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ARTICLE

Resource partitioning between kit foxes (Vulpes macrotis) and
coyotes (Canis latrans): a comparison of historical and
contemporary dietary overlap
P.A. Byerly, R.C. Lonsinger, E.M. Gese, A.J. Kozlowski, and L.P. Waits

Abstract: Range expansions by generalists can alter communities and introduce competitive pressures on native species. In the
Great Basin Desert, USA, coyotes (Canis latrans Say, 1823) have colonized and are now sympatric with native kit foxes (Vulpes
macrotis Merriam, 1888). Since both species have similar diets, dietary partitioning may facilitate coexistence. We analyzed coyote
and kit fox diets, then compared our results to an earlier study. Because populations are dynamic, we expected that decreases in
prey or increases in predator abundance could alter dietary patterns. We found no significant changes in population-level prey
diversity for kit foxes or coyotes, but found high levels of dietary overlap between species. We did detect a significant decrease
in the relative importance of leporids (family Leporidae) in the diets of both canids, but they remained important for coyotes. The
relative importance of small mammals was greater for kit foxes than coyotes, but their importance had not changed significantly
over time. We detected significant declines in prey diversity per sample (scat-level dietary diversity) for both canids, suggesting
that during a foraging event, individuals may encounter less diverse prey now than historically. These findings suggested that kit
foxes and coyotes were not limited by prey, despite high dietary overlap.

Key words: Canis latrans, competition, coyote, diet, intraguild predation, kit fox, Vulpes macrotis.

Résumé : L’expansion des aires de répartition de généralistes peut modifier des communautés et introduire des pressions
concurrentielles sur les espèces indigènes. Les coyotes (Canis latrans Say, 1823) ont colonisé le désert du Grand Bassin (États-Unis)
et y vivent maintenant en sympatrie avec les renards nains (Vulpes macrotis Merriam, 1888) indigènes. Comme les deux espèces ont
des régimes alimentaires semblables, le partage différentiel des ressources alimentaires pourrait faciliter leur coexistence. Nous
avons analysé les régimes alimentaires de coyotes et de renards nains, puis comparé les résultats à ceux d’une étude antérieure.
Parce que les populations sont dynamiques, nous nous attendions à ce que des baisses de l’abondance de proies ou des
augmentations de l’abondance de prédateurs puissent modifier les habitudes alimentaires. Nous n’avons décelé aucun change-
ment significatif de la diversité des proies au niveau de la population pour les renards nains ou les coyotes, mais avons noté des
degrés élevés de chevauchement des régimes alimentaires des deux espèces. Nous avons toutefois détecté une baisse significative
de l’importance relative des léporides (famille des léporidés) dans l’alimentation des deux canidés, même si ces proies de-
meuraient importantes pour les coyotes. L’importance relative des petits mammifères était plus grande chez les renards nains
que chez les coyotes, mais leur importance n’a pas changé significativement avec le temps. Nous avons décelé des baisses
significatives de la diversité des proies par échantillon (diversité des aliments dans les excréments) pour les deux canidés, ce qui
indiquerait que, durant les épisodes d’approvisionnement, les individus pourraient trouver une moins grande diversité de proies
que par le passé. Ces constatations donnent à penser que les renards nains et les coyotes ne sont pas limités par les proies, malgré
l’important chevauchement de leurs régimes alimentaires. [Traduit par la Rédaction]

Mots-clés : Canis latrans, concurrence, coyote, régime alimentaire, prédation intraguilde, renard nain, Vulpes macrotis.

Introduction
Novel interactions among species are predicted to become in-

creasingly common as species continue to alter their ranges in
response to climate change and anthropogenic disturbances
(Parmesan 2006; Urban et al. 2012; Engler et al. 2013). Among
carnivores, range expansions and colonization of new habitats by
dominant generalist species can alter carnivore communities and
negatively impact subordinate specialist carnivores through com-

petition (Gompper 2002; Larivière 2004; Arjo et al. 2007; Kamler
et al. 2007). The intensity of competition between carnivores in-
creases with increasing dietary overlap and taxonomic related-
ness. Additionally, the probability of interspecific competitive
killing (an extreme form of interference competition; Lourenço
et al. 2014) is highest when the dominant carnivore is sufficiently
large relative to the subordinate species that the probability of the
aggressor being injured or killed during an interaction is low
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(Donadio and Buskirk 2006). The consequences of an invading
generalist carnivore may range from coexistence to extirpation of
a native carnivore (Polis et al. 1989). Under conditions leading to
coexistence, competition with a dominant species may limit the
distribution and density of a subordinate carnivore (Hardin 1960;
Schoener 1983; Glen and Dickman 2008; Sidorovich et al. 2010),
which can make the population less resilient to changes in habitat
or resource availability. Thus, the ability to minimize competition
through resource partitioning may be critical for the long-term
persistence of specialist carnivore populations facing novel com-
petitive pressures.

Resource partitioning is a multidimensional process involving
temporal, spatial, and (or) dietary shifts in a species’ resource use,
which lessens niche overlap among species (Schoener 1974;
Garneau et al. 2007; Kamler et al. 2012) and reduces negative en-
counters between competitors (Polis et al. 1989; Donadio and
Buskirk 2006). For carnivores, temporal partitioning may be re-
stricted by activity patterns and availability of prey resources
(Palomares and Caro 1999; Kozlowski et al. 2008). Spatial partition-
ing requires spatial heterogeneity or structural diversity in habi-
tats, whereas dietary partitioning requires a diverse prey base
(Hughes and Grabowski 2006; Arjo et al. 2007; Moehrenschlager
et al. 2007).

In the Great Basin Desert, kit foxes (Vulpes macrotis Merriam,
1888) and coyotes (Canis latrans Say, 1823) have changed in distri-
butional overlap since the mid-20th century (Arjo et al. 2007). Kit
foxes are desert specialists native to North America. They are
highly tolerant of arid conditions and can persist in the absence of
free-standing water (Golightly and Ohmart 1984). These adapta-
tions have historically enabled kit foxes to spatially partition
themselves from potential competitors by occupying desert hab-
itats less suitable for other predators (Egoscue 1962; Kozlowski
et al. 2008). Native to the Great Plains of central North America,
coyotes are larger bodied generalists that have significantly ex-
panded their range over the last two centuries (Gompper 2002). As
recently as the 1950s and 1960s, kit foxes were the most abundant
carnivore in the Great Basin and were increasing in abundance
(Egoscue 1956; Dempsey et al. 2015), whereas coyotes were rare
(Egoscue 1962; Arjo et al. 2007). Since then, coyotes have increased
dramatically in abundance (Arjo et al. 2007) to a density 3–4 times
greater than that of kit foxes (Lonsinger et al. 2018) and are wide-
spread (Lonsinger et al. 2017). Coyotes require substantially more
water than kit foxes and are less efficient in their water usage
(Golightly and Ohmart 1984). Consequently, it has been suggested
that the increases in coyote abundance in the region may have
been, at least in part, related to increased water availability
through the development of artificial water sources (Arjo et al.
2007).

Coyote presence has been hypothesized to regulate kit fox pop-
ulations across their range and increased coyote abundance has
been linked to declining kit fox populations in some areas
(Cypher and Scrivner 1992; White and Garrott 1997; White et al.
2000; Arjo et al. 2007; Kozlowski et al. 2008). In the Great Basin
Desert, kit fox declines have been attributed to the combined
influences of increased coyote abundance and the conversion of
desert vegetation to exotic grasses (Arjo et al. 2007). At the time of
our study, kit fox populations in the region were found to be at
their lowest reported density (Lonsinger et al. 2018). As general-
ists, coyotes can reach greater densities than specialist carnivores
such as kit foxes and may limit access to resources through ex-
ploitation competition (Gompper 2002). Coyotes may also limit
smaller carnivores through interference competition (Crooks and
Soulé 1999; Gompper 2002) and interspecific competitive killing
of kit foxes by coyotes is believed to be the primary cause of kit fox
mortality in some regions (Cypher and Spencer 1998; Kozlowski
et al. 2012). Previous research on sympatric kit foxes and coyotes
has reported a high degree of dietary overlap (Cypher and Spencer
1998; Kozlowski et al. 2008), which can strongly influence the

potential for competition and negative encounters between sym-
patric competitors (Neale and Sacks 2001; Donadio and Buskirk
2006).

We analyzed the diets of sympatric kit foxes and coyotes in the
Great Basin Desert of Utah, USA, and compared our results to a
study conducted in the same region from 1999 to 2001 (�12 years
earlier; Kozlowski et al. 2008). Although the high levels of dietary
overlap between kit foxes and coyotes previously reported sug-
gested prey may not have been a limiting resource (Kozlowski
et al. 2008), systems are dynamic and continued increases in coy-
ote abundance or decreases in prey availability could increase
competitive pressures and cause patterns of dietary partitioning
to emerge.

To ensure valid comparisons, dietary composition and overlap
were evaluated following the procedures of Kozlowski et al.
(2008). When dietary overlap was last investigated in this system,
coyote abundance and leporid (species of the family Leporidae)
density were believed to be on increasing and decreasing long-
term trajectories, respectively (Arjo et al. 2007). Consequently, we
hypothesized that we would see an overall decrease in dietary
overlap between the two species, reflecting increased competition
for prey and, accordingly, an increased degree of dietary resource
partitioning. It has been hypothesized that water is a limiting
factor in this region (Arjo et al. 2007) and that kit foxes and coy-
otes select for prey that will maximize water intake (Golightly and
Ohmart 1984; Kozlowski et al. 2012). We predicted that coyotes
would limit kit fox access to higher quality dietary prey, such as
leporids, which contain higher water content per capture than
smaller mammals, such as kangaroo rats (species of genus Dipodomys
Gray, 1841) and other rodents (species of the order Rodentia), and
nonmammalian prey (e.g., insects, reptiles, birds; Pond 1978). We
predicted that kit foxes would respond by increasing their use of
small mammals and nonmammalian prey.

Materials and methods

Study area
This study was conducted in the Great Basin Desert of western

Utah, USA. Sampling occurred on the U.S Army’s Dugway Proving
Ground and surrounding federal lands managed by the U.S. Bu-
reau of Land Management (collectively hereafter Dugway; Fig. 1).
Dugway is characterized by flat lowlands separated by abrupt,
steep mountains (Kozlowski et al. 2008). The region tends towards
cold winters and moderate summers; January is the coldest
month (mean high = 3.3 °C; mean low = 8.8 °C) and July is the
warmest month (mean high = 34.7 °C; mean low = 16.3 °C)
(Lonsinger et al. 2015a). Dugway receives �20 cm of precipitation
annually and evaporation exceeds precipitation, limiting the
availability of naturally occurring free-standing water (Arjo et al.
2007; Kozlowski et al. 2012). Habitat types within the region in-
clude arid shrub–steppe, greasewood (Sarcobatus vermiculatus
(Hook.) Torr.) shrubland, cold desert chenopod shrubland, cold
desert playa, native and exotic grasslands, vegetated and unveg-
etated dunes, open juniper (species of the genus Juniperus L.) wood-
land complexes, and isolated human developments (Kozlowski
et al. 2012; Lonsinger et al. 2017). Our contemporary study compli-
mented a study investigating canid abundance (Lonsinger et al.
2018) and occupancy patterns (Lonsinger et al. 2017), for which the
extent was �3015 km2 (Fig. 1). Our study extent encompassed the
spatial extent of the historical study implemented by Kozlowski
et al. (2008), as well as sites used to study kit fox ecology from 1951
to 1958 (Egoscue 1956; Egoscue 1962; Arjo et al. 2007).

Sample collection and processing
Kit fox and coyote fecal samples were collected along 270 km of

transects. Surveys were conducted during winter (January–March)
and summer (July–August) of 2013. During these two seasons,
30 transects (5 km each) were surveyed 3 (summer) to 4 (winter) times
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(Fig. 1), with consecutive surveys separated by �14 days. Addition-
ally, 240 shorter transects (500 m each; Fig. 1) were each surveyed
once in each season. Researchers were trained to identify scats
with samples of known origin. During surveys, scats were identi-
fied to species based on morphology, overall size, shape, color,
and odor, as well as associated sign (e.g., tracks; Kozlowski et al.
2012), and species identification was later confirmed using mito-
chondrial DNA (mtDNA) fragment analysis (De Barba et al. 2014).
Fecal DNA sample collection and mtDNA species identification
followed procedures detailed in Lonsinger et al. (2017). At the time
of collection, samples were placed in paper bags and frozen. Sam-
ples were subsequently thawed, individually packaged in nylon
material, soaked in warm water for approximately 2 h, and
washed with detergent in a standard washing machine for 2–
3 cycles to remove fecal material. Samples were then dried at 70 °C
in drying ovens for 24 h. The remaining indigestible remnants
(e.g., hair, teeth, bones, feathers, and scales) were analyzed using
site-specific voucher specimens and dichotomous keys (for full list
see Gosselin et al. 2017).

Data analysis
Dietary items were separated into 1 of 11 classes following

Kozlowski et al. (2008). Dietary classes included leporids, rodents,
kangaroo rats (separated from other rodents because of their high
frequency and historical importance in the diets of both canids),
insects, birds, fruits and plants, reptiles, anthropogenic materials,
ungulates, and miscellaneous mammals. The presence or absence
of each dietary class was recorded for each scat. Proportions of
dietary classes were calculated by percent occurrence (PO), which
we defined as the number of occurrences of a dietary class/total
number of scat samples, and relative percent occurrence (RPO),
which we defined as the number of occurrences of a dietary class/

total number of occurrences of all dietary classes (Loveridge and
Macdonald 2003). PO estimates the frequency a prey item is used
by the species, whereas RPO estimates the frequency of a prey
item compared with other prey items, providing an estimate of
a prey item’s relative importance in the diet (Loveridge and
Macdonald 2003; van der Merwe et al. 2009). To facilitate data
analysis and minimize bias, dietary items with a PO < 5% in both
species were considered trace and excluded from subsequent PO
and RPO analyses (Kamler et al. 2007). We also estimated PO and
RPO by season. For both species, population-level PO decreased
across primary dietary classes between historical and contempo-
rary sampling periods (see Results). We suspected these results
could reflect decreases in dietary diversity on a per-scat basis.
Differences in mean number of classes per scat for both kit foxes
and coyotes between sampling periods were tested for signifi-
cance using Welch’s t test (Welch 1947).

Dietary overlap was calculated using the Morisita–Horn similar-
ity index (hereafter M–H index; Horn 1966), in which overlap was
based on the proportion of prey classes in the diet, and was mea-
sured on a scale of 0 (no dietary overlap) to 1 (complete dietary
overlap). All 11 dietary classes were included in measurements of
overlap and diversity. Seasonal and annual dietary overlap was
assessed within each canid species between contemporary and
historical periods. Dietary overlap was also assessed between kit
foxes and coyotes for the contemporary sampling period. Breadth
of dietary diversity for contemporary samples was calculated us-
ing the Shannon–Weiner diversity index (hereafter H=; Shannon
1948). Dietary diversity was measured both annually and for win-
ter and summer sampling periods and differences in diversity
were tested for significance using Hutcheson’s t test (Hutcheson
1970). Differences in RPO between species and between historical

Fig. 1. Location of 5 km and 500 m transects surveyed within and around the U.S. Army’s Dugway Proving Ground in western Utah, USA, for
coyote (Canis latrans) and kit fox (Vulpes macrotis) scats in the winter and summer of 2013.
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and contemporary studies were tested for significance using Pear-
son’s �2 test (Zar 1996). Contribution to diet was calculated for
each primary dietary class individually with a single-sample pro-
portions test with continuity correction. All analyses were com-
pleted with the R statistical programming language (R Core Team
2014).

Sensitivity to misidentification
Carnivore scats collected from 1999 to 2001 were identified to

species based on scat morphology, including color, odor, overall
size, and physical appearance (Kozlowski et al. 2008, 2012); mis-
identification of scats associated with this approach may bias in-
ferences (Lonsinger et al. 2015b). We assumed that field-based scat
misclassification levels during the 2013 sampling adequately rep-
resented misidentification levels during the historical time period
and we used 2013 samples to evaluate the sensitivity of our statis-
tical approaches to misidentification. Using the field identifica-
tion of scats, we randomly selected n samples from each species
without replacement, evaluating sample sizes (n) of 50 to 250 (by
50). For each n, we repeated this procedure 1000 times, each time
evaluating the dietary overlap between species, testing for signif-
icant differences in H= with Hutcheson’s t test, and comparing
RPO between species with Pearson’s �2 tests as described above.
Across the 1000 replicate subsamples for each n, we then calcu-
lated the mean difference between the M–H index derived from
the full data set and based on mtDNA species identification and
the M–H index derived from each replicate subsample. Similarly,
we compared the statistical results of the Hutchinson’s t test and
Pearson’s �2 tests across replicates for each n to that from the full
data set identified with mtDNA and calculated the proportion that
were in agreement.

Habitat proportions
Variation in prey availability and abundance may be associated

with variation in habitat types (Arjo et al. 2007; Kozlowski et al.
2012); consequently, observed differences in dietary composition
between historical and contemporary sampling periods may be an
artifact of differences in the habitat proportions sampled within
each spatial extent. Temporally relevant vegetation type layers
were acquired from the LANDFIRE database (http://www.landfire.
gov/) for each sampling period, with vegetation layers from 2001
and 2012 being used to characterize habitat proportions from
historical and contemporary sampling periods, respectively. We
used ArcGIS version 10.0 (ESRI 2010) to reclassify habitat types as
woodland, shrubland, subshrubs, grassland, sparsely vegetated,
or developed. For each sampling period, we calculated the propor-
tion of each habitat type within a linear polygon 5 km on each side
of scat deposition transects. Changes in habitat proportions
within a single spatial extent can provide additional information
on habitat patterns observed. For the contemporary spatial ex-
tent, we also calculated the proportion of each habitat type based
on 2001 vegetation data and compared this to the patterns ob-
served with 2012 vegetation data.

Results

Sample collection and processing
We analyzed 776 coyote and 266 kit fox scats obtained during

the winter and summer sampling periods. Only four dietary
classes — leporids, rodents, kangaroo rats, and insects — had
>5% PO in the diets of both species. Some representative species
identified in the main dietary classes included black-tailed jack-
rabbit (Lepus californicus Gray, 1837), Ord’s kangaroo rat (Dipodomys
ordii Woodhouse, 1853), deer mouse (Peromyscus maniculatus (Wag-
ner, 1845)), grasshopper mouse (species of the genus Onychomys
Baird, 1857), white-tailed antelope squirrel (Ammospermophilus
leucurus (Merriam, 1889)), vole (species of the genus Microtus Schrank,
1798), Mormon cricket (Anabrus simplex Haldeman, 1852), and var-
ious beetles (order Coleoptera). Additional classes included varied

items such as mule deer (Odocoileus hemionus (Rafinesque, 1817)),
domestic cattle (Bos taurus Linnaeus, 1758; likely scavenged), juni-
per cones, Horned Larks (Eremophila alpestris (Linnaeus, 1758)), Go-
pher Snakes (Pituophis catenifer (Blainville, 1835)), and scorpions
(various species). No kit fox remains were detected in coyote scats.

Dietary overlap and diversity
A comparison of diet by species and season using the M–H index

revealed high levels of dietary overlap between historical and
contemporary periods for both kit foxes (M–H index = 0.97) and
coyotes (M–H index = 0.97; Table 1). Within the contemporary
period, dietary overlap between kit foxes and coyotes was found
to be high in both winter (M–H index = 0.93) and summer (M–H
index = 0.91) and was comparable to dietary overlap in the histor-
ical period (winter: M–H index = 0.87; summer: M–H index = 0.90).
Population-wide dietary diversity of both species was also similar
between historical and contemporary periods, as seen in the com-
parison of H= (Table 1), and significant differences in dietary diver-
sity between historical and contemporary periods were detected
only when diversity declined for kit foxes in winter (t[256] = 2.15,
P < 0.05). Overall dietary diversity of the contemporary samples
was higher in summer than in winter for both species, and annual
H=was significantly higher for coyotes than kit foxes (t[492] = −3.77,
P < 0.05).

Kit fox diet analysis
Kangaroo rats had the greatest RPO (41%) in annual kit fox diets

during the historical period, followed by rodents (25%), insects
(21%), and leporids (13%) (Table 2). Similarly, for annual kit fox
diets during the contemporary period, kangaroo rats had the
greatest RPO (36%), followed by rodents (35%), insects (22%), and
leporids (7%) (Table 2). A significant increase in annual RPO was
observed between historical and contemporary periods for the
rodent (��1�

2 = 7.80, P = 0.01) class and a significant decrease for the
leporid (��1�

2 = 5.1, P = 0.02) class (Table 2). In winter kit fox scats, we
observed a significant decrease in the RPO of insects (��1�

2 = 12.47,
P < 0.01) and a significant increase in the RPO of rodents (��1�

2 = 9.44,
P < 0.01) relative to the historical period (Table 2). Leporid RPO
decreased significantly in summer kit fox scats (��1�

2 = 12.20,
P < 0.01) when compared with the historical period. No other
significant seasonal differences were observed between contem-
porary and historical periods. Significant decreases in annual di-
etary PO were observed across all analyzed classes (Fig. 2). We
found a significant decrease in the per-sample dietary diversity
between historical and contemporary periods for both summer
(t[245.5] = −9.0, P < 0.01) and winter (t[207.5] = −9.0, P < 0.01).

Coyote diet analysis
For coyote annual diets, leporids had the highest RPO in the

historical period (37%), followed by kangaroo rats (29%), rodents

Table 1. Morisita–Horn similarity index (M–H index) of dietary over-
lap over time between historical samples collected by Kozlowski et al.
(2008) and contemporary samples collected in 2013 for coyotes (Canis
latrans) (historical: n = 1131; contemporary: n = 776) and kit foxes (Vulpes
macrotis) (historical: n = 294; contemporary: n = 266) and estimates of
dietary diversity (Shannon–Weiner diversity index (H=)).

H=

Species Season M–H index Historical Contemporary

Coyote Annual 0.97 0.80 0.87
Winter 0.97 0.77 0.74
Summer 0.94 0.81 0.85

Kit fox Annual 0.97 0.75 0.78
Winter 0.87 0.69 0.61
Summer 0.96 0.76 0.76

Note: M–H index indicates overlap within each sampling season (winter and
summer) and annually (winter and summer combined).
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(19%), and insects (15%), respectively (Table 3). For the contempo-
rary period, insects had the highest RPO (29%), followed by lep-
orids (26%), kangaroo rats (26%), and rodents (18%) (Table 3). A
significant increase was observed in annual insect RPO between
historical and contemporary periods (��1�

2 = 84.4, P < 0.01), whereas
annual leporid content decreased (��1�

2 = 32.15, P < 0.01; Table 3).
The contemporary RPO of rodents in winter coyote diets increased
significantly since the historical period (��1�

2 = 8.13, P < 0.01),
whereas kangaroo rat RPO (��1�

2 = 8.87, P < 0.01) and insect RPO
(��1�

2 = 9.5, P < 0.01) decreased (Table 3). In summer coyote diets, the

contemporary RPO of insects increased significantly (��1�
2 = 53.66,

P < 0.01), whereas leporid RPO decreased (��1�
2 = 41.58, P < 0.01) since

the historical period (Table 3). No other significant seasonal dif-
ferences in RPO were seen between contemporary and historical
periods. Similar to patterns observed in kit foxes, significant de-
creases in dietary PO were seen for all analyzed dietary classes
since the historical period, with the exception of the insect class,
which increased between historical and contemporary periods
(��1�

2 = 84.14, P < 0.01; Fig. 2). A significant decrease in per-sample
dietary diversity was observed between historical and contempo-
rary periods for both summer (t[888.162] = 10.239, P < 0.01) and
winter (t[896.753] = 18.764, P < 0.01) periods.

Sensitivity to misidentification
When scat misidentification was present, the mean change in

the estimated M–H index was negligible across sample sizes con-
sidered. At small sample sizes, results of the Hutcheson’s t tests
from replicated subsamples including field-based misidentifica-
tion were in low to moderate agreement with the full data set
based on mtDNA. At the lowest sample size, 73% of the data sets
produced results that were not in agreement with the full data set
(Supplementary Table S1).1 As sample size increased, however, the
influence of misidentification decreased; at the largest sample
size evaluated, 85% of replicates were in agreement with the full
data set without misidentification (Supplementary Table S1).1 Re-
sults of the Pearson’s �2 tests from replicate subsamples including
field-based misidentification were in high agreement with the full
data set based on mtDNA, even with small sample sizes; when
replicate sample sizes were ≥100 scats per species, ≥99% of repli-
cates were in agreement (Supplementary Table S1).1

Habitat proportions
The proportions of habitat types were similar between histori-

cal and contemporary sampling periods when using temporally
aligned vegetation data. Subshrub habitats (historical = 49.9%;
contemporary = 41.5%) constituted the most widely distributed
habitat type within each sampling period and spatial extent, fol-
lowed by shrubland (historical = 21.8%; contemporary = 19.4%) and
grassland (historical = 20.5%; contemporary = 23.5%) habitats.
Sparsely vegetated (historical = 5.5%; contemporary = 9.4%) and
woodland (historical = 1.2%; contemporary = 5.8%) habitats were
less common. Developed areas comprised only 1.2% and 0.4% of
the historical and contemporary spatial extents, respectively.
When considering changes in habitat proportions within the con-
temporary spatial extent, grassland (2001 = 16.9%; 2012 = 23.5%),
subshrub (2001 = 45.3%; 2012 = 41.5%), and shrubland (2001 = 22.2%;
2012 = 19.4%) habitats experienced the greatest change. Little or no
change was observed for sparsely vegetated (2001 = 9.2%; 2012 =
9.4%), developed (2001 = 0.5%; 2012 = 0.4%), and woodland (2001 =
5.8%; 2012 = 5.8%) habitats.

1Supplementary Table S1 is available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjz-2017-0246.

Table 2. Relative percent occurrence (RPO) of dietary classes representing >5% occurrence for kit fox
(Vulpes macrotis) populations based on historical (HS; 1999–2001) and contemporary (CS; 2013) scat
samples collected in western Utah, USA.

Annual Winter Summer

Dietary class HS CS HS CS HS CS

Leporid 0.13 0.07* 0.13 0.15 0.12 0.02*
Rodent 0.25 0.35* 0.31 0.49* 0.26 0.20
Kangaroo rat (species of genus Dipodomys) 0.41 0.36 0.44 0.36 0.38 0.35
Insect 0.21 0.22 0.12 0.00* 0.37 0.29

Sample size 294 266 146 113 148 153

Note: Asterisk indicates significant difference (P < 0.05) between historical and contemporary RPO.

Fig. 2. Percent occurrence of primary dietary classes for (a) kit
fox (Vulpes macrotis) and (b) coyote (Canis latrans) populations as
determined through analysis of scat samples collected in western
Utah, USA, during historical (1999–2001) and contemporary (2013)
sampling periods. Error bars represent Wilson’s 95% confidence
intervals.
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Discussion
Our primary objectives were to evaluate dietary diversity and

overlap between kit foxes and coyotes and to determine if the
diets of these species have diverged since an earlier study con-
ducted at the same study site that found high levels of dietary
similarity (Kozlowski et al. 2008). We expected that increased ex-
ploitative competition between native kit foxes and nonnative
coyotes could be driven by continued increases in coyote abun-
dance, decreases in prey availability, or both. We predicted that
increased competitive pressure would be indicated by a decrease
in dietary overlap between kit foxes and coyotes, with coyotes
concentrating on larger bodied shared prey (i.e., leporids) and
limiting their availability to subordinate kit foxes. Instead, we
observed little change, with the diets of both species having high
overlap (97%) between historical and contemporary periods. Di-
etary overlap between the two species also remained high (91%
annually). Interestingly, our results suggested that the frequency
at which a prey class was used (as characterized by PO) decreased
across prey classes for both species (with the exception of insect
use by coyotes), and we have related this pattern to significant
declines in the number of dietary classes per scat for both species.

The colonization of nonnative species can alter carnivore com-
munities and drive resource partitioning. For example, European
mink (Mustela lutreola (Linnaeus, 1761)) shifted their diet in re-
sponse to invading American mink (Neovison vison (Schreber,
1777)), and patterns of dietary partitioning varied with changes
in time since invasion and fluctuations in prey populations
(Sidorovich et al. 2010). Coyotes likely colonized the Great Basin by
the early 1900s and coyote control programs had been imple-
mented by the 1950s (Egoscue 1956). Still, coyotes were believed to
be rare until the mid-20th century, after which coyote relative
abundance increased steadily (Arjo et al. 2007). The earliest stud-
ies of kit fox diets at Dugway reported that foxes used a diverse
prey base, but that leporids made up a significant portion of their
diet (up to 90%; Egoscue 1962; Arjo et al. 2007). Subsequent analy-
ses of canid diets at Dugway from 1999 to 2001 suggested that kit
foxes had shifted their diet in response to increasing coyote abun-
dance, with leporids representing the smallest proportion of kit
fox diets and the greatest proportion of coyote diets, relative to
other prey class (Kozlowski et al. 2008).

Leporid populations are believed to be declining at Dugway,
with the population experiencing reduced amplitude in �10 year
population cycles (Arjo et al. 2007). Considering the relative im-
portance that leporids have had in canid diets at Dugway, we
expected that continued increases in coyote abundance and (or)
decreases in leporid abundance could lead to increased dietary
competition between kit foxes and coyotes. Our population-level
results suggested that the annual RPO of leporids continued to
decrease significantly in kit fox diets. In contrast to our predic-
tions, population-level annual RPO of leporids also decreased sig-
nificantly for coyotes. Although we did not estimate leporid
densities, a concurrent study suggested that leporid relative abun-
dance was lower during our study than during the historical pe-
riod (Arjo et al. 2007; Kluever et al. 2017). Declines in RPO of

leporids in both populations was likely related to overall popula-
tion declines in leporid abundance and therefore availability.

Cypher and Spencer (1998) found sympatric coyotes and San
Joaquin kit foxes (Vulpes macrotis mutica Merriam, 1902) relied
more heavily on leporids and small mammals, respectively, and
that this allocation of prey resources aligned with predictions that
species may partition resources based on their body size. Al-
though we observed high levels of dietary overlap between kit
foxes and coyotes, the relative importance of prey classes (as char-
acterized by RPO) suggested similar patterns. Even with declines
in the RPO of leporids since the historical period, leporids were
still more important for coyotes than kit foxes. Both species used
kangaroo rats and other rodents, but these classes combined to a
relative importance of 71% in kit fox diets compared with 44% in
coyote diets. When compared with historical estimates, these val-
ues represent only a nominal increase in RPO of kit fox diets and
decrease in RPO of coyote diets, suggesting that partitioning of
prey based on size likely occurred prior to the historical study.
Insects constituted a relatively important prey class for both
canids, but it was the prey class with the highest annual RPO for
coyotes. Cypher and Spencer (1998) suggested that coyotes may
not be able to efficiently exploit some small mammals and they
may therefore rely more on insects when leporid availability is
low. Neither kit foxes nor coyotes used other nonmammalian
dietary classes (e.g., reptiles, birds) at significantly higher levels,
but instead relied upon the same primary dietary classes —
rodents, kangaroo rats, rabbits, and insects — as during the his-
torical period.

Despite some changes in the RPO of prey classes, dietary overlap
remained high between kit foxes and coyotes (and between his-
torical and contemporary periods for each canid), suggesting that
the prey resources were likely not a limiting factor in this ecosys-
tem and that partitioning of dietary resources was not necessary
for kit fox and coyote coexistence. It has been suggested that kit
foxes and coyotes may coexist at Dugway through spatial parti-
tioning (Kozlowski et al. 2012), but other studies have failed to
detect these patterns (Hall et al. 2013). Lonsinger et al. (2017) found
patterns that reconciled these seemingly disparate results: kit
foxes and coyotes employed broad-scale habitat partitioning, but
where they co-occurred, kit fox space use was higher in areas with
greater coyote activity. These patterns could result from either
(i) kit foxes and coyotes aggregating in areas with more abundant
prey resources or (ii) coyotes actively hunting kit foxes. Although
Lonsinger et al. (2017) could not directly test these two hypotheses,
our data supports the former. We observed high levels of dietary
overlap, which highlights that both species targeted similar prey,
and supports the conclusions of Kozlowski et al. (2012) that, de-
spite apparent broad-scale spatial portioning, kit foxes still used
prey classes in proportions similar to those of coyotes. Further-
more, neither Kozlowski et al. (2008) nor our study, through the
collective analysis of >1900 coyote scats, found evidence of kit fox
remains in coyote diets, suggesting that coyotes were likely not
actively hunting kit foxes for food.

Table 3. Relative percent occurrence (RPO) of dietary classes representing >5% occurrence for coyote
(Canis latrans) populations based on historical (HS; 1999–2001) and contemporary (CS; 2013) scat
samples collected in western Utah, USA.

Annual Winter Summer

Dietary class HS CS HS CS HS CS

Leporid 0.37 0.26* 0.39 0.45 0.35 0.18*
Rodent 0.19 0.18 0.21 0.29* 0.169 0.13
Kangaroo rat (species of genus Dipodomys) 0.29 0.26 0.34 0.24* 0.23 0.27
Insect 0.15 0.29* 0.06 0.01* 0.26 0.42*

Sample size 1131 776 671 276 460 500

Note: Asterisk indicates significant difference (P < 0.05) between historical and contemporary RPO.
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It is not uncommon for mammalian intraguild predators to kill
and not consume a subordinate intraguild competitor when prey
resources are not limited (Palomares and Caro 1999). For example,
consumption of kit foxes or swift foxes (Vulpes velox (Say, 1823))
was rare when resources were abundant (Cypher and Spencer
1998; Kitchen et al. 1999), but common when prey resources were
limited (Ralls and White 1995). At Dugway, interspecific killing by
coyotes has been identified as a primary cause of kit fox mortality
(41%–67% of mortalities; White and Garrott 1997; Kozlowski et al.
2008; Kluever and Gese 2017), despite a lack of evidence that kit
foxes were consumed. This suggests that prey resources were not
limiting. Competitive pressure of coyotes on kit foxes was likely
restricted to interference competition. Interference competition
may restrict kit fox space use. For example, broad-scale kit fox
local extinction at Dugway was higher in areas with greater coyote
activity (Lonsinger et al. 2017). Thus, high levels of dietary overlap
as demonstrated in this study may lead to heightened risk of kit
foxes encountering coyotes while foraging, increasing the poten-
tial for interspecific competitive killing. If key prey classes for
coyotes such as leporids continue to decline at Dugway, then this
dynamic relationship could change and exploitative competition
could further limit kit foxes.

Changes in diets of species may be subtle and the scale of infer-
ence may limit our understanding of dynamic processes. We
found no significant changes in population-level diets over time
for either species through dietary overlap analysis. However, our
analyses found significant decreases in overall PO (i.e., frequency
of use) for the primary dietary classes for both kit foxes and coy-
otes between the historical and contemporary periods (apart from
an increase in insect PO for coyotes). These results indicated that
although kit foxes and coyotes used the same primary prey classes
at the population level and over longer periods (i.e., seasonally or
annually), prey classes were used less frequently. We attributed
these results to a significant decrease in number of prey classes
per sample (i.e., a decrease in scat-level diversity) for both species
since the historical period. It is possible that this reduction of
scat-level dietary diversity was the result of spatial or temporal
variation in the availability of the primary prey classes in our
study region. The land cover in the Great Basin Desert has been
altered considerably over the last half of the 20th century, with
over 50% of the natural shrub–steppe vegetation having been re-
placed by monoculture grasslands dominated by invasive species
such as cheatgrass (Bromus tectorum L.) (Arjo et al. 2003; Bartel et al.
2008; Ostoja and Schupp2009). Homogenous habitats dominated
by nonnative plants can lead to decreased diversity of small mam-
mals (Bartel et al. 2008; Litt and Steidl 2011). Arjo et al. (2007) and
Kozlowski et al. (2012) found increased rodent abundances at Dug-
way, but they noted that overall species diversity was low and that
the increase in abundance was likely due to an influx of habitat
generalists. Proportions of habitat types between historical and
contemporary spatial extents and periods were similar, but we did
observe a decrease in shrub and subshrub cover and an increase in
grassland and sparsely vegetated cover since the historical sam-
pling period, indicating a continuation of the trend towards land-
scape homogeneity. Decreased scat-level diversity for both kit
foxes and coyotes may therefore be reflective of a less diverse prey
base within the cover types present in each individual canid’s
home range. These results highlight the importance of consider-
ing the sensitivity of the analysis in evaluating change over time
in natural systems, as subtle or finer scale changes may not be
detectable through broad-scale analyses such as dietary overlap.

Our main goal was to evaluate changes in dietary partitioning
over time for two sympatric canids, and we therefore elected to
use the same dietary analysis methods as previously employed
(Kozlowski et al. 2008) to facilitate a comparison of trends. Our
research suggested that population-level dietary resource parti-
tioning between kit foxes and coyotes had not changed signifi-
cantly over �12 years in our study region. These findings

suggested that prey resources were sufficiently high to support
coexistence of native kit foxes and nonnative coyotes. Our results
also highlight the subtleties of assessing changes in diet over
time. Although population-level analyses suggested little change
in dietary overlap, we found evidence that diets may have
changed at the foraging level. Although this pattern may have
been related to homogenization of habitats within individual
canid home ranges, additional research is needed to further ex-
plore this relationship. It is important to note that our findings
may have been influenced by our shorter sampling period, which
could influence our results through natural fluctuations in the
prey base. However, we believe that our results are reflective of
what we would expect as average conditions. The only major
change that we saw was in the decrease of leporid occurrence in
the data, which is consistent with the predicted and observed
long-term declines of jackrabbits in this region (Arjo et al. 2007;
Kluever et al. 2017). As leporid populations are believed to be on a
10 year cycle in this region (Arjo et al. 2007), it is unlikely that
adding another sampling year would have altered these results.

Kit fox populations are believed to be declining across their
range and have been shown to be declining at Dugway (Lonsinger
et al. 2018). These declines have been commonly attributed to
broad-scale habitat conversion, decreased prey abundances, and
competition with coyotes (White and Garrott 1997; White et al.
2000; Arjo et al. 2007; Moehrenschlager et al. 2007; Kozlowski
et al. 2012). Although exploitative competition did not appear to
be limiting the kit fox population, prey diversity and abundance
were predicted to decrease in our study region due to the effects of
climate change and habitat conversion (Arjo et al. 2007; Bartel
et al. 2008; Ostoja and Schupp 2009). Decreases in resource avail-
ability may alter competitive dynamics between kit foxes and
coyotes, with possible negative consequences for future kit fox
persistence in the region.
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Supplementary material 

Table S1. Results of a sensitivity analysis evaluating the influence of scat misidentification 

between coyote (Canis latrans) and kit fox (Vulpes macrotis) scats collected in western Utah, 

USA, in 2013, with percent misclassified (%MC) indicating the mean misclassification rate 

among 1000 replicate subsamples for each samples size, and mean change and standard deviation 

(SD) indicating the difference between the Morisita–Horn similarity index (M–H index) of 

dietary overlap for the full data set (including all samples with species identification based on 

unambiguous genetic analyses) and replicate subsamples based on field identification (including 

misidentification).  

 

  M–H index  Proportion in agreement 

Sample size %MC Mean change SD  Hutchinson’s t test Pearson’s χ2 

50 8.59 0.022 0.018  0.27 0.84 

100 8.73 0.015 0.012  0.39 0.99 

150 8.58 0.011 0.008  0.52 1.00 

200 8.61 0.009 0.007  0.69 1.00 

250 8.62 0.008 0.005  0.85 1.00 
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