University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

USDA National Wildlife Research Center - Staff **Publications**

U.S. Department of Agriculture: Animal and Plant Health Inspection Service

2018

Clinostomum poteae n. sp. (Digenea: Clinostomidae), in the trachea of a double-crested cormorant Phalacrocorax auritus Lesson, 1831 and molecular data linking the life-cycle stages of Clinostomum album Rosser, Alberson, Woodyard, Cunningham, Pote & Griffin, 2017 in Mississippi, USA

Thomas G. Rosser Mississippi State University, graham.rosser@msstate.edu

Wes A. Baumgartner Mississippi State University

Neely R. Alberson Mississippi State University

Travis W. Noto Mississippi State University

Ethan This and a grad to a works at: https://digitalcommons.unl.edu/icwdm_usdanwrc Ssissippi State University Part of the Life Sciences Commons

See next page for additional authors Rosser, Thomas G.; Baumgartner, Wes A.; Alberson, Neely R.; Noto, Travis W.; Woodyard, Ethan T.; King, D. Tommy; Wise, David J.; and Griffin, Matt J., "Clinostomum poteae n. sp. (Digenea: Clinostomidae), in the trachea of a double-crested cormorant Phalacrocorax auritus Lesson, 1831 and molecular data linking the life-cycle stages of Clinostomum album Rosser, Alberson, Woodyard, Cunningham, Pote & Griffin, 2017 in Mississippi, USA" (2018). USDA National Wildlife Research Center - Staff Publications. 2141. https://digitalcommons.unl.edu/icwdm_usdanwrc/2141

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Authors

Thomas G. Rosser, Wes A. Baumgartner, Neely R. Alberson, Travis W. Noto, Ethan T. Woodyard, D. Tommy King, David J. Wise, and Matt J. Griffin

Clinostomum poteae n. sp. (Digenea: Clinostomidae), in the trachea of a double-crested cormorant *Phalacrocorax auritus* Lesson, 1831 and molecular data linking the lifecycle stages of *Clinostomum album* Rosser, Alberson, Woodyard, Cunningham, Pote & Griffin, 2017 in Mississippi, USA

Thomas G. Rosser · Wes A. Baumgartner · Neely R. Alberson · Travis W. Noto · Ethan T. Woodyard · D. Tommy King · David J. Wise · Matt J. Griffin

Received: 9 March 2018/Accepted: 13 May 2018/Published online: 31 May 2018 © Springer Science+Business Media B.V., part of Springer Nature 2018

Abstract *Clinostomum* spp. (Digenea: Clinostomidae) are a group of trematodes commonly found in the buccal cavity and oesophagus of a variety of piscivorous birds. The metacercariae, colloquially known as "yellow grubs," have been reported from a diverse group of freshwater fishes worldwide. In the catfish farming region of the southeastern USA, piscivorous

This article was registered in the Official Register of Zoological Nomenclature (ZooBank) as 508BCBDB-24C7-4ADC-8CBC-7B2089FD3B83. This article was published as an Online First article on the online publication date shown on this page. The article should be cited by using the doi number. This is the version of record.

This article is part of the Topical Collection Digenea.

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11230-018-9801-5) contains supplementary material, which is available to authorized users.

T. G. Rosser (⊠) · N. R. Alberson ·
T. W. Noto · E. T. Woodyard
Department of Basic Sciences, College of Veterinary
Medicine, Mississippi State University, Mississippi State,
MS 39762, USA
e-mail: graham.rosser@msstate.edu

W. A. Baumgartner · M. J. Griffin Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA birds present a continuous challenge for aquaculturists in the form of fish depredation and the introduction of trematodes into these static, earthen pond systems. Clinostomum spp. are commonly encountered in farmraised catfish. While generally considered pests of minimal importance, heavy infections can result in unmarketable fillets. Of the piscivorous birds that frequent catfish aquaculture operations in the southeastern US, the double-crested cormorant (Phalacrocorax auritus Lesson) is one of the most damaging, although reports of Clinostomum spp. from P. auritus are limited. In this study, adult trematodes morphologically consistent with *Clinostomum* sp. were found in the trachea of a double-crested cormorant captured in Lowndes Co., Mississippi, USA. These specimens differed from other recognised *Clinostomum* spp. in several key morphological characters. Moreover, sequence data of mitochondrial cytochrome c oxidase subunit 1 gene (cox1), nicotinamide adenine

D. Tommy King

Mississippi Field Station, National Wildlife Research Center, Wildlife Services, United States Department of Agriculture, Mississippi State, MS 39762, USA

D. J. Wise · M. J. Griffin

Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, MS 38776, USA

This document is a U.S. government work and is not subject to copyright in the United States. dinucleotide dehydrogenase subunit 1 gene (nad1) and ribosomal internal transcribed spacer (ITS) regions did not match any known *Clinostomum* sp. for which sequence data are available. While genetically similar to C. marginatum and C. album Rosser, Alberson, Woodyard, Cunningham, Pote & Griffin, 2017 reported from the great egret Ardea alba L. in Mississippi, these adult clinostomids were larger in size and limited to the trachea, whereas both C. marginatum Rudolphi, 1819 and C. album are found in the oral cavity and esophagus. Given these distinct morphological and molecular characters we propose a new member of the genus, known hereafter as Clinostomum poteae n. sp. Additionally, larval stages in the life-cycle of C. album are morphologically and molecularly identified for the first time from ramshorn snails Planorbella trivolvis Say and fathead minnows Pimephales promelas Rafinesque.

Introduction

The Clinostomidae Lühe, 1901 is a diverse family of trematodes found primarily in the buccal cavity and oesophagus of birds, reptiles, and mammals (Ukoli et al., 1966). Of the clinostomids, *Clinostomum* spp. Leidy, 1856 have been well documented in the literature and are recognised globally as parasites of economic and ecologic importance in freshwater fish and amphibians. The metacercaria stage is often referred to by aquaculturists, fish health professionals and parasitologists by the colloquial name "yellow grub". Freshwater snails, usually of the family Planorbidae Rafinesque, serve as the first intermediate host (Krull, 1934; Pinto et al., 2015).

Currently, experimental life-cycle studies using natural definitive hosts are rarely performed as they are labor intensive and in many cases logistically unfeasible due to availability of hosts, regulatory hurdles and other interfering factors. In the absence of experimental challenges, putative life histories and the other aspects of parasite ecology can be determined by linking molecular sequence data obtained from morphologically ambiguous larval stages to gene sequences collected from adult specimens identified by morphologically distinct characters (Criscione et al., 2005). Studies investigating the global and regional diversity of *Clinostomum* species have demonstrated an unexpected number of putative species identified by molecular and phylogenetic analyses of nuclear and mitochondrial genes (namely the internal transcribed spacer regions and cytochrome c oxidase subunit 1 gene) (Locke et al., 2015; Pérez-Ponce de León et al., 2016). In North America, six distinct Clinostomum spp. are recognised based on discrete morphological characters, all of which have molecular sequence data available for reference (Bravo-Hollis, 1947; Hutton & Sogandares-Bernal, 1960; Sereno-Uribe et al., 2013; Locke et al., 2015; Rosser et al., 2017; Briosio-Anguilar et al., 2018). At least nine additional Clinostomum spp. are proposed, based solely on mitochondrial cytochrome c oxidase subunit 1 gene (cox1) and ribosomal internal transcribed spacer regions (ITS) sequences obtained from larval (Locke et al., 2015) and some adult stages (Pérez-Ponce de León et al., 2016), although corresponding morphological data for these putative species are limited. Further efforts to elucidate the species boundaries within the genus Clinostomum should require detailed morphometric analysis, in combination with molecular analyses of multiple gene targets, and when available, the inclusion of ecological data. Ecological data should include primary host range, tissue tropism, geographical locality and other aspects as recommended by Blasco-Costa et al. (2016).

In the southeastern USA, production of channel Ictalurus punctatus Rafinesque and hybrid catfish (channel catfish x 3 blue catfish Ictalurus furcatus Valenciennes) is hindered by losses due to depredation by piscivorous birds and the trematodes they introduce into these systems. Double-crested cormorants Phalacrocorax auritus Lesson are one of the most damaging on account of their high prevalence and consumption rates (Glahn & King, 2004). A recent parasitological survey of cormorants from the catfish farming region of northwestern Mississippi revealed a diversity of trematodes (O'Hear et al., 2014), several of which have since been identified as parasites of catfish (Griffin et al., 2012; Rosser et al., 2016a, b). Clinostomum spp. have not been reported from double-crested cormorants in Mississippi but have been reported in the great egret Ardea alba L. (see Rosser et al., 2017) and other ardeid hosts foraging on or near catfish operations (Overstreet & Curran 2004).

Clinostomum marginatum Rudolphi, 1819 is reported from channel catfish, but infections are considered of limited importance as no significant pathological changes have been associated with infections and their impacts on production are negligible (Hawke & Khoo, 2004). However, in heavy infections, stunted growth may occur and the presence of numerous metacercariae in the musculature of the fish may result in rejection at processing (Hawke & Khoo, 2004). In addition to C. marginatum, great egrets in Mississippi are also infected with a second species, Clinostomum album Rosser, Alberson, Woodyard, Cunningham, Pote & Griffin, 2017. In Florida, USA, Hutton & Sogandares-Bernal (1960) noted Clinostomum attenuatum Cort, 1913 from the trachea of the Florida cormorant Phalacrocorax auritus floridanus Audubon. Similarly, Threlfall (1982) reports C. marginatum from the trachea and lungs of double-crested cormorant, P. auritus, in Florida, USA. A Clinostomum sp., reported as Clinostomum complanatum (Rudolphi, 1814), was also reported from the oral cavity and oesophagus of the Neotropic cormorant Phalacrocorax brasilianus Gmelin, the freshwater mollusc Biomphalaria peregrina d'Orbigny, four siluriform and one characiform fish in Brazil (Dias et al., 2003). However, recent morphological and molecular studies suggest the species designated as C. complanatum in the Americas may be misclassified (Caffara et al., 2011; Sereno-Uribe et al., 2013). Retrospective examination of specimens identified as C. complanatum from Central America were actually considered C. marginatum or the more recently described Clinostomum tataxumui Sereno-Uribe, Pinacho-Pinacho, García-Varela & Pérez-Ponce de León, 2013. The current literature suggests C. complanatum is not presently found in the New World, but further morphological and molecular studies are needed to verify these claims.

Herein we present a *Clinostomum* sp. described from the trachea of a single double-crested cormorant. Morphological and molecular data suggest this is a previously uncharacterised species, hereafter known as *Clinostomum poteae* n. sp. Additionally, we provide molecular data linking the larval stages of *C. album* in the snail and fish host. Histopathological characterisation of infections in the snail host, and novel molecular data of the nicotinamide adenine dinucleotide dehydrogenase subunit 1 gene (*nad*1) for three *Clinostomum* species are discussed.

Materials and methods

Bird trapping and necropsy

In September 2016, a single double-crested cormorant Phalacrocorax auritus, collected from Lowndes Co., Mississippi, USA, was euthanised using CO_2 and examined for helminth infections. The entire gastrointestinal tract was removed before being separated into four compartments: oesophagus, proventriculus and gizzard, and intestine (beginning posterior to the gizzard and terminating at the cloaca). The trachea and lower respiratory tract were also removed. All organs were opened longitudinally and examined grossly for the presence of helminths. The mucosal lining of the partitioned sections of the gastrointestinal tract were scraped manually and the contents washed with dechlorinated water into a 38-µm aperture brass sieve. The screened contents were rinsed into a container with 0.09% saline and the contents were examined in a lined Petri dish with the aid of a dissecting stereomicroscope (Olympus SZ60, Olympus Optical Co. Ltd., Tokyo, Japan). Adult helminths were collected and placed in 0.09% saline. Clinostomum sp. adults found attached to the lining of the trachea were gently detached with featherweight forceps (BioQuip Products, Rancho Dominquez, California, USA) and placed in 0.09% saline. All helminths were relaxed in nearly boiling saline and fixed in 70% ethanol. Adult trematodes morphologically consistent with Clinostomum sp. were limited to the trachea and are the focus of this work.

Snail host and cercariae collection

Ramshorn snails Planorbella trivolvis Say were collected (September 2016) from vegetation along the banks of a catfish production pond in Leflore County, Mississippi, USA, using a 1.5-mm mesh aquatic dip net. Snails were placed into 18.91 buckets containing c.101 of pond water and transported to the Thad Cochran National Warmwater Aquaculture Center. Snails were rinsed with well water, placed individually into plastic dilution vials (Fisher Scientific, Pittsburgh, Pennsylvania, USA) and covered with c.10 ml of autoclaved spring water (Ozarka[®], Wilkes Barre, Pennsylvania, USA). Every 24 hours the water column in each dilution vial was examined using a dissecting microscope (Olympus SZ60, Olympus Optical Co. Ltd., Tokyo, Japan) for cercariae. When cercariae were observed, a 1-ml aliquot of cercaria laden water was frozen at -20°C for molecular analysis from each infected snail.

Metacercariae collection

As part of a routine diagnostic investigation of fish health in a commercial catfish production pond in Lowndes County, Mississippi, USA, a single fathead minnow (6.6 cm) *Pimephales promelas* Rafinesque was examined in March 2017. Two encysted *Clinostomum* sp. metacercariae were collected from the coelomic cavity, excysted manually with metal pins, relaxed in nearly boiling 0.09% saline, and fixed in 70% ethanol for morphological and molecular analysis. An ethanol-archived specimen identified as *C. marginatum* from a blue gill *Lepomis macrochirus* Rafinesque was also trimmed for molecular analysis and included in this study.

Trematode staining and morphological analysis

A subsample (n = 10) of *Clinostomum* specimens from the trachea of the double-crested cormorant was transitioned from 70% ethanol to distilled water through a decreasing gradient of 1 hour ethanol washes (50%, 30% and 10%). Specimens were stained using Van Cleave's hematoxylin and mounted in Canada balsam. For a single specimen the entire worm was cleared in lactophenol and examined for body armature. A single specimen had a small section of the posterior extremity, not including reproductive organs, excised with a sterile scalpel blade and placed into a 1.5 ml tube for molecular analysis. This hologenophore was stained with Mayer's carmalum and mounted as described above.

Cercariae were studied live and vitally stained with 0.5% Jensen's neutral red [1 drop ($c.30 \mu$ l) of neutral red per 50 ml of cercariae in autoclaved spring water]. A portion were stained with Semichon's acetocarmine, destained in acidic ethanol, dehydrated in an increasing ethanol series, cleared in Hemo-De and mounted in Canada balsam as museum vouchers. Rediae were teased from the hepatopancreas of a single infected snail using insect pins, killed with nearboiling 0.09% saline and fixed in 70% ethanol. Saline wet mounts of rediae were examined for morphological characterisation. Voucher specimens of ethanol fixed rediae and cercariae were stained in Semichon's acetocarmine, destained in acidic ethanol, dehydrated in an increasing series of ethanol washes, cleared in Hemo-De, and mounted in Canada balsam. A second infected snail was relaxed in water with menthol crystals, briefly submerged in near boiling water, the body was gently removed with feather weight forceps, and fixed in Railliet-Henry's fixative (6 g sodium chloride dissolved in 930 ml distilled water, 50 ml formaldehyde (37%, w/v), and 20 ml glacial acetic acid) for histopathological examination.

Type- and voucher specimens were submitted to the Smithsonian Institution, National Museum of Natural History, Washington, DC, USA. Line drawings were made using a camera lucida and digitised using Adobe Illustrator CC 2017 (Adobe, San Jose, California, USA). Morphological characters are reported in micrometres and measurements are presented as the range, with mean (\pm standard deviation where applicable) in parentheses.

Fish experimental challenges

Clinostomid cercariae collected from infected snails were pooled into a 500-ml beaker, the water was gently agitated with a magnetic stir bar, and the average number of cercariae per milliliter was determined from ten 0.1 ml aliquots according to previously established protocols (Griffin et al., 2012, 2014; Rosser et al., 2016b; Alberson et al., 2017). Channel catfish fingerlings (c.2-4 cm) reared indoors for infectious disease research at the Thad Cochran National Warmwater Aquaculture Center in Stoneville, MS, were used in infectivity studies. Fish were placed in 1 gallon containers (7 containers, 3 fish/container) containing 3.81 of water with supplemental aeration and exposed to either 600 (n = 9) or 1,200 (n = 9) clinostomid cercariae per fish. One group of three fish were not exposed to cercariae and served as negative controls. Exposures lasted for four hours. Fish from each exposure group were placed into discrete 115-l aquaria, containing c.80 liters of well water (c.26-27°C) supplied at 1.9 l/min, with supplemental aeration. Fish were fed ad libitum and monitored twice daily for morbidity and mortality. Once weekly, fish were netted and examined grossly for the presence of metacercariae. Fish were sacrificed at 60 days post-exposure, examined grossly for the presence of metacercariae and a subsample of fish from the 1,200 cercariae/fish exposure group (n = 8) were submitted for histopathological analysis.

Histopathological analysis

The single snail used in histopathalogical analysis was kept in Railliet-Henry's fixative for at least 24 hours, hemisectioned, and embedded in paraffin wax for standard light microscopy slide preparation. Sections were stained with hematoxylin and eosin (HE) or periodic acid-Schiff methods for examination.

Eight channel catfish fingerlings (c.5 cm long) exposed to 1,200 cercariae/fish were euthanised 60 days post-infection with an overdose of tricaine methanesulfonate, abdomens opened by incision and fixed in 10% neutral buffered formalin for a minimum of 72 hours. Fish were decalcified in Kristensen's solution for 12 hours, soaked in sodium bicarbonate rich tap water to neutralise tissue pH, and fish were trimmed in c.3-mm cross-sections starting rostrally and moving caudally, with small adjustments to thickness to ensure all major organs were sampled. Tissues were processed routinely, embedded in paraffin, sectioned at approximately 4 μ m, stained with hematoxylin and eosin (HE), and examined using light microscopy.

Molecular analysis

Genomic DNA was extracted from three whole adult Clinostomum specimens from the trachea of the cormorant and the section of the hologenophore using the DNeasy Blood and Tissue Kit (Qiagen, Valencia, California, USA). Fragments (c.500 bp) of the cytochrome c oxidase subunit 1 (cox1) and mitochondrial nicotinamide adenine dinucleotide dehydrogenase subunit 1 (nad1) genes were amplified by PCR and sequenced from all specimens. An c.4,800-bp region of ribosomal DNA spanning the 18S rRNA gene, internal transcribed spacer (ITS) 1 region, 5.8S rRNA gene, ITS2 region, and partial 28S rRNA gene was sequenced from a single whole adult specimen, while only the ITS1, 5.8S rRNA gene, and ITS2 region was sequenced from the remaining three adult specimens. Primers used in amplifying each region are listed in Supplementary Table 1. Briefly, each 20-µl reaction consisted of 7 µl of nuclease-free water, 10 µl of Phusion Green Hot Start II High-Fidelity PCR Master Mix, 10 µM of each primer, and 1 µl of genomic DNA ($c.10 \text{ ng/}\mu\text{l}$). Cycling parameters for the 1F/5R, BD1/BD2, LSU5/1500R, and NDJ11/NDJ2a primer sets were 98°C for 3 min, 39 cycles at 98°C for 10 s, 48°C for 30 s, and 72 °C for 1 min, and a final extension at 72°C for 10 min. The Barker3/Barker4 primer set differed from the others by an annealing temperature of 53°C. Similarly, the Diplo1795F/ Diplo2549R, Diplo2617F/Diplo3170R, 28S3431F/ 28S4779R, and 28S4759F/28S5699R primer sets differed by an annealing temperature of 58°C.

Frozen 1-ml aliquots of water containing Clinostomum sp. cercariae released by P. trivolvis were thawed, contents were pelleted by centrifugation $(10,000 \times \text{ g for } 10 \text{ min})$, and gDNA was extracted using the DNeasy PowerSoil Kit (Qiagen Inc.) according to the manufacturer's protocol. Total gDNA from the portion of tissue excised from the each metacercaria was extracted as described for the adult Clinostomum sp. For all cercariae and metacercariae gDNA extracts, three regions were amplified as described previously using the BD1/BD2 primers for the ribosomal ITS regions, cox1_schist5'/acox650r primers for the *cox*1 gene, and NDJ11/NDJ2a primers for the *nad*1 gene. Additionally, the *nad*1 gene was amplified from archived gDNA of an adult of Clinos*tomum marginatum* from a great egret (n = 1) (Rosser et al., 2017), metacercaria of C. marginatum from an inland silverside (n = 1) (Rosser et al., 2016b), and an adult of Clinostomum album collected from a great egret (n = 1) (Rosser et al., 2017).

PCR products were electrophoresed through 0.8% agarose gels in the presence of ethidium bromide ($0.5 \,\mu g/$ ml) and visualised under ultraviolet light. Each gel was run with a concurrent molecular weight ladder (HyperLadderTM 50 bp, Bioline, London, UK) to confirm presence of appropriate sized bands. Amplicons were excised and purified for sequencing using the QIAquick Gel Extraction Kit (Qiagen Inc.). Products were commercially sequenced bidirectionally with the forward and reverse primer used to generate each representative amplicon (Eurofins MWG Operon LLC, Huntsville, Alabama, USA). Electropherograms for the ribosomal and mitochondrial regions were aligned and annotated using Geneious[®] 10.1.3 (Biomatters Ltd., Auckland, New Zealand). The contiguous rRNA, cox1, and nad1 gene sequences were compared to other Clinostomum species available in the National Center for Biotechnology Information non-redundant nucleotide database (NCBI nr/nt) by a BLASTN search (Altschul et al., 1990).

Phylogenetic analyses

Archived sequences of representative species of the family Clinostomidae Lühe, 1901, were downloaded from the NCBI nr/nt database and in some cases obtained from supplementary files from original works (i.e. Locke et al., 2015) (Supplementary Table 2). Downloaded sequences were limited to specimens

with data available for both the ITS regions and *cox*1 Type-locality: Lowndes County, Mississippi, USA. Site in host: Trachea. Type-material: Holotype USNM 1488288; 3 paratypes USNM 1488289-1488291; 1 hologenophore USNM 1488292. Prevalence and intensity of infection: 1 of 1 P. auritus; 22 worms. Representative MH282567-MH282570 MH282550-MH282553 (cox1 gene); MH282520-MH282522 (nad1 gene). Zoobank registration: To comply with the regulations set out in article 8.5 of the amended 2012 version of the International Code of Zoological Nomenclature (ICZN, 2012), details of the new species have been submitted to ZooBank. The Life Science Identifier (LSID). The LSID for Clinostomum poteae n. sp. is urn:lsid:zoobank.org:act:25DA863A-F83C-4540-

B95F-9299B24835CA.

Etymology: The species epithet is reference to and in memory of parasitologist Dr Linda Marie Wayland Pote in recognition of her contributions to the field of aquatic animal and avian parasitology, and her enthusiasm for training a new generation of parasitologists.

DNA

Description (Figs. 1, 2)

[Based on 10 ovigerous adults, Van Cleave's hematoxylin stained and mounted in Canada balsam, see Table 1.] Body, aspinose, dorso-ventrally flattened, linguiform, widest at level of gonads, slightly constricted at ventral sucker level. $7,256-9,144 \times 1,628-2,210$ (8,178 × 1,930); body length to body width ratio 3.8-4.7 (4.2). Oral collar-Clinostomum like fold typical of spp., $652-910 \times 940-1,153$ (757 × 1,064) surrounding oral sucker. Oral sucker spherical, $311-365 \times 337-400$ (331 × 370). Pharynx not observed, branching of intestinal caeca occurs just posterior to oral collar. Paired intestinal caeca laterally extend almost entire length of body with broad diverticular foldings beginning at level of posterior border of ventral sucker. Ventral sucker large, $797-922 \times 834-978$ (875 × 909), located in lower to middle portion of anterior third of body. Distance between oral and ventral suckers 669-936 (769).

Testes 2, tandem, located in upper third of hindbody. Anterior testis variably lobed. 441–665 \times 594–928 (550 \times 792). Posterior testis

gene, Additionally, two members of the Diplostomidae Poirier, 1886 (Alaria mustelae Bosma, 1931 and Diplostomum baeri Dubois, 1937) were included in the alignments as outgroups. For the ribosomal region dataset, the ITS1, 5.8S rRNA gene, and ITS2 region were extracted using ITSx v. 1.0.11 (Bengtsson-Palme et al., 2013). The cox1 and extracted ITS1, 5.8S rRNA, and ITS2 regions were aligned with MAFFT 7.222 in Geneious[®] 10.1.3 (Katoh et al., 2002; Katoh & Standley, 2013). Positions in each alignment containing at least one gap were eliminated and the regions were concatenated for a final alignment containing 1,127 positions. The Bayesian Information Criterion was used to select the nucleotide substation models that best described the data for each region (Nei & Kumar, 2000; Kumar et al., 2016): cox1 codon position 1 (TN93 + I; 164 positions), cox1 codon position 2 (HKY; 164 positions), cox1 codon position 3 (TN93 + G; 164 positions), ITS1 region (K2 + G; 399 positions), 5.8S rRNA gene (JC; 157 positions), and ITS2 region (JC + G; 70 positions). Bayesian inference analysis was performed in MrBayes 3.2.6 using Markov chain Monte Carlo searches of two simultaneous runs of four chains with sampling of every 100th tree until convergence, when the value of the standard deviation of split frequencies was < 0.01. At this point the first 25% were discarded as 'burn-in' and posterior probabilities were calculated from the remaining trees. Maximum likelihood analysis was performed using IQ-Tree (Nguyen et al., 2015) on the IQ-Tree web server (Trifinopoulos et al., 2016) with the concatenated alignment and partition scheme described previously. Branch support was tested using ultrafast bootstrap support (Minh et al., 2013) with 1,000 pseudoreplicates. Dendrograms were viewed in FigTree 1.4.2 (Rambaut, 2014) and annotated in Adobe Illustrator CC 2017 (Adobe, San Jose, California, USA). Pairwise distances based on the cox1 sequences used in the alignment for phylogenetic analysis and nad1 sequences were calculated using MEGA7 (Kumar et al., 2016).

Family Clinostomidae Lühe, 1901 Genus Clinostomum Leidy, 1856

Clinostomum poteae n. sp.

Type-host: Phalacrocorax auritus (Lesson) (Aves: Phalacrocoracidae), double-crested cormorant.

sequences:

(ribosomal

GenBank

regions);

Fig. 1 Photomicrographs of Van Cleave's hematoxylin-stained *Clinostomum poteae* n. sp. from *Phalacrocorax auritus* collected in Lowndes County, Mississippi, USA. A, Holotype; B–C, Paratypes. *Scale-bar*: 1 mm

triangular, lobed, $463-699 \times 528-799$ (601 × 715). Distance between testes 472–590 (524). Cirrus-sac, ovoid, $503-662 \times 294-445$ (553 × 382), located at level of and overlapping right margin of anterior testis.

Ovary dextral, intertesticular, ovoid, $328-428 \times 225-307$ (396 \times 268). Oötype complex, intertesticular, located at midline of body. Mehlis' gland prominent, finer details of Laurer's canal obscured by presence of eggs. Uterine duct intracaecal, extending anteriorly around left margin of anterior testis before opening into uterine sac. Uterine sac tubular, extends anteriorly in midline of body to level of posterior margin of ventral sucker. Genital pore opening into genital atrium near midline or right margin of the body at level of anterior testis. Anterior limits of vitelline fields at midpoint of ventral sucker, posterior limits at posterior end of caeca. Eggs yellowish, operculate, $105-119 \times 63-75$ (112×71).

Remarks

Clinostomum poteae n. sp. is morphologically consistent with other members of the genus and the ranges for many morphological characters overlap with other *Clinostomum* spp. from the Americas (Table 1). *Clinostomum intermedialis* Lamont, 1920 described

Fig. 2 Line drawing of the holotype of *Clinostomum poteae* n. sp. from *Phalacrocorax auritus* collected in Lowndes County, Mississippi, USA. *Scale-bar*: 1 mm

from *Phalacrocorax vigua* Vieillot differs from *C. poteae* n. sp. in the placement of the anterior testis and its size. The anterior testis of *C. intermedialis* is distinctly ovoid in mature specimens and located in the left margin of the body compared to the typically lobed anterior testis of other *Clinostomum* spp. and placement in the midline of the body. Based on the most recent description by Bravo-Hollis (1947) both testes of *C. intermedialis* are considerably larger in size compared to the other *Clinostomum* spp. from the Americas except for *Clinostomum heluans* Braun,

1899 in which the gonads are located posteriorly in the body. Lunaschi & Drago (2009) considered C. intermedialis a member of the genus Clinostomatopsis Dollfus, 1932 based on the placement of the genital pore. Although similar in morphology to C. attenuatum studied by Hutton & Sogandares-Bernal (1960) from the trachea of cormorants, morphological variations exist between C. attenuatum and C. poteae n. sp. Hutton & Sogandares-Bernal (1960) provided measurements for the seven adult specimens they encountered. Using these data, additional morphometric parameters used in previous studies of *Clinostomum* spp. were evaluated. These include the ratios body length/body width, oral sucker width/body width, ventral sucker width/oral sucker width, ventral sucker width/body width, anterior testis width/anterior testis length, posterior testis width/posterior testis length, and ovary width/ovary length (Table 1). *Clinostomum attenuatum* is notably wider than C. poteae n. sp. in regard to body width and has a smaller ratio of body length to body width, with C. poteae being consistently longer. The testes size for C. attenuatum compared with C. poteae n. sp. are notably wider, although ranges for length and width slightly overlap. Hutton & Sogandares-Bernal (1960) noted the testes of C. attenuatum were crescent shape in most specimens with few being slightly lobed. This is in contrast to the distinctly lobed nature of the testes of C. poteae n. sp., especially in regard to the anterior testis. Clinostomum marginatum has also been reported from the trachea of double-crested cormorants in Florida; however, the placement of the gonads and size of the ovary of C. poteae n. sp. differs from C. marginatum described from ardeid birds (Caffara et al., 2011; Rosser et al., 2017).

In addition to morphological variation, *C. poteae* n. sp. is molecularly distinct from any *Clinostomum* sp. with *cox1* sequence data to date, including *C. album*, *C. attenuatum*, *C. marginatum*, and *C. tataxumui*, two of which have been reported from double-crested cormorants.

Clinostomum album Rosser, Alberson, Woodyard, Cunningham, Pote & Griffin, 2017

First intermediate host: Planorbella trivolvis (Say) (Gastropoda: Planorbidae).

Second intermediate host: Fathead minnow Pimephales promelas (Rafinesque) (Cypriniformes: Cyprinidae).

Site in host: Hepatopancreas (ex *P. trivolvis*); coeolomic cavity (ex *P. promelas*).

Table 1 Moi	phological data o	of Clinostomum spp. from bii	rds in North America					
Parasite	Clinostomum album	Clinostomum attenuatum	Clinostomum golvani	Clinostomum heluans	Clinostomum marginatum	Clinostomum marginatum	Clinostomum poteae n. sp.	Clinostomum tataxumui
Host	Ardea alba L.	Phalacrocorax auritus floridanus Lesson	Butorides virescens	Ardea herodias L.	A. herodias L., Bubulcus ibis L.	Ardea alba L.	Phalacrocorax auritus	A. alba L., A. herodias L., Tigrisoma mexicanum Swainson
Locality	Mississippi, USA	Florida, USA	Guadeloupe	Mexico	Canada; Florida & Texas. USA	Mississippi, USA	Mississippi, USA	Mexico
Reference	Rosser et al. (2017)	Hutton & Sogandares- Bernal (1960)	Nassi & Bayssade- Dufour (1980)	Bravo-Hollis (1947)	Caffara et al. (2011)	Rosser et al. (2017)	This study	Sereno-Uribe et al. (2013)
BL	4,402–5,929	6,900–7,358	4,020–7,460	20,706-26,145	5,900-8,200	5,132-6,210	7,256–9,144	3,360-9,800
	(5, 269)	(7,058)			(1,000)	(5,697)	(8,178)	(4,500)
BW	969 - 1, 108	2,080-2,650	2,330–3,440	2,640-3,444	1,300-2,800	1,350-1,820	1,628-2,210	800 - 3,000
	(1,047)	(2,429)			(2,000)	(1,562)	(1,930)	(1,200)
BL/BW	4.2 - 6.1	2.6–3.4	I	I	I	3.2-4.0	3.8-4.7	I
	(5.0)	(2.9)				(3.7)	(4.2)	
OCL	357-507	I	I	840 - 1,000	I	432–793	652-910	330–990
	(428)					(561)	(757)	(460)
OCW	526-690	I	I	1,000-1,440	I	742–963	940-1,153	570-1,570
	(617)					(823)	(1,064)	(160)
OSL	207–307	310–380	290-400	640-800	171–394	246–299	311–365	170-350
	(256)	(331)			(311)	(268)	(331)	(206)
OSW	234–344		220–300	700–580	252-501	237–318	337-400	170–300
	(263)				(399)	(267)	(370)	(208)
OSW/BW	0.2 - 0.4	0.12-0.15	I	I	I	0.15 - 0.19	0.18-0.21	I
	(0.3)	(0.14)				(0.2)	(0.2)	
VSL	480–648	790-864	600-850	880-1100	601–918	550-694	797–922	420-850
	(578)	(828)			(764)	(612)	(875)	(536)
VSW	485–610			880-1100	583-966	589-677	834–978	420–777
	(560)				(756)	(611)	(606)	(524)
VSW/OSW	1.5-2.4	2.3–2.7	I	I	I	2.0-2.5	2.3–2.6	I
	(2.2)	(2.5)				(2.3)	(2.5)	
VSW/BW	0.5-0.6	0.3–0.4	I	I	I	0.37-0.44	0.4-0.5	I
	(0.5)	(0.3)				(0.4)	(0.5)	

551

Table 1 conti	nued							
Parasite	Clinostomum album	Clinostomum attenuatum	Clinostomum golvani	Clinostomum heluans	Clinostomum marginatum	Clinostomum marginatum	Clinostomum poteae n. sp.	Clinostomum tataxumui
Host	Ardea alba L.	Phalacrocorax auritus floridanus Lesson	Butorides virescens	Ardea herodias L.	A. herodias L., Bubulcus ibis L.	Ardea alba L.	Phalacrocorax auritus	A. alba L., A. herodias L., Tigrisoma mexicanum Swainson
Locality	Mississippi, USA	Florida, USA	Guadeloupe	Mexico	Canada; Florida & Texas, USA	Mississippi, USA	Mississippi, USA	Mexico
Reference	Rosser et al. (2017)	Hutton & Sogandares- Bernal (1960)	Nassi & Bayssade- Dufour (1980)	Bravo-Hollis (1947)	Caffara et al. (2011)	Rosser et al. (2017)	This study	Sereno-Uribe et al. (2013)
DBS	360-827	I	I	I	I	640–928	669–936	1
	(656)					(170)	(169)	
ATL	266–469	436-500	210–360	860–900	290–743	373–526	441–665	220-650
	(375)	(479)			(519)	(453)	(550)	(341)
ATW	449–535	900-1,000	550-650	1700 - 1840	569-1,141	534–737	594–928	370 - 1,005
	(488)	(667)			(802)	(667)	(792)	(506)
ATW/ATL	1.1 - 1.7	1.8–2.3	I	I	I	1.2-1.8	1.1–1.8	I
	(1.3)	(2.0)				(1.5)	(1.5)	
PTL	313-473	400–518	260-400	640-840	166-587	319–589	463–699	240-420
	(425)				(461)	(424)	(601)	(346)
PTW	416-571	774–980	780-800	1,440-1,740	379-1,414	569-826	528–799	450-1,220
	(501)				(06 <i>L</i>)	(100)	(715)	(599)
PTW/PTL	1.0-1.3	1.7-2.2	Ι	I	I	1.4–1.9	0.9 - 1.4	I
	(1.2)	(2.0)				(1.7)	(1.2)	
DBT	264–354	I	I	I	I	252–378	472–590	I
	(298)					(312)	(524)	
OVL	201–281	273-300	280-480	640-840	118-306	187–261	328-428	160-420
	(235)				(175)	(236)	(396)	(218)
0VW	180–254	346-465		360-714	101-267	176–256	225–307	150-360
	(199)				(186)	(217)	(268)	(196)
MV0/JV0	0.8-0.9	0.6–0.8	I	I	I	0.8 - 1.04	0.5 - 0.8	I
	(0.8)	(0.7)				(6.0)	(0.7)	
CSL	140–307	I	I	I	151–795	316-544	503-662	250-520

Table 1 contin	nued							
Parasite	Clinostomum album	Clinostomum attenuatum	Clinostomum golvani	Clinostomum heluans	Clinostomum marginatum	Clinostomum marginatum	Clinostomum poteae n. sp.	Clinostomum tataxumui
Host	Ardea alba L.	Phalacrocorax auritus floridanus Lesson	Butorides virescens	Ardea herodias L.	A. herodias L., Bubulcus ibis L.	Ardea alba L.	Phalacrocorax auritus	A. alba L., A. herodias L., Tigrisoma mexicanum Swainson
Locality	Mississippi, USA	Florida, USA	Guadeloupe	Mexico	Canada; Florida & Texas, USA	Mississippi, USA	Mississippi, USA	Mexico
Reference	Rosser et al. (2017) (222)	Hutton & Sogandares- Bernal (1960)	Nassi & Bayssade- Dufour (1980)	Bravo-Hollis (1947)	Caffara et al. (2011) (327)	Rosser et al. (2017) (418)	This study (553)	Sereno-Uribe et al. (2013) (350)
CSW	117-162	1	I	I	166-741	154-298	294-445	130-300
	(146)				(497)	(220)	(382)	(172)
CSL/BL	0.02 - 0.1	1	I	I	I	0.06 - 0.09	0.1 - 0.1	I
	(0.04)					(0.1)	(0.1)	
EGGL	90-108	109-115	111-120	114-136	101-109	94-105	104-119	I
	(100)		(116)		(105)	(101)	(112)	
EGGW	53-67	65-73	65-71	70-80	63-79	63-72	63-75	I
	(61)		(67)		(69)	(68)	(71)	
EGG#	70-82	Ι	I		I	Ι	Ι	Ι
	(75)							
Abbreviations:	BL, body length	BW, body width; OCL, oral	l collar length; OCW, or	ral collar width; C	SL, oral sucker length;	OSW, oral sucker	width; VSL, ventra	l sucker length;

VSW, ventral sucker width; DBS, distance between suckers; ATL, anterior testis length; ATW, anterior testis width; PTL, posterior testis length; PTW, posterior testis width; DBT, distance between testis; OVL, ovary length; OVW, ovary width; CSL, cirrus-sac length; CSW, cirrus-sac width; EGGL, egg length; EGGW, egg width; EGGW, eggs *Localities*: Catfish pond, Leflore County, Mississippi, USA (ex *P. trivolvis*); catfish pond, Lowndes County, Mississippi, USA (ex *P. promelas*).

Infection parameters: Prevalence 4.3% (in 10 out of 230 snails) (ex *P. trivolvis*); prevalence 100% (in 1 out of 1 fish) (ex *P. promelas*); intensity: 2 metacercariae (ex *P. promelas*).

Voucher material: 2 voucher slides of Semichon's acetocarmine-stained cercariae USNM 1488293–1488294, 3 voucher slides of Semichon's acetocarmine-stained rediae USNM 1488295–1488297, 2 voucher slides of hematoxylin and eosin stained rediae and cercariae *in situ* USNM 1488298–1488299, 1 metacercaria hologenophore USNM 1488300.

RepresentativeDNAsequences:GenBankMH282556-MH282566(ribosomalregions);MH282539-MH282549(cox1gene);MH282526-MH282537(nad1gene).H282526-

Description (Figs. 3-6)

Redia

[Based on whole mounts of 34 heat killed and ethanolfixed rediae from a single snail host; see Supplementary Table 3.] Rediae yellow-tan in color, numerous in the hepatopancreas of *P. trivolvis*, globular to elongate, 271–819 (455 ± 111) × 97–235 (150 ± 31) (Figs. 3A, B, 4C). Body constricted near anterior in some specimens, usually just posterior to pharynx. Pharynx muscular, subterminal, 30–57 (47 ± 8) × 31-58 (46 ± 7). Anterior region of body spinose, with 7–8 rows of transverse spines, extending to region at posterior margin of pharynx (Fig. 3C). Intestine tubular, elongate, 162-523 (291 ± 76) × 28-59(41 ± 10), length representing 44-85 (65 ± 11)% of body length. Germinal cells observed in mid-posterior to posterior portion of body. Birth pore inconspicuous, laterally posterior to pharynx. Cercariae variable in number, but present in all specimens examined, many at various stages of maturation.

Remarks

The redia of *C. album* examined in this study was morphologically consistent with descriptions of the redia of *C. marginatum* studied by Krull (1934) from *Planorbella anceps* Menke in Maryland, USA. The morphometric data presented by Krull (1934) were from the largest redia observed but fit the description of the redia of *C. album*, including the transverse rows of spines at the anterior portion of the body. Other

Fig. 3 Photomicrographs of unstained *Clinostomum album* rediae from *Planorbella trivolvis* collected from a catfish pond in Leflore County, Mississippi, USA. A–B, Whole rediae with numerous cercariae within; C, Anterior region showing transverse rows of spines. *Scale-bars*: A–B, 100 μm; C, 10 μm

Fig. 4 Photomicrographs of *Planorbella trivolvis* infected with *Clinostomum album* collected from a catfish pond in Leflore County, Mississispi, USA. A, Subgross parasagittal view (PAS stain). Arrowhead denotes the atrophied digestive gland filled with rediae, arrow denotes rediae within the connective tissues of the lung; B, Digestive gland atrophy and heavy infection with rediae (black spots are pigment granules in rediae intestines) (HE stain). Arrow denotes digest gland tubule, arrowhead denotes intestine; C, Digestive gland tubule atrophy and compression by rediae, loss of interlobular connective tissue and fibrosis (HE stain). Arrowhead denotes a redia surrounded by fibrous tissue that blends into the basal aspect of the digestive gland tubule; D, A longitudinal profile of a redia in the interstitium of the digestive gland. Black granular pigment fills the intestine (HE stain). Arrow denotes a developing cercaria, admixed with clusters of germinal cells. *Scale-bars*: A, 1 mm; B, 500 μm; C–D, 50 μm

descriptions of the redia of *Clinostomum* spp. (Nassi & Bayssade-Dufour, 1980; Pinto et al., 2015) indicate the latter is much larger in terms of body length compared with the descriptions of redia in this study and the material examined by Krull (1934). However, each redia examined in this study and noted by Krull (1934) contained developed cercariae.

Larval parasites (rediae containing developing cercariae) were predominantly present in the interstitium of the digestive gland (hepatopancreas), and within the blood sinuses/connective tissues of the lung (Fig. 4A). Rediae contained many clusters of germinal cells admixed with developing cercariae, producing mature rediae that contained many developmental stages. Abundant fine black granular pigment filled redial intestines. The digestive gland exhibited marked atrophy of the lobules and loss of connective tissue, with concomitant expansion of the blood spaces where the parasites resided; parasite profiles comprised 50% or more of the tissue sections. Parasites within the digestive gland stroma were surrounded by a delicate layer of fibrous tissue containing small numbers of amoebocytes. Rediae were often attached to digestive tubule walls, but they were not seen to disrupt tubular epithelium or infiltrate digestive gland lumina. In some areas, marked fibrosis of the ducts with complete loss of lobules was seen. Cercariae were commonly present in the lumen of the gizzard and intestine as well. Rediae also occurred in the reproductive tissues and ovotestes were atrophied.

Cercaria

[Based on saline wet-mounts of 30 heat-killed cercariae from 3 separate snail hosts. Flame cells studied in live specimens stained with vital stains; see Table 2.] Cercaria lophocercous, brevifurcous, pharyngeate, typical of the genus *Clinostomum*. Body elongate, ovoid, shorter than tail stem region, 106–127 (118 \pm 6) \times 28–38 (33 \pm 2) (Fig. 5). Eye-spots 2, present in the middle of cercarial body, 5–6 (6 \pm 0.6)

Species	Clinostomum album	Clinostomum marginatum	Cercaria oce	llifera	Clinostomum sp.
Host	Planorbella trivolvis	Planorbella anceps	Biomphalaria	a tenagophila	Biomphalaria glabrata,
Locality	Mississippi, USA	Maryland, USA	Brazil		B. straminea, B. tenagophila Brazil
Reference	This study	Krull (1934)	Ruiz (1953)	Moraes et al. (2009)	Pinto et al. (2015)
BL	106–127	120–138	172–185	126–132	98–128
	(118)	(130)			(110)
BW	28–38	30–32	_	32–42	32–42
	(33)	(31)			(35)
TSL	198–239	250-285	339-390	255-315	273–307
	(223)	(268)			(288)
TSW	19–27	-	30-37	-	22–34
	(23)				(27)
FL	85-108	75–98	123-195	70-120	86–106
	(95)	(88)			(95)
FW	11–17	-	_	-	7–17
	(14)				(12)
AOL	36–53	37–40	53	0–32	33–47
	(43)	(39)			(38)
AOW	18–25	-	27	-	20–27
	(21)				(24)

Table 2 Morphological data of *Clinostomum* spp. and brevifurcous cercariae from snails in the Americas

Abbreviations: BL, body length; BW, body width; TSL, tail stem length; TSW, tail stem width; FL, furcae length; FW, furcae width; AOL, anterior organ length; AOW, anterior organ width

× 5–6 (6 ± 0.4). Anterior organ elongate, ovoid, in anterior third of cercarial body, 36–53 (43 ± 4) × 18–25 (21 ± 2). Ventral sucker not observed. Dorsal fin-fold not observed. Tail stem long, slender, 198–239 (223 ± 10) × 19–27 (23 ± 2). Tail stem bifurcates into 2 short, tapering furcae with fin-folds, 85–108 (95 ± 6) × 11–17 (14 ± 1). Flame-cell formula 2 [(1 + 1) + (1 + 1) + [1]) = 10.

Body armature: Approximately 4–5 rows of minute pre-oral spines encircling the anterior region of cercarial body at level of anterior organ.

Remarks

The cercaria of *C. album* shares overlapping morphometric data with other clinostomid and brevifurcous cercariae described from freshwater snails in the Americas (Table 2). As with the redia, the cercaria of *C. album* closely resembles the cercaria of *C. marginatum* as described by Krull (1934) from *P. anceps*. Additionally, these also are consistent with the cercaria of a *Clinostomum* sp. described from three *Biomphalaria* spp. in Brazil, although the rediae were not morphologically consistent with *C. album* and molecular data support these as distinct species (Pinto et al., 2015).

Metacercaria

[Based on two Mayer's carmalum stained and mounted metacercaria, one designated as a hologenophore; see Table 3.] Body slender, linguiform, 4,081-4,938 (4509) × 737-874 (805), with slight constriction at level of ventral sucker (Fig. 6). Oral collar present. Oral sucker small, ovoid, 227-267 (247) × 268-297 (283). Ventral sucker large, 593-666 (629) × 548-673 (610), located in lower anterior third of body. Pharynx indistinct; prominent oesophageal bulb present just posterior to oral sucker. Intestinal caeca prominent, bifurcating just posterior to oral sucker, extending to posterior extremity of body, diverticulate broadly in regions posterior to ventral sucker.

Fig. 5 Photomicrograph of a *Clinostomum album* cercaria shed from *Planorbella trivolvis* collected from a catfish pond in Leflore County, Mississippi, USA. *Scale-bar*: 100 μm

Gonads located in anterior portion of posterior third of body. Testes 2, located in body midline. Anterior testis lobed, 270–294 (282) \times 333–334 (333). Posterior testis lobed, 273–364 (318) \times 287–301 (294). Cirrus-sac located at level of anterior testis, overlapping its right anterior lobe, extends from right margin of body toward midline.

Ovary ovoid, intertesticular, 144-148 (146) \times 125–132 (128). Genital pore visible, opening at body midline just anterior to anterior testis.

Remarks

Metacercariae of *C. album* are morphologically ambiguous and ranges for most morphological characters used to describe metacercaria overlap with *C. marginatum*, which is known to occur in cultured channel catfish (Lorio, 1989) and other forage fish in catfish production systems in Mississippi (Rosser et al., 2016b). Catfish experimentally challenged with *C. album* cercariae and controls contained no developing metacercariae suggesting that catfish are not a host for *C. album*.

Molecular data of *Clinostomum poteae* n. sp. and larval stages of *Clinostomum album*

Ribosomal regions (ITS1, 5.8S rRNA, and ITS2 region) for all four C. poteae specimens were identical. The top results of a Blastn search for the entire ribosomal region (partial 18S rRNA-ITS1-5.8S rRNA-ITS2-partial 28S rRNA) sequenced from a single specimen, were Clinostomum marginatum (99.5% sequence similarity; 100% query coverage; KU708007; Rosser et al., 2017) and Clinostomum album (99.3% sequence similarity; 100% query coverage; KU708008; Rosser et al., 2017) from a great egret in Mississippi, USA; Clinostomum cutaneum Paperna, 1964 (97.6% sequence similarity; 95–96% query coverage; GQ339114 and FJ609421; Gustinelli et al., 2010); and *Clinostomum phalacrocoracis* Dubois, 1931 (97.6% sequence similarity; 96% query coverage; FJ609422-FJ609423; Gustinelli et al., 2010) from the grey heron Ardea cinerea L. and Nile tilapia Oreochromis niloticus L. in Kenya. Additionally, C. poteae n. sp. shared 99.6% (38% query coverage; AY222095; Olson et al., 2003) sequence similarity at the 28S rRNA gene with an unresolved Clinostomum sp. metacercaria from the North American bullfrog Lithobates catesbeiana Shaw in Tennessee, USA.

The partial *c*.550 bp *cox*1 sequences of the four specimens were identical and no sequences in the NCBI database shared significant similarity sufficient to suggest conspecificity. The top hits of the BLASTn search were *cox*1 sequences of *C. attenuatum* metacercariae from *Lithobates clamitans* Latreille and *Lithobates pipiens* Schreber in the USA and Quebec, Canada (88.2–88.5% sequence similarity; 94–98% query coverage; KP150305-KP1150306 and JF718585 and JF718587; Caffara et al., 2011; Locke et al., 2015).

For the ITS regions, interspecific variability was low between the *Clinostomum* spp. described from the Americas the application of ITS sequence data in species delineation is limited (Table 4). However, pairwise distances calculated from *cox*1 sequence data

Species	Clinostomum album	<i>Clinostomum</i> sp.	Clinostomum heluans	Clinostomum	marginatum		Clinostomum tatxumui
Host	Pimephales promelas	Poecilia reticulata	Cichla temensis	Perciformes	Dormitator maculatus	Menidia beryllina	Dormitator maculatus
Locality	, Mississippi, USA	Brazil	Brazil	Canada	Mexico	Mississippi, USA	Mexico
Reference	This study	Pinto et al. (2015)	Vicente et al. (1978)	Caffara et al. (2011)	Sereno-Uribe et al. (2013)	Rosser et al. (2016)	Sereno-Uribe et al. (2013)
BL	4,081-4,938	3,610–5,553	2,000–2,200	4,215–6,346	2,770-4,100	3,128-5,407	2,390-3,950
	(4,509)	(4,224)		(5,402)	(3,300)	(3,968)	(2,940)
BW	737–874	1,031–1,616	640-740	979-1,532	600-850	904-1,303	340-840
	(805)	(1,215)		(1,329)	(730)	(1,068)	(593)
OsL	227-267	170-239	120-150	238-599	160-220	192-281	140-210
	(247)	(213)		(312)	(183)	(222)	(160)
OsW	268–297	232-273	120-140	194–586	170-220	191–241	150-210
	(283)	(251)		(290)	(196)	(215)	(174)
VsL	593-666	602-746	200-420	510-757	430-620	468-666	350-560
	(629)	(685)		(669)	(496)	(560)	(420)
VsW	548-673	602-756	230-290	571-804	450-620	485-606	320-570
	(610)	(684)		(708)	(530)	(542)	(431)
DS	_	515-860	-	959–1,491	380-700	-	350-610
		(659)		(1,243)	(539)		(468)
ATL	270–294	137-206	56	231-413	180-370	130-242	120-250
	(282)	(159)		(307)	(224)	(190)	(171)
ATW	333-334	137-226	84-120	264-498	200-350	213-361	140-275
	(333)	(142)		(389)	(247)	(278)	(200)
PTL	273-364	178-259	56	233–457	170-270	153-230	115-230
	(318)	(217)		(327)	(214)	(189)	(172)
PTW	287-301	116-311	84-120	295–492	250-400	159-306	180-320
	(294)	(172)		(405)	(280)	(239)	(230)
OvL	144–148	89–147	50-110	85-142	80-120	121-171	72-130
	(146)	(110)		(115)	(98)	(144)	(96)
OvW	125-132	68-120	90-150	62–97	60–90	169–275	42-111
	(128)	(85)		(80)	(73)	(233)	(70)
CSL	_	150-205	_	172-343	180-220	_	137-225
		(183)		(256)	(200)		(179)
CSW	_	89–164	_	119–153	90-120	_	65-125
		(121)		(137)	(106)		(91)

Table 3 Morphological data of Clinostomum spp. metacercariae from intermediate hosts in North America

Abbreviations: BL, body length; BW, body width; OsL, oral sucker length; OsW, oral sucker width; VsL, ventral sucker length; VsW, ventral sucker width; DS, distance between oral and ventral sucker; ATL, anterior testis length; ATW, anterior testis width; PTL, posterior testis length; PTW, posterior testis width; OvL, ovary length; OvW, ovary width; CSL, cirrus-sac length; CSW; cirrus-sac width

for *C. album* cercaria and metacercaria reported here, and an adult *C. album* from previous work (Rosser et al., 2017) had high (> 10%) interspecific diversity and low (< 1%) intraspecific variability compared to the other *Clinostomum* spp. (Table 5). The values reported here are consistent with previous studies

Fig. 6 Photomicrographs of Mayer's carmalum-stained *Clinostomum album* metacercariae from *Pimephales promelas* collected in Lowndes County, Mississippi, USA. A, Voucher; B, Hologenophore. *Scale-bar*: 500 μm

involving representatives of the Clinostomoidea suggesting the cercariae and metacercaria from this study and adult stages of *C. album* are conspecific (SerenoUribe et al., 2013; Senapin et al., 2014; Locke et al., 2015; Caffara et al., 2017; Woodyard et al., 2017). Likewise, pairwise distances for the *nad*1 between the *Clinostomum* spp. in this study had low intraspecific variability and a greater interspecific variability compared to *cox*1, consistent with previous studies investigating genetic diversity of the mitochondrial genes of the Echinostomatidae Looss, 1899 (Morgan & Blair, 1998; Detwiler et al., 2010) (Table 6). The molecular data presented here evince the cercaria and metacercaria in this study represent previously unidentified stages in the life-cycle of *C. album* in Mississippi, USA.

Bayesian inference and maximum likelihood analyses of the concatenated *cox*1, ITS1, 5.8S rRNA gene, and ITS2 DNA sequences were consistent with previous phylogenies of the Clinostomidae (Figure 7). *Clinostomum poteae* n. sp. forms a clade within the larger grouping of American clinostomids, *Clinostomum marginatum*, *C. attenuatum* and *C. album*, but was basal to *C. marginatum* and *C. attenuatum*. Branches were strongly supported by high posterior probability and bootstrap values.

Discussion

For almost 200 years researchers have debated the systematics of clinostomids. The advent of molecular techniques and the ability to supplement morphological data with nucleotide sequence data has identified the clinostomids as a truly diverse group of trematodes, with new species described regularly (Caffara et al., 2011; Sereno-Uribe et al., 2013; Locke et al., 2015; Pérez-Ponce de León et al., 2016; Rosser et al., 2017). Currently, six *Clinostomum* spp. are recognised in North America based on detailed morphological descriptions of stained and mounted adults recovered from avian hosts (Bravo-Hollis, 1947; Hutton & Sogandares-Bernal, 1960; Caffara et al., 2011; Pérez-Ponce de León et al., 2016; Rosser et al., 2017). Of these, few *Clinostomum* spp. are described or observed in American cormorants and even fewer are documented from the trachea. Herein C. poteae n. sp. from the trachea of a double-crested cormorant in Mississippi, USA, is described and the larval stages of the life-cycle of C. album are identified.

Clinostomum poteae n. sp. differs from many of the *Clinostomum* spp. in the Americas by location within the host (trachea *vs* oesophagus and oral cavity), but

	Clinostomum poteae n. sp.	Clinostomum album
Clinostomum poteae n. sp.	0.000 (0.000-0.000)	0.007 (0.007-0.007)
Clinostomum album	0.007 (0.007–0.007)	0.000 (0.000-0.000)
Clinostomum attenuatum	0.002 (0.002–0.002)	0.005 (0.005-0.005)
Clinostomum complanatum	0.042 (0.042–0.042)	0.049 (0.049–0.049)
Clinostomum cutaneum	0.034 (0.034–0.034)	0.041 (0.041-0.041)
Clinostomum detruncatum	0.029 (0.029–0.029)	0.029 (0.029-0.029)
Clinostomum heluans	0.024 (0.024–0.024)	0.022 (0.022-0.022)
Clinostomum marginatum	0.002 (0.002–0.002)	0.005 (0.005-0.005)
Clinostomum phalacrocoracis	0.036 (0.036-0.036)	0.042 (0.042-0.042)
Clinostomum philippinense	0.037 (0.037–0.037)	0.044 (0.044–0.044)
Clinostomum tataxumui	0.022 (0.022-0.022)	0.025 (0.025-0.025)
Clinostomum tilapiae	0.032 (0.032–0.032)	0.039 (0.039-0.039)
Clinostomum sp. 1	0.019 (0.019–0.019)	0.022 (0.022-0.022)
Clinostomum sp. 3	0.019 (0.019–0.019)	0.022 (0.022-0.022)
Clinostomum sp. 4	0.017 (0.017-0.017)	0.020 (0.020-0.020)
Clinostomum sp. 5	0.022 (0.022-0.022)	0.025 (0.025-0.025)
Clinostomum sp. 7	0.034 (0.034–0.034)	0.037 (0.037-0.037)
Clinostomum sp. 8	0.044 (0.044–0.044)	0.051 (0.051-0.051)

Table 4 Pairwise distances calculated from ITS region sequences of *Clinostomum poteae* n. sp. and *Clinostomum album* from the alignment in this study. Values are presented as average number of base differences per site followed by the range in parentheses

Table 5 Pairwise distances calculated from cox1 sequences of Clinostomum poteae n. sp. and Clinostomum album from the alignment in this study. Values are presented as average number of base differences per site followed by the range in parentheses

	Clinostomum poteae n. sp.	Clinostomum album
Clinostomum poteae n. sp.	0.000 (0.000–0.000)	0.174 (0.172–0.179)
Clinostomum album	0.174 (0.172–0.179)	$0.004 \ (0.000 - 0.008)$
Clinostomum attenuatum	0.121 (0.121-0.211)	0.149 (0.148-0.152)
Clinostomum complanatum	0.171 (0.170–0.172)	0.203 (0.201-0.209)
Clinostomum cutaneum	0.176 (0.175–0.177)	0.180 (0.150-0.187)
Clinostomum detruncatum	0.149 (0.149–0.149)	0.155 (0.150-0.158)
Clinostomum heluans	0.181 (0.181–0.181)	0.196 (0.195-0.199)
Clinostomum marginatum	0.138 (0.136–0.136)	0.156 (0.150-0.164)
Clinostomum phalacrocoracis	0.174 (0.172–0.175)	0.190 (0.183-0.193)
Clinostomum philippinense	0.201 (0.201-0.201)	0.204 (0.201-0.207)
Clinostomum tataxumui	0.151 (0.150-0.152)	0.180 (0.175-0.185)
Clinostomum tilapiae	0.177 (0.177–0.177)	0.192 (0.187-0.197)
Clinostomum sp. 1	0.142 (0.142–0.142)	0.146 (0.144-0.150)
Clinostomum sp. 3	0.148 (0.148-0.148)	0.159 (0.158-0.162)
Clinostomum sp. 4	0.138 (0.138–0.138)	0.143 (0.140-0.148)
Clinostomum sp. 5	0.156 (0.156-0.156)	0.162 (0.160-0.166)
Clinostomum sp. 7	0.179 (0.179–0.179)	0.211 (0.207-0.216)
Clinostomum sp. 8	0.172 (0.170–0.172)	0.196 (0.191–0.201)

	Clinostomum poteae n. sp.	Clinostomum album
Clinostomum poteae n. sp.	0.000 (0.000-0.000)	-
Clinostomum album	0.196 (0.195-0.198)	0.0005 (0.000-0.0028)
Clinostomum marginatum	0.180 (0.178–0.181)	0.175 (0.173-0.176)

Table 6 Pairwise distances calculated from *nad*1 sequences of *Clinostomum poteae* n. sp. and *Clinostomum album* from the alignment in this study. Values are presented as average number of base differences per site followed by the range in parentheses

also based on morphometric and molecular data. Clinostomum intermedialis was described by Lamont (1920) from the oesophagus of a single Neotropic cormorant from Lake Valencia, Venezuela. In Lamont's description, few morphological characters were measured although the description is detailed and informative when considering the placement of the organs. Clinostomum intermedialis differs considerably from other *Clinostomum* spp. in having an ovoid anterior testis located in the left margin of the body compared to C. poteae n. sp. in which the anterior testis is distinctly lobed and situated near the body midline, similar to other Clinostomum congeners (Caffara et al., 2011; Sereno-Uribe et al., 2013; Rosser et al., 2017). Although similar in size, we believe these to be distinctly different from C. intermedialis, as all mounted C. poteae n. sp. specimens were consistent in the placement and size of the reproductive organs. Later, Bravo-Hollis (1947) supplemented the descriptions of C. intermedialis and C. heluans with new specimens collected from the pharynx of Brandt's cormorant from Nuevo León, Mexico, Molecular data have yet to be provided for C. intermedialis to support these morphological differences, although now C. intermedialis is considered a species of Clinostomatopsis (Lunaschi & Drago, 2009).

Clinostomum attenuatum has been reported in Florida cormorants from Florida, USA (Hutton & Sogandares-Bernal, 1960; Hutton, 1964). In Mexico, *Clinostomum tataxumui* was recently recognised as a novel species in the buccal cavity of great egrets, great-blue herons *Ardea herodias* L. and the barethroated tiger heron *Tigrisoma mexicanum* Swainson (see Sereno-Uribe et al., 2013). *Clinostomum marginatum* has also been reported from the trachea and lungs of double-crested cormorants in Florida, although no morphological data were reported to justify this species level designation and no molecular data exist from these specimens (Threlfall, 1982). Additionally, C. marginatum has been reported in the oral cavity of the Neotropic cormorant in Brazil (Travassos et al., 1969). When compared to specimens of C. marginatum and C. album collected from great egrets in Mississippi, C. poteae n. sp. is noticeably larger across many morphological characters and is found within the trachea. Meanwhile both C. marginatum and C. album were recovered from the oral cavity and oesophagus (Rosser et al., 2017). In light of the often morphologically ambiguous nature of Clinostomum spp. (and other trematode genera) adults and larval forms, the examination of multiple specimens and the inclusion of a hologenophore creates a more compelling case for species identification. Although morphological analysis should be the basis of identification of these organisms at first glance, supporting molecular data offers a more robust identification and hologenophores are recommended in novel species descriptions moving forward.

In addition to morphological differences, the specimens of *C. poteae* n. sp. were molecularly distinct from other *Clinostomum* spp. for which *cox*1 sequencing data exists. The interspecific variability at the *cox*1 gene was consistent with that previously described for the genus (Locke et al., 2015; Caffara et al., 2017) and phylogenetic analyses demonstrated *C. poteae* n. sp. formed a distinct clade, sister to other *Clinostomum* spp. collected from the Americas (Caffara et al., 2011; Locke et al., 2015; Rosser et al., 2017).

Remarkably, given the number of described species and their importance as parasites of fish and amphibians, few *Clinostomum* spp. life-cycles are known. In Brazil, the life-cycle of a *Clinostomum* sp. was described from naturally infected avian, molluscan and fish hosts (Dias et al., 2003). Adult specimens designated as *C. complanatum* were collected from *Ardea cocoi* L., *A. alba, Egretta thula* Molina, and *P.*

Fig. 7 Phylogenetic tree constructed from concatenated cox1 gene and ITS regions alignment. Numbers above the branches represent Bayesian posterior probabilities and maximum likelihood bootstrap values based on 1,000 pseudoreplicates (< 0.5 are not shown). *Clinostomum* species obtained in this study are in bold. *Scale-bar*: average number of nucleotide substitutions per site

brasilianus in the Americas, but the identity of these isolates is debated. A malacological survey performed in this study identified the planorbid snail Biomphalaria peregrina as the only snail species releasing clinostomid cercariae (0.75% prevalence). When laboratory raised banded knife fish Gymnotus carapo L. were exposed to these cercariae, a metacercaria consistent with C. complanatum was observed developing on an operculum 42 dpi (Dias et al., 2003). Metacercariae were also reported from several wild siluriform fish, including Loricariichthys platymetopon, Isbrücker & Nijssen, Parauchenipterus galeatus L., Hoplosternum littorale Hancock and Loricaria sp. L. Metacercariae consistent with C. complanatum were also observed in a single characiform fish, Hoplias malabaracius Block (see Dias et al., 2003).

In the USA, significant research investment regarding the life-cycle of C. marginatum has been made over the past century. The planorbid snail P. trivolvis has been identified as the first intermediate host and development of larval stages within the snail have been extensively studied, both from wild, naturally infected populations, as well as under experimental conditions. Edney (1950) demonstrated that laboratory reared marsh rams-horn snails as young as one day to two months were susceptible to infection, but older cohorts (1-2 years) were not capable of being infected. Snails are possibly infected early in life and are capable of maintaining infections for several years, continually producing rediae and cercariae (Edney, 1950). Consistent with previous studies concerning the pathology of larval trematode infections in snails, the digestive gland and gonad were severely atrophied in C. album-infected Planorbella trivolvis. Little to no inflammation or necrosis was observed, suggesting that atrophy is associated with mechanical destruction attributed to direct ingestion of host tissues or the appropriation of nutrients from the host (Crews, 1987). Although rediae were not observed actively feeding on snail tissues, the presence of intestinal black pigment suggests these stages were feeding on host tissues. Parasites were present in the connective tissues and blood spaces of the snails, which is also typical of many snail-trematode parasitic relationships. The presence of cercariae in the gizzard and intestine is not usually noted, and this may be due to the snail feeding on cercariae shed into the environment. The metacercariae of C. marginatum are widely distributed throughout the Americas and have been reported from a myriad of fish and amphibian hosts (Hoffmann, 1999; McAllister, 1990; Miller et al., 2004), though many of these are not supported by molecular data and could represent currently unidentified species. The ability to distinguish *Clinostomum* spp. based on cercaria morphometric data alone is likely unreliable, especially when conducting experimental challenges or elucidating life-cycles with specimens collected from naturally infected hosts in areas where multiple species share a given geographical locality or population of hosts. The usefulness of molecular data obtained from larval stages is already known from previous studies of *Clinostomum* spp. (Gustinelli et al., 2010; Caffara et al., 2017).

Comparably, based on molecular data obtained here, the life-cycle of *C. album* includes the ramshorn snail as a first intermediate host, fathead minnows as a second intermediate host, and great egrets as a definitive host (Rosser et al., 2017). Given the diverse number of potential hosts for any given *Clinostomum* sp., it is likely that other hosts exist but have yet to be identified and the health impacts on baitfish species such as the fathead minnow remain unknown. Experimental infections in channel catfish were unsuccessful and did not result in detectable metacercariae up to 60 dpi. Comparably, similar studies in catfish have demonstrated development and persistence of *C. marginatum* metacercariae for periods > 100 days post-exposure (Doffitt, 2011).

The larval stages of *C. poteae* n. sp. remain unknown, but molecular data generated in this study will aid in the elucidation of the life-cycle when cercaria and metacercaria stages are encountered in future studies of clinostomids in mollusc, fish, or amphibian hosts. The utility of molecular data in parasitological studies remains in its infancy but will likely continue to aid in the elucidation of life-cycles of various parasitic groups and should remain an integral component of novel species descriptions. Further work examining the diversity and effects on fish and amphibian health of clinostomids in their avian hosts in the southeastern United States is warranted.

Acknowledgements This study was supported in part by the Mississippi State University College of Veterinary Medicine, the Mississippi Agricultural and Forestry Experiment Station, and the USDA-ARS Catfish Health Initiative (CRIS 6402-31320-002-02). The authors would like to sincerely thank Allison Wise for assistance in collecting snails used in

this study and recognise her participation in the 2017 International Science and Engineering Fair with her project "Survey and Shedding Characteristics of Trematodes in Catfish Ponds".

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval All applicable institutional, national and international guidelines for the care and use of animals were followed (IACUC QA 2458).

References

- Acosta, A. A., Caffara, M., Fioravanti, M. L., Utsunomia, R., Zago, A. C., Franceschini, L., et al. (2016). Morphological and molecular characterization of *Clinostomum detruncatum* (Trematoda: Clinostomidae) metacercariae infecting *Synbranchus marmoratus. Journal of Parasitology*, 102, 151–156.
- Alberson, N. R., Rosser, T. G., Buddenborg, S. K., Khoo, L. H., Loker, E. S., Richardson, T. D., et al. (2017). North and South American haplotypes of *Drepanocephalus auritus* (Digenea: Echinostomatidae) are released from *Biomphalaria havanensis* (Mollusca: Planorbidae) inhabiting catfish aquaculture ponds in Mississippi, USA. *Comparative Parasitology*, 84, 87–101.
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. *Journal of Molecular Biology*, 215, 403–410.
- Bengtsson-Palme, J., Ryberg, M., Hartmann, M., Branco, S., Wang, Z., Godhe, A., et al. (2013). Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. *Methods in Ecology and Evolution*, 4, 914–919.
- Blasco-Costa, I., Cutmore, S. C., Miller, T. L., & Nolan, M. J. (2016). Molecular approaches to trematode systematics: 'best practice' and implications for future study. *Systematic Parasitology*, 93, 295–306.
- Bravo-Hollis, M. (1947). Dos especies de *Clinostomum* (Trematoda), de aves procedentes del estado de Nuevo León, México. *Anales del Instituto de Biología, México, 18*, 489–498.
- Briosio-Anguilar, R., Pinto, H. A., Rodríguez-Santiago, M. A., López-García, K., Garcia-Varela, M., & Perez-Ponce de Leon, G. (2018). Link between the adult and the metacercaria of *Clinostomum heluans* Braun, 1899 (Trematoda: Clinostomidae) through DNA sequence and its phylogenetic position within the genus *Clinostomum* Leidy, 1856. *Journal of Parasitology*. https://doi.org/10.1645/17-183.
- Caffara, M., Locke, S. A., Echi, P. C., Halajian, A., Benini, D., Luus-Powell, W. J., et al. (2017). A morphological and molecular study of clinostomid metacercariae from

African fish with a redescription of *Clinostomum tilapiae*. *Parasitology*, *144*, 1519–1529.

- Caffara, M., Locke, S. A., Gustinelli, A., Marcogliese, D. J., & Fioravanti, M. L. (2011). Morphological and molecular differentiation of *Clinostomum complanatum* and *Clinostomum marginatum* (Digenea: Clinostomidae) metacercariae and adults. *Journal of Parasitology*, 97, 884–891.
- Crews, A., & Esch, G. W. (1987). Histopathology of larval trematode infections in the freshwater pulmonate snail, *Helisoma anceps. Journal of Invertebrate Pathology*, 49, 76–82.
- Criscione, C. D., Poulin, R., & Blouin, M. S. (2005). Molecular ecology of parasites: Elucidating ecological and microevolutionary processes. *Molecular Ecology*, 14, 2247–2257.
- Detwiler, J. T., Bos, D. H., & Minchella, D. J. (2010). Revealing the secret lives of cryptic species: Examining the phylogenetic relationships of echinostome parasites in North America. *Molecular Phylogenetics and Evolution*, 55, 611–620.
- Dias, M. L. G. G., Eiras, J. C., Machado, M. H., Souza, G. T. R., & Pavanelli, G. C. (2003). The life cycle of *Clinostomum complanatum* Rudolphi, 1814 (Digenea, Clinostomidae) on the floodplain of the high Paraná river, Brazil. *Parasitology Research*, 89, 506–508.
- Doffitt, C. M. (2011). Life history of two digenetic trematodes, Bolbophorus damnificus and an unknown clinostomid species, that infect channel catfish (Ictalurus punctatus). PhD thesis, Mississippi State University, Mississippi State.
- Edney, J. M. (1950). Productivity in *Clinostomum marginatum* (Trematoda: Clinostomatidae). *Transactions of the American Microscopical Society*, 69, 186–188.
- Glahn, J. F., Harrel, J. B., & Vyles, C. (1998). The diet of wintering double-crested cormorants feeding at lakes in the southeastern United States. *Colonial Waterbirds*, 21, 431–437.
- Glahn, J. F., & King, D. T. (2004). Bird depredation. In: Tucker, C. S. & Hargreaves J. A. (Eds.), *Biology and Culture of Channel Catfish*. Amsterdam: Elsevier, pp. 503–529.
- Griffin, M. J., Khoo, L. H., Quiniou, S. M., O'Hear, M. M., Pote, L. M., Greenway, T. E., et al. (2012). Genetic sequence data identifies the cercaria of *Drepanocephalus spathans* (Digenea: Echinostomatidae), a parasite of the doublecrested cormorant (*Phalacrocorax auritus*), with notes on its pathology in juvenile channel catfish (*Ictalurus punctatus*). Journal of Parasitology, 98, 967–972.
- Griffin, M. J., Khoo, L. H., Steadman, J. M., Ware, C., Quiniou, S. M., Mischke, C. C., et al. (2014). Chronic pathology and longevity of *Drepanocephalus spathans* infections in juvenile channel catfish. *Journal of Aquatic Animal Health*, 26, 210–218.
- Gustinelli, A., Caffara, M., Florio, D., Otachi, E. O., Wathuta, E. M., & Fiorvanti, M. L. (2010). First description of the adult stage of *Clinostomum cutaneum* Paperna, 1964 (Digenea: Clinostomidae) from grey herons *Ardea cinerea* L. and a redescription of the metacercaria from the Nile tilapia *Oreochromis niloticus niloticus* (L.) in Kenya. *Systematic Parasitology*, 76, 39–51.
- Hawke, J. P., & Khoo, L. H. (2004). Infectious diseases. In: Tucker, C. S. & Hargreaves J. A. (Eds), *Biology and*

Culture of Channel Catfish. Amsterdam: Elsevier, pp. 387–443.

- Hoffman, G. L. (1999). Parasites of North American freshwater fishes. New York: Cornell University Press.
- Hutton, R. F. (1964). A second list of parasites from marine and coastal animals of Florida. *Transactions of the American Microscopical Society*, 83, 439–447.
- Hutton, R. F., & Sogandares-Bernal, F. (1960). Studies on helminth parasites from the coast of Florida. II. Digenetic trematodes from shore birds of the west coast of Florida. 1. *Bulletin of Marine Science of the Gulf and Caribbean, 10,* 40–54.
- ICZN (2012). International Commission on Zoological Nomenclature: Amendment of articles 8, 9, 10, 21 and 78 of the International Code of Zoological Nomenclature to expand and refine methods of publication. Bulletin of Zoological Nomenclature, 69, 161–169.
- Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Research*, 30, 3059–3066.
- Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. *Molecular Biology and Evolution*, 30, 772–780.
- Krull, W. H. (1934). Some observations on the cercaria and redia of a species of *Clinostomum*, apparently *C.* marginatum (Rudolphi, 1819) (Trematoda: Clinostomidae). Proceedings of the Helminthological Society of Washington, 1, 34–35.
- Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Molecular Biology and Evolution*, 33, 1870–1874.
- Lamont, M. E. (1920). A new species of *Clinostomum. Occa*sional Papers of the Museum of Zoology, University of Michigan, 83, 1–6.
- Locke, S. A., Caffara, M., Marcogliese, D. J., & Fioravanti, M. L. (2015). A large-scale molecular survey of *Clinostomum* (Digenea, Clinostomidae). *Zoologica Scripta*, 44, 203–217.
- Lorio, W. J. (1989). Experimental control of metacercariae of the yellow grub *Clinostomum marginatum* in channel catfish. *Journal of Aquatic Animal Health*, 1, 269–271.
- Lunaschi, L. I., & Drago, F. B. (2009). Digenean parasites of six species of birds from Formosa Province, Argentina. *Re*vista Mexicana de Biodiversidad, 80, 39–46.
- McAllister, C. (1990). Metacercaria of Clinostomum complanatum (Rudolphi, 1814) (Trematoda: Digenea) in a Texas salamander, Eurycea neotenes (Amphibia: Caudata), with comments on C. marginatum (Rudolphi, 1819). Journal of the Helminthological Society of Washington, 57, 69–71.
- Miller, D. L., Bursey, C. R., Gray, M. J., & Smith, L. M. (2004). Metacercariae of *Clinostomum attenuatum* in *Ambystoma tigrinum mavortium*, *Bufo cognatus* and *Spea multiplicata* from west Texas. *Journal of Helminthology*, 78, 373–376.
- Minh, B. Q., Nguyen, M. A. T., & von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. *Molecular Biology and Evolution*, 30, 1188–1195.

- Moraes, J., Silva, M. P. N., Ohlweiler, F. P., & Kawano, T. (2000) Schiptocoma managination of the larged transition
- (2009). Schistosoma mansoni and other larval trematodes in Biomphalaria tenagophila (Planorbidae) from Guarulhos, São Paulo State, Brazil. Revista do Instituto de Medicina Tropical de São Paulo, 51, 77–82.
- Morgan, J. A. T., & Blair, D. (1998). Relative merits of nuclear ribosomal internal transcribed spacers and mitochondrial CO1 and ND1 genes for distinguishing among *Echinostoma* species (Trematoda). *Parasitology*, 116, 289–297.
- Nassi, H., & Bayssade-Dufour, C. (1980). Cycle biologique de Clinostomum golvani n. sp. (Trematoda: Clinostomidae) parasite larvaire de Biomphalaria glabrata, mollusque vecteur de Schistosoma mansoni em Guadalupe. Annales de Parasitologie Humaine et Comparée, 55, 527–540.
- Nei, M., & Kumar, S. (2000). Molecular evolution and phylogenetics. New York: Oxford University Press.
- Nguyen, L., Schmidt, H. A., von Haesler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. *Molecular Biology and Evolution*, 32, 268–274.
- O'Hear, M., Pote, L., Yost, M., Doffitt, C., King, T., & Panuska, C. (2014). Morphologic and molecular identifications of digenetic trematodes in double-crested cormorants (*Pha-lacrocorax auritus*) from the Mississippi Delta, USA. *Journal of Wildlife Diseases*, 50, 42–49.
- Olson, P. D., Cribb, T. H., Tkach, V. V., Bray, R. A., & Littlewood, D. T. J. (2003). Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). *International Journal for Parasitology*, 33, 733–755.
- Overstreet, R. M., & Curran, S. S. (2004). Defeating diplostomoid dangers in USA catfish aquaculture. *Folia Parasitologica*, 51, 153–165.
- Pérez-Ponce de León, G., García-Varela, M., Pinacho-Pinacho, C. D., Sereno-Uribe, A. L., & Poulin, R. (2016). Species delimitation in trematodes using DNA sequence: Middle-American *Clinostomum* as a case study. *Parasitology*, 143, 1773–1789.
- Pinto, H. A., Caffara, M., Fioravanti, M. L., & Melo, A. L. (2015). Experimental and molecular study of cercariae of *Clinostomum* sp. (Trematoda: Clinostomidae) from *Biomphalaria* spp. (Mollusca: Planorbidae) in Brazil. *Journal of Parasitology*, 101, 108–113.
- Rosser, T. G., Alberson, N. R., Woodyard, E. T., Cunningham, F. L., Pote, L. M., & Griffin, M. J. (2017). *Clinostomum album* n. sp. and *Clinostomum marginatum* (Rudolphi, 1819), parasites of the great egret *Ardea alba* L. from Mississippi. USA. Systematic Parasitology, 94, 35–49.
- Rosser, T. G., Alberson, N. R., Khoo, L. H., Woodyard, E. T., Pote, L. M., & Griffin, M. J. (2016a). Characterization of the life cycle of a fish eye fluke, *Austrodiplostomum* ostrowskiae (Digenea: Diplostomidae), with notes on two other diplostomids infecting *Biomphalaria havanensis* (Mollusca: Planorbidae) from catfish aquaculture ponds in Mississippi, USA. Journal of Parasitology, 102, 260–274.
- Rosser, T. G., Baumgartner, W. A., Alberson, N. R., Woodyard, E. T., Reichley, S. R., Wise, D. J., et al. (2016b). Austrodiplostomum sp., Bolbophorus sp. (Digenea: Diplostomidae), and Clinostomum marginatum (Digenea: Clinostomidae) metacercariae in inland silverside Menidia beryllina from catfish aquaculture ponds, with notes on the infectivity of Austrodiplostomum sp. cercariae in channel

catfish Ictalurus punctatus. Parasitology Research, 115, 4365–4378.

- Ruiz, J. M. (1953). Contribuição ao estudo das formas larvárias de trematódeos brasileiros. 5-Descriçãode três furcocercárias que ocorrem em planorbídeos hospedeiros do *Schistosoma mansoni. Memóriasdo Instituto Butantan*, 25, 77–89.
- Senapin, S., Phiwsaiya, K., Laosinchai, P., Kowasupat, C., Ruenwongsa, P., & Panijpan, B. (2014). Phylogenetic analysis of parasitic trematodes of the genus *Euclinostomum* found in *Trichopsis* and betta fish. *Journal of Parasitology*, 100, 368–371.
- Sereno-Uribe, A. L., Pinacho-Pinacho, C. D., García-Varela, M., & Pérez-Ponce de León, G. (2013). Using mitochondrial and ribosomal DNA sequences to test the taxonomic validity of *Clinostomum complanatum* Rudolphi, 1814 in fish-eating birds and freshwater fishes in Mexico, with the description of a new species. *Parasitology Research*, 112, 2855–2870.
- Threlfall, W. (1982). Endoparasites of the double-crested cormorant (*Phalacrocorax auritus*) in Florida. *Proceedings of the Helminthological Society of Washington*, 49, 103–108.
- Travassos, L., Freitas, J. T., & Kohn, A. (1969). Trematódeos do Brasil. *Memorias do Instituto Oswaldo Cruz, 67*, 1–886.

- Trifinopoulos, J., Nguyen, L. T., von Haesler, A., & Minh, B. Q. (2016). W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. *Nucleic Acids Research*, 44(W1), W232–W235.
- Ukoli, F. M. A. (1966). On *Clinostomum tilapiae* n. sp., and *C. phalacrocoracis* Dubois, 1931 from Ghana, and a discussion of the systematics of the genus *Clinostomum* Leidy, 1856. *Journal of Helminthology*, 40, 187–214.
- Vicente, J. J., Santos, E. S., & Souza, S. V. (1978). Helmintos de peixes de rios amazônicos da Coleção doInstituto Oswaldo Cruz. I. Trematoda. Atas da Sociedade de Biologia do Rio de Janeiro, 25, 9–16.
- Wise, D. J., Camus, A., Schwedler, T., & Terhune, J. (2004). Health management. In: Tucker, C. S. & Hargreaves J. A. (Eds), *Biology and Culture of Channel Catfish*. Amsterdam: Elsevier, pp. 482–488.
- Woodyard, E. T., Rosser, T. G., & Rush, S. A. (2017). Alligator wrestling: morphological, molecular, and phylogenetic data on *Odhneriotrema incommodum* (Leidy, 1856) (Digenea: Clinostomidae) from *Alligator mississippiensis* Daudin, 1801 in Mississippi, USA. *Parasitology Research*, *116*, 2981–2993.

Supplementary material for

Clinostomum poteae n. sp. (Digenea: Clinostomidae), in the trachea of a double-crested cormorant Phalacrocorax auritus Lesson, 1831 and molecular data linking the life-cycle stages of *Clinostomum album* Rosser, Alberson, Woodyard, Cunningham, Pote & Griffin, 2017 in Mississippi,

USA

Thomas G. Rosser • Wes A. Baumgartner • Neely R. Alberson • Travis W. Noto • Ethan T. Woodyard • D. Tommy King • David J. Wise • Matt J. Griffin

T. G. Rosser (🖂) • N. R. Alberson • T. W. Noto • E. T. Woodyard

Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi 39762, USA email: graham.rosser@msstate.edu

W. A. Baumgartner • M. J. Griffin

Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, USA

D. T. King

Mississippi Field Station, National Wildlife Research Center, Wildlife Services, United States Department of Agriculture, Mississippi State, Mississippi 39762, USA

M. J. Griffin • David J. Wise

⁴Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi 38776, USA

Primer	Sequence (5'-3')	Gene target	Reference
1F	TACCTGGTTGATCCTGCCAGTAG	SSU rRNA	Carranza et al. (1997)
5R	CTTGGCAAATGCTTTCGC	SSU rRNA	Carranza et al. (1997)
Barker3	TTAGAGTGTTCAAAGCAG	SSU rRNA	Barker et al. (1993)
Barker4	GATCCTTCTGCAGGTTCACCTAC	SSU rRNA	Barker et al. (1993)
Diplo1795F	CGTCGCTACTACCGATTGAA	SSU rRNA and ITS	Rosser et al. (2016)
Diplo2549R	AGTGATCCACCGCTCAGAGT	SSU rRNA and ITS	Rosser et al. (2016)
BD1	GTCGTAACAAGGTTTCCGTA	ITS	Morgan and Blair (1995)
BD2	TATGCTTAAATTCAGCGGGT	ITS	Morgan and Blair (1995)
Diplo2617F	CATCGACATCTTGAACGCATA	ITS and 28S rRNA	Rosser et al. (2016)
Diplo3170R	GCTGGACTTAGGATGGAGCA	ITS and 28S rRNA	Rosser et al. (2016)
LSU5	TAGGTCGACCCGCTGAAYTTAAGCA	28S rRNA	Littlewood et al. (2000)
1500R	GCTATCCTGAGGGAAACTTCG	28S rRNA	Littlewood et al. (2000)
28S 3431F	TCAGAGGTAAACGGGTGGAG	28S rRNA	Rosser et al. (2017)
28S 4779R	CTCAGCTTGCAATGACGGTA	28S rRNA	Rosser et al. (2017)
28S 4759F	GTCTTGAAACACGGACCAAG	28S rRNA	Rosser et al. (2017)
28S 5699R	TACCACCAAGATCTGCACCT	28S rRNA	Rosser et al. (2017)
Cox1_schist 5'	TCTTTRGATCATAAGCG	cox1	Lockyer et al. (2003)
Acox650r	CCAAAAAACCAAAACATATGCTG	cox1	Kudlai et al. (2015)
NDJ11	AGATTCGTAAGGGGCCTAATA	nd1	Morgan and Blair (1998)
NDJ2a	CTTCAGCCTCAGCATAAT	nd1	Kostadinova et al. (2003)

Supplementary Table 1 Primers used in amplification of ribosomal genes and mitochondrial genes of *Clinostomum* spp. in this study

References

Carranza, S., Baguña, J., & Riutort, M. (1997). Are the Platyhelminthes a monophyletic primitive group? An assessment using 18S rDNA sequences. *Molecular Biology and Evolution*, *14*, 495–497.

Barker, S. C., Blair, D., Cribb, T. H., & Tonion, K. (1993). Phylogenetic position of *Heronimus mollis* (Digenea): Evidence from 18S ribosomal RNA. *International Journal for Parasitology*, *23*, 533–536.

Kudlai, O., Kostadinova, A., Pulis, E. E., & Tkach, V. V. (2015). A new species of *Drepanocephalus* Dietz, 1909 (Digenea: Echinostomatidae) from the double-crested cormorant *Phalacrocorax auritus* (Lesson) (Aves: Phalacrocoracidae) in North America. *Systematic Parasitology*, *90*, 221–230.

Littlewood, D. T. J., Curini-Galletti, M., & Herniou, E. A. (2000). The interrelationships of Proseriata (Platyhelminthes: Seratia) flatworms tested with molecules and morphology. *Molecular Phylogenetics and Evolution*, *16*, 449–466.

Lockyer, A. E., Olson, P. D., Ostergaard, P., Rollinson, D., Johnston, D. A., Attwood, S. W., et al. (2003). The phylogeny of the Schistosomatidae based on three genes with emphasis on the interrelationships of *Schistosoma* Weinland, 1858. *Parasitology*, *126*, 203–224.

Morgan, J. A. T., & Blair, D. (1995). Nuclear rDNA ITS sequence variation in the trematode genus *Echinostoma*: An aid to establishing relationships within the 37-collar spine group. *Parasitology*, *111*, 609–615.

Morgan, J. A. T., & Blair, D. (1998). Relative merits of nuclear ribosomal internal transcribed spacers and mitochondrial CO1 and ND1 genes for distinguishing among *Echinostoma* species (Trematoda). *Parasitology*, *116*, 289–297.

Rosser, T. G., Alberson, N. R., Khoo, L. H., Woodyard, E. T., Pote, L. M., & Griffin, M. J. (2016). Characterization of the life cycle of a fish eye fluke, *Austrodiplostomum ostrowskiae* (Digenea: Diplostomidae), with notes on two other diplostomids infecting *Biomphalaria havanensis* (Mollusca: Planorbidae) from catfish aquaculture ponds in Mississippi, USA. *Journal of Parasitology*, *102*, 260-274.

Rosser, T. G., Alberson, N. R., Woodyard, E. T., Cunningham, F. L., Pote, L. M., & Griffin, M. J. (2017). *Clinostomum album* n. sp. and *Clinostomum marginatum* (Rudolphi, 1819), parasites of the great egret *Ardea alba* L. from Mississippi, USA. *Systematic Parasitology*, *94*, 35–49.

Supplementary Table 2 Sequences used in phylogenetic analyses

Species	Genbank A	ccession No.	Isolate	Host	Stage	Locality	Reference
	ITS	coxl	_				
Clinostomum album	KU708008	KU708010	C-2	Ardea alba	А	Mississippi, USA	Rosser et al. 2017
Clinostomum attenuatum	JF718622	JF718587	C.M.Rp.1.1	Lithobates pipiens	М	Canada	2011 Caffara et al
Clinostomum attenuatum Clinostomum attenuatum Clinostomum	JF718620 KP150307	JF718585 KP150305	Cm.Rcl.BBA8.1.1 CL.Bc.R.p.VPH.1.1	Lithobates clamitans Lithobates pipiens	M M	Quebec, Canada USA	2011 Locke et al. 2015 Caffara et al.
marginatum Clinostomum	JF718634	JF718600	Cl.RM.B08.P.1F.2	Perca flavescens	М	Quebec, Canada	2011
marginatum Clinostomum	MH282555	KU707946	Cm_1-C-1	Menidia beryllina	М	Mississippi, USA	Rosser et al. 2016 Caffara et al.
marginatum Clinostomum	JF718636	JF718604	Cl.GRI.Ah.1F.3	Ardea herodias	А	Quebec, Canada	2011 Coffera et al
marginatum Clinostomum	JF718635	JF718602	Cl.GRI.Ah.1F.1	Ardea herodias	А	Quebec, Canada	2011
marginatum Clinostomum	KU708007	KU708009	C-1	Ardea alba	А	Mississippi, USA	Rosser et al. 2017
marginatum Clinostomum	JF718640	JF718612	Cl.RON.B.S.1.1	Lepomis gibbosus	М	Quebec, Canada	2011
marginatum Clinostomum	MH282554	MH282538	Cm_Lm_1	Lepomis macrochirus	М	Mississippi, USA	This study Caffara et al
marginatum Clinostomum	JF718641	JF718615	Cl.RM.D.P.18.1	Perca flavescens	М	Quebec, Canada	2011 Caffara et al
marginatum Clinostomum	JF718633	JF718599	Cm.M.2.R.5.2	Ambloplites rupestris	М	Quebec, Canada	2011 Caffara et al
marginatum Clinostomum	JF718632	JF718598	Cm.M.2.R.5.1	Ambloplites rupestris	М	Quebec, Canada	2011 Caffara et al
marginatum	JF718631	JF718597	Cl.LM.B08.Ms.1F.3	Micropterus salmoides	М	Quebec, Canada	2011
Clinostomum poteae	MH282567	MH282550	R02-Clino-1	Phalacrocorax auritus	А	Mississippi, USA	This study
Clinostomum poteae	MH282568	MH282551	R02-Clino-2	Phalacrocorax auritus	А	Mississippi, USA	This study
Clinostomum poteae	MH282569	MH282552	R02-Clino-3	Phalacrocorax auritus	А	Mississippi, USA	This study
Clinostomum poteae	MH282570	MH282553	R02-Clino-4 hologenophore	Phalacrocorax auritus	А	Mississippi, USA	This study

Clinostomum album	MH282566	MH282549	Ca_Pt_1	Planorbella trivolvis	С	Mississippi, USA	This study
Clinostomum album	MH282565	MH282548	Ca_Pt_2	Planorbella trivolvis	С	Mississippi, USA	This study
Clinostomum album	MH282564	MH282547	Ca_Pt_3	Planorbella trivolvis	С	Mississippi, USA	This study
Clinostomum album	MH282563	MH282546	Ca_Pt_4	Planorbella trivolvis	С	Mississippi, USA	This study
Clinostomum album	MH282562	MH282545	Ca_Pt_5	Planorbella trivolvis	С	Mississippi, USA	This study
Clinostomum album	MH282561	MH282544	Ca_Pt_6	Planorbella trivolvis	С	Mississippi, USA	This study
Clinostomum album	MH282560	MH282543	Ca_Pt_7	Planorbella trivolvis	С	Mississippi, USA	This study
Clinostomum album	MH282559	MH282542	Ca_Pt_8	Planorbella trivolvis	С	Mississippi, USA	This study
Clinostomum album	MH282558	MH282541	Ca_Pt_9	Planorbella trivolvis	С	Mississippi, USA	This study
Clinostomum album	MH282557	MH282540	Ca_Pt_10	Planorbella trivolvis	С	Mississippi, USA	This study
Clinostomum album	MH282556	MH282539	Ca_Pp_1	Pimephales promelas	М	Mississippi, USA	This study
Clinostomum tataxumui	KP110588	KP110544	C.BC.Ep.TRP4	Eleotris picta	М	Guerrero, Mexico	Locke et al. 2015
Clinostomum tataxumui	KP110593	KP110559	C.BC.DI.TRP.1	Dormitator latifrons	М	Guerrero, Mexico	Locke et al. 2015
Clinostomum tataxumui	KP110590	KP110546	C.BC.Ct.TRP2	Cichlasoma trimaculatum	М	Guerrero, Mexico	Locke et al. 2015
Clinostomum tataxumui	KP110597	KP110563	C.BC.Ep.TRP3	Eleotris picta	М	Guerrero, Mexico	Locke et al. 2015
Clinostomum tataxumui	KP110596	KP110562	C.BC.Ep.TRP2	Eleotris picta	М	Guerrero, Mexico	Locke et al. 2015
Clinostomum tataxumui	KP110595	KP110561	C.BC.Ep.TRP1	Eleotris picta	М	Guerrero, Mexico	Locket et al. 2015
Clinostomum tataxumui	KP110592	KP110551	C.LV.Vent.1.4	Gobiomorus maculatus	М	Oaxaca, Mexico	Locke et al. 2015
Clinostomum tataxumui	KP110591	KP110550	C.LV.P.Vent.1.1	Dormitator latifrons	М	Oaxaca, Mexico	Locke et al. 2015
Clinostomum tataxumui	KP110594	KP110560	C.BC.DI.TRP.2	Dormitator latifrons	М	Guerrero, Mexico	Locke et al. 2015
Clinostomum sp. 5 SAL-							
2015	KP110576	KP110533	C.G.Cb.SCR.4.a	Cichlasoma boliviense	М	Santa Cruz, Bolivia	Locke et al. 2015
Clinostomum sp. 5 SAL-	VD110575	VD110522	C O Ch CCD 4 -	C: 11 1 1 1	м	Conto Corre Daliais	L1+ -1 2015
2015 Clinostomum on 1 SAI	KP110575	KP110532	C.Oes.CD.SCR.4.c	Cicniasoma boliviense	M	Santa Cruz, Bolivia	Locke et al. 2015
2015	KP110571	KP110524	Cl.Rg.CIH.X.1	Rhamdia guatamalensis	М	Yucatan, Mexico	Locke et al. 2015
<i>Clinostomum</i> sp. 3 SAL-	111 1100 / 1	111 11002	0			1 4044441, 111011100	20000 00000 2010
2015	KP110573	KP110530	C.G.Pm.ABA.X.1	Poecilia mexicana	М	Veracruz, Mexico	Locke et al. 2015
Clinostomum sp. 4 SAL-							
2015	KP110574	KP110531	C.Asp.ITA.1.1	Apistogramma sp.	М	Iquitos, Peru	Locke et al. 2015
Clinostomum sp. 6 SAL-							
2015	KP110577	KP110534	C.F.Cb.SCR.4.b	Cichlasoma boliviense	Μ	Santa Cruz, Bolivia	Locke et al. 2015
<i>Clinostomum</i> sp. 7	KJ789384	KJ818259	43/13_1	Poecilia reticulata	М	Brazil	Pinto et al. 2015
Clinostomum sp. 7	KJ789385	KJ818261	43/13_2	Poecilia reticulata	М	Brazil	Pinto et al. 2015
Clinostomum sp. 7	KJ789386	KJ818262	43/13_3	Poecilia reticulata	М	Brazil	Pinto et al. 2015

Clinostomum							
detruncatum Clinostomum	KP110566	KP110517	C.Sm.ITA.1.1	Synbranchus marmoratus	М	Parana, Brazil	Locke et al. 2015 Caffara et al.
phalacrocoracis Clinostomum	KJ786979	KJ786971	20/13_B1	Cichlid fingerling	М	Israel	2014 Caffara et al
phalacrocoracis Clinostomum	KJ786975	KJ786967	20/13_A1	Cichlid fingerling	М	Israel	2014 Caffara et al
phalacrocoracis Clinostomum	KJ786976	KJ786968	20/13_A2	Cichlid fingerling	М	Israel	2014
phalacrocoracis Clinostomum	KP110567	KP110521	Cp.On.KYA.X.1	niloticus	М	Kenya	Locke et al. 2015
phalacrocoracis Clinostomum	KJ786982	KJ786974	20/13_B7	Cichlid fingerling	М	Israel	2014 Caffara et al
phalacrocoracis Clinostomum	KJ786981	KJ786973	20/13_B3	Cichlid fingerling	М	Israel	2014 Caffara et al
phalacrocoracis Clinostomum	KJ786980	KJ786972	20/13_B2	Cichlid fingerling	М	Israel	2014
phalacrocoracis Clinostomum	KP110568	KP110522	Cp.O.Ac.KYA.X.1	Ardea cinerea	А	Kenya	Locke et al. 2015
phalacrocoracis	KJ786977	KJ786969	20/13_A3	Cichlid fingerling	М	Israel	2014 Coffere et al
phalacrocoracis	KJ786978	KJ786970	20/13_A7	Cichlid fingerling	М	Israel	2014 Caffara et al
Clinostomum tilapiae	KY649353	KY649361	172/15_7	Synodontis batensoda	М	Nigeria	2017 Caffara et al
Clinostomum tilapiae	KY649355	KY649363	172/15_21	Synodontis batensoda	М	Nigeria	2017 Caffara et al
Clinostomum tilapiae	KY649356	KY649364	172/15_22	Synodontis batensoda	М	Nigeria	2017
Clinostomum tilapiae	KY649349	KY649357	172/15_A1	Synodontis batensoda	М	Nigeria	2017
Clinostomum tilapiae	KY649350	KY649358	172/15_A2	Synodontis batensoda	М	Nigeria	2017
Clinostomum tilapiae	KY649352	KY649360	172/15_B1	Synodontis batensoda	М	Nigeria	2017
Clinostomum tilapiae	KY649351	KY649359	172/15_A3	Synodontis batensoda	М	Nigeria	2017
Clinostomum tilapiae	KY649354	KY649362	172/15_20	Synodontis batensoda	М	Nigeria	2017
Clinostomum cutaneum	KP110565	KP110516	Cc.On.KYA.X.1	oreochromis niloticus niloticus	М	Kenya	Locke et al. 2015

Clinostomum cutaneum Clinostomum	KP110564	KP110515	Cc.Ac.KYA.X.1	Ardea cinerea	А	Kenya	Locke et al. 2015
philippinense Clinostomum sp. 8 SAL-	KP110570	KP110523	C.Tm.ITA.1.2	Trichogaster microlepis	М	Thailand	Locke et al. 2015
2015 Clinostomum sp. 8 SAL	KP110583	KP110539	C.G.Ca.CHU.4.1	Carassius auritus	М	Hubei, China	Locke et al. 2015
2015	KP110580	KP110536	C.Op.Ca.Lzi.3	Carassius auritus	М	Hubei, China	Locke et al. 2015
2015	KP110581	KP110537	C.Op.Ca.Lzi.4	Carassius auritus	М	Hubei, China	Locke et al. 2015
Clinostomum sp. 8 SAL- 2015 Clinostomum sp. 8 SAL-	KP110585	KP110541	C.Op.Ci.HUB.1	Ctenopharyngodon idella	М	Hubei, China	Locke et al. 2015
2015 <i>Clinostomum</i> sp. 8 SAL-	KP110582	KP110538	C.Op.Ca.Lzi.5	Carassius auritus	М	Hubei, China	Locke et al. 2015
2015 Clinostomum sp. 8 SAL	KP110586	KP110542	C.Op.Ca.Lzi.1	Carassius auritus	М	Hubei, China	Locke et al. 2015
2015 <i>Clinostomum</i>	KP110579	KP110535	C.Op.Ci.HUB.2	Ctenopharyngodon idella	М	Hubei, China	Locke et al. 2015
complanatum Clinostomum	JF718624	JF718589	C.S.ITA5.1	Lepomis gibbosus Newts: Triturus carnifar	М	Veneto, Italy	2011 Caffara et al
complanatum Clinostomum	KM518258	KM518252	228/11_2	Lissotriton vulgaris	М	Italy Fmilia -R omagna	2014 Caffara et al
complanatum Clinostomum	JF718623	JF718588	C.Sc.ITA3.6	Squalius cephalus Newts: Triturus carnifer	М	Itay	2011 Caffara et al
complanatum Euclinostomum	KM518259	KM518253	228/11_1	Lissotriton vulgaris	М	Italy	2014 Caffara et al
heterostomum Euclinostomum	KP721427	KP721409	349/13_7	Cichlids	М	Israel	2016 Caffara et al
heterostomum Euclinostomum	KP721434	KP721416	55/14_7	Cichlids	М	Israel	2016
heterostomum	KP721435	KP721417	55/14_8	Cichlids	М	Israel	2016
Euclinostomum heterostomum	KP721429	KP721412	55/14_2	Cichlids	М	Israel	Caffara et al. 2016
Euclinostomum heterostomum	KP721424	KP721406	349/13_4	Cichlids	М	Israel	Caffara et al. 2016
Euclinostomum heterostomum	KP721436	KP721418	55/14 9	Cichlids	М	Israel	Caffara et al. 2016
Euclinostomum heterostomum	KP721423	KP721405	349/13_3	Cichlids	М	Israel	Caffara et al. 2016

Euclinostomum hatarostomum	KP721/30	K P721/21	55/17 12	Cichlids	М	Israel	Caffara et al.
Euclinestemum	KI /21439	KI /21421	55/14_12	Clefillids	141	151401	2010 Coffere et el
Luciinosiomum heterostomum	KP721428	КР721410	349/13 8	Cichlids	М	Israel	2016
Fuelinostomum	KI /21 4 20	KI /21410	547/15_0	Cleminus	141	151001	Coffora et al
hatarostomum	KP721430	KP721/13	55/1/ 3	Cichlids	м	Icrael	2016
Euclinestemum	KI /21430	KI /21413	55/14_5	Clefillids	141	151401	2010 Coffere et el
Lucinosiomum	VD721421	VD721414	55/11 1	Ciablida	м	Icroal	
	KP/21431	KP/21414	55/14_4	Cicilias	11/1	Islael	2010 Caffana at al
Lucinostomum	VD721426	VD721409	240/12 6	Cichlida	м	Iaro al	Callara et al.
	KP/21420	KP/21408	549/15_0	Cicilias	IVI	Islael	2016
Euclinostomum	120701407	120701410	CC/14 10	0:11:1	м	т 1	Caffara et al.
heterostomum	KP/2143/	KP/21419	55/14_10	Cichlids	M	Israel	2016
Euclinostomum	110701 (00		0.40/10.0	<u>a. 11. 1</u>		T 1	Caffara et al.
heterostomum	KP/21422	KP/21404	349/13_2	Cichlids	М	Israel	2016
Euclinostomum				<u> </u>			Caffara et al.
heterostomum	KP721433	KP721415	55/14_6	Cichlids	М	Israel	2016
Euclinostomum							Caffara et al.
heterostomum	KP721425	KP721407	349/13_5	Cichlids	М	Israel	2016
Euclinostomum							Caffara et al.
heterostomum	KP721438	KP721420	55/14_11	Cichlids	М	Israel	2016
<i>Euclinostomum</i> sp. 1 SS-							Senapin et al.
2014	KC894793	KC894795	Parasite no. 1	Trichopsis vittata	М	Thailand	2014
<i>Euclinostomum</i> sp. 2 SS-							Senapin et al.
2014	KC894799	KC894796	Parasite no. 2	Trichopsis schalleri	М	Thailand	2014
<i>Euclinostomum</i> sp. 3 SS-							Senapin et al.
2014	KC894800	KC894797	Parasite no. 3	Trichopsis vittata	М	Thailand	2014
							Galazzo et al.
.		~~~~~				a 1	2002; Locke et al.
Diplostomum baeri	AY123042	GQ292501	5DM24	Larus delawarensis	А	Canada	2010
						New Hampshire,	
Alaria mustelae	JF769478	JF904529	A.Rc.OXB.3	Lithobates clamitans	М	USA	Locke et al. 2011

Abbreviations: A, adult; C, cercaria; M, metacercaria

References

Caffara, M., Bruni, G., Paoletti, C., Gustinelli, A., & Fioravanti, M. L. (2014a). Metacercariae of *Clinostomum complanatum* (Trematoda: Digenea) in European newts *Triturus carnifex* and *Lissotriton vulgaris* (Caudata: Salamandridae). *Journal of Helminthology*, 88, 278–285.

Caffara, M., Davidovich, N., Falk, R., Smirnov, M., Ofek, T., Cummings, D., Gustinelli, A., & Fioravanti, M. L. (2014b). Redescription of *Clinostomum phalacrocoracis* metacercariae (Digenea: Clinostomidae) in cichlids from Lake Kinneret, Israel. *Parasite*, *21*, 32.

Caffara, M., Locke, S. A., Cristanini, C., Davidovich, N., Markovich, M. P., & Fioravanti, M. L. (2016). A combined morphometric and molecular approach to identifying metacercariae of *Euclinostomum heterostomum* (Digenea: Clinostomidae). *Journal of Parasitology*, *102*, 239–248.

Caffara, M., Locke, S. A., Echi, P. C., Halajian, A., Benini, D., Luus-Powell, W. J., Tavakol, S., & Fioravanti, M. L. (2017). A morphological and molecular study of clinostomid metacercariae from African fish with a redescription of *Clinostomum tilapiae*. *Parasitology*, *144*, 1519–1529.

Caffara, M., Locke, S. A., Gustinelli, A., Marcogliese, D. J., & Fioravanti, M. L. (2011). Morphological and molecular differentiation of *Clinostomum complanatum* and *Clinostomum marginatum* (Digenea: Clinostomidae) metacercariae and adults. *Journal of Parasitology*, *97*, 884–891.

Galazzo, D. E., Dayanandan, S., Marcogliese, D. J., & McLaughlin, J. D. (2002). Molecular systematics of some North American species of *Diplostomum* (Digenea) based on rDNA-sequence data and comparisons with European congeners. *Canadian Journal of Zoology*, *80*, 2207–2217.

Locke, S. A., Caffara, M., Marcogliese, D. J., & Fioravanti, M. L. (2015). A large-scale molecular survey of *Clinostomum* (Digenea, Clinostomidae). *Zoologica Scripta*, 44, 203–217.

Locke, S. A., McLaughlin, J. D., Dayanandan, S., & Marcogliese, D. J. (2010). Diversity and specificity in *Diplostomum* spp. metacercariae in freshwater fishes revealed by cytochrome *c* oxidase I and internal transcribed spacer sequences. *International Journal for Parasitology*, *40*, 333–343.

Locke, S. A., McLaughlin, J. D., Lapierre, A. R., Johnson, P. T., & Marcogliese, D. J. (2011). Linking larvae and adults of *Apharyngostrigea cornu*, *Hysteromorpha triloba*, and *Alaria mustelae* (Diplostomoidea: Digenea) using molecular data. Journal of Parasitology, 97, 846– 851. Pinto, H. A., Caffara, M., Fioravanti, M. L., & Melo, A. L. (2015). Experimental and molecular study of cercariae of *Clinostomum* sp. (Trematoda: Clinostomidae) from *Biomphalaria* spp. (Mollusca: Planorbidae) in Brazil. *Journal of Parasitology*, *101*, 108–113.

Rosser, T. G., Baumgartner, W. A., Alberson, N. R., Woodyard, E. T., Reichley, S. R., Wise, D. J., Pote, L. M., & Griffin, M. J. (2016). *Austrodiplostomum* sp., *Bolbophorus* sp. (Digenea: Diplostomidae), and *Clinostomum marginatum* (Digenea: Clinostomidae) metacercariae in inland silverside *Menidia beryllina* from catfish aquaculture ponds, with notes on the infectivity of *Austrodiplostomum* sp. cercariae in channel catfish *Ictalurus punctatus*. *Parasitology Research*, *115*, 4365–4378.

Rosser, T. G., Alberson, N. R., Woodyard, E. T., Cunningham, F. L., Pote, L. M., Griffin, M. J. (2017). *Clinostomum album* n. sp. and *Clinostomum marginatum* (Rudolphi, 1819), parasites of the great egret *Ardea alba* L. from Mississippi, USA. *Systematic Parasitology*, *94*, 35–49.
Senapin, S., Phiwsaiya, K., Laosinchai, P., Kowasupat, C., Ruenwongsa, P., & Panijpant, B. (2014). Phylogenetic analysis of parasitic trematodes of the genus *Euclinostomum* found in *Trichopsis* and *Betta* fish. *Journal of Parasitology*, *100*, 368–371.

	Clinostomum	Clinostomum sp.	Clinostomum	Clinostomum
	album		golvani	marginatum
Host	Planorbella	Biomphalaria	Biomphalaria	Planorbella anceps
	trivolvis	glabrata,	glabrata	
		Biomphalaria		
		straminea,		
		Biomphalaria		
		tenagophila		
Locality	Mississippi,	Minas Gerais,	Guadelopue, West	Maryland, USA
	USA	Brazil	Indies	
Reference	This study	Pinto et al. (2015)	Nassi & Bayssade-	Krull 1934*
			Dufour (1980)	
BL	271-819	*1375-2321	2000-3100	490
	(455)	(1826)		
BW	97–235	150-205	_	140
	(150)	(177)		
PhL	30–57	38–50	67	36
	(47)	(46)		
PhW	31–58	42–53	_	27
	(46)	(46)		
CL	162–523	683-1203	2/3 - 4/5 body	_
	(291)	(878)	length	
CW	28–59	25–47	_	—
	(41)	(30)		

Supplementary Table 3 Morphological data of *Clinostomum* spp. redia from aquatic snails in the Americas

Abbreviations: BL, body length; BW, body width; PhL, pharynx length; PhW, pharynx width; CL, caecum length; CW, caecum width.

*Measurements from the single largest redia.

References

Krull, W. H. (1934). Some observations on the cercaria and redia of a species of *Clinostomum*, apparently *C. marginatum* (Rudolphi, 1819) (Trematoda: Clinostomidae). *Proceedings of the Helminthological Society of Washington*, *1*, 34–35.

Nassi H., & Bayssade-Dufour C. (1980). Cycle biologique de *Clinostomum golvani* n. sp. (Trematoda: Clinostomidae) parasite larvaire de *Biomphalaria glabrata*, mollusque vecteur de *Schistosoma mansoni* em Guadalupe. *Annales de Parasitologie*, *55*, 527–540.

Pinto, H. A., Caffara, M., Fioravanti, M. L., & Melo, A. L. (2015). Experimental and molecular study of cercariae of *Clinostomum* sp. (Trematoda: Clinostomidae) from *Biomphalaria* spp. (Mollusca: Planorbidae) in Brazil. *Journal of Parasitology*, *101*, 108–113.

Supplementary Figure 1. *Clinostomum poteae* n. sp. hologenophore. Mayer's carmalum stain. *Scale bar*: 1 mm.

Supplementary Figure 2. *Clinostomum marginatum* hologenophore from bluegill *Lepomis macrochirus*. Mayer's carmalum stain. *Scale bar*: 1 mm.

Supplementary Figure 3. Phylogenetic tree constructed from concatenated *cox*1 gene and ITS regions alignment. Numbers above the branches represent Bayesian posterior probabilities and maximum likelihood bootstrap values based on 1,000 pseudoreplicates (<0.5 are not shown). *Clinostomum* species obtained in this study are in bold. *Scale-bar*: average number of nucleotide substitutions per site.

0.1