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Agroecosystems in the U.S. are beset with social, ecological and environmental
problems as large industrial farming methods are edging out small family-sized farms and
replacing ecological services provided by biodiversity with synthetic inputs and practices.
While many of the benefits of smaller diversified or integrated farming systems are well
known, farm producers need a concrete model that shows how integration is possible and
with what crops. The objective of this study was to investigate some of these
supplemental farm activities, and identify and evaluate whether they were compatible
given the time and resource constraints of a typical eastern Nebraska farm. These
activities included stalk grazing, cabbage, and herbaceous floral perennial production.
Detailed enterprise budgets of the alternative cfopping systems were entered into a linear
programming model to determine the optimal acreage allocation given the various
alternatives to maximize net returns. The compatible operations increased producer
profitability while theoretically making use of synergistic relationships to decrease

reliance and application of off-farm inputs, thus improving ‘sustainability’.



Foreword

The purpose of this study was to identify and portray how supplemental farm
activities could be integrated into an existing corn and soybean farming operation, typical
to eastern Nebraska, given time and resource constraints. These compatible operations
were meant to increase producer profitability, while making use of synergistic
relationships to decrease reliance on off-farm inputs, thus improving sustainability.

While the model was meant to represent a typical eastern Nebraska farm, actual site
conditions were based on the University of Nebraska-Lincoln Agricultural Research and
Development Center’s (UNL-ARDC) agroforestry farm located in Saunders County,
Nebraska. Data were obtained from studies performed at this research site as well as the
Nebraska Agricultural Statistics Service and Rutgers University.
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I. Introduction

Problems in U.S. Agriculture

The current U.S. farming sector is in serious trouble as it is beset with economic,
social, and environmental problems. Rising costs of production and falling commodity
prices in recent years have led to negative economic returns. The returns are indicative of
the general trends experienced in U.S. agricultural production since the 1996 Freedom to
Farm Act effectively withdrew all price stabilization and price support programs
(Doering, 1999). Nearly half (48%) of all farms reported a negative cash return (net loss)
in 1997 and this trend may be increasing; in 1987 43% of farms reported net losses and in
1992 it was 44% (USDA, 1999a). Critics of the new Farm Security and Rural Investment
Act of 2002 expect these same conditions to continue as the new act remains essentially
unchanged from the 1996 Act. Contributing to this trend is increasing pressure for
international trade with U.S. producers now competing in worldwide markets that include
exports from Brazil and other countries that are able to produce these same commodity
goods at a lower cost. Finally, many countries have placed an embargo on U.S. products
due to the use of genetically modified organisms in our crop production.

Traditional land-grant extension institutions have been encouraging farm producers to
maximize their ‘economies of size’ to deal with this problem, encouraging farmers to
purchase or rent additional land and larger machinery to offset falling prices. This has
led to a trend towards larger farms, dwindling numbers of small family farming units, and
the emptying of rural communities. In 1997, 3.6% of U.S. farms had sales of over
$500,000, controlled 56.6% of total market values, and used 19.4% of total land in

farming. At the other extreme, 73.6% of farms sold less than $50,000 worth of



agricultural products, constituted only 6.8% of the total 1997 sold product, and worked
28% of the farmland (USDA, 1999a). Put another way, 9.5% of the farms and 38% of
farmland account for three quarters of the market value of agricultural products sold
(USDA, 1999a). Although it appears that larger farms are more efficient in the
aggregate, the consequences of this centralization threaten the viability of rural
communities. When control of agroecosystems and rural communities is highly
concentrated, when many decisions are made by non-farm operators, when there is no
clear and regular accountability, and when only a few profit from what is viewed as a
common legacy, then entire agroecosystems rapidly deteriorate (Flora, 2002).

Proponents of small farming units argue that small farms can be just as profitable and
more sensitive to environm‘ental concemns. For instance, the National Commission on
Small Farms (USDA, 1998b), citing a study by Dr. W.L. Peterson, suggests that there
may be limits to economies of size in agriculture. “After accounting for the ciuality of the
land and farm management, subtracting the contribution of the farmhouse to farm output,
and considering the effect of opportunity costs related to off-farm employment and farm
output and production costs, Peterson asserts that small family and part-time farms are at
least as efficient as larger commercial operations. In fact, there is evidence of
diseconomies of scale as farm size increases” (Olson, 1998). An economic study of lowa
agriculture demonstrates that farms reach full economies of size at 600 acres
(Hassebrook, 1998). A basic tenet of sustainable agriculture is that sound knowledge of
place is essential to efficient and sound use of the land (Jackson, 1994), and large farms

make the acquisition of an intimate knowledge of the land difficult (Olson, 1998).



Coupled with this trend, further exacerbating the problem, is the industrialization of
agriculture. This process has made production extremely capital-intensive leading to
high costs of entry and resulting in the streamlined production of a relatively few
commodity crops. This has led to bottlenecks in labor, turning the farming operation into
an intense, hardly manageable enterprise during a few weeks in the spring and fall while
leaving gaps where labor is underutilized throughout the rest of the year. This has
encouraged farm producers to hire poorly-paid help during critical times, yet seek part-
time employment themselves off of the farm during other times in the year to make ends
meet. For example, farm labor has been dropping significantly over the past 50 years
from 9.9 million people directly engaged in production in 1950 to 2.8 million people in
1998 (USDA, 1999b). The average wage rate for hired farm workers was $7.47 per hour
(USDA, 1999b), very low compared to other private industries that involve hard labor;
for example, $16.91 per hour in mining, $16.61 per hour in construction, and $13.49 per
hour in manufacturing (Bureau of Statistics, 2000). As a result, the average age of farm
producers is on the rise, as fewer young people are entering into the farming industry.
The percentage of farmers under age 35 has dropped from 15% in 1954 to 7.8% in 1997
(ERS, 2000), and median age in the Midwest is now 58 years.

Despite the negative economic and social problems associated with the new
industrialized farming sector, new and innovative research and technologies have led to
tremendous gains in productivity and production. While farmers now account for less
than one percent of the U.S. population, they still manage to feed and clothe the U.S. and

export more than six times what they did (in real dollar value) in 1940 (Hoag, 1999).



However, the unprecedented yield increases of this era have not been gained without
severe costs to environmental health.

Only 10-20 crops now provide 80-90% of the world’s calories (Brown, 1981). This
lack of biodiversity in agroecosystems leads to pest and disease susceptibility in the crops
being produced, forcing farm producers to rely on synthetic chemical controls. Ever
increasing farm size and the decoupling of agricultural crop production from base acre
support payments has led to increasing reliance on herbicide use. Excessive p‘esticide use
has caused the development of resistant strains of pests and diseases and has resulted in
" increased costs for their control (Pimentel and Andow, 1984). U.S. farmers now spend
more than $6.2 billion annually to control weeds on crop and pasture land, including an
estimated $3.6 billion for use of nearly 200 million kilograms of herbicides (Shaw, 1982).
Herbicide cost per acre of harvested cropland (iﬂcluding cropland on which no herbicides
were applied) increased from less than $0.30/acre in 1950 to more than $2.50/acre in
1985 (Ikerd, 1996). Keep in mind that the prices received for grain during the same
period have increased only slightly. Not only are these costs increasing for the farm
producer and being passed on to consumers as crop subsidy needs increase, society i‘s
also assuming these costs in terms of rising health care costs and through environmental
degradation. Based on available data, the total estimated cost of pesticide use is $8,000
million per year, $5,000 million of which society pays in environmental and public health
costs (Pimentel et al., 1992).

Farming has one of the highest work-related fatality rates of all occupations according
to the U.S. Department of Labor (Runyan, 1998). Farmers also face greater health risks

from pesticides than those facing the average population; high cancer mortalities have



been found in areas where 2,4-D and other chlorophenoxy herbicides are commonly
used in wheat producing counties in Minnesota, North Dakota, South Dakota, and
Montana (Schreinmachers, 2000). Further, while pesticide use is generally viewed as
profitable in terms of preventing direct crop losses, it is not necessarily successful in
reducing these losses. For example, even with a 10-fold increase in insecticide use from
1945-1989, total crop losses from insect damage have nearly doubled from 7% to 13%
(Pimentel, 1991).

Not only are the pesticides causing problems, but also the decoupling of agricultural
systems from acreage limits accelerated the need for the use of synthetic fertilizers, which
are also causing environmental problems. For example, phosphate runoff from
agricultural fertilizers has contributed to accelerated eutrophication in surface water
bodies, disrupting ecosystem health and functions while interfering with the health and
diversity of native fish, plaﬁt and animal populations. Nitrate runoff can also have severe
negative consequences to humans, livestock, and ecosystem health. High levels of
nitrate, increasingly found in public drinking water supplies, can lead to
methemoglobinemia, a condition commonly known as “blue baby syndrome”.

The Mississippi River, and the growing hypoxia zone associated with its discharge into
the Gulf of Mexico provides a glaring example of the negative environmental
consequences associated with the excess use of synthetic nitrogen fertilizers. States in
the upper Mississippi River Basin (Illinois, Indiana, Iowa, and Minnesota) have the
highest percentage of total land in agriculture, the highest use of nitrogen fertilizer, and
the highest amount of artificially drained soils in the country (Heller and Keoleian, 2002).

As aresult of these intensive practices, total nitrogen output to the Gulf of Mexico has




increased 3 to 7 fold compared to pre-settlement outputs. This area is now the third
largest hypoxia zone in the world, making it uninhabitable by most aquatic organisms,
and the zone ranges in size between 12,000 and 18,000 km? in mid summer (Keeney and
Muller, 2000).

Finally, in addition to the various problems outlined above, another consequence of
this modern, industrialized system of agriculture is the increasing dependency on
dwindling supplies of fossil fuels, energy captured long ago and transported from other
parts of the nation and world. Pimentel et al. (1995) estimate that 10% of all energy used
in U.S. agriculture today is expended just to offset the losses of soil nutrients and water
caused by erosion (Blackburn and de Haan, 1999). Further, the cost of these fossil fuel
energy-based agrochemicals has been increasing, and the supply is becoming unstable.
For instance, due to rising natural gas costs, the cost of anhydrous fertilizer (NH3)
commonly used in Midwestern corn production skyrocketed to $400 to $500 per ton in
2000 compared to an approximate cost of only $225 per ton one year ago (Francl, 2002).
This not only can cause further deficits in the net profits of producers, but also can lead to
a crisis of availability, as the cost of production of nitrogen fertilizers is higher than is
justified by the prices the farm products are bringing in the marketplace making it
uneconomical to produce these commodities, causing fertilizer makers to cut back on

production (Robinson, 2001).

The Eastern Nebraska Agricultural Sector

In eastern Nebraska these problems are all too real as 80% of all cropland is dedicated

to the production of just corn and soybeans (NASS, 1995). Farm size is also increasing,




as the rural population decreases, and more and more rural residents flock to the urban
centers in Lincoln and Omaha. In 1974, there were more than 43,000 Nebraska farmers
whose total annual agricultural sales fell in the range between $10,000 and $100,000, but
only 453 with sales of $500,000 or more. By 1997, according to the most recently
tabulated agricultural census, there were fewer than 25,000 Nebraska farmers left in the
middle-income group, but the total with sales of $500,000 or more had risen to 2,500
(Hovey, 2002). Coupled with this migration and growth of large farms is the rise in the
number of small non-farm acreages in eastern Nebraska and throughout the country. This
trend places development pressure on agricultural lands, driving up land prices and taxes,
further exacerbating the economic downturn of farm producers. For example, a study by
the American Farmland Trust demonstrates that development has been occurring
disproportionately on high quality farmland (Sorenson et al., 1997). This has resulted in
the increased use of more marginal lands, leading to increased erosion rates and irrigation
demands (Harlin, 1995). This highlights a new and upcoming problem with agriculture
in general, competition over scare resources. For instance, the UNL Water Center
estimates that one acre-foot of water can irrigate one half acre of corn annually, or
provide for a family of five for one year (UNL Water Center, 2002).

The environmental and public health consequences of the emerging industrialized
farm sector are becoming increasingly prevalent and apparent in Nebraska. For example,
high ground water nitrate was first identified in the Central Platte Valley in 1961, and by
1974 large areas were found in which levels of nitrate-nitrogen (NO3-N) far exceeded the
national standards for safe drinking water of 10 ppm as set by the U.S. Public Health

Service and Environmental Protection Agency. This trend has continued upward (Central
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Platte Natural Resources District, 1993). In addition to the health problems associated

with nitrate, there are substantial economic costs as well. Rural communities must dig
wells deeper, mix contaminated water with clean water to bring levels down to acceptable

limits, or provide bottled water to local residents if their wells are contaminated.

Integrated Agricultural Systems

As the public is becoming aware of the multitude of problems associated with this
modern industrialized method of agriculture characterized by fewer and larger farms, a
push for implementation of sustainable production techniques is underway. However,
reversing this trend and moving back towards smaller sustainable farming units will
require the development of viable alternatives to conventional cash grain farms and other
large scale farming enterprises (Olson, 1998). One method to deal with some of these
problems that has been suggested by sustainability advocates is the integration of
agricultural systems. Integration means to make whole or to bring parts together.

Researchers are increasingly recognizing the important role biodiversity can play in
agroecosystems. Biodiversity, referring to all species of plants, animals and
microorganisms existing and interacting within an ecosystem, is responsible for various
ecological services essential to agriculture. These include recycling of nutrients,
regulation of microclimate and local hydrological processes, suppression of undesirable
organisms, and detoxification of noxious chemicals (Altieri, 1999). Unfortunately,
biodiversity has suffered in the wake of the monocropping of annuals with heavy
pesticide use. In natural ecosystems, the internal regulation of function is substantially a

product of plant biodiversity through flow of energy and nutrients and through biological
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synergisms. This form of control is progressively lost under agricultural intensification

and simplification, so that monocultures in order to function must be predominately
subsidized by chemical inputs (Swift and Anderson, 1993). However, in general,
agroecosystems that are more diverse, more permanent, isolated, and managed with low-
input technologies take fuller advantage of work done by ecological processes associated
with biodiversity than do simplified, input-driven and disturbed systems (Alteieri, 1995).
Further, interactions among components should enhance complementarity and synergistic
responses resulting in increased efficiency of production and strengthening the economic
viability of integrated agricultural systems (Parker, 1989).

Integrated farming has been defined by the International Organization for Biological
and Integrated Control (IOBC/WPRS Bulletin, 16(1) in El Titi et al., 1993) as a farming
system which integrates natural resources and regulation of off-farm inputs; secures
sustainable production of high quality food and other products through ecologically
preferred technologies; sustains farm income; eliminates or reduces sources of present
environmental pollution generated by agriculture; and sustains the multiple functions of
agriculture (E1 Titi, 1993). However, while substantial research and literature exists
about what is theoretically possible and advisable in reference to agricultural integration,
present day producers are faced with a gap in what is actually achievable in practice. For
example, while extensive literature and enterprise budgets exist on production of the
major commodity crops in the area, very little exists on the production of smaller scale
specialty crops, or how they could potentially fit into the current production system of a

typical eastern Nebraska farm.




. 10
Systems Comparisons

To explore this integration, Olson (1998) performed a study developing economic and
environmental models of alternative farming systems, as they offer a means of evaluating
a wide range of systems at low cost and no risk. The study, titled “Procedures for
Evaluating Alternative Farming Systems: A Case Study for Eastern Nebraska”, provides
a step-by-step guide and source of data and supporting information for readers who seek
to use this approach to evaluate other systems. As will be explained in further detail in
subsequent material, the conventional corn-soybean farming system, as outlined by
Olson, was used as a starting point for this study’s model for assessment of integrated
systems. The results of Olson’s study suggest that simple models, basically an
accounting procedure used to quantify inputs and outputs, and a few basic rules
governing the interactions among systems components, are sufficient to conduct

- preliminary analysis and comparisons of alternative farming systems (Olson, 1998).
Further, the results suggest that by increasing crop diversity and adding high-value crops
to the rotation, or by replacing row crops with pasture and cattle, farmers with smaller
farms can increase net income per acre and remain competitive with larger conventional
farms (Olson, 1998).

Two other national studies also provided supporting information to help formulate the
procedures used in the current study to examine the feasibility of integrating
supplemental crops into an existing enterprise. “Supplemental Vegetable Enterprises for
a Cow-Calf and Grain Farmer in Southeastern Oklahoma” by Schatzer et al. (1986)
investigated the economics of supplementing income on beef cow and grain farms,

typical of southeastern Oklahoma, by adding vegetable enterprises. This was the only
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study found that specifically focused on the labor requirements of the supplemental

crops and the labor availability of the producer to determine the feasibility of integration.
It used enterprise budgets with weekly intervals of resource requirements, and the
hypothetical labor availability of one full-time farm operator, and also was dependant on
the climatic conditions of the area. This general assessment of labor varied from twenty
hours per week in the winter to seventy hours per week in the summer. The assessment
focused on having the operator’s labor fixed to the original operation, as would be
expected given their current skills, knowledge and equipment, and held the labor as

* variable for the alternative enterprises. It utilized a linear programming model to
determine the optimal cropping mix given the set labor and resource constraints. Results
of the study indicated that many vegetable enterprises could be profitable alternatives that
could fit into the current labor pattern of the beef Acow and grain operation.

The other study, “A Multiperiod Linear Programming Model of Diversification into
fruit on Long Island Potato Farms” (Warner, 1985) developed a multiperiod linear
programming model to analyze the transition, year by year, from an annual potato crop to
perennial peach and grape crops. The area was noted to be under increasing development
pressure and was experiencing rising drinking water contamination. Special
consideration was given to labor, marketing, cash flow, and pesticide contamination. A
seemingly unlimited amount of labor was used in this model, representing the skilled
labor of the producer and hired workers, as well as additional unskilled labor during
critical time periods. Because of the high population density of the area, the hiring of
additional labor was not constraining as it may be in rural areas of Nebraska. Results of

the study indicated that transition to these perennial crops is an economically viable
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alternative over the entire transition period and beyond, while also resulting in lower

pesticide and nitrogen loading rates, thus making it more ecologically beneficial as well.
However, sufficient marketing outlets for these alternative crops were indicated to be
major constraints to expansion.

Based on the hypothetical and proven benefits of integration found in agroecological
research, and the perceived economic benefits alluded to in the previous studies, this
current research was undertaken to determine the feasibility, and evaluate the potential
success or failure, of integrating various supplemental enterprises that have been
researched and proven adaptable in eastern Nebraska. These included: the integration of
cattle into the farming system through the grazing of stalk residugs; the integration of
both fall and spring cabbage production with wheat and sunflower, respectively, to
represent the benefits of increasing temporal biodiversity into the farming operation by
additional annuals crops; and the integration of herbaceous windbreaks and associated
woody floral crops to represent the benefits of increasing both the temporal and the
spatial biodiversity of the operation through an intercrop system. Relative to
monocultures, intercrop systems can display more efficient use of land, labor or
resources, increase yield, and reduced loss to insects, diseases and weeds (Francis, 1986).

The integration analysis was initially focused on optimizing the economic profitability
of one full-time farm operator, on an average-sized eastern Nebraska farm by making use
of the time available during ‘off-times’ for corn and soybean production, but also
attempts to examine other potential benefits of integration in relation to other resource
constraints. This study was not designed to evaluate a system where all farm producers

in eastern Nebraska diversify with these particular supplemental activities, as markets
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would become saturated, yet the research sought to study whether integration of small-

scale specialty crops is feasible and beneficial, and provide a model of how this analysis

can be done for any combination of enterprises.

Study Objectives

The following objectives guided the research and associated analyses of this study.

1) To determine a realistic base model of a typical eastern Nebraska family farm
with one full-time operator, focusing on labor availability among other resource
constraints.

2) To analyze and evaluate the feasibility of integrating a number of alternative
supplemental cropping enterprises, domestic animals, a specialty annual cropping
enterprise such as vegetable production, and a perennial cropping system such as
woody floral perennial crops.

3) To provide a working model for future researchers and farm producers to use to
determine the feasibility of integrating various supplemental cropping enterprises.

4) To evaluate the synergies present when integration of various crops occurs,
assessing whether a gain in sustainability can be achieved through this integration.

5) To examine the effect of the addition of various resources, such as additional
labor, rental land, and markets into the model through sensitivity analyses to

determine which of those factors most inhibit the added benefits of integration.
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Research Methods and Characteristics of a Typical

Eastern Nebraska Farm

Research Methods

Enterprise budgets were established for each of four scenarios: 1) base corn-soybean
model, 2) winter wheat/cabbage integration with corn-soybean, 3) spring
cabbage/sunflower integration with corn-soybean, and 4) agroforestry integration with
corn-soybean. Budgets for these farms went beyond typical enterprise budgets to include
detailed accounting of the labor needed to perform each individual activity and when it
needed to take place. A detailed assessment was performed to determine the maximum
field labor available for a typical eastern Nebraska farm as well as the time available for
other tasks associated with the farming enterprises that are not critical to field time
availability.

A linear programming model was established to evaluate the various alternatives, and
determine the optimal acreage allocation given labor constraints. The model utilized a
six-year average of the alternative scenarios, so that the costs and returns of the
transitions over time for the supplemental enterprises could be included in the evaluation.
The initial analysis focused on the optimal strategy for one full-time farm ope'rator.
Additional sensitivity analyses were performed to evaluate the outcomes given additional

resources, such as additional labor and markets.

Typical Farm

The initial focus of this study was to establish a definition of the size of a typical
farming unit in eastern Nebraska, its cropping system, and its typical equipment

compliment. This information was used to develop a model that could provide an
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example of what could be feasible in regard to the integration of supplemental

activities to make the farming unit more sustainable given mainly economic and
environmental objectives. A study was performed by Bernhardt et al. (1994) to

determine the characteristics of typical Nebraska farms. It employed a survey to
characterize 381 Nebraska farms statewide in terms of production and non-production
variables grouping farms by their common characteristics. Olson (1998) reduced the data
set to include only dryland farming in eastern Nebraska.

This typical farm grows both corn and soybeans for grain in rotation, with half of the
farm planted to each of these crops in any given year. This average farm turned out to be
approximately 650 acres in size with the producer owning about 45% of the land in
production; the average debt owed on this owned farmland is 20%; 100% of the cropland
is in production; most of the equipment is owned; and chemical applications are based on

standard recommendations (Olsen, 1998, Johnson, 1995, and Bernhardt et al., 1994).

Land Costs

The average cost of dryland cropland in eastern Nebraska is $1807/acre (Selley et al.,
2001). It is assumed that the producer will have 288 acres owned with a 30-year loan at
an 8% interest rate. The remainder of the farmed acreage (352 acres) is rented at a cost
of $86/acre, the average for dryland cropland in eastern Nebraska (Selley et al., 2001).
Taxes are assumed to be $12/acre, obtained from Selley (1996) in Olson (1998), and
adjusted upward by 2.5% per year to account for inflation. See Table 1 for a breakdown
of these costs and the total associated land costs for the typical eastern Nebraska farm

being illustrated in this study. The actual site conditions in this study were based on the
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UNL-ARDC Agroforestry Farm, so its farm size of 640 acres, or one section of land,

was used for analysis.

Table 1 — Land Costs of a Typical Eastern Nebraska Conventional Farm

640 Acres X 0 .45 = 288 acres owned & 352 acres rented
Land Ownership Costs
Farmland DebVacre - $1807 X 0.20 = $361.40
Ammortization Factor - [1-(1/(1+.08)*30)}/.08 = 11.258
Principal Payment + Interest - $361.40/11.258 = $32.10
Total Cost Per Acre - $32.10 + $14.10 = $46.20
Total Owned Land Cost - 46.20 X 288 = $13,305.60
Land Rental Costs

Total Rental Land Cost - $86 X 352 = $30,272

Total Annual Land Cost - $13,305.60 + $30,272 = $43,577.60 or $68.09/acre

Equipment

The typical set of machinery for an average eastern Nebraska conventional farm was
taken from Bernhardt et al. (1994). Equipment includes: 120 hp and 100 hp tractors,
tandem disc, row and field cultivators, sprayer, combine with corn and bean heads,
planter and a pick-up truck. Typical equipment and tasks used on a rental basis include:
spreader, anhydrous applicator, roguing crew, tractor to haul corn and soybeans, and the
drying of corn. See Table 2 for descriptions of the equipment, as well as the cost of use
per hour and per acre, and the ownership costs as outlined by Selley (1996) in Olson

(1998) adjusted upward by 2.5% per year to account for inflation to 2001. The
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machinery costs were averaged among the alternative tasks within the budget to

account for flexibility in the operation as a whole.

Table 2 — Average Equipment Costs for Eastern Nebraska Corn-Seybean Farm (2001)

Equipment
Tractor #1
Tractor #2
disc
row cultivator
field cultivator
sprayer
combine
corn head
grain head
planter

pick up

RENTAL
Spreader Rental
Anhy. Appl. Ren.

Hired rogue crew
truck corn
dry corn
truck soybeans

Age at
Trade

15
20
15
15
10
15
15
15
15
10

1.69/hr
9.35/hr
5.63/hr
.14/bu
A1/bu
.14/bu

Description Costs/hr
120 hp diesel cab 8.67
100 hp diesel cab 8.04
tandem disc harrow 20’
8 row X 30"
24
300 gallon, 20", 3-point mount
185 hp 24.89
8 row
20
8 row X 30"
1609.88 (total)

Costs/acre

3.1

0.38

0.19
0.1

0.47
0.05
1.91

Ownership
Costs/ac

28.65
22.11
0.5
1.28
2.48
0.44
130.48
10.71
3.58
4.86
1105.88 (total)

Site Conditions

As mentioned earlier, while this farm was meant to be an example of a typical eastern

Nebraska farm, actual site conditions were based on the UNL-ARDC Agroforestry Farm

to establish a more realistic model. However, these conditions are similar to those that

are typically experienced in most of eastern Nebraska.
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Eastern Nebraska lies within the western portion of the Western Cornbelt ecoregion

(Omernik, 1987). Terrain is flat to rolling glaciated soils of loess parent material. It has
a continental climate with approximately 25 to 32 inches annual precipitation, highly
variable from year to year and shows a spring and early summer maximum (Olson,
1998). The farm is in dryland production. Nitrogen is usually the most limiting soil
nutrient needed to produce grain crops and the application of anhydrous ammonia is the
common fertilization practice for the area. Crops are generally sold directly to the

elevator at the time of harvest for the going market price.
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Base Model

Benefits of Rotation

It has been commonly accepted that crops grown in rotation have benefits over those
grown in continuous production. For instance, where crop species are significantly niche
differentiated and are suited to the particular environment, growilng them in rotation is
known to produce higher yields of each component crop (Hall, 1993). Nutrient
management, erosion conirol, and suppression of pests, diseases and weeds are highly
dependant on crop diversification, both in time and space (Hall, 1993). For example, the
use of crop rotation establishes the framework for sustainable weed management by
limiting build-up of weed populations, since crops tend to be affected by particular weed
species that possess similar growth habits and thrive under the same cultural conditions
as the crop. By growing sequences of crops that differ in planting and maturation dates,
competitive characteristics, and soil management requirements, growth and reproduction
of a given weed species can be disrupted (Leibman and Janke, 1990)

Further, rotation of a non-legume crop with a legume crop can have additional
benefits. For example, legumes have the ability to combine symbiotically with soil
bacteria genera, including Rhizobium species, to fix atmospheric nitrogen and convert it
into forms available to other organisms, a process vital to the biosphere. This is an
important part of the nitrogen cycle (Hall, 1993). Soybeans are known to produce more
nitrogen by fixation when in a nutrient-limited environment, for example after corn (Hall,
1993).

Finally, Helmers et al. (2001) found that rotations of corn and soybeans not only result

in higher crop yields and net returns, but they also provide a significant reduction in risk



compared to continuous corn. Data from a study at the UNL-ARDC over a period of
1985-1998 had an average net return of $319.59 per acre on continuous corn, compared
to an average net return of $458.45 per acre from a corn-soybean rotation (Helmers et al,,
2001). Distinct reduced risk advantages were due to a combination of three factors:
rotations involve diversification, an offsetting phenomenon where low returns in one year
for one crop are combined with relatively high returns from a different crop; rotations are
generally thought to reduce yield variability in comparison with monocultural practices;
and rotations may result in hi gher overall yield as well as reduced production costs,

Most likely due to a host of these and other factors, farm producers in eastern
Nebraska commonly grow corn and soybeans in a £otational mix. We could expect the

benefits of integration to increase when other crops are added into the mix.

Enterprise Tasks

To establish the base model, the typical tasks, their durations, and approximate dates
when they are needed in a com-soybean model were taken from those outlined by Olson
(1998), expanded and refined with information from the farm managers at the UNL-
ARDC agroforestry farm (see Table 3). The tasks were separated into those that are :
“critical”, since they must happen in order for production to occur, and they must occur
during available field growing time. The other tasks were labeled as “non-critical” as |
they need to occur in order to make production efficient, yet are not critical to specifically
produce the crop and they do not necessarily need to occur during available field working

time.



Table 3 - Base Corn-Soybean Farm Field and Non-Field Tasks
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Critical Base Farm Tasks

(during growing season) Hours
Disc corn - 320 acres 41.03

Disc soybeans - 320 acres 41.03
Apply fert (anhydrous + phos if needed-(1 in 10 yrs)) - 320 acres 32.99
Field culitivation - 640 acres 47.06
Plant corn - 320 acres 49.23
Spray corn - 320 acres 31.37
Plant soybeans - 320 acres . 49.23
Spray soybeans - 320 acres 31.37

Cult. turn rows - 60 acres 3

Cultivate soybeans - 320 acres 47.06

Rogue soybeans - 320 acres Custom
Combine corn - 320 acres 62.75
Combine soybeans - 320 acres 36.78

Total Hours 472.90

Non-Critical Base Farm Tasks

winter off-time (25 weeks) Hours

Winter maintenance & repair 94.58
Bin Unioading & Cleanout 16
Planning (soil test, seed & chem purc., billing, etc.) - HALF 40
Shop work (not including equip maint) - HALF 40

Building maintenance & repair (trash out, furnace maint, painting, etc.) - HALF 40

Total Hours 230.58

Growing season off-time tasks (27 weeks) Hours
Summer maint & repair 40
Mowing 80
Building maintenance & repair (trash out, furnace maint, painting, etc.) - HALF 40
Shop work (not including equip maint) - HALF 40
Planning (soil test, seed & chem purc., billing, etc.) - HALF 40

Total Hours 240

Date
4/9-4/15
4/16-4/2

4/23-4/29
4/23-4/29
4/30-5/6
4/30-5/6
5/14-5/20
5/14-5/20
6/11-6/17
6/25-7/1
7/30-8/5
9/17-9/23
10/1-10/7

Date
1/1-4/1 and 10/8-12/31

Misc tasks (9.22hrs/wk)

Date
4/9-10/7

Misc Tasks (8.89 hrs/iwk)

Grand Hourly Total:
943.48
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A summary of the inputs that were used in this operation and their costs are listed

in Table A1-1 (Selley et al., 2001). Per acre bushel returns for corn and soybeans were
taken from Olson (1998) and assumed to be 105 and 35 bushels/acre, respectively, in
these dryland conditions. To determine the average return per bushel, a 17-year average
of monthly values for these commodities was established from data published by the

NASS (2001) (see Tables A1-2 and A1-3).

Enterprise Budgets

The tasks and their durations, inputs, and the machinery set and their associated costs
were used to develop detailed enterprise budgets for the production of 320 acres of corn
and 320 acres of soybean on a typical eastern Nebraska farm. See Table 4 for a
simplified version, and Table A1-4 for the complete information used for this analysis. A
labor rate of $15 per hour was used to illustrate the value that should be placed on a farm
producer’s time, given that they could make this amount or higher in other private
industries with hard labor. In this scenario, the farm producer would receive an annual
salary of $14,152.20. Without the addition of crop subsidies, this scenario resulted in a
net loss to the farming enterprise of $4,752.97, highlighting the current need for crop

subsidies in U.S. agriculture with production focused on only two crops.
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Table 4 — Simplified Corn-Soybean Base Farm Enterprise Budget for 640 Acres

(See Table Al-4 for the Complete Informétion)

N |
Week Date Task Time/Field Time/Other Equipment Cost
1t013 1/1-4/1 Misc 119.86
14t040  4/2-10/7 Misc 240.03

14 4/2-4/8 Start disk corn 39.91 Tractors & Disk 1626.14
15 4/9-4/15  Disk corn & soybeans 42.15 Tractors & Disk 1717.04
16 4/16-4/22 Apply anyhydrous 32.99 Tractors & Applicator 5004.11
17 4/23-4/29 Field cuitivation 47.06 Tractors & Cultivator 1825.84
18 4/30-5/6 Plant corn 49.23 Tractors & Planter 9528.86
Spray corn & plant
19 5/7-5/13 soybeans 61.06 Tract., Planter, & Spray. 13314.56
20 5/14-5/20 Plant & spray soybeans 50.91 Tract, Planter, & Spray.  13075.41
24 6/11-6/17 Cuttivate turn rows 3 Tractors & Cultivator 127.85
26 6/25-7/1 Cultivate soybeans 47.06 Tractors & Cultivator 1769.36°
31 7/30-8/5 Rogue Soybeans Custom 1801.6
38 9/17-9/23 Combine corn 62.75 Combine & Corn Head  18971.11
40 10/1-10/7 Combine soybeans 36.78 Combine & Grain Head  7430.44
41t052 10/8-12/31 Misc 110.64
Totals 472.9 470.53 76192.32
Fixed Costs 53961.78
Labor @ $15/hour 14150.88
Total Costs 144304.98
Total Returns 139552
Net Income -4752.98

Labor Bottlenecks and Labor Availability

The simplified enterprise budget shown in Table 4 illustrates that the total annual

labor needed to accomplish this operation is only 943.39 hours, or an average of only

18.14 hours per week on an annual basis. However, this labor is distributed unevenly

throughout the year, being highly concentrated and almost unmanageable during the

spring and fall, while leaving various other time periods open. These

‘bottlenecks of

labor’ are illustrated in Graph 1. This illustrates how farm producers are able to seek off-



farm employment, and also highlights those time periods where integration of

supplemental Crops may be possible.

ONon-Critical @ Field

payments: direct payments, counter-cyclica] pPayments, and loan deﬁciency/marketing

loan payments.

24
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The ratio for calculating direct payments is:
Per Bushel Payment Rate X Program Yield X (Base Acres x .85)
The per bushel payments rates for 2002-2007 are: corn $0.28, soybean $0.44, and wheat
$0.52 (University of Illinois Cooperative Extension, 2002).

The ratio for calculating counter-cyclical payments is:

(Trigger Price — higher of loan or season average price) X Yield X (Base Ac‘res x .85)
The trigger price equals a target price minus the direct payment rate. The maximum per
“ bushel values for 2002-2003 are: corn $0.34, soybean $0.36, and wheat $0.52 (University
of Illinois, 2002).

The loan Deficiency Payment (LDP) and marketing loan provisi0n§ are essentially the
same as those under the 1996 Farm Bijll. Paymeﬁts received in Saunders County
Nebraska in 2001 were taken from information provided by the Center for Agriculture
and Rural Development (CARD). Corn and wheat county LDP rates were negative and
thus were not figured into the aid analysis; however, LDP payments for soybean were
$0.18 per bushel (CARD, 2002).

[See Table 5 for a summary of the subsidy rates used for corn and soybeans, and Table
8 in the cabbage integration section for a summary of the subsidies used for wheat
production. ]

With subsidies, the hypothetical producer ended up with a subsidy payment of
$26,244.74, which eliminated the deficit and brought up the annual net return to

$21,491.77.



Table 5 - Subsidy Payments for Corn and Soybeans

Payment

Direct
Comn
Soybeans

Counter-Cyclical
Corn
Soybeans

Loan Deficiency
Soybeans

0.28
0.44

0.34
0.36

0.18

X (105X .935) X (320 X .85)
X (35X.935) X (320X.85)

X 105 X (320 X .85)
X 35 X (320 X .85)
X 35 X (320 X .85)

equals
equals

Total

equals

equals

Total

equals

Total

Total

$7,477.01
$3,916.53

$11,393.54 )

$9,710.40
$3,427.20

$13,137.60

$1,713.60

$1,713.60

Payment )

or $23.37/acre
or $12.24/acre

or $30.35/acre
or $10.71/acre

or $5.36/acre

$26,244.74

26
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Cattle Integration

Benefits

The grazing of crop residues offers a unique opportunity for livestock producers,
providing a cheap, quality feed source for livestock. As long as cattle have leaves and
grain to select, corn and sorghum residues are comparable in nutritional value to good
quality grass hay (Rasby, 1998). In addition to the nutrition available, grazing can reduce
wear and tear on drylot facilities, reduce equipment and operating costs, and reduce labor
needed for feeding and manure removal (Rasby, 1998). It can also offer unique
opportunities and advantages for the grain producer. Farming systems that are
ecologically, biologically, and socio-economically sound not only involve animals, but
also depend on their integration with other farm practices (Parker, 1990). However,
today we have almost entirely uncoupled plant and animal production, eliminating the
contributions that each can make to the other and substituting other synthetic productions
and services. This specialization makes the farming unit more reliant on off-farm inputs,
often from great distances away. By substituting economic integration for ecological
integration, we have obscured ecological relationships in our present agricultural systems
(Hardesty and Tiedeman, 1996).

The reintegration of livestock, particularly ruminant animals such as cattle, can
provide numerous economic and ecological benefits to a grain operation simply by the
activity of grazing stalk residues. The utilization of crop residues is significant and
provides an economic stabilizer for grain production, providing income from an
otherwise underutilized resource, eliminating the expense and labor needed to shred the

stalks, and reducing the problem of volunteer corn in the following years’ soybean crop
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in a corn-soybean rotation (Rasby, 1998). Recent advances in electric fencing have

reduced the labor demands associated with this practice, reduced fixed costs, and
increased its efficiency.

Livestock presence in a grain field can also promote the cycling of nutrients,
potentially increasing soil fertility and reducing input costs, as nutrients are more quickly
recycled and additional nutrients supplied to the system as supplements are fed to the
animals during the grazing period. Major portions of the important plant nutrients
ingested by ruminants are returned to the soil via feces and urine. Mott (1974) reported
that, of the plant nitrogen and minerals consumed by grazing, 75% to 95% of the nitrogen
and 90% to 96% of the minerals are returned to the soil. Additionally, salt, phosphorus,
calcium, vitamin A, and crude protein are commonly fed to animals during grazing, thus
increasing potential soil fertility increases from fertilizer application (MCC, 1999-2000).

Additional, non-tangible benefits of animal integration include increased soil and
water conservation, as residues remain intact during critical times, and biological weed
control. Grazing animals can be intensively managed to control vegetation, acting as
gleaners or “biological scrubbers” to control many species of undesirable plants, thus
reducing herbicide costs (Parker, 1990).

While critics have argued that grazing of stalk residues can actually decrease
subsequent crop yields due to compaction, research at the UNL-ARDC has shown
otherwise. Lesoing et al. (1996) performed a study to examine the impacts of grazing
crop residue on subsequent crop yield and found no significant effects on crop yields for
corn and soybeans. They concluded that when normal stocking rates are used, grazing

does not have any adverse effects on crop production. Another study by Erickson et al.
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(2001) found that the spring grazing of corn stalks led to increased yields of

subsequent soybean crops. Researchers hypothesize that this could be due spring grazing
resulting in a firmer seedbed, which may lead to faster warming of the soil (Wilson,
2002).

Finally, while livestock production is expected to continue to grow as consumer
demand for meat products continues to climb, there has also been a rise in consumer
demand for sustainably produced meat products, such as those labeled as “range-fed”.
This may be due to consumer awareness of the environmental, health and social costs
associated with large confinement operations, such as soil and water contamination by
waste products, antibiotic resistance, offensive odors, and animal cruelty charges. This
could provide an increasing market opportunity for those farmers willing to graze animals
on crop residue.

While the full integration of plant and animal resources to achieve optimal biomass
output may be the ultimate goal of sustainable farming systems, it is beyond the scope of
this study. This level of integration should be explored in further research. A recent
report by the Council on Agricultural Science and Technology (CAST, 1988) indicated
that the best strategy for economic viability is flexibility within agricultural systems for
food and fiber production. The report suggested that enterprise flexibility can be achieved
through reduced input costs and increased diversification of operations. Also, these types
of integrated agroecosystems with animals should provide a greater stabilizing effect
against short-run fluctuations in net return (Parker, 1990). Integrated crop and animal
systems also have the opportunity to increase efficiency in agricultural production, as

Parker (1990) estimates that “at present, 60 % of the corn crop is sold for livestock
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production, with the balance going to human food and export markets.” Finally, as

the number of livestock produced in confinement continues to climb, waste removal costs
for these confinement operations, and fhe associated cost for use of this waste as fertilizer
for grain crops will also continue to climb as they become farther apart physically.
Animal manure still is a major potential source of soil nutrients, but consolidation of
confined livestock farms into specialized production facilities with little associated
cropland has made use of this resource less economically feasible. Such consolidation
results in not only an underutilized manure nutrient resource, but also can lead to major
problems with water pollution and stench (Hardesty and Tiedeman, 1996). Integration,
thus could reduce these costs and lead to greater efficiency in production.

The grazing of crop residues provides a unique opportunity for both grain and
livestock producers, providing numerous economic and non-tangible beneﬁts. It has the
potential to increase the efficiency of production systems by integrating decoupled
agricultural production practices while making use of synergis}\i-g relationships to increase
ecological sustainability as well. While these benefits can be sub tantially increased by

A

the full integration of livestock into grain production systems, the aﬁ%glysis is beyond the
z\

scope of this study. However, based on the various perceived beneﬁt:;“‘g‘ these systems

merit future research efforts.

Economics
An estimate of what a grain producer in eastern Nebraska can expect to receive for the
grazing of stalk residues is approximately $6 per acre (Wilson, personal communication,

2002). This average rate can be expected on corn and soybean stubble, as well as wheat,
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sunflower, and cabbage that will be explored in subsequent sections. Therefore, the

hypothetical producer in this model can expect to receive $3,840 (640 x 6) annually,
simply by allowing their acres to be grazed, as well as receiving all of the numerous other
non-tangible benefits associated with animal integration and fallow winter grazing,

A dryland field provides an average of 2,500 pounds per acre of feed for grazing, or
approximately 4.2% of the corn and soybean yield (Rasby et al., 2000). One animal unit
month (AUM), the amount of forage required to sustain a 1,000-pound cow or equivalent
for one month, can be expected for each acre of dryland grain production (Rasby et al,

2000). So, a farm with 640 acres of grain stubble could sustain 160 cows for 4 months.
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Cabbage Integration

Justification for the integration of agricultural systems based on numerous potential
benefits has been thoroughly explored above. However, an assessment must now be
made to determine the feasibility of integrating supplemental crops into an existing corn-
soybean rotation based on resource constraints and agronomic feasibility. One option is
the integration of an annual vegetable crop such as cabbage. Schatzer et al. (1986)
demonstrated the potential feasibility and economic benefits of integrating vegetable
| enterprises into a cow-calf grain operation. However, will this be possible in eastern
Nebraska? Hodges (personal communication, 2002) has demonstrated the successful
production of both spring and fall cabbage in eastern Nebraska, and identified potential
markets for this product close by at coleslaw production plants along the Missouri River.

However, to determine whether integration of a supplemental crop into an existing
rotation is possible, a producer must consider whether the new crop is compatible with
the current rotation. For example, will any allelopathic tendencies of one crop interfere
with another? Next, operators will need to examine whether the chemicals sprayed on
one crop potentially could have a negative impact on any of the other crops. For
example, some of the newer broadleaf herbicides such as the sulfonylureas and
imidiazoles are very toxic to vegetables and have a long residual effect. As an
alternative, the hypothetical farm producer in the model could use 2,4-D on the grain crop
with little concern for residual activity affecting cabbage production (Hodges, personal
communication, 2002). Similarly, the use of trifluralin as an herbicide does not threaten

sunflower production (Hodges, personal communication, 2002). In this case, corn,



soybeans, and cabbage seem to be compatible physiologically, and the hypothetical
chemicals used in this model, characteristic of the typical eastern Nebraska farm
practices, also are compatible. However, a determination must now be made of whether
they will be compatible operations given labor constraints, and if so, how much cabbage
can be produced?

Cabbage is a short season crop requiring only 85 days from transplanting to harvest.
The average growing time in eastern Nebraska is 150 days. This allows for a number of
possible variations in a crop rotation, such as winter wheat with fall cabbage, or

sunflower with spring cabbage.

Benefits

Cabbage is considered an inexpensive crop to produce, requires minimal capital or
specialized equipment, and4is very tolerant of unskilled production techniques; it is a very
“forgiving” crop (Hodges, personal communication, 2002). Likewise, neither the
production of winter wheat or sunflowers requires any additional machinery or
specialized knowledge beyond that to produce corn and soybean crops. Cabbage can be
used as a nitrate “clean-up” crop, reducing the negative ecological impacts of soil and
water contamination that are commonly associated with corn production that utilizes
synthetic fertilizers.

The production of cabbage in conjunction with winter wheat provides a distinct
advantage in terms of fertilizer use. Commercial fertilizer use for particular crops such as
corn is very high; 98% of the average producers in the top ten corn producing states

applied commercial fertilizers (ERS, 1997). Most manure applications from a feedlot are



34
applied to grain fields during the fall after corn and soybean harvest. While the use of

manure may be more economical and stable than anhydrous ammonia applications, it can
be more expensive in the short run. For example, fall application costs of manure by the
Mead Feedlot near the ARDC farm with a delivery distance of 5 miles are $45 per acre,
versus only $ 9.35 per acre ($0.17/1b. X 55 1bs. per acre) for the application of anhydrous
ammonia. However, Mead Cattle Company organic fertilizer at 25 tons contains 195 lbs
nitrogen (N), 135 Ibs phosphorous (P), 167 lbs potassium (K), and 35 lbs sulfur (S) for
$45.00 per acre (at 25 tons/acre application rate), whereas commercial fertilizers
providing these same nutrients would cost approximately $79.19 per acre (MCC, 1999-
2000). Mead Cattle Company (MCC) manure fertilizer also contains magnesium,
calcium, sodium, iron and traces of coppér, manganese and zinc (MCC, 1999-2000). The
Mead Cattle Company also provides deep chisel cultivation and a disc operation to
incorporate the manure, as well as a soil test for nutrient levels prior to, and after
application as part of their fertilization package.

The production of winter wheat allows for a reduced cost application of manure as a
fertilizer source for the operation. This added benefit is possible because wheat harvest
occurs in July, with a potential window for manure application at any time after harvest.
During this time, the Mead Cattle Company offers a reduced rate for manure application
at $28/acre (Cieslik, personal communication, 2002). This unusual time availability (for
eastern Nebraska) also allows the producer to benefit from reduced costs for lime
application and time to work on field terraces.

The use of manure has many benefits over the use of anhydrous as a fertilizer

resource. Synthetic fertilizer can influence the growth of weeds as well as crops
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(Moomaw, 1987). For example, studies conducted with synthetic nitrogen fertilizer

indicate that it can increase both the rate and the total number of weed seed germination
and may promote weed growth more than crop growth (Di Tomaso, 1995). Synthetic
fertilizer can also increase disease susceptibility (Jenkyn, 1976). However, organic
matter from manure can decrease pest and disease incidence by increasing species
diversity in favor of natural enemies (Altieri, 1985). Increased organic matter from
manure can absorb and inactivate pesticides, and provide alternative food for marginal
crop pests (Edwards, 1966 and 1989). Beef cattle feedlot manure contains approximately
15% carbon. This element improves soil physical and chemical properties, especially for
low organic matter or eroded soil, where the additional carbon can be more important
than the manure’s other nutrients (Eghball, 2000). Decomposition by bacteria in manure
improves soil aeration, improves permeability, increases water-holding capacity, provides
pH buffering, and increases levels of carbon dioxide (COy;) in the plant canopy (MCC,
1999-2000). Soil pH can be increased by feedlot manure or compost application because
feed rations in a cattle feedlot contain calcium carbonate CaCQOs, and may reduce the
need for lime applications (Eghball, 1999).

Nitrogen from manure may be more ecologically sensitive and persist longer, thus
decreasing input costs over time for the producer. Inorganic N fertilizer applications are
available immediately after application, and unused N can be quickly converted into
nitrate and leached into the groundwater leading to significant water quality problems.
Alternatively, in times of drought, crop stubble in fields heavily fertilized with inorganic
nitrogen can contain excessive amounts of nitrate, leading to highly toxic conditions for

livestock when this stressed crop is used as feed. However, of the organic nitrogen




applications from feedlots during the previous growing season, approximately 11%;

was mineralized from composted manure, and 21% from non-composted manure during
the succeeding growing season (Eghball, 2000). This highlights not only the potential
decrease in ecological problems associated with organic versus synthetic fertilizer
amendments, but also shows that the benefits of application can persist and may extend
over several seasons.

Crop yields are known to increase following composted feedlot and dairy manure
application compared to synthetic fertilizer application. Erickson et al. (2001) found that
adding compost to irrigated corn, irrigated soybeans, and dryland corn acres significantly
increased yields, with four-year average increases of 2.3, 1.5, and 2.7%, respectively.
Since the needed crop N was adequately supplied by both the synthetic and organic
fertilization treatments, the yield increase may be due to the availability of P alone, or
could be from the presence of P, organic matter, and K in combination (Erickson et al,
2001).

However, despite the benefits that can be achieved by the incorporation of inorganic
manure as a fertilizer resource, its application must occur at least one month prior to the
planting of a vegetable crop such as cabbage. If this is not possible, then the manure will
have to be composted for an acceptable temperature and length of time prior to

application, or a synthetic fertilizer source will have to be used alternatively.

Winter Wheat/Fall Cabbage Model

The tasks and costs to produce an acre of cabbage were taken from an enterprise

budget for integrated crop management at Rutgers Cooperative Extension (1996). These
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tasks and their associated costs were adapted to include specific duration and time

intervals needed for production based on local conditions from Hiller and Hodges
(personal communications, 2002) (see ;[able'6). The tasks and the costs involved for
winter wheat production were obtained from the Mead agroforestry farm managers

(Bolander and Cieslik, personal communications, 2002).

Table 6 — Winter Wheat/Fall Cabbage Field and Non-Field Tasks

Critical Base Farm Tasks
{during growing season) Hours Date
Wheat starter fertilizer - 1 acre 0.08 3/26-4/1
Spray wheat - 1 acre 0.1 5/21-5/27
Harvest wheat - 1 acre 0.15 712-7/8
Apply manure - 1 acre custom 7/9-7/115
Disk cabbage & apply herbicide - 1 acre 0.26 7/9-7/15
Cultivate cabbage - 1 acre 0.07 7/16-7/122
Plant cabbage - 1 acre (+ 8 hrs hired labor) 4 7/16-7/22
Set up irrigation - 1-acre 4 7/23-7/29
trrigation (7 weeks) - 1 acre 245 7/23-9/9
Cultivate cabbage for weed control - 1 acre 0.07 8/13-8/19
Cabbage pest control (4 weeks) - 1 acre 0.4 8/13-9/9
Harvest cabbage - 1 acre 10 9/10-9/16
Piant wheat - 1 acre 0.07 10/8-10/15
Non-Critical Base Farm Tasks Hours Date
winter off-time (25 weeks) 1/1-4/1 and 10/8-12/31
Marketing 10
Same misc tasks as corn-soybean 0.3602
Hours Date
Growing season off-time (27 weeks) 4/9-10/7
Same misc tasks as corn-soybean 0.3753
Total Operator Hours  54.44 (8 hrs hired labor)

A summary of the inputs for the hypothetical cabbage model, are listed in Table A2-1.

Table 7 lists all costs in comparison to the Rutgers Enterprise Budget and notes where the
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information was obtained. Two assumptions were made for the cabbage production

model: there is no broker, cabbage is sold directly to the slaw plants or minimally
processed salad plants; and there are no cooling costs, due to direct daily delivery to the
processor.

In our model production costs are higher than those for Rutgers (see Table 7), as other
production variables were included such as purchase of a used transplanter, trucking,
product hability insurance, and a higher wage rate. However, there are also costs listed
as zero in the model such as repair and maintenance and land charges, as these costs are
accounted for later after the cabbage and wheat crop have been examined together. This
was done to evaluate the economic efficiencies that can be realized with integrated crop
production strategies. For instance, since winter wheat and cabbage are produced in the

same year, on the same acres, the land costs can be divided between the two crops.



Table 7 — Model comparison to Rutgers
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Task

Returns

Lime & Fert
Herbicide
Fungicide
Pesticide

Piants
Total Labor
Irrigation
Repair & Maint
Packing Crates
Selling Charge

Int. on operating capital

Tractors
Implements
Land Charge

Mngt. Fee

Used Transplanter

Trucking
Product Liability

Total Cost

Net Returns

Rutgers

Current Study

600crts*8.45=5070 47392.6*0.17=8056.74

114.65
32.87
46.5
46.55

500
822.94 (98.24 hrs)
192
92.79
900
152.1
61.37
98.19
58.5
100
218.29

$3,436.75

$1,633.25

28
542
19.13
22.2

696.95
876.3 (62.42 hrs)
192
0
521.32
0

0

0

0

0

0
2000
71.09

500

$4,932.41

$3,124.33

Notes
Hodges (2002) - (Yield 13,939 heads/acre
X 4 Ibsthead

X 0.85 % harvestable) and Chicago
Wholesale Price for Cabbage $ 0.17/ pound
Selley et al. (2001)

Selley et al. (2001)

Rutgers Enterprise Budget(1996)

Selley et al. (2001)
Hodges (2002) - 28 day old transplants/$0.05
each

Hodges and Hilier personal comm. (2002)
Rutgers Enterprise Budget (1996)
(included elsewhere)
Hodges (2002) - $11/1,000 Ib bin
(selling directly to plant)
(included elsewhere)
(included elsewhere)
(included eisewhere)
(included elsewhere)
(included elsewhere)
Gempler's (2002)

Selley et al. (2001)
Hodges (2002)

Graph 2 shows the labor distribution that would be required to produce ten acres of

winter wheat and cabbage. By comparing the corn-soybean labor needs in Graph 1 with

the labor needs of winter wheat/fall cabbage in Graph 2, it can be seen that the two

options have labor requirements during different time periods and thus allow for feasible

integration.
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Graph 2 — Winter Wheat/Fall Cabbage Labor Distribution (10 acres)
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Spring Cabbage/Sunflower Model

The production of spring cabbage is essentially the same as that of fall cabbage, so the
model includes the same data that was used in the production of fall cabbage, although
different dates for the activities were used corresponding to spring production. However,
with spring cabbage production, there will generally be less insect pressure (Hodges,
personal communication, 2002), so a producer would probably not have to apply
insecticide. And the spring cabbage/sunflower model uses synthetic fertilizer, which is
more expensive than the manure applied to fertilize the fall cabbage model. Table 8
outlines the tasks, their durations and dates for the production of spring cabbage and

sunflower.
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Table 8 — Spring Cabbage/Sunflower Field and Non-Field Tasks

Critical Base Farm Tasks
(during growing season) Hours Date
Apply herbicide & disk cabbage - 1 acre 0.26 3/19-3/25
Fertilize cabbage - 1 acre 0.08 3/19-3/25
Cultivate cabbage - 1 acre 0.07 3/26-4/1
Plant cabbage - 1 acre (+ 8 hrs hired labor) . 4 3/26-4/1
Set up irrigation - 1 acre 4 4/2-4/8
Irrigation (7 weeks) - 1 acre 245 4/2-5/13
Cabbage pest control (4 weeks) - 1 acre 0.2 5/7-5/20
Harvest cabbage - 1 acre 10 5/21-5/27
Disk sunflower - 1 acre 0.13 5/28-6/3
Fertilize sunflower - 1 acres 0.08 5/28-6/3
Spray pre-emergent herbicides - 1 acre 0.1 6/4-6/10
Piant sunflower - 1 acre 0.15 6/4-6/10
Cultivate (depends) 0.15 7/2-7/8
Combine sunflower 0.11 10/1-10/7
Non-Critical Base Farm Tasks Hours Date
winter off-time (25 weeks) 1/1-4/1 and 10/8-12/31
Marketing 10
Same misc tasks as corn-soybean 0.3602
Hours Date
Growing season off-time (27 weeks) 4/9-10/7
Same misc tasks as corn-soybean 0.3753
Total Hours  57.57 (8 hrs hired labor)

Graph 3 illustrates the labor distribution that would be required to produce ten acres of
spring cabbage and sunflower. By comparing the labor requirements of spring
cabbage/sunflower in Graph 3 to the labor requirements of corn-soybean in Graph 1 it
can be seen that the majority of the tasks involved in spring cabbage/sunflower
production occur during off times for corn-soybean production allowing for feasible
integration of the two. However, due to the high labor requirements of both options in
regard to spring planting, integration of spring cabbage/sunflower will probably not be as

compatible as the winter wheat/fall cabbage option.



Graph 3 — Spring Cabbage/Sunflower Labor Distribution (10 acres)
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Economic/Enterprise Budgets

Table 9 lists the government crop subsidies that can be received for wheat production.

Tables A2-2 and A2-3 illustrate how the average price per bushel of winter wheat and

sunflower, respectively, were obtained by information from NASS (2002). Tables 10 and

11 outline the simplified enterprise budgets used in this model for winter wheat/fall

cabbage and spring cabbage/sunflowers respectively. Tables A2-4 and A2-5 include the

complete enterprise budgets that were used for this analysis.

Winter wheat/fall cabbage and spring cabbage/sunflower production are highly labor

intensive, requiring approximately 55 hours per acre for each of the two scenarios.

However, these labor requirements occur during non-critical times for the production of

corn and soybean (see Graph 1).




Table 9 — Subsidy Payments for Wheat
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Payment

Direct
Wheat

Counter-Cyclical

Wheat 052 X 48

0.52 X (48 X0.935) X

X

(5 X 0.85)

(5 X 0.85)

equals $99.18  or $19.84/acre
equals  $110.16  or $22.03/acre
Total Payment $41.87/acre

Table 10 - Simplified Winter Wheat/Fall Cabbage Enterprise Budget

(See Table A2-4 for the complete information) -

Week Date Task
11013  1/1-4/1 Misc + marketing
14 to
40 4/2-10/7 Misc
13 3/26-4/1 Starter fertilizer
21 5/21-5/27 Spray wheat
27 712-7/8 Wheat harvest
28 7/9-7/15 Apply manure

28 7/9-7/15  Disk cabb & app herb
29  7/16-7/15
29  7/16-7/22
30  7/23-7/29
30-36 7/23-9/9
33 8/13-8/19
33-36 8/13-9/9
37 9/10-9/16
41 10/8-10/15

Cuiltvate cabbage
Plant Cabbage
Set up irrigation

Irrigate
Cultivate cabbage
Pest control
Harvest cabbage
Plant wheat
Misc + marketing

Totals

Time/Field Time/Other

0.08
0.1
0.15

custom

0.26
0.07
4
4
24.5
0.07
0.4
10
0.07

43.7

Equipment
5.187

0.3753
Tractors & spreader
Tractors & sprayer
Combine & soybean head

Tractors, disk, sprayer & herb
Tractors & cultivator

8 hrs hired help & transplanter

Irrigation equipment

Tractors & cultivator
Sprayer & insecticide

Tractors, planter & seed
5.1732

10.7355

Fixed Costs
Product Liabitity insurance
Used Transplanter
Labor @ $15/hour

Total Costs
Total Returns

Net Income

Cost

14.35
15.69
30.85
28
15.49
2.85
756.95
192

2.85
55.14
592.41
11.54

1718.12

84.32
500
2000
816.53

5118.97
8211.24

$3,092.27




Table 11 — Simplified Spring Cabbage/Sunflower Enterprise Budget

(See Table A2-5 for the complete information)
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41 to 52 10/8-12/31

Week Date Task
1t013  1/1-4/1 Misc + marketing
14 t0 40 4/2-10/7 Misc
12 3/19-3/25 Disk cabb & app herb
12 3/19-3/25 Fertilize cabbage
13 3/26-4/1 Cultivate cabbage
13 3/26-4/1 Plant cabbage
14 4/2-4/8 Set up irrigation
151019 4/9-5/13 Irrigate
17 4/23-4/29  Cultivate cabbage
19-20  5/7-5/20 Pest control
21 5/21-5/27 Harvest cabbage
22 5/28-6/3 Disk sunflower
22 5/28-6/3 Fertilize sunflower
23 6/4-6/10  Spray pre-emg. herb
23 6/4-6/10 Plant sunflowers
27 7/2-7/8 Cultivate if needed
40 10/1-10/7 Combine sunflower

Misc + marketing

Totals

Time/Field Time/Other

0.26
0.08
0.07

24.5
0.07
0.2
10
0.13
0.08
0.1
0.15
0.15
0.11

43.9

Equipment
5.187
0.3753

Tractors, disk, sprayer & herb

Tractors & Spreader
Tractors & cultivator

8 hrs hired help & transplanter

irrigation equipment

Tractors & cultivator
Sprayer & insecticide

Tractors & disk
Tractors & spreader
Tractors & sprayer
Tractors & planter
Tractor & cultivator
Combine & grainhead
5.1732

10.7355
Fixed Costs
Product Liability Insurance
Used Transplanter

Labor @ $15/hour

Totat Costs
Total Returns

Net Income

Cost

15.49
64.11
2.85
756.95
192

2.85
26.04
502.41
522
19.56
42.73
18.35
5.53
20.42

1764.51
84.32
500
2000

819.53

5168.36
8211.24

$3,042.88

The net return per acre, approximately $3,000 for each scenario, is very high

compared to what can be expected from the production of one acre of either corn or

soybean (see Tables 10 and 11). As additional cabbage acres are added, the net return
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will be even higher per acre of cabbage, as the farm producer already owns the

transplanter. While it now seems to make sense that these two scenarios could be
integrated successfully into an existing corn-soybean rotation, the next step in this
analysis will be to determine how many acres can be produced reasonably given the labor
and other resource constraints that are faced by the typical eastern Nebraska producer.

This will be explored in subsequent material, with a linear programming analysis.
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Agroforestry Integration

Another possible option that could make use of, not only the temporal benefits of
integration, but the spatial benefits as well, is the integration of agroforestry into the
existing corn-soybean rotation. Agroforestry is intensive land management that
optimizes the benefits (physical, biological, ecological, social) arising from biophysical
interactions when trees and/or shrubs are deliberately combined with crops and/or
. livestock (Garrett et al., 1994). Relevant services of these woody species to
agroecosystems are that they increase crop yields (nitrogen fixation, increased soil
organic matter, nutrient cycling, soil and water conservation), create environmental
resilience (niche diversification, food web complexity, carbon sequest.ration, reduced
greenhouse gas emissions), and provide social benefits (boundary delineation, shade,
wildlife habitat) (Leakey, 1999).

Current activities at the International Centre for Research in Agroforestry (ICRAF) are
focusing on the development of agroforestry as “a dynamic, ecologically based, natural
resource management system that, through the integration of trees on farms and in the
landscape, diversifies and sustains production for increased social, economic, and
environmental benefits” (Leakey, 1999). This new paradigm for sustainable land use
focuses on two aspects of biodiversity: it diversifies agroecosystems while generating
cash income, and utilizes services that support and enhance ecosystem functioﬁ by
capturing and enhancing intraspecific diversity. As a sustainable land use strategy,
agroforestry practices can further the land stewardship concept (Weber, 1991). These

systems provide assurance to landowners that they are meeting their ownership
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responsibility to provide healthy ecosystems for future generations while revitalizing

rural communities that have become socially depressed due to economic problems within
the local agricultural industry (Garrett et al., 1994).

Despite these numerous benefits, many landowners remain skeptical about introducing
this type of integrated system into their overall farm management strategy. A recent
listening session for rural landowners in the U.S. identified four major problems about
agroforestry that would greatly limit its acceptability: poor economic expectations due to
excessive direct costs including labor and the loss of land area for annual cash grain
crops; too complex, requiring new skills and too much attention; too risky in the long run;

and fear of regulation including the loss of property rights (Lassoie and Buck, 2000).

Windbreak Benefits

One opportunity for realiiing the benefits of agroforestry is the implementation of
windbreaks or shelterbelts to reduce wind speed. The benefits to producers include
protection for crops and livestock, the provision of conservation services, increased
energy efficiency of the farmstead, and the creation of wildlife habitat.

Windbreaks reduce wind speed and alter the microclimate in sheltered areas. As a
result crop yields increase, water use efficiency of the crop increases, risks associated
with drought are reduced, and wind erosion and the damage caused by wind-blown soil
are reduced. Crop yields have been improved in sheltered areas anywhere from 5-45%
over the long term, with increases in corn, soybeans and winter wheat being, 10-15%, 12-
17%, and 20-25%, respectively (Brandle et al., 2000). The temperature increase in the

protected areas can increase the rate of crop development, improve crop quality, and lead
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to earlier marketing opportunities. For example, flowering of soybean occurred four

to ten days earlier in sheltered versus unsheltered areas (Ogbueni and Brandle, 1982);
similar results have been observed in corn and vegetable production. Cabbage reached
maturity three to ten days earlier in sheltered versus unsheltered areas (Hodges and
Brandle, 1996). This can lead to distinct marketing advantages for vegetable crops and
may result in a premium price, as vegetable crops tend to be much more sensitive to
microclimate conditions and thus tend to respond more positively than grain crops to
wind protection (Brandle and Hodges, 2000). Various perennial crops can also be grown
within the windbreak, with labor requirements that occur during off times for typical
annual grain crops, thus providing feasible, economic opportunities for grain producers.

Livestock can also be protected from the dangers of winter chill by windbreaks.
Livestock in protected areas experience less cold temperature stress, improved health,
increased feeding efficiency, and improved reproduction because of lower stress (Brandle
et al., 2000).

Windbreaks can help provide conservation services. For example, they have the
ability to influence global climate change through carbon storage. Woody species have
the potential to capture and store significant amounts of carbon dioxide, which has been
contributing to global climate change. In the future, this could provide an additional
economic benefit to landowners, as researchers and policy makers are currently exploring
methods to provide monetary rewards to farm producers who are able to effectively store
carbon, and thus be given carbon credits for this practice. Windbreaks also add

permanence and biodiversity to agricultural systems, by adding structural diversity and
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increasing perennialism. And, they are successful in the control of wind erosion and

blowing snow.

Windbreaks can reduce the energy costs associated with the heating and cooling
structures of the farmstead. During winter months, dense, multi-row windbreaks reduce
the effects of cold winter winds and provide energy savings of 10-40% (Quam and
Gardner, 1991). They also can reduce cold stress in humans, making outdoor work in
cold weather more tolerable for producers, while also redistributing snowdrifts, reducing
labor and energy demands.

Windbreaks also provide substantial habitat for wildlife and beneficial insects,
contributing to overall social and potential economic benefits to the landowner. For
instance, beneficial insects can reduce damage to crops and decrease the associated need
for pesticides. Further, many landowners in Nebraska may receive income by providing
hunters an opportunity to use their land (Brandle, personal communication 2001).

Despite their numerous benefits, agroforestry systems, including windbreaks, require
increased management skills and labor and have relatively high initial costs. Therefore,
long term, whole farm system analyses must be performed determine their profitability.
For instance, while windbreaks initially occupy land and remove it from annual grain
production, by the seventh year the system will begin to increase net crop yields and
profits (Brandle and Hodges, 2000). Fortunately, governmental cost sharing programs
are also in place to help producers manage the high initial costs until productivity begins

to increase and losses can be recouped.
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Windbreak System

A windbreak system was developed for integration into the hypothetical corn-soybean
rotation. Four windbreaks, each measuring 20 feet by 5100 feet were established. They
each consist of two rows of eastern red cedar (ERC), with space available for additional
specialty shrubs that will be discussed in subsequent material. Each ERC tree requires at
least 36 to 64 square feet of spacing, and each woody shrub requires approximately 49
square feet. These species will provide a windbreak density of approximately 40-60%.
The total land that would be taken out of annual grain production for this system is 14.52
acres, with 9.37 of those being allocated to the two-row ERC windbreak. See Table A3-1
for an example of the calculations used to derive this system.

The Windbreakslwill provide a protected area on their windward side of 2-5 H, where
H is the height of the barrier, and 10-20 H on their leeward side (Brandle et al., 2000).
Since each windbreak is expected to reach approximately 35 feet in height, they should
each provide protection up to 175 feet windward, and 700 feet leeward. Since the
problem wind direction in this area is southwest, the four windbreaks will be installed in
a north, west, and south E shape. The windbreaks can be expected to reach maturity in

30 years, each with a total lifespan of 50 years.

Woody Floral System

Woody floral shrubs have the potential to provide supplemental income while helping
to protect the environment. The growth of specialty forest products such as shrubs have
been dubbed ‘productive conservation’ by Josiah (2001), since they offer good

opportunities for garnering substantial returns, while also providing many of the benefits
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of agroforestry systems. Josiah (2001) describes these woody decorative florals, as

any woody plant species that has a colorful or unusually shaped stem, bud, flower, fruit,
or leaf.

The three species used in this model were chosen for their agronomic feasibility in
eastern Nebraska, as well as their commercial success. These include Scarlet Curls
Willow (Salix “scaruisam” Hybrid), French Pussy Willow or Goat Willow (Salix
caprea), and Bailey Redtwig Dogwood (Cornus sericea “Bailey’). Their feasibility for
integration rests on the fact that their maintenance requirements are minimal once
established, and their harvest requirements generally occur in the winter months during a

low labor time for corn-soybean production.

Agroforestry Model

The tasks associated with the implémentation of a windbreak system are outlined bin
Boechner and Brandle (1991). Because the initial time requirements for planting are
relatively high and occur during the same time required for planting corn and soybean,
the model assumes that the local Lower Platte North Natural Resource District (NRD)
will perform planting. Cost-share programs are available for tree seedling costs, planting,
and spraying to encourage windbreak establishment,

The tasks associated with the implementation of the woody floral crops were taken
from an on-going study being performed by Josiah (personal communication, 2002) at
the agroforestry farm. Labor requirements and costs were derived from this on-going

project.
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The tasks listed in Tables 12 to 18 represent those required for the implementation

0f 9.37 acres of a windbreak system, and 0.06 acres or 500 feet for the implementation
and harvest of each of the three woody floral crops. However, woody floral harvest will
vary depending on species and on the management and harvesting procedures. Graphs 4
to 7 illustrate the labor requirements of the agroforestry system beginning in the first to
third years of production to the fourth year and beyond.

It can be noted from these tables that although the labor requirements for these crops
occur during off-times for corn-soybean production, their labor needs are quite high.
Requirements vary from 34 hours in the first year to 86 hours during the second harvest
in the fourth and fifth years. It is expected that the labor requirements of the second and
subsequent harvests will remain similar.

The high labor requirements emphasizes the fact that this system would only be
feasible on a small scale and as supplemental income, unless adequate part-time seasonal

labor is available to assist during critical times.



Graph 4 - Year 1: Agroforestry Labor Distribution
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Graph 6 - Year 3: Agroforestry Labor Distribution

(9.37 acres windbreak and 13,500 sq. ft. of three woody floral crops)
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Graph 7 - Year 4 Agroforestry Labor Distribution

(9.37 acres windbreak and 13,500 sq. ft. of three woody floral crops)
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Table 12 — Year 1: Agroforestry Field and Non-Field Tasks

Critical Base Farm Tasks

(during growing season) Hours Date
Site preparation — 9.37 acres windbreak & 0.18 acres woody florals 4.685 5/21-5/27
Plant — 9.37 acres windbreak & 0.18 acres woody fiorals Custom 5/21-5/27
Set up irrigation - 0.18 acres woody florals 0.72 5/28-6/3
Irrigate - 0.18 acres woody florals 6.12 6/4-9/23
Non-Critical Base Farm Tasks Hours Date
winter off-time (25 weeks) 1/1-4/1 and 10/8-12/31
Misc - 14.52 acres windbreak & 0.18 acres woody florals 3.4368
Marketing 9
Hours Date
Growing season off-time (27 weeks) 4/9-10/7
Same misc tasks as corn-soybean 3.5815
Total Hours 27.54
Table 13 — Year 2: Agroforestry Field and Non-Field Tasks
Critical Base Farm Tasks
(during growing season) Hours Date
Replant & spray 20% of - 9.37 acres windbreak
& 0.18 acres woody florals Custom 5/21-5/27
Harvest, grade, and delivery - 0.18 acres woody florals 4.59 11/12-11/18
Cut, grade, and delivery - 0.18 acres woody florals 1.82 11/19-11/25
Grade, cut, and bundled - 0.18 acres woody florals 8.61 11/26-12/2
Cut, grade, and delivery - 0.18 acres woody florals 1.48 12/10-12/16
Grade, and bundle - 0.18 acres woody florals 1.54 12/17-12/23
Non-Critical Base Farm Tasks Hours Date
winter off-time (25 weeks) 1/1-4/1 and 10/8-12/31
Misc — 9.37 acres windbreak & 0.18 acres woody florals 3.4368
Marketing 9
Hours Date
Growing season off-time (27 weeks) 4/9-10/7
Same misc tasks as corn-soybean 3.5815

Total Hours

34.06
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Table 14 — Year 3: Agroforestry Field and Non-Field Tasks

Critical Base Farm Tasks
(during growing season)

Grade, bundle, and delivery - 0.18 acres woody florals
Harvest & ready for tomorrow - 0.18 acres woody florals
Grade - 0.18 acres woody florals
Harvest and grade — 0.18 acres woody florals
Grade, bundle, and delivery - 0.18 acres woody florals
Harvest - 0.18 acres woody florals
Grade and bundle - 0.18 acres woody fiorals
Grade - 0.18 acres woody florals
Harvest, grade, and delivery - 0.18 acres woody florais
Cut, grade, and delivery - 0.18 acres woody florals
Grade, cut, and bundled - 0.18 acres woody florals
Cut, grade, and delivery - 0.18 acres woody florals
Grade, and bundle — 0.18 acres woody florals

Non-Critical Base Farm Tasks
winter off-time (25 weeks)
Misc ~ 9.37 acres windbreak & 0.18 acres woody florals
Marketing

Growing season off-time (27 weeks)
Same misc tasks as corn-soybean

Total Hours

Hours
2.1
0.38
0.28
1.14
273
0.3
0.14
042
10.93
4.33
20.51
3.52
3.17

Hours

3.4368
15

Hours

3.5815

71.97

Date
1/8-1/14
1/16-1/21
1/22-1/28
1/29-2/4
2/5-2/11
2/19-2/25
2/26-3/4
3/12-3/18
11/12-11/18
11/19-11/25
11/26-12/2
12/10-12/16
12/17-12/23

Date
1/1-4/1 and 10/8-12/31

Date
4/9-10/7
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Table 15 — Years 4 and 5: Agroforestry Field and Non-Field Tasks

57

Critical Base Farm Tasks
(during growing season)

Grade, bundle, and delivery - 0.18 acres woody florais
Harvest & ready for tomorrow - 0.18 acres woody florals
Grade - 0.18 acres woody florals
Harvest and grade - 0.18 acres woody florals
Grade, bundle, and delivery - 0.18 acres woody florals
Harvest - 0.18 acres woody florals
Grade and bundie - 0.18 acres woody florals
Grade - 0.18 acres woody florals
Harvest, grade, and delivery - 0.18 acres woody florals
Cut, grade, and delivery - 0.18 acres woody florals
Grade, cut, and bundled - 0.18 acres woody florais
Cut, grade, and delivery - 0.18 acres woody florals
Grade, and bundle - 0.18 acres woody florais

Non-Critical Base Farm Tasks
winter off-time (25 weeks)
Misc — 9.37 acres windbreak & 0.18 acres woody florals
Marketing

Growing season off-time (27 weeks)
Same misc tasks as corn-soybean

Total Hours

Hours
5
0.91
0.67
2.72
6.49
0.72
0.34
1
10.93
4.33
20.51
3.52
317

Hours

3.4368
15

Hours

3.5815

82.33

Date
1/8-1/14
1/15-1/21
1/22-1/28
1/29-2/4
2/5-2/11
2/18-2/25
2/26-3/4
3/12-3/18
11/12-11/18
11/19-11/25
11/26-12/2
12/10-12/16
12/17-12/23

Date
1/1-4/1 and 10/8-12/31

Date
4/9-10/7

Economics/Enterprise Budgets

Table 16 provides a summary of the costs and information sources that are associated

with the initial implementation of this windbreak and woody floral system. The total cost

of implementation to the windbreak and woody floral crops, including an assumed need

for replant at 20% that will vary depending on site and climactic conditions, was

$5897.94 and $599.97, respectively.
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Table 16 — Agroforestry Establishment Costs

Economics of Windbreaks

Costs Description Source
Maintanence $449.06/acre over 50 yr life = $8.98/acre annual cost WBECON (2002)
Site preparation $37.26/acre X9.37 = $349.14 WBECON (2002)

7.5 ft spacing = 680 trees per 5100 ft
680 X 2 rows per windbreak = 1360 trees
1360 trees X 4 windbreaks = 5440 trees

Seedling, plant & spray 5440 trees x 0.85 = $4,624 NRD (2002)
Replant @ 20% = $924.80
Removal $25,450.00 WBECON (2002)
Total implementation $5897.94
cost

Economics of Woody Floral Crops

Site Preparation $46.47/acre X 0.06= $2.79/each, or $8.37 per all three WBECON (2002)
(500 X 5 ft = 2500 ft)/(43560 sq. ft./acre) =
0.06 acres per speciaity crop
Josiah pers. comm.

Scarlet Curls Seedlings $2.40 each x 100 plants = $240 (2002)
Josiah pers. comm.

Goat Willow Seedlings $0.78 each x 100 plants = $78 (2002)
Bailey Redtwig Josiah pers. comm.

Seediings $0.70 each x 100 = $70 (2002)

Planting & spraying $0.35 each x 300 = $105 NRD, (2002)
20% (SC $48, GW $15.60, BR $14 and $7/variety planting &
Replant spraying) is $98.60
Total $599.97

The Federal Conservation Reserve Program (CRP) offers many financial incentives
for both the installation of the woody species within the windbreaks, as well as an annual
payment for the first ten years of growth until the financial returns of the windbreak
system to the landowner can be realized (Ricaurte, personal communication, 2002). One
requirement of the CRP program is that crops within it cannot be harvested, as the goal of
the program is to take sensitive land out of production. Due to this, the acreage occupied
by the woody floral crops is not included under the CRP program. The benefits that can

be provided by the CRP program are summarized in Table 17. However, it must be noted
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that these payments will vary by county, and other site productivity conditions.

Therefore the values listed here represent the average of those received by Saunders
County landowners. With these benefits, the total cost of implementation of the
windbreak system to the landowner in this model is $589.79, with an annual return per

acre of $98.95 for the first ten years of production.

Table 17 — CRP Payment Benefits

General - Pays 50% of installation costs
Practice Incentive Program (PIP) - pays another 40% of installation under continuous signup
PIP - $5-10 annual maintenance fee per acre
Signing Incentive Payment (SIP) - $10/acre/year for up to 10 years
General - Annual payment per acre: Saunders County average (1987-2003) -$83.95

Total Installation Costs $5897.94 (producer pays 10%) = $589.79
Annual Payment per acre for first 10 years (5+10+83.95) = $98.95

Despite the monetary benefits that a producer can receive through the CRP program,
for a system to be profitable, the long-term average yield increase from the protected
zones must be large enough to compensate for the land occupied by the windbreak, for
the crop losses within the zone of competition, and for the costs associated with planting
and maintaining the windbreak (Brandle et al., 2000). Since it can take a relatively long
time for a producer to be able to experience the benefits of increased crop yields that are
associated with a windbreak, Brandle and Kort (1991) developed an interactive computer
model to evaluate economic returns to grain producers when crops are protected by a
windbreak. This modeling system, called WBECON and WBINT, performs an analysis
that includes the cost of windbreak establishment and maintenance, loss of crop land due

to areas planted to trees, the loss of productivity associated with the zone of competition
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between the woody species and the crop, length of time required to grow the

windbreak, and the cost of removal at some point in the future. The specific site
requirements of the area under consideration are programmed along with the specific
costs. However, an average set of costs exists within the model if specific costs are not
available. Table 18 lists the hypothetical financial benefits after expenses that the

producer in this model could expect over the life of their windbreak.

Table 18 — Crop yield benefits over the lifetime of a windbreak

Crop Information Per Acre

Crop Unsheltered Yield Crop Prices Crop Inputs
Corn (Grain) 105 bu 2.27 141.29
Soybean 35 bu 5.65 . 100.68
Winter Wheat 48 bu 3.13 118.57
Leafy Vegetables 47392.6 Ibs 0.17 1651.69
Sunflower 15 bu 10.3 111.81

Annual Benefits of the Shelterbelt
at Maturity Per Acre

Crop Sheltered Yield % Increase  Economic Benefits
Corn (Grain) 108.4 bu 32 7.68
Soybean 36.6 bu 4.7 9.24
Winter Wheat 49.4 bu 2.9 4.41
Leafy Vegetables 50155.3 ibs 5.8 169.65
Sunflower 15.7 Ibs 4.4 6.77

Total Economic Benefit over
Shelterbelt Lifetime

In Constant Dollars $2,236,667
In Present Dollars (Discounted at 5% annually) $444,629
Benefit/Cost Ratio 3.88
internal Rate of Return 13.80%

While these costs are certainly important to a landowner considering the option of

integrating a windbreak system into their agroecosystem, it is beyond the scope of this
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study to perform an analysis of this long-term detail. Therefore only the first six years

of integration will be analyzed, where the payments from the CRP program will be taken
into account.

The returns from the production of the three woody floral species can be realized
 within the second and third year after establishment. The number of marketable stems
was derived from data Josiah (2002). There was some browse damage to some of the
stems, which decreased yields slightly. The estimated yields for 500 feet of each of the
three woody floral crops are listed in Table 19. The gross value for these stems were
taken from Josiah (2002), and were based on actual stem sales to wholesalers in eastern

Nebraska.

Table 19 — Woody Florals Cost and Returns

500' of each crop
SC RD GW
Year 1 - Establishment Costs
site prep 2.79 2.79 2.79
100 plants 240 70 78
plant & spray by NRD 35 35 35
replant tree cost 48 14 15.6
replant plant & spray cost 7 7 7
Total $332.79 $128.79 $138.39
Year 2 & 3 - 1° Harvest
labor (hrs) 13.07 3.93 8.19
Yield 2220 921.88 1338
Value $1047.5 $276.57 $204.11
Year 3 & 4 - 2nd Harvest
labor (hrs) 31.12 9.36 19.5
Yield 5283 1450 4261
Value $2492.5 $435 $650

Despite the high economic potential of these specialty crops, their production will be

constrained by the market demand. Most of the materials currently in the floral market
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are produced on the west coast of the U.S. and Canada or in the tropics. However,

there are good opportunities in the Midwestern U.S. for producing and marketing
decorative stems of a numbers of species and cultivars with substantial financial returns
(Josiah, 2002). To address this, Josiah (2002) conducted a mail and phone survey of 125
wholesale and retail florists in states east of the Rocky Mountains in the Midwest Region.
The results of these surveys, along with a 20 and 30% market share for the hypothetical
producer in this study, are listed in Table 20. Even with a low market share, production

of these crops as a supplemental enterprise could provide substantial income.

Table 20 — Woody Floral Market Potential

NE Market Gross MW Market Market Share Gross
Variety Value/stem Potential Prct. Market Share Return Potential 5% Return
Scariet Curls  $0.46 68,400 0.2 13680 $6,292.80 902,000 45,100 $20,746.00
0.3 20520 $9,439.20
Goat Willow $0.15 70,500 0.2 14100 $2,115.00 331,000 16,550 $2,482.50
0.3 21150 $3,172.50
Red
Dogwood $0.30 3,500 0.2 700 $210.00 47,855 2,393 $717.83
0.3 1050 $315.00

With knowledge of the potential labor requirements, costs and returns for the
agroforestry option, an assessment must now be made of the amounts of these crops that
could feasibly be produced by the hypothetical eastern Nebraska corn-soybean producer
given labor and resource constraints. The enterprise budgets for this assessment are listed
in Tables 21 to 24 in simplified form. The complete enterprise budget for the first five

years of production is given in Table A3-2.




Table 21 — Year 1: Simplified Agroforestry Enterprise Budget

(See Table A3-2 for the Complete Information)

Week Date
1t0 13 1/1-4/1
14 to 40  4/2-10/7
21 5/21-5/27
21 5/21-5/27
22 5/28-6/3
23t028 6/4-9/23
41 to 52 10/8-12/31

Task

Misc + marketing
Misc

Site preparation
Plant

Set up irrigation
Irrigate

Misc + marketing

Totals

Time/Field

4.78
Custom
0.72
6.12

11.62

Time/Other Equipment
6.29
3.58

Irrigation equipment

6.15

16.02
WB maint. costs

Fixed Costs
Labor @ $15/hour

Total Costs
Total Returns

Net Income

Cost

41.63
955.40
34.56

1031.58
84.14
805.26
414.50

2251.33
927.16

$-1408.32
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Table 22 — Year 2: Simplified Agroforestry Enterprise Budget

(See Table A3-2 for the Complete Information)

Week Date Task Time/Field Time/Other Equipment Cost
1t013 1/1-4/1 Misc + marketing 6.29
14 to 40  4/2-10/7 Misc 3.58
21 5/21-5/27 Replant & spray Custom 191.08
46 11/12-11/18 Harvest, grade & delivery 4.59
47 11/19-11/25 Cut, grade & delivery 1.82
48 11/26-12/2 Grade, cut & bundled 8.61
50 12/10-12/16  Cut, grade & delivery 1.48
51 12/17-12/23 Grade & bundle 1.54
41to 52 10/8-12/31 Misc + marketing 6.15
Totals 18.04 16.02 191.08
WB Maint. Costs 84.14
Fixed Costs 805.26

tabor @ $15/hour  510.87

Total Costs 1591.36
Total Returns 1514.91

Net income $-76.44




Table 23 — Year 3: Simplified Agroforestry Enterprise Budget

(See Table A3-2 for the Complete Information)

Week Date
11013 1/1-4/1
14to 40 4/2-10/7
2 1/8-1/14
3 1/15-1/21
4 1/22-1/28
5 1/29-2/4
6 2/5-2/11
8 2/19-2/25
9 2/26-3/4

11 3/12-3/18
46 11/12-11/18
47 11/19-11/25
48 11/26-12/2
50  12/10-12/16
51 12/17-12/23
41t0 52 10/8-12/31

Task
Misc + marketing
Misc
Grade, bundle & delivery
Harvest & ready for tomorrow
Grade
Harvest & grade
Grade, bundle & delivery
Harvest
Grade & bundle
Grade
Harvest, grade & delivery
Cut, grade & delivery
Grade, cut & bundled
Cut, grade & delivery
Grade & bundle
Misc + Marketing

Totals

Time/Field Time/Other

2.1
0.38
0.28
1.14
273

0.3
0.14
0.42
10.93
4.33

20.51

3.52

3.17

49.95

Equipment
9.29
3.58

9.15

22.02

WB Maint. Costs I

Fixed Costs
Labor @ $15/hour

Total Costs
Total Returns

Net Income

Cost

0
84.14
805.26
1079.52

1968.92
3243.51

$1274.59
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Table 24 — Years 4 and 5: Simplified Agroforestry Enterprise Budget

(See Table A3-2 for the Complete Information)

Week Date Task
11013 1/1-4/1 Misc + marketing
14t040  4/2-10/7 Misc
2 1/8-1/14 Grade, bundle & delivery
3 1/15-1/21 Harvest & ready for tomorrow
4 1/22-1/28 Grade
5 1/29-2/4 Harvest & grade
6 2/5-2/11 Grade, bundle & delivery
8 2/19-2/25 Harvest
9 2/26-3/4 Grade & bundle
11 3/12-3/18 Grade
46 11/12-11/18 Harvest, grade & delivery
47 11/19-11/25 Cut, grade & delivery
48 11/26-12/2 Grade, cut & bundled
50 12/10-12/16 Cut, grade & delivery
51 12/17-12/23 Grade & bundle
411052 10/8-12/31 Misc + marketing
Totals

Time/Field Time/Other Equipment Cost

5
0.91
0.67
272
6.49
0.72
0.34

10.93
4.33

20.51
3.52
3.17

60.31

9.29
3.58

9.15

22.02 0
WB Maint. Costs 84.14
Fixed Costs 805.26
Labor @ $15/hour 1079.52

Total Costs 212437
Total Returns 4504.63

Net Income $2380.26
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Linear Programming Matrix

When farm producers consider adopting new practices or supplemental enterprises,
their two biggest concerns are usually the labor required and its likely financial return, as
well as whether it will fit in with their existing activities. Further, the design of any new
system will require a planning process that analyzes the wants, needs, and objectives of
the producer along with the land and producer’s suitability to help determine the proper
system to implement and sustain.

Linear programming (LP) is a mathematical procedure that searches for a combination
of activities that maximizes a specified value, such as total profit, subject to certain
constraints, such as labor availability. Since the early 1960’s, several large LP models
have been developed to help farmers search for more profitable and efﬁcient cropping
systems. Purdue University utilizes such a model in their “Top Farmer” workshops and
ISU extension utilizes one called Crop-Opt in their outreach efforts (Edwards, 1992).

Linear programming can be used to determine the optimal crop mix given various
alternatives and the constraints faced by the individual enterprise. It also has the
potential to identify what factors may be constraining the solution so that sensitivity
analyses can be explored. For instance, the user of a model may be concerned with how
recommendations of the model are altered by changes in the input data. For example, if
the entire budget were used in the original solution, it may indicate that adding one more
dollar to the budget would be worth a $3.48 return in terms of net present value. This
would suggest a fairly substantial return per dollar invested; and the farm producer may
wish to consider a loan. Sensitivity analyses can reveal which pieces of information

should be estimated more carefully.



68
Field and Non-Field Labor Availability

The first step in establishing a linear programming matrix to discover the optimal
production scenario for a typical eastern Nebraska corn-soybean producer is to establish
the constraints that they would face. Since the primary objective of this study was to
address the labor constraints of this typical producer, a detailed assessment was
performed to determine the maximum time available for both field and non-field tasks.
Field time availability indicates the time available for farm production tasks such as
tillage, spraying, and harvest. Estimates of available field time are useful in planning and
scheduling labor during critical field periods.

Throughout Nebraska, records of the observed field days suitable for field operations
throughout the growing season are recorded by the Nebraska Agricultural Statistics
Service (NASS). This assessment is based on various factors including temperature and
" soil moisture conditions as influenced by factors such as rainfall, wind velocity, and
relative humidity. To determine the days suitable for fieldwork on this model farm, these
data were obtained from NASS for Saunders County and an eleven-year average (1991-
2001) calculated on a weekly basis (See Table A4-1).

Next, it was necessary to determine the length of daylight hours to determine how
many hours per week the producer could expect to be available for fieldwork. The
sunrise and sunset information for Mead, NE were obtained from the U.S. Naval
Observatory to determine the daylight hours available (See Table A4-2). Farm producers
often work into twilight hours or use lights on their equipment to gain more flexibility

during critical times; however this was not included in the present analysis.
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With this information, a detailed assessment of the total field labor available was

made (see Table A4-3). Because there are many farm tasks such as equipment repair,
bookkeeping, input purchases, and marketing that do not necessarily need to occur during
field time, an ‘other’ labor availability category was developed.

It was assumed that a typical producer would work, at the most, six days per week,
allowing at least one day off for holidays or personal activities. The total number of
available hours per week was determined. This was then split between hours suitable for
fieldwork and hours allocated to ‘other” activities. In the LP model, it was programmed
so that the unused labor in each time period allocated to available fieldwork was
transferred to the ‘other’ time availability category to allow for tasks that are not
necessarily required to occur during field time. For example, while the harvest of woody
florals occurs outside during the daylight hours, it does not require a maximum
temperature or certain soil moisture characteristics to occur and can therefore be
performed during this ‘other’ time availability.

While the initial analysis focused on the optimal cropping mix given one full time
producer, additional analyses were performed with an increase in the labor available.
Sensitivity analyses were performed to determine the optimal cropping mix given another
full time person, being a spouse or hired hand, and/or the availability of part-time labor
during critical times.

The labor constraints were entered into the LP model in bi-weekly increments as to
ease restrictions in the analysis since some activities could be stretched to the following

week.,




70
Enterprise Budgets per Acre

The next step in building the LP model was to determine the labor, costs, and return of
each cropping option per acre (see Tables A4-4 to A4-10). Since corn and soybean are
grown in rotation over a two-year period, their respective constraints were averaged into
single values to represent this one-acre being half corn and half soybean. Since the
winter wheat/fall cabbage and spring cabbage/sunflower options have both crops grown
on the same acre in one year, their respective constraints were summed to determine
singular values to go into the LP model.

The agroforestry option was figured differently. Since this analysis was figured only
over the first six years, the LP program would not be aware of the long-term economic
benefits of the windbreak system in terms of increased crop yields. In this respect, if
given the option, the optimal LP solution would probably not have allocated any acreage
to the windbreak system. Therefore, the model was programmed to accept the 9.37 acres
of the windbreak system and subtract these acres from those considered variable to be
optimized and allocated to the various alternatives. However, the constraints of the three
woody floral crops were still held variable in the analysis. The fixed costs per acre,

including cost such as land and machinery, were held constant across all options.

Six-Year Average

To allow the LP model to determine the optimal solution considering all variables
over time, a six-year average of the various alternatives was used to help account for the
synergies of integrated production strategies, (see Tables A4-11 to A4-17). For example,
in the corn-soybean rotation, a producer must apply nitrogen fertilizer every other year.

However, the winter wheat/fall cabbage model assumes a three-year rotation of corn,
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followed by soybean, followed by winter wheat/cabbage. In this scenario, the

production of winter wheat allows the inexpensive application of manure as a fertilizer
resource, applied only every third year. Similarly, the production of the woody floral
cultivars have high initial costs and no returns during the first year, but can achieve hj gh

returns in successive years.
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Results and Discussion

Linear Programming Analysis

The 1nitial analysis using linear programming first examined each alternative for
supplementation separately in relation to the existing corn-soybean rotation, and then
examined the alternative options together; see Table 25 for partial results and Table AS5-1
for the full results. The model focused on the labor constraints of one, full-time, typical
farm producer in eastern Nebraska. Available capital was regarded as unlimited, as this
was not the limiting factor in this analysis. Land was held at 640 acres. Option 1, the
corn-soybean base production strategy was examined with and without stalk grazing.
Each subsequent analysis was performed with and without the addition of crop subsidies.

The results are meant to indicate the optimal annual acreage allocation of each crop
scenario given the overall constraints programmed in the model. As expectéd, the
integration of cattle grazing stalk residues helps improve the economic situation of the
producer, but does not change the optimal cropping scenario. All three different
supplemental scenarios, when considered separately in comparison with option 1,
increased the profitability of the farming enterprise. Given the labor constraints, the
second option, the integration of winter wheat/fall cabbage, seemed to be the most
profitable, giving the farm a total net return of $34,502.72 without crop subsidies and
$60,754.79 with subsidies. Option 4, the integration of agroforestry is second best
within the single comparisons, giving the farm a total net return of $13,052.45 without
crop subsidies, and $38,883.63 with subsidies when it was not constrained by markets.
Option 3, spring cabbage/sunflowers, also improved profitability. However, since both it

and option 1 have high labor requirements in the spring in regards to planting, this option
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was constrained by available labor more than option 2, giving the farm a total net

return of $3,489.66 without subsidies, and $29,686.05 with subsidies.
The addition of crop subsidies makes a large impact on the producers’ profitability;,
however it does not have enough of an effect to affect the optimal acreage solution. This

is probably due to the fact that the operation is constrained by labor, whereas if more

Table 25 —~ LP Analysis :One Full-Time Operator

Total Oper.
Comparion Subsidies Grazing Land Allocation (Acres) Labor Used Net
Option 1 No no C-S: 640 944 hrs -4,765.44
Option 1 vs 2 No yes C-8:619.74 & WW/FC: 20.26 1301.14 hrs  $34,502.72
Option 1vs 3 No yes C-S: 636.34 & SC/S: 3.66 1008.69 hrs $3,489.66
Option 1vs 4 No yes C-S:629.89 WB: 9.37 SC:0.74 1249.94 hrs  $13,052.45
(no mrkt constraint)
Option 1,2& 3 No yes C-5:615.50 WW/FC:20.30 SC/S: 4.11 137441 hrs  $35,714.55
Option 1,2,3 & 4 No yes  C-S:608.85 WW/FC: 19.70 SC/S: 1.36
(no mrkt constraint) WB:9.37 SC:0.72 GW: 0 BR:0 1612.90 hrs $49,152.07
Option 1,2,3& 4 no yes  C-S:608.85 WW/FC: 19.70 SC/S: 1.36
W/ 20% mrkt
constraint) WB:9.37 SC:0.24 GW:0.32 BR: 0.04 1511.91 hrs  $40,637.44
Option 1 yes no C-S: 640 944 hrs $21,480.96
Option 1 yes yes C-S: 640 944 hrs $25,320.96
Option 1vs 2 yes yes C-S:619.74 & WW/FC: 20.26 130t.14 hrs  $60,754.79
Option 1vs 3 yes yes C-S:636.34 & SC/S: 3.66 1008.69 hrs $29,686.05
Option 1 vs 4 yes yes C-S:629.89 WB: 9.37 SC: 0.74 1249.94 hrs $38,883.63
{no mrkt constraint)
Option 1 vs 4 yes yes C-S:630.03 WB: 9.37 1140.82 hrs  $30,011.95
(w/ 20% mrkt
constraint) SC: 0.24 GW: 0.32 BR: 0.04
Option 1,2& 3 yes yes C-5:6156.59 WW/FC: 20.30 SC/S: 4.1  1374.41hrs  $61,910.47
Option 1,2,3 & 4 yes yes C-S5:608.85 WW/FC: 19.70 SC/S: 1.36
(no mrkt constraint) WB:9.37 SC:0.72 GW: 0 BR:0 1612.90 hrs  $74,971.60
Option 1,2,3 & 4 yes yes C-S: 608.85 WWI/FC: 19.70 SC/S: 1.36
(w/ 20% mrkt
constraint) WB:9.37 SC: 0.24 GW:0.32 BR: 0.04 1511.91hrs  $66,456.97
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labor were to be made available, the optimal allocation of land would be transferred to

the non-subsidy, higher value cropping options. It can also be noted from this analysis
that, as these higher value supplemental cropping options are added to the mix, net profit
increased reducing the need for subsidies.

When the two cabbage options are both considered in the LP program, the winter
wheat/fall cabbage option was reduced slightly and the spring cabbage/sunflower option
is increased. This is due to the labor being shifted away from the com—soybéan option in
favor of the cabbage production. When the fourth option, agroforestry, was added to the
' mix, the acreage allocated to cabbage production was reduced in favor of the available
labor being allocated to the higher value agroforestry crops.

Finally, out of the three woody floral crops, scarlet curls willow was the most
profitable, and all labor was allocated to its production until marketing constraints enter
the scenario. When markets for these crops are constrained to 20% of the Nebraska
market as identified by Josiah (2002), production of scarlet curls willow was reduced to
within its market constraints, and the production of the other two woody floral crops were
increased. However, they too were limited by their market constraints.

A graphic illustration of the constraints being placed on the production of these crops,
is included in Graphs 8 to 14. In Graph 8, the field and non-critical tasks for the
production of corn and soybean are listed separately, és are both the field and off-time
labor availability constraints for a typical eastern Nebraska producer. Note, when time is
leftover in regard to field tasks, that leftover time was transferred to off-time availability
in the LP model. This allowed production to occur where it may appear in the graph to be

constrained by non-critical tasks that occur during off-time availability. However, the



gréphs illustrate how the crop production was constrained by the total labor available
in general.

In Graphs 9 to 14, the field and non-critical tasks of the supplemental activities being
explored were combined. They illustrate how production of the various crop
combinations are being constrained by the time availability, and.where bottlenecks of
labor occur, prompting the need for additional labor in order to increase production of the
supplemental crops.

In Graphs 13 and 14, when market constraints are included in the LP analysis with
regard to the woody floral crops, production is constrained by market availability and not

by labor availability.

Graph 8 — C-S Production Given Constraints on Tasks

(640 acres C-S)
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Graph 9 — C-S and WW/FC Production Given Constraints on Tasks

(619.74 acres C-S and 20.26 acres WW/FC)
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Graph 10 — C-S and SC/S Production Given Constraints on Tasks

(636.34 acres C-S and 3.66 acres SC/S)
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Graph 11 - C-S and Agroforestry Production Given Constraints on Tasks

(624.76 acres C-S and 14.52 acres Windbreak with 0.74 acres Scarlet Curls)
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Graph 12 - C-S, WW/FC and SC/S Production Given Constraints on Tasks

(615.59 acres C-S 20.30 acres WW/FC and 4.11 acres SC/S)
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Graph 13 - Production Given All Options With Constraints on Tasks

(608.85 C-S, 19.70 WW/FC, 1.36 SC/S, 9.37 WB with 0.72 SC, and no mrkt. constraints)
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Graph 14 — Production Given All Options With Marketing Constraints
(608.85 C-S, 19.70 WW/FC, 1.36 SC/S, 9.37 WB with 0.24 SC, 0.32 GW and 0.04 BR, with

20% mrkt. constraints)
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Sensitivity Analysis

Because the availability of labor was found to be a major constraining factor in
regards to the increased production of the high value supplemental crops and associated
profitability, the availability of additional labor was considered in the sensitivity
analyses; (see Table 26 for partial results and Table A5-1 for the full results). The first
analysis focused on the additional labor that could be made available from an additional
full-time skilled operator. This position was compensated at $15 per hour. Unexpectedly,
this did not result in any changes to the optimal cropping allocation. This may be due to
the high cost of this additional labor. It should also be noted that while this option would
provide an additional labor resource during the crucial ‘bottleneck’ periods, it would

result in a greater amount of unused productive time for two people during off times.

Table 26 — Sensitivity Analysis in Regard to Labor Availability Changes

Total Oper.
Comparion Labor Land Allocation (Acres) Labor Used Net
Option 1,2,3 & 4  One fuli time operator  C-S: 608.85 WW/FC: 19.70 SC/S: 1.36
WB:9.37 SC: 0.24 GW:0.32 BR: 0.04 1511.91hrs  $66,456.97

Option 1,2,3 & 4 Two full time operators  C-S: 608.85 WW/FC: 19.70 SC/S: 1.36
WB:9.37 SC:0.24 GW:0.32 BR: 0.04 151191hrs  $66,456.97

Option 1,2,3 & 4 One operator w/ pt labor C-S: 583.08 WW/FC: 20.79 SC/S: 2548 1956.90 hrs $111,443.93
during critical times WB:9.37 SC: 0.24 GW:0.32 BR: 0.04 (198 hired hrs)

When the additional part-time labor was allocated a wage of only $7.50 per hour and
added to the LP model during only critical time periods, production of the supplemental

crops and producer profitability increased dramatically, (see Graph 15). At this point, the
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production of the woody floral crops was constrained by market share, and cabbage

production was constrained by labor needs that were not considered as non-critical time
periods in the initial analyses. In this regard, the operator would be faced with the option
of adding more part time labor, transforming the operation into an intensively managed
640 acres. However, as is common in rural NE, they would probably be constrained by

available employees as rural communities continue to empty.

Graph 15 - Production Given All Options with added Part-Time Labor

(583.08 C-8, 20.79 WW/FC, 25.48 SC/S, 9.37 WB with 0.24 SC, 0.32 GW and 0.04 BR)
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Since marketing was found to be a constraining factor in the increased production of
the high value woody floral crops, a sensitivity analysis was performed (see Table 27 for
the partial results and Table AS-1 for the full results). With only one full-time operator,

as market opportunities increase, the production of the woody floral crops increased and



eventually shifts to production of only the highest value crop, scarlet curls willow.
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However, the model is still ultimately constrained by labor availability, see Graph 16 for

an illustration.

Table 27 — Sensitivity Analysis in Regard to Labor and Marketing

Comparion
Option 1,2,3& 4
One full time operator

Option 1,23 &4
One full time operator

Option 1,2,3& 4
One full time operator

Option 12384
Two full time operators

Option 1,2,3& 4
Two full time operators

Option 1,23 & 4
Two full time operators

Option 1,2,3& 4
One operator w/ pt
labor during critical

times

Option 1,2,3 & 4
One operator w/ pt
tabor during critical

times

Option 1,2,3& 4
One operator w/ pt
labor during critical

times

Marketing
30 % NE Mrkt

5% MW Mrkt

No Limits

30 % NE Mrkt

5% MW Mrkt

No Limits

30 % NE Mrkt

5% MW Mrkt

No Limits

Land Allocation (Acres)
C-S: 608.85 WW/FC: 19.70 SC/S: 1.36
WB:9.37 SC:0.36 GW: 0.32 BR: 0.06

C-S:608.85 WW/FC: 19.70 SC/S: 1.36
WB:9.37 §C:0.72 GW: 0 BR: 0

C-5:608.85 WW/FC: 19.70 SC/S: 1.36
WB:9.37 SC:0.72 GW: 0 BR: 0

C-S: 608.85 WW/FC: 19.70 SC/S: 1.36
WB:9.37 SC:0.36 GW: 0.48 BR:0.06

C-S: 608.85 WW/FC: 19.70 SC/S: 1.36
WB:9.37 SC: 0.79 GW: 0.37 BR:0.15

C-5: 608.85 WW/FC: 19.70 SC/S: 1.36
WB:9.37 S§C:1.60 GW:0 BR: 0

C-S: 583.62 WW/FC: 20.68 SC/S: 25.43
WB:6.37 SC:0.36 GW:0.48 BR: 0.06

C-S: 582.48 WW/FC: 20.72 SC/S: 26.12
WB:9.37 SC:0.79 GW: 0.37 BR: 0.15

C-S: 583.06 WW/FC. 20.68 SC/S: 25.32
WB:9.37 SC: 1.10 GW:047BR: 0

Total Oper.

Labor Used

1568.98 hrs

1611.05 hrs

1611.05 hrs

1616.74hrs

1785.08 hrs

1992.34 hrs

2059.52 hrs

2241.06 hrs

2398.34 hrs

Net

$68,749.84

$74,890.75

$74,971.60

$68,981.36

$77,041.85

$91,537.48

$114,488.67
(198 hired hrs)

$123,457.53
(254 hired hrs)

$126,717.69
(307 hired hrs)




Graph 16 - Production with One Full-Time Operator and No Market Limits

(608.85 C-S, 19.70 WW/FC, 1.36 SC/S, 9.37 WB with 0.72 SC, 0 GW and 0 BR)
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With two full-time operators, as market availability increased, the production of

woody floral crops increased, eventually shifting towards the production of only the

highest value crop, scarlet curls willow. Although cabbage was not considered profitable

enough by the LP model to increase its production due to the expensive labor, woody

floral production did not seem to be affected by this. Again, when no limits were

constraining the solution, labor became the constraining factor to increased production

see Graph 17 for an illustration.
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Graph 17 - Production with Two Full-Time Operators and No Market Limits

(608.85 C-S, 19.70 WW/FC, 1.36 SC/S, 9.37 WB with 1.60 SC, 0 GW and 0 BR)
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When the market constraints were increased in conjunction with part-time labor
availability during critical time periods, woody floral production increased to a very
profitable level, being constrained only by markets. When no market limits were
constraining the production situation, labor constraints during off-times became the only

constraining factor in increased production, see Graph 18 for an illustration.
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Graph 18 - Production with Part-Time Help and No Market Limits

(580.87 C-S, 20.68WW/FC, 25.32 SC/S, 9.37 WB with 1.10 SC, 0.47 GW and 0 BR)
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In summary, the addition of supplemental cropping enterprises to the initial cropping
scenario increased producer profitability, especially with respect to the agroforestry
crops. Labor and markets were highly significant factors in the production allocation,
whereas the addition of part-time labor during critical time periods clearly was the most
effective option to maximize profitability. At their highest levels, cropping subsidies for
production of the commodity crops was no longer necessary to sustain the farm
enterprise. In fact, if subsidies were eliminated, the producer could probably become
even more profitable by eliminating production of corn and soybean entirely and

subsisting on fewer acres.



Conclusions .

Current agroecosystems in the U.S., and specifically eastern Nebraska, are beset with
economic, ecological and social problems. Our modern industrialized system of
agriculture has encouraged farm producers to maximize their ‘economies of size’ by
specializing and streamlining their production to a limited number of commodity crops
on larger and larger acreages. In response to the withdrawal of all price supports and
stabilization provisions beginning with thg 1996 Freedom to Farm Act, overproduction of
these few crops continues to rise and market prices are falling. As farm producers
continue to become ever more reliant on crop subsidies to survive, small family farm
operations are going under and large corporate-style producers are taking over. While
some may argue that this is efficiency at work in a free-market capitalistic system, rural
communities are being eroded and the negative environmental externalities associated
with this large-scale industrialized production are growing. While some may see this
system as efficient, producing an amazing surplus Vof crops to “feed the world”, the
environmental and social consequences of this production are usually not included in the
analyses, allowing these systems to be seen as more efficient and successful than they
really are.

One potential option, that advocates argue will allow small scale family farming
enterprises to remain viable while also being more environmentally sustainable, is lower-
input, diversified, or integrated farming systems. While lower-input, diversified farming
systems are more complex and require more intensive “hands-on” resource management
than do higher-input specialized systems, their potential synergistic gains from effective

integration of enterprises and activities within diversified farming systems may more than
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offset the alternative gains from specialization (Ikerd, 1996). These systems seek to

work more closely with nature, rather than against it, by utilizing the potential benefits
that biodiversity can provide to the faﬁning system. These ecological services include
benefits such as nutrient cycling, regulation of microclimate and local hydrological
processes, suppression of undesirable organisms, and detoxification of noxious
chemicals. Integrated systems may provide the opportunity to help revitalize rural
communities by maintaining small family farms, minimize negative environmental
externalities by decreasing pesticide and synthetic fertilizers, and help reduce the farming
systems reliance on fossil fuels. Studies have shown that these systems can also be just
as agronomically and economically productive as their large-scale counterparts.

However, while these benefits remain strong in theory, farm producers need a
concrete model that illustrates how integration is possible and what cropping
combinations will be successful for them. Crop modeling procedures have been found to
be an effective, low cost method with little risk to help evaluate a large number of
alternatives.

Most farm producers in eastern Nebraska utilize a corn and soybean rotation and own
most of the equipment to accomplish the tasks that are involved with this production. In
this respect, most farm producers would not be expected to make a radical crop systems
change from what they currently produce, but would instead look for supplemental crops
that could be mntegrated into their existing operations. This was the impetus for this
study, to explore whether the integration of various supplemental crops was feasible, and
if so, in what combinations given current resource constraints. The various alternatives

that were examined included the grazing of stalk residues by cattle, annual cabbage crops
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grown in conjunction with either winter wheat or sunflower, and a perennial scenario

involving windbreaks with woody floral crops.

These alternative supplemental crops were initially chosen on the basis that studies
have shown them to be viable crops for eastern Nebraska given their agronomic and
market feasibility. Further, none of them require extensive specialized equipment or
production knowledge beyond what is needed in the production of corn or soybean.
Finally, the timing that is required for the production of these supplemental crops fits into
those time periods that have low labor requirements in the corn and soybean rotation. For
instance, corn and soybean production has high labor requirements in both the spring
planting and fall harvest, however, throughout the rest of the year they have minimal
labor requirements resulting in bottlenecks of labor availability. Alternatively, the labor
requirements for fall cabbage occur primarily during the summer months, and the labor
requirements for decorative woody florals occur primarily during the winter.

Detailed enterprise budgets were constructed for each cropping scenario. These went
beyond typical enterprise budgets to include the approximate labor required for each task
in the production process and when it occurred. Time requirements and durations, as
well as costs for each task were broken down into per acre requirements for production.
Each alternative-cropping scenario was then averaged over a period of six years to
highlight the benefits that can be received from the synergies that occur during integrated
production. For example, while corn and soybean production requires synthetic fertilizer
application every other year, the winter wheat/fall cabbage production scenario is rotated
every third year into the corn-soybean rotation and involves the application of manure as

a fertilizer resource. With this scenario, fertilizer is applied to the system only every
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third year. Alternatively, the agroforestry system has relatively high initial costs and

does not provide any net returns until after two years into the production process.

These six-year averages for each cropping scenario were then entered into a linear
programming (LP) model to determine the optimal annual acreage allocation for each
scenario. The LP model was programmed to maximize the net present value of the farm
producer, by determining the optimal annual acreage allocation for a typical eastern
Nebraska producer, given specific weekly labor and other resource constrain:[s. The main
focus was to concentrate on the optimal scenario given labor constraints; however,
market constraints were also explored, as they were a constraining factor to the increased
production of the supplemental activities, particularly with regard to the woody floral
crops. While an attempt was made to make each of the cropping scenarios as accurate as
possible, actual tasks and their associated timiné may vary from an actual farm operation,
or from farm to farm. While these details may alter the fine-tuning of the model, it is not
expected that these changes would affect the major conclusions. Overall, whole farm
analysis using a linear programming model is an excellent tool to give an indication of
what would be expected to occur in an actual farming operation.

The results of the LP analysis suggest that all supplemental cropping scenarios have
the potential to increase producer profitability. The grazing of stalk residues increased
profitability without any additional labor responsibility to the grain producer, but did not
affect the overall annual acreage allocation. When each alternative supplementation
scenario was analyzed with the base corn-soybean system individually, the production of
the winter wheat/fall cabbage improved the producer’s profitability the most. The woody

floral crops grown in association with field windbreaks also substantially increased
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profitability, yet they were constrained by market availability. The spring

cabbage/sunflower option also increased profitability, however it was constrained by the
fact that it and the corn-soybean system have high labor needs in the spring.

Because labor was the most constraining factor in regards to the increased production
of the supplemental cropping scenarios, a sensitivity analysis was used to determine the
effects on the optimal cropping scenario given additional labor. The addition of another
full-time skilled operator did not have an effect on increasing cabbage production, as the
cost of this additional labor was too high. Additional labor did increase production of the
woody florals; however, overall production was still constrained by market access. The
addition of part-time labor during critical time periods increased the profitability of both
the cabbage and woody floral crop scenarios. The constraining factor eventually became
the labor requirements during periods that were not constraining the model in the initial
analyses. At this point, if thé producer were not constrained by available part-time labor
as is common in rural Nebraska, they would face the option of transforming the small-
scale family farming enterprise into an intensively managed business with many part-
time workers.

Market constraints also were included in the sensitivity analyses to determine their
effects on the optimal acreage allocation as well. As available markets for the woody
floral crops increased, their production also increased, with the avatlable labor shifting
initially towards the highest value crop, scarlet curls willow, and then increasing
production of the other two corps as the scarlet curls market became saturated.

The analyses performed in this study clearly indicate that the integration of various

animal, annual and perennial cropping scenarios into an existing corn-soybean operation
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1n eastern Nebraska is possible and will result in the increased profitability to the

producer. However, whether these integrated systems have the potential to increase the
social and ecological sustainability of the operation was beyond the scope of this
analysis. Fortunately, this study could provide the impetus for further research into this
area as well as serve as a model to determine the feasibility of the integration of various
other supplemental cropping strategies. For instance, both the social and ecological
benefits of the integration of livestock into a grain production system were outlined.
These included quicker and more efficient nutrient cycling, a cheaper fertilizer source
with many additional nutrients, and the reduction of the waste disposal costs of animal
confinement units.

Another situation that could be more thoroughly explored is the agroforestry option.
Studies have shown that windbreaks provide numerous benefits to the agroecosystem
including crop protection and increased yields, habitat provision for beneficial organisms
to crop production, and energy savings to the farm dwelling and inhabitants. Further, as
acreage 1s allocated to these perennial structures, synthetic chemical inputs and
machinery operation costs will be reduced. Finally, the high labor requirements involved
with the specialty crops that can be produced in these agroforestry systems could provide
many jobs within the community while stabilizing the farm producer’s security, thus
potentially increasing social sustainability of the agroecosystem.

In conclusion, lower-input, diversified or integrated farming systems offer an
agronomically and economically viable option for small family-sized farming operations
to be sustained in the face of the growing large-scale industrialized farming sector.

While they require more intensive “hands-on” management techniques, in a small-scale
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farm system they have the potential to greatly increase producer profitability while

also hypothetically contributing to social and ecological sustainability as well.
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Appendix 1 — Corn-Soybean Base Model

Table Al-1 — Base Corn Soybean Farm Inputs

Inputs

Anydrous

P20,

Corn Seed
Soybean Seed
Corn Herbicide
Soybean Herbicide

Corn  Soybeans Cost
55 Ibs/ac 0.17/lb
25 lbsfac 25 Ibs/ac 0.29/b

20K/ac 98.66/80K
1bag/ac  17.4/bag
22.93/ac
27.3%9/ac

Table A1-2 — Average Corn Price per Bushel Price

Year
1985
1986
1987
1988
1989
1990
1991

1992
1993
1994
1995
1996
1997
1998
1999
2000
2001

Jan
2.56
2.31
1.50
1.71
2.62
222
2.25
2.34
2.05
2.66
2.21
3.02
2.66
2.47
1.97
1.79
1.97

Feb
2.60
2.28
143
1.79
2.56
2.27
2.26
2.40
2.02
2.74
2.22
3.30
2.62
2.48
1.96
1.90
1.95

Mar
2.61
2.27
1.45
1.82
2.50
2.33
2.30
244
2.10
2.70
2.29
3.39
2.74
2.50
1.98
1.99
1.98

Apr
2.66
2.30
1.50
1.86
2.49
2.37
2.40
245
2.15
2.61
2.37
3.78
2.75
2.40
1.96
2.01
1.95

May
2.66
2.41
1.66
1.88
2.53
2.53
2,39
243
2,12
2.61
2.43
4.24
2,63
2.32
1.93
2.08
1.81

Jun
2.61
2.36
1.70
2.28
2.46
2.56
2.32
2.45
2.07
2.65
2.53
4.54
2.53
2.22
1.94
1.93
1.77

Jul
2.62
2.22
1.62
2.69
245
2,56
2.28
2.34
2.21
2.37
2.69
4.65
2.42
2.1
1.72
1.67
1.86

Aug
2.43
1.83
1.50
2.66
2.20
243
2.33
2.14
2.26
2.18
2.70
4.55
2.43
1.83
1.72
1.52
1.90

Sep
2.40
1.51
1.50
2.56
2.21
2.32
2.30
2.13
2.23
2.12
2.78
3.73
2.42
1.72
1.67
1.60
1.87

Oct
223
1.45
1.55
2.58
2.18
2.20
2.29
2.08
2.28
2.13
2.76
2.92
2.49
1.92
1.66
1.81
1.86

Nov
222
1.51
1.61
2.45
2.18
2.21
2.28
2.02
2.46
2.07
2.85
2.68
2.52
1.91
1.67
1.86
1.85

Dec
2.27
1.49
1.71
247
2.24
2.21
2.29
2.02
2.65
2.15
2.96
2.61
2.44
1.92
1.70
1.99
1.91

17 Yr. Avg

Average
2.49
2.00
1.56
2.23
2.39
2.35
2.31
2.27
2.22
242
2.57
3.62
2.55
215
1.82
1.85
1.89

2.27
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Table A1-3 Average Soybean Price per Bushel Price

Year
1985
1986
1987
1988
1989
1990
1991

1992
1993
1994
1995
1996
1997
1998
1999
2000
2001

Jan
5.64
4.94
4.51
5.40
7.53
5.33
5.45
5.40
5.34
6.57
5.21
6.64
6.96
6.46
5.09
4.42
4.54

Feb
5.64
4.96
4.52
5.74
7.26
5.33
5.44
5.45
5.39
6.56
5.20
6.83
7.24
6.40
4.67
4.61
4.29

Mar
5.68
5.02
4.58
5.91
7.38
5.43
5.55
5.51
5.46
6.64
5.37
6.87
7.71
6.23
4.46
4.79
4.25

Apr
572
5.01
4.77
6.21
7.23
5.66
5.65
5.55
5.54
6.44
5.41
7.31
7.84
6.09
4.46
5.00
4.10

May
5.51
5.06
5.09
6.75
7.1
5.82
5.57
5.74
5.63
6.64
5.46
7.66
7.85
6.10
4.34
5.20
4.16

Jun
5.55
5.08
5.28
7.87
6.85
577
5.49
5.81
5.73
6.66
5.54
7.35
7.70
5.99
4.62
4,94
4.33

Jul
5.36
5.00
5.17
8.73
6.76
5.81
5.32
5.50
6.44
5.79
5.86
7.57
7.42
5.94
4.04
4.42
4.67

Aug
4.94
4.86
4.94
8.39
5.90
5.87
5.62
5.25
6.47
5.36
5.70
7.66
6.90
5.18
4.29
4.34
4.80

Sep
4.82
4.64
4.88
7.91
5.57
577
5.61
5.16
6.05
5.21
5.90
7.53
6.64
4.89
4.42
4.55
4.39

Oct
4.70
4.40
4.89
7.47
5.33
5.77
5.41
5.06
5.81
5.02
5.99
6.82
6.35
5.05
4.34
4.37
4.00

Nov
4,72
4.51
5.11
7.37
5.38
5.57
5.37
5.15
6.22
5.17
6.25
6.78
6.72
5.20
4.26
4.46
4.09

17

Dec
4.84
4.50
5.47
7.41
5.42
5.54
5.32
5.30
6.52
5.24
6.57
6.78
6.60
5.18
4.25
4.68
4.06

Yr. Avg.

Average
5.26
4.83
4.93
7.10
6.48
5.64
5.48
5.41
5.88
5.94
5.71
7.15
7.16
5.73
444
4.65
4.31

5.65

102



03

volLLl vy
68'8 9SIN
686°18¢ S0 e - 3sip
or'8L9 Liee 0’8 1opel dy 001
$5'G9. G982 198 01084 dy 0Z1 €0’y 82 oze suesqghog ysig
8L [y¢] e - Asip
18'91 Lzz v0'8 Joyoes dy oot
£8'0Z S9'8¢ 198 Jopen dy oz L <t 8L 48 woQ ¥sig SLir-6iy Sl
vi°9291 }P952016'6C
68'8 OSIN
L0622 go e - Asip
59109 Lee v0'8 Joen dy ool
. ELVvPL 59'8¢C . 198 Jopel dy 0z 16°6€ 8L €hie wopNsIguels  giCiy 4
0 ]
[4A] oSt Ly-9ere £t
0 0
[4AS] OSIN Ge/e-6lie ¢t
1} [}
[4A-] oSN gieciie L
0 0
[4A ] SN Li/e-6/e 0
0 0
[445 oSIN P/e-921 6
0 0
[4A OsIN §ere-6ire 8
[ 0
44 osip 8l/c-gire L
0 0
[AA] OSIN LL/e-Sre 9
0 1]
244 JSIN vic-6c/L S
0 0
[4A-] ISIN 8c/i-¢c/L 14
[} [t}
[AA] OSiN L2/i-GL/L €
0 0
(44 Osi vi/L-8/t 4
0 0
1A oSIN Ly b
(tesadp)  (diyssoumo)  {uonesedo)
AMASOD J0L yMWIoqeT piatd jop  3sod jejoy  oejso) 4Ason uasod “J9je/dinb3 O/auwiL)se)  J/dunj ¥sej JIH/SIOY  S210Y ysey aAeq  yoaam

193png ssuidRiuy PPoJy uedqhog-uio)) aseq — -1V dqel



104

0 0
3475044 16°0S
9s'vieel 90°L9
98°8256 A5 4
8’5281 0Ly
L'v00S 66°2¢

AMASOD JOL HMAI0GET PRt 101

8'v9.8
08'st
ve'cly
L¥'G8S
8'602¢
€6°/€e
vSv6e
65 v9E

2'8g¢e¢e
€67ClS
3 WA44
90'¥SS
9/LgEL
08'sv
ye'eLy
L'G8S

9L10L
9'058
SLevs
S9'816

1£°88¢
L'60L
cL'8/8

00'¢662
668

ce'let

65°GL9

1502 g0

6g°LC
1’0

vl

161

Vil

164

€6°¢C

10

L9v2
164

GE6
[%:44

(esado)

oepson

l24Y
tiee
§9'8C

98y
Liee
59'8¢

98Y
Lice
§9'8C

124Y
Liee
§9'8C

98y
(4344
§9'82

8re
liee
G9'8¢

Lee
§9'8¢
(chyssoumo)
14s0)

08
198

y0'8
.98

0’8
.98

$0'8
.98

(M08/99°'86)

08
198

0’8
198

(aizL?)

v0'8
198
(uonesado)
4yason

688

688

apioiquaH

ieheidg
Jopeln dy 0ot
Jopesn dy ozt
{oe/beq |)paog

sawed
Joj0en dy 004
Jopen dy ozt

628
(oe/beq |)paeg
Pyued

Jopeq dy oot
Jojen dy oz

apIoIgIoH

Joheidg
o308 dy 001
iojpel) dy 0z

688
(oeM02)pees
1ayued
Jo0e4 dy 001
Jopen dy 0zZ)

688
J01BARIND PfaId
Jjopesn dy ool
Jjopen dy oz4

68'8
(oersqisg)uhuy
uay yddy “Auy
Jopel) dy 001
Jopel dy 021

-Jalep/dinbg

LELE

561

69'62

LE1E

joralii4

90°'Ly

66'2¢

Orawi) jsel  j/awiy jse)

20t

g9

g9

coL

§'9

9€l

L6

1H/SaI0y  saioy

oce

y241

€61

Oce

oce

0v9

oce

ISIN 12/5-12/S

oSN

sueaq Aeudg

sueaghog jueld 0Z/5-v LIS

OsIN

Aog jueld HelS

wo) Aesdg

eLS-Lls

SN

uio) Jueld

9/5-0¢€/y

ISIN
(1184 ur suop

peay je)
uoheAnyn) pRid4  62¥-€C/v
I9sIN
(@unuew ey pesp iB)
snasphuy Aiddy  zzi-9Liy

ssey ajeq

24

V74

6l

81

Ll

13

da3M

"Ju0)) 193png Is11dINUF [POJ\ UBIGA0S-UI0)) 3seq — -1V IqEL



105

0 0
688 OsSIN 9l6-0t/6  LE
0 0
68'8 oSN 6/6-€/6 9€
1] 0
688 OSIN 2/6-L2/18 &€
(1] 0
688 oS 92/8-02/8 V€
0 0
688 oSy 6L/8€L/8 €€
0 0
688 OSIN ZL/8-9/8 (4
910814 0
68'8 OSIN
91081 €96 MBIO pall - oce sueag onboy  G/8-0€/L 3>
0 0
688 OsiN 6c/L€2/L 0
0 0
68’8 oSty ce/L9viL 62
0 0
68'8 osiN SL/L6/iL 82
0 0 :
688 OSIN 8/L-ciL e
9€£'69.1 90°Ly
68'8 oSy
78181 8€°0 871 1S doomod
L¥'60L 344 0’8 Jopen dy 0oL
ci'8.8 §9'8C 198 Jopen dy oz1 0Ly 89 0ce sueagoemynd  L//-§Z/9 92
0 0
688 oSN v2/I9-8L/9 ST
68121 00°c
688 9SIN
¥9°9C 8€0 8Z'L ynadosomor e (smo 1 uiny A) uo op Q| 40 30 §)
foraierd Lzz 08 Jojoen dy 0oy
8665 S9'82 198 Joyen dy gz1 00e (V4 09 morung YNy L9 L8 ve
0 0
688 OSIN ol/gv/9 €2
0 0
68’8 OSIN €/9-82/5 2T
{resadg)  (diysioumo)  (uonesado)
AMASOD JOL JMMHOGRT Plald JOL  3SOD [BJI0L  DBASOD ypsol yason “19jep/dinbg O/awi) ysel  dJ/awil] §SB) IH/SBMOY s3Iy jdsep eq  oam

U0)) 123png Isudiduy PPOJy UBdqL0g-uie)) aseg — p-IV IqEL



106

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 [1]

vvocyL 8L°9¢
89S1
89°/LvL
9L VLIS
0 0
3 ¥1:1:34 SL'29
969¢
YOLY
v'ces
LL8YL6

AMASOD 0L HMMIeGET Piotd 104 1509 [Bj0)

(narpi)

S00

(nasL1?)
(naspr1)

Lv0

(yesadQ)
2B)}S0)

SuBaq 3on}
(002' 1 1=6€.,0ZE:PI3IA)

86'¢ peay uieib
8y ocl 68'vC sauiquiod
uiesb Ap
ui09 Yony
(009g£=501 .0z pioIk)
L1201 peay w02
8y oel 68'v¢ auquIcd
{diyssoumo)  {uonesado)
ypson nson *1ejep/dinbg

[4AL]

[44

[4A4]

(44

[4A)

44

[4A]

[44

[4A)

cc6

[44)

2z’6

688

8L°9€

688

68'8

G429

O/awIL jsel  jouny ysey

L8 0ce

1S ozce

IH/sa10y  saioy

OsiN

OSIN

oSN

osin

oSN

OSIN

OSIN

IsIN

OsIN

OSiIN

osiy

osiN

oSty

oe/ei-vefch

XA AN AT A

9L/eL-oLich

6/21-€CL

ZrZL-9eiiL

SZ/LL-6LLL

gL/Li-ciiLL

LL/LL-S/LE

v/L1-62/0L

82/01-C2/0L

L2\01-9L/01L

SL/04-8/04

sueaq suiquwod  //oL-L/0L

oI

ISIN

0g/6-v2/6

WO SUIQWIOD  €2/6°LL/6

ysel

ajeq

cs

3]

0s

514

14

Fa4

14

Sy

4

44

|34

oy

6¢

8e

XooMm

Ju0)) 393png Istadinuy [PPOJA UBIGLAOS-UI0)) aseq — p-1V IqEL




107

16725

L6 POEYPL

Zss'eel
082c9
[2X4: 72

88°0G1v}
oce
[AATA
1'060%
9L'64 1T
00°TL20E
09'S0EE}

1E°C619L

AMASOD 0L M0 geT pl8ig 1oL

*3jonm & se uoneado a1y ur AIfIQIXaY) J0] 3UNOIIE 0) 19§ pnq 1Y) I SYSE) AU R 3} Suowie poSetoAr 2.19M §1500 AIFUNIBW I |, 4

(na/59°cs@)
(ng/.2°2@)

$1509 uopesadp
08/98-1s00
JB/02°9% - 1500

68°¢LY

ENTLENTREIN

sasuadxg 0]

swioou} 101
awoouj ueag
3W0DU| U0

+diysiaumo
pejuaIoe Z6e
paumo-oe gez

1502 [ejoy

(yea2dQ)
283509

513 @ abem Aunoy
{uoea/pL$® z¢) 1531 10S
pesyiang
[ejides bunelado jo 1salaiuy
dnxyaig
1509 puet} pajusy
1S09 pueT] paumQ

{diysiaumo)
Hyasod

05 0L 68°2Ly
Y0 pIetd

sjejo]l  Aunop

6E°EV6 SINOH |ej0y),

€5°0LY Sjejoy puersy

(uonesado)
iypson ojepydinby  Qeunyisel  g/ouil) ASR) JH/SSI0Y  SoI0y ¥sel  9leq Meam

"Ju0)) J93pny IsudiuY PPOJN ULdIqA0S-UI0)) aseq — p-IV I[qEL



108

Sy g00
Siugoo

sy
sy ¥

sy y
Siy
siyy

sy ¥

0G2es
69'.2$

6v2$
90°e$

¥6'7$
sces
8c°zs$

Zr'ss

i 05°2¢$ siobiny  sqiszL s1ebpng dosD N Aoz 0$ uabouyN

} 69'.2% NS uoy

uoyGe /Z¢  awn wnpe)d

siez)jipay

¥ S6°6% Aog resuog oe/eb ¢ 1eb £/56'6¢ deos joosuj Jajes

14 jerArA R ssbInYy oe/ql L aiszeLs ldig
sop1onsad

4 88°6$ NS o8/61°0 1e6/zG$ 02/ oAeig

4 05'v$ NS oB/qiS’) qi/00°c$ qsuey

4 GLYS sofpoH  oe/qiy qysLv$ apIooy
sapioibung

l Zr'ss s;sBiny  oe/sL0 siebpng doip IN 186/05°82$ ueysil
SapidiqisH

alypwil  ddyasos  suonedyddy  3so) jejol 82unog ajey adud

uoneadauy adeqqe) — ¢ xipuaddy

sinduj a3eqqe) 1-7V dqelL




Table A2-2 Average Wheat per Bushel Price

Year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |Average
1985 |3.25] 3.23 | 3.19 | 318 | 299 | 2.98 | 285 | 2.63 | 2.65 | 2.75 | 2.92 3 2.97
1986 12.95( 2.91 | 2.92 | 2.95 29 1219 ] 21 | 203205215 22 {225 2.47 |
1987 |2.21] 233 | 241 [ 238 | 241 [ 231|217 219 | 23 2.3 | 244 | 256 233 |
1988 [2.57| 265 | 255 | 26 259 | 3221332339353 367|373 | 391 313
1989 [ 3.88{ 3.93 | 404 | 404 | 411 | 3.92 | 387 | 3.74 | 378 |1 374 | 3.8 | 3.86 3.89
1990 |3.82] 3.6 | 3.54 | 351 | 343 | 3.08 | 273|248 | 242 | 238 | 2.38 | 2.38 2.98
1991 12.31| 233 | 244 [ 249 | 248 | 255 | 256 | 269 | 286 | 3.1 | 3.34 | 3.46 2.72
1992 [ 3.63| 4.04 | 3.87 | 3.89 | 364 | 3.74 | 3.11 | 282 | 3.1 {314 | 3311} 3.34 3.47
1993 (343 3.3 33 | 317 | 297 1294 | 287 [ 276|279 | 291 ]| 3.2 | 349 3.09
1994 344|332 | 316 { 3.11 | 3.03 | 3.03 | 3.04 [ 3.26 | 351 | 3.72 | 3.66 | 3.72 3.33
1995 | 3.62| 3.56 | 3.42 | 339 | 3.65 | 3.94 | 429 | 421 | 442 | 462 | 453 | 476 | 4.03
1996 [4.81] 4.96 | 5.02 | 547 | 591 | 563 { 4.77 | 458 | 4.07 | 406 | 417 | 402 { 4.79
1997 [4.111 409 | 4.05 | 424 | 4.08 | 352 | 3.24 | 3.37 | 342 | 3.28 | 3.17 | 3.12 3.64
1998 [3.13] 3.15 | 3.19 | 3.03 3 279 | 26 | 228 | 2.24 | 258 | 2.74 | 2.72 2.79
1999 |2.74 | 251 | 257 | 262 | 234 | 241|213 1224 | 227 | 205 | 1.99 | 2.03 2.33
2000 |2.21] 225 | 226 | 216 | 225 | 244 | 242 | 229 | 258 | 2.76 | 2.84 | 2.89 245
2001 |2.97] 2.84 | 2.93 | 2.88 29 [ 297 1277 | 27 | 268|266 | 275 | 271 2.81
17 Yr.
Avg 3.13
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Table A2-3 Average Sunflower per Bushel Price

110

Year | Jan | Feb | Mar | Apr | May Jun Jul | Aug | Sep | Oct Nov Dec | Average
1985 | 11.47 | 11.47 | 11.47 [ 12.03 | 12.17 | 11.40 |10.87 | 9.71 | 7.53 | 1043 | 8.86 | 8.77 10.52
1986 | 8.55 | 7.89 | 767 | 7.21 | 6.96 | 7.22 | 654 | 6.15 | 6.25 | 6.91 6.39 | 6.39 7.01
1987 | 644 | 688 {659 {695 | 735 | 807 | 732 7.21 | 696 | 693 | 7.08 | 7.18 7.08
1988 | 7.93 | 863 | 7.86 | 8.75 | 9.22 | 10.90 |13.58| 13.48 | 13.10| 12.88 | 12.85 | 12.90 11.01
1989 112.23 113.13111.70 { 11.65| 11.33 | 9.65 |10.43| 10.54 [10.72| 10.31 | 11.10 | 11.41 11.18
1990 | 10.22 | 10.66 | 10.86 | 10.89 | 12.44 | 12.80 |12.40| 13.70 {12.29] 10.72 | 10.47 | 10.31 11.48
1991 |10.82 | 10.86 | 10.90 | 10.84 | 11.06 | 10.85 | 10.34| 10.81 | 865 | 825 | 8.12 | 8.44 10.00
1992 | 847 | 864 | 854 | 854 | 877 | 900 | 924 | 933 | 920 | 915 | 8.83 | 945 8.93
1993 | 10.26 | 10.38 | 10.76 | 10.74 | 11.22 | 10.94 |[11.84 | 13.08 | 13.34 | 11.26 | 11.88 | 13.30 11.58
1994 113.74 | 15.00 | 15.20 | 15.86 | 16.76 | 14.58 | 13.32| 14.16 [10.78| 10.79 [ 10.78 | 10.60 13.46
1995 | 10.52 | 10.63 { 10.43 | 10.56 | 10.41 | 10.56 | 11.48 | 11.50 [11.22 11.26 | 10.90 | 10.84 10.86
1996 | 11.12 | 11.56 | 12.22 | 12.80 | 13.24 | 14.44 [13.62]| 12.20 {12.06 | 12.08 | 11.84 | 11.74 12.41
1997 | 12.10 | 12.28 { 12.15 | 12.48 | 12.05 | 11.95 | 11.13 | 10.60 | 11.48 | 10.75 | 11.00 | 10.95 11.58
1998 1 11.08 [ 11.73 | 12.05|12.80 | 13.68 | 14.10 [ 15.10| 14.23 |11.43 | 10.86 | 11.02 | 11.01 12.42
1999 111.32[12.14 [ 10.59 | 9.79 | 948 | 10.04 | 882 | 864 | 892 | 840 | 7.27 | 8.21 9.47
2000789 | 843 | 810 | 893 | 874 | 7.83 | 833 | 750 748 | 619 | 6.24 | 6.87 7.72
2001 | 6.83 | 748 | 729 | 778 | 764 | 812 | 863 1 9.60 | 923 | 864 | 913 | 9.88 8.35

17 Yr.

Avg 10.30
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Appendix 3 - Agroforestry Integration

Table A3-1 - Windbreak Calculations

——

Potential Windbreak Area
2 rows cedar, 1 rows spec. crops on leeward (south) side
Each Red Cedar Tree Requires at least 36 10 64 sq. ft.
Each Woody Floral Shrub requires 49 sq. ft
Length = 5100 ft of the 5250 ft. length of the field
Width =2 X 10 + 11 = 31 feet
Each Shelterbelt 31 ft X 5100 ft each or 158,100 sq. ft.
Total Area = 158,100 X 4 = 632,400 sq. ft.
632,400 sq ft./ (43,560 ft per acre) = 14.52 acres
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Table A4-1 — Days Suitable for Fieldwork in Eastern Nebraska

Appendix 4 — Linear Programming Matrix

Week
1

2
3
4
5
6
7
8

9
10

11
12
13
14
15
16
17
18

19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Dates
Jan 1-7
Jan 8-14

Jan 15-21
Jan 22-28
Jan 29-4
Feb 5-1
Feb 12-18
Feb 19-25
Feb 26-4
Mar 5-11
Mar 12-18
Mar 19-25
Mar 26-1
Apr 2-8
Apr 9-15
Apr 16-22
Apr 23-29
Apr 30-6
Mau 7-13
May 14-20
May 21-27
May 28-3
Jun4-10
Jun 11-17
Jun 18-24
Jun 25-1
Jul 2-8
Jul 9-15
Jul 16-22
Jul 23-29
Jul 30-5
Aug 6-12
Aug 13-19
Aug 20-26
Aug 27-2
Sep 3-9
Sep 10-16
Sep 17-23
Sep 24-30
Oct 1-7
Oct 8-14
Oct 15-21
Oct 22-28
Oct 29-4
Nov 5-11
Nov 12-18
Nov 19-25
Nov 26-2
Dec 3-9
Dec 10-16
Dec 17-23
Dec 24-30

2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 Average

6.9

1.1

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
3.14
3.17
3.48
2.84
3.87
3.78
4.30
4.43
4.38
3.78
3.67
4.30
4.86
4.72
5.13
4.05
5.42
5.05
5.45
5.05
5.37
5.89
5.89
5.68
5.72
6.06
4.87
6.09
5.35
6.06
6.22
5.41
4.59
4.57
4.45
4.80
0.00
0.00
0.00
0.00
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Table A4-3 ~ Labor Availability for a typical Eastern Nebraska Farm
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Week

Dates

Jan 1-7
Jan 8-14
Jan 15-21
Jan 22-28
Jan 29-4

Feb 5-1

Feb 12-18
Feb 19-25
Feb 26-4
Mar 5-11
Mar 12-18
Mar 19-25
Mar 26-1
Apr 2-8
Apr 9-15
Apr 16-22
Apr 23-29
Apr 30-6
Mau 7-13
May 14-20
May 21-27
May 28-3
Jun4-10
Jun 11417
Jun 18-24
Jun 25-1

Jul 2-8

Jul 9-15
Jul 16-22
Jul 23-29

Jul 30-5
Aug 6-12
Aug 13-19
Aug 20-26
Aug 27-2

Sep 3-9
Sep 10-16
Sep 17-23
Sep 24-30

Oct 1-7
Oct 8-14
Oct 15-21
Oct 22-28
Oct 29-4
Nov 5-11
Nov 12-18
Nov 19-25
Nov 26-2

Dec 3-9
Dec 10-16

Dec 17-23
Dec 24-30

Average Other' Days Daylight
Field Days Available Hours

0 6 9.19
0 6 9.27
0 6 9.38
0 6 9.51
0 6 10
0 6 10.22
0 6 10.4
0 6 10.75
0 6 11.17
0 6 11.36
0 6 11.67
0 6 12.15
3.14 2.86 12.34
3.17 2.83 12.59
3.48 2.52 13.12
2.84 3.16 13.3
3.87 2.13 13.48
3.78 2.22 13.99
4.3 1.7 14.2
4.43 1.57 14.35
4.38 1.62 14.46
3.78 2.22 14.56
3.67 2.33 15.03
4.3 1.7 15.08
4.86 1.14 15.09
4.72 ' 1.28 15.07
5.13 0.87 15.02
4.05 1.95 14.55
5.42 0.58 14.45
5.05 0.95 14.33
5.45 0.65 14.19
5.05 0.95 13.92
5.37 0.63 13.47
5.89 0.1 13.29
5.89 0.11 13.11
5.68 0.32 12.58
5.72 0.28 12.33
6.06 0 12.14
4.87 1.13 11.67
6.09 0 11.37
5.35 0.65 11.18
6.06 0 10.76
6.22 0 10.41
5.41 0.59 10.24
4.59 1.41 10.09
4.57 1.43 9.52
4.45 1.565 9.39
4.8 1.2 9.28
0 6 9.2
0 6 9.14
0 8 9.12
0 6 9.14

Total Field Total "Other” Total Bi-wkly Total Bi-wkly
Availability Availability Field Avail.

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
38.75
39.91
45.66
37.77
52.17
52.88
61.06
63.57
63.33
55.04
55.16
64.84
73.34
7113
77.05
58.93
78.32
72.37
77.34
70.30
72.33
78.28
77.22
71.45
70.53
73.57
56.83
69.24
59.81
65.21
64.75
55.40
46.31
43.51
41.79
44.54
0.00
0.00
0.00
0.00

55.14
55.62
56.28
57.06
60.00
61.32°
62.40
64.50
67.02
68.16
70.02
72.90
35.29
35.63
33.06
42.03
28.71
31.06
2414
22,53
23.43
32.32
35.02
25.64
17.20
19.29
13.07
28.37
8.38
13.61
7.80
13.22
8.49
1.46
1.44
4.03
3.45
0.00
13.19
0.00
7.27
0.00
0.00
6.04
14.23
13.61
14.55
11.14
55.20
54.84
54.72
54.84

0.00

0.00

0.00

0.00

0.00

0.00

78.66

83.43

105.05

124.63

118.37

120.00

144.47

135.98

150.69

147.63

150.61

148.67

144.10

126.08

125.02

120.15

89.82

86.33

0.00

0.00

Other' Avail.
110.76
113.34
121.32
126.90
135.18
142,92
70.92
75.09
59.77
486.67
55.75
60.66
36.49
41.44
21.99
21.03

9.95
5.47
3.45
13.19
7.27
6.04
27.84
25.69
110.04

109.56
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