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Among plant based agricultural products, Nebraska ranks first nationwide in the 

production of Great Northern beans (GNB), second in proso millet production, and eighth 

in production of winter wheat. The present research was focused on the effect of 

processing on nutritive components and in vitro protein digestibility of these crops with 

the aim of promoting their human consumption. Proso millet based extrudates had 

physical properties similar to commonly extruded rice but had lower expansion than corn. 

GNB extrudates had limited expansion and high bulk density mostly due to high fiber and 

protein content. Extrusion significantly reduced the anti-nutritional components in GNB 

flour while moderately reducing the essential folate.  Extrusion significantly increased the 

dialyzability of the essential mineral elements Mg, P, K, and Fe in GNB, while 

significantly reducing dialyzability of the heavy metal Cd. Extrusion also improved the in 

vitro protein digestibility of GNB flour. In contrast, extrusion had a significant negative 

impact (almost 50% reduction) on in-vitro digestibility of proso millet proteins. 

Formation of hydrophobic aggregates was the main reason identified for the low 

digestibility in proso millet proteins. The effect was not specific to extrusion but was 

observed in all the processing techniques that involved heating above 55 C. Among 

various mitigation strategies explored, enzymatic modifications of millet proteins with 

transglutaminase, heating in low aw solutions, or heating in chaotropic salts (e.g., CaCl2) 



 

at high concentration proved to be beneficial in at least partially preventing the low 

digestibility effect. Further, the results obtained from comparing in vitro digestibility of 

breads made from legacy and modern wheat cultivars indicated a significant 

improvement in digestibility of cultivars released after 1931. The old cultivar, Red Chief, 

and the land race cultivars, Kharkof and Turkey, had significantly lower digestibility than 

newer released lines. The changes incorporated by controlled breeding in the proteins of 

early wheat cultivars were preserved and successfully transferred to modern wheat 

cultivars resulting in wheats with better yield, end use characteristics and high protein 

digestibility. 
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PREFACE 

Introduction 

Nebraska ranks fourth in the United States in terms of agricultural profits--

outranked only by California, Texas, and Iowa (USDA-NASS, 2017). The state ranks 

first nationwide in the production of Great Northern beans; second in proso millet 

production; and eighth in winter wheat production (USDA ERS, 2017, Nebraska 

department of agriculture). 

Wheat is a nutritionally important crop, rich in micronutrients, including minerals 

and B-vitamins, and accounts for 20% of calories in our diets (Cummins & Thomson, 

2009). The crop has been a human dietary staple for centuries mainly due to its 

adaptability to various geographical locations, nutritional abundance, and presence of 

viscoelastic gluten proteins.  

In the past few years, wheat has earned a bad reputation, especially in developed 

countries, due to unsubstantiated claims linking wheat consumption to adverse health 

effects like obesity, metabolic diseases, and gluten sensitivities (Davis, 2011). Some 

advocates of such claims have blamed modern wheat breeding programs as the main 

culprit for destroying the ancient crop by modifying the gluten proteins, making them less 

digestible and contributing to gluten sensitivities. Nebraska has a successful wheat 

breeding program and majority of wheat produced are byproducts of such initiatives. 

Thus, one objective of this dissertation was to establish if there is any truth to claims 

accusing wheat breeding programs for producing inferior wheat, especially in terms of 

protein digestibility.  

Further, the negative press surrounding wheat has encouraged a trend in 

consumption of gluten-free diets, which in turn has caused a boom in the gluten-free 
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foods industry (Terazono, 2017). While a gluten-free diet is a necessity for some, for 

others there is no proven benefit of consuming a gluten-free diet and if not carefully 

monitored it can result in nutritional inadequacies (Miranda et al., 2014).   Most of the 

gluten free products are rice or corn based, which have low amount of protein, fiber, and 

other nutrients when compared to wheat (whole). Thus, it is important to identify new 

wholesome sources of gluten free foods.  

Great North beans (Phaseolus vulgaris) and proso millet (Panicum miliaceum) are 

the top two ranked agricultural commodities produced in Nebraska when compared with 

other states in the US. These crops are suitable candidates for the gluten-free foods 

market. While proso millet is a cereal with a protein content similar to wheat (~12%), 

Great Northern beans (GNB) belong to legume family and have a protein content of 

~21%. Apart from the protein content, both these crops are good sources of functional 

compounds, such as polyphenols and resistant starch, that are known for their low 

glycemic index, anti-oxidant, anti-cancer, prebiotic, cholesterol lowering and other health 

promoting properties (Wang et al.,2010). Also, GNB is a good source (>10% DV) of 

micronutrients such as folate, Mg, K, P, and Fe. Despite several nutritional benefits, 

human consumption of these two crops is limited mainly due to lack of versatile products 

and mass appeal. Thus, another objective of the present research was to explore if proso 

millet and GNB can be promising candidates for the gluten free foods market, 

specifically targeting the nutritional quality of these processed crops.  

Objectives and hypotheses of current research 

1) Determine the extrusion performance of proso millet and Great Northern beans to 

develop snack products.  
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Extrusion is a resourceful food processing technique that has been used to develop 

various products ranging from cereals to puffed snacks utilizing a variety of raw 

materials. At present, there are no extruded puffed snack products in the market made 

with either proso millet or GNB. Thus, the first objective was to determine if puffed 

snack products could be developed using extrusion from proso millet and GNB flour that 

might promote the consumption of these crops.  

Among cereal grain components, starch polymers play a significant role in 

expansion during extrusion processing while high fiber and protein can disrupt the cell 

wall formation by the starch film and negatively affect the expansion and texture of the 

product (Guy, 2000). Proso millet flour has a starch content similar to commonly 

extruded rice and maize while GNB has comparatively lower starch content but high 

protein and fibers. In this study, it was hypothesized that proso millet would extrude 

similar to other cereals resulting in good expansion and texture. In contrast, while 

expansion of GNB flour would be comparatively lower due to the low starch and high 

fiber and protein contents, it was hypothesized that manipulating processing conditions 

like moisture content, barrel temperature, and screw speed, can produce a protein rich 

product with decent expansion from GNB.   

2) Determine the effect of processing on in-vitro protein digestibility and other 

nutritional components of proso millet and Great Northern beans. 

In order to claim that proso millet and GNB are better than commonly used gluten free 

raw materials it is important to make sure that their protein quality is good and is not 

adversely affected by processing. In-vitro protein digestibility is one step in evaluating 

the protein quality of cereal proteins. Extrusion processing has shown to improve 
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digestibility of various cereal grains (Dahlin and Lorenz, 1993). It was hypothesized that 

extrusion would significantly improve digestibility of both proso millet and GNB 

proteins by thermal denaturation and/or inactivation of interfering substances like trypsin 

inhibitors.  

Additionally, since these crops have an abundance of minerals and vitamins, 

attention was also given to these components and effect of extrusion on them. Further, the 

high temperature and shear conditions in extrusion which are responsible for inactivation 

of anti-nutritional compounds can also lead to destruction of vital nutrients. Thus, it was 

hypothesized that extrusion would improve the dialyzability of abundant minerals in 

GNB flour but simultaneously decrease important labile vitamins like folate. In order to 

tackle that issue it is crucial to identify the optimum extrusion conditions which would 

result in maximum reduction in anti-nutritional components without sacrificing on the 

heat/shear sensitive vital nutrients. Thus, the second objective was directed to achieve 

that.  

3) Compare in-vitro protein digestibility of legacy and modern wheat cultivars grown 

in Nebraska.  

The final objective of this research was to establish if the protein digestibility of modern 

wheat produced using targeted breeding programs in Nebraska is any different from that 

of legacy wheat cultivars that were introduced in US prior to the establishment of wheat 

breeding programs. Thus, protein content and digestibility of 21 different cultivars of 

wheat released between 1870 and 2014 was compared in the final chapter. It was 

hypothesized that the in vitro digestibility of breads made with legacy and modern 
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cultivars would be the same and thus breeding initiatives did not induce any change in 

nutritional quality of wheat proteins.   

Organization of the thesis 

The current thesis is focused on three Nebraska crops, i.e.  proso millet, Great 

Northern beans (GNB) and wheat. The first 5 chapters are based on proso millet, 

followed by two on GNB, and finally one chapter on wheat. The first and sixth chapters 

are based on the first objective, i.e., to explore the extrusion performance of proso millet 

and GNB flour. While performing experiments for chapter 1, I discovered that the protein 

digestibility of proso millet declines drastically upon extrusion, a finding not previously 

reported in the literature. Therefore, chapters 2-5 address objective 2, with focus on 

protein digestibility of proso millet, specifically looking into the ‘what’ and ‘why’ of the 

observed decline in digestibility of proso millet during processing and ‘how’ to prevent it. 

Chapter 7 targets the abundant minerals (Mg, P, K, Fe) and vitamins (folate) in GNB 

flour, as well as some anti-nutritional compounds (phytate and Cd) and reports on how 

they change during extrusion. The final chapter is based on the third and last objective of 

the research i.e. to compare legacy and modern wheat cultivars to determine if modern 

wheat breeding efforts have changed protein digestibility of wheat. The dissertation 

concludes (chapter 9) with overall findings from each study.  

The first three chapters have been published in International Journal of Food 

Science and Technology, Journal of Agricultural and Food Chemistry, and Journal of 

Cereal Science, respectively, while the fourth chapter is under review in Food Research 

International. Thus, the first four chapters have been formatted according to their 
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respective journals. The final four chapters have been formatted using guidelines from 

International Journal of Food Science and Technology.  
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CHAPTER 1:  EFFECTS OF FEED MOISTURE AND EXTRUDER SCREW 

SPEED AND TEMPERATURE ON PHYSICAL CHARACTERISTICS AND 

ANTIOXIDANT ACTIVITY OF EXTRUDED PROSO MILLET (PANICUM 

MILIACEUM) FLOUR 

1.1.  ABSTRACT 

The objective of this work was to determine the impact of extrusion variables 

[moisture (17–25%), screw speed (170–250 rpm) and temperature (90–150 °C)] on the 

physical properties and antioxidant activity of proso millet extrudates. Extrusion 

variables were adjusted using an inscribed central composite rotatable design. Response 

variables were bulk density (BD), radial expansion ratio, water absorption index, water 

solubility index, hardness, color (L*, a*, b*) and antioxidant activity. Moisture and screw 

speed were the most influential variables affecting millet extrusion: their linear, quadratic 

and interaction terms accounted for more than 50% of the variability in all responses 

except for b*. Expansion was greatest at severe conditions of low moisture and high 

screw speed. These conditions were also consistent with the highest antioxidant activity. 

This study demonstrated that high expansion and antioxidant activity can be obtained by 

extruding proso millet under low moisture and high screw speed conditions. 
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1.2.  INTRODUCTION 

Millets (finger, proso, pearl, and foxtail millet) are a diverse group of small 

seeded crops belonging to the Poaceaea family and are commonly termed ‘ancient 

grains’. Various types of millets are consumed as porridges, soups, flat breads, and in 

other forms in Asian and African countries (Zhu et al., 2014), but are comparatively new 

to the western world. Proso millet (true millet, common millet, hog millet, yellow hog, 

etc.) is the only millet grown as a grain crop in US, with main production in states of 

Nebraska, Colorado, and South Dakota, where it is often employed as rotational crop 

with winter wheat (Graybosch and Baltensperger, 2009). A short growing period, lower 

water requirement, and improvement in wheat, corn, and sorghum yield when rotated 

with these crops makes growth of proso millet desirable from an agricultural standpoint 

(Lyon and Baltensperger, 1995).  

In the US, Proso millet is mostly used as animal and bird feed. Exploring novel 

food applications of proso millet for US market can promote the growth and consumption 

of this crop. Some applications of proso millet reported in the literature include weaning 

mix (Srivastava et al., 2001), pasta (Sudhadevi et al., 2013), and breads and cookies in 

combination with wheat flour (Schoenlechner et al., 2013).  

Extrusion is a versatile, cost effective process that that can be used to create 

ready-to-eat cereals and snacks from grains. Currently, the only reported work on proso 

millet extrusion is to evaluate the effect of extrusion on proso lipids (Anderson, 2009). 

Due to a similar proximate composition with other commonly extruded grains (rice, corn, 

wheat) (Gopalan et al., 2010), extrusion of proso millet may be a viable way of 

increasing proso millet utilization in human foods.  
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The extrusion process is a multi-variable technique that involves the interaction 

among flour characteristics, such as moisture content and chemical composition, as well 

as processing parameters, including temperature, screw speed, feed rate, and screw 

configuration. Flour moisture influences the degree of cook and shear experienced by 

flour components, especially the starch, which has a major impact on expansion volume 

(Thymi et al., 2005). As reported by various authors, temperature and screw speed are the 

most commonly studied and easily varied extrusion parameters with significant impact on 

physical changes in cereal flours inside an extruder barrel (Chinnaswamy and Hanna, 

1988). 

Millets are also a good source of phenols and flavonoids, contributing to their 

antioxidant activity. Chandrasekara et al. (2012) reported significant superoxide and 

peroxide radical scavenging activity of a de-hulled proso millet extract. Understanding 

how extrusion variables affect the antioxidant activity of proso millet extrudates could be 

important knowledge for creating snacks for health-conscious consumers. Thus, the aim 

of this work was to determine the effects of flour moisture and extruder screw speed and 

temperature on physical characteristics and antioxidant activity of extruded proso millet 

flour.  

1.3.  MATERIALS AND METHODS 

1.3.1.  Preparation of millet flour and analysis 

De-hulled proso millet was obtained from Clean Dirt Farms (Sterling, CO, USA) 

and milled using a pilot scale hammer mill (20SSHMBD, C.S. Bell, Tiffin, OH, USA) 

with screen size of 0.7 mm. The flour was analyzed for moisture, fat, and ash following 

approved methods (AACC International, 2015). Protein content was analyzed using a 
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nitrogen analyzer (FP 528, Leco, St. Joseph, MI, USA) with a protein factor of 6.25. 

Total starch content was analyzed using total starch assay kit (K-TSTA, Megazyme, 

Bray, Ireland) following the KOH format. Millet flour was stored at 4°C until extrusion.  

1.3.2.  Experimental design 

The effects of three extrusion factors: barrel temperature (90-150°C), feed 

moisture content (17-25%), and screw speed (170-250 rpm), on proso millet extrusion 

were studied while keeping other factors such as feed rate and screw configuration 

constant. The levels of these factors were determined based on preliminary trials. 

Response surface methodology with an inscribed central composite rotatable design 

(CCRD; α=1.682) with 8 factorial points, 6 star points, and 3 central points was used 

(Table 1.1). Apart from the 17 CCRD experimental runs generated by the statistical 

software (JMP version 10.0.0, SAS Institute, Cary, NC, USA), 6 additional treatment 

combinations for validation of the statistical model were run. The additional points were 

generated through the Latin hypercube sampling (LHS) technique. Thus, a total of 23 

combinations of extrusion conditions were run. 

1.3.3.  Extrusion process  

A laboratory scale co-rotating conical twin screw extruder with mixing zones was 

used for extrusion (CTSE-V, C.W. Brabender, Hackensack, NJ, USA). The diameter of 

the conical screws decreased from 43 mm to 28 mm along the length of 370 mm from the 

feed to die end. The extruder barrel had 4 temperature zones with temperatures of the first 

two zones maintained at 50 and 80 °C, respectively, while the temperatures of the last 

two zones were set according to the experimental design. Due to frictional heat generated 

during extrusion, the indicated temperatures of last two sections of barrel were higher 
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than the set value. Hence, the actual temperature was recorded and used in all 

calculations. The exit die internal diameter was 3 mm. The extruder was operated by a 

direct current drive unit (Intelli-Torque, Pastic Corder Lab-station, C.W. Brabender) with 

a 7.5 hp motor. The extruder software (Measurement and extrusion program for control 

systems, version 3.0.2, C.W. Brabender) displayed the measured torque readings. To 

adjust the moisture content of proso millet flour batches (3 kg) representing each 

experimental run were blended in an upright blender (H-600-D, Hobart, Troy, Ohio, 

USA) at medium speed with the required water to obtain the target moisture content as 

per experimental design. The moist samples were sealed in polyethylene bags and 

tempered for 16 h at 4°C. The flour was then fed into the extruder barrel using a single 

screw volumetric feeder (FW 40 Plus, C. W. Brabender) set at a constant delivery rate of 

76 g/min.  

The extrudate sample for each experimental condition was collected after a stable 

temperature and torque reading was observed. The collected samples were dried in a belt 

drier (4800 series Wenger, Sabetha, KS, USA) at 100°C for 10 min. Half of the samples 

were sealed in plastic bags for measuring texture, expansion index, and bulk density, 

whereas the other half was ground using cyclone sample mill (UDY, Fort Collins, CO, 

USA) with a screen size of 1 mm and used for measuring water absorption index (WAI) 

and water solubility index (WSI).  

1.3.4.  Process responses 

Five torque readings were recorded during the course of sample collection for a 

particular condition and the average reading was used to calculate specific mechanical 

energy (SME). The SME (kJ/kg) was calculated as: SME = (2π*N*T)/ṁ, where N= 
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screw speed (rpm), T = motor torque (N m) calculated by subtracting the no-load torque 

from the average torque recorded for a particular run, and ṁ = mass flow rate (g/min) 

(Godavarti and Karwe, 1997). 

1.3.5.  Product responses 

The volume of the extrudates was measured using rapeseed displacement method, 

which was further used to calculate the apparent bulk density (g/cm3) of the extrudates. 

An average of 5 readings were reported for each experimental condition. 

Radial expansion ratio (RER) was calculated by dividing the cross-sectional 

diameter of each extrudate, measured using a Vernier caliper (Mitutoyo Co., Kawasaki, 

Japan), by the extruder die diameter. An average of 10 readings were reported for each 

extrusion condition. 

WAI and WSI were measured following Anderson et al. (1969) method. Ground 

extrudate (2.5 g) was suspended in 30 mL water at 30 °C for 30 min with intermittent 

stirring, centrifuged at 3000 × g for 10 min. The supernatant was decanted into a tared 

evaporating dish. The WSI was recorded as percent weight of dry solids in the 

supernatant to the original weight of sample. The WAI was the weight of gel obtained 

after removal of the supernatant per unit weight of original dry solids. The average of 

three readings were reported.  

The texture of extrudates was measured in terms of hardness which was recorded 

as the amount of force (N) required to crush the samples using texture analyzer (TA-XT 

Plus, Texture Technologies, Scarsdale, NY, USA) equipped with a 5-blade Kramer shear 

cell attachment.  The probe cell was filled to half volume with extrudates approximately 

7 cm long. The 5 blades crushed the samples at a speed of 2 mm/s to a distance of 48 mm 
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with a load cell of 25 kg. The peak force obtained from force-time curve was analyzed 

using the texture analyzer software (Texture Exponent 32, Texture Technologies). Ten 

measurements were performed for each experimental condition and their average value 

was recorded (Meng et al., 2010). 

Color of ground extrudates placed in glass petridishes was measured in terms of 

lightness (/darkness) (L*), redness (/green) (a*) and yellowness (/blue) (b*) using a hand-

held Minolta chromameter (CR-200b, Minolta Camera Co. Ltd, NJ, USA). An average of 

5 readings was reported for each sample. 

Antioxidant activity of ground extrudates were measured using ABTS (2, 2’-

azinobis-3-ethylbenzothiazoline-6-sulfonic acid) assay according to Serpen et al., (2007) 

with slight modification. 1.7 ml of ABTS radical pre-oxidized using potassium persulfate 

and diluted with 50% ethanol was added directly to 5-7 mg of ground extrudate. The 

mixture was vortexed for 2 minutes and kept in dark for 6 minutes. Absorbance of clear 

supernatant was measured at 734 nm following centrifugation at 9200 g for 2 minutes. 

The antioxidant activity was expressed as mmol of Trolox equivalent antioxidant 

capacity (TEAC) per gram sample by means of a standard curve (0-0.21 mmol) for 

Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid; Trolox, Sigma-Adrich, 

St. Louis, MO). 

1.3.6.  Data analysis 

Statistical software (JMP version 10.0.0, SAS institute) was employed to model 

the behavior of the responses (torque, SME, bulk density, RER, WAI, WSI and hardness) 

as a function of the processing variables (moisture content, temperature and screw speed) 

using RSM. The fitted models for process and product responses were validated to ensure 
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that the models used were capable of predicting the effect of the extrusion variables on 

measured responses. The fit of each model was evaluated by observing the adjusted R2 

while considering actual versus predicted plots and residual versus predicted plots. Model 

errors were evaluated using the model fit error (MFE) and the model representation error 

(MRE) functions. The MFE was the relative error of the model with respect to actual 

values. The MRE was the error associated with values obtained for the LHS (space 

filling) runs compared with the RSE predicted values. An error range within ±5% for 

both MFE and MRE indicated that the fit was acceptable. The estimates of regression 

coefficients were also checked for their statistical significance (α=0.05) in impacting the 

model terms. Since the magnitude of regression coefficients are highly dependent on the 

scale of corresponding factor, scaled estimates were calculated by the software to 

determine the relative contribution of each factor to model variance. Correlations among 

response variables were calculated using Pearson’s method. Principal component analysis 

(PCA) was conducted based on the correlation matrix to visualize relationships among 

responses. 

1.4.  RESULTS AND DISCUSSION 

1.4.1.  Proso millet composition 

The de-hulled proso millet flour used in the study had the following proximate 

composition (mean of 3 replicates ± standard deviation, dry basis): 9.02±0.07% moisture; 

13.6±0.0% protein; 3.13±0.10% crude fat; 1.26±0.01% ash, and 71.9±0.0% starch. 

Results obtained for all response variables were similar to values reported in literature 

(Altan et al., 2008; Mezreb et al., 2003; Ali et al., 1996; Ilo et al., 1996; Hagenimana et 

al., 2006; Ding et al., 2005; Ryu and Walker; 1995). 
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1.4.2.  Model validation 

Significant F-ratios and high adjusted R2, coupled with MFE and MRE ranges 

within ±5% indicate that the RSE models fit the data well for all variables except WSI. 

For WSI, both the MFE and MRE were slightly outside the range of ±5%. From visual 

inspection of fitted models, actual versus predicted plots showed some clustering of 

points and deviation from fit for WSI (data not shown). Results obtained for WSI were 

retained for completeness; however, it should be recognized that the model for WSI did 

not fit the data as well as for other variables. 

1.4.3.  Influence of extrusion parameters on process responses 

During extrusion of proso millet flour, torque ranged from 28.6 to 60.3 N m, 

while SME ranged from 533 to 857 kJ/kg (Table 1.1). The maximum torque was 

recorded for the lowest screw speed (170 rpm), lowest temperature (90° C) and 

intermediate moisture content (21%), whereas the highest SME was recorded at the 

lowest moisture content and intermediate screw speed and temperature. The regression 

coefficients for linear effects of screw speed and temperature; the quadratic effect of 

moisture; and the screw speed*temperature interaction were significant for both torque 

and SME. The linear effect of temperature for torque and quadratic effect of screw speed 

for SME were also significant (Table 1.2). After scaling, moisture content contributed the 

greatest (26%) to variation in torque followed by temperature and screw speed and their 

interaction (Fig. 1.1). The main effects of all variables (linear or quadratic) had greater 

effect on SME compared to interactions among variables. Increasing screw speed, 

temperature, and moisture were associated with reductions in torque (Fig. 1.2), while 
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SME showed a maximum at moderate screw speed and decreased as moisture and 

temperature increased.  

Changes in torque and SME during extrusion were consistent with literature. At a 

constant feed rate, an increase in screw speed results in a reduction in fill inside the barrel 

which reduces the motor load and reduces the torque (Meng et al. 2010). Also with 

increasing screw speed and temperature, the viscosity of the melt decreases as a result of 

starch depolymerization, resulting in lower torque (Pansawat et al., 2008). Torque can 

also be decreased by increasing moisture due to the plasticizing effect of water and the 

corresponding reduction in viscosity. The initial increase in SME with increasing screw 

speed is related to the increased power input required to rotate the screw shaft, while the 

decrease in SME at higher screw speeds, moisture contents, or temperatures can be 

related to lower melt viscosity (Ding et al., 2006).  

1.4.4.  Influence of extrusion parameters on product responses 

Bulk density of the extrudates ranged from 0.20 g/cm3 to 0.48 g/cm3 (Table 1), 

with the highest and lowest density obtained for products extruded under the highest 

(25%) and lowest moisture (17%) contents. From the regression estimates, screw speed 

had significant linear and quadratic effects on bulk density (Table 1.2), and the 

interactions of temperature and moisture with screw speed were also significant. After 

scaling, moisture content contributed to 34% of the model variability in bulk density 

followed by quadratic effect of screw speed and the interaction of screw speed with 

temperature (Fig. 1.1). Increasing screw speed showed increased density until 210 rpm, 

beyond which there was a decrease in bulk density (Fig. 1.2). Moisture had a strong 

positive relationship with bulk density, while temperature had little effect. The bulk 
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densities were slightly higher than the values reported for extruded corn grits but were 

similar or lower than extruded rice flour (Table 1.3). The trends obtained for effect of 

moisture, screw speed, and temperature on extrusion of proso millet were similar to the 

trends obtained while extruding corn grits (Ilo et al., 1996) and wheat based snacks (Ding 

et al., 2006). The similarity in bulk density of proso millet flour on extrusion with rice 

and rice blends may be due to similarity in starch granule size (Kumari et al., 1998).  

The RER of proso millet extrudates ranged from 1.4 to 3.1 (Table 1.1), with the 

highest expansion observed at the lowest moisture condition (17%). The linear and 

quadratic regression coefficients for moisture content and interaction term of screw speed 

and moisture content were significant (Table 1.2). Scaled estimates showed that moisture 

contributed to about 40% of the model variability in RER which was followed by screw 

speed and temperature (Fig. 1.1). Screw speed and temperature had positive linear effects 

on RER, while moisture had a negative quadratic effect (Fig. 1.2). The RER for proso 

millet extrudates was less than extruded corn grits and high amylose rice flour but higher 

than extruded barley and similar to extruded wheat flour (Table 3). The dramatic effect of 

moisture on RER is consistent with literature showing that moisture reduces the melt 

elasticity of starch and prevents it from expanding (Ilo et al., 1999).  

The WAI values obtained for proso millet extrusion ranged from 3.8 to 4.5 g/g 

while WSI was between 3.7% and 8.1% (Table 1.1). The linear and quadratic effects of 

screw speed had significant effects on both WAI and WSI (Table 1.2), while the linear 

and quadratic effects of moisture also affected WSI. The combined effect of screw speed 

with temperature and moisture affected WAI and WSI, respectively. From the scaled 

estimates, it was observed that both moisture and temperature contributed to a substantial 
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portion of the variation in WAI and WSI (Fig. 1.1). Screw speed explained a substantial 

portion of the variation in WAI, but was not an important contributor to changes in WSI, 

whereas quadratic effect of moisture was the main contributing factor for WSI. As 

moisture content increased, WAI showed an increasing trend while with increasing screw 

speed there was an initial increase in WAI and then a decrease (Fig. 1.2). The values 

obtained for WSI were lower than values obtained by other researchers for extruded 

samples, but the trends of various extrusion parameters on WSI were similar to extruded 

rice (Ding et al., 2005). The dramatic influence of moisture and temperature on WAI 

were in agreement with other researchers (Ding et al., 2005; Yagci and Gogus, 2008). 

Increasing moisture and temperature promotes internal mixing and uniform heating, 

which enhances starch gelatinization and increases WAI (Lawton et al., 1972). On the 

other hand, excessive temperature or low moisture significantly decreases the WAI which 

can be explained by prevalence of dextrinization over gelatinization (Ding et al., 2006). 

WSI was maximum at lower moisture content and increasing moisture to 21% resulted in 

a decrease in WSI beyond which an increase was observed. An increase in screw speed 

resulted in increase in WSI. This can be explained by greater shear degradation of starch 

at lower moistures making starch fragments more soluble in water (Yagci and Gogus, 

2008) while high moisture can have plasticizing effect on starch granules thus preventing 

them from degradation by shear (Hegenimina et al., 2006).  

The hardness of extrudates ranged from 160 to 251 N with minimum hardness 

recorded at the lowest moisture condition. The regression coefficients of the linear, 

quadratic, and interaction terms for moisture and screw speed were significant (Table 1.2) 

and together they contributed to 88% of the variation in hardness (Fig. 1.1). This 
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highlights the important role of screw speed and moisture content in causing changes in 

hardness of extruded products. The prominent effect of moisture and quadratic effect of 

screw speed on hardness is consistent with extrusion of corn-lentil (Lazou and Krokida, 

2010) and rice based snacks (Ding et al., 2005). As reported previously, higher moisture 

results in a less expanded extrudate with thicker cell walls and lower porosity, which is 

directly related to the hardness of a sample (Barrette et al., 1994).  

The L* values of ground extrudates ranged from 74.5 to 80.2, a* values from -

0.28 (green) to 1.98 (red), and b* values from 17.0 to 18.3 (yellow) (Table 1). For all 

three-color coordinates, the lightest, least red, and most yellow products, all suggesting a 

lesser degree of cook, were observed for high moisture conditions, thus indicating the 

protective action of moisture towards extrusion cooking of proso flour. The regression 

coefficients of temperature and its interaction with moisture and screw speed 

significantly affected the color coordinates (Table 1.2).  The scaled estimates plot (Fig. 

1.1) indicated moisture to be main factor in affecting L* and a* values while moisture in 

interaction with temperature was the major factor in affecting b* value. The b* value was 

also highly influenced by the main effect of screw speed. The effect of these variables 

was also evident from the prediction profilers (Fig. 1.2) with increasing moisture 

resulting in higher L* values or lighter product and decreasing a* value. At higher 

moisture conditions the effect of temperature is reduced which results in lesser browning 

of sample. Also, the increasing b* value with increasing screw speed can also be linked 

to lower residence time in barrel, thus less cooking of sample. The results obtained are 

consistent with extruded rice flour (Hegenimina et al., 2006). 



 14 

The antioxidant activity of extruded millet flour ranged from 16.5 to 31.4 mmol/g 

(Table 1.1). The regression coefficients of screw speed, moisture, their interaction with 

each other and with temperature was significant in affecting the antioxidant capacity 

(Table 1.2). After scaling, the linear, quadratic, and interaction terms of moisture and 

screw speed contributed most to model variability (62%; Fig. 1.1). Increasing moisture 

content resulted in a decrease in antioxidant capacity while increasing screw speed 

showed an increasing effect on antioxidant activity (Fig. 1.2). Previous studies have 

reported loss of antioxidant activity of cereals on extrusion (Ozer et al., 2006; Korus et 

al., 2007; Altan et al., 2009) while others have indicated an increase (White et al., 2010; 

Sharma et al., 2012). The difference in results can be attributed to difference in 

techniques used for measuring the antioxidant activity. In our study, a direct method was 

used which resulted in interaction of ABTS radical with both soluble and insoluble 

antioxidant compounds. Other studies have reported antioxidant activity of extracts from 

extrudates. The increase in antioxidant activity with increasing screw speed can be linked 

to shear resulting in greater breakdown of cellular components and better interaction 

between ABTS radical and the insoluble antioxidant compounds. Another explanation for 

an increase in antioxidant activity is the production of maillard reaction products under 

more severe conditions contributed to an increase in antioxidant activity (Yilmaz and 

Toledo, 2005; see ‘Relationships among response variables’ section). 

1.4.5.  Relationships among response variables 

Except for b*, product response variables were highly correlated among each 

other (Fig. 1.3A). Because of the many significant correlations, data interpretation was 

difficult. Therefore, we used PCA to more clearly explain the relationships among the 
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variables. The first two principle components (PC) explained 75% of the variation in the 

data. PC1 was a contrast between samples processed under mild conditions (high 

moisture, low screw speed and temperature) with negative loadings and those processed 

under severe conditions (low moisture, high screw speed and temperature) with positive 

loadings. Samples processed under more severe conditions were associated with higher 

RER, WSI, TEAC, and a*, while those processed under mild conditions were associated 

with a hard product with high bulk density, WAI, and L*. Similar results for physical 

properties have been reported previously (Meng et al., 2010; Altan et al., 2008). One 

notable finding revealed by the correlation table and PCA biplot is the inverse 

relationship between TEAC and L* (Fig. 1.3B). These variables were highly negatively 

correlated (r=-0.7; p=0.002). Because lower L* would indicate a darker product, this 

suggests that the increase in antioxidant activity was likely due to maillard reaction 

products produced under more severe extrusion conditions.  

1.5.  CONCLUSION 

Moisture content had the most significant impact on both antioxidant activity and 

physical properties (bulk density, RER, and hardness) of proso millet extrudates, with 

lower moisture conditions giving a more desirable extruded product, i.e., one with greater 

expansion and antioxidant activity and lower hardness. This was followed by screw 

speed, which either had a linear or quadratic impact on all product variables. Among the 

various interactions, the most significant interaction that affected process responses was 

between screw speed and moisture. 
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Table 1.1: Experimental design and process and product responses obtained for extrusion of proso millet.a 

 
Variables Process 

responses 

Product responses 

 

Run 

 

SS 

(rpm

) 

 

MC 

(%) 

 

Set T 

(°C) 

 

Actual 

T 

(°C) 

 

Torque 

(N m) 

 

SME 

(kJ/kg) 

 

BD 

(g/cm3) 

 

RER 

 

Hardness 

(N) 

 

WAI 

(g/g) 

 

WSI 

(%) 

 

L* 

 

a* 

 

b* 

TEAC 

mM/g 

sample 

CCRD runs  
1 210 21 90 107 44.6 774 0.36 1.78 235 4.35 4.20 77.56 0.54 17.59 22.61 

2 186 18.6 102 110 57.4 803 0.27 2.20 186 4.10 5.20 77.43 0.70 17.49 21.98 

3 186 23.4 102 115 39.4 647 0.39 1.40 208 4.34 4.41 77.88 -0.12 17.32 17.75 

4 210 21 150 155 29.2 544 0.31 2.50 230 3.83 4.71 77.01 0.48 17.00 21.18 

5 170 21 120 121 47.8 613 0.28 1.41 180 3.96 3.70 77.54 -0.02 17.33 17.67 

6 250 21 120 121 36.0 720 0.29 2.33 202 4.12 4.40 76.12 1.26 18.16 23.83 

7 210 21 120 122 40.8 712 0.36 2.02 220 4.20 4.39 76.98 0.62 17.54 20.78 

8 233 18.6 138 140 39.5 769 0.25 3.10 181 3.85 6.84 75.59 1.54 17.94 25.26 

9 186 18.6 138 140 40.7 620 0.21 2.56 180 3.89 5.55 74.50 1.01 16.62 21.10 

10 186 23.4 138 138 31.1 533 0.32 1.70 208 4.13 4.99 78.45 0.08 17.34 23.03 

11 233 18.6 102 117 42.4 826 0.24 2.83 178 4.13 6.81 75.38 1.75 18.09 31.35 

12 233 23.4 102 118 31.0 695 0.42 1.56 239 4.43 4.39 77.92 0.58 17.77 19.88 

13 210 17 120 132 44.8 857 0.20 3.18 160 3.93 8.10 74.72 1.98 17.53 30.73 

14 210 25 120 121 30.1 705 0.48 1.25 231 4.52 5.51 80.20 -0.28 17.48 16.53 

15 210 21 120 124 41.6 760 0.34 1.91 220 4.20 4.40 77.25 0.62 17.62 18.65 

16 210 21 120 123 42.0 733 0.35 1.89 230 4.14 4.45 76.92 0.62 17.63 20.12 

17 233 23.4 138 139 28.6 627 0.40 1.89 251 4.16 4.56 78.68 0.60 18.30 19.56 

Space filling (validation) runs 

18 170 21 90 93.6 60.3 717 0.31 1.68 184 4.09 3.98 78.14 0.18 17.17 18.75 

19 223 18.8 122 126 44.5 831 0.27 2.67 190 4.03 6.29 76.10 1.21 17.90 20.89 

20 183 23 121 120 39.2 599 0.37 1.41 210 4.30 4.30 78.18 -0.08 17.10 17.51 

21 220 24.5 98.6 107 31.6 705 0.44 1.41 219 4.60 4.53 78.60 0.22 17.69 17.98 

22 222 21.2 119 124 37.8 700 0.36 1.96 226 4.13 4.49 78.07 0.74 17.70 20.80 

23 250 21 120 130 34.7 711 0.29 2.10 216 4.06 4.67 76.60 1.15 18.30 23.92 
 aSS, screw speed; MC, moisture content (%, wet basis); T, temperature; SME, specific mechanical energy; BD, Bulk density; RER, radial 
expansion ratio; WAI, water absorption index; WSI, water solubility index; L*, a*, b*, color coordinates; TEAC, Trolox equivalent antioxidant 
capacity; CCRD, central composite rotatable design. 
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Table 1.2: Regression coefficients for each response surface equation and model fit parameters. 
 

Process responses Product responses 
 
Parametera 

 
Torque 

 
SME 

 
BD 

 
RER 

 
WAI 

 
WSI 

 
Hardness 

 
L* 

 
a* 

 
b* 

 
TEAC  

 

Intercept 320 799 -0.94 7.28 -0.27 38.1 -489 165 -0.50 36.18 83.00 
SS -1.18* 17.2* 0.007* 0.06 0.049* 0.258* 4.67* -0.11 0.05 -0.062 1.31* 
MC -0.41 -150.5 0.054 -0.64* -0.187 -5.66* 40.5* -3.22 -0.99 -0.614 -13.37* 
T -1.46* 0.952 -0.005 -0.06 0.018 0.003 -5.31 -0.75* 0.11 -0.112 -0.81 
SS2 -0.0001 -0.052* -0.00004* -0.00004 -0.00009* -0.0002 -0.021* -0.0003 0.00002 -0.00007 0.0004 
SS*MC 0.009* -0.093 0.0002* -0.002* 0.0002 -0.008* 0.175* 0.0015 -0.001 -0.0014 -0.037* 
MC2 -0.156* 3.41* -0.001 0.020* 0.005* 0.155* -1.76* 0.038 0.018 0.0023 0.306* 
SS*T 0.007* 0.066* 0.00005* -0.00005 -0.0001* -0.0002 0.007 0.0014* -0.0003 0.0006* -0.005* 
MC*T 0.021* 0.003 -0.0003 0.0009 -0.0003 0.003 0.049 0.015* 0.0014 0.0065* 0.057* 
T2 -0.003* -0.075 -5E-06 0.0002 -3E-06 -0.00008 0.011 0.0005 -0.0003 -0.0006* 0.0025 

Adjusted R2 0.97 0.95 0.95 0.97 0.98 0.95 0.96 0.89 0.95 0.93 0.87 

MFE  
(% range) 

(-3.45,2.41) (-2.14,3.17) (-4.01,3.17) (-5.01,4.48) (-1.18,0.73) (-4.87,6.77) (-3.28,4.67) (-1.01,0.65) (-1.34,2.93) (-0.54,0.80) (-4.75,5.11) 

MRE  
(% range) 

(-3.09,3.63) (-4.13,2.91) (-1.56,1.29) (-3.63,2.67) (-1.50,1.32) (-7.74,6.27) (-1.83,3.56) (-1.88,1.40) (-1.22,4.55) (-1.64,3.57) (-1.93, 5.5) 

a SS, screw speed; MC, moisture content; T, temperature; SME, Specific Mechanical Energy; BD, Bulk Density; RER, Radial expansion ratio; WAI, 

water absorption index; WSI, water solubility index; L*,a*,b*, color coordinates; TEAC, Trolox equivalent antioxidant capacity *significant at p<0.05. 
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Figure 1.1: Scaled estimates representing the relative contribution of each processing 

variable to product and process responses1 

 

 

  

                                                 

 

1 MC, moisture content; SS, screw speed; T, temperature; SME, specific mechanical energy; BD, 

Bulk density; RER, radial expansion ratio; WAI, water absorption index; WSI, water solubility 

index; TEAC, Trolox equivalent antioxidant capacity. 
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Figure 1.2: Influence of each processing variable on response variables when other 

processing variables are held constant2   

                                                 

 

2 Numbers next to axes labels correspond to the value of each variable at the dotted lines; MC, 

moisture content; SS, screw speed; T, temperature; SME, specific mechanical energy; BD, bulk 

density; RER, radial expansion ratio; WAI, water absorption index; WSI, water solubility index; 

TEAC, Trolox equivalent antioxidant capacity 
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Figure 1.3: Correlation matrix of response variables (a) and principal components (PC) 

bi-plot showing Eigenvectors for response variables and loadings for processing variables 

and individual runs (b)3  

                                                 

 

3 MC, moisture content; SS, screw speed; T, temperature; SME, specific mechanical energy; BD, 

bulk density; RER, radial expansion ratio; WAI, water absorption index; WSI, water solubility 

index; TEAC, Trolox equivalent antioxidant capacity. 



 25 

CHAPTER 2:  HEATING REDUCES PROSO MILLET PROTEIN 

DIGESTIBILITY VIA FORMATION OF HYDROPHOBIC AGGREGATES 

2.1.  ABSTRACT 

Proso millet protein has reported structural similarities with sorghum. In order to 

explore the potential of this crop as an alternative protein source for people with gluten 

sensitivity, in vitro protein digestibility was analyzed. De-hulled proso millet flour was 

subjected to various processing techniques (dry heating and wet heating). The results 

indicated that regardless of the processing technique there was a significant decline (p 

value  0.05) in digestibility of protein in proso millet flour when compared with 

unprocessed flour (from 79.7±0.8% to 42.0±1.2%). Reduced digestibility persisted even 

when cooking with reducing agents. Heating in the presence of urea (8 M) and guanidine 

HCl (4.5 M) prevented the reduction in observed digestibility (urea cooked: 77.4±0.8%; 

guanidine HCl cooked: 84.3±0.9), suggesting formation of hydrophobic aggregates 

during heating in water. This was supported by an increase in surface hydrophobicity 

upon cooking. Thus, the proso millet protein, termed Panicin, forms hydrophobic 

aggregates that are resistant to digestion when subjected to heat.  
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2.2.  INTRODUCTION 

Gluten-free foods are an important and expanding market. In a recent survey, it 

was found that the sales of gluten-free foods grew by 34% annually in the last five years1 

and is expected to continue to rise. The driving force for this rise is the increase in 

diagnosed gluten intolerant cases and changing mindsets towards gluten in the diet.   In 

the US, this has created a demand for alternative gluten-free crops that can replace wheat 

in familiar foods with the added advantage of nutrition, cost effectiveness and 

availability.2 Among gluten-free grains (e.g., rice, millets, teff, sorghum), rice is the most 

widely produced and consumed crop, but has a low protein content compared with wheat. 

Lately millets (e.g., finger, pearl, proso, foxtail) have been utilized as gluten-free 

alternatives.  

Among different millet varieties, proso millet is the only type of millet grown on 

a commercial scale in the US. Proso millet (e.g., true millet, common millet, hog millet) 

is an important crop from an agricultural standpoint in the Great Plains of the US due to 

its short growing duration, low water requirement, and resistance to pests and diseases. 

Furthermore, millet can lead to improvement in yields of wheat, corn and sorghum when 

grown in rotation with these crops.3-4 The crop belongs to the genus Panicum and is more 

closely related to inedible grasses like switchgrass and panicgrass than to other millet 

species. Different millet types do not bear species or genus similarity (although pearl, 

proso, and foxtail millets belong to same subfamily, Panicoideae, which also includes 

maize and sorghum) and are grouped together based only on the basis of their small grain 

size and drought-resistance. Thus, different millets would be expected to have different 

physical and chemical properties.  
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Nutritionally, proso millet is a good source of protein, vitamins and minerals and 

its nutritive parameters are comparable or better than common cereals.5 Reports have 

suggested that the quantities of nutrients in millet are very similar to the recommended 

ratio of protein, carbohydrate, and lipid.6 Also, research on proso millet protein has 

provided evidence for its beneficial role in cholesterol metabolism and liver injuries.7 

The protein content of proso millet (13%) is similar to wheat with the added 

advantage of being gluten-free. This makes proso millet a potential candidate as an 

alternative protein crop. However, there is dearth of information on the composition and 

quality of proso millet protein. While Lorenz8 found lower lysine content in proso millet 

protein compared to wheat, Kalinova6 reported the opposite results. Since sorghum and 

proso millet belong to the same subfamily a generalized statement is usually made for 

their protein structure, implying that these cereals contain similar types of proteins.9 

Furthermore, at times the protein behavior of different millet types (finger, foxtail, pearl 

etc) are assumed to be same despite belonging to different genera.10 There is also 

contradiction pertaining to proso millet protein digestibility. Ravindaran11 reported an 

improvement in digestibility of proso millet proteins on cooking, while Kovalev12 found 

a reduction in protein digestibility upon cooking. These discrepancies demand a thorough 

understanding of proso millet protein quality.  

In vitro protein digestibility techniques are often a first step in measuring cereal 

protein quality due to their rapidity and sensitivity. A number of in vitro techniques with 

varying protease types and concentration, incubation conditions and end product analysis 

techniques have been used to measure protein digestibility of various foods.13-14 Among 

these techniques, the residue method, which employs pepsin as the main proteolytic 
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enzyme,15 has been successfully used for measuring protein quality of mainly sorghum, 

but has also been applied to other cereals.10 Thus, the established technique for sorghum 

digestibility was also employed as a first step studying digestibility of proso millet flour.  

Since all cereals are subjected to some kind of processing technique before being 

consumed, this study was mainly focused on understanding the effect of different 

processing techniques on the in vitro protein digestibility of proso millet flour. The 

secondary objective was to determine the cause of any changes in digestibility of proso 

millet protein upon cooking.   

2.3.  MATERIALS AND METHODS 

2.3.1.  Materials 

Commercially available de-hulled proso millet was obtained from Clean Dirt 

Farms (Sterling, CO, USA). Eight pure cultivars of proso millet (Early Bird, Sunrise, 

Cope, Snobird, Plateau, Horizon, Sunup and Huntsman) were also used in this study. 

These samples were grown at Scottsbluff, Nebraska, USA. For comparison, whole finger 

millet, [University of Nebraska-Lincoln (UNL) NeFm #1], pearl millet (UNL NM-4B), 

and foxtail millet (UNL N-Si-7), grown in 2013 or 2014 at Mead, NE, USA, were used in 

this study. Whole white sorghum (UNL3016) and wheat (variety McGill) were grown in 

Lincoln, NE USA. Sorghum grains were decorticated using a laboratory scale 

decorticator (Venables Tangential Abrasive Dehulling Device, Venables Machine Works, 

Ltd, Saskatoon, Canada) for 60 seconds before being milled. All grains were milled using 

a pilot scale hammer mill (20SSHMBD, C.S. Bell, Tiffin, OH, USA) with screen size of 

0.7 mm.  
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Chemicals. The following chemicals and enzymes were used in the study: α-

amylase (3,000 U/mL) and amyloglucosidase (3,260 U/mL), each from Megazyme (Bray, 

Ireland); pullulanase (E2412), pepsin (P7000), pancreatin (8X USP) sodium azide, 

sodium hydroxide, phosphoric acid (85%), sodium bisulfite, 2-mercaptoethanol, sodium 

chloride, potassium phosphate dihydrate, sodium dodecyl sulfate, acrylamide, 2,4,6-

trinitrobenzenesulfonic acid (TNBS, P-2297), Folin-Ciocalteu phenol reagent (2 N), 

sodium dihydrogen phosphate, 8-anilinonaphthalene-1-sulfonic acid (ANS), urea, phenol, 

sodium bicarbonate, and sodium carbonate, each from Sigma-Aldrich (St. Louis, MO 

USA); and guanidine HCl, tetramethylethylenediamine(TEMED), ammonium 

persulphate, and coomassie brilliant blue (R-250), each from Thermo Fisher (Waltham, 

MA USA).  

2.3.2.  Extraction of millet proteins 

Millet proteins were separated from starch and fiber components by a wet milling 

method.16 Modifications and additions to the published method to improve purity of 

millet protein were made based on preliminary experimentation. Briefly, 250 g de-hulled 

millet grains were steeped in distilled water for 3 h at 40 C followed by overnight 

steeping at 4 °C. The steeped grains were washed and then blended with 500 mL fresh 

water in a Waring blender (Dynamic Corp. of America, New Hartford City, CT, USA) 

with the blades reversed for 4 min. The blender was attached to an autotransformer 

(Staco Energy Products Co., Dayton, OH, USA) and power (120 V) was adjusted to 80%. 

The slurry obtained after blending was filtered through a #16 mesh sieve (1.18 mm 

openings; Air Jet Sieve, Hosokawa micron powder systems, NJ, USA). The slurry 

passing through the filter was passed through a plate mill (Quaker City model no. 4-E, 
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The Straub Co., Warminster, PA). The finely ground slurry was then filtered through 

#100 mesh sieve (150 µm openings). The filtrate obtained was centrifuged at 5,000 x g 

for 15 min at 4 C. The supernatant obtained was discarded and the top gray layer 

(protein) was scarped from white (starch) bottom layer of pellet. The scraped off protein 

fractions were mixed from different centrifugations and washed with water followed by 

repeated centrifugation and protein layer separation. When there was no more visible 

distinction left between protein and starch layers, the mixture was subjected to hydrolysis 

by α-amylase (0.05 mL / g solids), amyloglucosidase (0.7 mL/g solids) and pullulanase 

(0.12 mL/g solids) for 48 h at 37 C and pH 5 (sodium acetate buffer) with 0.01% sodium 

azide. The tube was then washed twice and freeze dried and the protein content was 

measured by combustion.  

2.3.3.  Amino acid profile 

For amino acid analysis, samples were hydrolyzed for 24 h using 6N HCl 

containing 0.5% phenol and derivitized.17 Briefly, the hydrolyzed samples were dried and 

amino acids were reconstituted with 1 mL of 20 mM HCl. The constituted amino acids 

and hydrolysate standard amino acid mixture were reacted with the AccQ-Tag 

derivatization chemistry (Waters, Milford, MA, USA), following this they were separated 

detected and quantified using reversed phase HPLC (Agilent Infinity 1290 HPLC-DAD). 

The concentrations were calculated using a series of standard dilutions run alongside the 

samples and reported as g/kg protein. Under the acid hydrolyzed conditions cysteine is 

converted into cysteic acid and methionine into methionine sulfone. During the process 

tryptophan is destroyed, hence tryptophan was not determined.  

2.3.4.  Phenolics 
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Phenolics in acidified methanol extracts from different samples were quantified 

using Folin-Ciocalteu reagent.18 Results were expressed as mg of gallic acid equivalents 

per gram of sample.  

2.3.5.  Heating in excess water 

 Samples (400 mg) of de-hulled proso millet, whole proso millet, wheat, de-hulled 

sorghum, finger millet, pearl millet, and foxtail millet were suspended in 5 mL of water 

and then heated at 25-100 C (in 15 C increments) for 20 min. After heating, the 

samples were cooled to room temperature and then subjected to digestibility 

measurements (see ‘In vitro protein digestibility’). 

2.3.6.  Heating in limited water 

The moisture contents of de-hulled millet flour, sorghum and wheat flour were 

adjusted at 10, 20 and 30% by the addition of a calculated volume of water. The flours 

were then hermetically sealed in a glass vial (2 mL) and subjected to oven heating (VWR 

Scientific, 1350F Forced Air Oven, IL) or pressure-cooking (Deni Electric Pressure 

Cooker, Model 9780, Keystone Mfg company, Buffalo, NY) at 120 C for 20 min. After 

cooling, 400 mg of sample was subjected to digestibility measurements (see ‘In vitro 

protein digestibility’).  

De-hulled millet flour, sorghum flour, and wheat flour were extruded using a 

laboratory scale co-rotating conical twin screw extruder at a screw speed of 210 rpm 

(CTSE-V, C.W. Brabender, Hackensack, NJ, USA).19 The extruder barrel had 4 

temperature zones with temperatures of the first two zones maintained at 50 and 80 °C, 

respectively and last two zones at 120 °C. The moisture of the flours was adjusted to 17% 

(wet basis) and equilibrated overnight before extruding. The extrudates were ground 
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using cyclone sample mill (UDY, Fort Collins, CO, USA) with a screen size of 1 mm and 

subjected to pepsin digestibility measurement (see ‘In vitro protein digestibility’).  

2.3.7.  Heating in the presence of reducing agents 

Millet, sorghum and wheat flour (400 mg) were heated (100 °C/ 20 min) in 5 mL 

of either 0.1 M sodium bisulfite or 0.1 M 2-mercaptoethanol,20 and then subjected to in 

vitro digestion (see ‘In vitro protein digestibility’).  

2.3.8.  Heating in the presence of chaotrops 

In order to explore any hydrophobic interactions, millet flour (400 mg) was 

heated (100 °C/ 20 min) in 5 mL of 1 M or 8 M urea or 4.5 M guanidine hydrochloride. 

Following cooking, urea and guanidine hydrochloride were removed by dialysis (MW 

12-14 kDa) overnight against water. After dialysis, the samples were subjected to in vitro 

digestion (see ‘In vitro protein digestibility’). 

2.3.9.  In vitro protein digestibility 

Pepsin digestibility was measured using residue method developed by Mertz et 

al., 1984.15 with slight modifications.21 After digestion, the nitrogen remaining in the 

pellet was measured and pepsin digestibility was calculated according to the following 

equation: PD (%) = [(Ni − Nf)/Ni] × 100%, where Ni was the concentration of N in the 

sample before digestion and Nf was the concentration of N in the recovered pellet after 

digestion.  

Gastrointestinal proteolysis was also simulated using the method described by 

Mandalari et al.22 with some modifications. Individual tubes were maintained in duplicate 

for various time periods between 0-120 min for gastric digestion and 0-240 min for 

intestinal digestion (following 2 h of gastric digestion; 120-360 min total digestion time) 
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along with a blank (no enzyme tube). In each tube, 100 mg of flour was suspended in 

simulated gastric fluid (SGF; 4 mL, 0.5 M NaCl, pH:2.5) to achieve a pH of 2.5 

(approximately 4 mL) and incubated at 37 C for 10 min. To analyze the effect of 

heating, flour samples (100 mg) were first suspended in water 1 (mL) and heated at 100 

C for 20 min prior to adding SGF and proceeding with the gastric digestion phase. The 

contents were then mixed with pepsin dissolved in SGF to give an activity of 200 U of 

pepsin/mg of protein in sample and incubated for the specified time. Gastric digestion 

was stopped by raising the pH to 7 using 0.5 M sodium bicarbonate. For intestinal 

digestion, pepsin hydrolyzed samples were mixed with 1 mL simulated intestinal fluid 

(SIF) (0.05 M KH2PO4, pH: 7.0) and warmed at 37 C. Meanwhile, pancreatin (1.5 

mg/mL) was suspended in SIF and centrifuged. The supernatant (3 mL) was added to 

flour mixture and incubated for the specified time. Intestinal digestion was stopped by 

plunging the tubes into a boiling water bath for 5 min and then placing on ice. Gastric and 

intestinal digested tubes were centrifuged and the supernatants were used to quantify 

degree of hydrolysis (DH) while the pellets were analyzed for insoluble nitrogen 

(protein).  

The DH, or extent of proteolytic hydrolysis, was determined by the reaction of 

free amine groups with TNBS using leucine as the standard.23 DH was then calculated 

using the following equation: DH (%) = (hs/htotal) ×100%, where hs was defined as the 

mmol of free amine groups (leucine equivalents) per gram of protein (initial) in the 

sample and htotal was the mmol of free amino groups per gram of protein assuming 

complete hydrolysis of the protein (7.96 mmol/g protein). This was calculated by 

summing the molar concentrations of individual amino acids per gram of protein (see 
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‘Amino acid profile’ section and Supplementary Table 1). All tubes (representing 

duplicate samples from above) were measured thrice. 

2.3.10. Electrophoresis 

Proteins before and after digestion or with and without heating were extracted 

from 50 mg of sample. If samples were wet, they were dried overnight at 50 °C. First, 

samples were heated at 100 C for 20 min in 1.5 mL of 0.0125 M sodium tetraborate 

buffer (pH 10) containing 1% SDS and 2% 2-mercaptoethanol and then extracted for 2 h 

at room temperature followed by centrifugation.24 Alternatively, 8 M urea was added to 

the extraction buffer when testing the effects of urea on protein extraction. The 

supernatant was subjected to SDS-PAGE analysis using a vertical mini gel system (Mini 

protein II cell tetra system, Biorad, CA). Protein extract was mixed with sample buffer in 

the ratio of 4:1 and loaded along with molecular weight markers (BioRad Precison Plus 

Dual color protein standard, 10-250 KDa) on to gel system with following specifications. 

The resolving gel consisted of 12% polyacrylamide in 1.9 M Tris HCl buffer (pH 8.8), 

and 1% SDS (w/v). The stacking gel contained 5% polyacrylamide in 0.63 M Tris HCl 

buffer (pH 6.8), and 1% SDS (w/v). TEMED (0.05% v/v) and ammonium persulfate (0.1 

v/v) were used to polymerize the gels. Electrophoresis was done at 100 V for 60 min in 

tank buffer consisting of 1.9 M Tris, and 1% SDS (w/v). After electrophoresis, the gels 

were stained with 20 mL of coomassie brilliant blue reagent (0.25%) containing 

isopropanol and acetic acid for 60 min. De-staining was achieved by washing gels several 

times in a solution of 10% acetic acid and 30% methanol in water. Gel images were 

captured and analyzed using Image Analyser (BioRad Molecular Imager, Gel Doc-XR 

system, CA).  
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2.3.11. Surface hydrophobicity 

Fluorescence intensity of millet proteins were measured both intrinsically and 

using an external fluorescence probe (8-anilinonaphthalene-1-sulfonic acid, ANS) as 

described.25 Intrinsic fluorescence of proteins is mainly attributed to tryptophan, a 

hydrophobic amino acid when the excitation wavelength is higher than 290nm. Two sets 

of samples of millet proteins were dispersed in 0.01 M phosphate buffered saline (PBS; 

pH 7, 10% NaCl, 2.5% sodium dihydrogen phosphate) with concentrations ranging from 

0.01% to 0.1%. One set of millet proteins were heated at 100 C for 20 min while other 

was maintained at room temperature. For measuring intrinsic fluorescence, both heated 

and unheated samples were excited at 295 nm and the fluorescence intensity recorded at 

415 nm using a spectrofluorometer (LS55, PerkinElmer Inc., Walthman, MA). This was 

the maximum intrinsic fluorescence intensity based on a scan from 300-700 nm. For 

extrinsic fluorescence, the heated and unheated samples were mixed with 20 μL of ANS 

(8 mM in 0.01 M PBS) and incubated for 2 h at room temperature in dark. The 

fluorescence intensity was recorded at an excitation wavelength of 365 nm and emission 

wavelength of 520 nm.  

2.3.12. Statistical analysis 

The overall treatment effects were first analyzed using ANOVA. Following 

ANOVA, the specific difference among treatments were assessed using either t-test, 

Tukey’s test or Dunnett test at a significance level of 0.05. The multiple comparison test 

used was specified in footnotes. All descriptive statistics were computed using JMP 

statistical software (JMP version 12.0.1, SAS Institute Inc.) 

2.4.  RESULTS AND DISCUSSION 
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2.4.1.  In vitro protein digestibility of grains heated in excess water 

Proso millet, sorghum, and wheat flours were heated in excess water at 

temperatures ranging from 25 °C to 100 °C for 20 min. Following the holding time all 

flours were first cooled to room temperature (approximately for 10 min) and then prepared 

for pepsin digestibility by warming at 37 °C. Holding the flour-water slurries at 

temperatures above 40 °C before digestion resulted in a significant decrease in digestibility 

of sorghum and proso millet proteins while no change in wheat protein digestibility was 

observed (Figure 2.1). At the higher temperatures (85 °C and 100 °C), the digestibility of 

proso millet protein was significantly less than for sorghum. At 100 C, a 50% decline in 

digestibility of millet flour was observed when compared with unheated flour.  

Poor protein digestibility may be positive or negative depending on perspective. 

Poor protein digestibility of foods consumed as staples in a limited diet can have negative 

consequences on health. In contrast, in the developed world, where protein is often 

consumed far in excess of dietary requirements, low protein digestibility could constitute a 

lower calorie food that could help reduce energy intake. Under these circumstances, 

however, the same undigested protein may serve as substrate for large bowel fermentation 

resulting in toxic metabolites that can trigger disease.26  

In general, cooking cereal flours or proteins in excess water has little impact on 

pepsin digestibility, 27  as seen for wheat flour. However, reduction in pepsin digestibility 

upon cooking has been reported for sorghum.20 This unusual property of sorghum grain has 

been attributed mainly to extensive disulfide cross-linking of proteins upon heating. 28 A 

decrease in pepsin digestibility upon heating proso millet flour has not been reported 

previously. On the contrary, one report suggested an increase in digestibility upon heating 
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proso millet9 These contradictory results could be due to varietal differences or differences 

in assay technique. Therefore, both possibilities were explored. 

Eight cultivars of whole proso millet flour were assayed for pepsin digestibility 

along with three other types of millet (Table 2.1). The pepsin digestibility of raw proso 

millet cultivars was significantly different (p value  0.05) and ranged from 77 to 85%. But 

upon cooking all proso millet cultivars showed similar dramatic decreases in digestibility. 

Heating also reduced the digestibility of pearl millet and foxtail millet flour but the 

reduction was not as drastic as observed for proso millet. In contrast, cooking actually 

improved the digestibility of finger millet protein. These results were in accordance with 

previous studies.29-31 

Protein digestibility was also assayed using a sequential digestion procedure 

mimicking both gastric and small intestinal digestion (Figure 2.2). This showed that heating 

reduced digestibility of proso millet flour during both the gastric (pepsin) and small 

intestinal phases (pancreatin). Thus, both the pepsin digestibility assay and the sequential 

digestion assay confirmed that heating of proso millet flour had a significantly detrimental 

effect on its protein digestibility. 

2.4.2.  In vitro protein digestibility of grain heated in limited water 

Previous studies have suggested that heating sorghum flour in limited water has less of a 

negative impact on protein digestibility than heating in excess water.21,32 The above 

experiments demonstrated that, like sorghum, proso millet protein digestibility also 

decreases when heating in excess water. Therefore, proso millet, sorghum, and wheat flours 

were adjusted to 10%, 20%, or 30% moisture (wet basis) and then heated in sealed 

containers in an oven or autoclave and protein digestibility was subsequently assayed.  
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Oven heating and autoclaving of proso millet flour, even at low moisture contents, 

gave similar results to heating in excess water with a 28% to 46% reduction in digestibility 

(Table 2.2). It is remarkable that the digestibility of millet flour reduced so dramatically 

even when heated with as little as 10% moisture. Heating sorghum flour with limited water 

also decreased digestibility, but the effect was not nearly as dramatic as for proso millet.  

Extrusion, being a common low-moisture food processing technique, was also 

tested. Extrusion resulted in a dramatic decrease in digestibility of proso millet proteins 

(Table 2.2). In accordance with previous studies, only minimal reduction in digestibility 

was observed when sorghum was extruded. It has been suggested that the lower impact of 

dry heating on sorghum protein digestibility is due to limited formation or hydrolysis of 

disulfide linkages during heating or high shear.13 As expected, there was no change in 

digestibility of wheat flour on processing. 

2.4.3.  Effects of exogenous factors on protein digestibility of proso millet protein 

Poor digestibility of sorghum protein in general has been attributed to protein 

interactions with dietary fiber, starch, polyphenols, phytic acid, and other cell wall 

constituents.33 The de-hulled proso millet flour used in this study had the lowest 

concentration of extractable phenolics among the grains studied herein (data not shown). 

This was expected because the grain was de-hulled. To determine if interactions among 

other flour components were affecting proso millet protein digestibility, proso millet 

protein was partially purified using a wet-milling procedure. The focus of wet-milling is 

usually to isolate the starch from a grain; however, it is also an efficient way to isolate 

protein without denaturing it (as happens when extracting with aqueous alcohols). Wet-

milling of proso millet resulted in a fraction that contained 80% protein (wet basis) (%N X 
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6.25). Upon heating this material, a decline in digestibility similar to heated proso millet 

flour was observed (Figure 2.3). These results suggested that the reduction in digestibility 

of proso millet protein upon heating was not due to exogenous interactions. Therefore, 

further experiments focused on intermolecular interactions among proso millet proteins as 

the cause for the decreased digestibility.  

2.4.4.  In vitro protein digestibility of grain heated in the presence of reducing 

agents 

Proso millet, sorghum, and wheat flours were heated in the presence of 2-

mercaptoethanol or sodium bisulfite and their pepsin digestibility was measured. There was 

an improvement in digestibility of sorghum flour when heated in presence of either 2-

mercaptoethanol or sodium bisulfite (Figure 2.4). In contrast, heating in the presence of 

these reducing agents did not improve the digestibility of proso millet protein. There was 

no significant change observed in digestibility of wheat flour when heated in reducing 

agents compared to water. 

The improvement in digestibility upon heating sorghum with reducing agents has 

been reported previously.20 Sorghum kafirins are more resistant to proteases than other 

prolamins due to extensive disulfide linkages that form during heating.28 Thus, treating 

sorghum flour with reducing agent like 2-mercaptoethanol improved the digestibility 

during heating by reducing internal di-sulfide bond formation. However, because these 

reducing agents had no effect on the digestibility of proso millet, the reduction in 

digestibility of proso millet proteins upon heating was probably not due to disulfide bond 

formation.  
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2.4.5.  In vitro protein digestibility of millet flour heated in the presence of 

chaotropes 

We hypothesized that heating proso millet flour denatures protein thereby exposing 

hydrophobic amino acids that form compact hydrophobic aggregates at partial state of 

denaturation that limit proteolytic hydrolysis. At high concentrations chaotropes are known 

to prevent aggregation of proteins by binding to exposed hydrophobic amino acids.34 

Therefore, millet flour was heated in the presence of 1 M and 8 M urea followed by 

extensive dialysis to remove the urea and then digestibility was assayed.  

While heating in the presence of 1 M urea had no effect on digestibility, heating in 

the presence of 8 M urea resulted in a significant improvement in digestibility when 

compared to heating in water. This was likely due to the interaction of urea with less polar 

amino acid residues by H-bonding, which stabilizes the partially unfolded protein 

conformation during denaturation by heating and impedes hydrophobic interactions 

between protein chains.35 With continuous heating the denaturation of millet proteins is 

completed and on removal of urea they go back to original conformation which is 

digestible by in-vitro assays. 

Similar to urea, guanidine HCl is also a known denaturant involving hydrophobic 

interactions but with a different mechanism. It is thought that guanidium ions coat protein 

hydrophobic surfaces preventing the aggregation of hydrophobic amino acid residues.34 

When millet flour was heated in presence of 4.5 M guanidine HCl it was found that the 

digestibility was same as uncooked flour (Table 2.3). Thus, two reagents that prevent 

hydrophobic aggregation of proteins supported our hypothesis of formation of hydrophobic 

aggregates in millet proteins during heating in presence of water.  
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2.4.6.  Surface hydrophobicity 

To evaluate the change in surface hydrophobicity upon heating, proso millet protein 

was mixed with ANS, a fluorescent probe that binds to the exposed hydrophobic regions on 

a protein which leads to an increase in its fluorescence quantum. For unheated proso millet 

protein there was no change in fluorescence intensity of ANS as protein concentration 

increased (Figure 2.5). In contrast, when millet protein was heated there was an increase in 

fluorescence intensity of ANS, suggesting more hydrophobic groups were exposed on 

heating and could readily bind with ANS.  

Intrinsic fluorescence (IF) of millet protein was also measured, which is mostly due 

to exposed tryptophan residues on the protein surface. Though the IF value for the system 

is very low but the IF intensity was greater for heated millet protein compared with 

unheated millet protein. This suggests that there is a change in millet protein on heating 

which is potentially due to the exposure of tryptophans to aqueous phase due to opening of 

protein structure. Cumulatively both these results supported the hypothesis that the reduced 

digestibility could be due to formation of hydrophobic aggregates in millet proteins during 

heating in presence of water. 

2.4.7.  Changes in proso millet protein profiles upon heating 

Change in proso millet protein profiles upon cooking and digestion were visualized 

on SDS-PAGE. After digestion of uncooked proso millet flour, a decrease in the prolamin 

band (20 kDa) intensity was evident (Figure 2.6; lanes 1 and 3). This indicated good 

digestibility of unheated proso millet flour. In contrast, only faint prolamin bands were seen 

in the cooked proso millet protein extracts both before and after digestion, and did not show 

noticeable changes upon digestion (Figure 2.6; lanes 2 and 4).  The low intensity of the 



 42 

prolamin band in the cooked samples was not due to loss of the protein; it was due to the 

inability of the reducing buffer to extract the protein after cooking. This was evident 

because 91% of the protein remained in the pellet after extraction of the cooked flour (data 

not shown). The inability of the extraction buffer, which contained reducing agents, to 

extract proso millet prolamins after cooking supported our previous results that suggested 

the changes in millet protein upon cooking are not driven by disulfide linkage formation. 

Furthermore, when urea was added to the extraction buffer, extraction of the prolamin 

fraction was greatly improved in heated proso millet flour (Figure 2.6; lanes 2 and 6); thus, 

conforming the ability of urea to prevent hydrophobic aggregation. Finally, when the 

sample was cooked in urea and then digested (following removal of urea), digestibility was 

good for both unheated and heated samples as evidenced by lack of prolamin bands (Figure 

2.6; lanes 7 and 8). 

2.4.8.  Amino acid profile 

On comparing the amino acid profile of proso millet flour, sorghum flour and wheat 

flour it was found that hydrophobic amino acids contributed to 51% of total amino acids in 

proso proteins while for sorghum and wheat, hydrophobic amino acids contributed 48 and 

37%, respectively, of total amino acids (Supplementary Table 2.4). The results obtained for 

sorghum and wheat are consistent with previous findings.36 Although the proportion of 

hydrophobic amino acids in sorghum and millet proteins were similar, the different causes 

for lower digestibility post cooking could be due to the sequence of amino acids in the 

primary structure of the protein  

Proso millet storage proteins (prolamins) have been reported to be structurally 

similar to sorghum prolamins, or kafirins, and thus have been commonly grouped together. 
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However, while both sorghum and proso millet proteins possess the unique property of low 

digestibility upon cooking, the present study has shown that although the observed effect is 

similar the mechanism involved is different. Thus, proso millet prolamins are unique 

among the cereal proteins and deserve their own nomenclature. In following the pattern 

used for some other cereal proteins, including corn (zein), rye (secalin), and barley 

(hordein), we propose that proso millet prolamins should be named ‘panicin’. This name is 

particularly appropriate because some old manuscripts from India indicate that proso millet 

as a staple crop in the Neolithic era was called ‘Pani’.37-38  

The objective of the present study was to assess the potential of proso millet as an 

alternate crop for gluten intolerant people with prime focus on protein digestibility as 

affected by processing. The results indicated that regardless of processing technique, 

there was a 50% decline in digestibility of proso millet protein when compared with 

unprocessed flour. Heating the flour in the presence of reducing agents did not improve 

the digestibility but denaturants like urea and guanidine HCl did. The improvement in 

protein digestibility of proso millet in the presence of these agents suggested formation of 

hydrophobic aggregates in proso protein upon cooking. This indicates a unique property 

of proso millet protein among other cereal proteins. 
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Table 2.1. Effect of heating in excess water on protein digestibility (%) of milletsa 

Sample Unheated Heatedb % change 

Proso millet  

Early Bird 84.6  0.3 37.5  1.1 -56 

Sunrise 75.8  1.5 32.8  0.9 -57 

Cope 83.4  0.8 39.1  2.7 -53 

Snobird 81.6  0.9 37.9  0.4 -54 

Plateau 77.9  1.3 42.8  0.6 -46 

Horizon 81.5  1.1 37.7  0.9 -54 

Sunup 80.9  0.2 37.7  1.2 -54 

Huntsman 77.4  1.8 42.1  2.3 -46 

Other millets    

Finger millet (UNL NeFm #1) 62.3  2.0 77.1 1.6 +24 

Pearl millet (UNL NM-4B) 89.4  0.8 79.7 0.8 -11 

Foxtail millet (UNL N-Si-7) 79.6  1.3 60.7  1.2 -23 
aHeating at 100 C for 20 min; mean  SD (n=3); ball heated samples were significantly different 

from their unheated counterpart (t-test, α=0.05).  
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Table 2.2. Effect of dry heating and extrusion on protein digestibility (%) of selected grain samplesa 

Sample 

 Autoclave (121 °C, 20 min)  Oven (121 °C, 20 min)  

Extrusion Unheated 10% moisture 20% moisture 30% moisture  10% moisture 20% moisture 30% moisture  

Proso millet 79.7 ± 0.8 52.2 ± 1.8* 34.4 ± 1.3* 44.3 ± 0.8*  49.1 ± 1.4* 34.4 ± 1.6* 45.5 ± 1.2*  38.3 ± 1.1* 

Sorghum 76.1 ± 2.8 66.6 ± 0.3* 40.6 ± 2.7* 39.2 ± 1.9*  49.7 ± 0.4* 37.3 ± 2.4* 38.6 ± 0.8*  69.9 ± 0.9* 

Wheat 94.2 ± 0.6 92.4 ± 0.0 89.3 ± 0.8* 89.3 ± 1.3*  91.6 ± 1.2 89.3 ± 0.8* 88.6 ± 2.2*  93.5 ± 0.9 
a Mean  SD (n=3); *Means marked with asterisks are significantly different from their unheated counterpart (Dunnett Test at α=0.05). 
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Table 2.3. Effect of heating in urea and guanidine-HCl on protein digestibility (%) of 

proso milleta 

Additive in heating water Unheated proso millet Heated proso millet 

Urea (1M) 82.3  0.8 37.9  2.0b 

Urea (8M) 82.0  1.9 78.6  0.2 

Guanidine-HCl (4.5 M) 83.0  1.4 84.3  1.1 
aHeating at 100 C for 20 min; mean  SD (n=3); bmeans marked with asterisks are significantly 

different from their unheated counterpart (t-test at α=0.05). 
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Figure 2.1. Effect of heating in excess water on protein digestibility of proso millet, 

sorghum, and wheat flours4 

  

                                                 

 

4 Error bars show standard deviation (n=3); some error bars were too small to plot; a,b,c Means 

marked with different letters indicate significant differences among grains within temperature 

(Tukey’s adjustment; α=0.05); *Means marked with asterisks indicate significant difference 

within grain type with its previous temperature. 
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Figure 2.2. Sequential in vitro digestion of uncooked and cooked proso millet flour: (a) 

degree of hydrolysis and (b) insoluble nitrogen; dotted line indicates the cut-off between 

gastric and small intestinal phase of digestion5 

  

                                                 

 

5 Error bars show standard deviation (n=2); (*) Means marked with asterisks indicate significant 

difference within heating condition with its previous temperature (t-test; α=0.05). 
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Figure 2.3. Effect of heating in excess water on protein digestibility of proso millet flour 

and semi-purified proso millet protein6 

  

                                                 

 

6 Error bars show standard deviation (n=3); *means marked with asterisks indicate significant 

difference with its unheated counterpart 
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Figure 2.4. Effect of reducing agents on protein digestibility of proso millet, sorghum 

and wheat flour: (A) heating with 2-mercaptoethanol; (B) heating with sodium bisulfite, 

open bars: flour in water; solid bars: flour in reducing agents.7 

                                                 

 

7 Bars marked with asterisks indicate a significant difference from the corresponding sample 

heated in water only (t-test, α=0.05). 
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Figure 2.5. Effect of cooking on (A) intrinsic and (B) ANS based fluorescence of proso 

millet protein. 
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Figure 2.6. SDS-PAGE gels of proso millet flour8 

  

                                                 

 

8 Lane 0, MW marker; 1, uncooked before digestion; 2, cooked before digestion; 3, uncooked 

after digestion; 4, cooked after digestion; 5, uncooked before digestion, extracted with buffer 

containing 8 M urea; 6, cooked before digestion, extracted with buffer containing 8 M urea; 7, 

uncooked placed in 8M urea and digested; 8, cooked in 8M urea and then digested (urea removed 

before digestion) 
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Table 2.4. (Supplementary) Amino acid composition of different flours (g/kg) 

Amino Acid Proso millet 

Proso millet 

protein Sorghum Wheat 

His 1.85 11.03 2.87 1.70 

Ser 2.54 26.60 6.51 4.10 

Arg 6.19 12.11 4.72 3.54 

Gly 3.74 8.16 5.28 2.89 

Asp 2.57 28.48 7.08 8.89 

Glu 27.10 102.04 64.99 22.82 

Thr 3.49 13.66 4.05 3.27 

Ala 13.33 55.79 4.76 9.61 

Pro 8.70 38.17 19.90 8.17 

Lys 1.71 3.97 4.05 3.23 

Tyr 1.42 13.05 0.04 1.31 

Val 6.38 27.32 6.86 5.39 

Ile 5.02 23.19 6.07 4.31 

Leu 15.11 65.74 11.28 12.63 

Phe 8.03 32.87 7.23 4.76 

CysA 1.85 11.03 3.48 1.58 

MetSO2 3.07 14.71 2.56 1.63 

% hydrophobic 

amino acids 50.5 51.9 37.8 39.2 
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CHAPTER 3:  MICROSTRUCTURAL CHANGES TO PROSO MILLET 

PROTEIN BODIES UPON COOKING AND DIGESTION 

3.1.  ABSTRACT 

Cooking results in a drastic decline in digestibility of proso millet proteins, 

panicins. Scanning electron and confocal microscopy were used to observe 

morphological changes in proso millet protein bodies upon cooking and digestion that 

could be associated with the loss in digestibility. Spherical protein bodies (1-2.5 µm) 

were observed in proso millet flour and extracted protein. Cooking did not result in any 

noticeable change in the size or shape of the protein bodies. However, upon digestion 

with pepsin the poor digestibility of cooked proso millet protein was clearly evident from 

the differences in microstructure of the protein bodies: large cavities were observed in the 

uncooked protein bodies while cooked protein bodies had only tiny holes. When proso 

millet was cooked in 8 M urea and then digested, the protein bodies appeared similar to 

uncooked digested protein bodies. The morphological changes observed in proso millet 

protein upon cooking and digestion did not show any visible aggregates, but the inability 

of pepsin to digest cooked protein bodies was clearly evident under microscopy and is in 

agreement with the chemical analyses reported previously.  
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3.2.  INTRODUCTION 

Millets are a group of small seeded grains known for sustaining agriculture and 

ensuring food security in semi-arid regions (Amadou et al., 2013). The production and 

cultivation of millets is comparatively new to the western world and they are mostly 

cultivated to provide agricultural benefits rather than nutritional advantages (Lyon and 

Baltensperger, 1995). In the past few years there has been a rising interest in the 

nutritional quality of millets mainly due to the abundance of phytochemicals (phenolics 

and flavonoids) and their gluten free protein profile (Amadou et al., 2013).  

Among different millet varieties (finger, foxtail, little, pearl etc.), proso millet 

(Panicum miliaceum) is the only millet variety grown on a commercial scale in the US. 

The majority of this crop is used as bird feed but recently there has been an increased 

interest in proso millet for human food due to the rapidly growing gluten free foods 

market (McDonald et al., 2003). Being gluten free with a protein content similar to wheat 

and higher than commonly consumed gluten free crops, proso millet is an ideal food 

choice for people with Celiac disease and individuals with gluten sensitivity. Thus, many 

researches are focused on ensuring nutritional adequacies of proso millet as human food 

or developing novel foods from proso millet (Taylor et al., 2014; Gulati et al., 2016; 

McSweeney et al., 2017).  

Previously, we reported a unique property of proso millet protein that could be a 

matter of concern when promoting the crop as a gluten free food (Gulati et al., 2017). 

Specifically, we found that there was a significant decline in digestibility (more than 

50%) of proso millet protein when it was heated above 55 C. The effect observed was 

similar to the decrease in digestibility reported for sorghum proteins (Hamaker et al., 
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1986), but more dramatic and with a different mechanism of action. Rather than being 

driven by disulfide bond formation as in sorghum, the digestibility of proso millet 

proteins declines upon heating due to intramolecular hydrophobic protein aggregation 

(Gulati et al., 2017).  

The storage proteins of cereals are present along with minerals and enzymes 

required during seed germination in subcellular spherical organelles called protein 

bodies. Protein bodies typically have diameters ranging from 0.5-2.5 µm. Cereal protein 

hydrolysis by enzymes appears as protein body degradation initiated either at the 

periphery (from external enzymes) or internally which leaves behind large cavities 

(Ashton, 1976). Several researchers have reported the presence of spherical protein 

bodies (up to 2.5 µm in diameter) in proso millet and their association with starch 

granules (Jones et al., 1970; Zarnkow et al., 2007) but there has been no report on the 

morphological changes or appearance of these protein bodies when subjected to heating 

or enzymatic hydrolysis.   

In the present study, microscopy was used to examine morphological changes that 

occur in proso millet protein bodies upon cooking both in water and urea. Based on our 

chemical findings we expected to observe 1) aggregates of protein bodies upon cooking 

as a result of hydrophobic association and 2) visual evidence of the inability of enzymes 

to hydrolyze cooked proso millet protein bodies. The objective of this research was to 

strengthen our understanding of temperature-induced changes in panicins that can help in 

preventing the loss in digestibility.   

3.3.  MATERIALS AND METHODS 

3.3.1.  Materials 
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Commercially available de-hulled proso millet grains were obtained from Clean 

Dirt Farms (Sterling, CO, USA) and milled using cyclone sample mill (UDY, Fort 

Collins, CO, USA) with a screen size of 1 mm. The flour was stored at 4 °C until 

analysis. Proso millet protein and starch were extracted from proso millet grains using a 

wet milling method (Xie and Seib, 2000) as modified by Gulati et al. (2017).  

The flour and protein and starch fractions were analyzed for ash, fat, moisture, 

protein, and starch using approved methods (AACC International, 1999). Protein content 

was analyzed using a nitrogen analyzer (FP 528, Leco, St. Joseph, MI, USA) with a 

protein factor of 6.25. Total starch content was analyzed using total starch assay kit (K-

TSTA, Megazyme, Bray, Ireland) following the KOH format. 

3.3.2.  Cooking  

Four hundred milligrams of flour, 200 mg protein, or 2 g starch, were suspended 

in 5 mL of water or 8 M urea in a centrifuge tube and heated at 100 C for 20 min (time 

recorded after reaching boiling temperature) with intermittent mixing. After heating, the 

samples were cooled to room temperature and then either used directly for digestibility 

measurements or frozen at -80 C for further analysis. 

3.3.3.  In vitro protein digestibility  

Pepsin digestibility of cooked (water and urea) and uncooked proso millet flour 

and protein was measured using the residue method developed by Mertz et al. (1984) as 

described by Gulati et al. (2017). After digestion, the pellet was freeze dried (FreeZone 6, 

Labconco, Kansas City, MO) and used for microscopic analysis.  

3.3.4.  Scanning electron microscopy  
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A thin uniform layer of freeze-dried sample (cooked and uncooked millet flour, 

protein and starch) was fixed on an aluminum stub (26 mm diameter, 6 mm height) by 

tapping the sample tubes on adhesive conductive carbon tape (EMS, Hatfield, PA) and 

gently blowing off the extra sample using pressurized air. Samples fixed on the stub were 

kept overnight in a vacuum oven (Model 5831; NAPCO scientific, Tualatin, OR) at 20 

KPa and 40 C to remove any residual moisture. The dried samples were then sputter 

coated with chromium under an argon atmosphere using a Denton desk V TSC sputter 

apparatus (Denton Vacuum LLC, Moorestown, NJ) for 15 min (mean thickness of 

coating was 4-5 nm).   

A field-emission scanning electron microscope (SEM) was used to study the 

morphological changes in millet proteins and starch upon cooking and digestion (Hitachi, 

S4700, Hitachi America Ltd., Tarrytown, NY) at an accelerating voltage of 5 kV and an 

emission current of 5A. Samples were studied under different magnifications ranging 

from 500x to 10,000x and images were captured using built-in software (HI-S027-0003, 

Version 3.8). The size of protein bodies was determined using image processing and 

analysis software (ImageJ, 1.51s, National Institute of Health, USA).   

3.3.5.  Confocal laser scanning microscopy 

A thin uniform smear of millet flour, protein or starch sample in water was placed 

on a clean glass slide and covered with a cover glass and observed under Nikon A1 

confocal laser scanning microscope (CLSM) mounted on a Nikon 90i upright 

fluorescence microscope (Nikon Instruments Inc., Melville, NY) at approximately 1200x 

magnification. The samples were subjected to an excitation wavelength of 405 nm and 

the protein auto-fluorescence was detected using a pseudo green colored filter at emission 
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wavelength ranging between 425-475 nm. The transmitted light detector was used with a 

561.4 nm laser. In order to confirm the observed auto-fluorescence was emitted by 

proteins in millets and not other substances, the protein and starch samples were stained 

with Fast Green FCF (Sigma-Aldrich, St. Lois, MO USA) at a concentration of 0.025 

µg/mL in water for at least 15 min. The stained samples were excited at 561.6 nm and red 

fluorescence was detected at 570-620 nm. Images were processed using confocal 

acquisition software (NIS-Elements 4.4.0, Nikon Instruments Inc., Melville, NY).  

3.4.  RESULTS AND DISCUSSION 

3.4.1.  Sample composition 

The proximate composition of de-hulled proso millet flour and protein and starch 

fractions is shown in Table 3.1. Similar to other cereal grains, starch was the major 

component of millet flour while proteins constituted the second largest component. The 

protein fraction obtained by wet milling of millet grains was composed of 80% protein 

and 11% fat while no starch was detected. On the other hand, the starch fraction 

contained about 90% starch, 6% protein and trace amounts of inorganic matter and lipids. 

The high protein content in the starch fraction was likely because of the similarity in size 

and density of some of the starch granules and protein bodies, which made their physical 

separation difficult.  

3.4.2.  Morphology of proso millet flour, protein, and starch  

Starch granules and protein bodies were the main components visible when proso 

millet flour was observed under SEM (Fig. 3.1a and 3.1b). The starch granules were 

polygonal in shape and were cohesively joined to one another resulting in compound 

starch granules similar to those found in oats and rice (Thomas and Atwell, 1999).  In 



 64 

proso millet flour, mainly two size of starch granules were observed: A-type (>9.9 µm) 

and B-type (<9.9 µm) (Yu et al., 2014). Spherical protein bodies were observed in 

crevices of compound starch granules observed mainly at higher magnifications.  

The protein bodies isolated using wet milling appeared as non-uniform clusters 

(Fig. 3.1c and 3.1d). The clustering of the protein bodies may have been important, but 

was more likely a result created during extraction or sample preparation. Protein bodies 

with <2.5 µm diameter and 2.5-5 µm diameter were observed. Starch was not detected in 

protein samples by chemical analysis (Table 3.1), but granules that were probably starch, 

with a distinct hexagonal shape and large size when compared with protein bodies, were 

observed in SEM. These were likely present below the limit of detection of the chemical 

analysis.  

In the starch sample both compound starch granules and individual starch 

granules, probably broken from their compound structure during milling, were observed 

(Fig. 3.1e and 3.1f). A third size of starch granule similar to that of the protein bodies 

(<2.5 µm) was also observed in these samples, but was not noticed in the flour samples. 

Some of the larger starch granules had depressions on their surface that have been 

reported as a characteristic of starches from the Panicoideae subfamily to which proso 

millet belongs (Fannon et al., 1992). These indentations have been claimed as sites where 

small starch granules and protein bodies associate with larger starch granules (Zarnkow et 

al., 2007). The results obtained for morphology of starch granules and protein bodies of 

proso millet were similar to previous reports (Zarnkow et al., 2007; Serna-Saldivar and 

Rooney, 1995).  

3.4.3.  Morphological changes upon cooking 
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Upon cooking, proso millet flour and starch samples appeared as web-like 

networks of gelatinized starch when observed under SEM (Fig. 3.2a and 3.2e). At higher 

magnifications, the protein bodies could be seen intact and embedded in the starch 

network (Fig. 3.2b and 3.2f). In the protein samples the protein bodies did not show any 

visible change in structure upon cooking (Fig. 3.2c and 3.2d).  

The loss in starch granular structure upon cooking due to gelatinization has been 

reported for other grains like maize and rice (Hu et al., 2011; Utrilla-Coello et al., 2013). 

Also, researchers have reported through microscopic and chemical analyses that protein 

bodies in cereals do not lose their structure upon cooking (Tanaka et al., 1978), which 

supports our observations. This is likely because the storage proteins of cereals are 

arranged along with other components in crystalloid subunits inside spherical protein 

bodies (Ashton, 1976). Thus, changes taking place inside the protein bodies could not be 

viewed by SEM as it is a tool for surface visualization rather than internal imaging. 

The structures observed by SEM before and after cooking were supported by 

images from CLSM (Fig. 3.3). Cooked and uncooked samples of protein fractions were 

observed using both auto-fluorescence and fluorescence after protein staining. For auto-

fluorescence, a green filter was used to detect proteins (Fig 3.3a and 3.3e), while 

fluorescence of stained samples was observed in the far-red region (Fig. 3.3b and 3.3f). 

The auto-fluoresced and stained images merged well when fitted on top of one another 

(Fig. 3.3c and 3.3g), suggesting that the spherical bodies observed under both SEM and 

CLSM were indeed protein bodies. There were no differences observed in light images of 

uncooked and cooked protein bodies. 
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One striking difference observed in stained and unstained images of protein 

bodies (both cooked and uncooked) was that the dye stained protein bodies only on the 

periphery while auto-fluorescence (green) was mainly concentrated in the core (inserts in 

Fig. 3.3c and 3.3g). This could be due to the arrangement of amino acids in protein 

bodies. Fast green dye has a greater affinity towards basic amino acids (Tas et al., 1980) 

which may be exposed on the surface of the protein bodies while intrinsic fluorescence of 

proteins is mostly linked to aromatic amino acids (Eftink, 2000) which are hydrophobic 

and would likely be embedded in the core. Auto-fluorescence can also be linked to other 

aromatic compounds like phenolic acids and tannins, although it was unlikely that these 

compounds were responsible for the auto-fluorescence in the present experiment due to 

the low concentrations of phenolics and tannins in these samples (Gulati et al., 2017).  

3.4.4.  Microstructural change to proso millet flour and protein after digestion 

A significant change in protein body morphology was observed when uncooked 

and cooked samples were digested with pepsin (Fig. 3.4). In uncooked proso millet 

protein samples (Fig. 3.4a and b), the protein bodies appeared shrunken with huge 

cavities or craters on their surface that appeared as a result of enzymatic hydrolysis. 

Similar peripheral enzymatic degradation of protein bodies has been reported previously 

for sorghum and yellow foxtail grass (Rost, 1972; Rom et al., 1992), but they were not as 

intense as those observed in our study. Similar structures have been observed when 

starches are digested by amylolytic enzymes, which suggests a common mode of 

hydrolysis by these enzymes on their substrates (Uthumporn et al., 2010;).  

On the other hand, when the protein bodies were digested after cooking (Fig. 3.4c 

and d) they displayed only tiny holes on their surface indicating the inability of pepsin to 
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digest cooked proso millet protein bodies.  Based on the nitrogen content in these 

samples before and after digestion, protein digestibility of 79.7  0.8% and 36.6  1.5% 

was recorded for uncooked samples and cooked samples, respectively. 

When these samples were observed using CLSM (images not shown), the results 

were not as prominent as SEM but there was diminished auto-fluorescence of proteins in 

uncooked proso millet flour and protein when compared to cooked samples following 

digestion. The reduced fluorescence is an indication that protein bodies do not have the 

same fluorescence properties as intact protein bodies. Also, since cooked samples were 

not digested they still maintained their auto-fluorescence.  

When samples were cooked in 8 M urea (Fig. 3.5), the protein bodies appeared to 

have digested the same way as raw protein bodies. We have reported that heating initiates 

denaturation of proso millet protein which exposes hydrophobic amino acids during a 

partial state of denaturation (Gulati et al., 2017). However, when the water is replaced by 

8 M urea it prevents the formation of hydrophobic interactions and results in high 

digestibility of protein even after cooking. The present microscopic images are a 

visualization of those previous findings.  

3.5.  CONCLUSION 

Small, spherical protein bodies ranging from 1-2.5 µm in diameter were observed 

in proso millet flour and protein samples by both SEM and CLSM. Based on our 

chemical analyses we expected to observe aggregates of protein bodies upon cooking as a 

result of hydrophobic association and some visual evidence of the inability of enzymes to 

hydrolyze cooked proso millet protein bodies. When observed under SEM, protein bodies 

appeared as random clusters that were visually unchanged upon cooking. However, there 
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was clear evidence that cooking reduced pepsin hydrolysis, which was observed as tiny 

holes on the surface of protein bodies after digestion compared with large craters 

appearing in the uncooked digested protein bodies. As expected, when samples were 

cooked in 8 M urea and then digested the protein bodies had the same large cavities as 

observed for uncooked protein bodies after digestion. Thus, the visualization of proso 

millet protein bodies using microscopy provided conformational support for our chemical 

findings regarding the unique structure of millet storage proteins, panicins, and demands 

that future work should be focused on mitigating this effect. 
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Table 3.1. Compositional analysis of proso miller flour and protein and starch fractions.a 

Sample Moisture Protein Starch Fat Ash 

Flour 8.12  0.03 13.6  0.0 71.9  0.1 3.32  0.06 1.17  0.00 

Protein 2.43  0.01 82.5  0.6 ND 11.9  0.3 0.57  0.00 

Starch 1.22  0.05 5.72  0.21 89.9  0.2 0.35  0.07 0.37 0.01 
aMean  SD (% wb); n=3; ND, not detected. 
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Figure 3.1.  Morphology of uncooked proso millet flour9 

                                                 

 

9 1000x (a) and 5000x (b) magnification, proso millet protein at 1000x (c) and 5000x (d) 

magnification, and proso millet starch at 1000x (e) and 2000x (f) magnification. PB, protein 

body; SG, starch granule; iSG, individual starch granule; cSG, compound starch granule; dSG, 

dented starch granule. 
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Figure 3.2. Morphology of cooked proso millet flour10

                                                 

 

10 500x (a) and 5000x (b) magnification, proso millet protein at 1300x (c) and 8000x (d) 

magnification, and proso millet starch at 1000x (e) and 5000x (f) magnification. PB, protein 

body; Gel SG, gelatinized starch granule. 
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Figure 3.3. Light images of proso miller proteins using confocal microscopy11  

 

                                                 

 

11 Images of uncooked (a-d) and cooked (e-h) proso millet protein bodies under confocal microscopy at 1200x magnification; auto-fluorescence (a, 

e), red fluorescence after staining (b, f), merged auto- and stained fluorescence (c, g), and transmitted light image (d, h); scale bar: 10 µm. 
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Figure 3.4. Morphology of uncooked proso millet protein after digestion12  

  

                                                 

 

12 5000x (a) and 10000x (b) magnification, and cooked proso millet protein after digestion at 

5000x (c) and 10000x (d) magnification. PB, protein body. 
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Figure 3.5. Morphology of uncooked proso millet protein bodies in 8 M urea after 

digestion13 

  

                                                 

 

13 2000x (a) and 5000x (b) magnification, cooked proso millet protein bodies in 8 M urea before 

digestion at 2000x (c) and 5000x (d) magnification, and cooked proso millet protein bodies in 8 

M urea after digestion at 2000x (e) and 5000x (f) magnification. 
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CHAPTER 4:  EFFECTS OF PROCESSING METHOD AND SOLUTE 

INTERACTIONS ON PROTEIN DIGESTIBILITY OF COOKED PROSO 

MILLET FLOUR 

4.1.  ABSTRACT 

Previous studies have reported a substantial decline in in vitro digestibility of 

proso millet protein upon cooking. In this study, several processing techniques and 

cooking solutions were tested with the objective of preventing the loss in protein 

digestibility.  Proso millet flour was subjected to the following processing techniques: 

high pressure processing (200 and 600MPa for 5 and 20 min); germination (96 h); 

fermentation (48 h); roasting (dry heating); autoclaving (121 C, 3 h), and treatment with 

transglutaminase (160 mg/g protein, 37 C, 2 h). To study the interaction of millet 

proteins with solutes, millet flour was heated with sucrose (3-7 M); NaCl (2-6 M); and 

CaCl2 (0.5-3 M). All processing treatments failed to prevent the loss in protein 

digestibility except germination and treatment with transglutaminase, which resulted in 

23 and 39% increases in digestibility upon cooking, respectively, when compared with 

unprocessed cooked flours. Heating in concentrated solutions of sucrose and NaCl were 

effective in preventing the loss in protein digestibility, an effect that was attributed to a 

reduction in water activity (aw). CaCl2 was also successful in preventing the loss in 

digestibility but its action was similar to chaotrops like urea. Thus, a combination of 

enzymatic modification and cooking of millet flour with either naturally low aw 

substances or edible sources of chaotropic ions may be useful in processing of proso 

millet for development of novel foods without loss in digestibility. However, more 

research should be done to determine optimum processing conditions. 
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4.2.  INTRODUCTION 

In order to promote proso millet (Panicum miliaceum) for human food, our 

previous work focused on quality of proso millet storage proteins, panicins. 

Unexpectedly, we found a drastic decline in digestibility of panicins upon cooking due to 

formation of hydrophobic aggregates (Gulati et al., 2017). This discovery could prove to 

be a stymie in the promotion of proso millet as human food. Hence, it is important to 

explore strategies that could prevent the observed decline in digestibility of proso millet 

flour. 

Potential processing methods that would not result in poor protein digestibility 

could be focused on either inhibiting the formation of the hydrophobic aggregates, or 

breaking of the hydrophobic aggregates after they are already formed. The formation of 

the hydrophobic aggregates may be inhibited either by modifying the structure of proteins 

prior to cooking or by creating an unfavorable environment for their formation during 

cooking. Hydrophobic aggregates may be broken after being formed by external stress 

like high pressure.   

Several processing techniques [e.g., roasting, autoclaving, high pressure 

processing (HPP), fermentation, germination] are known to improve protein digestibility, 

functionality, and flavor of cereals by modifying protein structure (Poutanen et al., 2009; 

Tiwari & Awasthi, 2014; Hugo et al., 2003). HPP and autoclaving have been useful in 

either breaking protein aggregates or making them more soluble by disrupting the ionic 

and hydrophobic forces that are essential for the tertiary and quaternary structure of 

proteins (Galazka et al., 2000). Germination and fermentation, on the other hand, result in 

proteolysis and denaturation of storage proteins by intrinsic or microbial enzymes, 
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respectively, which may change protein digestibility (Ghumman et al., 2016; Hammes et 

al., 2005; Szewińska et. al, 2016; Li et al., 2017; Ganzle et al., 2008). Among fermented 

cereal products, sourdoughs formed by lactic acid bacteria and yeast fermentation of 

cereal flour slurries are widely recognized for imparting changes in cereal starches and 

proteins that result in a product with improved structure and stability (Poutanen et al., 

2009).  

Enzymes can also modify protein structure by crosslinking. Transglutaminase 

(TGase) is an enzyme approved for food processing that catalyzes the formation of an 

iso-peptide bond between the ε-amine group of lysine and the γ-amide group of 

glutamine residues (Motoki & Seguro, 1998). TGase has been used either to crosslink 

proteins (Nonaka et al., 1992) or create internal covalent crosslinks (Renzetti et al., 

2008). In our study, we hypothesized that TGase could crosslink panicins and “lock” the 

panicins in their native state so the hydrophobic amino acids would not aggregate upon 

cooking and avert the observed loss in digestibility.  

Protein aggregation can also be inhibited in the presence of co-solutes (e.g., salts 

and sugars). These compounds can create an unfavorable environment for aggregate 

formations by either reducing the water activity or interacting with hydrophobic amino 

acids and preventing them from associating (Ohtake et al., 2011)   

Thus, the objective of this research was to identify techniques that would result in 

high digestibility of proso millet protein after processing. The above processing strategies 

to either break hydrophobic aggregates after they are formed or to prevent the formation 

of the aggregates altogether were tested. 

4.3.  MATERIALS AND METHODS 
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4.3.1.  Samples 

Commercially available dehulled proso millet grains were obtained from Clean 

Dirt Farms (Sterling, CO, USA) and milled using a cyclone sample mill (UDY, Fort 

Collins, CO, USA) fitted with a screen size of 1 mm. The milled flour had a mean 

particle size of 374 m. The flour was kept under refrigerated conditions until further 

analysis. The flour was analyzed for moisture, fat, and ash content using approved 

methods (AACC International, 1999a, b, c, d, e). Protein content was analyzed using a 

nitrogen analyzer (FP 528, Leco, St. Joseph, MI, USA) with a protein factor of 6.25. 

Total starch content was analyzed using a total starch assay kit (K-TSTA, Megazyme, 

Bray, Ireland) following the KOH format. Whole proso millet grains (variety: sunrise) 

used in the study were grown at Scottsbluff, Nebraska, USA.  

4.3.2.  Preliminary heating in water 

Four hundred milligrams of proso millet flour were dispersed in 10 mL of water 

and heated from 25 C to 100 C in 15 °C increments on a magnetic stir plate with 

constant stirring. The temperature was recorded constantly during heating and once the 

temperature was reached the flasks were cooled immediately over ice. In vitro protein 

digestibility was measured on cooled samples. For cooking, before and after various 

treatments discussed in subsequent sections, 400 mg flour/treated samples were dispersed 

in 10 mL water and heated at 100 C for 20 min after accounting for time required to 

reach the temperature.   

4.3.3.  In vitro protein digestibility 

Protein digestibility was measured using the residue method developed by Mertz 

et al. (1984) with modifications as reported by Gulati et al. (2017).  Briefly the cooked 
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flour was dispersed in 60 mL of phosphate buffer (pH:2) containing pepsin (1.5mg/ml) 

and digested for 2 hours at 37C with intermittent mixing. After 2 hours, the reaction was 

stopped by adding 4 mL of 2N NaOH and contents of the flask were centrifuged and 

pellet washed twice with deionized water. After digestion, the pellet was oven dried at 40 

°C overnight and used to measure protein digestibility according to the following 

equation: PD (%) = [(Ni − Nf)/Ni] × 100%, where Ni was the total concentration of N in 

the sample before digestion and Nf was the concentration of N in the recovered pellet 

after digestion.   

4.3.4.  Processing of millet flour and grains 

Millet flour or un-milled grains were subjected to either high temperature 

processing (i.e., dry roasting and autoclaving) or non-thermal processing (i.e., HPP, 

fermentation, germination). Depending on processing technique, heating of the sample to 

test for changes in protein digestibility upon cooking was performed before, during, or 

after the processing step was completed as described in this section. 

Dry Roasting 

Ten grams of proso millet flour was dry roasting by heating at 250-300 C in a 

skillet for 10 min while stirring continuously, cooled, and stored for further analysis.   

Autoclaving 

Four hundred milligrams of proso millet flour was dispersed in 35 mL of water in 

a flask, covered, and autoclaved at 120 C for 3 h. The samples were cooled to room 

temperature and analyzed immediately for protein digestibility.  

Sourdough Fermentation 
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De-hulled millet flour (100 g) was mixed with water (100 g), covered, and 

allowed to stand at room temperature for 24 h, whereupon fresh flour (100 g) and water 

(100 g) were added and the mixture was allowed to stand for another 24 h. One hundred 

grams of this slurry was retained and fresh flour (100 g) and water (100 g) were added 

and fermented for another 24 h. This step was repeated twice more before the sourdough 

starter was ready to be used. To prepare the bread dough 75 g of sourdough starter was 

mixed at speed 2 in a Kitchen Aid stand mixer (Benton Harbor, MI) for 5 min with 150 g 

millet flour, 75 g water, 3 g salt, 22 g sugar, and 10 g oil. Batters were deposited directly 

into 20 X 10 cm greased loaf pans, covered, and proofed for 4 h at room temperature 

before baking at 190 C for 25 min. After cooling, the bread was sliced, frozen, and 

freeze-dried before measuring protein digestibility without further cooking.  

High Pressure Processing 

Millet flour slurry in water (1:10 w/v) was vacuum sealed (Impulse sealer, Wu-

Hsing Electronics, Ltd, Taiwain) in a bag and then placed in a new bag and vacuum 

sealed again at 100 mbar (Model C200, Multivac Inc., Kansas City, MO). The double 

bagged samples were further placed in another vacuum pouch and sealed to avoid any 

contamination or leakage (VacMaster VP215, Ovaerland Park, KS). Some samples were 

heated (100 C, 20 min) prior to vacuum sealing and others were not. The triple bagged 

samples were then subjected to either 200 MPa or 600 MPa pressure for 5 or 20 min at 20 

C in a complete 2 X 2 factorial design. Pressure treatments were carried out using a 2.0 

L Stansted ISO Lab high pressure processing unit (FPG 9400:922, Stansted Fluid Power 

Ltd., Essex, UK). The pressure-transmitting fluid used was a mixture of ethylene glycol 

and water. The temperature increase due to the adiabatic heating effect during processing 
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was approximately 3 C per 100 MPa. After pressure treatment, the millet flour slurry 

was centrifuged at 4,000 x g / 10 C for 15 min and the pellet was freeze dried. The dried 

material was then subjected to protein digestibility assays directly or after cooking in 

water. Thus, HPP treatment was compared for unprocessed flour, flour cooked before 

HPP, flour cooked after HPP, and flour cooked both before and after HPP.   

Germination 

Two hundred and fifty grams of whole proso millet grains were cleaned by hand 

to remove any chaff or dirt and then rinsed in water. The cleaned grains were then soaked 

in 600 mL distilled water for 4 h. Soaked grains were then drained and washed several 

times and then spread onto a double layer of wet paper towels and covered with single 

layer of cheese cloth and paper towels. The covered grains were kept moist by sprinkling 

with water every 2-3 h during the day. The grains were germinated for 24, 48, and 96 h. 

Germinated grains were oven dried at 40 C overnight and milled using cyclone mill. The 

germinated flours (400 mg) were then cooked (100 C, 20 min) in water (35 mL) prior to 

analysis of protein digestibility.  

Treatment of Transglutaminase 

Five grams of proso millet flour or 1 g proso millet protein (80% purity) obtained 

from wet-milling of proso millet according to Gulati et al. (2017) was incubated with 10 

mL of transglutaminase (TGase) (RM transglutaminase, Modernist Pantry, Eliot, ME; 10 

mg/mL in 0.1 M phosphate buffer, pH 7) for 2 h at 37 C in a shaking water bath. After 2 

h, the contents of the tube were centrifuged and washed with phosphate buffer twice and 

centrifuged. The pellet was freeze dried and used for protein and protein digestibility 

measurements under uncooked and cooked conditions.  
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4.3.5.  Electrophoresis 

Electrophoretic patterns of proteins from TGase-treated samples were compared 

with untreated samples both before and after cooking and before and after digestion 

experiments. Proteins were extracted from 50 mg of sample using 1.5 mL of 0.0125 M 

sodium tetraborate buffer (pH 10) containing 1% SDS and 2% 2-mercaptoethanol for 2 h 

at room temperature followed by centrifugation. The supernatant was subjected to SDS-

PAGE analysis using a vertical mini gel system (Mini protein II cell tetra system, Biorad, 

CA) as described by Gulati et al. (2017).  

4.3.6.  Heating with solutes  

Four hundred milligrams of proso millet flour was heated in 10 mL of sucrose 

solution (3-7 M); sodium chloride solution (2-6 M); calcium chloride solution (0.5-3 M); 

honey; maple syrup; and 2% fat milk in a boiling water bath for 20 min. Following 

cooking, the co-solutes were removed by dialysis (MW 12-14 kDa) overnight against 

water. Dialyzed samples were subjected to digestibility studies (cooked and uncooked). 

The water activity (aw) of the cooking solutions was measured using a water activity 

meter (Aqua lab, Model 3TE, Decagon devices Inc., Pullman, WA) at 25 C.  

4.3.7.  Statistical analysis  

The overall treatment effects were first analyzed using ANOVA. Following 

ANOVA, the specific difference among treatments were assessed either by using t-test, 

when comparing two means, or using Tukey’s test for multiple mean comparisons at a 

significance level of 0.05.  All measurements were done in triplicate. All descriptive 

statistics were computed using JMP statistical software (JMP version 12.0.1, SAS 

Institute Inc.). 
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4.4.  RESULTS AND DISCUSSIONS 

4.4.1.  Samples and preliminary heating in water 

Like other cereals, starch (71.90.05%) was the main component of the proso 

millet flour, which was followed by protein (13.60.0%), fat (3.30.1%), and ash 

(1.170.00%). The millet protein fraction extracted using wet milling had protein content 

of 82.50.6%, fat content of 11.90.3%, and ash content of 0.570.00% while no starch 

was detected.  

A slurry of millet flour in water (1:10 w/v) took on an average 42 s to rise by 15 

C (Supplementary Fig. 4.6). The decline in protein digestibility was significant when 

millet flour was heated beyond 70 C, which took about 2.7 min to reach. At 100 C, 

which was reached in 4 min, there was a 20% decline in digestibility of panicins. In our 

previous work, we found that protein digestibility declined when proso millet flour was 

heated at 55 °C or above for 20 min without considering come-up time. Because we did 

not observe a decline in digestibility in this experiment until the sample was heated to 70 

C and then immediately cooled, the results suggest that the decline in digestibility starts 

the moment proso millet proteins achieve high temperature, but continues to decline with 

increased heating time. Thus, for all the control cooking experiments in this study, millet 

flour was cooked at 100 C for 20 min after accounting for a 4-min come-up time.     

4.4.2.  Dry heating  

Dry heating proso millet flour resulted in lower digestibility of proso millet 

proteins compared with wet heating the flour (Table 4.1). Our previous work reported 

decline in digestibility of proso millet proteins, panicins, when cooked in presence of 

even 10% water (Gulati et al., 2017). We expected that heating millet flour by dry heating 
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in the absence of any external water would not show a reduction in protein digestibility. 

Prior to roasting, the proso millet flour had 8% moisture, which must have been enough 

to instigate the same hydrophobic aggregation responsible for causing lower digestibility 

as we have reported before. The low moisture and high heat caused Maillard browning in 

millet flour that may have further reduced the digestibility (Seiquer et al., 2006). This 

confirms that even trace amount of water in millet flour can result in lower digestibility 

when heated.  

4.4.3.  Autoclaving 

Millet flour was subjected to autoclaving for 3 h with the aim of breaking 

hydrophobic aggregates that may form during shorter heating intervals. Prolonged 

heating under pressure did not improve protein digestibility of millet proteins (Table 4.1) 

unlike reports for other cereal proteins (Xia et al., 2012), suggesting very strong 

aggregation in proso millet protein aggregates.  

4.4.4.  Fermentation (sourdough) 

When proso millet flour was made into sourdough bread there was no change in 

protein digestibility compared with proso millet flour simply boiled in excess water 

(Table 4.1). Anecdotally, the sourdough breads made with proso millet flour were 

extremely bitter, potentially due to peptides released as a result of the fermentation 

process; however, this modification did not change protein digestibility. This is contrary 

to other reports where sourdough fermentation results in an appealing flavor and also an 

improvement the protein digestibility of breads made from other grains (Bartkiene et al., 

2012; Hugo et al.,2003).  

4.4.5.  High-pressure processing 
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Millet flour was subjected to HPP under two pressure settings (200 and 600 MPa) 

for two time periods (5 and 20 min). HPP significantly improved the digestibility of 

uncooked millet flour treated at 600 MPa when compared with unprocessed flour (Fig. 

4.1). However, there were no significant differences among HPP processing conditions 

and no conditions resulted in improved digestibility compared with flour that had been 

cooked without HPP. The improvement in digestibility in uncooked flour subjected to 

high pressure could be due to protein denaturation by internal bond breaking (Mozhaev et 

al., 1996) which made the proso protein more digestible by pepsin. However, the change 

caused by HPP was unable to modify the protein structure extensively enough to improve 

digestibility upon cooking.  

4.4.6.  Germination 

Proso millet grains displayed a visible plumule within 12 h of initiating 

germination, which continued to elongate during the 96h experiment. Protein digestibility 

was measured on both uncooked and cooked flour that had been germinated for 24, 48, 

and 96 h. There were no significant changes in protein digestibility of uncooked, 

germinated flours compared with the ungerminated flour (Fig. 4.2). However, there was a 

significant improvement in digestibility of cooked germinated proso flours when 

compared with cooked ungerminated proso millet flour. This suggests that germination 

did induce some change in panicins, either by hydrolysis, denaturation, increased 

solubility, or some other modification, that partially improved digestibility (Singh et al., 

2017; Szewinska et al., 2016).  

4.4.7.  Treatment with transglutaminase 



 89 

Millet flour and extracted protein fraction were both treated with commercial 

TGase and their nitrogen content before and after digestion was measured (Fig. 4.3). 

There was a significant increase in the protein concentration of enzymatically treated 

millet flour. This increase could be due to the cross-linking of albumins in the flour 

(Renzetti et al., 2008), rendering the proteins insoluble and thus not washed away 

following enzyme treatment and before protein digestibility experiments. In contrast, 

there was no change in protein content of treated or un-treated protein fraction, which did 

not contain albumins.  

There was significant improvement in digestibility of both uncooked and cooked 

flour and protein samples after TGase treatment (Fig. 4.3). In the uncooked samples, 

protein digestibility increased by 19% and 29% in the enzymatically treated flour and 

protein samples, respectively, compared with untreated flour, suggesting a structural 

modification of proso proteins making them easily accessible for hydrolysis by pepsin. 

There was still decline in digestibility of both flour and protein TGase-treated samples 

upon cooking, but the decline was not as severe as observed for untreated samples when 

cooked. Indeed, the protein digestibility increased by 39% and 52% in the enzymatically 

treated flour and protein samples, respectively, compared with cooked flour that had not 

been treated with TGase. There have been contradictory reports on effects of 

transglutaminase treatment on digestibility of proteins. While Romano et al., (2016) 

reported a decline in digestibility of transglutaminase treated proteins, Havenaar et al, 

(2013) observed no difference in digestibility, further, Hassan et al., (2007) observed that 

TGase treatment can resist heat induced aggregation in pearl millet proteins but they 

didn’t measure the digestibility of crosslinked polymers. In our study, we observed an 
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improvement in protein digestibility after TGase treatment potentially due to 

modification of protein structure with reduced aggregation ability and partial loss in 

digestibility upon cooking.  

To visualize changes that occurred in proso millet proteins upon treatment with 

TGase, SDS-PAGE was run on both treated and untreated samples (Fig. 4.4). 

Unfortunately, treatment of proso millet flour with TGase did not show any noticeable 

change in proso millet protein profile (lane 2) other than among some faint albumin 

bands when compared with untreated millet proteins (lane 1). However, the improvement 

in digestibility was clearly evident by the near disappearance of all protein bands of 

digested millet flour after treatment with TGase (lane 6) while for untreated millet flour 

there was still some protein observed in the 20 kDa range (lane 2).  

In our previous study, we showed that the main prolamin band (20 kDa) of proso 

millet protein is not extracted after cooking using borate buffer with SDS and 2-ME. 

Here, similar results were seen with cooked TGase treated millet flour proteins. This 

suggests that there was formation of hydrophobic aggregates even after TGase treatment; 

however, based on the observations digestibility is still slightly restored. Thus, TGase 

modification could be a potential technique to improve protein digestibility of cooked 

proso millet and develop novel millet based products, but requires some further 

investigation.    

4.4.8.  Co-solutes 

Cooking in increasing concentrations of sugar resulted in improved protein 

digestibility when compared with cooking in water (Fig. 4.5). This reduction was a 

function of the aw of the sugar solution, which ranged from 0.93 (3 M) to 0.68 (7 M).  
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Further, when proso millet flour was heated in honey or maple syrup, which have 

naturally low aw, the protein digestibility fell right along the regression line for the sugar 

solutions.  

Various studies have reported that sugars and polyols can reduce aggregation of 

proteins by enhancing the stability of proteins (Ohtake et al., 2011). These co-solvents are 

categorized as ‘protecting osmolytes’ (Liang et al., 2010). The presence of these 

osmolytes increases internal interactions in proteins and thereby increases the 

denaturation temperature such that even with continuous heating the protein remains in 

its native conformation (Arakawa et al., 1985; Sharma et al., 2012).  

In order to analyze the effect of other co-solutes, millet flour was heated in NaCl, 

and CaCl2 solutions at different concentrations and their aw was used as a predictor of 

digestibility of cooked millet flour (Table 2). The measured digestibility of millet flour 

following cooking in these solutions was predicted well by the regression equation 

created with the sucrose solutions, except for 3 M CaCl2 and urea. Thus, NaCl probably 

improved protein digestibility simply by a reduction in aw as explained for sucrose. In 

contrast, cooking in 3 M CaCl2 resulted in 80% digestibility which was higher than the 

predicted value (67%) based upon aw of the solution. This difference could be due to 

interactions of Ca2+ ions with proteins (Ohtake et al., 2011). Specifically, at high 

concentrations Ca2+ has an affinity towards hydrophobic groups in proteins, which 

prevents aggregation in a manner similar to urea and guanidine HCl (Timasheff, 1993; 

Tuhumury et al., 2016).  

Proso millet flour was cooked in 2% fat milk, which is a good edible source of 

calcium (0.03 M Ca2+; USDA nutrient database, NDB # 01079). We found that cooking 



 92 

in milk resulted in a slight, but significant, improvement in digestibility (40.3  0.6 %) 

when compared with cooking in water (34.1  1.0%). These results were contradictory to 

Kovalev et al. (1974) who reported only slight loss in protein digestibility of proso millet 

when cooked in milk, although the researchers used a combination of pepsin and trypsin 

for digestion and the method used for digestibility measurements was very different from 

that employed herein. 

4.5.  CONCLUSION 

To prevent the decline in digestibility of proso millet proteins upon cooking, 

various processing strategies were tested. Subjecting millet proteins to severe conditions 

such as high pressure or prolonged heating did not prevent or break the cooking-induced 

hydrophobic aggregates responsible for lower digestibility. This confirms a very strong 

interaction between hydrophobic amino acids in proso millet proteins. Germination 

slightly improved the digestibility upon cooking when compared to cooked non-

germinated flour, while fermentation had no effect. Treatment of millet proteins with 

TGase modestly improved the digestibility of proso millet proteins upon cooking. 

Cooking in low water activity solutions of sucrose and NaCl prevented the loss in 

digestibility. Solutions containing Ca2+ ions also prevented the loss in digestibility, and 

the improvement in digestibility was better than would be predicted based on water 

activity alone. These strategies suggested that a combination of different processing 

techniques and cooking conditions may help in the development of novel proso millet-

based food products without the low protein digestibility characteristic.  
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Table 4.1. Effect of different processing techniques on protein digestibility of proso 

millet flour.A 

Processing technique Protein digestibility (%) 

Unprocessed 75.2 ± 0.8 a 

Cooked in water 34.1 ± 0.9 b 

Dry heating 28.2 ± 1.0 c 

Autoclaving 35.7 ± 1.5 b 

Sourdough bread  32.3 ± 2.1 bc 

AMeanSD, n=3; means marked with different lower-case letters are significantly 

different; Tukey’s test, =0.05. 
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Table 4.2. Protein digestibility of proso millet flour in solutions of different water 

activity.A 

  Protein digestibility (%) Diff. actual 

vs. predicted 

(%) 
Sample 

Water 

activity 
Uncooked 

Cooked 

actual 

Cooked 

predictedB 

2 M NaCl 0.93 78.4 ± 1.4 a 41.9 ± 1.6 f 43.8 4.53 

4 M NaCl 0.83 80.3 ± 1.0 a 53.3 ± 1.6 e 54.9 3.02 

6 M NaCl 0.75 80.6 ± 1.0 a 61.6 ± 0.7 d 63.4 2.92 

0.5 M CaCl2 0.98 76.9 ± 1.9 ab 40.6 ± 0.5 f 38.4 5.42 

1 M CaCl2 0.95 73.5 ± 1.0 bc 39.9 ± 1.5 f 42.0 5.26 

2 M CaCl2 0.86 72.7 ± 2.2 c 50.5 ± 1.0 e 52.2 3.37 

3 M CaCl2 0.72 79.4 ± 1.2 a 80.2 ± 1.3 a 66.9 16.6 

8 M Urea 0.89 82.0 ± 1.9 a 78.6 ± 0.2 a 48.9 37.8 

AMeanSD, n=3; means marked with different lower-case letters are significantly 

different; Tukey’s test, =0.05. 
BPredicted based on regression equation % Protein digestibility = -108*Aw +144.7 (Fig. 

4.5). 
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Figure 4.1. Effect of high pressure processing (HPP) on protein digestibility of millet 

flour14  

 

  

                                                 

 

14 Error bars denote standard deviation (n=3); *significantly different from unprocessed flour; 

there were no differences among cooked samples (both HPP-treated and untreated). 
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Figure 4.2. Effect of germination time on protein digestibility of uncooked and cooked 

proso millet flour15  

  

                                                 

 

15 Error bars denote standard deviation (n=3); *significantly different from un-germinated (0 h) 

cooked millet flour; Tukey’s multiple comparison test; α=0.05. 
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Figure 4.3. Effect of transglutaminase treatment on protein digestibility of millet flour 

(A) and protein (B)16 

  

                                                 

 

16 Error bars denote standard deviation (n=3); *significantly different from the untreated 

counterpart. 
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Figure 4.4. SDS-PAGE gel of proso millet flour17 

  

                                                 

 

17 Lane 0, MW marker; 1, proso millet flour; 2, proso millet flour treated with transglutaminase; 

3, cooked untreated flour; 4, cooked treated flour; 5, uncooked untreated flour after digestion; 6, 

uncooked treated flour after digestion; 7, cooked untreated flour after digestion; 8, cooked treated 

flour after digestion. 
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Figure 4.5. Effect of sugar solutions and their water activity on protein digestibility of 

proso millet flour18  

 

  

                                                 

 

18 Error bars denote standard deviation (n=3); some error bars were too small to plot. 
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Figure 4.6. (Supplementary) Time taken by millet flour slurry to reach respective 

temperature and protein digestibility of millet flour at that temperature19  

  

                                                 

 

19 Error bars show standard deviation (n=3); some error bars were too small to plot; a,b,cMeans 

marked with different alphabets indicate significant differences among digestibility series and 

time series with increasing temperature (Tukey’s adjustment; α=0.05) 
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CHAPTER 5:  COMPARING IN-VITRO PROTEIN DIGESTIBILITY OF 

COOKED PROSO MILLET (PANCIUM MILIACEUM L.) CULTIVARS AND 

RELATED SPECIES FROM 21 DIFFERENT COUNTRIES.  

5.1.  ABSTRACT 

Thirty-three accessions of proso millet with different countries of origin were 

screened for their protein digestibility after cooking in order to identify samples with high 

digestibility. Seeds were also sown in the greenhouse and were evaluated for protein 

content and digestibility. The protein digestibility of all samples ranged from 26 to 57% 

with an average digestibility of 32%. Only 26 of the 33 accessions could successfully 

grow in the greenhouse. The protein content and digestibility of all greenhouse grown 

seeds were higher than originally procured seeds. There were no apparent differences in 

protein profiles of samples with lowest, intermediate and highest digestibility among all 

cooked samples when analyzed using SDS-PAGE. The main prolamin band of these 

samples were further digested by chymotrypsin-trypsin and subjected to LC-MS/MS 

analysis. Maximum peptides in all samples matched with proteins from Panicum hallii. 

There was a positive correlation between the 18-20 kDa peptides identified with the 

digestibility of samples and a negative correlation with 24 kDa peptides and digestibility. 

Some other species of genus Panicum, such as little millet, switchgrass and panicgrass 

were also analyzed in the study. These species had protein content slightly higher than 

proso millet but a low digestibility upon cooking. This suggests that the low digestibility 

upon cooking could be an inherent property of genus Panicum. The results from this 

study showed variability in digestibility of proso millet samples grown in different 
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countries, this variation in the data can form basis for in-depth analysis of proso proteins 

that may help in developing new cultivars with higher digestibility upon cooking.  

5.2.  INTRODUCTION 

Panicum is a large plant genus that includes more than 400 species of grasses 

(Roshevits, 1980) with common ones being P. miliaceum (proso millet); P. sumatrense 

(little millet); P. virgatum (switchgrass), P. capillare (witchgrass); P. halli; and P. 

hirticaule (panicgrass).  

Among these, proso millet, and to some extent little millet, have economic 

importance given their application mostly as bird feed and some share in human food 

industry (Sabir and Ashraf, 2007).  

Proso millet is one of the oldest domesticated crops with recorded origin in China 

(Bettinger et al., 2007) and wide culinary presence in Asian countries. From Asia, the 

cultivation of proso millet spread to Eurasia and eastern Europe and was introduced in the 

US by German-Russian immigrants at the end of 19th century (Habiyaremye et al, 2017). 

At present USDA- National Plant Germplasm System (USDA-ARS GRIN Global) has 

record of almost 700 accessions of proso millet grown in almost every country in the 

world. This suggests the excellent adaptability of proso millet to grow in diverse 

conditions. Apart from that, proso millet is an excellent agricultural aid especially for 

wheat, corn and sorghum. It is often employed as a rotational crop as it can replenish the 

soil nutrients, and preserve deeper soil water. It is also used to manage grass weeds, 

diseases etc. and have been a common choice as an emergency catch crop (Rajput and 

Santra, 2016). Moreover, proso millet is a gluten free crop with good amount of protein 

which is rich in essential amino acids, and also contain good amount of fiber, digestible 
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starches and non-nutritive beneficial compounds like phenolics etc. Over the years, the 

food uses of proso millet has declined and at present the majority of proso grown in US is 

used as bird or animal feed. The limited human consumption of proso millet restricts its 

growth resulting in agricultural losses. 

In order to promote proso millet for human consumption, our previous work 

focused on quality evaluation of proso millet proteins. We found a drastic decline in 

protein digestibility under thermal processing due to hydrophobic aggregation (Gulati et 

al., 2017). This could prove to be a great hurdle in promoting the crop as human food. 

One way to combat this issue is to develop proso based products with novel processing 

techniques that could modify the proteins and prevent loss in digestibility. Alternatively, 

we can look for proso millet cultivars with naturally mutated proteins not susceptible to 

form hydrophobic aggregates and use them to modify the commonly grown cultivars. 

The current research was focused on the latter.    

Given the adaptability of proso millet to grow in different geographical regions 

and climates we expected to find variation in protein digestibility of proso millet samples 

upon cooking with some potentially highly digestible mutants too. Thus, 33 accessions of 

proso millet with different seed colors and geographical origin were screened for their 

protein digestibility after cooking. Further, Panicum is a big genus with non-edible 

grasses having good protein content, in order to understand if the observed property of 

proso millet proteins is restricted to the millet variety or is a characteristic of the genus 

we also tested some non-edible grasses from genus Panicum like witchgrass, switchgrass, 

panic grass etc. for their protein digestibility. Also, since proso millet is usually grouped 

with other millet varieties (finger, pearl, foxtail etc.) owing to their efficient growth 
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parameters, we wanted to investigate the protein digestibility of other millets to 

understand their protein behavior after cooking.  Thus, the principal objectives of this 

study were to find 1) Is there a significant difference in digestibility of proso millet 

cultivars with different countries of origin? If so, can we expect samples with natural 

mutation leading to high digestibility? and 2) Is the observed low digestibility upon 

cooking a property of the genus Panicum or just a peculiar characteristic of proso millet 

proteins? The ultimate objective was to better understand the proteins in proso millet in 

order to correct the undesirable loss in digestibility and promote its consumption as 

human food. 

5.3.  MATERIALS AND METHODS 

5.3.1.  Millet seeds procurement, preparation and growth in greenhouse 

In total, 35 samples of proso millet and 10 samples of related species were used in 

the study (Table 5.1). In short, 33 of the proso millet samples with different countries of 

origin were obtained from the USDA-ARS North Central Regional Plant Introduction 

Station (Ames, IA, USA). Two commercial de-hulled samples of proso millet were also 

used in the study, one of them was obtained from Clean Dirt Farms (Sterling, CO, USA) 

and other one was obtained from Ukraine. Three samples of related species (little millet, 

panicgrass, and witchgrass) were obtained from the USDA-ARS North Central Regional 

Plant Introduction Station. Additionally, three samples of switchgrass were obtained from 

the USA (two from Nebraska and one from Illinois), and whole finger millet, pearl millet, 

and foxtail millet samples were obtained from the USA (Nebraska). Finally, a 

commercial sample of de-hulled foxtail millet was obtained from China. Different 
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countries from which proso millet or related species samples were obtained has been 

highlighted in Fig 5.1. 

The 33 proso millet accessions that were obtained from USDA-ARS were grown 

in a greenhouse at the University of Nebraska-Lincoln (First 33 samples in Table 5.1). 

Ten seeds of each cultivar were planted in a soil mixture (Sunshine MVP, Sun Gro 

Horticulture, Agawam, MA). The seeds started germinating one week after planting and 

were moved to four different pots, one germinated seed per pot and grown under 16 h day 

length cycle with day time temperature of 28-30 C and night time temperature of 20-23 

C and were watered every alternate day. The flowering stalks of each plant were covered 

with paper bags to facilitate self-pollination.  The developed seeds were allowed to dry 

on the plant and the seeds were harvested 110-120 d after planting. All seeds were kept at 

4 C until further analysis. Different characteristics like plant height, yield, flowering 

days etc. were recorded for plants growing in greenhouse and is shown in Table 5.1. The 

original seeds and greenhouse-grown seeds were milled using a ball mill (Genogrinder; 

Thermoscientif, Waltham, MA) for 120 s at 1600 rpm. The milled samples were saved in 

polyethylene bags at 4C until further analysis.  

5.3.2.  Protein concentration 

Protein concentration of all samples (original and greenhouse grown) were 

analyzed by combustion using a nitrogen analyzer (FP 528, Leco, St. Joseph, MI, USA) 

with a protein factor of 6.25. 

5.3.3.  In-vitro protein digestibility 

Two hundred milligrams of milled sample were cooked in 10 mL water at 100 C 

for 20 min (time recorded after temperature was reached). The cooked samples were 
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cooled to room temperature and immediately used for digestibility measurements. Protein 

digestibility of milled seeds from originally procured samples and greenhouse-grown 

samples were analyzed after cooking using the residue method described in Gulati et al. 

(2017). In brief, 25 mL of 0.1 M phosphate buffer (pH: 2) containing pepsin (2.2 mg/mL) 

was added to each cooked sample tube and digested for 2 h at 37 C. The reaction was 

stopped using 2 M NaOH and the contents centrifuged with repeated washing of the 

pellet with water. The pellet was dried overnight and used for measuring residual 

nitrogen content by combustion. Protein digestibility was calculated according to the 

following equation: PD (%) = [(Ni − Nf)/Ni] × 100%, where Ni was the total N in the 

sample before digestion and Nf was the amount of N in the recovered pellet after 

digestion.  

5.3.4.  Electrophoresis 

Total proteins from milled un-cooked samples (50 mg) were extracted with 1.5 

mL of 0.0125 M sodium tetraborate buffer (pH 10) containing 1% SDS and 2% 2-

mercaptoethanol for 2 h at room temperature followed by centrifugation. The supernatant 

was subjected to SDS-PAGE analysis using a vertical mini gel system (Mini protein II 

cell tetra system, Biorad, CA). Protein extract was mixed with sample buffer in the ratio 

of 4:1 and loaded along with molecular weight markers (BioRad Precison Plus Dual color 

protein standard, 10-250 KDa) on to gel system with following specifications. The 

resolving gel consisted of 15 % polyacrylamide in 1 M Tris HCl buffer (pH 8.8), and 1% 

SDS (w/v). The stacking gel contained 5% polyacrylamide in 0.63 M Tris HCl buffer (pH 

6.8), and 1% SDS (w/v). TEMED (0.05% v/v) and ammonium persulfate (0.1 v/v) were 

used to polymerize the gels. Electrophoresis was done at 70 V for 120 min in tank buffer 
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consisting of 1.9 M Tris, and 1% SDS (w/v). After electrophoresis, the gels were stained 

with 20 mL of coomassie brilliant blue reagent (0.25%) containing isopropanol and acetic 

acid for 60 min. De-staining was achieved by washing gels several times in a solution of 

10% acetic acid and 30% methanol in water. Gel images were captured and analyzed 

using Image Analyser (BioRad Molecular Imager, Gel Doc-XR system, CA).  

5.3.5.  In gel protein digestion and LC-MS/MS analysis 

23 kDa bands from SDS-PAGE gels were used for in-gel chymotrypsin-trypsin 

digestion and then subjected to LC-MS/MS analysis in duplicate. Gel bands were excised 

from the gels, reduced with 10 mM DTT, alkylated with 20 mM iodoacetamide and then 

fully de-stained before digestion. The solutions were removed by centrifugation. For 

digestion, 200 ng of chymotrypsin was added to each sample and incubated overnight at 

37 C. The peptides were then liberated from the gel pieces using 2% acetonitrile/1% 

formic acid solution, then 60% acetonitrile. To increase coverage, the extracted peptides 

and the gel pieces left from the chymotrypsin digestion were re-combined and 200 ng of 

trypsin was added and the tubes incubated at 37C overnight. The chymotrypsin/trypsin 

digested peptides were pooled and separated on a rapid separation liquid chromatography 

system (Dionex U3000 nano) equipped with a C18 column (0.075 mm x 250mm Waters 

CSH) using a 1 h gradient of 0.1% formic acid and 100% acetonitrile at a flow rate of 

300 nl min-1 and detected using a mass spectrometer (Q-Exactive HF; Thermo Fisher 

Scientific).  

Data were analyzed with Mascot software (Matrix Science, London, UK; version 

2.6.1), which was set up to search the cRAP_20150130 and NCBI databases (selected for 

Viridiplantae, January 2018, 5845301 entries). Mascot was searched with a fragment ion 
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mass tolerance of 0.060 Da and a parent ion tolerance of 10.0 PPM. De-amidation of 

asparagine and glutamine, oxidation of methionine and carbamidomethyl of cysteine 

were specified in Mascot as variable modifications. Scaffold (version 4.7.5, Proteome 

Software Inc., Portland, OR) was used to validate the MS/MS based peptide and protein 

identifications from both replicates. Protein identifications were accepted if they could be 

established at greater than 99.0% probability and contained at least 2 identified peptides 

using a false discovery rate of <1%.   

5.3.6.  Statistical analysis 

The overall difference between protein concentration and protein digestibility of 

all samples were first analyzed using ANOVA. Following ANOVA, the specific 

difference among all samples were assessed using Tukey’s test and differences among the 

original seeds and greenhouse grown seeds for same samples were analyzed using t-test, 

at a significance level of 0.05. Pearson’s correlations were computed between protein 

content, digestibility, percent change in protein content and digestibility of original and 

greenhouse-grown seeds. Separate correlations were computed between each identified 

protein from MS analysis and digestibility after cooking for selected samples. The results 

obtained was used to construct a principal component analysis (PCA) score plot. All 

descriptive and inferential statistics were computed using JMP statistical software (JMP 

version 12.0.1, SAS Institute Inc.) 

5.4.  RESULTS AND DISCUSSION 

Protein content and digestibility after cooking was measured in 45 different 

samples including proso millet and related species (inedible grasses from the Panicum 

genus and other millet varieties) with different geographical origins. From the original 
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pool of seeds, 33 proso millet samples were planted in the greenhouse to have 

understanding of growth pattern of proso millet and observe morphological 

characteristics of varieties with different origin. Also, by growing seeds under controlled 

environmental conditions of green-house we can be sure that the observed results are 

genetic traits of plants and not environment driven effects.  The ultimate objective of this 

work was to identify even a single proso millet sample whose digestibility was not 

adversely affected by cooking as observed earlier (Gulati et al., 2017, Gulati et al., 2018).  

5.4.1.  Morphological characteristics of original seeds and greenhouse-grown seeds 

The 35 proso millet samples included 5 samples with a red seed color, 2 with an 

orange seed color, 2 with a grey seed color, and the remaining with a white seed color. 

The other samples studied that belonged to the Panicum genus were little millet and the 

inedible grasses switchgrass, witchgrass and panicgrass, which are mostly used for bio-

fuel production (McLaughlin and Kszos, 2005). The other millet varieties studied were 

foxtail, finger, and pearl millets, which do not belong to the Panicum genus but are 

characterized as drought-resistant, sustainable crops similar to proso millet (Table 5.1). 

Only the proso millet samples were planted in the greenhouse (First 33 samples in 

Table 5.1). All proso millet varieties grew in the greenhouse with variable yield (low to 

good) except sample #11 from Afghanistan, which did not germinate. Additionally, 

sample #4 (China, red), #8 (Canada, grey), #9 (Czech, grey), #22 (Kazakhstan, white), 

#31 (US, white), and G32 (US, white) did not produce enough seeds for analysis. Thus, 

26 greenhouse-grown proso millet samples were available for analysis of protein 

concentration and protein digestibility.  
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The height of the greenhouse plants ranged between 38 cm and 109 cm with a 

mean height of 61 cm, similar to other reports for proso millet (Trivedi et al., 2015). All 

plants from Afghanistan and Turkey were tall (above average height) while plants from 

China and US had below average height. Some plants started flowering within 26 d of 

planting while others took up to 48 d, with an average of 37 days to flowering. This is 

similar to observations by Upadhyaya et al. (2011). Plants with different panciles (lateral, 

vertical loose, and dense type) were observed (Wang et al., 2016) with most plants 

having a lateral panicle. There was no relation between the plant yield with region of 

origin, seed color, or plant height. The maximum yield was observed for sample #15, 

which also had a relatively large seed size, which was followed by sample #30. On the 

other hand, a sample from Ukraine (#17) flowered first (26 d) but produced the smallest 

seeds and had shortest stature. Apart from the common characteristics, a peculiar feature 

was observed for sample #3 from China, in which two seeds developed in one spikelet. 

The plant had very low yield with 5-6 spikes and only 8-10 spikelets per spike, but each 

spikelet had two mature seeds arranged back to back. While there is no report of such 

observation in proso millet or other millet varieties, similar multiple seed spikelets have 

been observed in maize and sorghum varieties from Asia (Kempton, 1913; Karper, 1931), 

which is considered a growth abnormality due to insufficient utilization of resources by 

the plant. The broad range of different characteristics of plants in our study suggests wide 

genetic diversity in used samples. 

5.4.2.  Protein concentration of proso millet samples 

The protein concentration of the originally procured proso millet seeds ranged 

from 9.3 to 15% with an average value of 12.1%. The protein concentration of the 
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greenhouse-grown seeds was generally higher and ranged between 12.2 and 18.1% with 

an average value of 14.4% (Fig. 5.2). There was no correlation between original seed 

protein content and greenhouse-grown protein content, but there was a significant 

negative correlation (r2 = -0.74) between original seed protein and the percent change in 

protein content [(original-greenhouse)/original*100%] while a positive correlation (r2 = 

0.51) was observed between greenhouse seed protein and percent change in protein 

(Supplementary Fig 1). The highest increase in protein content was observed for samples 

from Middle East with up to 40% increase in protein content but the increase was not 

consistent for all the samples of the same region suggesting a genotype effect.  

The increase in protein content in greenhouse-grown seeds compared with the 

originally procured samples can be due to known negative correlation between grain 

yield and grain protein content as observed for various cereals (Simmonds, 1995; Bogard, 

2010) which can be associated with N dilution effect by carbon based compounds 

(Acreche and Slafer, 2009). The growth of these plants in the greenhouse was done under 

commonly used soil and fertilizer conditions with no modifications to optimize millet 

plant growth. The objective of this experiment was to observe growth pattern of different 

varieties of proso millets under same environmental conditions without any focus on 

yield, this resulted in reduced yield when compared to field growth and thus increased 

protein content. The deviations from this common phenomenon can be linked to 

genotype by environment interactions which at times can result in no change or have 

more adverse effect (Oury et al, 2003).  

5.4.3.  In vitro digestibility of proso millet samples after cooking 
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As with protein concentration, the protein digestibility of greenhouse-grown 

samples was higher than the originally procured seeds except for samples 2, 6, 12, 15, 16, 

21, 27, and 30, for which there was no difference (Fig. 5.3). There was a positive 

correlation between digestibility of the originally procured seeds and the greenhouse-

grown seeds (r2 = 0.78); original seed protein and percent change in protein digestibility; 

greenhouse seeds protein digestibility and % change in protein digestibility (r2= 0.58) but 

no correlation between original seeds protein digestibility and percent change in protein 

digestibility (Supplementary Fig 5.7).  

The protein digestibility after cooking for various proso millet samples ranged 

between 26% and 57% with an average digestibility of 32%. There was a significant loss 

in digestibility of all proso millet samples on cooking when compared with the uncooked 

control (data from Gulati et al., 2017 for commercial proso millet sample from US) (Fig. 

5.3.) due to hydrophobic aggregation as reported before (Gulati et al., 2017). Sample #6 

(US, orange) had the lowest digestibility for both original and greenhouse grown sample 

while sample #20 (China, white) had highest digestibility, 35% more than average 

digestibility. A peculiar observation was made for one sample from India (#19) which 

had the average digestibility when measured from originally procured seeds but after 

growth in the greenhouse the digestibility was much higher than the average, almost 

similar to sample #20. This sample took the longest time to flower (48 d) but was allowed 

to mature for the same length of time as all other plants, the observed high digestibility in 

this sample could be due to highly digestible water-soluble albumins and globulins rather 

than storage proteins, these water-soluble fractions of cereal proteins are mostly present 

during early stages of grain development and are down-regulated towards grain maturity 
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when prolamins (storage proteins) start increasing (Dong et al., 2012). Nonetheless, the 

relatively high digestibility of samples 19 and 20 suggested that these samples might 

have different protein profiles compared with the other samples and demands further 

investigation to understand the changes that could be used to develop a proso variety with 

high digestibility even on cooking.  

5.4.4.  Comparing protein content and in vitro digestibility of proso millet samples 

to related species 

The protein concentration of edible little millet and inedible grasses from the 

Panicum genus (switchgrass, panicgrass) was either higher or similar to average protein 

content in proso millet samples (Fig. 5.4A). On the other hand, all the other millet 

varieties not belonging to the Panicum genus (foxtail, finger and pearl) had significantly 

lower protein than the average protein in proso millet.   

On comparing the protein digestibility of these samples after cooking the 

observed results were completely reversed (Fig. 5.4B). All Panicum samples (edible and 

inedible) had low protein digestibility upon cooking when compared with average 

digestibility from proso samples. The lowest digestibility was for the switchgrass 

samples, with the sample from the United States having the highest protein (16%) but 

lowest digestibility (16%). The protein digestibility of the other millet varieties was 

higher than cooked proso millet average and for pearl and finger millet it was similar to 

uncooked proso millet. Both commercial and non-commercial samples of foxtail millet 

had about 60% digestibility, which was higher than cooked proso millet, but not as high 

as observed for other cereals (Kulp et al., 2000).  Similar results in digestibility for pearl 

and finger millet has been reported before (Ramachandra et al, 1977; Ejeta et al., 1987). 
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Further, the low digestibility of foxtail millet when compared with other millets could be 

a characteristic of the Panicoideaae subfamily to which both foxtail and proso millet 

belong but a digestibility of only up to 35% as observed for majority of proso samples 

and related species of Panicum genus indicates a more specific characteristic of this 

genus.  

5.4.5.  SDS-PAGE 

 Based on the digestibility results, commercial de-hulled proso millet 

sample from US (#38) with almost average digestibility; #6 from US with low 

digestibility; #30 from US with intermediate digestibility; and #19 and #20 from India 

and China with high digestibility were selected for SDS-PAGE. Proteins were extracted 

from both original and green house grown samples selected based on digestibility, except 

for commercial sample for which only original seed flour was used (Fig 5.5A), also 

protein profiles of non-proso samples were compared (Fig 5.5B).  There were no 

prominent differences in protein profiles of the control sample (lane 1) with other proso 

samples (lane 2-9) except slightly lighter high MW bands in the control. These represent 

albumins and globulins, which may have been removed during the de-hulling process of 

the control, which did not take place for the other samples. For all the proso millet 

samples, the major protein band at ~23 KDa, representing proso millet prolamins, 

panicin, was previously identified as the protein fraction that was associated with the 

poor digestibility upon cooking (Gulati et al. 2017). There were no visual differences in 

banding pattern for lanes 2-5 which were proteins from selected samples with the low and 

moderate digestibility. Lanes 6 and 7 were proteins from the sample from India (#19) that 

showed a huge change in digestibility when measured from originally procured seeds 
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compared with greenhouse-grown seeds. The proteins from these samples appeared to 

have a slightly thinner prolamin band. Lanes 8 and 9 were the proteins from sample 20 

from China, which had consistently the highest digestibility among all samples for both 

original and greenhouse-grown seeds. The protein profile from these samples was similar 

to the other proso samples, but may have a slightly thinner prolamin band compared with 

other samples.  

Overall, the protein profiles of all the proso samples did not indicate a major 

difference in proteins even though the samples had different digestibility upon cooking 

(Fig. 5.5A). This indicates that the differences in proteins might be at a molecular level 

that SDS-PAGE could not capture. Further, based upon the protein profile of related 

species almost all of the samples from the panicodeae subfamily samples [lane 10-12 and 

15-16 in Fig 5.5(B)] had lower MW prolamins similar to proso proteins which also 

appeared as one thick band. Lane 11(little millet) and 15 (witchgrass) had a protein 

profile very similar to proso proteins due to genus similarity but not so for lane 16 

(switchgrass). This was not observed for the other samples, such as pearl millet (lane 13) 

and finger millet (lane 14), which contained many protein bands between 20 and 25 kDa. 

All this suggests that that the MW of prolamin storage proteins is similar and appears as 

one thick band. This band could be a single low digestible protein with no subunits but 

could also be a cluster of many subunits with very similar MW, migrating together upon 

electrophoresis.  

5.4.6.  Protein identification 

The main prolamin band of SDS-PAGE gel (23 KDa) from one commercial (#38) 

and 3 proso millet samples grown in the green house (#6: lowest digestibility; #30: 
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intermediate digestibility; and #20: highest digestibility) were subjected in duplicates to 

LC-MS/MS analysis after trypsin/chymotrypsin digestion.  

Thirty-nine proteins from different plant species were identified that had matching 

peptides to at least one of the proso millet sample tested (Table 5.2). About half of the 

identified proteins matched to different accessions of Panicum hallii. P. hallii, commonly 

known as Hall’s panicgrass is an inedible grass commonly used as a genetic model for 

studying biofuel crop switchgrass (Meyer et al., 2012). At present, it is the only crop with 

publically available transcriptomic data from the genus Panicum.  Among the four proso 

samples we tested, #20 had the maximum peptide matches with P. hallii but other three 

samples were not far behind. There was also a significant correlation between protein 

digestibility of samples and proteins identified from three accessions of P. hallii. There 

was a positive correlation of digestibility with 18 and 19 kDa peptides of P. hallii and 

negative correlation with higher 24 kDa band (Table 5.2). This could be an indication that 

the prolamin band from proso proteins might be a cluster of sub units and high MW 

subunit is actually responsible for lower digestibility but this hypothesis needs to be 

validated. Further, three common unique peptide sequence identified from P. halli protein 

matching with all proso samples were: SPIAAVGYEHPIVQSY; NQLAVAVANSAAF; 

and NQLAVANPAAIL. One striking observation from the amino acid sequence was that 

half of the amino acids were hydrophobic and arranged in clusters (hydrophobic amino 

acids in bold). This was not observed for proteins identified from other plants but only P. 

hallii. In our previous study, we showed that hydrophobic aggregation was the major 

cause of low digestibility of cooked proso millet proteins (Gulati et al., 2017). These 
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peptide sequences with many conjunctive hydrophobic amino acids could be a potential 

reason for the formation of hydrophobic aggregates.  

After P. hallii, the next highest match was to proteins from foxtail millet (Setaria 

italic) and few-flowered panicgrass (Dicanthelium oligosanthes). Both these species 

belong to the same sub family as proso millet. A significantly high positive correlation 

(0.92) was observed between a 20 kDa protein band of a foxtail millet accession with 

digestibility of the samples. Further, a high positive correlation (0.95) was also observed 

between a 9 kDa peptide of panicgrass with digestibility but this protein had peptide 

sequence matching only with sample #20.  Also, interestingly only one replicate of 

sample #20 had matching peptides to the starch synthase enzyme of proso millet. Both 

these observations might point to the uniqueness of sample 20 which had highest 

digestibility among all samples.  

Proteins from maize and sorghum were also identified in our proso millet 

samples; however, the matches were not to the storage proteins but instead to the histones 

and embryo specific proteins, suggesting that storage proteins of proso millet are indeed 

quite different from zeins and kafirins.  

Further, the correlations between identified proteins and digestibility was used to 

plot a PCA score plot (Fig. 5.6) and based upon the sample loadings, both replicates of 

sample #20 had positive loadings of component 1 while all other samples had negative 

loadings but there was also a huge variation in replicates of #20 and #30. Cluster analysis 

was used to group the samples on PCA plot and based upon the proximity of their 

distance, both replicates of commercial sample grouped together along with one of the 

replicate of sample #6 while the other replicate of #6 grouped with one replicate of #30, 
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the other replicate of #30 grouped with one replicate of #20 while the other replicate of 

#20 stood by its own.  There is definitely an indication of similarity between commercial 

proso millet sample and sample with low digestibility while given the variation in the 

data for intermediate and high digestibility sample it is difficult to draw a conclusion 

about them but given the positive loadings of #20 and earlier described observations it is 

evident that sample #20 from China with highest digestibility has different protein profile 

from other proso samples. This sample could be used as a potential cultivar to develop a 

proso millet with high digestibility after cooking but requires some more investigation.   

5.5.  CONCLUSION 

The observed protein content and protein digestibility (%) after cooking for 

greenhouse grown seeds were higher than original seeds. The protein digestibility of 

different proso millet samples ranged between 26 and 57% with most samples having a 

digestibility around 34%. For other species belonging to the Panicum genus the protein 

content was slightly higher than proso millet but the digestibility of all Panicum samples 

was lower than 35% after cooking. The highest digestibility among cooked proso millet 

samples was observed for a white seeded sample from China. There were no major 

differences in protein profile of different proso samples under SDS-PAGE. Peptides from 

trypsin/chymotrypsin digestion of proso millet panicins matched most closely with P. 

hallii, with low MW peptides having a positive correlation with digestibility and the 

peptides contained strings of connected hydrophobic amino acids. The results from this 

study suggest that low digestibility upon cooking may be a unique property of genus 

Panicum. However, the presence of one sample with significantly higher digestibility 
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than the other samples suggests that highly digestible cooked proso millet may be 

possible.  
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Table 5.1. Proso millet samples and related species used in the study and the observed characteristics after growth in greenhouse 

Sample# Original seeds characteristics Characteristics during growth in greenhouse 

Accession# 

/cultivar name 

Scientific Name Common name Country of Origin Seed 

Color 

Height 

of main 

stalk 

Special 

morphological 

traits 

Observed 

yield 

Days to 

flower 

1 PI 531426 P. miliaceum Proso Millet Hungary Red 45.7 Bushy plants Low 30 

2 PI 436623 P. miliaceum Proso Millet China Red 48.2 Bushy plants Low 46 

3 PI 436625 P. miliaceum Proso Millet China Red 50.8 Twin seeded 

spikelet 

Low 38 

4 PI 662288 P. miliaceum Proso Millet China Red 40.6 Spikelet at the 

base of stalk 

Not enough 

seeds  

48 

5 PI 531423 P. miliaceum Proso Millet Poland Red 49.5 Lateral Panicle Good 26 

6 Cerise P. miliaceum Proso Millet United States (Nebraska) Orange 41.9 Lateral panicle Intermediate 27 

7 PI 531425 P. miliaceum Proso Millet Hungary Orange 46.5 Lateral panicle Intermediate 27 

8 PI 296376 P. miliaceum Proso Millet Canada Grey 60.9 Vertical loose 

panicle 

Not enough 

seeds 

31 

9 Pi 531406 P. miliaceum Proso Millet Czech Republic Grey 58.4 Vertical loose 

panicle 

Not enough 

seeds 

30 

10 PI 220535 P. miliaceum Proso Millet Afghanistan White 81.3 Lateral Panicle Intermediate 39 

11 PI 212862 P. miliaceum Proso Millet Afghanistan White    -                        Couldn’t grow                        - 

12 PI 223794 P. miliaceum Proso Millet Afghanistan White 80.0 Lateral panicle Good 35 

13 PI 179380 P. miliaceum Proso Millet Turkey White 109 Vertical loose 

panicle 

Intermediate 48 

14 PI 170595 P. miliaceum Proso Millet Turkey White 73.7 Vertical loose 

panicle 

Intermediate 36 

15 PI 173750 P. miliaceum Proso Millet Turkey White 63.3 Big seeds Good 32 

16 PI 250979 P. miliaceum Proso Millet Former Serbia (Yugoslavia) White 55.9 Lateral panicle Intermediate 41 

17 PI 346942 P. miliaceum Proso Millet Ukraine White 38.1 Small seeds Intermediate 25 

18 PI 517018 P. miliaceum Proso Millet Morocco White 88.9 Lateral dense 

panicle 

Good 42 

19 Ames 11680 P. miliaceum Proso Millet India White 64.8 Lateral panicle Intermediate 48 

20 PI 436626 P. miliaceum Proso Millet China White 55.9 Lateral panicle Intermediate 38 

21 PI 251389 P. miliaceum Proso Millet Iran White 63.5 Lateral panicle Intermediate 42 

22 PI 346938 P. miliaceum Proso Millet Kazakhstan White 45.7 Vertical loose 

panicle 

Not enough 

seeds 

29 

23 PI 516181 P. miliaceum Proso Millet Romania White 86.4 Dense panicle Very Good 36 

24 PI 346936 P. miliaceum Proso Millet Kyrgyzstan White 53.3 Dense panicle Intermediate 33 

25 PI 531400 P. miliaceum Proso Millet Hungary White 60.9 Lateral panicle Intermediate 36 

26 PI 202295 P. miliaceum Proso Millet Argentina White 83.8 Lateral panicle Intermediate 39 

27 PI 531400 P. miliaceum Proso Millet Hungary White 63.5 Lateral panicle Intermediate 33 

28 PI 430742 P. miliaceum Proso Millet Australia White 78.7 Lateral panicle Intermediate 42 
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29 Farmers entry  P. miliaceum Proso Millet Austria White 50.8 Lateral dense 

panicle 

Good 31 

30 PI 649383 P. miliaceum Proso Millet United States (Nebraska) White 50.8 Big seeds Good 29 

31 Abarr P. miliaceum Proso Millet United States (Nebraska) White 45.7 Lateral panicle Not enough 

seeds 

27 

32 PI 649384 P. miliaceum Proso Millet United states (Minnesota) White 43.2 Lateral panicle Not enough 

seeds 

27 

33 PI 253421 P. miliaceum Proso Millet Spain White 81.3 Lateral panicle Intermediate 37 

34 PI 436720 P. sumatrense Little Millet India White    -                  Not grown in green house           - 

35 PI 654448 P. hirticaule Panicgrass Mexico White    -                  Not grown in green house           - 

36 - P. capillare Witchgrass United States White    -                  Not grown in green house           - 

37 Commercial Setaria Italica Foxtail millet de-

hulled 

China White 

   -                  Not grown in green house           - 

38 Commercial P. miliaceum Proso Millet de-hulled United States (Colorado) White 

-        Not grown in green house            -              

39 Commercial P. miliaceum Proso Millet de-hulled Ukraine White -        Not grown in green house            - 

40 - P. virgatum Switchgrass Octoploid  United States (Nebraska) White  

41 - P. virgatum Switchgrass 

Tetraploid  

United States (Nebraska) White -        Not grown in green house            - 

42 - P. virgatum Switchgrass Octoploid United States (Illinois) White -       Not grown in green house             - 

43 UNL N-Si-7 Setaria Italica Foxtail millet United States (Nebraska) White -       Not grown in green house             - 

44 UNL NM-4B Pennisteum 

glaucum 

Pearl millet United States (Nebraska) Grey -       Not grown in green house             - 

45 UNL NeFM#1 Eleusine coracana Finger millet United States (Nebraska) Red -       Not grown in green house             - 
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Table 5.2. Proteins identified in different samples of proso millet after LC-MS/MS. 

# Matched Protein Id Organism Accession 

Number 

MW 

(kDa) 

Unique Peptide Counts Correlations 

with protein 

digestibility 
#38a #38b #6a #6b #30a #30b #20a #20b 

1  PAHAL_H00455  Panicum hallii PAN43368.1 24 8 9 9 9 6 11 8 8 -0.23 

2  PAHAL_J00793  Panicum hallii PAN53324.1 18 0 0 0 0 4 4 5 4 0.68* 

3 PAHAL_D02270  Panicum hallii PAN49697.1 24 3 2 2 4 2 3 5 2 0.29 

4 PAHAL_H00450  Panicum hallii PAN43373.1 24 3 2 2 3 2 3 0 2 -0.68* 

5 PAHAL_E03585  Panicum hallii PAN31676.1 22 5 6 4 6 0 4 5 4 0.06 

6 PAHAL_G01245  Panicum hallii PAN37607.1 49 4 2 2 3 5 4 3 4 0.16 

7 PAHAL_E02207   Panicum hallii PAN29292.1 21 3 0 2 0 3 0 0 2 -0.12 

8  PAHAL_D02338  Panicum hallii PAN49796.1 58 2 0 0 0 0 2 0 0 -0.2 

9  PAHAL_C04165  Panicum hallii PAN21013.1  22 0 3 2 0 3 3 3 4 0.59 

10 PAHAL_J00522   Panicum hallii PAN52119.1 17 0 0 0 0 0 0 0 2 0.6 

11  PAHAL_B00733  Panicum hallii PAN49407.1 19 3 2 0 2 3 0 2 3 0.4 

12 PAHAL_C02647  Panicum hallii PAN19039.1 19 0 0 0 0 2 2 2 4 0.74** 

13 PAHAL_B02528  Panicum hallii PAN12130.1 24 0 0 2 0 0 0 0 0 -0.41 

14 PAHAL_C00211  Panicum hallii PAN41165.1 20 0 0 0 3 0 0 0 0 -0.37 

15 PAHAL_A00847  Panicum hallii PAN04747.1 20 2 0 2 0 3 0 3 3 0.55 

16 PAHAL_I02334  Panicum hallii PAN45805.1 62 2 0 0 0 2 0 2 2 0.6 

17 PAHAL_F01989  Panicum hallii PAN35492.1 25 0 0 0 0 0 2 0 3 0.46 

18 hypothetical protein 

PAHAL_C02115  

Panicum hallii PAN18358.1 19 2 0 0 0 0 0 0 2 0.37 

19 PAHAL_C01299    Panicum hallii PAN17201.1 37 0 0 0 0 2 0 0 0 -0.16 

20 PAHAL_C01409  Panicum hallii PAN17346.1 21 3 0 0 3 0 0 0 0 -0.37 

21 S-type granule-bound 

starch synthase 1,  

Panicum 

miliaceum 

ACJ49212.1  37 0 0 0 0 0 0 0 2 0.6 

22  Kafirin PSKR2  Setaria italica XP_012703493

.2 

44 4 4 5 3 4 6 5 6 0.51 

23  LOC101757961  Setaria italica XP_004984201

.2 

20 0 0 0 0 0 0 2 3 0.92** 

24  60S ribosomal protein 

L9  

Setaria italica XP_004964297

.1 

21 0 0 0 0 0 0 0 4 0.6 
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25 ATP synthase subunit  Setaria italica XP_004973702

.1 

20 0 0 0 0 0 0 0 3 0.6 

26 LOC101758756  Setaria italica XP_004961786

.1 

18 0 0 0 0 0 0 0 3 0.6 

27 Vicilin-like seed 

storage protein  

Dicanthelium 

oligosanthes 

OEL15976.1 57 2 3 0 0 0 0 0 3 0.36 

28 Late embryogenesis 

protein B19.4  

Dicanthelium 

oligosanthes 

OEL21938.1 17 3 2 3 4 3 5 2 3 -0.44 

29 BAE44_0014842 Dicanthelium 

oligosanthes 

OEL24138.1  9 0 0 0 0 0 0 2 2 0.95** 

30 Vicilin-like seed 

storage protein 

Dicanthelium 

oligosanthes 

OEL15976.1 57 2 3 0 0 0 2 0 3 0.3 

31 60S ribosomal protein 

L21 

Zea Mays ACG30052.1  19 0 0 0 2 0 0 2 2 0.6 

32 embryo specific 

protein  

Zea Mays NP_001105349

.2 

12 3 2 0 3 3 3 0 5 0.12 

33 Peroxidase 12  Zea Mays ONM34315.1 38 0 0 0 0 0 2 0 0 -0.14 

34 zein-alpha A20  Sorghum bicolor XP_002451115

.1 

29 0 0 0 0 0 2 0 0 -0.14 

35 histone H2B.1 isoform 

X2  

Sorghum bicolor XP_021312576

.1 

29 0 0 2 3 0 3 2 4 0.3 

36 hypothetical_protein  Oryza 

brachyantha 

CBX25323.1  17 2 2 0 2 0 0 0 2 0.05 

37 YK426  Oryza sativa BAA19798.1  21 0 0 0 0 0 0 0 4 0.6 

38 At1g07930/T6D22 Arabidopsis 

thaliana 

AAK32834.1  50 0 0 0 0 0 0 0 3 0.6 

39  histone H4 

replacement, isoform 

C 

Drosophila 

melanogaster 

NP_524352.1  11 0 0 0 0 0 0 0 4 0.6 

#38: commercial sample; #6: low digestibility; #30: intermediate digestibility; #20: high digestibility. a and b are duplicates of same samples, *significant 

at alpha=0.05; **significant at alpha = 0.01. n=8.   
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Figure 5.1. World Map highlighting the different countries of origin from which samples 

were used in the study 
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Figure 5.2. Average protein concentration of originally procured seeds and greenhouse-grown seeds.20 

                                                 

 

20 Error bars show standard deviation (n=3); some error bars were too small to plot; * Bars marked with, ‘¥’, represents samples which has the 

same protein content for original seeds and greenhouse seeds, compared by t-test (P value  0.05); dotted line represents average protein content of 

original seeds. Numbers in parenthesis of horizontal axis are the sample # from Table 5.1. 
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Figure 5.3. Average protein digestibility after cooking from original seeds greenhouse-grown seeds.21 

                                                 

 

21 Error bars show standard deviation (n=3); some error bars were too small to plot; Bars marked with, ‘¥’, represents samples which has the same 

digestibility for original seeds and greenhouse seeds, compared by t-test (P value  0.05); dotted line represents average protein digestibility of 

original seeds. Numbers in parenthesis of horizontal axis labels are the sample # from Table 5.1. 
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Figure 5.4. Average protein content (A), digestibility after cooking (B) of proso related 

species and other millet varieties.22 

                                                 

 

22 Error bars show standard deviation (n=3); some error bars were too small to plot; dotted line 

represents average protein content and protein digestibility of proso millet samples. Numbers in 

parenthesis of horizontal axis labels are the sample # from Table 5.1. 
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Figure 5.5. SDS-PAGE gels of different proso millet samples (A), and non-proso 

samples (B) used in the study.23 

  

                                                 

 

23 Lane 0, MW marker; 1, commercial proso millet (#38); 2, #6 original seed flour (lowest 

digestibility); 3, #6  greenhouse seed flour (lowest digestibility); 4, #30 original seed flour 

(intermediate digestibility); 5, #30 greenhouse seed flour (intermediate digestibility); 6, #19 

original seed flour (intermediate digestibility); 7, #19 greenhouse seed flour (highest 

digestibility); 8, #20 original seed flour (highest digestibility); 9, #20 greenhouse seed flour 

(highest digestibility); 10, #37 (commercial foxtail millet); 11, #34 (little millet); 12, #42 (foxtail 

millet); 13, #43 (pearl millet); 14, #44 (finger millet); 15, #36 (witchgrass); 16, #35 (panicgrass). 

kDa
250
150
100
75

50
37

25
20

15

10

A B

kDa
250
150
100
75

50
37

25
20

15

10

A B



 136 

 
Figure 5.6. PCA score plot based upon correlations between identified proteins and 

digestibility of samples. 
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 Original seed 

protein 

Original seed 

protein 

digestibility 

Green house 

seed protein 

Green house seed 

protein 

digestibility 

Change in 

protein (%) 

Change in protein 

digestibility (%) 

Original seed protein     -0.74 0.51 

Original seed protein digestibility    0.78   
Green house seed protein     0.51  
Green house seed protein digestibility  0.78    0.58 
Change in protein (%) -0.74  0.51    
Change in protein digestibility (%) 0.50   0.58   

 
 

N=26 

 

Figure 5.7. (Supplementary) Correlations among variables. 

 

Negatively correlated 
No 

correlation 
Positively correlated 

p < 0.01 p < 0.05   p < 0.05 p < 0.01 
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CHAPTER 6:  UNDERSTANDING THE EFFECT OF EXTRUSION ON 

PHYSICAL PROPERTIES AND DIGESTIBILITY OF GREAT NORTHERN 

BEANS USING A MODIFIED CENTRAL COMPOSITE SPLIT PLOT DESIGN  

6.1.  ABSTRACT 

Great Northern beans (Phaseolus Vulgaris L.) (GNB) are a protein- and fiber-rich 

food with substantial functional components such as resistant starch and antioxidants. 

The consumption of GNB is limited due to the presence of anti-nutritional factors and 

complex polysaccharides and is mostly consumed in canned form. Extrusion is a versatile 

processing technique with known effects in lowering anti-nutritional factors and 

improvement in digestibility of several grains. Often extrusion experiments are conducted 

as completely randomized designs when in fact some variables, especially barrel 

temperature (T), are not actually randomized due to operating and time constraints. Thus, 

the objective of the present study was to evaluate the effect of extrusion as a more rapid 

bean processing technique using a split plot analysis. GNB were extruded in a laboratory 

scale twin screw extruder using a modified central composite design structure with T as a 

whole plot factor and MC and SS as split plot factors. Effect of extrusion on physical 

(expansion, density, WAI, WSI) properties, trypsin inhibitor activity and protein 

digestibility of GNB was analyzed. Bean extrudates had lower expansion when compared 

with cereal extrudates due to high amount of fiber and proteins. Extrusion was effective 

in significantly reducing up to 97% of trypsin inhibitor activity from bean flour. This 

with the combination of barrel temperature significantly improved the protein 

digestibility of GNB flour. MC significantly affected all the responses for bean extrusion 
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which was followed by SS. T had the most significant effect on protein digestibility of 

bean extrudates.   
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6.2.  INTRODUCTION 

Great Northern beans (GNB) are the principal white colored dry bean (Phaseolus 

Vulgaris L.) variety grown in the US with major production in the state of Nebraska 

(USDA crop production database, 2017). Like other dry bean varieties, GNB are a 

protein and fiber-rich food together with other non-nutritive functional compounds such 

as polyphenols and resistant starch, which are known for their low glycemic index, anti-

oxidant, anti-cancer, prebiotic, cholesterol lowering and other health promoting 

properties (Xu et al., 2007; Wang et al., 2010; Siddiq et al., 2010; Messina, 2014,). 

However, dry beans take considerable time to cook, have a complex oligosaccharide 

profile (raffinose, stachyose), and contain anti-nutritional components such as trypsin 

inhibitors, phytates. which interfere with utilization of proteins and carbohydrates and 

cause intestinal discomfort (Reddy et al., 1984; Chavan and Kadam, 1989). All these 

undesirable properties overshadow the goodness of beans and confines its consumption to 

canned form to limited group of consumers.   

Several traditional processing techniques like soaking, germination, fermentation 

etc. can reduce these anti-nutritional compounds in beans (Sathe et al., 1981, Oboh et al., 

2000) but they are time consuming with limited versatility and mass appeal. Extrusion 

processing is a resourceful technique that has been used extensively to either modify food 

ingredients or develop convenient, cost-effective, and nutritious food products like 

breakfast cereals or ready to eat snacks. The technique involves a combination of high 

temperature, shear and pressure to gelatinize starches (and modify other components) 

which produces expanded, low density products with crunchy texture (Meng et al., 2010). 
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Further, extrusion has been shown to significantly reduce anti-nutritional compounds and 

improve digestibility of various legumes (Alonso et al., 2000; Steel et al., 1995).   

GNB has nutritional and functional advantages similar to other dry bean varieties 

but being light in color they lack bitterness causing components (tannins) and can be used 

to make food products with neutral appearance and taste, thus, making them more 

acceptable. There is limited research available on extrusion of GNB, the only available 

report on GNB extrusion is from Sutivisedsak et al., (2012) where they used defatted 

GNB flour for extrusion and observed slight improvement in water absorption capacity 

and loss in oil absorption capacity. Other works on GNB are focused mostly on 

nutraceutical properties of bean components but with simple cooking or canning 

techniques (Mojica et al., 2014). There is no literature available with emphasis on the 

extrusion performance of whole GNB flour with the aim of developing a snack product. 

Extrusion processing has been extensively used to understand and develop cereal 

and legume based products. Among the many variables studied in extrusion based 

experiments, feed moisture content (MC), screw speed (SS) and barrel temperature (T) 

are the most commonly varied parameters (Gulati et al., 2016; Singh et al., 2007; 

Brennan et al., 2013). Among these, T is usually a hard to change (HTC) factor due to 

time and machine constraints, making randomization difficult. In contrast, MC and SS 

are comparatively easier to change (ETC) and can be randomized. Thus, most of the 

extrusion based experiments either take considerable time to conduct, or are done without 

temperature randomization. Lack of randomization for the temperature variable gives rise 

to a split plot structure, although experiments are often inappropriately analyzed as 

completely randomized designs under either fractional or full factorial experimental 
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setup. This approach can create undesirable confounding among predictor variables and 

result in biased conclusions, especially for the HTC factors like temperature and its 

interaction with other variables. Very few researchers (Ramos Diaz et al., 2013, 2015) 

have addressed this issue and used alternative data analysis techniques for food extrusion 

based experiments.  

Thus, the main objectives of this research were to 1) understand the effect of 

extrusion on anti-nutritional factor and digestibility of whole great northern bean (GNB) 

flour, and 2) investigate the feasibility of a modified central composite split plot design 

and analysis for extrusion based experiments.  

6.3.  MATERIALS AND METHODS 

6.3.1.  Preparation of bean flour and proximate analysis 

GNB were obtained from FNJ Inc. (Alta Loma, CA, USA) and milled using a 

pilot scale hammer mill (20SSHMBD, C.S. Bell, Tiffin, OH, USA) with screen size of 

0.7 mm. The flour was analyzed for moisture, fat, and ash content using approved 

methods (AACC International, 2013). Protein content was analyzed using a nitrogen 

analyzer (FP 528, Leco, St. Joseph, MI, USA) with a protein factor of 6.25. Total starch 

content was analyzed using total starch assay kit (K-TSTA, Megazyme, Bray, Ireland) 

following the KOH format. Bean flour was stored at 4 °C until extrusion.  

6.3.2.  Experimental design 

The effects of three extrusion factors: barrel temperature (T) (90-140°C), feed 

moisture content (MC) (17-25%), and screw speed (SS) (170-250 rpm), on GNB 

extrusion were studied while keeping other factors such as feed rate and screw 

configuration constant. The levels of these factors were determined based on preliminary 
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trials. Barrel temperature in extrusion based experiments is HTC due to machine 

stabilization which leads to time and money constraints and makes it difficult to 

randomize. In order to address this issue a modified central composite split plot design 

was used in this study (Fig 6.1). The changes to the common CCD was as described by 

Draper and John (1998).  Mainly, the axial points for temperature were removed and the 

effect of temperature was tested at three fixed levels, -1, 0, and +1 (i.e., 90, 115 and 140 

°C, respectively). The design space was rotated by 45 which resulted in new axial (a = 

1.43) and factorial (b = 0.70) points for MC and SS. The new values for MC and SS 

were calculated based on preliminary experiments and calculating the ratio of block error 

variance and experimental error (Draper and John, 1998). Based upon the new design, 

extrusion was carried under 18 experimental conditions with 2 replicates at (MC, SS, T):  

2 runs at a, 0, 0 levels; 2 runs at 0, a, 0; 8 runs at b, b, 1; and 6 center points (i.e. 

0,0,0). All experimental conditions were replicated on a separate day resulting in total of 

36 data points. The experimental runs with coded and un-coded values for extrusion 

factors is shown in Table 6.1. 

6.3.3.  Extrusion process  

A laboratory scale co-rotating conical twin-screw extruder with mixing zones was 

used for extrusion (CTSE-V, C.W. Brabender, Hackensack, NJ, USA). The specifications 

of extruder and operating conditions used were described previously (Gulati et al., 2016).  

To adjust the moisture content of bean flour, batches (2 kg) representing each 

experimental run were mixed in an upright blender (H-600-D, Hobart, Troy, Ohio, USA) 

at medium speed with the required water to obtain the target moisture content as per the 

experimental design. The moistened samples were sealed in polyethylene bags and 
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tempered for 16 h at 4°C. The flour was then fed into the extruder barrel using a single 

screw volumetric feeder (FW 40 Plus, C. W. Brabender) set at a constant delivery rate of 

76 g/min.  

The extrudate sample for each experimental condition was collected after a stable 

temperature and torque reading was observed. The collected samples were dried in a belt 

drier (4800 series Wenger, Sabetha, KS, USA) at 100°C for 10 min. Half of the samples 

were sealed in plastic bags for measuring expansion index bulk density, whereas the other 

half was ground using cyclone sample mill (UDY, Fort Collins, CO, USA) with a screen 

size of 1 mm and used for measuring water absorption index (WAI), water solubility 

index (WSI), trypsin inhibitors (TI), and protein digestibility (PD).  

6.3.4.  Physical and Chemical Responses 

The volume of the extrudates was measured using rapeseed displacement, which 

was used to calculate the apparent bulk density (BD; g/cm3) of the extrudates. Five 

measurements were taken for each experimental condition. 

Radial expansion ratio (RER) was calculated by dividing the cross-sectional 

diameter of each extrudate, measured using a Vernier caliper (Mitutoyo Co., Kawasaki, 

Japan), by the extruder die diameter (3mm). Ten measurements were taken for each 

experimental condition. 

Water absorption index (WAI) and water solubility index (WSI) were measured 

after Anderson et al. (1969). Ground extrudate (2.5 g) was suspended in 30 mL water at 

30 °C for 30 min with intermittent stirring, centrifuged at 3000 × g for 10 min. The 

supernatant was decanted into a tared evaporating dish. The WSI was recorded as percent 

weight of dry solids in the supernatant to the original weight of sample. The WAI was the 
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weight of gel obtained after removal of the supernatant per unit weight of original dry 

solids.  Three measurements were taken for each experimental condition. 

Trypsin inhibitors (TI) in bean extrudates were quantified spectrophotometrically 

using benzoyl-DL-arginine-p-nitroanalide hydrochloride (BAPA) and trypsin as substrate 

(Kakade et al., 1969). Briefly, trypsin inhibitors were extracted from 0.5 g extrudate 

sample using 0.01 N NaOH for 3 h under gentle stirring. The sample extract was diluted 

with NaOH (1:30) and 0.4 mL of diluted extract was used for analysis. Diluted extract 

was mixed with 0.4 mL of trypsin solution (12 µg/mL) and incubated for 10 min at 37 

°C, whereupon 1 mL of BAPA solution in tris-buffer (pH:8.2) containing 0.01% dimethyl 

sulfoxide was added and incubated for 10 min. The reaction was stopped using acetic 

acid and the absorbance was measured at 410 nm against reagent blank. TI were 

calculated in mg/g sample with a conversion factor of 0.019 (i.e., absorbance of 1µg of 

pure trypsin). 

In vitro protein digestibility (PD) was measured as described in Gulati et al. 

(2017) with slight modifications. Extruded flour (150 mg) was suspended in simulated 

gastric fluid (SGF; 0.5 M NaCl, pH:2.5) to achieve a pH of 2.5 (approximately 6 mL) and 

incubated at 37 C for 10 min. The contents were then mixed with pepsin dissolved in 

SGF to give an activity of 200 U of pepsin/mg of protein in sample and incubated for 2 h. 

Gastric digestion was stopped by raising the pH to 7 using 0.5 M sodium bicarbonate. For 

intestinal digestion, pepsin hydrolyzed samples were mixed with 1 mL simulated 

intestinal fluid (SIF) (0.05 M KH2PO4, pH: 7.0) and warmed at 37 C. Three mL of 

pancreatin solution in SIF (3 mg/mL) was then added to the flour mixture and incubated 

for 4 h. Intestinal digestion was stopped by plunging the tubes into a boiling water bath 
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for 5 min and immediately cooling. The digested samples were centrifuged and the 

supernatants were used to measure degree of hydrolysis (DH) by the reaction of free 

amine groups with TNBS using leucine as the standard. DH was then calculated as 

described in Gulati et al., 2017 with htotal of 7.77 mmol/g protein based upon 

concentrations of amino acids in GNB flour, obtained by preliminary amino acid 

analysis. Digestion for each experimental run was performed in duplicate and DH for 

each digested sample was further analyzed in duplicate.  

6.3.5.  Data analysis 

The data were analyzed using a split plot analysis with T being the whole plot 

factor and MC and SS as split plot factors, combined for both replicates (Fig 6.2). The 

following second order model was fitted for each response variable: 

Yijkl =  β0 + β1x1i  +  β2x2j + β3x3k + β11x1i
2 +  β22x2j

2 + β33x3k
2 + β12x1ix2j

+  β13x1ix3k + β23x2jx3k + 𝛿𝑙(𝑖) +  𝜀𝑖𝑗𝑘𝑙 

where, Y is the response (RER, BD, WAI, WSI, TI or PD) for ith level of x1 (T); jth level 

of x2 (MC) and kth level of x3 (SS). 𝛿𝑙(𝑖) is the whole plot error, rep(T) which is 

independent and identically distributed as N(0,𝜎𝑤𝑝
2 ) and 𝜀𝑖𝑗𝑘𝑙 is the split plot error which 

is independent and identically distributed as N(0,𝜎𝑠𝑝
2 ).  The variance for Var(Yijkl) =

 𝛿𝑙(𝑖) + 𝜀𝑖𝑗𝑘𝑙.  

Data analysis was performed using mixed model approach with SAS software (version 

9.4. SAS Institute, Cary, NC, USA) with rep(T) as random error which was used to test 

for the effect of whole plot factor T and its quadratic term. The remaining model 

parameters were tested using the residual error. Given two error variances in the model, 

the degrees of freedom for the pooled variance was calculated using Satterthwaite’s 
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approximation (Sahai and Ojeda, 2004). The regression coefficients in the model were 

estimated and tested using the F-test at significance level of 0.05.   

The validity of fitted models were checked using R2 values, a lack-of-fit test 

(LOF), and model-fit-error (MFE), which is the ratio of difference between measured and 

predicted values of a response to the measured value. A MFE range of 5% was 

desirable. Further, the distribution of MFE for each response was also checked to make 

sure there that the error was not biased. 

 Based on the effects of each variable on responses studied, a profiler illustrating 

the effect of each variable was constructed using JMP statistical software (JMP version 

10.0.0, SAS institute).  

The efficiency of the current split plot analysis was evaluated relative to a 

randomized complete block design (RCBD) (usual way of extrusion analysis with reps in 

model), assuming that the total error variance of the experiment would be equal to the 

combined whole plot and split plot error variance (Mugabi et al., 2017). In order to 

compute individual errors a generalized linear model (GLM) procedure was used in SAS. 

The efficiencies were calculated as the ratio of combined mean square error (MSE) if the 

study has been conducted as RCBD (i.e. sum of whole plot and split plot mean square) to 

MSE for split plot or whole plot tests in a split plot design (Federer and King, 2007; 

Hinkelmann and Kempthorne, 2007). The following formulae were used: 

Psp =
(a−1)MSEwp+a(b−1) MSEsp

(ab−1) MSEsp
  and Pwp =

(a−1)MSEwp+a(b−1) MSEsp

(ab−1)MSEwp
   

where, Psp and Pwp are the precisions of split plot and whole plot factors; MSEwp is 

the mean square whole plot error; MSEsp is the mean square split plot error, a=3 is the 

number of level of whole plot factor i.e. barrel temperature; b=25 is the combined 
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number of level of both split plot factors MC and SS (5*5). A Psp or Pwp value of 1 

suggests the precision is no different from a RCBD. 

Correlations among response variables were calculated using Pearson’s method and 

further used to conduct principal component analysis (PCA). 

6.4.  RESULTS AND DISCUSSION 

6.4.1.  Great Northern bean flour composition 

The GNB flour used for extrusion had the following proximate composition 

(mean of 3 replicates ± standard deviation, wet basis): 14.1±0.9% moisture; 21.6±0.2% 

protein; 1.15±0.1% crude fat; 4.89±0.01% ash, and 40.1±0.9% starch. The proximate 

composition of GNB was found comparable to that reported previously by Wang and 

Ratnayake (2014). 

6.4.2.  Model diagnostics 

The fitted models explained almost 90% of the variance for almost all the 

responses except for protein digestibility, which explained 70% of the variance in the 

data and was still considered acceptable (Table 6.2). LOF for all models was non-

significant except BD. A cubic or higher model might be more appropriate for fitting BD, 

but this could not be calculated in the present study due to the limited data points.  

MFE can be considered as the deviation in our observed data from the ideal fit, 

lower the deviation the better. For all responses except BD and TI, MFE was under 5% 

indicating a good fit for the model (Table 6.2). Further, the distribution of MFE for all 

responses were ‘near’ normal except BD. The higher range and slightly skewed 

distribution for BD suggests more variation in the data (potentially due to some 

significant outliers) which could not be captured by fitted second order model. The high 
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MFE for TI was because extrusion had such a strong effect on reducing TI activity that 

some of the samples had no recorded value. This is further discussed in a subsequent 

section.  

Based on the above diagnostic parameters, all models fit well except BD. 

However, the second order model still explained the general trends for BD, and thus was 

used to make conclusions regarding effect of extrusion parameters on BD.  

Apart from the above observations, if the whole plot error variance [rep(T)] was 

estimated to be 0 using standard residual likelihood methodology (REML), the 

denominator for the F-test was based on the residual error with pooled degrees of 

freedom (df). If whole plot error variance was not estimated to be 0, the whole plot error 

was used in the denominator of the F-test and denominator degree of freedom was 

computed using Satterthwaite’s approximation. In our study, the whole plot error 

variance was non-zero for all variables; thus, new df were calculated and used for 

analysis in the F-test. The numerator df for all responses was 1, but the denominator df 

(25) was different for some variables (BD, WSI, and TI) for whole plot and split plot 

terms (Table 2) suggesting a significant whole plot variance for these variables and 

reasonable to analyze them as split plot design and not a CCRD.  

6.4.3.  Effect of extrusion variables on expansion and density of GNB extrudates  

The RER of GNB extrudates ranged from 1.20 to 1.98 with low MC resulting in 

greater expansion. All extrusion parameters significantly affected GNB expansion, with 

SS having a positive linear effect, T having a negative linear effect and MC having a 

negative quadratic effect on expansion. The importance of MC on expansion was also 

evident by significant interactions of feed moisture with both SS and T.  
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Expansion is an important quality parameter for extruded snack products with 

greater expansion resulting in a lighter, crunchier and more acceptable product. The 

expansion values obtained for GNB extrudates were lower and had a narrower range 

compared with cereal based extrudates (1.5 to 3) (Bhattacharya, 1996) but was similar to 

legume based extrudates (Lobato et al., 2011). The high amount of protein and fiber and 

low amount of starch in GNB flour can increase the dough viscosity and resist the flow in 

extruder barrel which would result in a less expanded product when compared with cereal 

based extrudates (Pitts et al., 2014). MC and T have been recognized as important 

extrusion variables that affect expansion (Thymi et al., 2005). Increasing moisture 

content can reduce melt elasticity by changing amylopectin molecular structure, thereby 

decreasing expansion (Ilo et al., 1996).  Based on regression results and profiler (Fig 6.2), 

low barrel temperatures (between 100 to 120C) resulted in maximum expansion while 

higher temperatures decreased the expansion of extrudates. The negative effect of 

temperature on expansion mainly attributed to starch dextrinization at higher temperature 

has been reported by other researchers also (Kokini et al., 1992; Colonna et al., 1989) but 

in our study the temperature range was lower than reported by others (Balandran-

Quintana et al., 1998; Gujska and Khan, 1990). The difference in temperatures could be 

either due to difference in machine parameters or the fiber and protein in GNB flour 

increased the viscosity and residence time of flour in the barrel which resulted in greater 

starch damage and lower expansion.    

Bulk density had an inverse relationship with expansion, with higher MC 

resulting in a denser and less expanded product (Table 6.3; Fig 6.2). SS also had a 

pronounced negative quadratic effect on bulk density. Low to medium SS increases 
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barrel residence time, which would be expected to give the GNB flour additional time for 

gelatinization to occur, resulting in increased expansion and less density. However, very 

high SS can result in a shearing effect which can cause structural breakdown of starch 

molecules thereby limiting expansion and resulting in a denser product (Filli, 2009).  

6.4.4.  Effect of extrusion variables on WAI and WSI  

WAI and WSI are usually related to changes in starch with opposite effects which 

could be associated with the structure of extrudates. WAI, the measure of the amount of 

water absorbed by the intact starch (and other water absorbing components) and can be 

linked with gelatinization, ranged from 3.3 to 4.3 g/g for GNB extrudates, while the un-

extruded flour had a WAI of 2.1  0.08 g/g. The observed values were similar to earlier 

report for extruded GNB (Sutivisedsal et al., 2013) but lower than extruded pinto beans 

(Rocha-Guzman et al., 2006). Among different extrusion parameters, MC and SS were 

identified as the important variables affecting WAI but with opposite effects: higher MC 

and lower SS resulted in larger WAI. T alone did not significantly impact on WAI, but its 

interaction with MC was significant.  

WSI is an indicator of starch degradation (and other soluble flour components) 

and is measured in terms of soluble starch released from whole starch component (Kirby 

et al., 1988). The WSI values obtained for extruded GNB flour ranged from 21.1 to 

37.1%. Only linear effects of MC and SS were found to be significant with contrasting 

effects on WAI. Similar effects of MC and SS have been reported by other researchers 

for dry beans (Sutivisedsal et al., 2013) and bean-cereal blends (Sumargo et al., 2016). 

Feed MC had opposite effects on WAI and WSI, which can be explained by the 

plasticizer effect of high moisture that prevents degradation of starch granules resulting in 
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increased water absorption but lower solubility (Hegenimina et al., 2006). On the other 

hand, high SS could enhance damage to starch granules due to increased shear, which 

would increase WSI but reduce absorption (Ding et al., 2006).  

6.4.5.  Effect of extrusion variables on trypsin inhibitors and in vitro protein 

digestibility of GNB extrudates  

Un-extruded GNB flour had a trypsin inhibitor (TI) activity of 23.3  0.6 mg/g 

sample, whereas, depending on extrusion condition, was either completely inactivated 

(not detected) or was reduced to 0.91 mg/g sample (almost 97% reduction). Feed MC had 

the most significant impact on TI activity with lower MC resulting in maximum 

reduction in TI activity (Tables 6.2 and 6.3). The interaction between MC and T was also 

significant in lowering the TI in GNB extrudates. The interaction between T and SS was 

also found to be significant in reducing the TI activity. In particular, the lower SS the 

more residence time in the extruder barrel and thus more exposure to high T and more 

destruction of TI. Similar reduction in TI activity on extrusion and role of moisture in TI 

inactivation has been reported by other researchers (Martin-Cabrejas et al., 1999; 

Balandran-Quintana et al., 1998).  

In our study, raw GNB flour had PD of 60.6  1.7% which, depending on 

extrusion condition, increased to 68.9 to 78.6 %. The overall digestion value was slightly 

lower but the percentage increase upon extrusion in our study was consistent with other 

reports (Balandran-Quintana et al.,1998). SS and T had the most significant impacts on 

protein digestibility, with low SS and high T being most impactful (Table 6.2 and 6.3). 

The observed increase in digestibility in GNB could be due to individual effects or a 

combination of TI inactivation and protein denaturation, which are both temperature 
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dependent phenomenon. The observed increase in PD upon extrusion is similar to other 

reports (Steel et al, 1995).  

6.4.6.  Precision analysis 

Split plot designs are most useful when the experimental units are of different sizes, 

as in extrusion based experiments, where, experimental unit for HTC, whole plot factor T 

is the extruder barrel while batch of bean flour is the experimental unit for ETC, split plot 

factors MC and SS. But this type of design can also lead to lower precision in analyzing 

whole plot factor and increased artificial precision for split plot factor and their interactions 

when compared to a completely randomized or a randomized block design (Mead, 1990). 

This discrepancy is mostly due to greater heterogeneity in larger whole plot units when 

compared to small split plot units. Based on the efficiency analysis in our study, we found 

that for BD, WSI and TI, analyzing the data as a split plot design resulted in a huge loss in 

precision for T, while the precision in estimating effects of MC and SS increased to varying 

degrees (Table 6.4; Pwp <<1 and Psp >1). For the remaining responses (RER, WAI and 

PD), split plot analysis was highly effective as it not only increased the precision in 

estimation of T but did not lose on the precision for MC and SS (Pwp>>1; Psp~1). This 

suggests for RER, WAI and PD, the data may be analyzed using a split pot design or RCBD 

with similar conclusions, but for the other variables analyzing the data as RCBD could 

result in confounding and biased results. Also, based upon our approximated df (Table 6.2), 

the whole plot denominator df for BD, WSI, and TI were different and lower than the split 

plot denominator df which suggests more variation in whole plot factors for these responses 

resulting in lower precision for their whole plot factors. Thus, it is important to consider 
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that split plot analyses like these should only be conducted if the researcher is willing to 

sacrifice information for some variables in the study while gaining for others.  

6.4.7.  Multivariate analysis 

BD was positively correlated with WAI and TI, while it has a strong negative 

correlation with RER and WSI (Fig 6.3A). Similar results have been reported before 

(Gulati et al., 2016; Altan et al., 2008). Higher bulk density of the product suggests 

limited expansion with greater ability to absorb water as the starch molecules are intact. 

Further, the more intact the starch molecules, lesser is their solubility as shown by 

negative correlation between WAI and WSI. Also, conditions like high MC and low SS 

which promote higher density are less severe which can have a preventive effect on TI, 

resulting in high TI activity. PD had a negative correlation with RER.  

The correlations among response variables were used to conduct principal 

component analysis and the bi-plot showed a clear distinction between response variables 

(Fig 6.3B). Since MC had a significant effect on all the variables, the PC plot was marked 

with runs corresponding to different levels of MC to demonstrate the effect of MC on 

these responses. The first two PCs explained 74% of the variation in the data and showed 

grouping of WAI, BD and TI which showed greater values under high feed MC 

conditions while WSI and RER were mostly affected by extrusion under low to medium 

MC, respectively.   

6.5.  CONCLUSION 

Extrusion had a positive impact in reducing the anti-nutritional component, 

trypsin inhibitor in GNB while increasing protein digestibility. Feed MC was recognized 

as an important extrusion parameter affecting almost all the responses.  
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The other objective of this study was to understand if split plot analysis would be 

more beneficial than the usually conducted RCBD analysis for extrusion based 

experiments. Split plot analysis helped gain more precision for whole plot factors like 

barrel temperature for responses like RER, WAI and PD but without any loss in precision 

for split plot factors. This suggest for these responses split plot analysis or RCBD 

analysis won’t make much difference but for other variables there was an increased 

precision in estimating split plot effects, this indicates split plot should be the ideal way 

to draw conclusions on these variables to avoid confounding and bias. Overall, split plot 

analysis should be considered the ideal way of extrusion analysis. While it’s no better 

than RCBD for some responses, for others it can be a more accurate way of predicting 

effect of extrusion variables. 
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Table 6.1. Experimental design with combination of predictor variables* 

Run 

order 

Coded values         Actual values 

T 

(C) 

SS 

(rpm) 

MC 

(%) 

T 

(C) 

SS 

(rpm) 

MC 

(%) 

T 

(C) 

SS 

(rpm) 

MC 

(%) 

1 -1 b b -1 0.7 0.7 90.0 225 23.1 

2 -1 -b -b -1 -0.7 -0.7 90.0 180 18.9 

3 -1 -b b -1 -0.7 0.7 90.0 180 23.1 

4 -1 b -b -1 0.7 -0.7 90.0 225 18.9 

5 0 0 0 0 0.0 0.0 115 203 21.0 

6 0 0 0 0 0.0 0.0 115 203 21.0 

7 0 -a 0 0 -1.43 0.0 115 156 21.0 

8 0 0 0 0 0.0 0.0 115 203 21.0 

9 0 a 0 0 1.43 0.0 115 250 21.0 

10 0 0 0 0 0.0 0.0 115 203 21.0 

11 0 0 0 0 0.0 0.0 115 203 21.0 

12 0 0 a 0 0.0 1.43 115 203 25.3 

13 0 0 0 0 0.0 0.0 115 203 21.0 

14 0 0 -a 0 0.0 -1.43 115 203 16.7 

15 1 b b 1 0.7 0.7 140 225 23.1 

16 1 -b -b 1 -0.7 0.7 140 180 23.1 

17 1 -b b 1 -0.7 -0.7 140 180 18.9 

18 1 -b -b 1 0.7 -0.7 140 225 18.9 

* MC: Feed moisture content, T: barrel temperature, SS: Screw speed, a and b are new axial and factorial 

points identified after CCD modification.  

 
  



 162 

Table 6.2. Model diagnostics and tests for fixed effects of MC, SS and Temp on physical and chemical properties of Great northern 

bean extrudates 

Effect 

Physical responses Chemical responses 

RER BD WAI WSI TI PD 

Den df F value Den df F value Den df F value Den df F value Den df F value Den df F value 

Rep 25.0 113** 1.94 1.76 25.0  11.4* 1.63 26.7* 2.04 0.17 25.0 4.21* 

T 25.0 62.9** 2.02 1.98 25.0 1.03 2.42 0.96 2.35 4.53 25.0 3.04 

T*T 25.0 3.09 1.86 0.73 25.0 0.27 1.48 1.02 1.87 0.44 25.0  8.02* 

MC 25.0 21.8** 22.9 106** 25.0  102** 22.9   103** 22.1    43.9** 25.0 0.01 

SS 25.0 4.12* 22.9 19.4** 25.0   56.1** 22.9    15.3** 22.1 0.38 25.0 0.99 

MC*SS 25.0 5.12* 22.9 3.54 25.0  9.05* 22.9 0.06 22.1 0.63 25.0 0.48 

MC*MC 25.0 51.5** 22.9 1.57 25.0   54.0** 22.9 0.18 22.2  6.95* 25.0 1.48 

SS*SS 25.0 0.00 22.9 6.66* 25.0  5.86* 22.9 0.59 22.1 0.05 25.0    10.1** 

MC*T 25.0 17.2** 22.9 8.18* 25.0 10.7* 22.9 0.15 22.1    8.61** 25.0 0.15 

SS*T 25.0 1.24 22.9 1.25 25.0 0.20 22.9 0.00 22.1   5.34* 25.0 0.74 

R2 0.93 0.94 0.92 0.90 0.87 0.70 

LOF NS S NS NS NS NS 

MFE (-3.62, 4.20) (-8.82, 10.89) (-3.08, 2.76)  (-4.36, 5.08) - (-1.54, 3.90) 

     T, Barrel temperature; SS, Screw Speed; MC, Moisture content, RER, Radial Expansion Ratio; BD, Bulk Density; WAI, Water Absorption Index; 

WSI, Water Solubility Index; TI, Trypsin Inhibitors; PD, Protein digestibility. *indicates significant effect at p<0.05; **significant effect at p<0.01. df: 

Degrees of freedom, calculated using Satterthwaite’s approximation, numerator df for all responses was 1, Den df: Denominator degrees of freedom varied 

and mentioned above. R2: coefficient of determination, LOF: Lack of fit, MFE: model fit error. 
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Table 6.3. Regression coefficients for each response surface equation fitted 

 

Parametera 

Physical responses Chemical responses 

 

RER 

 

BD 

 

WAI 

 

WSI 

 

TI 

 

PD 

Intercept  1.61* 0.30* 4.03* 24.94* 0.17 74.95* 

T -0.14* 0.02 -0.018 -0.66 0.15 0.59 

T*T -0.03 0.03 -0.007 0.88 0.04 2.19* 

MC -0.07* 0.05* 0.147* -3.06* 0.24* -0.05 

SS  0.029* -0.02* -0.013* 1.15* -0.005 -0.26 

MC*MC -0.07* -0.002 -0.07* 0.14 0.067* 0.11 

SS*SS -0.0005 0.009* 0.026* 0.18 0.005 -0.86* 

SS*T  0.02 -0.008 0.008 -0.03 0.09* 0.42 

MC*T -0.07* 0.02* 0.063* -0.16 0.12* -0.19 

MC*SS  0.04* 0.01 0.059* -0.11 0.03 0.35 
a SS, screw speed; MC, moisture content; T, temperature; RER, Radial expansion ratio; BD, Bulk density; 

WAI, Water absorption index; WSI, Water solubility index; TI, Trypsin inhibitors; PD, Protein digestibility. 

*indicates significant effect at p<0.05  
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Table 6.4. Precision analysis for whole plot and split plot factors for each variable 

Response 

variable 

Whole plot factor 

precision 

Split plot factors 

precision 

RER^ 2.09 0.98 

BD 0.10 1.38 

WAI^ 1.87 0.99 

WSI 0.57 1.03 

TI 0.16 1.17 

PD^ 2.18 0.98 
RER, Radial expansion ratio; BD, Bulk density; WAI, Water absorption index; WSI, Water solubility index; TI, Trypsin 

inhibitors; PD, Protein digestibility. ^Precision analysis for current design can be considered same as for RCBD. 
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Figure 6.1. Illustration of the design of experiments at three levels of temperature (T) (the whole plot factor) with different 

combinations of moisture content (MC) and screw speed (SS) (split plot factors).24 

 

 

                                                 

 

24 Squares represent the design space (dotted square: original design space; solid square: original design space rotated by 45, each green 

circle represents an experimental condition); a = 1.43; b = 0.7, 0=center point. 
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Figure 6.2. Influence of each processing variable on response variables when other 

processing variables are held constant 
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Figure 6.3. Multivariate analysis on responses, A: Pearson’s correlation among response 

variables; B: Principal component analysis on correlations 
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CHAPTER 7:  EFFECT OF EXTRUSION ON FOLIC ACID CONCENTRATION 

AND MINERAL ELEMENT DIALYZABILITY IN GREAT NORTHERN BEAN 

(Phaseolus Vulgaris L.)  

7.1.  ABSTRACT 

Great Northern beans (GNB) contain appreciable Mg, K, P, and Fe, together with 

the labile B vitamin, folate. However, GNB also contain phytate and can be a source of 

the heavy metal Cd. Extrusion was used as a processing technique to degrade phytate and 

increase dialyzability of essential mineral elements while minimizing destruction of 

folate and dializability of Cd. Extrusion resulted in increases of as much as 56%, 50%, 

25%, and 84% in dialyzability of Mg, P, K, and Fe, respectively, while, remarkably, 

generally decreasing Cd dialyzability. Screw speed (SS) had a significant quadratic effect 

on dialyzability of all elements, with high SS resulting in more dialyzable elements. This 

was followed by feed moisture, which had a significant impact on dialyzability of Fe and 

Mg, mostly in interaction with SS. Low moisture and low SS had the maximum impact in 

reducing Cd dialyzability. Extrusion resulted in up to 85% reduction in phytate compared 

with GNB flour, while there was a significant loss in folic acid content too (up to 40%). 

Low moisture conditions resulted in maximum degradation of phytate and folate. Low 

barrel temperature, medium feed moisture content and high SS was identified as the best 

extrusion condition to maximize essential mineral element dialyzability and folate 

retention while minimizing phytate and dialyzable Cd.  
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7.2.  INTRODUCTION 

Despite the availability of food sources and various approaches like fortification, 

supplementation, and enrichment, there are several micronutrients, including Mg, K, 

choline, Ca, Fe, and vitamins A, D, E, and C, that are underconsumed in the US. 

Additionally, folate deficiency, which was prevalent in the early 20th century, is nearly 

non-existent today; however, the major source of folate in the US is fortified, processed 

food which can have a negative connotation (Odewole et al., 2013). While not 

manifesting overt deficiency diseases, individuals with chronic moderate deficiency can 

develop conditions like hypertension, coronary heart disease, diabetes, metabolic 

syndromes that are common in the US (Long and Romani, 2015). Thus, it is important to 

identify food sources that are naturally rich in micronutrients and promote their 

consumption in efforts to tackle nutrient deficiencies and encourage healthy eating habits. 

Typically, dry beans (Phaseolus vulgaris L.) are valued from a nutritional 

standpoint for their high protein and dietary fiber contents. However, they are also good 

sources (i.e., >10% of the US daily recommendation) of folate and the essential minerals 

Mg, Fe, K, and P (USDA nutrient database 2017; NIH RDA values), making it an 

excellent source of many underconsumed nutrients in US diet.  

However, the availability of these nutrients for absorption and utilization is not 

only dependent on their concentrations, but also on factors like anti-nutritional 

compounds, processing techniques, and physicochemical state of the nutrient 

(Fairweather-Tait, 1987). For example, phytate is a naturally occurring compound present 

in grains and legumes, including GNB, and can form insoluble complexes with essential 

elements and reduce their absorption (Thomspon, 1993). Different processing techniques 
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like germination, pressure cooking, and extrusion have been shown to reduce phytate, but 

the extent of reduction depends upon the raw material and processing technique (Nergiz 

and Gokgoz, 2007).  

The techniques adapted for reducing these anti-nutritional factors and increasing 

mineral element bioavailability can unfortunately adversely affect other important 

nutrients like the heat labile folates. They may also increase bioavailability of toxic heavy 

metals like Cd (Watzke et al., 1998). Thus, it is important to identify processing 

techniques that can enhance the bioavailability of essential mineral elements while 

minimizing loss in important labile vitamins and reducing bioavailability of heavy 

metals. One such processing technique may be extrusion.  

Extrusion is a versatile food processing technique involving high-temperature 

short time cooking combined with high mechanical shear and pressure.  This processing 

technique has been effective in reducing anti-nutritional compounds while improving 

digestibility of macro- and micronutrients in a variety of raw materials. Furthermore, by 

modifying parameters either in the raw material (e.g., moisture content, particle size) or 

during the extrusion process (e.g., screw speed, feed rate, temperature) or by combining 

extrusion with other processes one can achieve specific results depending upon product 

requirement or desired chemical changes (Adamidou et al., 2007). Extrusion has shown 

promising results in improving the bioavailability of mineral elements in legumes and 

cereal products (Hazell and Johnson, 1989, Galan et al, 2013; Alonso et al., 2001) but no 

research has simultaneously focused on the effect of extrusion on vitamins and 

bioavailability of essential mineral elements and heavy metals in dry beans.    
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Bioavailability is a complex process which is defined as the amount of an 

ingested nutrient that is absorbed and is available for physiological function while bio-

accessibility is the amount of an ingested nutrient that has the potential to be absorbed 

and utilized for physiological functions (Etcheverry et al., 2012). In vitro dialyzability 

measures the proportion of the total elements that diffuse through a membrane during 

food matrix digestion (Miller et al., 1981) and is commonly employed to measure the bio-

accessibility of mineral elements. This method can also be used as a screening tool to 

assess if a certain process would have an effect on bioavailability when moved to more 

complex models.    

Thus, the objective of this study was to determine the effect of extrusion on 

degradation of folate and dialyzability of Mg, Fe, K, P, Fe, and Cd from GNB flour and 

identify conditions that achieve maximum dialyzability of the essential mineral elements 

while minimizing dialyzability of heavy metals and degradation of folate. The results 

from this study can serve as the basis for accessing bioavailability of essential nutrients 

from processed GNB flour to promote dry beans in the diet.  

7.3.  MATERIALS AND METHODS 

7.3.1.  Materials 

Great Northern beans (GNB) were obtained from FNJ Inc. (Alta Loma, CA, 

USA) and milled using a pilot scale hammer mill (20SSHMBD, C.S. Bell, Tiffin, OH, 

USA) with screen size of 0.7 mm. The flour was analyzed for moisture, fat, and ash 

content using approved methods (AACC International, 2013). Protein content was 

analyzed using a nitrogen analyzer (FP 528, Leco, St. Joseph, MI, USA) with a protein 

factor of 6.25. Total starch content was analyzed using total starch assay kit (K-TSTA, 
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Megazyme, Bray, Ireland) following the KOH format. Bean flour was stored at 4°C until 

extrusion.  

7.3.2.  Experimental design 

The effect of extrusion on GNB flour was studied by varying three extrusion 

factors: barrel temperature (Temp) (90-140°C), feed moisture content (MC) (17-25%), 

and screw speed (SS) (156-250 rpm), while keeping other factors such as feed rate and 

screw configuration constant. The levels of these factors were determined based on 

preliminary trials. The commonly used central composite rotatable design (CCRD) was 

modified slightly because barrel temperature was not randomized during the experiment. 

The experiments were conducted in increasing order of temperature while randomizing 

MC and SS. Temp was tested at three fixed levels: -1, 0, +1, i.e., 90, 115 and 140°C, 

respectively. In order to maintain orthogonality of the experiment, the design space was 

rotated by 45 which resulted in new axial (a = 1.43) and factorial (b = 0.70) points for 

MC (+a = 25%; -a=17%; +b = 22.5%; -b = 19%) and SS (+a = 250 rpm; -a=156rpm; +b 

= 225 rpm; -b = 180 rpm). The new values for MC and SS were calculated based on 

preliminary experiments and calculating the ratio of block error variance and 

experimental error (Draper and John, 1998). Based on the design, extrusion was carried 

under 18 experimental conditions (MC, SS, Temp): a, 0, 0 (2 runs); 0, a, 0 (2 runs); b, 

b, 1 (8 runs); and 0,0,0 (6 runs). The complete experimental design used in the study is 

shown in Table 1.  

7.3.3.  Extrusion process  

To adjust the moisture content of bean flour, batches (2 kg) representing each 

experimental run were blended in an upright blender (H-600-D, Hobart, Troy, Ohio, 



 173 

USA) at medium speed with the required water to obtain the target moisture content 

according to the experimental design. The moist samples were sealed in polyethylene 

bags and tempered for 16 h at 4 °C. The flour was then fed into the extruder barrel using 

a single screw volumetric feeder (FW 40 Plus, C. W. Brabender) set at a constant 

delivery rate of 76 g/min.  

A laboratory scale co-rotating conical twin screw extruder with mixing zones was 

used for extrusion (CTSE-V, C.W. Brabender, Hackensack, NJ, USA). The specifications 

of extruder and operating conditions used were the same as described in Gulati et al. 

(2016). The extrudate sample for each experimental condition was collected after a stable 

temperature and torque reading was observed. The collected samples were dried in a belt 

drier (4800 series Wenger, Sabetha, KS, USA) at 100°C for 10 min and ground using 

cyclone sample mill (UDY, Fort Collins, CO, USA) with a screen size of 1 mm. The 

ground extrudate samples were stored at 4°C until analysis.  

7.3.4.  Phytic acid content 

Phytic acid in GNB flour and extrudates was quantified as phytate phosphorus 

using 2,2’- bipyridine as described (Haug & Lanstzsch, 1983), with slight modifications. 

Briefly, phytic acid was extracted from the sample (250 mg) using 0.2 N HCl (10 mL) 

overnight at 4 °C with gentle shaking. The contents were centrifuged and supernatant was 

used for analysis after dilution with distilled water (25 mL). For unprocessed flour, 0.25 

mL of the diluted supernatant was mixed with 0.75 mL of 0.2 N HCl; for extrudates, 0.5 

mL of the diluted supernatant was mixed 0.5 mL of 0.2 N HCl. One mL of 415 μM 

Fe(NH4)(SO4)2 was then added to diluted extracts and tubes were placed  a in  boiling 

water for 30 min. The tubes were cooled immediately and contents centrifuged. One mL 
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of the supernatant was mixed with 1.5 mL of 2, 2’-bipyridine. The color developed was 

measured at 530 nm. The samples were quantified by means of external calibration using 

sodium phytate dodecahydrate (Sigma-Aldrich, 71649) which contained 19% phytate 

phosphorus as measured with inductive coupled plasma mass spectrometry (ICP-MS) as 

described later. 

7.3.5.  Folic acid content 

Total folates were measured using the standard microbiological assay (L. casei 

subsp. Rhamnosus, ATCC no. 7469) with tri-enzyme extraction technique (AACC 

method 86-47).  

7.3.6.  In vitro digestion  

In order to measure the dialyzability of elements, bean flour was digested in vitro 

under conditions described by Luten et al. (1996), with some modifications. The 

modifications were to reduce sample weights and volumes to fit in a 48-well plate format 

(Rapid Equilibrium Dialysis Plate, MWCO 8K Dalton, Thermoscientific, 90006). For 

digestion, 20 mg of sample was weighed in the sample chamber and mixed with 0.2 mL 

of pepsin solution (50 mg/mL in 50mM HCl). The plate was covered with a sealing tape 

(15036 ThermoScientific), and incubated at 37 °C for 2 h with gentle shaking at 125 rpm. 

Pepsin digestion was stopped by adding 0.25 mL of dialysis buffer (0.1 M NaHCO3) in 

the buffer chamber and the mixture incubated for 55 min under previously described 

conditions. The amount of dialysis buffer added was pre-determined by titrating gastric 

mixture with dialysis buffer until the pH reached 6.  Meanwhile a pancreatin-bile solution 

(0.4 g pancreatin; 2.5 g bile salts) was prepared in 10 mL of 0.1 M NaHCO3. Given the 

low solubility of pancreatin, the solution was centrifuged and 0.05 mL of the supernatant 
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was added to each sample chamber, covered with sealing tape and incubated for 2 h. 

After digestion, the dialysis buffer (0.07-0.08 mL) was collected from the buffer chamber 

and used to quantify dialyzable elements. In order to avoid element contamination from 

enzymes, both pepsin and pancreatin enzyme solutions were dialyzed using centrifugal 

filter devices (Centriprep 10K, Merck Millipore, Burlington, MA) by centrifuging four 

times at 3000 g for 30 min each at 4 °C to remove contaminating elements. The 

concentrated enzyme solutions were collected from outer chamber of the tube and made 

up to the required volume and used for digestion. In preliminary testing, there was no 

significant reduction in protease activity of these enzymes before or after dialysis.  

7.3.7.  Total and dialyzable element concentrations 

The total concentration of mineral elements in bean flour and extrudates were 

quantified after wet ashing. Briefly, 500 mg of sample was digested using 4 mL of 

concentrated nitric acid at 100°C for 1 h. The tubes were cooled to room temperature, 

mixed with 4 mL of hydrogen peroxide (30%) and heated for 1.5 h at 125°C. A second 

volume of hydrogen peroxide was then added and tubes were heated at 150 °C until the 

sample dried. The dried samples were re-suspended in 10mL of 1% nitric acid, mixed 

thoroughly and used for element analysis (Guttieri, 2014).  

Element analysis in unprocessed wet ashed samples and dialysis buffer collected 

after digestion and dialysis from RED plate was performed using inductively coupled 

plasma mass spectrometry (7500cx, Agilent Technologies, Santa Clara, CA) operating in 

kinetic discrimination mode with helium gas at 5 mL/min. with 50 ppb Ga as internal 

standard Approximately 40 L of sample was injected using a micro peripump, 2% nitric 

acid was used for rinsing between runs. Each sample was analyzed in duplicate. The 
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method was optimized for the analysis of Li, B, Na, Mg, P, S, K, Ca, V, Cr, Mn, Fe, Co, 

Ni, Cu, Zn, As, Se, Mo, and Cd. The results for Mg, Fe, P, K, and Cd are only discussed 

in this paper since GNB has greater than 20% DV of these elements and Cd is a heavy 

metal of concern. The results were calculated in mg/kg sample for model fitting. For 

presentation of the data, units were converted to 1) the percentage of total elements that 

were dialyzable and 2) the percent change in the dialyzability in the extruded sample 

compared to unprocessed bean flour. 

7.3.8.  Data analysis 

The data were analyzed using JMP statistical software (JMP version 10.0.0, SAS 

institute). The following second order model was fitted for each response variable: 

Yijk =  β0 +  β1x1i  +  β2x2j + β3x3k + β11x1i
2 +  β22x2j

2 + β33x3k
2 +  β12x1ix2j

+  β13x1ix3k + β23x2jx3k 

where, Y was the response (folic acid, phytic acid, total and dialyzable Mg, K, P, 

Ca, Fe and Cd) for ith level of x1 (Temp); jth level of x2 (MC) and kth level of x3 (SS). The 

models were checked using ANOVA (F test), lack of fit test, and adjusted R2 values. 

Results of extruded samples were compared with unprocessed bean flour using Dunnett’s 

multiple comparison test at significance level of 0.05 with extrudate results averaged over 

low, medium and high MC, SS and temp settings separately. Correlations among 

response variables were calculated using Pearson’s method and further used to conduct 

principal component analysis (PCA). 

To predict extrusion conditions that would result in the highest folic acid and 

dialyzable Mg, P, K, and Fe together with the lowest phytic acid and dialyzable Cd, a 

simultaneous optimization technique was used, which makes use of a desirability 
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function (Myers et al., 2009). All responses were given equal weight in the optimization 

process. The desirability function (di) ranges from 0 to 1 and was constructed for each 

response with targets to minimize phytic acid content and Cd dialyzability while 

maximizing folic acid and dialyzable Mg, P, K, and Fe. Overall desirability was 

calculated using the following equation: 

D = (d1d2….dm)1/m 

Where, m=number of responses (7).  

7.4.  RESULTS AND DISCUSSION 

7.4.1.  Composition of bean flour and changes upon extrusion 

The GNB flour used for extrusion had the following composition (mean of 3 

replicates ± standard deviation, wet basis): 14.1 ± 0.87% moisture; 21.6 ± 0.2% protein; 

1.2 ± 0.10% crude fat; 40.1 ± 0.9% starch; 2546 ± 65 mg/kg Mg; 6379 ± 85 mg/kg P; 

19178 ± 855 mg/kg K; 58.6 ± 3.4 mg/kg Fe; 0.029 ± 0.014 mg/kg Cd; 1430 µg/kg folic 

acid; 4.33 ± 0.07 mg/g phytic acid.  

Extrusion reduced the phytic acid and folic acid concentrations when compared 

with the amounts present in unprocessed flour (Table 7.1). Depending on the extrusion 

condition, the anti-nutritional factor, phytic acid, decreased by up to 85% while there was 

a loss of up to 43% in the vitamin, folate. There was no change in the total concentrations 

of Mg, P, K, Ca, Fe and Cd upon extrusion when compared with unprocessed flour (data 

not shown) but there was a significant change in the dialyzable concentrations of 

extruded bean flour compared with unprocessed flour. When compared with unprocessed 

bean flour, extrusion resulted in as much as 56%, 50%, 25%, and 84% increase in 

dialyzability of Mg, P, K, and Fe respectively. The effect on Cd dialyzability was much 
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more varied, with some extrusion conditions increasing and other conditions decreasing 

dialyzability compared with unprocessed bean flour.   

7.4.2.  Effect of extrusion on phytates, folate and element dialyzability  

Model diagnostics 

A non-significant lack of fit for all the dependent variables indicated that fitted 

second order models were appropriate for all the responses (Table 7.2). Further, all 

responses, except dialyzable K, had an adjusted R2 greater than 0.70, which suggested 

that the model could explain more than 70% variation in the data and a significant F ratio 

for these responses indicated that different extrusion conditions affected the response. For 

K, a non-significant F ratio showed that there was no effect of individual extrusion 

condition on K dialyzability but from the previous comparison with unprocessed flour 

there was an overall improvement in dialyzability of K by extrusion.  

Phytic acid 

Extrusion dramatically reduced the concentration of phytic acid in GNB flour 

(Fig. 7.1); however, among the extrusion variables linear effects of MC and Temp and 

their interaction significantly affected the extent of change during extrusion (Table 7.2). 

Higher values of both MC and Temp resulted in higher measured concentration of phytic 

acid and thus less degradation. On the other hand, lower MC conditions resulted in 

reduced phytic acid concentration (Fig. 7.1).  

A similar effect of extrusion on reduction of phytic acid in legumes and other 

bean varieties has been reported by other researchers (Alonso et al., 2000; Batista et al., 

2010a; Marzo et al., 2011). The effect of extrusion on phytate is mainly linked to thermal 

hydrolysis of reactive phosphate esters (Sandberg et al., 1987). The dephosphorylated 
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phytate no longer possesses the detrimental chelating effects of the native compound. 

Samples at high feed MC would be exposed to less severe conditions due to the 

lubricating action of water, resulting in less degradation of phytate, as seen in our study. 

By the same logic we would expect high barrel temperature to have a severe destructive 

effect on phytic acid; however, we found that an increase in barrel temperature resulted in 

less degradation. Similar results were shown when the phytic acid content was averaged 

over low, med and high conditions of MC, SS and Temp (Fig. 7.1), although high Temp 

runs also showed greater variability in the data. We observed a significant interaction 

between MC and Temp, with increasing values of both resulting in higher phytic acid. 

This suggests that high feed MC has a greater protective effect on phytate than the 

destructive effect of high temperature.  

Folic acid  

Feed MC had a significant quadratic effect on folic acid in GNB, while other 

extrusion variables had no effect (Table 7.2). Higher MC resulted in more folate (less 

loss) than low moisture conditions (Fig. 7.2). The observed range of folate in processed 

GNB were similar to previous reports for other beans (Hefni et al., 2014). As mentioned 

earlier, the observed folate concentrations in extrudates were significantly lower than the 

folate concentration in bean flour, which can be explained by the sensitivity of the 

vitamin to heat, pressure, and shear (Dozier, 2002). The loss in folate during extrusion 

has been reported by other researchers for different folate rich grains with thermal 

degradation and shear identified as the main cause (Broz et al., 1997; Ramos-Diaz, 2016).  

The significant effect of MC found in our study can be linked to protective effect of 

moisture inside the extruder barrel such that at low moisture conditions the exposure to 
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folate to high temperature was more, resulting in greater thermal degradation. Folate is 

sensitive to a wide range of processing techniques, but based on our study and previous 

reports the loss in folate is moderate during extrusion when compared to other techniques 

like roasting and autoclaving (Kariluoto et al., 2006) or just simple cooking (Xue et al., 

2011). Charlton and Ewing (2007) showed that there is complete destruction of folate 

when exposed to temperatures over 95 °C in other processing techniques; however, in our 

study at the maximum temperature of 140 °C we observed only moderate loss in folate 

(except for 1 sample with lowest MC resulting in 40% loss). This suggests that extrusion 

is a much more complicated process and with optimized conditions one can achieve 

minimum loss in folate even after processing.  

Mineral element dialyzability 

Extrusion significantly increased the dialyzability of Mg, P, K, and Fe when 

compared with unprocessed flour (Fig 7.3). While only 19%, 15%, 54%, and 2% of Mg, 

P, K, and Fe was dialyzed respectively, from the flour, the percent increased up to 38%, 

22%, 58%, and 9% for Mg, P, K, and Fe upon extrusion. The maximum improvement in 

dialyzability was observed for Mg and Fe upon extrusion. On the other hand, extrusion 

greatly reduced the dialyzability of the heavy metal Cd when compared to unprocessed 

flour with 4% Cd dialyzed from unprocessed flour and as low as 0.4% dialyzed from 

extruded flour.  SS had a significant linear or quadratic effect on the dialyzability of all 

the elements except K which was not effected by any extrusion parameter (Table 7.2). 

After SS, feed MC had a significant impact on element dialyzability with a quadratic 

effect and negative interaction with SS for Fe, a negative interaction with SS for Mg, and 
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a linear impact on Cd dialyzability. Temp had a significant effect only on Mg 

dialyzability.  

Several researchers have reported an increase in either apparent absorption, 

dialyzability or bio-accessibility of these elements after extrusion (Alonso et al., 2001; 

Mercier, 1993; Hazell and Johnson, 1989), while some reported no change (Drago et al., 

2007). Most of these reports focused on limited extrusion conditions and linked the 

improvement in availability of these elements to thermal degradation of phytate that is 

known to form complexes with Fe. In our study, we found a significant effect of SS on 

dialyzability of elements, which suggests that apart from thermal degradation of 

interfering substances like phytates, shear during extrusion may facilitate other changes 

in bean flour that increase element dialyzability. Alonso et al, (2000) showed that there 

was a significant improvement in apparent absorption of Mg, P and Fe for an extruded 

sample enriched with amino acids due to enhanced function of enterocyte with respect to 

mineral intestinal uptake (Welters et al., 1999). Additionally, lignin and other fiber 

fractions are known to form insoluble complexes with divalent cations (Lestienne et al., 

2005) and extrusion is known to reduce the lignin fraction in bean fiber while changing 

the distribution of soluble and insoluble dietary fibers resulting in an improved absorption 

of divalent cations like Mg and Ca (Martin-Cabrejas et al, 1999; Sumargo, 2016).   

High MC and SS had a significant impact on the amount of dialyzable Cd with 

higher values increasing Cd dialyzability. Coupling high MC and high SS typically does 

not result in a desirable puffed product, suggesting an unlikely scenario for higher Cd 

dialyzability. The effects of processes like baking and milling on Cd concentration 

(Cubadda et al., 2002; Guttieri et al., 2015) and processing like microwave cooking on 
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Cd dialyzability (Wang et al., 2014) have been reported before, but there is no report on 

the effect of extrusion processing on dialyzability or bio-accessibility of Cd. In our study, 

we found that lower MC and SS would result in lower Cd dialyzability. This could be due 

to thermal degradation of phytates or increased soluble dietary fibre content during 

extrusion as reported by others. Several studies have shown that Cd binds more readily 

with insoluble fiber fractions than soluble fractions (Ou et al., 1999), and, although the 

effect of phytates on bio-availability of Cd is controversial, several researchers have 

shown a positive correlation between phytate content and Cd in sample (Persson et 

al.,1991; Rimbach et al., 1995).     

7.4.3.  Multivariate analysis 

Fig 7.4A shows the pearson’s correlations between phytic acid, folic acid, and 

total and dialyzable element concentrations in extrudates. Phytic acid was not correlated 

with any other variable, while folic acid was negatively correlated with dialyzable P. 

There was no association between the total concentration of a certain element and how 

much was dialyzed. However, there were correlations among the total amount of all 

serum elements (Mg, K and P) and among dialyzable concentrations of these elements, 

which suggests that changes during extrusion were consistent for these elements. Total 

and dialyzed fractions of the heavy metal Cd were not correlated with any variable.  

Since there was no correlation between the total and dialyzable element 

concentrations, and the objective of our study was to have better understanding of factors 

that affect dialyzable element concentrations, all responses except total element 

concentrations were used for principal component analysis (PCA) (Fig 7.4B). The first 

two components explained 67% of the variation in the data. The essential elements (Mg, 



 183 

K, P, and Fe) had high positive loadings on Component 1 and were grouped together, 

while phytic acid and folic acid were negative on Component 1 and positive on 

Component 2. Low MC conditions combined with either high or low SS seemed to have 

maximum effect on dialyzability of these elements, while folic acid and phytic acid were 

retained under high MC as discussed. Cd could be considered separate from all, with 

almost no loading on Component 1 and high positive loading on Component 2. The 

dialyzability of Cd was enhanced by high MC and low SS, which, as discussed, are 

unlikely extrusion conditions as it results in an unacceptable product from a physical 

standpoint.  

7.4.4.  Optimization 

Based on the results of model fitting and analysis, extrusion parameters have 

differential effects on phytic acid, folic acid, and dialyzability of elements from bean 

flour. Because some of these components are desirable and others are undesirable, it is 

important to identify extrusion conditions that yield the best results in terms of measured 

responses. With the criteria of minimizing the phytic acid content and cadmium 

dialyzability while maximizing all other responses a desirability function was constructed 

using the simultaneous optimization technique which gave the maximum desirability of 

0.87 for following extrusion conditions: Temp: 100C; MC: 20.7%; SS: 245 rpm. This 

suggests a low barrel temperature, medium feed moisture content, and high screw speed 

are ideal conditions to achieve maximum destruction in phytic acid while achieving 

minimum loss in folate and high element dialyzability in GNB flour.  

7.5.  CONCLUSION 
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Extrusion resulted in up to 85% reduction in phytates in GNB flour while 

moderately affecting folate content. Low MC conditions resulted in maximum reduction 

of these compounds. Extrusion significantly improved the dialyzability of all the mineral 

elements (Mg, P, K and Fe) while significantly reducing the dialyzability of heavy metal 

Cd when compared with dialyzed amounts from unprocessed flour. SS was the major 

extrusion variable causing the changes in dialyzable elements which was followed by 

feed MC. Low barrel temperature, medium MC and high SS were identified as extrusion 

conditions that resulted in maximum dialyzability while minimum destruction to folate. 

The study suggests that extrusion had a marked influenced on availability of mineral 

elements in GNB and the results can form basis for bio-availability studies for GNB or 

other dry bean varieties using Caco-2-cell or other models. 
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Table 7.1. Experimental design and percentage change in element dialysability, folic acid and phytic acid content from flour 

Extrusion Variables Change from flour (%)* 

 

Run 

Temp  

(°C) 

MC  

(%) 

SS 

(rpm) 

Folic acid Phytic acid Dialysability 

Mg  P K Fe Cd 

1 90.0 23.1 225 -18.2 -84.3 43.7 20.0 19.3 76.1 -331 

2 90.0 18.9 180 -30.0 -79.7 49.7 45.7 25.3 81.3 -20.4 

3 90.0 23.1 180 -22.2 -81.2 47.1 24.1 15.8 74.9 62.6 

4 90.0 18.9 225 -25.4 -79.7 56.3 49.6 23.5 84.3 39.6 

5 115 21.0 203 -18.2 -81.2 41.4 5.50 15.9 59.8 25.8 

6 115 21.0 203 -20.2 -78.9 38.1 6.80 12.2 61.0 -395 

7 115 21.0 156 -23.3 -75.3 51.5 33.3 17.7 78.7 18.1 

8 115 21.0 203 -21.2 -81.2 45.7 29.4 19.7 73.3 41.5 

9 115 21.0 250 -10.8 -78.2 53.0 46.8 22.5 80.7 -15.9 

10 115 21.0 203 -23.3 -78.9 40.7 17.9 18.1 56.5 34.5 

11 115 21.0 203 -17.2 -79.7 44.1 15.6 20.5 56.2 30.4 

12 115 25.3 203 -20.2 -74.6 29.5 4.20 15.2 75.2 -13.7 

13 115 21.0 203 -26.5 -76.7 43.7 23.9 21.7 73.1 17.7 

14 115 16.7 203 -43.0 -84.3 51.1 46.4 16.7 78.9 -582 

15 140 23.1 225 -12.6 -66.5 42.2 -16.5 13.8 41.3 -207 

16 140 23.1 180 -22.2 -69.2 44.2 27.5 17.2 77.8 35.6 

17 140 18.9 180 -31.2 -81.9 47.4 36.4 19.9 39.8 -795 

18 140 18.9 225 -26.5 -85.1 49.0 32.3 25.4 72.1 10.9 
Temp-Barrel temperature, MC-Feed Moisture content, SS-Screw speed. *there was a significant difference between concentration of these 

responses in unprocessed flour and extruded samples tested using Dunnett’s multiple comparison test at -0.05. 
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Table 7.2. Regression coefficients for each response surface equation and model fit parameters. 

 

Parametera 

Phytic acid Folic 

acid 

Dialyzability 

Mg  P K Fe Cd 

Intercept 6.44 36.8 3235 12469 15574 47.6 -0.08 

SS -0.01 -1.14 -15.44 -35.8 -26.9 -0.03 0.0003* 

MC 0.15*   16.5* 79.50 -451 959 -2.10 0.005* 

Temp 0.03* -0.24 -21.74 -25.9 -146 -0.28 -0.0001 

SS2 0.00016 0.002 0.08* 0.22* 0.15 0.001* -9.6e-8 

SS*MC 0.00 0.02 -0.71* -1.67 -1.64 -0.02* -1.6e-5 

MC2 0.00095 -0.47* -0.13 13.3 -18.5 0.09* -0.00004 

SS*Temp 0.000085 0.001 -0.02 -0.15 0.06 -0.0005 3.4e-7 

MC*Temp 0.001* 0.02 0.32 1.07 -0.02 0.01 5.8e-7 

Temp2 0.00012 -0.002 0.08* 0.13 0.56 0.0004 7.6e-8 

LOF NS NS NS NS NS NS NS 

Adjusted R2 0.86 0.83 0.85 0.75 0.20 0.75 0.79 

F ratio 12.8* 10.3* 11.8* 6.58* 0.83 5.26* 3.46* 

LOF: Lack of Fit; NS: Not significant, *significant at p0.05 
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Figure 7.1. Phytic acid in extruded samples under low, medium and high conditions of 

moisture content (MC, %), screw speed (SS, rpm), and barrel temperature (Temp, C)25 

                                                 

 

25 Low and high conditions n=5, medium conditions n=8 with standard error bars plotted; the 

decrease in phytic acid was a significant for all extrusion conditions when compared with 

unprocessed bean flour (=0.05).  
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Figure 7.2. Folic acid in extruded samples averaged over low, medium and high 

conditions of moisture content (MC, %), screw speed (SS, rpm), and Barrel temperature 

(Temp, C)26 

  

                                                 

 

26 Low and high conditions n=5, medium conditions n=8, standard error bars plotted, *there was 

a significant change in all extruded conditions when compared with the amount in flour (=0.05).  
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Figure 7.3. Percentage of total elements that were dialyzable under low, medium and 

high conditions of moisture content (MC, %), screw speed (SS, rpm), and barrel 

temperature (Temp, C)27 

 

  

                                                 

 

27 low and high conditions n=5, medium conditions n=8, standard error bars plotted, dotted lines 

represent the percent dialyzed from un-extruded flour, *there was a significant change in all 

extruded conditions when compared with the amount in flour (=0.05). 
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Figure 7.4. Multivariate analysis on extruded samples, A) Correlation matrix; B) Bi-plot 

using Principal Component Analysis (PCA) on correlations 
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CHAPTER 8:  QUALITY CHARACTERISTICS AND IN VITRO PROTEIN 

DIGESTIBILITY OF BREADS MADE FROM HISTORICAL AND MODERN 

WHEAT CULTIVARS 

8.1.  ABSTRACT 

Breads made with 21 cultivars of wheat introduced or released in US between 

1870 and 2014 were evaluated for end-use quality attributes and in-vitro protein 

digestibility. All cultivars were planted over two harvest years with three field replicates. 

Grain yield was positively correlated with release year, with modern cultivars having 

highest yields with no effect of planting year. Grain yield was negatively (r2=-0.9) 

correlated with flour protein content, with land races and old cultivars having high 

protein content and low yield. Flour absorption was positively correlated (r2=0.74) with 

protein content while mixing time was not correlated with any observed variable. Year of 

planting had a significant effect on mixing time suggesting an environmental effect on 

other flour components than proteins. Breads made with Turkey, Kharkof and Red chief 

had lowest protein digestibility of 83, 79 and 82% when compared with other cultivars. 

All cultivars released after Cheyenne (1931) had digestibility of at least 90%. In our 

study, Cheyenne was the oldest wheat cultivar released from a modern wheat breeding 

program. Interestingly, Cheyenne was developed from Turkey and had the same protein 

concentration, yet Cheyenne had significantly higher protein digestibility. Further 

investigation is needed to identify the cause of improvement in protein digestibility of 

wheat with modern breeding.     
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8.2.  INTRODUCTION 

Bread wheat (Triticum aestivum), a hexaploid wheat species, is the second largest 

cereal grain produced in the US (USDA, crop production database, 2018). The 

production and processing of this wheat class in the US has increased by 37 and 55% 

respectively over the last 50 years (USDA, ERS database, 2018). The main cause of this 

increase is the wheat breeding programs initiated in the 1940s with the aim to release new 

cultivars of wheat with improved grain yield, disease tolerance, better bread making 

characteristics etc. (Braun et al., 1996). These breeding programs have ensured a 

continuous supply of high-quality wheat for the rapidly growing world population.  

However, these breeding programs have faced severe public criticism in the past 

decade and modern wheat cultivars have been blamed for chronic conditions like obesity, 

increased celiac disease, and gluten intolerance, among others. A simple web search for 

‘modern wheat’ generate articles, blogs and discussions labelling wheat as ‘poison’, 

‘toxic junk food’, ’less nutritious’, and ‘harmful’. Despite the efforts of the wheat 

community to refute such claims by scientific evidence (Brouns et al., 2013), the image 

of wheat has been tarnished among many of the general population. This has resulted in a 

rapid boom in the gluten-free foods industry, which is further projected to increase by 

25% by 2020 (Terazono, 2017). While a gluten-free diet is a necessity for some, for 

others it is unnecessary and can result in nutritional inadequacies (Hallert et al., 2002).  

Thus, it is important to break the myths surrounding wheat and human health and rebuild 

its place in our diets.  

In an effort to do so, many researchers have evaluated old and new wheat 

varieties to determine how modern wheats have changed. Hucl et al., (2015) reported a 
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significant improvement in agronomic and end-use quality traits in modern wheat while 

Ribeiro et al., (2016) observed higher amounts of potential celiac disease’s 

imunostimulatory epitopes in old cultivars when compared with modern wheat. 

With a similar approach, the present study focused on protein digestibility. 

Because wheat forms a viscoelastic network upon mixing with water that appears almost 

like rubber, many people assume that wheat gluten is difficult to digest. Research, 

however, has shown that among cereal proteins, wheat has highly digestible protein. 

However, breeding efforts are focused on developing wheats with even stronger gluten 

that can withstand high speed mixers and industrial bread production. The process of 

selecting wheat with these ‘modified gluten’ characteristics may affect protein 

digestibility.  

In the present research, we used an in vitro approach to compare the protein 

digestibility of 21 wheat cultivars. Of these, 2 were land-races, i.e., wheat varieties that 

maintain their original form and have not been manipulated by intentional breeding 

efforts, and 19 were wheat cultivars released in US between 1901 and 2014 either by 

natural selection or crossing between earlier cultivars as part of wheat improvement and 

breeding programs. The primary aim of this work was to determine if there was any 

difference in digestibility of wheat varieties released over the years. Apart from 

digestibility, grain yield, protein content, and dough characteristics of these cultivars 

were compared.  

8.3.  MATERIALS AND METHODS 

8.3.1.  Wheat samples growth and preparation 
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Field studies were seeded as the wheat (Triticum aestivum L.) component of a 

wheat/oats (Avena sativa L.) /soy (Glycine max L.) rotation. A collection of 21 wheat 

cultivars and land-races were planted for harvest years 2016 and 2017 (Table 8.1).  All 

field studies were conducted at the University of Nebraska Agricultural Research and 

Development Center, located near Mead, NE, approximate GPS coordinates N 41° 

08.782 W 096° 29.985. Materials were planted in randomized complete block designs 

with three replications (field reps) with the exceptions of ‘Red Chief’ in 2016 with only 

one replication and ‘Anton’ in 2 replications due to inadequate seed supplies.  Field plots 

were machine planted and harvested.  Harvested area of each plot was approximately 3 

square meters.  Grain yield was calculated in kg/ha. Plots were maintained disease free 

via applications of the fungicides metconazole (5-[(4-chlorophenyl) methyl]-2,2-

dimethyl-1-(1H-1,2,4-triazol-1-ylmethyl) cyclopentanol; Caramba®, BASF) and 

pyraclostrobin (carbamic acid, [2-[[[1-(4-chlorophenyl)-1H-pyrazol-3-

yl]oxy]methyl]phenyl]methoxy-,methyl ester) plus metconazole; Twinline®, BASF), 

applied alternately during growing, flowering, and grain filling. Wheat samples after 

harvesting were milled using a Buhler mill and stored under refrigerated conditions until 

further analysis.  

The land-races Turkey and Kharkof, were both introduced to the United States 

before 1901. The remaining 19 entries were all U.S. released cultivars with varying 

release dates. Based on the date of release, wheat cultivars were divided into four groups: 

pre-1901, land-races; 1901-1950, ‘very old’; 1951-2000, ‘old’; 2000-2014, ‘new’ (Table 

8.1).  

8.3.2.  Flour characteristics 
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Moisture (44-15A) and protein content (NIR analysis, 39-11) of flour samples 

were determined by AACC standard methods. The measured moisture and protein values 

were used to calculate flour absorption and mixing time (corrected) by standard 

mixograph method (AACC- 54-40A). Each test was done in duplicate.    

8.3.3.  Bread Making 

For each flour sample, breads were baked in duplicate, resulting in 120 samples 

for planting year 2016 and 126 samples for planting year 2017. The order of bread 

making was randomized for each year. Breads were made by modification of the AACC 

straight dough bread making method (10-09). Thirty grams of flour was mixed with 

instant yeast (0.66%, flour basis); sugar (6%); salt (1.5%) and shortening (3%) in a 

mixograph bowl. Water (maintained at 25-30 C) was added and the doughs were mixed 

based on the absorption and mixing requirements from the mixograph data. The dough 

was fermented for 60 min at 30 C, whereupon the dough was shaped by hand, panned, 

and proofed for 70 min at 30 C. Proofed doughs were baked for 20 min at 204 C. The 

baked breads were cooled to room temperature and sliced. The bread slices were frozen 

at -80 C and then freeze dried using a plate freeze drier for 24 h (Model 2400, Freeze 

Dry Company Inc., Pine River, MN). The dried bread pieces were crushed in to a fine 

powdered using blender. The powdered samples were kept at 4C until further analysis.  

8.3.4.  In vitro protein digestibility 

Gastrointestinal protein digestion was measured as described (Gulati et al. 2017) 

with slight modifications. Dried, ground bread (120 mg) was suspended in simulated 

gastric fluid (SGF; 0.5 M NaCl, pH:2.5) to achieve a pH of 2.5 (approximately 4 mL) and 

incubated at 37 C for 10 min. The contents were then mixed with pepsin dissolved in 



 201 

SGF to give an activity of 200 U of pepsin/mg of protein in sample and incubated for 2 h. 

Gastric digestion was stopped by raising the pH to 7 using 0.5 M sodium bicarbonate. For 

intestinal digestion, pepsin hydrolyzed samples were mixed with 1 mL simulated 

intestinal fluid (SIF) (0.05 M KH2PO4, pH: 7.0) and warmed at 37 C. Three milliliters of 

pancreatin solution in SIF (2 mg/mL) containing 2 µL/mL amyloglucosidase was added 

to flour mixture and incubated for 4 h. Intestinal digestion was stopped by plunging the 

tubes into a boiling water bath for 5 min and immediately cooling. The digested samples 

were centrifuged and the supernatants were used to measure degree of hydrolysis (DH) 

by the reaction of free amine groups with TNBS using leucine as the standard. DH was 

then calculated as described in Gulati et al. (2017) with htotal of 7.67 mmol/g protein 

(weighted average molecular weight of the amino acids in wheat flour). Digestion for 

each sample was performed in duplicate and degree of hydrolysis for each digested 

sample was further analyzed in duplicate.  

8.3.5.  Statistical data analysis 

Grain yield, flour protein content, absorption, mixing time, and bread in-vitro 

protein digestibility were the responses analyzed in the study. Data were initially 

analyzed using two factor ANOVA. Wheat cultivar, year of planting, and their interaction 

were fixed effects, and field replicates nested within year was a random effect. 

Differences among least square means by cultivar, by release year group, and by planting 

year, were tested by multiple comparison test with Tukey’s adjustment (cultivar and 

release year group) and t-test (planting year) at =0.05. Pearson’s correlations on LS 

means (N=21) were calculated among responses. All statistical analyses and graphs were 

generated using JMP software (JMP version 10.0.0, SAS institute). 
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8.4.  RESULTS  

8.4.1.  Grain yield and flour characteristics of different wheat cultivars 

Cultivar type but not planting year or the interaction of planting year with cultivar 

significantly affected grain yield (Table 8.2). The average yield obtained was 4300 kg/ha.  

The maximum yield was obtained for Settler CL while minimum yield was obtained for 

Kharkof (Fig. 8.1; Table 8.3). When yields were compared based on year of release it 

was found that there was no statistical difference between very old and land-race 

cultivars, but there were differences among all other groups (Table 8.3). New cultivars 

(2000-2014) had the maximum yield, followed by old cultivars (1950-2000), and finally 

very old and land-race varieties. Further, there was a positive correlation between grain 

yield and release year (Fig 8.5).  

The overall protein content of flour ranged from 9.5 to 13.1% with an average 

protein content of 11.4%. There was a significant effect of year of planting, cultivar, and 

their interaction on the protein content (Table 8.2). When comparing the protein content 

among cultivars, the highest protein content was obtained for Turkey, Kharkof, 

Cheyenne, Wichita and Triumph64 while Freeman had the lowest protein content (Table 

8.3). When compared among the two planting years, wheat grown in 2016 had a slightly 

higher protein content (11.9%) than same wheat grown in 2017 (11.1%) (Table 8.3; Fig. 

8.3).  Furthermore, there was a significant difference between protein content of new and 

old wheat cultivars (Table 8.3) and also, other groups while very old and land-race ones 

had highest protein content and were statistically same.  

There was a significant negative correlation between grain yield and flour protein 

content (r2 = -0.90) which has been observed by other researchers (Simmonds, 1995; 
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Bogard, 2010). Further, there was a negative correlation between release year and flour 

protein content (Fig 8.4; 8.5).  

Flour absorption and mixing time are measures of dough characteristics and 

associated with flour protein content (Roels et al., 1993). Usually, the higher the protein 

content the higher the water absorption, which increases the mixing time to an extent 

based on other flour characteristics (Baig and Hoseney, 1976).  

Both flour absorption and mixing times were affected by cultivar and year of 

planting (Table 8.2). Mixing time also had a significant interaction between cultivar and 

year of planting. The maximum flour absorption was obtained for Mattern (Table 8.3; 

Fig. 8.2), a waxy wheat cultivar, which was expected to have high absorption as observed 

for other waxy wheat varieties (Takata et al., 2005). The significant year effect for flour 

absorption can be attributed to the high absorption of Mattern, especially in 2016. After, 

Mattern, Turkey and Cheyenne had the highest absorption, while Freeman had the lowest 

absorption, which can be due to its low protein content. A significant positive correlation 

was obtained between protein content and absorption (Table 8.4).  There was a 

significant negative correlation between flour absorption and both release year and yield.  

Based on year of release, new cultivars had the lowest absorption and were significantly 

different from the other three categories while there was no difference between land-race, 

very old or old cultivars (Table 8.3). Mixing time was not correlated with any variable 

but there was a significant effect of planting year on mixing time of cultivars (Fig. 8.2), 

wheat planted in 2016 had lower mixing time than wheat planted in 2017. There was no 

effect of year of release on mixing time (Table 8.3).    

8.4.2.  In vitro digestibility of bread made with different wheat cultivars 
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Protein digestibility of bread made with different wheat cultivars was significantly 

affected by cultivar type and the interaction of planting year and cultivar (Table 8.2). The 

protein digestibility of all cultivars ranged from 89 to 94% except Red chief, Turkey, and 

Kharkof, which had significantly lower digestibility compared with all other cultivars 

(Table 8.3). When LS means for digestibility of samples were plotted by planting year, 

all samples grouped together except Red chief, Turkey and Kharkof, which had 

digestibilities that were noticeably lower than average. The separation between these 

cultivars and the rest of the samples was clearer in 2017, which explains the significant 

interaction between cultivar and year of planting. When digestibility of all samples was 

plotted against release year (Fig 8.4), the obtained trend was opposite to protein content, 

with newer samples having higher digestibility. Based on the year of release, all cultivars 

grouped well with their respective group except Red Chief, which grouped with the land-

race cultivars. 

8.5.  DISCUSSION 

Turkey and Kharkof are winter wheat varieties introduced in the Great Plains of 

the US in 1874 and 1900, respectively, by early Mennonite settlers (Ross, 1969). Both the 

cultivars had excellent adaptation to the Great Plains and were used as parents in early 

wheat breeding programs. Cultivars developed from Turkey and Kharkof had improved 

grain yield, disease and insect resistance, and baking quality (Auvochanon, 2010), such 

as Cheyenne, which was introduced in 1931. On the other hand, Red Chief was a cross 

between two early wheat cultivars Red Clawson and Red Arcadian, developed in Eastern 

US, in 1903. This cultivar was introduced to Nebraska in 1926 but was never grown 

commercially and was mostly used as parent variety for new cultivars (Clark, 1927). As 
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part of wheat breeding programs, modern cultivars were developed or selected to meet 

requirements other than yield. For instance, Anton was developed to meet low 

polyphenol oxidase requirement (Graybosch, 2011), while Clark’s cream was developed 

as a pre-harvest sprouting resistant germplasm (Morris, 1982).  

It has been observed by many researchers that land-race and older wheat cultivars 

like Turkey, Kharkof, Red Chief, and Cheyenne have lower yield when compared to new 

wheat cultivars due to changing climate resulting in winter injuries, while new cultivars 

have greater winter hardiness (Auvochanon, 2010; Fufa et al., 2005a). The lower yield 

results in higher protein content of these cultivars to overcome stress. The negative 

correlation between grain yield and protein content can be associated with a N dilution 

effect by carbon-based compounds under optimal yield (Acreche and Slafer, 2009). One 

of the major objective of wheat breeding programs is to increase grain yield, which is 

clearly evident in the present study where older wheat cultivars had higher protein 

content but low yield. Similar results were reported by Cox et al. (1989) for cultivars 

released up to 1988 and ancient cultivars.  

Based on morphology and end use quality, Turkey, Kharkof, Red Chief have been 

grouped together by many researchers as having inferior end quality characteristics than 

modern cultivars (Fufa et al., 2005b; Auvochanon, 2010). In our study, we observed that 

these three cultivars also grouped together in terms of lower bread digestibility.  

In our study, based upon the release year, the improvement in bread digestibility 

was first observed for Cheyenne, after Cheyenne (or 1930s) all cultivars had the same 

digestibility.  Released in 1931, Cheyenne is one of the earliest cultivars originating from 

wheat breeding program and ancestor of many prominent cultivars like Warrior and 
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Sturdy. It has also been reported previously that Cheyenne is genetically most closely 

related to Kharkof and Turkey while other modern wheat cultivars (after 1960) have 

diverged from these ancestors due to breeding for adaptation and yield improvement 

(Auvochanon, 2010). Further, it has been shown that Turkey and Kharkof have similar 

seed storage proteins and Red Chief has unique storage proteins, while the proteins of 

Cheyenne are similar to modern cultivars (Fufa et al, 2005b). Further, Graybosch, (1992) 

showed that there is a significant difference in HMW glutenin subunits for Turkey, Red 

Chief and Cheyenne when compared with cultivars grown after 1946. Mainly, cultivars 

before 1946 had higher frequency of 2+12 subunits which results in weak dough strength, 

while frequency of the 5+10 subunits known for higher gluten strength increased with 

increasing release year.   

Despite the genetic similarity of Cheyenne with ancestral wheat cultivars, its 

protein digestibility was different from ancient cultivars and rather similar to modern 

cultivars potentially due to similarity in seed storage proteins as reported. This suggests 

that initial breeding practices might have incurred useful changes in storage proteins of 

wheat which has been carried and preserved by modern wheat cultivars despite 

differences in their developmental objectives.  

Given the evidence for genetic diversity, seed storage profiles, and glutenin 

subunit we can at least say that the protein makeup of ancestral wheat cultivars is 

different than the modern cultivars which resulted in improved digestibility but requires 

further investigation to explore the cause of observed effect. 

 Thus, the wheat breeding programs that have been criticized for destroying wheat 

has in fact made the quintessential wheat crop more adaptable to changing environments 
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resulting in better yield and improved protein from both nutritional and bread making 

stand point.  

8.6.  CONCLUSION 

A significant positive correlation was observed between release year of wheat 

cultivars with both grain yield and bread in vitro digestibility. Improved yield is an 

indication of better adaptability and winter hardiness of modern wheat cultivar facilitated 

by the wheat breeding programs. Lower yield in old cultivars resulted in more 

accumulated protein. Ancestral cultivars like Turkey, Kharkof and Red Chief had highest 

protein but lowest digestibility among all cultivars. Prominent improvement in 

digestibility among cultivars was observed beginning with Cheyenne, one of the earlier 

cultivars originating from wheat breeding programs in Great Plains. There was no 

significant difference between digestibility of cultivars released after Cheyenne 

suggesting preliminary beneficial changes to wheat proteins which were carried on in the 

modern cultivars. Flour absorption was positively correlated with protein content with 

Mattern, a waxy wheat variety having the highest absorption. There was a significant 

effect of planting year on mixing time but it was not significantly correlated with any 

measured response in the study suggesting an environmental effect on other flour 

constituents. This study indicates that the protein digestibility of wheat cultivars has 

improved when compared with landrace varieties but needs further investigation to 

explore the cause of improvement and further comparison with more ancient wheat 

cultivars.  

 

 



 208 

8.7.  REFERENCES 

AACC International. Approved Methods of Analysis, 11th Ed. Method 39-11. 

Near-Infrared Reflectance Method for Protein determination in wheat flour. AACC 

International, St. Paul, MN, U.S.A. 

AACC International. Approved Methods of Analysis, 11th Ed. Method 54-40A 

Mixograph method. Reapproved November 3, 1999b. AACC International, St. Paul, MN, 

U.S.A. 

AACC International. Approved Methods of Analysis, 11th Ed. Method 44-15A. 

Moisture-Air Oven Methods. Reapproved November 3, 1999c. AACC International, St. 

Paul, MN, U.S.A. 

Acreche MM, Slafer GA. 2009. Variation of grain nitrogen content in relation 

with grain yield in old and modern Spanish wheats grown under a wide range of 

agronomic conditions in a Mediterranean region. Journal of Agricultural Science 147, 

657–667. 

Auvuchanon, A. (2010). Genetic diversity of wheat cultivars from Turkey and US 

Great Plains. PhD Thesis, University of Nebraska-Lincoln.  

Baig, M. M., & Hoseney, R. C. (1976). Effects of mixer speed, dough 

temperature, and water absorption on flour-water mixograms. Cereal Chemistry, 54, 605-

615.  

Bogard, M., Allard, V., Brancourt-Hulmel, Heumez, E., Machet, J.-M., Jeuffroy, 

M.-H., Gate, P., Martre, P., & Le Gouis, J. (2010). Deviation from the grain protein 

concentration-grain yield negative relationship is highly correlated to post-anthesis N 

uptake in winter wheat. Journal of Experimental Botany, 61, 4303-4312. 

Brouns, F. J. P. H., Van Buul, V. J., & Shewry, P. R. (2013). Does wheat make us 

fat and sick?  Journal of Cereal Science, 58, 209-215.  

Clark, J. A., Martin, J. H., Ball., C. R. (1927). Classification of American Wheat 

Varieties. USDA Bulletin No 1074, Washington, D. C.  

Cox, T.S., M.D. Shogren, R.O. Sears, T.]. Martin, and L.c. Bolte. 1989. Oenetic 

improvement in milling and baking quality of hard red winter wheat cultivars, 1919 to 

1988. Crop SCI. 29:626-631. 



 209 

Davis,W.R., 2011. Wheat Belly: Lose the Wheat, Lose theWeight, and Find Your 

Path Back to Health. Rodale Books. 

Fufa, H., Baenziger, P.S., Beecher, B.S., Dweikat, I., Graybosch, R. A., & 

Eskridge, K. M. (2005b). Compariosn of phenotypic and molecular marker-based 

classifications of hard red winter wheat cultivars. Euphytica, 145, 133-146.  

Fufa, H., Baenziger, P.S., Beecher, B.S., Graybosch, R. A., Eskridge, K. M. & 

Nelson, L.A. (2005a). Genetic improvement trends in agronomic performances and end-

use quality characteristics among hard red winter wheat cultivars in Nebraska. Euphytica, 

144, 187-198. 

Graybosch, R. A., Peterson, C. J., Baenziger, P. S., Baltensperger, D. D., Nelson, 

L. A., Jin, Y., Kolmer, J. A., Seabourn, B. W., & Beecher, B. S. (2011). Registration of 

‘Anton’ hard white winter wheat. Journal of plant registrations, 5, 1-6.  

Graybosch, R.A., 1992. High molecular weight glutenin subunit composition of 

cultivars, germplasm and parents of U. S. red winter wheat. Crop Sci 32: 1151–1155. 

Gulati, P., Li, A., Holding, D., Santra, D., Zhang, Y., Rose, D.J. (2017). Heating 

reduces proso millet protein digestibility via formation of hydrophobic aggregates. 

Journal of Agriculture and Food Chemistry, 65(9), 1952-1959. 

Hallert, C., Grant, C., Grehn, S., Granno, C., Hulten, S., Midhagen, G., Strom, M., 

Svensson, H., Valdimarsson, T. (2002). Evidence of poor vitamin status in coeliac 

patients on a gluten free diet for 10 years. Alimentary Pharmacology and Therapeutics, 

16, 1333-1339.  

Hucl P, Briggs C, Graf R.J., Chibbar, R.N. (2015). Genetic gains in agronomic 

and selected end-use quality traits over a century of plant breeding of Canada western red 

spring wheat. Cereal Chemistry, 92, 537-543. 

Morris, C. F., & Paulsen, G. M. (1987). Development of preharvest sprouting-

resistant germplasm from “Clark’s Cream’ hard white winter wheat. Cereal research 

communication, 15, 229-235.  

Ribeiro, M., Rodriguez-Quijano, M., Nunes, F. M., Carrillo, J. M., Branland, G., 

& Igrejas, G. (2016). New insights into wheat toxicity: breeding did not seem to 

contribute to a prevalence of potential celiavc diseases immunostimulatory epitopes. 

Food Chemistry, 213, 8-18.  



 210 

Roels, S. P., Cleemput, G., Vandewalle, X., Nys, M., & Delcour, J. A. (1993). 

Bread volume potential of variable-quality flours with constant protein level as 

determined by factors governing mixing time and baking absorption levels, Cereal 

Chemistry, 70, 318-323.  

Ross, J.G. 1969. With interest…Repaying a debt to Turkey. Farm & home 

research. Vol XX. No 2. South Dakota 

Simmonds NW. 1995. The relation between yield and protein in cereal grain. 

Journal of the Science of Food and Agriculture 67, 309–315. 

Takata, K., Nishio, Z., Iriki, N., Tabiki, T., Funatsuki, W., & Yamauchi, H. 

(2005). Comparison of quality charcteristics of waxy wheat using a near isogenic line. 

Breeding Science, 55, 87-92.  

USDA ERS https://www.ers.usda.gov/data-products/wheat-data/. 

Terazono, E. (2017). Gluten free: one of 3 trends shaking up commodities. 

Financial Times: https://www.ft.com/content/5348432e-1a13-11e7-bcac-6d03d067f81f. 

USDA, National Agricultural Statistics Service (NASS), Crop Production 

database (2018). http://usda.mannlib.cornell.edu/usda/current/CropProdSu/CropProdSu-

01-12-2018.pdf 

  

https://www.ers.usda.gov/data-products/wheat-data/
https://www.ft.com/content/5348432e-1a13-11e7-bcac-6d03d067f81f
http://usda.mannlib.cornell.edu/usda/current/CropProdSu/CropProdSu-01-12-2018.pdf
http://usda.mannlib.cornell.edu/usda/current/CropProdSu/CropProdSu-01-12-2018.pdf


 211 

Table 8.1. Wheat cultivars used in the study with their release year and year status 

Wheat Cultivar Year of Introduction 

in US or release 

Year Status 

Turkey 1874 Land Race 

Kharkof 1900 Land Race 

Red Chief 1926 Very Old 

Cheyenne 1933 Very Old 

Wichita 1944 Very Old 

Warrior 1963 Old 

Triumph64 1964 Old 

Lancer 1965 Old 

Sturdy 1966 Old 

Scout66 1967 Old 

Centurk 78 1978 Old 

Clark's Cream 1982 Old 

Centura 1983 Old 

TAM107 1987 Old 

Wesley 1998 Old 

Jagalene 2001 New 

Overland 2006 New 

Anton 2007 New 

Settler CL 2011 New 

Mattern 2012 New 

Freeman 2014 New 
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Table 8.2. Analysis of Variance (Mean squares) for all measured responses 

Sources of variation df Grain 

Yield 

Flour Protein 

content 

Flour Absorption Mixing Time Protein 

digestibility 

PY 1 3847833 44.3* 15.3* 49.3* 1.54 

Error a = rep(PY) 4 540950 0.73 1.40 0.17 16.8 

Cultivar 20 10297499* 7.04* 18.0* 3.86* 165* 

Cultivar X PY 20 483337 0.86* 1.61 0.62* 27.3* 

Residual Error 200 47877690 92.2 1.12 0.11 11.5 

(*) Mean squares marked with asterisks represents significant effect on F-test at alpha 0.05; df = degrees of freedom; PY = 

Planting Year; rep -= field rep  
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Table 8.3. Multiple mean comparisons by year of planting, year status and cultivar for measured variables 

Criterion of 

comparison 

Category Mean 

Yield 

(Kg/ha) 

Mean flour 

protein 

(%) 

Mean 

Absorption 

(%) 

Mean Mixing 

Time 

(min) 

Mean Protein 

Digestibility 

(%) 

Year of Planting 
2016 4206 a 11.9 a 62.6 a 2.8 b 90.2 a 

2017 4566 a 11.1 b 62.1 a 3.7 a 89.8 a 

Release Year 

Status 

Land Race 2785 c 12.6 a 63.3 a 3.4 a 80.8 c 

Very Old 3020 c 12.4 a 63.5 a 3.2 a 88.9 b 

Old 4209 b 11.6 b 62.4 ab 3.2 a 91.1 a 

New 5898 a 10.6 c 61.4 b 3.4 a 91.8 a 

Cultivars 

Turkey 3067 fg 12.6 a 63.5 ab 2.9 b-g 82.9 b 

Kharkof 2503 g 12.5 a 63.0 a-c 3.9 a 78.6 b 

Red Chief 2969 fg 12.2 ab 63.6 ab 2.8 c-g 81.9 b 

Cheyenne 3190 fg 12.4 a 63.6 ab 3.9 a 91.7 a 

Wichita 3193 fg 12.5a 63.2 ab 2.7 d-g 90.6 a 

Warrior  3963 d-g 11.6 bc 62.3 a-d 3.7 a-c 92.1 a 

Triumph64 3235 fg 12.6 a 63.3 ab 2.5 fg 92.0 a 

Lancer 3379 fg 11.5 b-d 63.0 a-c 2.8 c-g 89.7 a 

Sturdy 5128 a-e     11.5 b-e 62.1 a-d 2.6 e-g 91.6 a 

Scoutt66 3041 fg 11.7 bc 62.7 a-c 2.8 c-g 93.6 a 

Centurk 78 3814 e-g 11.5 b-d 62.1 a-d 2.8 c-g 91.0 a 

Clark's 

Cream 

3778 e-g 12.0 ab 63.0 a-c 3.4 a-f 90.1 a 

Centura 4443 c-f 11.1b-e 61.6 b-e 3.8 ab 90.3 a 

TAM107 5374 a-e 11.2 b-e 61.5 b-e 2.7 d-g 90.7 a 

Wesley 5940 a-c 11.2 b-e 61.9 b-e 4.1 a 89.5 a 

Jagalene 6036 a-c 10.9 c-e 61.4 b-e 3.9 a 93.4 a 

Overland 6273 ab 10.3 de 60.0 de 2.4 g 92.7 a 

Anton 4781 b-f 11.0 b-e 61.7 b-e 4.2 a 92.5 a 

Settler CL 6795 a 10.5 c-e 60.7 c-e 3.5 a-e 92.2 a 

Mattern 5619 a-d 10.6 c-e 64.5 a 2.9 b-g 88.6 a 

Freeman 5823 a-c 10.3 e 59.6 e 3.6 a-d 91.5 a 

Samples marked with different alphabets in each criterion of comparison are significantly different 
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Figure 8.1. Grain yield of different cultivars for both planting years data is based upon LS means, N=21 for each year 
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Figure 8.2. Flour absorption and mixing time of different cultivars for both planting years; data is based upon LS means, N=21 

for each year 
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Figure 8.3. Flour protein content and bread in-vitro protein digestibility of different cultivars for both planting years; data is 

based upon LS means, N=21 for each year 
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Figure 8.4. Mean Flour protein content and bread in-vitro protein digestibility of different cultivars plotted against their 

release year; error bars are plotted on standard deviation; n=6. 
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Figure 8.5. Pearson’s correlations among different variables28 

 

 

                                                 

 

28 Correlations were calculated on LS means for N=21 

Release	Year Protein	
Digestibility

Flour	Protein Flour	
Absorption

Mixing	Time Yield

Release	Year 0.72 -0.86 -0.59 0.82
Protein	digestibility 0.72 -0.50 -0.45 0.50

Flour	Protein -0.86 -0.50 0.74 -0.90
Flour	Absorption -0.59 -0.45 0.74 -0.71

Mixing	Time
Yield 0.82 0.50 -0.90 -0.71

Negatively correlated
No 

correlation
Positively correlated

p < 0.01 p < 0.05 p < 0.05 p < 0.01
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CHAPTER 9:  OVERALL CONCLUSIONS 

The first objective of this research was focused on exploring the extrusion 

performance of proso millet and Great Northern bean flour to develop snack products that 

can promote the consumption of these crops and provide a gluten-free alternative for the 

growing market.  

Upon extrusion, proso millet flour resulted in an expanded product with physical 

properties similar to commonly extruded rice flour but lower expansion than corn flour. 

Feed moisture content was the most important variable that affected the physical 

properties of proso millet extrudates, while barrel temperature had a limited effect. 

Antioxidant activity of proso millet extrudates was directly proportional to expansion and 

darkness of the product. The amount of phenolics detected in proso millet flour was very 

low due to the de-hulled sample used in the study.  

In terms of physical properties, extrusion of GNB flour did not prove to be as 

promising as for proso millet. The GNB extrudates had less expansion and high bulk 

density mainly due to the high protein and fiber content in the bean flour. However, 

extrusion positively impacted the properties of bean starch like water absorption and 

solubility.  

The proposed hypothesis of successful extrusion performance of proso millet 

proved to be true, while for GNB I was unable to get a decent expanded product even by 

manipulating extrusion conditions. This signifies the importance and contribution of raw 

materials in extrusion processing. Thus, based on the recorded physical properties I can 

conclude that proso millet has a potential to be used as extruded snack product but needs 

further investigation to establish its sensory acceptance by the general population. In 



 220 

contrast, GNB flour itself cannot be used to develop extruded snack, although if 

combined with a starch-rich raw material like corn (or maybe proso millet!) may result in 

a desirable gluten-free extruded product.   

The second objective of this research was to understand the effect of extrusion on 

in-vitro protein digestibility and other nutritional components of proso millet and GNB. 

Contrary to the proposed hypothesis, extrusion had a significantly negative impact on the 

in-vitro digestibility of proso millet proteins (about 50% reduction). The main cause of 

lower digestibility of proso millet proteins was identified as formation of hydrophobic 

aggregates. Further investigation revealed that the observed effect is not only because of 

extrusion but any processing technique with greater than 10% water and temperature 

higher than 55C would result in the same effect in proso millet proteins. The identified 

property was unique to proso millet storage proteins and has not been reported previously 

for other cereal proteins. Moreover, a similar property of lower digestibility was 

identified in 33 accessions of proso millet with different countries of origin throughout 

the world and also in other edible and non-edible species belonging to the same genus 

(Panicum) as proso millet. While other millet varieties (foxtail, finger, pearl) did not have 

the same protein property. This suggests the uniqueness of proteins of genus Panicum to 

develop hydrophobic aggregates on cooking resulting in lower digestibility. In many 

publications, proso millet proteins have been proposed similar to sorghum proteins and 

sometimes also referred as kafirins but based on the new findings, proso millet prolamins 

are different from sorghum prolamins and should not be grouped together. Thus, a new 

name for proso millet prolamin, Panicin, was coined in my research publication. 
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Further, in order to prevent the observed effect in millet proteins, several 

mitigation techniques aimed at either breaking the formed hydrophobic aggregates or 

preventing their formation were explored. It was found that heating millet flour in 

naturally occurring low aw substances like honey and maple syrup or modifying the 

structure of millet proteins with food grade enzymes like transglutaminase can 

substantially prevent the effect.  

Unlike proso millet, the proposed hypothesis for GNB proved true and extrusion 

improved the digestibility of GNB proteins (20% improvement). Further, extrusion had a 

significant impact in reducing anti-nutritional factors like phytates and trypsin inhibitors 

in GNB flour. More than 90% reduction was observed in trypsin inhibitors in bean flour 

upon extrusion while phytates in bean flour reduced by 85%. The processing technique 

also resulted in only moderate losses in folate in GNB when compared with other 

processing techniques as reported in literature. The most significant impact of extrusion 

was observed on mineral dialyzability in GNB flour. Extrusion resulted in up to 56%, 

50%, 25%, and 84% increase in dialyzability of Mg, P, K, and Fe respectively while 

significantly reducing dialyzability of the heavy metal Cd.  

Thus, as hypothesized extrusion had a positive impact on nutritional components 

in GNB, while, unfortunately, it drastically decreased protein digestibility for proso 

millet. However, the new findings for proso millet proteins might help in development of 

novel modifications that might be useful in mitigating the low digestibility of proso millet 

proteins.  

The final objective of this study was to compare the protein digestibility of legacy 

and modern wheat cultivars to understand if breeding programs have made it worse as 
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claimed. I hypothesized that there is no difference in digestibility of legacy and modern 

wheat cultivars but the obtained results were even better than predicted. The results 

showed that breeding programs did not negatively impact protein digestibility but instead 

improved it. On comparing the in vitro digestibility of breads made from wheat cultivars 

introduced or released in US from 1870 to 2014, it was found that for all cultivars 

released after 1930, originating from the wheat breeding programs, the protein 

digestibility improved by 10-15%. Old and land race cultivars like Kharkof, Turkey, and 

Red Chief, had digestibility of 70 to 80% while all modern cultivars had above 90% 

digestibility. This suggests, the changes incurred in the early stages of wheat breeding 

programs either by selection or crossing have been preserved and carried over to the new 

cultivars that resulted in improved digestibility and yield of wheat crops.  

The thesis can be summarized as follows:  

1) Extrusion had a significant impact on nutritional properties of GNB flour especially 

element mineral dialyzability but lacked physical appeal. Combining GNB flour with a 

high starch raw material like rice or even proso millet might prove highly beneficial on 

both nutritional and physical fronts.  

2) Proso millet can be used to develop extruded snack products but with nutritional 

losses especially in protein digestibility. Loss in protein digestibility of proso millet can 

be prevented by combining different processing techniques with enzymatic protein 

modification and maintaining low aw environment but requires detailed investigation. 

3) Wheat breeding programs have not destroyed the nutritional quality of modern wheat, 

but instead have made it better especially in terms of digestibility of proteins.  
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Potential ideas for future work 

• Investigating the fate of undigested proso millet protein in large intestine. Mainly, can 

the gut microbiota ferment millet proteins which are not digested by human proteolytic 

enzymes. If so, what are the by-products of millet protein gut fermentation. Are these 

by-products toxic? 

• Developing puffed snack from proso millet-Great Northern bean flour mixture with 

optimum starch and protein contents. Comparing their physical and nutritional 

properties with focus on protein digestibility. Understanding if loss in protein 

digestibility as observed for proso millet would still be a matter of concern if we add 

additional proteins from a digestible protein rich source like Great Northern bean. 

• Enzymatic modification (Transglutaminase) of germinated proso millet grains/flour as a 

means to prevent loss in digestibility and develop novel food product. 

• Analyzing the changes in dietary fiber in GNB flour upon extrusion and correlating it 

with observed improvement in element dialyzability. In-depth analysis of loss in 

cadmium dialyzability with respect to changes in phytic acid content and changes in 

fiber profile.  

• Comparing protein profiles of different wheat cultivars using electrophoresis. Using 

HPLC or other techniques to analyze changes in wheat gluten fractions in legacy and 

modern wheat cultivars and correlate them with changes in digestibility.  

• Compare digestibility of breads made with ancient wheat cultivars (like emmer, kamut 

etc.) with the landrace cultivars used in the study. Also, comparing digestibility of 

modern cultivars obtained from other locations in US and not originally grown or 

developed in mid-western US.    
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