

among a myriad of co-occurring species and biologically

active chemicals. Thus, the role of sublethal exposure in

insecticide resistance remains largely unexplored.

Furthermore, sublethal insecticide stress is bound to

interfere with environmental context and ecological

interactions, particularly when long-term exposure, or

more precisely persistent short-term exposure, is

considered.

An overhaul of the current methods and approaches used

in insecticide research should be considered exploring a

more holistic and comprehensive theoretical framework.

The experimental methods necessary for this approach

necessarily require expertise that goes beyond the current

focus on proximate mechanisms at the biochemical

and physiological levels, which are a common emphasis

in current Insecticide Toxicology courses within

Entomology (Post-)Graduate Programs. The ultimate

consequences of pesticide exposure, particularly suble-

thal exposure, are paramount but require knowledge of

50 Pests and resistance
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life-history trade-offs, behavioral ecology, and population

and community ecology; the mediating role of natural and

engineered environmental chemistries also should not be

neglected, as they are critical to arthropod–arthropod and

arthropod–host interactions.

The simultaneous assessment of sublethal toxicological

endpoints, such as effective median concentrations for

population growth rate and the balance among the life-

history traits involved, is labor intensive. They usually

require the use of life tables, but are pivotal for studies on

insecticide-induced hormesis, among others. However,

these methods have been greatly simplified and surro-

gates exist making then more cost-effective [6��,7]. Stud-
ies on insect assemblages and communities are also labor

intensive and require high-level taxonomic expertise

because identification at genus and species level is impor-

tant for high resolution detection of responses. Multivari-

ate statistical methods are required for such studies with

multiple species, multiple chemical compounds, and

their interactions. Furthermore, more recent approaches

such as food-web and social network analyses are under

current development exhibiting unrealized potential for

future endeavors in understanding pesticide–arthropod

interactions.

The proposed theoretical framework should expand the

notion of adverse outcome pathways to explore stress

response pathways linking molecular (primary and sec-

ondary) events taking place within co-occurring species,

their potentially intercrossing and parallel pathways, and

their intertwined hierarchical consequences beyond the

population level. The notion is bold, the challenges and

expertise required may be daunting at first, but rewards

greatly surpass the challenges. The relevance of the

subject goes well beyond pest management. Anthropo-

genic compounds, particularly pesticides, are a prevalent

landscape feature, whose potential eco-evolutionary con-

sequences have yet to be comprehended. Thus, let there

be light!
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