
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

5-2018

Effectively Enforcing Minimality During Backtrack
Search
Daniel J. Geschwender
University of Nebraska-Lincoln, geschd23@gmail.com

Follow this and additional works at: https://digitalcommons.unl.edu/computerscidiss

Part of the Artificial Intelligence and Robotics Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Geschwender, Daniel J., "Effectively Enforcing Minimality During Backtrack Search" (2018). Computer Science and Engineering: Theses,
Dissertations, and Student Research. 151.
https://digitalcommons.unl.edu/computerscidiss/151

https://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss/151?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages

EFFECTIVELY ENFORCING MINIMALITY DURING BACKTRACK SEARCH

by

Daniel J. Geschwender

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Berthe Y. Choueiry

Lincoln, Nebraska

May, 2018

EFFECTIVELY ENFORCING MINIMALITY DURING BACKTRACK SEARCH

Daniel J. Geschwender, M.S.

University of Nebraska, 2018

Adviser: Berthe Y. Choueiry

Constraint Processing is an expressive and powerful framework for modeling and solv-

ing combinatorial decision problems. Enforcing consistency during backtrack search

is an effective technique for reducing thrashing in a large search tree. The higher

the level of the consistency enforced, the stronger the pruning of inconsistent sub-

trees. Recently, high-level consistencies (HLC) were shown to be instrumental for

solving difficult instances. In particular, minimality, which is guaranteed to prune all

inconsistent branches, is advantageous even when enforced locally. In this thesis, we

study two algorithms for computing minimality and propose three new mechanisms

that significantly improve performance. Then, we integrate the resulting algorithms

in a portfolio that operates both locally and dynamically during search. Finally, we

empirically evaluate the performance of our approach on benchmark problems.

iii

ACKNOWLEDGMENTS

I would like to thank my advisor, Professor Berthe Choueiry, for her invaluable sup-

port throughout my graduate studies. She opened the doors of many academic op-

portunities for me, helped to guide and refine my research, and provided extensive

feedback in the revision of this thesis. I also want to thank the members of my

committee, Professor Stephen Scott and Professor Hongfeng Yu, for their valuable

comments, suggestions, and ideas for future work.

Tony Schneider and Robert Woodward have helped me tremendously throughout

this research. Tony initiated the task of developing Stampede, the solver on which

I built all my algorithms. He put considerable effort into creating a modular solver

that accommodates our research-oriented needs. I developed several of the structures

and algorithms discussed in this thesis (Section 3.1 and Section 3.4.1) in collaboration

with Tony. Similarly, Robert made substantial contributions to the Stampede solver

of which I have benefited. In particular, the cluster-computer job submission and

results formatting scripts that Robert wrote were instrumental in the collection of

my experimental data.

I would also like to thank Shant Karakashian and Professor Stephen Scott for the

collaboration that led to the work in Chapter 6, Dr. Laura Damuth for her help during

the NSF GRFP application-process, and Professor Kent Eskridge of the Department

of Statistics of UNL for introducing me to factorial experimental design.

Finally, I want to express my gratitude to my friends and family for their support.

This research was partially supported by the National Science Foundation Gradu-

ate Research Fellowship under Grant No. 1041000 and NSF Grant No. RI-1619344.

Experiments were conducted on the equipment at the Holland Computing Center at

UNL.

iv

Contents

Contents iv

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 2

1.3 Thesis Structure . 4

2 Background 5

2.1 The Constraint Satisfaction Problem 5

2.2 Solving CSPs . 7

2.3 Graphical Representations . 8

2.3.1 Constraint Networks . 8

2.3.2 Minimal Dual Graphs . 10

2.3.3 Tree-Structured Constraint Networks 11

2.3.4 Graham Reduction . 11

2.3.5 Tree Decomposition . 12

v

2.4 Consistency Properties . 14

2.4.1 Arc Consistency . 15

2.4.2 Pairwise Consistency . 15

2.4.3 Minimality . 16

2.5 Consistency Algorithms . 17

2.5.1 Lookahead . 17

2.5.2 STR2 to Enforce Generalized Arc Consistency 18

2.5.3 PW-AC2 to Enforce Pairwise Consistency (PWC) 18

2.5.4 PerTuple, AllSol to Enforce Constraint Minimality 19

2.6 Cluster-Based Minimality . 21

3 Improving Minimality Algorithms 24

3.1 Unmarked-First (UF) Ordering Heuristic 25

3.2 Dangle Identification . 26

3.3 Dom/wdeg Variable Ordering . 29

3.4 Maintaining Consistency . 30

3.4.1 The DualFC Algorithm . 31

3.4.2 The DualRFL Algorithm . 33

3.4.3 The DualDangleFC Algorithm 38

3.5 Minimal Dual Graph . 40

3.6 Correctness . 41

3.7 Experimental Evaluation . 43

3.7.1 Setup . 44

3.7.2 Results . 45

3.7.2.1 Performance of the 64 Configurations 45

3.7.2.2 Comparing the Original and Best Configurations . . 50

vi

3.7.2.3 ANOVA Results . 53

3.7.3 Discussion . 58

4 Which Minimal Dual Graph 61

4.1 A Minimal Dual Graph in PerTuple 61

4.2 The MaxDeg Heuristic for a Minimal Dual Graph 63

4.3 Metrics for Dangle Identification . 65

4.3.1 Normalized Average Dangle Level 65

4.3.2 Average Percent Dangles Identified 66

4.4 Experimental Evaluation . 66

4.4.1 Setup . 66

4.4.2 Results . 67

4.4.3 Discussion . 72

5 Weight Update in High-Level Consistencies 73

5.1 Weight-Update Strategies: Motivation 73

5.2 Weight-Update Parameters . 74

5.2.1 Occurrence . 75

5.2.2 Distribution . 76

5.2.3 Scale . 77

5.3 Experimental Evaluation . 78

5.3.1 Setup . 79

5.3.2 Results . 80

5.3.3 Discussion . 83

6 Dynamic Portfolio for Cluster-Based Minimality 84

6.1 Collecting Training Data . 85

vii

6.1.1 Features . 85

6.1.1.1 General Features . 85

6.1.1.2 Graph Features . 87

6.1.1.3 Tree-Decomposition Features 88

6.1.2 Aggregate Functions . 89

6.2 Decision-Tree Classifier . 90

6.2.1 Labels and Weights for Classification 90

6.2.2 Training . 93

6.2.3 Training Results . 93

6.2.4 Trained Decision Tree . 95

6.2.5 Alternate Classifiers . 96

6.3 Experimental Evaluation . 98

6.3.1 Setup . 98

6.3.2 Cluster-Minimality Algorithms Using dom/deg 100

6.3.3 Cluster-Minimality Algorithms Using dom/wdeg 110

6.3.4 Discussion . 115

7 Conclusions and Future Work 116

7.1 Conclusions . 116

7.2 Future Work . 117

A Results of Experiments in Section 6.3 120

Bibliography 161

viii

List of Figures

2.1 Relations from Example 1 . 6

2.2 Two equivalent hypergraph representations of Example 1 8

2.3 Primal graph of Example 1 . 8

2.4 Dual graph of Example 1 . 9

2.5 Incidence graph of Example 1 . 10

2.6 An example dual graph before redundancy removal 10

2.7 An example dual graph after redundancy removal 10

2.8 Triangulated primal graph of Example 1 and its maximal cliques 13

2.9 Tree decomposition of Example 1 . 13

2.10 Cluster-based minimality . 21

3.1 Instance completions over time . 51

3.2 PerTuple: runtime comparison per instance 52

3.3 AllSol: runtime comparison per instance 52

4.1 Dual graphs of an example instance . 64

4.2 PerTuple’s runtime on original vs. minimal dual graph with MinDeg 69

4.3 AllSol’s runtime on original vs. minimal dual graph with MinDeg 69

4.4 PerTuple’s runtime on minimal dual graph with MinDeg versus MaxDeg . . 70

4.5 AllSol’s runtime on minimal dual graph with MinDeg versus MaxDeg . . . 70

ix

4.6 PerTuple’s runtime on original vs. minimal dual graph with MaxDeg 71

4.7 AllSol’s runtime on original vs. minimal dual graph with MaxDeg 71

6.1 The weighted and labeled training data . 92

6.2 Confusion matrix of the decision-tree classifier 94

6.3 The trained decision-tree classifier . 95

6.4 Confusion matrices of two alternate classifiers 96

6.5 Instance completions over time with dom/deg 103

6.6 Instance completions over time with dom/wdeg 112

x

List of Tables

3.1 The six tested factors . 44

3.2 Results summary for all tested configurations 46

3.3 ANOVA results sorted by generalized eta squared 54

4.1 Degree statistics of the dual graphs in Figure 4.1 65

4.2 Results summary for tested dual graph types 68

5.1 The three factors tested . 79

5.2 Results summary for all tested weight-update strategies 81

5.3 Weight update ANOVA results sorted by generalized eta squared 82

6.1 Classifier training results . 94

6.2 Benchmarks where a given algorithm performs best (dom/deg) 101

6.3 Performance summary using dom/deg . 101

6.4 Per-benchmark performance using dom/deg 105

6.5 Benchmarks where a given algorithm performs best (dom/wdeg) 110

6.6 Performance summary using dom/wdeg . 111

6.7 Per-benchmark performance using dom/wdeg 113

A.1 Results summary for STR2 and cluster-minimality algorithms 122

A.2 STR2 and cluster-minimality algorithms using dom/deg 125

xi

A.3 STR2 and cluster-minimality algorithms using dom/wdeg 143

xii

List of Algorithms

1 PerTuple(PD) [Karakashian et al., 2012] 20

2 AllSol(PD) [Karakashian et al., 2012] 20

3 IdentifyDangles(unremoved ,dangleVs,dangleEs,level) 28

4 RestoreDangles(unremoved ,dangleVs,dangleEs,level) 29

5 DualFC(assignedCon,unassigned) . 31

6 ReviseFC(reviseCon,againstCon) . 32

7 SaveIntersection(domain,block) . 32

8 RemoveDifference(domain,block ,subscope) 32

9 DualRFL(assignedCon,unassigned) . 34

10 ReviseRFL(reviseCon,againstCon) . 35

11 CheckForDeadBlock(domain, block , subscope) 36

12 SearchBlockForLivingTuple(domain, block) 37

13 SearchLivingForBlockTuple(domain, block , subscope) 37

14 DualDangleFC(assignedCon,unassigned ,unremoved ,dangleEs,level) . . . 39

15 UpCurrentDangles(dangleEs,level) 40

16 DownAllDangles(dangleEs) . 40

1

Chapter 1

Introduction

Consistency properties and algorithms for enforcing them are central to research in

Constraint Processing (CP). Consistency properties range from the local and effi-

ciently computable ones, such as the popular arc consistency, to the global and likely

intractable ones, such as minimality and decomposability. In practice, enforcing con-

sistency during search (i.e., inference) can significantly reduce the size of the search

tree. Further, the higher the level of the consistency enforced, the stronger the pruning

of inconsistent subtrees. Although high-level consistency (HLC) properties are often

costly to enforce, they were shown to be beneficial for solving difficult problem in-

stances. We study algorithms for enforcing constraint minimality on clusters of a tree

decomposition of a Constraint Satisfaction Problem (CSP) in continuation of early in-

vestigations initiated in the Constraint Systems Laboratory [Karakashian et al., 2013;

Karakashian, 2013].

2

1.1 Motivation

High-level consistencies are powerful tools that enable us to solve difficult problems

that are otherwise unsolvable within reasonable amount of time. Constraint mini-

mality is one such property: It ensures that every tuple in the relation of a constraint

appear in a solution to the CSP. Enforcing minimality is known to be NP-complete

[Gottlob, 2011] and rarely used in practice. However, recent research has identi-

fied situations where it is beneficial [Bayer et al., 2007; Karakashian et al., 2013;

Bessiere et al., 2013].

We believe that high-level consistencies, in particular constraint minimality, have

much to contribute to CSP solvers. For this reason, we seek to improve the efficiency

of the algorithms for enforcing minimality, adapt search ordering heuristics to this

context, and design strategies for enforcing it where it is most beneficial.

1.2 Contributions

In this thesis, we describe five primary contributions. The first three contributions aim

at improving the performance of two algorithms for enforcing constraint minimality,

namely AllSol and PerTuple; the fourth one investigates weight updates in the

dom/wdeg ordering heuristic; and the last one is a portfolio algorithm for locally

enforcing minimality on subproblems defined by a tree decomposition of the CSP.

Unmarked-first ordering heuristic (UF). In order to determine that a value

in the domain of a variable (alternatively, a tuple in the relation of a constraint) is

minimal, algorithms for enforcing minimality conduct a backtrack search to ensure

that the value (tuple) appear in a solution. Further, they also mark the other val-

ues (tuples) that appear in the solution as minimal, thus, extending the benefits of

3

the search beyond the tested value (tuple). The UF ordering heuristic prioritizes

using values (tuples) that are unmarked during the search and yields performance

improvement.

Dangle identification. As search proceeds in AllSol and PerTuple, the con-

straint network becomes increasingly sparser. Tree-structured subgraphs emerge and

can be efficiently identified. We propose to dynamically identify these ‘dangles’ as

tractable subproblems. Indeed, enforcing directional arc consistency is sufficient to

to guarantee all the values (alternatively, tuples) that appear in them are minimal

provided the current search path successfully terminates. This mechanism not only

reduces the search effort by reducing the size of the search space but also can deter-

mine the minimality of a significantly larger number of values (tuples).

The MaxDeg heuristic for minimal dual graph. For algorithms for constraint

minimality, we show that using a minimal dual graph (which is never denser than

the dual graph) boosts the benefits of dangle identification. However, a minimal dual

graph is not unique. We investigate how to exploit the algorithm proposed by Janssen

et al. [1989] for computing a minimal dual graph in order to promote the appearance

of dangles during search. We introduce the MaxDeg heuristic for this algorithm and

show that the resulting minimal dual graph is more conducive to dangle identification.

Weight-updates of dom/wdeg in the context of high-level consistencies.

The highly successful dom/wdeg variable ordering heuristic relies on updating the

weight of the constraint that detects inconsistency when enforcing Generalized Arc

Consistency (GAC) during search [Boussemart et al., 2004]. In the context of a high-

level consistency, such as constraint minimality, there is not a definitive method for

attributing blame in the event of a wipeout. We propose a framework for constraint-

4

weight updates that is suitable for high-level consistencies and evaluate a wide variety

of such heuristics.

A cluster-level portfolio for enforcing cluster minimality. In continuation of

previous work [Karakashian et al., 2013; Karakashian, 2013], we enforce constraint

minimality on the clusters of a tree decomposition of a CSP. Further, with our widely

improved versions of AllSol and PerTuple, we advocate a fine-grain portfolio

approach at the level of a cluster during search by which we dynamically choose

the ‘most appropriate’ minimality algorithm every time we process a cluster. We

argue the novelty of this approach and its effectiveness in solving difficult problems.

Preliminary results of this contribution have been published. [Geschwender et al.,

2013; Geschwender et al., 2016]

1.3 Thesis Structure

The thesis is structured as follows. Chapter 2 discusses relevant background infor-

mation. Chapter 3 introduces two of our three improvements of the algorithms for

enforcing constraint minimality, AllSol and PerTuple. These improvements are

the unmarked-first heuristic and the dangle-identification mechanism. Chapter 4 in-

troduces the MaxDeg heuristic for choosing a minimal dual graph and evaluates its

impact on dangle identification. Chapter 5 discusses our weight-update framework

for dom/wdeg in the context of high-level consistencies. Chapter 6 introduces our

cluster-level portfolio and evaluates its effectiveness. Chapter 7 concludes this thesis.

5

Chapter 2

Background

In this chapter, we review background information that is relevant to the remainder

of the thesis.

2.1 The Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) is given by P = (X ,D, C), where X =

{x1, ..., xn} is a set of n variables, each with an associated finite domain in D =

{D1, ..., Dn} and C = {C1, ..., Ce} is a set of constraints that restrict how values can

be assigned to variables. Each constraint Ci is defined by a relation Ri over a subset

of variables, which is the scope of Ci. The relation Ri is a subset of the Cartesian

product of the domains of the variables in the scope of Ci. In this thesis, we consider

table constraints, where the relation Ri of a constraint Ci is given by a set of allowed

tuples or supports. The arity of a constraint is the cardinality of its scope. A binary

CSP is a CSP containing only constraints of arity two. A solution to a CSP is an

assignment to each variable a value from its domain such that all constraints are

satisfied.

6

Example 1. Consider P = (X ,D, C) where:

• X = {A,B,C,D,E, F,G,H, I, J,K, L,M,N}

• D = {DA, DB, DC , DD, DE, DF , DG, DH , DI , DJ , DK , DL, DM , DN}, with Di∈X =

{0, 1}

• C = {R1, R2, R3, R4, R5, R6, R7} with relations given in Figure 2.1.

The tuples highlighted in Figure 2.1 correspond to the solution obtained from the

following assignments:

(A, 1), (B, 0), (C, 0), (D, 0), (E, 1), (F, 1), (G, 1),

(H, 1), (I, 1), (J, 1), (K, 0), (L, 1), (M, 0), (N, 0).

R1
A B C N
0 0 1 1
1 0 0 0
1 0 1 0
1 1 1 1

R2
I MN
0 0 0
0 0 1
0 1 0
1 0 0

R3
I J K
0 1 1
1 0 1
1 1 0

R4
A K L
0 0 0
0 0 1
0 1 1
1 0 1
1 1 1

R5
B D E F
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

R6
C D H
0 0 1
1 1 0

R7
F G H
0 0 0
0 1 0
0 1 1
1 1 0
1 1 1

Figure 2.1: Relations from Example 1

7

2.2 Solving CSPs

Determining whether or not a CSP has a solution is NP-complete. Backtrack search is

a sound and complete algorithm for finding a solution to a given CSP. It is a system-

atic, constructive procedure that instantiates variables, one by one, in a depth-first

manner, until a solution is found or a dead-end reached. At each variable instanti-

ation, some consistency property is enforced on the remaining subproblem. When

the subproblem is found to be inconsistent, the assignment is undone and a different

assignment is attempted for the variable. Once all values in a variable’s domain are

exhausted, the search backtracks to the immediately previous level and undoes the

assignment made at that level. When the search procedure backtracks past the first

variable without finding a solution, no solution exists.

The order in which the variables (and values) are instantiated is determined by

ordering heuristics. The baseline heuristic (which is typically used as a tie-breaker)

is a lexicographic ordering. For variable ordering, numerous heuristics have been pro-

posed. The dom/deg heuristic selects the variable with the minimum ratio of current

domain size to current degree in the constraint graph (described in Section 2.3). A

variant of this heuristic, dom/wdeg is particularly effective and currently the most

popular variable ordering heuristic [Boussemart et al., 2004]. Dom/wdeg is computed

similarly to dom/deg but uses, instead of the current degree, the ‘weighted current

degree,’ which is the sum of the weights of incident constraints. A constraint’s weight

is initialized to one and incremented by one whenever the constraint is responsible for

detecting an inconsistent future subproblem. This heuristic is designed to prioritize

assigning highly constrained variables as an implementation of the general principle

of ‘most-constrained variable first.’

8

2.3 Graphical Representations

Below we review the main graphical representations of a CSP.

2.3.1 Constraint Networks

Several graphical representations of CSPs exist:

• Hypergraph (Figure 2.2): The vertices represent variables. Hyperedges represent

constraints and connect the variables in the scope of the constraints.

R2

A B C

E

D

F G H

I J K

M L

N
R4

R3

R1

R5 R6

R7

A B C

E
D

FGH

I J K

M L

N

R1

R3

R2 R4
R5R6

R7

Figure 2.2: Two equivalent hypergraph representations of Example 1

• Primal graph (Figure 2.3): In this graph, the vertices represent variables and

edges connect all the pairs of variables such that both variables are in the scope

of some constraint.

A

B

C E
D

F

G
H

I

J

K

M

L

N

Figure 2.3: Primal graph of Example 1

9

• Dual graph (Figure 2.4): Vertices represent the constraints and edges connect

constraints that share variables in their scope. The dual graph is of particular

R7

R2

R3

R4

R5

R6

R1

A,B,C,N

I,J,K

I,M,N A,K,L

F,G,H

B,D,E,F C,D,H

N
A

I K H F

B
C

D

Figure 2.4: Dual graph of Example 1

interest because it presents a dual CSP, where vertices (the original constraints)

represent dual variables whose domains are the tuples of the relations of their

respective constraints. The edges are equality constraints forcing the assigned

tuples to agree on the values in their shared CSP variables. All constraints are

binary in the dual CSP. Throughout this thesis, we make extensive use of the

dual graph and dual CSP. When referring to the variables and constraints of a

dual CSP, we refer respectively to the constraints of the original CSP and the

new equality constraints introduced between the (dual) variables in the dual

CSP. Further, we designate by subscope the set of CSP variables shared by two

constraints.

• Incidence graph (Figure 2.5): The graph represents both variables and con-

straints as vertices. Edges link vertices representing constraints to the vertices

representing the variables in their scope. Thus, the incidence graph is a bi-

partite graph with vertices representing constraints in one part and vertices

representing variables in the other part.

10

A B C E D F G H I J K M L N

R1

A,B,C,N
R3

I,J,K
R2

I,M,N
R4

A,K,L
R7

F,G,H
R5

B,D,E,F
R6

C,D,H

Figure 2.5: Incidence graph of Example 1

2.3.2 Minimal Dual Graphs

The dual-graph representation may be simplified by removing redundant edges to ob-

tain an equivalent network [Janssen et al., 1989; Dechter, 2003]. An edge is redundant

if its removal does not change the solutions to the problem. Redundant edges can

occur when the scopes of three or more constraints have shared CSP variables. In the

dual graph, the vertices representing these overlapping constraints are fully connected

with edges representing equality constraints. However, because of the transitivity of

equality, a chain of these constraints is sufficient to enforce this equality. A dual graph

with no redundant edges is a minimal dual graph. Figure 2.6 shows an example of a

dual graph with redundant edges. The relations R1, R3, and R4 share the variable A.

CF

CG

AD

AE

ABD

ACEG

BCF

CFG

R3

R2

R4

R5

A

B

C

R1

ADE

Figure 2.6: An example dual graph be-
fore redundancy removal

CF

CG

AD

AE

ABD

ACEG

BCF

CFG

R3

R2

R4

R5

B
R1

ADE

Figure 2.7: An example dual graph after
redundancy removal

Thus, their respective vertices form a clique in the dual graph. Similarly, relations

R2, R4, and R5 share the variable C. Figure 2.7 shows the dual graph after removing

redundant edges, namely, the edge (R1,R4) labeled ‘A’ and the edge (R2,R4) labeled

‘C’, making it a minimal dual graph.

11

A given dual graph may have many minimal dual graphs, all of which are guaran-

teed to have the same number of edges. Janssen et al. [1989] introduced an efficient

algorithm to compute a minimal dual graph. Different heuristics for edge selection

can easily be integrated in this algorithm in order to produce different minimal dual

graphs.

2.3.3 Tree-Structured Constraint Networks

Trees are a known tractable structure in Constraint Processing: A tree-structured

constraint network can be solved in a backtrack-free manner after enforcing arc con-

sistency [Freuder, 1982] or even directional arc consistency [Dechter and Pearl, 1988]

(arc consistency is described in Section 2.4.1). A constraint network that is not

tree-structured may become tree structured after some assignments have been made.

The Cycle-Cutset method proposed by Dechter and Pearl [1987] identifies a set

of vertices in the network that, when removed, leave the network as a forest. The

removed vertices corresponding to the cutset vertices. After finding a solution to the

cutset vertices and enforcing AC on the remaining trees, we can then solve the trees

in a backtrack-free manner.

2.3.4 Graham Reduction

The Graham reduction is an algorithm used in databases to determine the acyclicity of

a database scheme [Maier, 1983]. The database scheme is expressed as a hypergraph

H = (N,E), where N is the set of nodes and E is the set of edges. Two reductions

are repeatedly applied until neither can be applied further:

• Hyperedge removal: if edges e, f ∈ E are such that e is properly contained in

f , remove e from E.

12

• Node removal: if node a ∈ N appears in only one edge e ∈ E, remove a from

N and e from E.

The Graham reduction can be applied to any hypergraph to remove all acyclic por-

tions of the hypergraph.

2.3.5 Tree Decomposition

A tree decomposition of a CSP is a tree embedding of its constraint network. The tree

vertices are clusters of variables and constraints from the CSP. The set of variables

of a cluster cl is denoted χ(cl) ⊆ X , and the set of constraints ψ(cl) ⊆ C. A tree

decomposition must satisfy two conditions:

1. Each constraint appears in at least one cluster and the variables in its scope

must appear in this cluster; and

2. For every variable, the clusters where the variable appears induce a connected

subtree.

Many techniques for generating a tree decomposition of a CSP exist [Dechter and

Pearl, 1989; Jeavons et al., 1994; Gottlob et al., 1999]. We use an adaption for

non-binary CSPs of the tree-clustering technique [Dechter and Pearl, 1989]. First,

we triangulate the primal graph of the CSP using the min-fill heuristic [Kjærulff,

1990]. Then, we identify the maximal cliques in the resulting chordal graph using

the MaxCliques algorithm [Golumbic, 1980] and use the identified maximal cliques

to form the clusters of the tree decomposition. We build the tree by connecting the

clusters using the JoinTree algorithm [Dechter, 2003]. While any cluster can be

chosen as the root of the tree, we choose the cluster that minimizes the longest chain

13

from the root to a leaf. Figure 2.8 shows a triangulated primal graph of the example

in Figure 2.3.

A
B

C

E

D

F

G

H

I

J

K
M

L

N

C1

C2

C7

C3

C4

C5

C6

C8

C9
C10

Figure 2.8: Triangulated primal graph of Example 1 and its maximal cliques

{A,B,C,N},{R1}

{A,I,N},{} {B,C,D,H},{R6}

{I,M,N},{R2} {B,D,F,H},{}

C1

C2

C3

C7

C8

{A,I,K},{}
C4

{I,J,K},{R3}
C5

{A,K,L},{R4}
C6

{B,D,E,F},{R5}
C9

{F,G,H},{R7}
C10

Figure 2.9: Tree decomposition of Example 1

The dotted edges (B,H) and (A, I) in Figure 2.8 are fill-in edges generated by

the triangulation algorithm. The ten maximal cliques of the triangulated graph are

highlighted with ‘blobs.’ The resulting tree decomposition is shown in Figure 2.9.

A separator of two adjacent clusters is the set of variables that are associated with

both clusters. A given tree decomposition is characterized by its treewidth, which is

the maximum number of variables in a cluster minus one. The complexity of solving

a CSP using a given tree decomposition can be bound in time by the treewidth of

the decomposition and in space by the size of its largest separator. The treewidth of

14

a constraint network is the minimum treewidth of all its decompositions; computing

it is known to be NP-hard [Arnborg, 1985].

In order to guarantee perfect ‘message passing’ across clusters, one would have to

generate a unique constraint over all the variables of a separator, which is prohibitively

expensive in space (i.e., the size of the constraint’s table grows exponentially with the

number of variables in the separator). As an approximation, and in order to enhance

constraint propagation between two adjacent clusters, we use the projection schema

described by Karakashian et al. [2013]. According to this bolstering strategy, we add

to each cluster the projection on the variables of the cluster of all the constraints (from

outside the cluster), then we normalize the constraints in the cluster by merging all

two constraints where the scope of one is a subset the other’s.

2.4 Consistency Properties

Consistency properties guarantee that a constraint network meets some condition

and serve as the basis for inference (i.e., reasoning) on a CSP. These properties are

defined:

• Globally or locally, and

• On the domains of the variables (i.e., domain-based consistencies) or on the

relations of the constraints (i.e., relation-based consistencies).

Local consistency properties are defined on sub-problems, of a given fixed size,

of the original problem (e.g., two variables or two constraints). Because the size is

fixed, local consistencies can be efficiently enforced. Below, we discuss the consistency

properties used in this thesis.

15

2.4.1 Arc Consistency

Arc consistency (AC) is the most widely used local consistency property. A variable

is AC if every value in its domain is compatible with at least one value in every

neighboring variable. A CSP is AC if every variable is AC. A CSP is directionally

arc consistent (DAC) with respect to a given fixed ordering if every variable is AC

with respect to all variables that follow it in the ordering [Dechter and Pearl, 1988].

Arc consistency is extended to non-binary constraints in generalized arc consistency

(GAC) [Waltz, 1975; Mackworth, 1977].

Definition 1. Generalized Arc Consistency (GAC) [Waltz, 1975; Mackworth, 1977].

• A value di ∈ Di is GAC with respect to Cj ∈ C where xi ∈ scope(Cj) iff there

exists a valid tuple τj ∈ Cj such that πxi(τj) = di.

• A variable xi ∈ X is GAC with respect to Cj ∈ C where xi ∈ scope(Cj) iff all

values di ∈ Di are GAC with respect to Cj.

• A constraint Cj ∈ C is GAC iff all variables xi ∈ scope(Cj) are GAC with

respect to Cj.

• A CSP is GAC iff all constraints Cj ∈ C are GAC.

2.4.2 Pairwise Consistency

Pairwise consistency (PWC) [Gyssens, 1986] is local consistency property defined over

the relations of the constraints of the CSP. The property ensures that every tuple of

every relation has a supporting tuple in overlapping relations. PWC is analogous to

arc consistency on the dual CSP.

16

Definition 2. Pairwise Consistency (PWC) [Gyssens, 1986]. A tuple τi ∈ Ci is PWC

iff ∀Cj ∈ C, ∃τj ∈ Cj such that πscope(Ci)∩scope(Cj)(τi) = πscope(Ci)∩scope(Cj)(τj). We say

that τi and τj are PWC and a PW-support of one another. A CSP is PWC iff every

tuple of every constraint has a PW-support.

A CSP is PWC+GAC (full PWC) iff it is both PWC and GAC [Debruyne and

Bessière, 2001].

2.4.3 Minimality

Minimality is a global consistency property that was first introduced for binary CSPs

as the ‘central problem’ [Montanari, 1974]. It ensures that every tuple of the relation

of a constraint appears in at least one solution to the problem.

Definition 3. Minimal network [Dechter, 2003]. Given a CSP P0, let {P1, . . . ,Pl}

be the set of all networks equivalent to P0. Then the minimal network M of P0 is

defined by M(P0) = ∩li=1Pi.

Gottlob argued that when a CSP has this property, a number of NP-hard queries

can be answered in polynomial time, but also showed that:

1. Deciding whether or not a constraint network is minimal is NP-complete.

2. Finding a solution to a minimal network is also NP-complete [Gottlob, 2011],

Thus, proving earlier conjectures by Dechter and Pearl [1992].

In the literature, minimality corresponds to (relational)m-wise consistency [Gyssens,

1986] and relational (1,m)-consistency [Dechter and van Beek, 1997] where m is num-

ber of constraints in the CSP.

Although minimality was first introduced as a property of the constraints’ rela-

tions, it is also used as a property of the variables’ domains [Bayer et al., 2007].

17

Domain minimality ensures that every value of every variable appears in at least one

solution to the CSP. It has appeared in the literature under a variety of names:

• It is a special case of k-inverse consistency, denoted (1,k − 1)-consistency with

k = n and n is the number of variables in the CSP [Freuder, 1985; Freuder and

Elfe, 1996].

• Variable completability [Freuder, 1991].

• Domain m-wise consistency where m is number of constraints in the CSP [Mairy

et al., 2014].

• Global inverse consistency [Bessiere et al., 2013].

2.5 Consistency Algorithms

Consistency algorithms are central to Constraint Processing. They enforce a given

consistency property by removing, from the domains of a variable, the values that

do not satisfy the domain-consistency property (respectively, from the relation of a

constraint, the tuples that do not satisfy the relational-consistency property) because

the removed values (respectively, tuples) are guaranteed to not appear in any solution.

There could be any number of algorithms for enforcing a given consistency prop-

erty. Below, we review the mechanisms and algorithms that we use in this thesis to

enforce consistency during search.

2.5.1 Lookahead

Consistency properties are often enforced during search as a lookahead strategy. One

of the weakest lookahead strategies in terms of filtering is forward checking (FC): after

18

each assignment, FC ensures that all future variables that are adjacent to the instan-

tiated variable are arc consistent with respect to the current assignment [Haralick

and Elliott, 1980].

Currently, it is more common to enforce, after each instantiation, a given con-

sistency property on the entire future subproblem in a real-full lookahead (RFL)

strategy [Haralick and Elliott, 1980]. Typically, the maintained consistency property

is a lightweight local consistency such as AC. We refer to the corresponding strategy

as maintaining arc consistency (MAC) [Sabin and Freuder, 1997].

2.5.2 STR2 to Enforce Generalized Arc Consistency

We use the STR2 algorithm to enforce GAC during search [Lecoutre, 2011]. STR2

is an improved version of the Simple Tabular Reduction (STR) algorithm [Ullmann,

2007]. STR2 operates on constraints specified by tables of supporting tuples (i.e.,

positive tables), which are the type of constraints considered in this thesis. We choose

STR2 because it filters not only the domains of the variables to enforce GAC but also

updates accordingly the relevant relations. As a result, our relational consistency

algorithms benefit from having the content of the relations and domains ‘synchronized’

without any additional overhead.

2.5.3 PW-AC2 to Enforce Pairwise Consistency (PWC)

For enforcing Pairwise Consistency, we use the PW-AC2 algorithm,1 an optimization

of the PieceWise Arc Consistency (PW-AC) algorithm [Samaras and Stergiou, 2005].

Both algorithms take advantage of the piecewise functional property of the equality

1PW-AC2 is an implementation by Anthony Schneider in the Stampede constraint solver im-
plemented at the Constraint Systems Laboratory. Publication forthcoming.

19

constraints of a dual CSP, which partitions the tuples of a relation into equivalence

classes of tuples that are handled as blocks and deleted together.

2.5.4 PerTuple, AllSol to Enforce Constraint Minimality

Enforcing minimality is known to be NP-complete [Gottlob, 2011]. Domain minimal-

ity algorithms have been proposed for interactive problem solving [Bayer et al., 2007;

Bessiere et al., 2013]. Constraint minimality algorithms, restricted to subproblems,

have been used for lookahead during search [Karakashian et al., 2013].

We consider two algorithms for enforcing constraint minimality: PerTuple [Karakashian

et al., 2010] and AllSol [Karakashian, 2013]. Both algorithms operate by running

a backtrack search on the dual CSP and identify the tuples that appear in a solution

and mark them as minimal tuples. All tuples are initially unmarked.

PerTuple (Algorithm 1) systematically runs one backtrack search (Line 7) for

each unmarked tuple in each relation, stopping after finding the first solution or

determining that no solution exists. If no solution is found, the tuple is deleted

(Line 9). If a solution is found, all the tuples in the solution are marked (Line 11)

AllSol (Algorithm 2) performs a single backtrack search, enumerating all solu-

tions (Line 5). For each solution found, all involved tuples are marked as used (Line 7).

After concluding the search, all unmarked tuples are deleted from the corresponding

relations (Line 10).

A particularly effective refinement of AllSol is to backtrack whenever all the

tuples in both the current path and the domains of all future variables are marked

(as minimal). Indeed, continuing the search is useless and wasteful.

20

Algorithm 1: PerTuple(PD) [Karakashian et al., 2012]

Input: PD
Output: Minimal Network of PD

1 foreach Ri ∈ PD do
2 foreach τi ∈ Ri do SetMark(τi, false)

3 foreach Ri ∈ PD do
4 foreach τi ∈ Ri, do
5 if Marked(τi) = false then
6 Assign(Ri, τi)

/* Backtrack search for a solution */

7 sol←BTsearchOneSol(PD)
8 if sol = false then
9 Delete(τi)

10 else
11 foreach τj ∈ sol do SetMark(τj, true)

Algorithm 2: AllSol(PD) [Karakashian et al., 2012]

Input: PD
Output: Minimal Network of PD

1 foreach Ri ∈ PD do
2 foreach τi ∈ Ri do SetMark(τi, false)

3 sol← false
4 while sol = false do
5 sol←BTsearchNextSol(PD)
6 if sol 6= false then
7 foreach τi ∈ sol do SetMark(τi, true)

8 foreach Ri ∈ PD do
9 foreach τi ∈ Ri do

10 if Marked(τi) = false then Delete(τi)

21

2.6 Cluster-Based Minimality

Because enforcing minimality can be prohibitively costly, Karakashian et al. pro-

pose to localize minimality to the clusters defined by a tree decomposition of the

CSP [Karakashian et al., 2013; Karakashian, 2013]. Below, we summarize their ap-

proach, as illustrated in Figure 2.10.

Figure 2.10: Cluster-based minimality

First, we generate a tree decomposition of the CSP as described in Section 2.3.5

while organizing the clusters of the decomposition along the MaxCliques ordering (in

a total ordering) and generating projects constraints in separators between clusters

to bolster constraint propagation along the tree. To enforce minimality, both at the

preprocessing step and during search, we execute the following steps:

1. First, we update the constraints’ relations by synchronizing them with the vari-

ables’ domains by executing a selection operation.

2. We enforce minimality on the clusters along the MaxCliques ordering from the

leaves the tree to its root, back and forth, until reaching a fixpoint.

3. When processing, we first synchronize its constraints with the constraints of

neighboring clusters by enforcing directional pairwise consistency on the con-

22

straints in the cluster. Then, we enforce constraint minimality on the cluster.

4. After reaching a fixpoint, we update the domains of the variables by projecting

the constraints on the domains of the variables.

We consider a few variations on this approach:

• We impose a time limit when enforcing minimality on cluster. When the limit

is reached, the minimality algorithm is halted. As a result, we avoid getting

stuck on a particularly difficult cluster but no longer guarantee cluster minimal-

ity. Note that when using PerTuple, early interruption may still cause some

tuple deletions and, thus, yield some benefits. However, AllSol must reach

completion before tuple can be deleted and the search is wasted.

• We consider strategies that choose to bypass certain clusters.

• Prior to processing the clusters, we enforce GAC over the entire problem because

is it computationally cheap and strictly weaker than cluster-based minimality.

This refinement is known to improve performance in general.

• As stated in Section 2.5.2, we use the STR2 algorithm to enforce GAC. Because

STR2 filters the relations, we do not need to synchronize the relations with the

domains (Step 1 above).

• After processing the clusters, we need to again enforce GAC over the entire

problem, which is necessary given that we may skip some clusters or interrupt

minimality on others, which may cause the CSP to no longer be GAC.

23

Summary

In this chapter, we provided background information relevant to the thesis, including

general information about CSPs, their graphical representation, consistency proper-

ties and their algorithms as used in this thesis. Most importantly, we discussed how

to enforce cluster-based minimality during search, which is the main concern of this

thesis.

24

Chapter 3

Improving Minimality Algorithms

Now we focus on the two algorithms for enforcing constraint minimality, namely,

PerTuple and AllSol. Both algorithms are based on searching the dual CSP and

operate by finding and marking all tuples that participate in a solution, which may

or may not require finding all the solutions. We introduce two new techniques for

improving the performance of these algorithms:

1. Unmarked-first ordering heuristic (UF). A value-ordering heuristic appropriate

for minimality algorithms.

2. Dangle identification. Identification of ‘dangling’ trees as tractable subproblems

during search by application of the Graham reduction on the dual graph.

In order to further enhance the performance of PerTuple and AllSol, we also use

three more known techniques that were not previously used in this context:

3. dom/wdeg variable ordering. Dom/wdeg is currently the most competitive vari-

able ordering heuristic used during search [Boussemart et al., 2004]. However,

it was not used before in PerTuple or AllSol.

25

4. Maintaining consistency. The previous implementation and evaluation of Per-

Tuple and AllSol is based on forward checking [Karakashian, 2013]. We

propose to implement real-full lookahead.

5. Minimal dual graph. PerTuple and AllSol run search on the dual CSP. We

propose to run them on a minimal dual CSP, corresponding to the dual CSP

obtained after removing the redundant constraints.

We first discuss the improvements then empirically assess their impact.

3.1 Unmarked-First (UF) Ordering Heuristic

Our algorithms for enforcing constraint minimality, namely, PerTuple and AllSol,

need to guarantee that every tuple in a relation appears in some solution to the dual

CSP. To this end, whenever we find a solution, we mark all the tuples that appear

in it. Because all tuples must eventually be checked, it seems beneficial to prioritize

instantiating unmarked tuples over already marked ones. This rationale inspires our

value-ordering heuristic ‘Unmarked First ’ (UF), which selects first, for instantiation,

the unmarked tuples. Importantly, the heuristic is applicable to computing both

domain minimality and constraint minimality.

For an efficient processing, we implement the domain of a dual variable (i.e., the

set of tuples of a relation) as a reversible sparse-set [le Clément de Saint-Marcq et

al., 2013; Demeulenaere et al., 2016].1 This data structure allows constant-time op-

erations on the domains of the dual variables (e.g., delete a tuple, restore a group of

previously deleted tuples, check whether or not a tuple is alive). In addition, we use

intrusive lists to handle iteration over the current domain and the sets of tuples re-

1The data structures are implemented by Anthony Schneider in Stampede, the constraint solver
of the Constraint Systems Laboratory.

26

moved during search (i.e., reductions [Prosser, 1993]). However, and as a consequence

of these structures, the tuples in any given domain are stored in an arbitrary order,

which is affected by the sequence of deletion and restoration operations. In order to

efficiently implement the UF heuristic, we use two additional bookkeeping structures

for the domain of each dual variable:

1. A sparse-set to track all unmarked tuples in the domain (i.e., regardless of

whether or not the tuple is alive).

2. For each variable, we split the intrusive list representing its current domain

and each list representing one of its reductions into two intrusive lists: one

for marked tuples and one for unmarked tuples. Within these lists, the order

of tuples is arbitrary. Separating these lists allows us, upon backtracking, to

update the current domain by merging the marked (respectively, unmarked)

tuples of the relevant reduction and of the current domain.

During search, when instantiating a dual variable, we choose in priority an unmarked

tuple over a marked one.

3.2 Dangle Identification

We propose to dynamically identify and remove, during search, all dangling tree

structures in order to reduce the search space and effort. Whenever a variable is

instantiated, it is as if the vertex representing the variable is erased from the hyper-

edges in the constraint network induced by the unassigned (i.e., future) variables.

As search proceeds, this network becomes increasingly sparser and dangling subtrees

may appear in the network. These dangling subtrees can be exploited in three ways:

27

1. When, upon dangle identification, a single pass of directional arc consistency

(DAC) [Dechter and Pearl, 1988] from the leaves of each subtree to its root finds

a subtree to be inconsistent, we can force backtracking.

2. It DAC successfully completes, the subtrees are guaranteed to have a solution

provided the current path has a solution. It can thus be safely removed from

the search process, thus reducing the search space and potential thrashing.

3. If the search successfully completes the current path, enforcing DAC from the

root to the leaves of each dangling subtree effectively guarantees the minimality

of the subtree. Consequently, all the values remaining in the domains of its

variables can be ‘collectively’ marked as minimal, thus reducing the number of

operations in PerTuple or AllSol.

The procedures IdentifyDangles (Algorithm 3) and RestoreDangles (Al-

gorithm 4) handle the identification and restoration of dangles during search, respec-

tively. They use the following parameters as input: dangleVs , dangleEs , unremoved ,

and level . Each structure dangleVs and dangleEs is a vector indexed by search level.

For each level, the vector stores an ordered list of vertices (for the former) and edges

(for the latter) of the dual graph. These structures track the dangles identified at

each level of the current search path. The structure unremoved tracks the set of dual

variables that are neither instantiated nor removed by dangle identification at the

current level of the search, which is specified by the parameter level .

IdentifyDangles (Algorithm 3) is executed both at preprocessing and as soon

as a variable is selected for assignment but before it is instantiated in order to avoid

repeating the operation for every value assignment. IdentifyDangles performs

the Graham reduction on the graph [Maier, 1983]. This reduction alternates between

identifying degree-one vertices (Lines 2–5) and removing these vertices (Lines 7–13)

28

until no further degree-one vertices are found (Line 6). Every vertex v removed from

the graph is added to the list at dangleVs [level]. The edge that connects the vertex

to the graph is also removed from the graph and added to the list at dangleEs [level].

Because the vertices and edges are added in the order in which they are identified,

they are ordered from the leaves to the root. RemoveV (Line 13) modifies the graph

removing the corresponding vertex and updating the degree of its neighbor.

Algorithm 3: IdentifyDangles(unremoved ,dangleVs,dangleEs,level)

Input: unremoved : set of dual variables
dangleVs , dangleEs : vectors of lists of dual variables/edges
level : integer

1 while true do
2 degOneVs ← ∅
3 foreach v ∈ unremoved do
4 if degree(v) ≤ 1 then
5 degOneVs ← degOneVs ∪ {v}

6 if degOneVs = ∅ then break
7 foreach v ∈ degOneVs do
8 if degree(v) = 1 then
9 neighbor ← Neighbor(v)

10 Push(〈v ,neighbor〉,dangleEs [level])

11 Push(v ,dangleVs [level])
12 unremoved ← unremoved \ {v}
13 RemoveV(v)

RestoreDangles (Algorithm 4) is executed upon backtracking from level and

undoes the separation of dangles at level . RestoreDangles iterates over the ver-

tices stored in dangleVs [level]. It calls AddV to add a vertex back to the graph and

update the degree its neighboring vertex. The lists stored in dangleEs and dangleVs

for level are then cleared.

29

Algorithm 4: RestoreDangles(unremoved ,dangleVs,dangleEs,level)

Input: unremoved : set of dual variables
dangleVs , dangleEs : vectors of lists of dual variables/edges
level : integer

1 foreach v ∈ dangleVs [level] do
2 AddV(v)
3 unremoved ← unremoved ∪ {v}
4 dangleEs [level]← ∅
5 dangleVs [level]← ∅

3.3 Dom/wdeg Variable Ordering

The original implementations of AllSol and PerTuple used the dom/deg dy-

namic variable ordering heuristic [Karakashian et al., 2010; Karakashian et al., 2013;

Karakashian, 2013]. The more recent dom/wdeg ordering heuristic is known to have,

in general, the best performance [Boussemart et al., 2004]. Adapting dom/wdeg to

the search on dual CSPs requires assigning weights to the equality constraints be-

tween the dual variables (i.e., the dual graph’s edges). Starting from a weight of one

for each equality constraint, we increase by one the weight of an equality constraint

whenever it yields a domain wipeout in AllSol or PerTuple during lookahead.

Further, when enforcing minimality on the clusters of a tree decomposition during

lookahead, we maintain, for each cluster, two sets of weights for the equality con-

straints in the cluster: one for PerTuple and one for AllSol. Each set persists

across calls to a given minimality algorithm.

Note that the weights of the equality constraints as used when enforcing minimal-

ity on a cluster do not interfere with the weights of the constraints in the search for

solving the CSP.

30

3.4 Maintaining Consistency

Previous implementations of PerTuple and AllSol use only forward checking

(FC) [Karakashian, 2013]. The current state of the art recommends using the more

aggressive real-full lookahead (RFL), that is, maintaining consistency.

Lookahead on the dual CSP enforces pairwise consistency (analogous to arc con-

sistency on the dual CSP), either partially (for FC) or completely (for RFL). However,

each equality constraint in the dual CSP is piecewise functional and partitions the

two relations to which it applies into coarse blocks of equivalent tuples [Samaras

and Stergiou, 2005; Schneider et al., 2014]. Our lookahead algorithms DualFC and

DualRFL for lookahead on the dual CSP exploit this property of the equality con-

straints.2 We compute once the partitions of the domains of the dual variables and

store them for use in our algorithms.

Below, we first describe DualFC and DualRFL, then introduce DualDan-

gleFC as another FC algorithm for the dual CSP that operates with dangle identi-

fication. Our algorithms use the following ‘accessors’ and helper functions:

• Neighbors(dualVar) gives the list dual variables adjacent to dualVar in the

dual graph.

• GetDomain(dualVar) gives the list of tuples in the domain of dualVar .

• GetTheLivingTuple(dualVar) gives the (unique) living tuple in the domain

of dualVar .

• GetCoarseBlock(dualVara , dualVarb , tuple) gives the set of shared CSP vari-

ables by dualVara and dualVarb (i.e., the subscope) and the list of tuples of

dualVara that are consistent with tuple of dualVarb .

2DualFC is developed in collaboration with Anthony Schneider.

31

• WasAlive(domain, tuple) returns true if tuple was alive after the previous

instantiation.

• EnqueueFrom(queue, dualVara , dualVars) takes three parameters: the propa-

gation queue, a dual variable, and a set of dual uninstantiated variables dualVars .

It pushes in queue all ordered pairs (dualVarb , dualVara) where dualVarb ∈

dualVars ∩Neighbors(dualVara).

3.4.1 The DualFC Algorithm

We implement forward checking on the dual graph with the following four algo-

rithms: DualFC (Algorithm 5), ReviseFC (Algorithm 6), SaveIntersection

(Algorithm 7), and RemoveDifference (Algorithm 8).3

Algorithm 5: DualFC(assignedCon,unassigned)

Input: assignedCon: dual variable
unassigned : set of dual variables

Output: consistent : Boolean
1 foreach v ∈Neighbors(assignedCon) do
2 if v ∈ unassigned then
3 〈consistent , filtered〉 ←ReviseFC(v ,assignedCon)

4 if consistent = false then break

5 return consistent

After instantiating a dual variable, DualFC (Algorithm 5) is called on the as-

signed constraint assignedCon and all future constraints unassigned . It calls Re-

viseFC on the unassigned neighbors (Line 3). ReviseFC (Algorithm 6) exploits

the coarse blocks of the constraint on which it is called and the fact that againstCon

has a single living tuple (i.e., the assigned tuple). Thus, only the compatible coarse

3Note that we enforce forward checking in DualFC (Algorithm 5), in the original PerTu-
ple algorithm [Karakashian et al., 2010], and in the PerFB algorithm [Schneider et al., 2014] in
qualitatively different ways.

32

Algorithm 6: ReviseFC(reviseCon,againstCon)

Input: reviseCon, againstCon: dual variables
Output: consistent , filtered : Booleans

1 reviseDomain ←GetDomain(reviseCon)
2 initialSize ← |reviseDomain|
3 tuple ←GetTheLivingTuple(againstCon)
4 〈subscope, block〉 ←GetCoarseBlock(reviseCon,againstCon,tuple)
5 if |block | ≤ |reviseDomain| · |subscope| then
6 SaveIntersection(reviseDomain,block)
7 else RemoveDifference(reviseDomain,block ,subscope)
8 consistent ← |reviseDomain| 6= 0
9 filtered ← |reviseDomain| < initialSize

10 return 〈consistent , filtered〉

Algorithm 7: SaveIntersection(domain,block)

Input: domain: domain of dual variable
block : coarse block

1 domain ← ∅
2 foreach tuple ∈ block do
3 if WasAlive(domain,tuple) then
4 domain ← domain ∪ {tuple}

Algorithm 8: RemoveDifference(domain,block ,subscope)

Input: domain: domain of dual variable
block : coarse block
subscope: set of shared CSP variables

1 blockTuple ← block [0]
2 foreach tuple ∈ domain do
3 foreach var ∈ subscope do
4 if πvar(tuple) 6= πvar(blockTuple) then
5 domain ← domain \ {tuple}
6 break

block in the reviseCon needs to be saved (i.e., reviseDomain ∩ block). For the sake

of efficiency, we implement this intersection operation in two different ways (Lines 6

and 7):

33

1. If the size of the block is smaller than that of the current domain (multiplied by

the number of CSP variables shared by the two constraints), we call, in Line 6,

SaveIntersection (Algorithm 7). This algorithm deletes the entire domain

(in constant time). Then, it loops through the block and restores that tuples

that were previously alive. (Tuple lookup can be done in a constant using our

domain structures.) Thus, this entire operation runs in time O(|block |).

2. If the block size is larger than that of the current domain (multiplied by the

number of CSP variables shared by the two constraints), we call, in Line 7,

RemoveDifference (Algorithm 8). This algorithm loops over the current

domain, removing, from the domain, the tuples not in the block. The block

consists of tuples with the same values for the shared CSP variables. In order

to determine membership in a block, we check the shared CSP variables have

the same value in the two tuples (Line 4). Thus, this entire operation runs in

time O(|domain| · |subscope|).

If ReviseFC results in an empty domain, we interrupt DualFC and immediately

return false, triggering a backtrack in the search procedure.

3.4.2 The DualRFL Algorithm

Our real-full lookahead procedure is similar to the AC-3 algorithm [Mackworth, 1977].

We implement it with the following five algorithms: DualRFL (Algorithm 9),

ReviseRFL (Algorithm 10), CheckForDeadBlock (Algorithm 11), Search-

BlockForLivingTuple (Algorithm 12), and SearchLivingForBlockTuple

(Algorithm 13).

DualRFL (Algorithm 9) uses a queue to track dual edges that must be revised.

queue begins empty (Line 2) and is filled with all outgoing edges from assignedCon

34

Algorithm 9: DualRFL(assignedCon,unassigned)

Input: assignedCon: dual variable
unassigned : set of dual variables

Output: consistent : Boolean
1 consistent ← true
2 queue ← ∅
3 EnqueueFrom(queue,assignedCon,unassigned)
4 while queue 6= ∅ do
5 〈reviseCon, againstCon〉 ←Pop(queue)
6 〈consistent , filtered〉 ←ReviseRFL(reviseCon,againstCon)
7 if consistent = false then break
8 if filtered = true then EnqueueFrom(queue,reviseCon,unassigned)

9 return consistent

to dual variables in unassigned (Line 3). Lines 4–8 loop through the queue until it

is empty. We pop an edge from the queue (Line 5) and call ReviseRFL on the

edge (Line 6). The edges are directed: the first vertex (reviseCon) is revised with

respect to the second vertex (againstCon). If ReviseRFL detects inconsistency, we

immediately return false (Line 7). If ReviseRFL filters a constraint, outgoing arcs

from that constraint are added to the queue (Line 8). At preprocessing, we initialize

the queue with all directed edges of the dual CSP and start DualRFL from Line 4.

ReviseRFL (Algorithm 10) deletes tuples in the domain of reviseCon that are

inconsistent with respect to againstCon. It uses several shortcuts enabled by the

coarse blocks. First of all, if the domain of againstCon (the constraint we are revising

against) has a single tuple, it is cheaper to perform ReviseFC (Algorithm 6) rather

than checking the consistency of each tuple in reviseCon (Lines 2–3). Otherwise,

we loop through every tuple of reviseDomain (Lines 7–14). We identify the tuple’s

supporting block in againstCon (Line 8). We then determine if block has any liv-

ing tuples remaining. The structure blockIsDead is a map indexed by coarse blocks

and used to track whether a block is alive or dead, avoiding repeated checks. We

35

Algorithm 10: ReviseRFL(reviseCon,againstCon)

Input: reviseCon, againstCon: dual variables
Output: consistent , filtered : Booleans

1 againstDomain ←GetDomain(againstCon)
2 if |againstDomain| = 1 then
3 return ReviseFC(reviseCon,againstCon)

4 reviseDomain ←GetDomain(reviseCon)
5 initialSize ← |reviseDomain|
6 blockIsDead ← ∅
7 foreach tuple ∈ reviseDomain do
8 〈subscope,block〉 ←GetCoarseBlock(againstCon,reviseCon,tuple)
9 if blockIsDead [block] = NULL then

10 if CheckForDeadBlock(againstDomain,block,subscope) = true
then

11 blockIsDead [block]← true
12 else blockIsDead [block]← false

13 if blockIsDead [block] = true then
14 reviseDomain = reviseDomain \ {tuple}

15 consistent ← |reviseDomain| 6= 0
16 filtered ← |reviseDomain| < initialSize
17 return (consistent ,filtered)

initialize blockIsDead to be empty (Line 6) and populate it with entries mapping a

coarse block to a Boolean (Lines 11 and 12). If no entry is found for block (Line 9),

CheckForDeadBlock (Algorithm 11) verifies the existence of a living tuple in the

block (Line 10). Whenever, in the loop (Lines 7–14), the call to GetCoarseBlock

at Line 8 returns a block ‘seen’ during the loop, the tuples in the subsequent calls are

saved or deleted with a constant-time lookup (Lines 13–14).

CheckForDeadBlock (Algorithm 11) determines whether block is dead (i.e.,

contains no living tuples). Similarly to ReviseFC, two methods perform this oper-

ation (Lines 2 and 3) for the sake of performance. These two methods are Search-

BlockForLivingTuple (Algorithm 12) and SearchLivingForBlockTuple (Al-

gorithm 13):

36

1. If the size of the block is smaller than that of the current domain (multiplied by

the number of CSP variables shared by the two constraints), we call, in Line 2 of

CheckForDeadBlock, SearchBlockForLivingTuple (Algorithm 12).

This algorithm iterates over block to find an alive tuple in domain (Lines 5–14).

To speed this process, we use the structure lastAlive. This structure maps the

‘id’ of a coarse block to the index of the last tuple found alive in the block.

Initially, the lastAlive entries are empty (Line 2) and the default aliveIndex

value, zero, is used (Line 3). The first for-loop iterates over the tuples in block ,

beginning at aliveIndex and ending at the last tuple in the block (Lines 5–9).

The second for-loop (Lines 10–14) iterates over the first portion of block , from

the first tuple up until the aliveIndex . If a living tuple is found, the algorithm

records the tuple index in lastAlive and returns true. If not, the algorithm

returns false and the block is identified as dead. The whole operation runs in

time O(|block |).

Algorithm 11: CheckForDeadBlock(domain, block , subscope)

Input: domain: domain of dual variable
block : coarse block
subscope: set of shared CSP variables

Output: dead : Boolean
1 if |block | ≤ |domain| · |subscope| then
2 dead ← not SearchBlockForLivingTuple(domain,block)
3 else dead ← not SearchLivingForBlockTuple(domain,block ,subscope)
4 return dead

2. If the block size is larger than that of the current domain (multiplied by the

number of CSP variables shared by the two constraints), we call, in Line 3 of

CheckForDeadBlock, SearchLivingForBlockTuple (Algorithm 13).

This algorithm iterates over the tuples in domain (Lines 3–11) and determines

whether or not they are members of block (Lines 5–8). Similarly to RemoveD-

37

Algorithm 12: SearchBlockForLivingTuple(domain, block)

Input: domain: domain of dual variable
block : coarse block

Output: living : Boolean
1 living ← false
2 if lastAlive[block] = NULL then
3 aliveIndex ← 0
4 else aliveIndex ← lastAlive[block]
5 for i ← aliveIndex to |block | − 1 do
6 if block [i] ∈ domain then
7 lastAlive[block]← i
8 living ← true
9 return living

10 for i ← 0 to aliveIndex − 1 do
11 if block [i] ∈ domain then
12 lastAlive[block]← i
13 living ← true
14 return living

15 return living

Algorithm 13: SearchLivingForBlockTuple(domain, block , subscope)

Input: domain: domain of dual variable
block : coarse block
subscope: set of shared CSP variables

Output: living : Boolean
1 living ← false
2 blockTuple ← block [0]
3 foreach tuple ∈ domain do
4 match ← true
5 foreach var ∈ subscope do
6 if πvar(tuple) 6= πvar(blockTuple) then
7 match ← false
8 break

9 if match = true then
10 living ← true
11 return living

12 return living

38

ifference (Algorithm 8), we determine block membership by checking whether

the shared CSP variables have the same value in the two tuples (Line 6). If the

match is successful, then the tuple belongs to block and the block as alive

(Lines 9–11). The time complexity of SearchLivingForBlockTuple is

O(|domain| · |subscope|).

3.4.3 The DualDangleFC Algorithm

DualRFL enforces AC on all the dual variables in the dual graph, including those

identified as dangles by IdentifyDangles (Algorithm 3). However, when using dan-

gle identification with forward checking, a specialized lookahead algorithm is needed.

We implement this procedure in the following three algorithms: DualDangleFC

(Algorithm 14), UpCurrentDangles (Algorithm 15), and DownAllDangles

(Algorithm 16). DualDangleFC (Algorithm 14) takes five inputs:

1. assignedCon the dual variable just instantiated

2. unassigned the set of uninstantiated dual variables

3. unremoved the set of dual variables that are neither instantiated nor removed

by dangle identification at the current level of the search

4. dangleEs the vector of lists of edges identified as dangles by IdentifyDangles

(Algorithm 3)

5. level the current search level

DualDangleFC first executes DualFC (Algorithm 5) in Line 1. If it does not

detect an inconsistency, it calls UpCurrentDangles to enforce directional arc con-

sistency from the leaves to the root on all newly identified dangles (Line 3). Finally,

39

Algorithm 14: DualDangleFC(assignedCon,unassigned ,unremoved ,dangleEs,level)

Input: assignedCon: dual variable
unassigned , unremoved : sets of dual variables
dangleEs : vector of lists of dual edges
level : integer

Output: consistent : Boolean
1 consistent ←DualFC(assignedCon,unassigned)
2 if consistent = false then return consistent
3 consistent ←UpCurrentDangles(dangleEs ,level)
4 if consistent = consistent then return consistent
5 if unremoved = ∅ then
6 consistent ←DownAllDangles(dangleEs)

7 return consistent

if only dangles are left unassigned (i.e., we have reached the end of the search path),

we call DownAllDangles to enforce directional arc consistency on all dangles from

the root to the leaves (Lines 5–6).

UpCurrentDangles (Algorithm 15) takes, as input, dangleEs and level . The

for-loop in Lines 2–5 iterates over the dangle edges at the current level (i.e., dangleEs [level])

and executes ReviseRFL on the two dual variables of each edge revising the second

dual variable of the edge with respect to the first (i.e., revise the variable closer to

the root). Upon detecting inconsistency, it immediately returns false (Line 5). Up-

CurrentDangles enforces directional arc consistency along a width-one ordering,

which ensures that the dangle can be solved backtrack free.

DownAllDangles (Algorithm 16) takes, as input, dangleEs . The outer for-

loop iterates over the search levels in reverse order, that is, from the deepest to the

shallowest (Lines 2–6). The inner for-loop iterates over the dangle edges identified

at level in reverse of the order in which they were identified (Lines 3–6). It executes

ReviseRFL on each edge (Line 4) revising the first dual variable of the edge with

respect to the second (i.e., revise the variable further from the root).

40

Algorithm 15: UpCurrentDangles(dangleEs,level)

Input: dangleEs : vector of lists of dual edges
level : integer

Output: consistent : Boolean
1 consistent ← true
2 for i ← 0 to |dangleEs [level]| − 1 do
3 〈againstCon, reviseCon〉 ← dangleEs [level][i]
4 〈consistent , filtered〉 ←ReviseRFL(reviseCon,againstCon)
5 if consistent = false then return consistent

6 return consistent

Algorithm 16: DownAllDangles(dangleEs)

Input: dangleEs : vector of lists of dual edges
Output: consistent : Boolean

1 consistent ← true
2 for level ← |dangleEs| − 1 downto 0 do
3 for i ← |dangleEs [level]| − 1 downto 0 do
4 〈reviseCon, againstCon〉 ← dangleEs [level][i]
5 〈consistent , filtered〉 ←ReviseRFL(reviseCon,againstCon)
6 if consistent = false then return consistent

7 return consistent

By running UpCurrentDangles upon identifying new dangles and DownAll-

Dangles at the conclusion of the current search path, we ensure directional arc con-

sistency is enforced in both directions. Thus, all living tuples are minimal and are

marked as such.

3.5 Minimal Dual Graph

To enforce minimality, PerTuple and AllSol conduct search on the dual graph.

Janssen et al. [1989] and Dechter [2003] observe that, in the dual graph, an edge

between two vertices is redundant if there exists an alternate path between the two

vertices such that the shared CSP variables appear in every vertex in the path. Re-

41

dundant edges can be removed without affecting the set of solutions. A minimal dual

graph is one with no such redundant edges. Many minimal graphs may exist, but all

are guaranteed to have the same number of edges.

Janssen et al. introduce an efficient algorithm for computing a minimal dual

graph [1989]. In order to yield different minimal dual graphs, we propose to add

to this algorithm various edge-selection heuristics when the algorithm connects two

connected components. As a first heuristic, we choose to prioritize using the edge

that minimizes the sum of the degrees of the two vertices it connects. We call this

heuristic MinDeg.4

3.6 Correctness

In this section, we prove the correctness of several of our proposed improvements.

Theorem 2. The search procedure conducted with forward checking maintains cor-

rectness when performed on any minimal dual graph.

Proof. By definition, any minimal dual is equivalent to the original dual (i.e., both

have the same set of solutions). Thus, forward checking (or any complete search

procedure) will maintain correctness when performed on any minimal dual graph.

Although correctness is maintained, the performance of search may be significantly

altered by the use of a minimal dual graph during forward checking. By removing

edges (equality constraints), wipeouts that would have otherwise been detected early

may be delayed until remaining dual variables along the path of equality constraints

have been assigned.

4The same heuristic is used in the previous work for computing minimal dual graphs [Karakashian
et al., 2010; Karakashian et al., 2013; Karakashian, 2013].

42

Theorem 3. When all dual variables are either instantiated or identified as dangles,

if the dangles are arc consistent, every living tuple participates in a solution (i.e., is

minimal).

Proof. After the search has completed, all uninstantiated dual variables are identified

as dangles. Consequently, the dual graph is a forest of independent, arc-consistent

trees (i.e., of width one). An arc-consistent CSP of width one is solvable backtrack

free [Freuder, 1982]. Thus, any living tuple can be extended to some solution.

Because of Theorem 3, upon reaching this point in the search of AllSol and

PerTuple, we can safely mark all living tuples without explicitly enumerating the

solutions in which they appear.

Theorem 4. After all dual variables are either instantiated or identified as dangles,

DualDangleFC guarantees that the dangles are arc consistent.

Proof. All uninstantiated dual variables are identified as dangles. Consequently, the

graph is a forest of independent trees (i.e., of width one). In order to enforce AC on

such a graph, it is sufficient to enforce DAC both in the forward and reverse directions

of a width-one ordering, d [Dechter and Pearl, 1988]. The width-one ordering, d, is

obtained by traversing the structure dangleVs in ‘reverse’ of the order in which it was

built:

1. From the deepest level to the shallowest level

2. At a given level, from the last identified dual variable to the first

By construction, each of the dual variables stored in dangleVs is a dangle because,

at the identification step, it had no more than one neighbor. Thus, when taken in

reverse order of identification, each is guaranteed to have no more than one parent in

43

the ordering. By the construction of dangleEs , each edge connects a child in ordering

d either to its parent in the ordering or to an instantiated dual variable. When

traversing dangleEs in reverse order as described above, we necessarily encounter the

edge between a dual variable and its parent before the edges between a dual variable

and its children.

Now, we show that UpCurrentDangles enforces DAC along the ordering d and

that DownAllDangles enforces DAC along the reverse of d. UpCurrentDan-

gles is executed in stages as dangles are identified at each level. In order to enforce

DAC along an ordering, beginning with the last variable, each variable revises the

domain of its parent variable. Because d is ordered in reverse of dangleEs , following

the original order of dangleEs and revising the second dual variable in each ordered

pair results in revising the parent dual variables in the correct order. The correctness

of this process is not affected by splitting it across levels of search.

Upon reaching a point in search where all uninstantiated dual variables are dan-

gles, DualDangleFC executes UpCurrentDangles on the final level of dangles,

thus, enforcing DAC along d. Then, DownAllDangles is executed, proceeding

backwards through all of dangleEs and revising edges in the opposite direction. This

process enforces DAC along the reverse ordering of d. Because all dangles are of width

one, the resulting problem is guaranteed arc consistent.

3.7 Experimental Evaluation

We conduct a series of experiments to evaluate the impact of our improvements

on the performance of both AllSol and PerTuple. In order to efficiently and

completely observe the impact of each change as well as their interactions, we set up

our experiments in a factorial design [Box et al., 1978].

44

3.7.1 Setup

We consider six factors, each of two levels:

1. Algorithm: AllSol, PerTuple

2. Weighted ordering heuristic: on, off

3. Unmarked first: on, off

4. Real-full lookahead: on, off

5. Minimal dual graph: on, off

6. Dangle identification: on, off

We test all 64 configurations of the factors. To denote these configurations, we use

the following scheme (see Table 3.1). A configuration is first specified by its algorithm

name in full, followed by a dash and a sequence of five upper and lowercase letters

(e.g., AllSol-UDwrM). Each letter corresponds to one of the remaining five factors.

Uppercase indicates the factor is ‘on’ while lowercase is ‘off’.

Table 3.1: The six tested factors

Factor Abbrev. Level Reference

- +

Algorithm Alg PerTuple AllSol Section 2.5.4

Unmarked First UF off: u on: U Section 3.1

Dangle Identification DI off: d on: D Section 3.2

Weighted variable ordering Weight off: w on: W Section 3.3

Real-Full Lookahead RFL off: r on: R Section 3.4

Minimal Dual MinD off: m on: M Section 3.5

45

In this thesis, we advocate to enforce minimality for RFL locally, on the clusters

of of a tree decomposition [Karakashian et al., 2013]. For this reason, and in order

to evaluate the impact of the above listed factors, we execute the 64 configurations

of our algorithms on single clusters taken from tree decompositions of full CSP in-

stances. We randomly sample 10 clusters from decompositions of all the instances

of a set of 175 benchmarks from the XCSP library, which includes a mix of binary

and non-binary random, quasi-random, academic, Boolean, patterned, and real-world

instances.5 This sampling yields 1,684 total clusters.6 We executed each of the 64

configurations on all 1,684 clusters for a total of 107,776 runs.

We run our experiments on a computer cluster of Intel Xeon E5-2670 2.60 GHz

processors. Each run is allocated 30 minutes and 12GB of memory. To account for

load variations on the cluster computer, we measure instruction count and convert it

to runtime using a standardized measure of instructions per cycle and clock speed.

For each run, we first enforce GAC prior to enforcing minimality.

3.7.2 Results

In this section, we report the results, describing our tables and figures. We delay the

discussion of these results to Section 3.7.3.

3.7.2.1 Performance of the 64 Configurations

In Table 3.2, we summarize the performance of each of the 64 configurations. In the

table, we report, for each configuration: the level of each of the six factors; the number

of instances completed (out of the 1,684 instances in total); the average CPU time;

5http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html
6When the primal graph of a CSP instance is complete, then a tree decomposition has a single

cluster and the entire instance is selected. When such a benchmark has less than ten instances, we
end up with fewer total clusters than expected (i.e., 1,684 instead of 1,750).

http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

46

Table 3.2: Results summary for all tested configurations

Instances Average time (ms) Avg NV
Configuration

A
lg

U
F

D
I

W
e
ig

h
t

R
F

L

M
in

D

completed by one by all by all

PerTuple-udwrm - - - - - - 1,187 300,480.2 2,190.7 28,515.1

PerTuple-udwrM - - - - - + 715 898,788.8 19,938.3 5,392,161.7

PerTuple-udwRm - - - - + - 1,149 383,225.9 5,117.3 15,123.2

PerTuple-udwRM - - - - + + 1,221 285,803.7 5,198.7 14,975.6

PerTuple-udWrm - - - + - - 1,239 237,906.5 2,183.4 25,602.2

PerTuple-udWrM - - - + - + 816 774,711.5 6,707.6 1,539,655.7

PerTuple-udWRm - - - + + - 1,151 380,338.7 5,088.8 15,140.4

PerTuple-udWRM - - - + + + 1,228 276,859.2 5,171.0 14,974.2

PerTuple-uDwrm - - + - - - 1,184 305,828.0 1,077.8 13,098.0

PerTuple-uDwrM - - + - - + 739 866,740.7 11,227.3 1,377,239.7

PerTuple-uDwRm - - + - + - 1,146 382,318.0 2,442.3 3,996.6

PerTuple-uDwRM - - + - + + 1,242 241,890.7 1,803.2 1,032.6

PerTuple-uDWrm - - + + - - 1,228 248,779.0 1,075.6 12,362.0

PerTuple-uDWrM - - + + - + 827 760,624.7 5,401.7 594,037.4

PerTuple-uDWRm - - + + + - 1,148 379,569.7 2,448.3 4,015.4

PerTuple-uDWRM - - + + + + 1,246 235,177.2 1,804.8 1,047.1

47

Table 3.2: Results summary for all tested configurations (continued)

Instances Average time (ms) Avg NV
Configuration

A
lg

U
F

D
I

W
e
ig

h
t

R
F

L

M
in

D

completed by one by all by all

PerTuple-Udwrm - + - - - - 1,245 233,532.9 2,041.7 21,553.2

PerTuple-UdwrM - + - - - + 724 887,317.6 18,081.8 4,431,705.5

PerTuple-UdwRm - + - - + - 1,176 332,286.2 3,614.1 10,979.0

PerTuple-UdwRM - + - - + + 1,239 243,753.6 3,468.9 10,865.0

PerTuple-UdWrm - + - + - - 1,276 193,436.9 2,041.7 20,447.6

PerTuple-UdWrM - + - + - + 834 751,406.9 5,894.8 1,210,568.4

PerTuple-UdWRm - + - + + - 1,174 332,982.0 3,610.3 10,982.6

PerTuple-UdWRM - + - + + + 1,249 232,511.8 3,458.8 10,873.9

PerTuple-UDwrm - + + - - - 1,237 241,425.3 1,004.2 11,504.8

PerTuple-UDwrM - + + - - + 753 852,844.7 12,017.8 1,517,151.2

PerTuple-UDwRm - + + - + - 1,179 330,673.2 1,865.3 2,928.8

PerTuple-UDwRM - + + - + + 1,254 218,715.3 1,587.1 878.0

PerTuple-UDWrm - + + + - - 1,268 201,358.0 1,006.1 11,291.1

PerTuple-UDWrM - + + + - + 842 739,499.9 4,218.9 471,417.5

PerTuple-UDWRm - + + + + - 1,177 330,241.0 1,872.8 2,954.3

PerTuple-UDWRM - + + + + + 1,264 210,453.8 1,587.0 890.2

48

Table 3.2: Results summary for all tested configurations (continued)

Instances Average time (ms) Avg NV
Configuration

A
lg

U
F

D
I

W
e
ig

h
t

R
F

L

M
in

D

completed by one by all by all

AllSol-udwrm + - - - - - 813 782,840.6 8,940.5 3,476,098.6

AllSol-udwrM + - - - - + 680 943,504.4 32,553.0 12,608,059.3

AllSol-udwRm + - - - + - 1,082 454,824.1 1,946.1 554,179.6

AllSol-udwRM + - - - + + 1,122 397,917.4 2,274.5 556,817.8

AllSol-udWrm + - - + - - 850 736,930.3 3,168.5 1,305,591.7

AllSol-udWrM + - - + - + 729 887,060.7 20,904.9 9,027,779.2

AllSol-udWRm + - - + + - 1,100 432,623.4 1,951.8 554,152.3

AllSol-udWRM + - - + + + 1,152 363,251.0 2,277.7 556,525.9

AllSol-uDwrm + - + - - - 814 779,238.1 3,769.0 616,690.2

AllSol-uDwrM + - + - - + 708 903,853.3 14,710.3 1,575,871.2

AllSol-uDwRm + - + - + - 1,079 456,240.1 1,673.0 14,873.6

AllSol-uDwRM + - + - + + 1,123 393,522.5 1,712.5 5,238.8

AllSol-uDWrm + - + + - - 846 742,042.1 1,882.5 159,374.9

AllSol-uDWrM + - + + - + 734 872,185.1 9,571.7 902,129.4

AllSol-uDWRm + - + + + - 1,098 433,944.0 1,676.2 14,885.1

AllSol-uDWRM + - + + + + 1,149 359,515.8 1,711.2 5,129.5

49

Table 3.2: Results summary for all tested configurations (continued)

Instances Average time (ms) Avg NV
Configuration

A
lg

U
F

D
I

W
e
ig

h
t

R
F

L

M
in

D

completed by one by all by all

AllSol-Udwrm + + - - - - 818 778,630.7 7,338.8 3,457,579.9

AllSol-UdwrM + + - - - + 681 941,690.1 29,693.0 12,564,995.1

AllSol-UdwRm + + - - + - 1,087 448,040.4 1,435.6 553,110.1

AllSol-UdwRM + + - - + + 1,125 389,906.3 1,565.8 556,042.4

AllSol-UdWrm + + - + - - 859 730,162.8 2,821.1 1,316,591.2

AllSol-UdWrM + + - + - + 729 885,366.7 18,196.0 8,610,953.9

AllSol-UdWRm + + - + + - 1,112 423,845.1 1,439.4 553,068.4

AllSol-UdWRM + + - + + + 1,155 353,314.1 1,567.9 555,764.4

AllSol-UDwrm + + + - - - 818 775,624.1 3,273.8 619,570.7

AllSol-UDwrM + + + - - + 710 902,545.4 14,343.4 1,575,725.0

AllSol-UDwRm + + + - + - 1,088 449,940.5 1,194.6 14,608.8

AllSol-UDwRM + + + - + + 1,133 381,115.6 1,280.9 5,215.6

AllSol-UDWrm + + + + - - 852 737,131.0 1,760.6 159,166.0

AllSol-UDWrM + + + + - + 734 870,800.0 8,602.7 882,606.3

AllSol-UDWRm + + + + + - 1,103 428,902.8 1,195.9 14,622.5

AllSol-UDWRM + + + + + + 1,156 350,595.4 1,281.3 5,113.6

50

and the average number of nodes visited by the search of the minimality algorithm,

reporting only for instances completed by all configurations. We report the average

CPU time in two ways:

1. Over instances completed by at least one configuration (by one). If a configu-

ration does not complete an instance within the allocated 30 minutes, the CPU

time is considered to be the time limit (i.e., 1,800,000 ms).

2. Over instances completed by every configuration (by all)

In each of the last four columns (i.e., instances completed, average time, and average

nodes visited), we typeset the best entry for each of PerTuple and AllSol in

boldface. Finally, we put a border around the configuration that completes the largest

number of instances, for each of PerTuple and AllSol.

3.7.2.2 Comparing the Original and Best Configurations

Next, we compare the basic configuration of an algorithm (i.e., factors udwrm) to its

configuration that completes the largest number of instances:

1. PerTuple-udwrm versus PerTuple-UdWrm

2. AllSol-udwrm versus AllSol-UDWRM

Figure 3.1 is a cactus plot of all four configurations, displaying the cumulative number

of instances completed over time. We see that the improvement of AllSol is quite

dramatic, altering the slope of its curve to more closely match that of PerTuple.

The improvement of PerTuple is also significant, although to a lesser extent.

Figure 3.2 and 3.3 are scatter plots comparing the run time of individual instances

of the two chosen configurations of each algorithm, providing a per-instance perfor-

mance comparison. Each point represents a single instance. The axes indicate the

51

 0

 200

 400

 600

 800

 1000

 1200

 1 10 100 1000 10000 100000 1x10
6

C
o

m
p

le
te

d
 I

n
st

an
ce

s

Runtime (msec)

PerTuple-UdWrm

PerTuple-udwrm

AllSol-UDWRM

AllSol-udwrm

Figure 3.1: Instance completions over time

runtime on a logarithmic scale. The vertical axis reports the runtime of the original

configuration of the algorithm and the horizontal axis shows the improved configura-

tion. Consequently, a point above the diagonal indicates that the new configuration

outperforms the original one. In both figures, the vast majority of the points lie above

the diagonal, clearly indicating that improvement, often of several orders of magni-

tude. Only a handful of points are below the diagonal. Furthermore, the performance

never deteriorates by more than one order of magnitude. In particular, for AllSol

(Figure 3.3), a large number of points are pushed against the upper horizontal bound-

ary, indicating that the improved configuration completes many instances that the

original configuration did not complete.

52

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1 10 100 1000 10000 100000 1x10
6

P
er

T
u
p
le

-u
d
w

rm
 T

im
e

(m
se

c)

PerTuple-UdWrm Time (msec)

Figure 3.2: PerTuple: runtime comparison per instance

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1 10 100 1000 10000 100000 1x10
6

A
ll

S
o
l-

u
d
w

rm
 T

im
e
 (

m
se

c
)

AllSol-UDWRM Time (msec)

Figure 3.3: AllSol: runtime comparison per instance

53

3.7.2.3 ANOVA Results

Our factorial-experiment design allows us to perform a detailed analysis of the effects

and interactions of all six considered factors. We run a six-way, repeated measures

ANOVA test using a within-subject design. We consider runtime as the dependent

variable. We apply a log transformation to the runtime data in order to achieve

an almost normal distribution. Our data is right-censored because of the 30-minute

time limit. For this reason, our data can be considered only ‘approximately normally

distributed.’

Table 3.3 reports the results of the ANOVA test. In the table, we provide the

following data: The effect name (effect), the degrees of freedom of the effect (DFn),

the degrees of freedom of the error (DFd), the sum of squares of the effect (SSn), the

sum of squares of the error (SSd), the F measure (F), the corresponding p-value (p),

an indicator of the significance of the effect (p<.05), and the generalized eta-squared

measure of effect size (ges).

Each row in this table shows the effect of a given combination of factors. If the

effect is a single factor, the data in the row shows the significance of the considered

factor. If the effect is a combination of factors, the data indicates whether their inter-

action is significant. The asterisk reported in the column labeled “p<.05” indicates

that the corresponding effect is statistically significant. The table is sorted by effect

size (i.e., decreasing values of the “ges” column).

The ANOVA test show the following results:

1. The factors tested in this experiment are all closely related and interwoven with

each other. As a result, it is not surprising to see that all the factors and most

of the interactions have statistically significant effects.

2. Each of the six factors tested appear near the top of the table sorted by effect

54

Table 3.3: ANOVA results sorted by generalized eta squared

Effect DFn DFd SSn SSd F p p<.05 ges

(Intercept) 1 1389 1.13E+06 3.67E+05 4.27E+03 0.00E+00 * 7.39E-01

RFL:MinD 1 1389 3.16E+03 4.28E+03 1.03E+03 5.36E-169 * 7.86E-03

RFL 1 1389 2.88E+03 8.22E+03 4.87E+02 1.02E-92 * 7.16E-03

Alg 1 1389 1.11E+03 5.07E+03 3.04E+02 9.19E-62 * 2.77E-03

Alg:RFL 1 1389 9.48E+02 3.09E+03 4.26E+02 9.26E-83 * 2.37E-03

Alg:RFL:MinD 1 1389 7.90E+02 2.19E+03 5.00E+02 7.95E-95 * 1.97E-03

MinD 1 1389 7.39E+02 2.36E+03 4.35E+02 3.38E-84 * 1.85E-03

Alg:MinD 1 1389 3.32E+02 1.58E+03 2.91E+02 2.31E-59 * 8.30E-04

DI 1 1389 1.96E+02 1.09E+03 2.49E+02 1.04E-51 * 4.90E-04

UF 1 1389 9.67E+01 1.40E+02 9.60E+02 1.19E-160 * 2.42E-04

Weight 1 1389 7.92E+01 4.86E+02 2.26E+02 1.71E-47 * 1.98E-04

Alg:UF 1 1389 5.29E+01 9.68E+01 7.60E+02 8.79E-134 * 1.33E-04

MinD:DI 1 1389 4.07E+01 2.82E+02 2.00E+02 1.63E-42 * 1.02E-04

Weight:RFL 1 1389 3.79E+01 3.60E+02 1.47E+02 3.78E-32 * 9.50E-05

Alg:DI 1 1389 3.21E+01 4.42E+02 1.01E+02 5.53E-23 * 8.04E-05

Alg:Weight:RFL 1 1389 1.55E+01 1.67E+02 1.29E+02 1.02E-28 * 3.89E-05

55

Table 3.3: ANOVA results sorted by generalized eta squared (continued)

Effect DFn DFd SSn SSd F p p<.05 ges

Alg:RFL:DI 1 1389 1.19E+01 1.27E+02 1.30E+02 9.13E-29 * 2.98E-05

UF:RFL 1 1389 6.54E+00 3.23E+01 2.81E+02 1.34E-57 * 1.64E-05

Weight:MinD 1 1389 5.62E+00 2.63E+02 2.97E+01 6.06E-08 * 1.41E-05

UF:RFL:MinD 1 1389 4.60E+00 2.21E+01 2.89E+02 4.90E-59 * 1.15E-05

Alg:RFL:MinD:DI 1 1389 4.01E+00 9.53E+01 5.84E+01 3.92E-14 * 1.00E-05

Alg:UF:MinD 1 1389 3.93E+00 2.15E+01 2.53E+02 1.74E-52 * 9.83E-06

Alg:Weight 1 1389 3.82E+00 1.29E+02 4.12E+01 1.87E-10 * 9.57E-06

UF:MinD 1 1389 3.72E+00 2.31E+01 2.24E+02 4.58E-47 * 9.33E-06

Alg:Weight:RFL:MinD 1 1389 3.30E+00 1.85E+02 2.48E+01 7.12E-07 * 8.27E-06

RFL:DI 1 1389 3.04E+00 1.75E+02 2.41E+01 1.00E-06 * 7.62E-06

Alg:UF:RFL:MinD 1 1389 2.55E+00 1.68E+01 2.11E+02 1.48E-44 * 6.38E-06

UF:DI 1 1389 1.81E+00 1.41E+01 1.78E+02 2.43E-38 * 4.53E-06

Alg:UF:RFL 1 1389 1.68E+00 2.18E+01 1.07E+02 2.90E-24 * 4.21E-06

Alg:MinD:DI 1 1389 1.46E+00 1.28E+02 1.59E+01 6.94E-05 * 3.66E-06

Alg:Weight:MinD 1 1389 1.39E+00 1.83E+02 1.06E+01 1.17E-03 * 3.49E-06

Weight:RFL:MinD 1 1389 1.04E+00 3.11E+02 4.66E+00 3.11E-02 * 2.61E-06

56

Table 3.3: ANOVA results sorted by generalized eta squared (continued)

Effect DFn DFd SSn SSd F p p<.05 ges

Alg:UF:DI 1 1389 7.98E-01 1.07E+01 1.04E+02 1.36E-23 * 2.00E-06

Weight:DI 1 1389 6.34E-01 2.43E+01 3.63E+01 2.16E-09 * 1.59E-06

Weight:RFL:DI 1 1389 4.29E-01 2.19E+01 2.72E+01 2.15E-07 * 1.07E-06

UF:RFL:DI 1 1389 3.50E-01 4.21E+00 1.16E+02 6.04E-26 * 8.77E-07

Alg:UF:RFL:DI 1 1389 2.96E-01 3.86E+00 1.06E+02 4.38E-24 * 7.40E-07

UF:MinD:DI 1 1389 2.89E-01 4.39E+00 9.15E+01 4.91E-21 * 7.25E-07

Alg:UF:MinD:DI 1 1389 1.91E-01 3.74E+00 7.09E+01 9.07E-17 * 4.78E-07

Weight:MinD:DI 1 1389 1.71E-01 1.79E+01 1.33E+01 2.70E-04 * 4.29E-07

Weight:UF:MinD 1 1389 1.70E-01 5.28E+00 4.47E+01 3.37E-11 * 4.26E-07

Weight:UF:RFL:MinD 1 1389 1.68E-01 5.36E+00 4.35E+01 6.10E-11 * 4.20E-07

Alg:Weight:UF:MinD 1 1389 1.67E-01 6.09E+00 3.81E+01 8.85E-10 * 4.19E-07

Alg:Weight:UF:RFL:MinD 1 1389 1.63E-01 5.97E+00 3.80E+01 9.06E-10 * 4.09E-07

UF:RFL:MinD:DI 1 1389 1.56E-01 3.54E+00 6.13E+01 9.73E-15 * 3.91E-07

Weight:RFL:MinD:DI 1 1389 1.37E-01 1.86E+01 1.02E+01 1.41E-03 * 3.44E-07

Alg:UF:RFL:MinD:DI 1 1389 1.06E-01 3.46E+00 4.26E+01 9.22E-11 * 2.66E-07

Weight:UF:RFL 1 1389 2.90E-02 5.28E+00 7.62E+00 5.84E-03 * 7.25E-08

57

Table 3.3: ANOVA results sorted by generalized eta squared (continued)

Effect DFn DFd SSn SSd F p p<.05 ges

Alg:Weight:UF:RFL 1 1389 1.85E-02 5.74E+00 4.47E+00 3.46E-02 * 4.63E-08

Alg:Weight:RFL:DI 1 1389 1.66E-02 3.30E+01 7.01E-01 4.03E-01 4.17E-08

Weight:UF 1 1389 1.36E-02 5.66E+00 3.35E+00 6.73E-02 3.42E-08

Alg:Weight:DI 1 1389 6.77E-03 3.29E+01 2.85E-01 5.93E-01 1.69E-08

Weight:UF:DI 1 1389 6.03E-03 2.62E+00 3.19E+00 7.41E-02 1.51E-08

Alg:Weight:UF:RFL:DI 1 1389 4.81E-03 2.54E+00 2.63E+00 1.05E-01 1.20E-08

Alg:Weight:MinD:DI 1 1389 4.13E-03 1.49E+01 3.84E-01 5.35E-01 1.03E-08

Alg:Weight:UF 1 1389 3.68E-03 5.42E+00 9.44E-01 3.31E-01 9.23E-09

Weight:UF:RFL:MinD:DI 1 1389 3.27E-03 2.32E+00 1.96E+00 1.62E-01 8.18E-09

Alg:Weight:RFL:MinD:DI 1 1389 1.22E-03 1.43E+01 1.19E-01 7.31E-01 3.05E-09

RFL:MinD:DI 1 1389 8.24E-04 1.56E+02 7.35E-03 9.32E-01 2.06E-09

Weight:UF:MinD:DI 1 1389 8.02E-04 2.31E+00 4.83E-01 4.87E-01 2.01E-09

Alg:Weight:UF:RFL:MinD:DI 1 1389 7.95E-04 2.35E+00 4.70E-01 4.93E-01 1.99E-09

Alg:Weight:UF:DI 1 1389 5.30E-04 2.60E+00 2.83E-01 5.95E-01 1.33E-09

Alg:Weight:UF:MinD:DI 1 1389 2.72E-04 2.33E+00 1.62E-01 6.88E-01 6.81E-10

Weight:UF:RFL:DI 1 1389 1.49E-04 2.59E+00 8.00E-02 7.77E-01 3.73E-10

58

size.

3. The most impactful single factor is the use of Real Full-Lookahead (RFL),

followed closely by the choice of algorithm (i.e., AllSol or PerTuple).

4. The next most important is the use of the minimal dual graph, followed by

dangle identification, UF, and finally the use of a weighted ordering.

5. We see that both the 2-way and 3-way interactions between Alg, RFL, and

MinD are highly ranked.

6. There are also highly ranked interactions between the choice of algorithm and

UF as well as between the minimal dual graph and dangle identification.

7. Importantly, not a single factor is shown to be insignificant.

3.7.3 Discussion

By examining the results shown in Table 3.2, we conclude the following about the

five improvements we introduced in this chapter:

UF value ordering. The unmarked-first value ordering heuristic is beneficial. It

has a minor positive effect for AllSol and yields noticeable improvement for

PerTuple. Without this heuristic, PerTuple has a tendency to reuse tuples

across solutions, resulting in overlapping solutions and fewer marked tuples. UF

‘encourages’ PerTuple to find solutions with unmarked tuples, allowing more

tuples to be marked more rapidly and fewer searches to be made. UF exhibits

a reliable and stable positive performance and we decide to always use it.

Dangle identification. The effect of dangle identification is less straightforward.

On its own, it can be useful, but when paired with a minimal dual graph, its

59

effectiveness is greatly increased. Indeed, the minimal dual graph can remove

a large number of redundant edges, resulting in a much sparser graph where

dangling tree structures are increasingly prevalent. When paired with real-

full lookahead, maintaining arc consistency on the dangles yields insignificant

overhead. Thus, AllSol, which already performs better with RFL and the

minimal dual, can also benefit from the use of dangle identification. However,

PerTuple performs better when using forward checking and, consequently,

does not benefit from the minimal dual graph. As a results, the effectiveness of

dangle identification for PerTuple is limited. However, in the next chapter, we

propose a technique to make dangle identification advantageous for PerTuple

as well as for AllSol, which allows to always use dangle identification for both

algorithms.

dom/wdeg variable ordering. Using dom/wdeg weighted ordering heuristic dur-

ing search generally provides a small but consistent improvement. The cases

where it is detrimental are limited. Thus, we decide to use the weighted ordering

in all cases.

Lookahead: FC versus RFL. The impact of real-full lookahead deserves a discus-

sion. When used with PerTuple, RFL is oftentimes a costly and wasteful

operation. At each node in the search tree, RFL expends effort maintaining

arc consistency throughout all future nodes. As soon as a solution is found, all

filtering effort is thrown away and a new search begins. Additionally, the con-

straint checks performed for RFL are more costly than those performed for FC

(i.e., DualFC vs. DualRFL). However, AllSol significantly benefits from

RFL because none of the lookahead effort is wasted. Upon finding a solution,

AllSol simply backtracks, preserving the filtering that it performed by at pre-

60

vious levels. As a result, in the rest of this thesis, we use FC for PerTuple

and RFL for AllSol.

Minimal dual graph. The benefit of the minimal dual graph is closely tied to which

lookahead strategy it is combined with. When used with forward checking,

using the minimal dual graph can, generally speaking, be costly. Although we

never lose correctness, using a minimal dual graph may delay the detection of

inconsistencies by removing edges. In the case of real-full lookahead, we do

not encounter this problem. Because the entire network is made arc consistent

at every step, the removal of redundant edges does not delay the detection of

inconsistency. In fact, it can result in a noticeable speedup due to the reduced

number of constraint checks that RFL needs to perform to reach a fixpoint. For

this reason, we always use a minimal dual graph and RFL for AllSol. As we

discuss in the next chapter, for PerTuple, we use a minimal dual graph only

to identify dangles but we execute forward checking on the original dual graph.

Summary

In the chapter, we discussed several techniques to improve the performance of the

two algorithms for enforcing relational minimality, namely PerTuple and AllSol.

Two techniques, dangle identification and the unmarked-first ordering are novel and

shown to be useful in this context. Three other techniques, namely, the dom/wdeg

heuristic, RFL, and minimal dual graph, have previously appeared in the literature

but had never been applied before in the context of constraint minimality. We em-

pirically validate the benefits of the five proposed improvements on the performance

of PerTuple and AllSol, drawing conclusions on how they should be used.

61

Chapter 4

Which Minimal Dual Graph

In Chapter 3, we investigated the impact of using a minimal dual graph on the

performance of PerTuple and AllSol. We also argued that alternative minimal

dual graphs can be generated using the efficient algorithm proposed by Janssen et

al. [1989] and use the MinDeg heuristic to this end (see Section 3.5). In this chapter,

we re-examine our initial decision and propose instead a new heuristic, MaxDeg,

which combines particularly favorably with dangle identification.

4.1 A Minimal Dual Graph in PerTuple

In Chapter 3, we concluded that dangle identification is a useful strategy and using the

minimal dual graph only increases its effectiveness. However, we also determined that

the better lookahead strategy for PerTuple is forward checking but its benefits are

greatly hindered when using a minimal dual graph. Consequently, we recommended

executing FC on the original dual graph for PerTuple, sacrificing benefits to be

drawn from dangle identification.

Generally speaking, the choice of using a dual graph has three effects on the search

62

of PerTuple and AllSol:

1. Lookahead: The graph determines which edges are checked during the lookahead

procedure.

2. Variable ordering: The graph affects the computation of the variable ordering

heuristics dom/deg and dom/wdeg.

3. Dangle identification: The graph is used to identify dangling vertices to remove

from search.

In Chapter 3, we used the same graph for all three purposes. In order to remedy the

above-discussed limitation related to using a minimal dual graph for PerTuple, we

propose, for the case of PerTuple, to use a minimal dual graph only for the purpose

of dangle identification but use the original dual graph for both lookahead and variable

ordering. This choice allows us to promote the benefits of dangle identification in

PerTuple while avoiding hindering the effectiveness of lookahead.

Theorem 5. The search procedure maintains correctness when using a minimal dual

graph for dangle identification and the original dual graph for lookahead and ordering.

Proof. Search is correct when using a minimal dual for all three purposes. A change

in the computation of the ordering may change the ordering, but cannot break cor-

rectness. Including additional, redundant, edges results in new constraint checks but

cannot affect the set of solutions. By definition, the equalities enforced along the

redundant edges are also enforced along an alternative existing path of edges.

63

4.2 The MaxDeg Heuristic for a Minimal Dual

Graph

Many different minimal dual graphs may exist for any given dual graph. The heuristic

used during the construction of a minimal dual in the will affect the structure of the

resulting graph.

Our procedure for constructing the minimal dual graph is based on the algorithm

by Janssen et al. [1989]. The algorithm first identifies all subscopes si in the original

dual graph where a subscope is the set of CSP variables shared by two dual variables.

For each subscope si, it builds the set Asi of dual variables Cx where si ⊆ scope(Cx).

As a result, the dual variables in every set Asi induce a clique on the original dual

graph. Next, we build a partial order on the subscopes comparing two subscopes

using the relation ⊆ and induce a total ordering by topological sorting. Starting from

the set Asi with the largest subscope in the total ordering, we incrementally connect

the relations within Asi to form a connected component, the seed of a minimal dual

graph, by adding a single edge between two disconnected components in Asi . Then,

we move to the Asj such that sj directly precede si in the total ordering and repeat

the same operation. If the original dual graph is connected, we are guaranteed to end

the process with a connected minimal dual graph. In order to connect two connected

components, we add an edge between two of their dual variables. At this point,

we have the freedom to choose the two variables between which the edge is added.

The heuristic MaxDeg adds an edge between the two dual variables of largest degree

whereas MinDeg does it for the dual variables of smallest degree.

In contrast to MinDeg, in MaxDeg, the edges in a minimal dual graph tend to be

consolidated around a few vertices of high degree while the majority of vertices are

of low degree. Such a structure for a minimal dual graph would yield many dangles

64

upon the assignment of the high degree vertices.

Figure 4.1 illustrates the difference that the choice of heuristic can make. Fig-

ure 4.1a shows a dual graph, Figure 4.1b a minimal dual graph using the MinDeg

heuristic, and Figure 4.1c a minimal dual graph using the MaxDeg heuristic.1

C143

C145

C266

C420

C554

C555

C557

C559

C210

C270

C308

C395

C422

C551

C568

C574

C578

C579

C200

C203

C208

C213

C257

C302

C307C385

C421

C423

C550

C577

C595

C260

C268

C269

C273

(a) Full dual graph

C143

C145 C266

C559

C210

C579

C200

C203

C213

C257

C308

C385

C578 C423

C595

C208

C550

C260

C273

C270 C302 C268

C554 C269

C307

C568 C421

C577

C395

C422

C551

C420

C555

C557C574

(b) Minimal dual graph with
MinDeg

C143

C145C266

C420 C554C555C557 C559 C210C270 C308C395 C422 C551 C568C574C578 C579

C200

C203 C208C213

C257

C385 C421C423 C550C577 C595

C260 C268C269 C273

C302 C307

(c) Minimal dual graph with MaxDeg

Figure 4.1: Dual graphs of an example instance

Table 4.1 presents statistics on the edges and vertex degrees of each graph. Clearly

a minimal dual graph can remove a significant number of redundant edges (190 versus

57 edges). The difference between the two heuristics can be seen in the degree statis-

tics as well as visually. The graph in Figure 4.1b has a maximum degree of only 5

and a median of 3. In contrast, the graph in Figure 4.1c has a maximum degree of 12

with a median of 2 because its edges are ‘concentrated’ over a few vertices, resulting

1Example is a cluster taken from the composed-75-1-2-0 instance

65

in a more tree-like structure.

Table 4.1: Degree statistics of the dual graphs in Figure 4.1

Graph Edges Degree

Min Max Mean Median

Full Dual Graph 190 6 17 10.86 10

Minimal Dual Graph - MinDeg 57 2 5 3.26 3

Minimal Dual Graph - MaxDeg 57 2 12 3.26 2

4.3 Metrics for Dangle Identification

We propose two metrics to assess the effectiveness of the dangle-identification pro-

cedure: Normalized Average Dangle-Level (NADL) and Average Percent Dangles-

Identified (APDI).

4.3.1 Normalized Average Dangle Level

The NADL metric measures at what depth level during search dangles are identified.

We use a list to record the depth at which a dangle is found. At the beginning the

list is empty. If we identify any dangling vertices at depth d, we add to the list as

many ‘d’ entries as there are dangling vertices (zero for preprocessing). Upon search

completion, we compute the average of all recorded entries. Then, we normalize the

resulting number by the number of vertices in the dual graph. Thus, this metric

ranges from 0 (entire problem identified as dangles at preprocessing) to e−2
e

, where e

is the number of constraints in the CSP. Note that last two vertices in the dual graph

are always necessarily dangles.

66

4.3.2 Average Percent Dangles Identified

The APDI metric measures the percentage of future dual variables that are identified

as dangles at each step (including preprocessing and instantiations of dual variables).

At each step, the percentage of dangling vertices to total considered vertices at this

step is recorded in a list. Upon search completion, we compute the average of the

percentages in the list. The metric ranges from 0 (no dangles are ever identified) to 1

(entire problem is identified as dangles during preprocessing).

4.4 Experimental Evaluation

Below, we describe an experiment to empirically assess the effectiveness of the MaxDeg

heuristic against that of MinDeg.

4.4.1 Setup

We test the effect of the MaxDeg heuristic on both the runtime and dangle identifica-

tion performance of AllSol and PerTuple. We test a total of six configurations,

three for AllSol and three for PerTuple. For each algorithm, we compare using

the full dual graph, using the minimal dual generated from the MinDeg heuristic, and

the minimal dual generated from the MaxDeg heuristic. In the case of PerTuple,

we use a minimal dual only for the purpose of dangle identification. For variable

ordering and lookahead, we use the original dual graph.

As stated in Section 3.7.1, our goal is to execute AllSol and PerTuple on clus-

ters of a tree decomposition of a CSP. Thus, we run our experiments on individual

clusters taken from decompositions of full instances. We use instances from bench-

marks in the XCSP library.2 We sample 10 clusters from each of 175 benchmarks in

2http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

67

the library. This sampling yields 1,684 total clusters (some benchmarks have fewer

than 10 clusters).3 We run each of the six configurations on all 1,684 clusters for a

total of 10,104 runs.

We run our experiments on a computer cluster of Intel Xeon E5-2670 2.60 GHz

processors. We allocate 30 minutes and 12GB of memory per run. To account for

load variations on the cluster computer, we measure instruction count and convert it

to runtime using a standardized measure of instructions per cycle and clock speed.

For each run, we first enforce GAC prior to enforcing minimality.

4.4.2 Results

Table 4.2 summarizes the performance of the six tested configurations, indicating,

for each configuration, the number of instances completed, the average runtime on

instances completed by at least one configuration, the average runtime on instances

completed by all configurations, the average number of nodes visited (in the minimal-

ity search) on instances completed by all configurations, the average NADL, and the

average APDI. We highlight the row with best values for each algorithm. For both

PerTuple and AllSol, we see that using the minimal dual graph generated from

the MaxDeg heuristic yields the best performance in every measured aspect.

Figures 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7 plot the runtimes of the tested configurations

on individual clusters. Each scatter plot compares the runtimes of the two configu-

rations on its axes. In each plot, we place the ‘original’ configuration on the vertical

axis and the configuration with an improvement on the horizontal axis. Consequently,

points above the diagonal indicate a positive improvement.

3The same clusters tested in Chapter 3

68

Table 4.2: Results summary for tested dual graph types

Configuration Instances Average time (ms) Avg NV Avg NADL Avg APDI

completed by one by all by all by all by all

PerTuple-full 1,268 219,550.2 7,130.7 415,505.6 0.48 35%

PerTuple-MinDeg 1,250 241,635.1 8,788.3 376,230.5 0.21 47%

PerTuple-MaxDeg 1,371 106,588.2 3,783.7 40,304.8 0.12 53%

AllSol-full 1,103 444,505.6 54,620.9 506,474.0 0.50 40%

AllSol-MinDeg 1,156 367,089.4 20,850.9 242,457.8 0.21 52%

AllSol-MaxDeg 1,184 338,317.4 20,506.7 230,128.5 0.12 62%

69

MinDeg does not significantly affect the performance of PerTuple (Figure 4.2)

but improves that of AllSol (Figure 4.3)

 1

 10

 100

 1000

 10000

 100000

 1x106

 1 10 100 1000 10000 100000 1x106

P
er

T
up

le
-f

ul
l T

im
e

(m
se

c)

PerTuple-MinDeg Time (msec)

Figure 4.2: PerTuple’s runtime on original vs. minimal dual graph with MinDeg

 1

 10

 100

 1000

 10000

 100000

 1x106

 1 10 100 1000 10000 100000 1x106

A
llS

ol
-f

ul
l T

im
e

(m
se

c)

AllSol-MinDeg Time (msec)

Figure 4.3: AllSol’s runtime on original vs. minimal dual graph with MinDeg

70

MaxDeg significantly outperforms MinDeg for PerTuple (Figure 4.4). As for

AllSol, the improvement is small but generally positive (Figure 4.5).

 1

 10

 100

 1000

 10000

 100000

 1x106

 1 10 100 1000 10000 100000 1x106

P
er

T
up

le
-M

in
D

eg
 T

im
e

(m
se

c)

PerTuple-MaxDeg Time (msec)

Figure 4.4: PerTuple’s runtime on minimal dual graph with MinDeg versus MaxDeg

 1

 10

 100

 1000

 10000

 100000

 1x106

 1 10 100 1000 10000 100000 1x106

A
llS

ol
-M

in
D

eg
 T

im
e

(m
se

c)

AllSol-MaxDeg Time (msec)

Figure 4.5: AllSol’s runtime on minimal dual graph with MinDeg versus MaxDeg

71

MaxDeg significantly improves the performance of PerTuple (Figure 4.6) All-

Sol (Figure 4.7), with many instances showing an order of magnitude improvement.

 1

 10

 100

 1000

 10000

 100000

 1x106

 1 10 100 1000 10000 100000 1x106

P
er

T
up

le
-f

ul
l T

im
e

(m
se

c)

PerTuple-MaxDeg Time (msec)

Figure 4.6: PerTuple’s runtime on original vs. minimal dual graph with MaxDeg

 1

 10

 100

 1000

 10000

 100000

 1x106

 1 10 100 1000 10000 100000 1x106

A
llS

ol
-f

ul
l T

im
e

(m
se

c)

AllSol-MaxDeg Time (msec)

Figure 4.7: AllSol’s runtime on original vs. minimal dual graph with MaxDeg

72

4.4.3 Discussion

Our results show that using a minimal dual graph significantly improves the effec-

tiveness of dangle identification by allowing more dangles to be earlier in the search.

Using a minimal dual graph removes edges, allowing the dual graph to become more

quickly tree-like. We also see that the specific minimal dual graph used has a sig-

nificant impact on dangle identification. While the minimal dual graphs computed

with MinDeg and MaxDeg have the same number of edges, the minimal dual graph

generated with MaxDeg is more beneficial for dangle identification. Having a few high

degree vertices and many low degree vertices results in a graph with high potential

for dangling tree structures. In particular, a variable ordering heuristic that favors

selecting vertices of high degree (e.g., dom/deg and dom/wdeg) quickly removes a

large numbers of edges.

Using the MaxDeg heuristic improves the performance of both AllSol and Per-

Tuple. In the case of PerTuple, a minimal dual is only used for the purpose of

dangle identification. In Chapter 3, we had argued that dangle identification was

slightly detrimental to PerTuple performance. With the use of the MaxDeg heuris-

tic, we are able to invert the effect. Indeed, dangle identification now benefits the

performance of PerTuple.

Summary

In this chapter, we introduced MaxDeg as a heuristic for the algorithm that com-

putes a minimal dual graph. We showed that MaxDeg results in minimal dual graphs

that are well suited to dangle identification. We empirically evaluate the effect of the

heuristic on the runtime of PerTuple and AllSol and find substantial improve-

ment in the case of PerTuple and moderate improvement in the case of AllSol.

73

Chapter 5

Weight Update in High-Level

Consistencies

This chapter discusses a potential obstacle for high-level consistencies: the lack of a

coherent weight-update strategy for the dom/wdeg variable-ordering heuristic. We

introduce a parameterized framework for updating constraint weights when using

HLC and empirically evaluate its effectiveness.

5.1 Weight-Update Strategies: Motivation

Using high-level consistencies allows for stronger reasoning power to be used on prob-

lems that require it. However, it remains an open question whether and how HLCs

prunings should affect variable ordering during search. Currently, the most popular

variable ordering heuristic is dom/wdeg [Boussemart et al., 2004]. It is used in the

context of both binary and non-binary constraints and operates based on the princi-

ple of “the squeaky wheel gets the grease” as follows. The weights of all constraints

are initially set to one. Every time enforcing a constraint yields a domain wipeout,

74

the weight of the constraint is incremented by one. Dom/wdeg instantiates first the

variable whose ratio of current domain size to weighted degree is the smallest, where

the weighted degree of a variable is the sum of the weights of the constraints that

apply to it. In the case of GAC, it is straightforward to assign blame for a wipeout

on the constraint currently being checked. In the case of high-level consistencies,

the the wipeout is typically the result of the confluence of a number of constraints.

Woodward and Choueiry [2017] explored weight-update strategies for dom/wdeg in

the context of Partition-One Arc-Consistency (POAC) [Bennaceur and Affane, 2001]

and Relational Neighborhood Inverse Consistency (RNIC) [Woodward et al., 2011].

In this chapter, we explore strategies suitable for cluster minimality.

Cluster minimality is similar to RNIC in that both enforce minimality on a sub-

problem. The former does it for every constraint in the subproblem, the latter for one

constraint. They also differ in how a subproblem is defined. RNIC operates on the

subproblem induced by the neighborhood, in the dual graph, of a single constraint

while cluster minimality is executed on clusters of a tree decomposition. For RNIC,

it is reasonable to assign blame, in the event of a wipeout, on the constraint on which

RNIC is enforced. However, in the case of cluster minimality, it is not clear how

to assign blame. If a wipeout occurs, it is because the subproblem in the cluster is

unsatisfiable and it would be so regardless of the search order over the constraints

in the cluster. Below, we investigate directions for meaningful weight-updates in the

context of cluster minimality.

5.2 Weight-Update Parameters

To define new weight-update strategies, we propose a framework based on three or-

thogonal parameters:

75

1. Occurrence: when is a weight update performed.

2. Distribution: how to allocate the weight amongst the constraints.

3. Scale: what is the magnitude of the total weight update.

In the following sections, we describe each parameter and propose two or more possible

options for the parameter.

5.2.1 Occurrence

The occurrence parameter specifies when weights must be updated. When using

dom/wdeg with GAC, weights are only updated in the advent of a domain wipeout

as a result of a constraint check. Enforcing a high-level consistency is typically a

complex and relatively time-consuming operation compared to enforcing GAC: It

may encompass hundreds or thousands of constraint checks. Conceivably, a weight

update may be beneficial even in the absence a domain wipeout. We consider two

options for the occurrence parameter:

Always: The ‘Always’ setting means that we always update weights by some amount:

Every time a cluster has been processed, the weights of the cluster’s constraints

are incremented by some value.

OnWipeout: The ‘OnWipeout’ setting is more conservative. It updates the con-

straints’ weights following the detection of an inconsistency (wipeout) within

the cluster. This method is similar to how weights are typically updated with

GAC (i.e., only when a constraint check results in wipeout).

76

5.2.2 Distribution

The distribution parameter specifies how the weight update is allocated across ψ(cl),

the constraints of a given cluster cl. We denote ub(c, cl) the base weight-update

function of a single constraint c ∈ ψ(cl) and require that:

∑
ci∈ψ(cl)

ub(ci, cl) = 1. (5.1)

We consider two options. On one hand, the simplest strategy, which uniformly up-

dates the weights of all constraints, may or may not provide enough discriminative

power. On the other hand, we propose to distribute the unity weight-update of Ex-

pression (5.1) based on the performance of search on the dual CSP. Below, we describe

these two options:

Uniform: The ‘Uniform’ setting is straightforward in that it uniformly updates all

constraints in a cluster. The base weight update for a constraint is given by:

ub(c, cl) =
1

|ψ(cl)|
.

DualWeight: The ‘DualWeight’ setting allocates the weight update in accordance

with the weights of the dual edges (i.e., equality constraints). When executing

search over the subproblem (i.e., AllSol or PerTuple), the weights of the

equality constraints of the dual graph are computed similarly to dom/wdeg on

a general CSP. At the conclusion of the search, we compute the increase of the

weighted degree of each dual variable c and denote it ∆wdeg(c). We assign the

77

base weight-update proportionally to each constraint’s ∆wdeg(·):

ub(c, cl) =
∆wdeg(c)∑

ci∈ψ(cl)
∆wdeg(ci)

.

5.2.3 Scale

The scale parameter specifies by how much to update the weights. Typically, the

weight of a constraint is incremented by one. When enforcing high-level consistency,

we may want to increment the weights of many constraints and by a larger amount

to reflect the efforts it took to process a particular subproblem. To this end, we need

to consider adjusting the total amount of weight updates.

For both values of the distribution parameter, the total base weight-update is one,

see Expression (5.1). We denote by s(cl) the scaling factor of a cluster cl. The weight

update of a constraint c ∈ ψ(cl) is now given by:

u(c, cl) = ub(c, cl) · s(cl).

where, the final total weight update is:

s(cl) =
∑

ci∈ψ(cl)

u(ci, cl).

We consider four options for the scale parameter:

None: The ‘None’ setting uses:

s(cl) = 1.

This setting is a logical baseline to compare to, as the standard dom/wdeg

weight-update increments constraint weight by 1.

78

ClusterSize: The ‘ClusterSize’ setting uses:

s(cl) = |ψ(cl)|.

By scaling by the number of constraints in the cluster, we may be able to avoid

penalizing large clusters.

Sum∆wdeg: The ‘Sum∆wdeg’ setting uses:

s(cl) =
∑

ci∈ψ(cl)

∆wdeg(ci).

This setting is an attempt to account for the effort spent on the subproblem

search. The more wipeouts are encountered by the subproblem search, the more

we increment the weight of constraints in the cluster.

Avg∆wdeg: The ‘Avg∆wdeg’ setting uses:

s(cl) =

∑
ci∈ψ(cl)

∆wdeg(ci)

|ψ(cl)|
.

By averaging the ∆wdeg(·) values, we remove the bias against clusters with

many constraints.

5.3 Experimental Evaluation

To evaluate the effect of each parameter in our weight-update framework, we perform

a factorial experiment testing all 16 combinations [Box et al., 1978].

79

5.3.1 Setup

In our experiment, we consider three factors with a varying number of levels:

1. Occurrence: Always, OnWipeout

2. Distribution: Uniform, DualWeight

3. Scale: None, ClusterSize, Sum∆wdeg, Avg∆wdeg

We test all 16 configurations of these three factors as shown Table 5.1. Additionally,

Table 5.1: The three factors tested

Factor Level Abbrev.

Always Al
Occurrence

OnWipeout OW

Uniform Un
Distribution

DualWeight DW

None No

ClusterSize CS

Sum∆wdeg S∆
Scale

Avg∆wdeg A∆

we run a test where we do not update constraint weights after enforcing minimality

on a cluster. All tests enforce cluster minimality using PerTuple during search

for the entire CSP. For the PerTuple algorithm, we use the best configuration

from Chapter 4, that is, forward checking on the original dual graph and dangle

identification on a minimal dual graph found with the MaxDeg heuristic.

We perform our experiments over instances taken from benchmarks in the XCSP

library.1 We randomly sample (up to) 10 instances from 198 different benchmark

1http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

80

problems to reach 1939 instances. We test 17 different configurations for a total of

32,963 runs.2

We run our experiments on a computer cluster of Intel Xeon E5-2670 2.60 GHz

processors. Each execution is allocated 2 hours and 12GB of memory. To account for

load variations on the cluster computer, we measure instruction count and convert it

to runtime using a standardized measure of instructions per cycle and clock speed.

5.3.2 Results

In Table 5.2, we summarize the performance of PerTuple on the 17 tested config-

urations. We report

1. The number of instances completed by each configuration

2. The CPU time (in milliseconds) averaged over instances completed by at least

one configuration. In the case that a configuration does not complete an in-

stance, the CPU time is treated as the time limit (i.e., 7,200,000 ms).

3. The CPU time (in milliseconds) averaged over instances completed by all con-

figuration. Thus, no timeouts/memouts are included in this average

4. The average number (averaged over instances completed by all configurations)

of nodes visited by the search

In each of the last four columns, we typeset the best entry in boldface.

We perform a three-way, repeated measures, ANOVA test using a within-subject

design in order to determine the effects of the three considered factors and their levels.

We consider runtime as the dependent variable. We apply a log transformation to the

2The 17 different configurations correspond to the 16 configurations of Table 5.1 and the no
weight-update strategy.

81

Table 5.2: Results summary for all tested weight-update strategies

Instances Average time (ms) Avg NV

Configuration completed by one by all by all

Cl-PerTuple 836 1,092,818.6 373,591.5 80,137.6

Cl-PerTuple-Al,Un,No 822 1,194,506.5 387,414.1 143,082.2

Cl-PerTuple-Al,Un,CS 825 1,122,870.6 356,951.1 270,076.2

Cl-PerTuple-Al,Un,S∆ 827 1,120,249.9 372,719.6 113,825.2

Cl-PerTuple-Al,Un,A∆ 817 1,163,415.3 371,427.5 88,400.9

Cl-PerTuple-Al,DW,No 820 1,206,371.1 386,567.9 91,022.1

Cl-PerTuple-Al,DW,CS 830 1,071,235.5 362,763.6 148,750.0

Cl-PerTuple-Al,DW,S∆ 824 1,129,008.0 366,410.2 112,567.6

Cl-PerTuple-Al,DW,A∆ 826 1,121,936.5 374,298.9 85,853.3

Cl-PerTuple-OW,Un,No 827 1,134,225.8 382,627.8 100,495.0

Cl-PerTuple-OW,Un,CS 827 1,124,292.0 375,400.4 166,142.2

Cl-PerTuple-OW,Un,S∆ 831 1,106,725.9 377,073.4 115,470.5

Cl-PerTuple-OW,Un,A∆ 827 1,145,740.9 384,524.3 108,860.1

Cl-PerTuple-OW,DW,No 822 1,153,398.2 383,868.7 108,397.5

Cl-PerTuple-OW,DW,CS 833 1,102,083.2 379,539.0 151,978.4

Cl-PerTuple-OW,DW,S∆ 835 1,093,759.3 385,395.9 109,622.8

Cl-PerTuple-OW,DW,A∆ 822 1,161,157.4 389,909.1 109,770.3

runtime data in order to achieve an almost normal distribution. Our data is right-

censored because of the 2-hour time-limit. For this reason, our data can be considered

only ‘approximately normally distributed.’ The results of the ANOVA test are given

in Table 5.3.

Table 5.3 provides the following data: The effect name (effect), the degrees of

freedom of the effect (DFn), the degrees of freedom of the error (DFd), the sum of

squares of the effect (SSn), the sum of squares of the error (SSd), the F measure (F),

the corresponding p-value (p), an indicator of the significance of the effect (p<.05),

82

Table 5.3: Weight update ANOVA results sorted by generalized eta squared

Effect DFn DFd SSn SSd F p p<.05 ges

(Intercept) 1 890 3.26E+05 29323.1357 9890.70164 0 * 9.16E-01

Scale 3 2670 3.87E-01 102.10487 3.3754685 0.01766081 * 1.30E-05

Distribution:Scale 3 2670 1.37E-01 64.81172 1.8880243 0.12942453 4.60E-06

Occurrence:Scale 3 2670 1.34E-01 84.1384 1.4134284 0.23691293 4.47E-06

Distribution:Occurrence:Scale 3 2670 8.17E-02 64.92289 1.1204603 0.33939289 2.73E-06

Occurrence 1 890 3.59E-02 156.26385 0.2045297 0.65119937 1.20E-06

Distribution:Occurrence 1 890 2.26E-02 47.46371 0.4237791 0.51522538 7.56E-07

Distribution 1 890 1.82E-02 52.28022 0.3105038 0.57751128 6.10E-07

83

and the generalized eta-squared measure of effect size (ges). The table is sorted by

effect size (i.e., ges). We see that only the Scale factor has any statistically significant

impact on the runtime.

5.3.3 Discussion

Our results show that none of the strategies considered in this chapter provides any

statistically significant improvement over not using any weight-update strategy. How-

ever, these explored strategies are only a selection of the possible such strategies. Pre-

vious research has shown improvements from using weight-update strategies suited

for APOAC and RNIC as HLCs [Woodward and Choueiry, 2017]. As a reminder, the

techniques proposed in that research are not adaptable to our context because they

are based on induced neighborhoods.

Although our current investigations do not yield a promising strategy, we argue

that our framework for the weight-update parameters may still be of use. It is our

hope that we may draw attention to the need for an effective weight-update strategy

for high-level consistencies.

Summary

In this chapter, we argued the need for effective weight-update strategies that are

compatible with HLC. We proposed a framework for expressing such strategies based

on three orthogonal parameters and introduced 16 variants. We empirically evaluated

these strategies on benchmark problems.

84

Chapter 6

Dynamic Portfolio for

Cluster-Based Minimality

In this chapter, we investigate the use of an algorithm portfolio that operates at the

cluster level. The portfolio approach has roots in the Algorithm Selection Problem,

which involves selecting the best algorithm to apply to a particular instance to maxi-

mize some performance metric [Rice, 1976]. Early work by Gomes and Selman [2001]

used a portfolio of several algorithms running in parallel to exploit their complemen-

tarity to solve various combinatorial problems. Portfolios gained in popularity for

both SAT and CSPs through solver competitions, with SATzilla [Xu et al., 2008]

winning the SAT Challenge 2012 and cpHydra [O’Mahony et al., 2008] winning the

2008 Constraint Solver Competition.

In our context, we propose to design a portfolio to operate dynamically and locally

on the clusters of a tree decomposition to select an algorithm, PerTuple or AllSol,

if any, to enforce minimality on the cluster. A feature of our approach is that the

portfolio operates at a fine grain, atomic level, of the search process, which, to the

best of our knowledge, was never attempted before.

85

6.1 Collecting Training Data

The first step of training any machine learning classifier is to gather training data.

To this end, we execute both AllSol and PerTuple on a set of 27,226 clusters

sampled from tree decompositions of instances taken from 176 benchmarks in the

XCSP library.1 We execute each algorithm on each cluster for up to 30 minutes. We

record the runtime for each algorithm.

In addition to the runtimes, we also collect a set of feature values for every cluster

used in our training. We collect a total of 427 features for every cluster. Below we

describe each of the features collected as well as the aggregation functions used to

compute some of these features.

6.1.1 Features

We distinguish three types of features: general features computed on the CSP pa-

rameters of an instance, graph features computed on a number of graph structures,

tree-decomposition features are computed on two types of tree decomposition of the

CSP.

Many of the features compute a list of data points that are then reported using

several aggregate functions presented in Section 6.1.2. Such features are indicated by

an asterisk.

6.1.1.1 General Features

Below we list the general features of the CSP instance in the cluster:

1. Variables : The number of variables in the CSP.

1http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

86

2. Constraints : The number of constraints in the CSP.

3. Values*: A data point per variable, reporting the number of values in the

domain of the variable.

4. Tuples*: A data point per constraint, reporting the number of tuples in the

relation of the constraint.

5. Arity*: A data point per constraint, reporting the arity of the constraint.

6. Tightness*: A data point per constraint, reporting the tightness of the con-

straint (i.e., the number of forbidden tuples divided by the cardinality of the

Cartesian product of the domains of the variables in the scope of the constraint).

7. Relational linkage*: A data point per subtuple over the variables shared by

two constraints (i.e., subscope), as a measure of the likelihood of the subtuple

to appear in a solution. For every two relations Ri, Rj, let Vij = scope(Ri) ∩

scope(Rj). ∀Rk, scope(Rk) ⊇ Vij,∀x ∈ scope(Rk) \ Vij, the relational linkage of

every subtuple ts ∈ πVij(Ri ./ Rj) is computed as:

minRk

(
|σts(Rk)|∏

x |domain(x)|

)

where ./, σ, π are the relational operators join, selection, and projection, respec-

tively.

8. Coarse blocks : The number of coarse blocks (see Section 3.4).

9. Coarse blocks size*: A data point per coarse block, reporting the number of

tuples in the coarse block.

10. Subscopes : The number of unique subscopes in the CSP.

87

11. Subscope constraints*: A data point per subscope, reporting the number of

constraints whose scope includes the subscope.

12. Subscope partitions*: A data point per subscope, reporting the number of coarse

blocks induced by the subscope on a relation whose scope includes the subscope.

6.1.1.2 Graph Features

For each of the graph features listed below, we collect the feature on each of the

following graph types, namely, primal, incidence, dual, minimal dual, triangulated

primal, triangulated dual, and triangulated minimal dual (see Section 2.3):

13. Graph density : The density of the graph given by 2·e
v·(v−1) , where v is the number

of vertices and e is the number of edges in the graph.

14. Graph degree*: A data point per graph vertex, reporting the degree of the

vertex.

15. Graph eccentricity*: A data point per graph vertex, reporting the eccentricity

of the vertex. The eccentricity of a vertex is the maximum length of a shortest-

path to another vertex in the graph.

16. Graph clustering-coefficient*: A data point per graph vertex, reporting the

clustering coefficient of the vertex. The clustering coefficient of a vertex is the

density of the graph induced by the neighborhood of the vertex (excluding the

vertex itself) on the considered graph.

17. Graph triangles :2 The number of triangles (i.e., cliques of size three) in the

graph.

2Graph triangles are computed only on the primal, dual, triangulated primal, and triangulated
dual graphs of a cluster instance.

88

18. Graph MCB cycles :3 The number of cycles in a Minimum Cycle Basis (MCB)

of the graph.4

19. Graph MCB cycle-size*:3 A data point per cycle in an MCB of the graph,

reporting the size of the cycle.

20. Graph MCB compute-time:3 The time to compute an MCB in milliseconds.

6.1.1.3 Tree-Decomposition Features

We collect each of the features listed below on a tree decomposition of the primal

graph and on that of the dual graph:

21. Tree-decomposition clusters : The number of clusters in the decomposition.

22. Tree-decomposition depth: The depth of the decomposition.

23. Tree-decomposition leaves : The number of leaf vertices in the decomposition.

24. Tree-decomposition cluster-constraints*: A data point per cluster, reporting the

number of constraints in the cluster.

25. Tree-decomposition cluster-variables*: A data point per cluster, reporting the

number of variables in the cluster.

3 The MCB features are computed only on the dual, incidence, and minimal dual graphs.
4 A cycle basis of a graph is a maximal set of cycles that are linearly independent (i.e., cycles in

the basis cannot be obtained by taking the composition of other cycles in the basis) [Horton, 1987]. In
a weighted graph the weight of a cycle in the graph is the sum of the weights of the edges in the cycle.
A minimum cycle basis is a cycle basis where the sum of the weights of the cycles in the cycle basis is
minimum. Informally, a minimum cycle basis is a minimum set of cycles that can generate all of the
cycles of the graph. In the case of an unweighted graph, the weights of each edge is one, a minimum
cycle basis has a minimum total length. An MCB is not unique. Algorithms for finding a minimum
cycle basis are either exact or approximate, finding the minimum within some bound [Horton, 1987;
Kavitha et al., 2007; Mehlhorn and Michail, 2009; Amaldi et al., 2010].

89

26. Tree-decomposition separator-constraints*: A data point per separator (i.e., an

overlap between two clusters), reporting the number of constraints in the sepa-

rator.

27. Tree-decomposition separator-variables*: A data point per separator (i.e., an

overlap between two clusters), reporting the number of variables in the separa-

tor.

6.1.2 Aggregate Functions

For the features that compute a list of data points, we report aggregate values using

the following functions:

1. Minimum

2. Maximum

3. Mean

4. Median

5. Standard deviation

6. Coefficient of variation

7. Entropy

8. Sum

9. Product

10. Log of the product

Coefficient of variation is the normalized standard deviation (i.e., standardDeviation
mean

).

The entropy of a multiset X = 〈X,m〉 (the set X is the possible values in X

and for all x ∈ X, m(x) is the multiplicity of x in X) is calculated by H(X) =

−
∑

x∈X
m(x)
|X | log

(
m(x)
|X |

)
. We compute the log of the product by summing the natural

logarithm of each of the data points.

90

6.2 Decision-Tree Classifier

We choose to use a simple decision-tree classifier for our portfolio for several reasons:

1. It is easy to implement and use during a search procedure for solving a CSP

2. It is easy to interpret the decisions of the tree

3. It allows us to collect the values of the features in a partial and incremental

manner, on an ‘as-needed basis,’ as we are moving along a given branch of the

tree.

6.2.1 Labels and Weights for Classification

We use the classifier to select between three decisions for each processed cluster, i.e.,

we classify a cluster as

1. ‘AllSol’ when AllSol is faster than PerTuple

2. ‘PerTuple’ when PerTuple is faster than AllSol

3. ‘Neither’ when neither algorithm is able to complete within the set time-threshold

of 10,000 milliseconds.

We choose a ten-second cutoff because we use a runtime limit of one second per cluster

during search. Indeed, we deliberately make the classifier more ‘forgiving’ in terms of

the time cutoff in order to allow it to process instances that may need a processing

time close to the one-second limit. We choose a timeout of one second per cluster

because, based on the results of the 27,226 training instances shown in Figure 6.1, this

value strikes a good balance between completing clusters and not spending excessive

time on any one cluster. Indeed, 68% of our training instances are able to complete

91

with one of the two algorithms in under a second. Increasing the limit by an order of

magnitude would allow the completion of only 8% more of our training instances.

To every instance, i, in the collected training dataset, we assign a label l(i) and

weight w(i) according to the following scheme where cpuP (i) and cpuA(i) are the

runtimes (in milliseconds) of PerTuple and AllSol, respectively:

l(i) =

‘PerTuple’ cpuP (i) ≤ cpuA(i), cpuP (i) ≤ 10,000

‘AllSol’ cpuA(i) ≤ cpuP (i), cpuA(i) ≤ 10,000

‘Neither’ cpuP (i) > 10,000, cpuA(i) > 10,000

and

w(i) =

dlog10(

min(cpuA(i),10,000)
cpuP (i)+1

+ 1)e l(i) = ‘PerTuple’

dlog10(
min(cpuP (i),10,000)

cpuA(i)+1
+ 1)e l(i) = ‘AllSol’

dlog10(
min(cpuP (i),cpuA(i))

10,000
)e l(i) = ‘Neither’

The weight values range over {0,1,2,3}. We design the weighting scheme to emphasize

instances for which one selection greatly outperforms the other options. Figure 6.1

shows our training dataset in a scatter plot where the horizontal axis represents CPU

time of AllSol and the vertical axis the cpu time of PerTuple. This plot gives:

• The labels of the data points shown with color, namely, purple for ‘PerTuple’,

green for ‘AllSol’, and black for ‘Neither’

• The weights of each data point shown by the size of its point, where the largest

points being of weight three.

92

1

10

100

1000

10000

100000

1x106

1 10 100 1000 10000 100000 1x106

Pe
rT

up
le

 T
im

e
(m

se
c)

AllSol Time (msec)

‘PerTuple’

‘AllSol’

‘Neither’

Weight
1 2 3

La
be
l

Figure 6.1: The weighted and labeled training data

93

6.2.2 Training

After labeling and weighting the data, we use the J48 algorithm from the WEKA data-

mining software to construct the decision tree [Hall et al., 2009].5 Initially, we used

the entire set of features listed in Section 6.1.1 and used the default J48 parameters.

However, some of the features proved to be too costly to compute at every cluster

visit and we removed them from consideration.6 The features that we do compute

are: variables, constraints, values, tuples, arity, tightness (Section 6.1.1.1).

With this restricted set of features and using the default parameters of the J48

algorithm, the generated decision trees were often quite large and with only a small

number of training instances located at each leaf. To avoid overfitting the data, we

adjusted the parameters of J48 requiring, for any leaf node, a minimum requirement

of 1,000 training instances (out of 32,518 total instances after accounting for instance

weight) .

Our decisions for using a limited feature set and enforcing a minimum number

of instances per leaf are empirically motivated following a series of trial-and-error

experiments. This process results in a lightweight decision tree with easily computed

features and an intuitive interpretation.

6.2.3 Training Results

While our classification approach may appear to be relatively simple, it yields rea-

sonable results with a 10-fold cross validation and serves as a useful proof-of-concept

for our idea of a cluster-level portfolio. Indeed, Table 6.1 presents our results when

5https://www.cs.waikato.ac.nz/ml/weka/
6The removed features are: all graph features (Section 6.1.1.2), all tree-decomposition fea-

tures (Section 6.1.1.3), relational linkage, all two coarse-blocks, and three subscope features (Sec-
tion 6.1.1.1). Further, concerning the aggregate functions (Section 6.1.2), we removed product in
favor of log product. Finally, for the general features ‘values’ and ‘tuples,’ we removed the ‘sum’
aggregate function.

https://www.cs.waikato.ac.nz/ml/weka/

94

trained using 10-fold cross validation. In this table, we report the number of in-

Table 6.1: Classifier training results

Class Instances TP FP Precision Recall F-Measure

‘AllSol’ 2,902 0.429 0.029 0.595 0.429 0.499

‘PerTuple’ 10,494 0.844 0.106 0.791 0.844 0.817

‘Neither’ 19,122 0.928 0.111 0.923 0.928 0.926

Weighted average 0.856 0.102 0.851 0.856 0.852

stances in each of the three classes. For each class, we report the true-positive (TP)

rate, false-positive (FP) rate, precision, recall, and F-measure. Finally, we report the

weighted average of each metric, weighted by the number of instances per class. Our

classifier attains an accuracy of 85.6% (which is the weighted average true-positive

rate). It is able to achieve a reliable F-Measure on the ‘Neither’ instances, a reason-

able F-Measure on the ‘PerTuple’ instances, and a somewhat poor F-Measure on the

‘AllSol’ instances.

Figure 6.2 shows the confusion matrix of our classifier. The vertical axis of the

Figure 6.2: Confusion matrix of the decision-tree classifier

matrix indicates the true label of an instance. The horizontal axis indicates the pre-

95

dicted label. Instances falling on the diagonal are correctly classified by the decision

tree. The shading of each cell corresponds to the total number of instances in the

given category. The number in each cell shows the percentage of instances within a

given row that were predicted to have a given label (i.e., each row is normalized).

The most common misclassification is misclassifying an ‘AllSol’ instance as a ‘Per-

Tuple’ instance, followed closely by misclassifying ‘Neither’ as ‘PerTuple’ and vice

versa. This poor performance for ‘AllSol’ is likely due to the class imbalance (i.e., the

relatively few instances in the ‘AllSol’ class).

6.2.4 Trained Decision Tree

Figure 6.3 shows the generated decision-tree classifier, which we use as a portfolio in

Section 6.3. The tree uses four features: Tuples logProd, Tuples max, Tuples min,

and Tightness max. Each of these four features is updated throughout the course of

#1≤ 147.4 No Yes
#1: Tuples_logProd
#2: Tuples_max
#3: Tuples_min
#4: Tightness_max

‘PerTuple’ ‘AllSol’

 #3≤593 No Yes #2≤12550 No Yes

‘AllSol’ ‘Neither’ #3≤4 No Yes #1≤1120.4 No Yes

‘AllSol’ ‘PerTuple’ ‘Neither’ #4≤0.970 No Yes

1

2

3

4

5

6

7

Figure 6.3: The trained decision-tree classifier

search only as the relations are filtered.

The product of the size of the domains (relations in the case of the dual CSP)

is an often used estimate for the size of the search space. Thus, Tuples logProd is

a logical choice for the root of the tree. The tree selects ‘Neither’ if the problem is

96

very large (leaf 1) or somewhat large but with no small relations (leaf 2). It selects

‘PerTuple’ if the problem is somewhat large (leaf 3). If the problem is small, the

tree selects ‘PerTuple’ (leaf 4) unless one of the following three conditions is met.

If there is at least one particularly large relation (leaf 5), or one particularly small

relation (leaf 6), or a relation that is extremely tight (leaf 7), the tree selects ‘AllSol’.

As stated above, the values are collected and computed one a ‘as-needed’ base while

traversing a given branch of the tree.

6.2.5 Alternate Classifiers

We train several alternate classifiers in an attempt to improve the classification ac-

curacy of the ‘AllSol’ instances. Figure 6.4 shows the confusion matrices of two of

alternate classifiers:

(a) Confusion matrix of classifier trained
with the default instances per-node set-
ting

(b) Confusion matrix of classifier trained
with rebalanced class weights

Figure 6.4: Confusion matrices of two alternate classifiers

• We train the classifier shown in Figure 6.4a using the J48 algorithm with a

confidence factor of 0.01 (resulting in stronger pruning of the decision tree than

the default value of 0.25) and with a minimum number of instances per leaf of

97

2, the default value. Reducing the minimum number of instances per leaf yields

a much larger tree than our original decision tree.

• We train the classifier shown in Figure 6.4b using J48 with a confidence factor of

1× 10−6, a minimum number of instances per leaf of 100, and class rebalancing

on the training dataset. Class rebalancing adjusts the instance weights such

that all classes have the same total weight, increasing the representation of the

‘AllSol’ instances.

Both classifiers improve the classification accuracy of ‘AllSol’ and slightly improve

that of ‘Neither’. In the case of the classifier trained with class rebalancing, the mis-

classification of ‘PerTuple’ increases, likely due to the overrepresentation of ‘AllSol’ in

the rebalanced training data. Although both alternate classifiers attain better clas-

sification accuracy than our original classifier in 10-fold cross validation (93.7% and

89.2% respectively compared to 85.6%), this improvement does not translate to better

search performance on benchmark instances. The disconnect between classification

and search performance may be attributed to several factors: the one-second time

limit imposed when processing a cluster during search, the fact that PerTuple per-

forms partial filtering when interrupted while AllSol cannot, and the fact that the

clusters encountered during search likely have different properties than the clusters

obtained from the initial tree decomposition. We hope to address these limitations in

future iterations of our portfolio. In the experimental evaluations below, we consider

only the original decision-tree classifier described in Section 6.2.4.

98

6.3 Experimental Evaluation

In this section, we evaluate the portfolio of Section 6.2.4 to maintain cluster-level

minimality during search (Cl-Portfolio).

6.3.1 Setup

Our experiment compares the performance of five algorithms under two ordering

heuristics. The five algorithms are:

1. STR2 maintains Generalized Arc Consistency (GAC) during search using the

algorithm STR2 for GAC [Lecoutre, 2011]. We choose to use the STR2 algo-

rithm to enforce GAC because, in addition to filtering the domains, STR2 also

filters the relations, which makes it compatible with algorithms that enforce

relational consistencies such as AllSol and PerTuple.

2. Cl-PerTuple enforces cluster minimality using PerTuple. It first executes

STR2 on the entire problem, then PerTuple on the clusters (with a one-

second time limit per cluster) along the max-clique ordering and until reaching

a fixpoint. Finally, it executes STR2 on the entire problem again.

3. Cl-AllSol enforces cluster minimality using AllSol. It first executes STR2

on the entire problem, then AllSol on the clusters (with a one-second time

limit per cluster), along the max-clique ordering and until reaching a fixpoint.

Finally, it executes STR2 on the entire problem again.

4. Cl-Random enforces cluster minimality. It first executes STR2 on the entire

problem, then it randomly decides, for each cluster along the max-clique order-

ing and until reaching a fixpoint, to enforce, with a one-second time limit per

99

cluster, PerTuple, AllSol, or neither, on each cluster. Finally, it executes

STR2 on the entire problem again.

5. Cl-Portfolio enforces cluster minimality. It first executes STR2 on the entire

problem, then, using our classifier, it decides, for each cluster along the max-

clique ordering and until reaching a fixpoint, to enforce, with a one-second time

limit per cluster, PerTuple, AllSol, or neither, on each cluster. Finally, it

executes STR2 on the entire problem again.

We test each algorithm using both dom/deg and dom/wdeg [Boussemart et al.,

2004]. We report the results with dom/deg in order to evaluate the improved filtering

power of our approach without the interference of weight updates in accordance with

the common practice in the study of high-level consistency [Balafrej et al., 2015;

Paparrizou and Stergiou, 2016; Paparrizou and Stergiou, 2017]. However, we also

report the results with dom/wdeg because it is currently the most effective ordering

heuristic. Further, we show that there are instances unsolvable with STR2 (and

dom/wdeg) but that are solvable with our technique.7

We perform our experiments over instances taken from benchmarks in the XCSP

library.8 We conduct the analysis and discussion over a set of benchmarks selected

based on the following two criteria:9

1. High-level consistencies should be evaluated on difficult problems where GAC-

level algorithms struggle or fail.

2. The goal of this thesis is to improve the performance of minimality algorithms

and to execute the right algorithm at any particular point.
7Note that, despite our efforts to adapt the weight updates of dom/wdeg to the context of cluster

minimality (see Chapter 5), none of the strategies tested proved effective and are ignored in this
experiment.

8http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html
9We provide the complete results in Appendix A.

http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

100

For this reason, we exclude all easy benchmarks that can be solved with STR2. Based

on the above, we identify:

• For dom/deg, 47 benchmarks of a total 1066 instances (Section 6.3.2).

• For dom/wdeg, 21 benchmarks of a total 299 instances (Section 6.3.3).

We execute our experiments on a computer cluster of Intel Xeon E5-2670 2.60

GHz processors. Each run is allocated 2 hours and 12GB of memory. To account for

load variations on the cluster computer, we measure instruction count and convert it

to runtime using a standardized measure of instructions per cycle and clock speed.

6.3.2 Cluster-Minimality Algorithms Using dom/deg

In Table 6.2, we show the benchmarks that benefit from enforcing minimality using

the dom/deg ordering heuristic. The table displays, for each algorithm, the number

of benchmarks the algorithm is best on, followed by a listing of the benchmarks.

Cl-Portfolio performs best on significantly more benchmarks than the other three

cluster-minimality algorithms.

Table 6.3 summarizes the performance of all five tested algorithms on the instances

of the considered benchmarks. The table header indicates the number of instances

completed by at least one of the algorithms and the total number of instances con-

sidered. The table provides, for each algorithm:

1. The number of instances completed by the algorithm.

2. The number of instances completed in a backtrack-free manner.

3. The number of instances that the algorithm solved with the fewest number of

node visits than all other algorithms, considering only instances completed by

all algorithms.

101

Table 6.2: Benchmarks where a given algorithm performs best (dom/deg)

Algorithm # best Benchmark

Cl-PerTuple 7
bqwh-18-141, composed-25-10-20, haystacks, pigeons,

QCP-25, queenAttacking, rlfapScens11

Cl-AllSol 7
aim-100, aim-200, dubois, mug, jobShop-enddr1,

modifiedRenault, super-jobShop-enddr1

Cl-Random 10
cril, golombRulerArity4, graceful, sgb-queen,

QCP-10, QCP-15, QCP-20, QWH-20, QWH-25,

rlfapScensMod

Cl-Portfolio 23

BH-4-4, composed-25-1-2, composed-25-1-25,

composed-25-1-40, composed-25-1-80,

composed-75-1-2, composed-75-1-25,

composed-75-1-40, composed-75-1-80, ehi-85, ehi-90,

full-insertion, leighton-15, sgb-book, sgb-games,

os-taillard-5, pseudo-aim, queensKnights, rand-2-23,

rand-2-24, rlfapGraphsMod, super-jobShop-enddr2,

super-os-taillard-4

Table 6.3: Performance summary using dom/deg

Instances

Comp. by one: 861 Total: 1066

Algorithm

C
o
m

p
le

te
d

T
im

e
o
u
t

M
e
m

o
u

t

B
T

-f
re

e

M
in

(#
N

V
)

F
a
st

e
st

Avg time
(ms)

STR2 623 407 36 118 42 327 2,274,935.0

Cl-PerTuple 779 222 65 601 534 103 884,289.6

Cl-AllSol 774 237 55 576 491 48 999,397.0

Cl-Random 761 211 94 561 414 76 1,061,008.4

Cl-Portfolio 791 226 49 601 523 266 765,517.2

Portfolio selection: 56%P 37%A 7%N

102

4. The number of instances that the algorithm solved the fastest.

5. The runtime, in milliseconds, averaged over all instances that at least one algo-

rithm completed. If an algorithm does not complete an instance, the CPU time

is considered to be the time limit (i.e., 7,200,000 ms).

Finally, the last row shows the portfolio’s percentages of selecting: ‘PerTuple’ (%P),

‘AllSol’, (%A), and ‘Neither’ (%N), averaged over all instances. For each of the last

five columns, we highlight with a box the best value in the column.

Cl-Portfolio completes the most instances and achieves the lowest average runtime.

Cl-Portfolio ties with Cl-PerTuple for the most instances solved backtrack-free. It

is competitive with Cl-PerTuple for the number of instances solved in the fewest

node visits. Among the four minimality algorithms, Cl-Portfolio results in the fewest

number of memouts because our implementation delays building the costly data struc-

tures until they are needed. Among the cluster-minimality algorithms, it has, by far,

the most instances solved the fastest. Cl-PerTuple has somewhat better perfor-

mance than Cl-AllSol and we see that the portfolio chooses ‘PerTuple’ nearly twice

as often as ‘AllSol’.

Figure 6.5 is a cactus plot of the five algorithms, displaying the cumulative number

of instances completed over time. At nearly every runtime, Cl-Portfolio has the most

instance completions. Between 1,000 and 10,000 milliseconds, STR2’s number of

instance completions jumps ahead of those of the cluster-minimality algorithm, but

then quickly (i.e., for more difficult instances) falls behind.

Table 6.4 reports, per benchmark, the results using the dom/deg ordering heuris-

tic. The first row summarizes the results in the table (also reported in Table 6.3). The

first column indicates the benchmark, the number of instances included in the table

(i.e., instances solved by at least one algorithm), and the total number of instances in

103

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 10 100 1000 10000 100000 1x10
6

 1x10
7

C
o

m
p

le
te

d
 I

n
st

an
ce

s

Runtime (msec)

Cl-Portfolio

Cl-PerTuple

Cl-AllSol

Cl-Random

STR2

Figure 6.5: Instance completions over time with dom/deg

104

the benchmark. The next five columns report the results for a given algorithm: both

the runtime (in milliseconds) averaged over instances completed by at least one algo-

rithm and the number of instances completed by the given algorithm. When an an

algorithm does not complete an instance, the CPU time is treated as the time limit

(i.e., 7,200,000 ms). The last three columns report how often the portfolio selects

‘PerTuple’, ‘AllSol’, or ‘Neither’, respectively.

In many of the benchmarks, Cl-Portfolio uses some combination of PerTuple

and AllSol in order to outperform both Cl-PerTuple and Cl-AllSol. On most

of the benchmarks, the portfolio does not select ‘Neither’. However, in the cases

where it selects ‘Neither’, Cl-Portfolio usually outperforms all other algorithms (see

ehi-85, ehi-90, leighton-15, os-taillard-5, queensKnights, rand-2-23, rand-2-24, super-

jobShop-enddr1, super-os-taillard-4).

105

Table 6.4: Per-benchmark performance using dom/deg

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

Summary 2,274,935.0 884,289.6 999,397.0 1,061,008.4 765,517.2 56% 37% 7%

861/1066 623 779 774 761 791

aim-100 2,289,850.8 1,280,598.0 1,203,669.9 1,992,658.4 1,258,765.3 9% 91% 0%

24/24 18 20 21 18 20

aim-200 5,268,448.1 5,117,181.1 4,886,498.9 5,793,812.7 5,167,170.4 18% 74% 8%

24/24 8 7 8 5 7

BH-4-4 7,200,000.0 3,808.2 3,500,493.7 3,869.8 3,560.9 28% 72% 0%

10/10 - 10 10 10 10

bqwh-18-141 97,353.0 50,069.5 170,490.2 105,331.7 51,660.6 25% 75% 0%

100/100 100 100 100 100 100

composed-25-1-2 7,200,000.0 197.0 202.0 121.3 121.1 90% 10% 0%

10/10 - 10 10 10 10

composed-25-1-25 7,200,000.0 250.9 258.2 1,402.5 143.5 90% 10% 0%

10/10 - 10 10 10 10

composed-25-1-40 7,200,000.0 280.7 298.5 1,332.1 164.3 87% 13% 0%

10/10 - 10 10 10 10

composed-25-1-80 4,140,176.6 432.8 836.8 898.8 289.0 100% 0% 0%

10/10 5 10 10 10 10

composed-25-10-20 3,244,168.3 58,576.1 148,372.1 79,947.7 60,692.4 34% 66% 0%

10/10 6 10 10 10 10

composed-75-1-2 7,200,000.0 712.7 733.3 3,049.3 415.4 88% 12% 0%

10/10 - 10 10 10 10

106

Table 6.4: Per-benchmark performance using dom/deg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

composed-75-1-25 7,200,000.0 760.6 782.9 3,405.6 440.8 92% 8% 0%

10/10 - 10 10 10 10

composed-75-1-40 7,200,000.0 812.9 838.7 1,504.0 463.0 94% 6% 0%

10/10 - 10 10 10 10

composed-75-1-80 5,040,063.1 1,413.2 2,945.8 1,949.8 1,057.8 96% 4% 0%

10/10 3 10 10 10 10

cril 5,252,506.9 3,108,408.4 4,115,732.2 3,106,661.9 3,107,536.9 68% 32% 0%

7/8 2 4 3 4 4

dubois 1,580,785.7 1,593,133.9 1,573,624.5 2,462,762.2 1,965,018.6 0% 100% 0%

7/13 7 7 7 6 6

ehi-85 446,748.4 29,337.8 41,181.1 35,871.3 22,187.2 81% 0% 19%

100/100 100 100 100 100 100

ehi-90 976,702.8 31,621.1 45,320.0 40,051.3 23,717.2 80% 0% 20%

100/100 95 100 100 100 100

golombRulerArity4 249,900.7 249,418.1 249,401.3 249,376.0 249,377.0 63% 38% 0%

2/14 2 2 2 2 2

graceful 2,811,900.0 2,537,964.9 2,612,469.2 2,534,769.2 2,551,260.6 57% 43% 0%

3/4 2 2 2 2 2

full-insertion 2,488,182.9 2,604,259.8 2,632,382.1 3,152,287.3 2,410,508.3 30% 70% 0%

32/41 21 21 21 19 22

leighton-15 3,278,469.2 2,064,039.7 3,357,295.0 2,465,225.9 1,150,907.7 70% 7% 23%

9/26 5 7 5 6 8

107

Table 6.4: Per-benchmark performance using dom/deg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

mug 3,600,012.2 19,480.1 19,059.5 346,696.4 24,004.2 11% 89% 0%

8/8 4 8 8 8 8

sgb-book 1,672,291.7 436,830.9 726,704.7 1,340,712.8 435,278.1 83% 17% 0%

23/26 19 22 22 19 22

sgb-games 3,604,888.0 16,446.9 1,840,626.6 21,023.2 15,562.5 69% 31% 0%

4/4 2 4 3 4 4

sgb-queen 2,894,074.8 1,996,657.0 1,954,690.3 1,798,709.2 1,982,455.7 68% 14% 18%

15/50 9 11 12 12 11

haystacks 3,215,129.3 710,220.7 2,057,686.4 1,715,194.3 750,043.9 70% 30% 0%

7/51 4 7 5 6 7

jobShop-enddr1 808,161.5 2,025,407.3 579,259.0 1,634,787.8 1,091,202.1 36% 61% 3%

9/10 8 9 9 8 9

modifiedRenault 248,697.8 39,287.4 36,821.1 224,612.7 37,430.9 58% 42% 0%

50/50 49 50 50 49 50

os-taillard-5 3,715,048.7 5,003,526.2 4,043,962.7 4,819,209.8 3,444,165.4 38% 39% 23%

19/30 10 8 10 8 12

pigeons 256,218.6 193,237.3 422,270.0 313,310.9 202,913.2 81% 19% 0%

13/24 13 13 13 13 13

pseudo-aim 1,952,036.6 1,704,745.6 1,712,151.9 2,350,053.5 1,703,246.6 9% 91% 0%

48/48 39 37 37 33 37

QCP-10 178,137.2 58,158.1 87,559.5 56,489.4 62,848.9 17% 83% 0%

15/15 15 15 15 15 15

108

Table 6.4: Per-benchmark performance using dom/deg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

QCP-15 3,842,598.7 128,626.1 132,850.9 98,666.9 115,090.6 24% 71% 5%

15/15 8 15 15 15 15

QCP-20 7,200,000.0 2,273,913.0 2,351,278.5 1,138,250.2 2,158,952.1 42% 52% 6%

11/15 - 9 9 11 9

QCP-25 7,200,000.0 838,179.4 1,269,032.8 2,274,623.1 2,254,291.6 100% 0% 0%

4/15 - 4 4 3 3

queenAttacking 1,829,407.8 360,437.5 582,309.6 501,667.5 1,803,037.9 74% 14% 12%

4/10 3 4 4 4 4

queensKnights 1,543,653.4 1,518,278.8 1,743,128.7 1,654,649.1 1,517,909.0 67% 28% 5%

10/18 8 8 8 8 8

QWH-20 6,564,135.3 492,676.5 340,291.2 298,351.1 447,840.4 11% 85% 4%

10/10 1 10 10 10 10

QWH-25 7,200,000.0 7,200,000.0 5,130,443.6 4,774,416.0 7,200,000.0 - - -

2/10 - - 1 1 -

rand-2-23 432,574.9 446,742.5 1,713,566.1 1,492,744.4 379,067.9 93% 0% 7%

10/10 10 10 10 10 10

rand-2-24 956,969.7 859,555.3 5,101,956.2 3,689,564.9 720,362.5 90% 0% 10%

10/10 10 10 5 9 10

rlfapGraphsMod 4,201,029.1 462,767.4 945,847.3 524,672.7 449,657.1 46% 54% 0%

12/12 5 12 11 12 12

rlfapScens11 7,200,000.0 969,702.2 4,517,589.5 2,726,426.3 999,830.0 94% 4% 2%

8/12 - 7 3 5 7

109

Table 6.4: Per-benchmark performance using dom/deg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

rlfapScensMod 2,772,517.2 251,109.3 770,869.3 198,637.2 255,753.7 54% 46% 0%

13/13 8 13 12 13 13

super-jobShop-enddr1 4,810,078.1 5,252,276.5 3,720,746.0 7,200,000.0 3,988,823.9 76% 17% 7%

3/10 1 2 2 - 2

super-jobShop-enddr2 3,619,861.2 7,200,000.0 4,704,472.8 7,200,000.0 3,237,503.5 74% 18% 8%

2/6 1 - 1 - 2

super-os-taillard-4 1,623,196.1 2,907,544.3 1,286,475.3 2,028,325.5 1,202,340.0 36% 36% 27%

28/30 22 21 26 23 27

110

6.3.3 Cluster-Minimality Algorithms Using dom/wdeg

When studying high-level consistency, results are commonly reported only for dom/deg

to ensure results comparability. However, for the sake of completeness, we provide the

results also for dom/wdeg. In Table 6.5, for each of the cluster-minimality algorithms,

we list the benchmarks on which the algorithm performs best.

Table 6.5: Benchmarks where a given algorithm performs best (dom/wdeg)

Algorithm # best Benchmark

Cl-PerTuple 4 cril, pigeons, QCP-25, rlfapScens11

Cl-AllSol 1 mug

Cl-Random 3 QCP-20, QWH-20, QWH-25

Cl-Portfolio 13

BH-4-4, composed-25-1-2, composed-25-1-25,

composed-25-1-40, composed-75-1-2, composed-75-1-25,

composed-75-1-40, leighton-15, sgb-book, sgb-games,

haystacks, rand-2-23, rand-2-24

Table 6.6 shows that Cl-PerTuple outperforms all other in terms of instance

completions, solved backtrack-free, and with the fewest number of nodes visited.

However, Cl-Portfolio achieves comparable results in all these categories, and,

furthermore, is the fastest on a significantly larger number of instances than any

other algorithm including Cl-PerTuple. As a result, Cl-Portfolio ends up beating

all five tested algorithm in terms of average time.

In terms of average CPU time, the gap between Cl-PerTuple and Cl-AllSol

is significantly larger for dom/wdeg (Table 6.6) than for dom/deg (Table 6.3). Con-

sequently, Cl-Portfolio selects ‘PerTuple’ nearly three times as often as ‘AllSol’.

Figure 6.6 shows the cactus plot of the five algorithms using dom/wdeg. Though

Cl-PerTuple ends with one more completion than Cl-Portfolio, Cl-Portfolio achieves

as many as or more completions than Cl-PerTuple throughout most of the chart.

111

Table 6.6: Performance summary using dom/wdeg

Instances

Comp. by one: 196 Total: 299

Algorithm

C
o
m

p
le

te
d

T
im

e
o
u

t

M
e
m

o
u
t

B
T

-f
re

e

M
in

(#
N

V
)

F
a
st

e
st

Avg time
(ms)

STR2 169 115 15 16 15 44 1,252,525.9

Cl-PerTuple 190 78 31 139 54 22 513,501.6

Cl-AllSol 175 95 29 118 37 1 1,426,762.8

Cl-Random 183 67 49 127 36 35 971,294.9

Cl-Portfolio 189 89 21 135 46 93 502,754.6

Portfolio selection: 73%P 24%A 3%N

Table 6.7 reports the results per benchmark using the dom/wdeg ordering heuris-

tic. While the portfolio does not select ‘AllSol’ often, when it does, the selection

generally is advantageous. On the mug and QWH-20 benchmarks, Cl-AllSol out-

performs Cl-PerTuple and the portfolio chooses to use AllSol the majority of the

time. On the BH-4-4, composed, sgb-book, sgb-games, and haystacks benchmarks,

occasional use of AllSol allows it to outperform Cl-PerTuple.

112

 0

 50

 100

 150

 200

 1 10 100 1000 10000 100000 1x10
6

 1x10
7

C
o

m
p

le
te

d
 I

n
st

an
ce

s

Runtime (msec)

Cl-PerTuple

Cl-Portfolio

Cl-Random

Cl-AllSol

STR2

Figure 6.6: Instance completions over time with dom/wdeg

113

Table 6.7: Per-benchmark performance using dom/wdeg

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

Summary 1,252,525.9 513,501.6 1,426,762.8 971,294.9 502,754.6 73% 24% 3%

196/299 169 190 175 183 189

BH-4-4 70,069.1 3,804.9 3,921,972.9 3,898.0 3,537.8 28% 72% 0%

10/10 10 10 9 10 10

composed-25-1-2 167.1 196.9 202.2 122.0 121.5 90% 10% 0%

10/10 10 10 10 10 10

composed-25-1-25 213.8 251.1 259.0 1,434.1 144.1 90% 10% 0%

10/10 10 10 10 10 10

composed-25-1-40 244.2 281.3 299.3 1,392.0 165.2 87% 13% 0%

10/10 10 10 10 10 10

composed-75-1-2 471.9 714.3 735.0 3,097.8 417.1 88% 12% 0%

10/10 10 10 10 10 10

composed-75-1-25 586.7 761.8 784.6 3,565.3 442.7 92% 8% 0%

10/10 10 10 10 10 10

composed-75-1-40 634.1 814.8 840.4 1,501.6 464.6 94% 6% 0%

10/10 10 10 10 10 10

cril 2,765,996.6 625,532.0 1,726,567.6 630,008.0 675,353.3 44% 42% 14%

7/8 5 7 6 7 7

leighton-15 1,587,880.6 1,960,107.9 3,356,928.3 2,464,417.4 1,029,962.0 69% 7% 25%

9/26 8 7 5 6 8

mug 3,600,012.7 1,471,388.5 1,238,042.7 3,237,005.5 1,317,636.5 12% 88% 0%

8/8 4 7 7 5 7

114

Table 6.7: Per-benchmark performance using dom/wdeg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

sgb-book 537,648.5 437,689.8 741,300.6 658,572.3 436,777.0 82% 18% 0%

23/26 23 22 22 23 22

sgb-games 153,403.6 16,336.3 1,841,056.3 20,705.7 15,561.5 69% 31% 0%

4/4 4 4 3 4 4

haystacks 5,143,146.1 393,391.0 2,009,199.5 2,176,003.9 363,636.2 73% 27% 0%

7/51 2 7 6 5 7

pigeons 261,160.4 207,801.8 424,787.9 322,454.2 209,119.5 90% 10% 0%

13/24 13 13 13 13 13

QCP-20 4,181,471.6 1,384,722.1 2,082,329.8 1,016,116.7 1,116,712.2 41% 53% 6%

11/15 5 11 10 11 11

QCP-25 5,403,980.1 837,841.5 1,259,769.9 2,281,713.4 2,252,573.3 100% 0% 0%

4/15 1 4 4 3 3

QWH-20 947,171.9 476,163.4 342,075.3 295,832.8 404,047.6 12% 84% 4%

10/10 9 10 10 10 10

QWH-25 7,200,000.0 7,200,000.0 4,976,835.6 2,567,511.8 7,200,000.0 - - -

2/10 - - 1 2 -

rand-2-23 435,346.4 447,983.2 1,723,637.9 1,546,868.7 377,903.1 93% 0% 7%

10/10 10 10 10 10 10

rand-2-24 962,257.9 806,797.6 4,949,429.3 3,740,633.4 711,405.7 90% 0% 10%

10/10 10 10 6 9 10

rlfapScens11 3,060,212.7 113,393.7 4,517,665.8 2,726,426.6 993,615.6 94% 4% 2%

8/12 5 8 3 5 7

115

6.3.4 Discussion

Our results show that, on difficult benchmarks where high-level consistency is needed,

cluster-based minimality is warranted and solves problems otherwise unsolvable by

STR2. Our experiments show that using a portfolio to select between AllSol,

PerTuple, and neither is beneficial on many of these difficult benchmarks and out-

performs all other four tested algorithms. We see that Cl-PerTuple most often

outperforms Cl-AllSol than otherwise. Consequently, the portfolio selects PerTu-

ple more often than it selects AllSol. Perhaps more important than the decision to

select between PerTuple or AllSol is the decision of when to run neither. Indeed,

Cl-Portfolio is able to beat, on several benchmarks, each of STR2, Cl-PerTuple,

and Cl-AllSol by advantageously selecting ‘Neither’.

We note that the random classifier has surprisingly good results. We attribute

this strong performance to the use of the one-second cluster timeout: The detrimental

effect of a bad selection by the random classifier is minimized by halting execution

after one second. While initially introduced to mitigate poor performance, in fact,

this fixed timeout may, in fact, constitute a limitation of our approach. In future

work, one may want to investigate how to adaptively adjust the value of this timeout

as a function of the amount of filtering being achieved.

Summary

In this chapter, we introduced a portfolio strategy that operates dynamically, during

search, and locally, at the level of the clusters. We use such a portfolio to select

between executing PerTuple or AllSol or skipping the given cluster. We described

our procedure for training the classifier used in our portfolio and empirically evaluated

our approach on benchmark problems.

116

Chapter 7

Conclusions and Future Work

We conclude the thesis and highlight possible directions for future work.

7.1 Conclusions

Minimality is a powerful consistency property that, when enforced during search,

can yield large amounts of filtering, reduce thrashing, and allow us to solve difficult

problems. Such filtering power often comes at a substantial cost and, consequently,

minimality is rarely used in practice. Previous work demonstrated the promise of

minimality for lookahead when restricted to local subproblems as clusters of a tree

decomposition. Our research further explored this idea. We introduced three funda-

mentally new improvements to the AllSol and PerTuple algorithms:

1. Unmarked-first ordering heuristic to avoid redundant marking

2. Dangle identification to dynamically identify and remove tractable tree-substructures

from the problem

117

3. MaxDeg heuristic for minimal dual graph construction, which greatly improves

dangle identification performance.

These novel improvements resulted in an order of magnitude speed improvement for

both AllSol and PerTuple.

We addressed an obstacle that affects many HLC algorithm, including minimality:

the lack of a coherent weight-update strategy for the dom/wdeg ordering heuristic.

We proposed a framework for expressing weight-update strategies defined by three

orthogonal parameters. While our proposed parameter settings did not improve per-

formance, we hope that our framework can guide the design of alternative strategies

that effectively update the weights used in an ordering heuristic, for minimality, other

HLCs, and beyond.

We introduced an algorithm portfolio that operates dynamically, during search,

and locally, at the cluster level. When used for lookahead, it chooses, for each cluster,

whether to apply PerTuple or AllSol or to bypass the cluster. We empirically

established that this portfolio outperforms other alternatives, including STR2, on

difficult benchmarks.

7.2 Future Work

The research presented in this thesis opens up many avenues for further investigations:

1. The improvements made to the AllSol and PerTuple algorithms have only

been evaluated in the context of constraint minimality. While the use of the

minimal dual graph is specific to operating on the dual CSP, both dangle iden-

tification and the unmarked-first ordering heuristic could be applied to domain

minimality (i.e., inverse consistency including global inverse consistency).

118

2. Dangle identification can advantageously be exploited during the standard backtrack-

search procedure. Identifying dangling tree structures is a cheap operation and

would save search effort by steering away search from such non-problems.

3. The study of weight-update strategies for high-level consistencies remains an

open question and deserves further attention, whether by expanding the frame-

work proposed here or exploring new directions. Algorithms for enforcing

lightweight consistency properties such as GAC are successful, in part, because

their efforts are guided by a flexible and responsive ordering heuristic such as

dom/wdeg. HLC seems to miss on the benefits of dom/wdeg because the algo-

rithms lack a sensible weight-update strategy.

4. The cluster-level portfolio may be improved in numerous ways. A more sophisti-

cated classifier may yield more accurate classification (e.g., graph convolutional

networks for identifying important structural features). A classifier that pre-

dicts the expected filtering would call costly consistency algorithms only when

they are most beneficial. Additionally, the one-second runtime limit could be

dynamically adjusted to allow active filtering to continue.

5. AllSol and PerTuple may be advantageously combined into a hybrid al-

gorithm. AllSol could be used as the primary minimality algorithm with

PerTuple used selectively to attempt to mark or remove lingering unmarked

tuples.

6. Stampede, the solver on which we have implemented all algorithms discussed

in this thesis, supports generating visualization of the search and lookahead

procedures. It would be both useful and informative to develop visualizations

of our dangle identification and cluster-minimality algorithms.

119

7. On some benchmarks, cluster minimality is often too costly to execute at every

variable instantiation in search. We believe that a strategy, such as the one

currently being developed by Woodward et al., 1 which reactively calls a high-

level consistency only when it is most needed and as long as it is beneficial,

would allow us to exploit the filtering power of cluster minimality and of our

portfolio on every instance of any benchmark.

1publication forthcoming

120

Appendix A

Results of Experiments in

Section 6.3

This appendix contains the detailed results of the experiments discussed in Sec-

tion 6.3. These experiments are carried over from 195 different benchmark problems

with a total of 5,038 instances.

In Sections 6.3.2 and 6.3.3, we report only benchmarks that cannot advantageously

be solved by GAC but require high-level consistency. We exclude the benchmarks that

can be solved with GAC. The excluded benchmarks are as follows:

The 103 benchmarks best solved by STR2 and dom/deg are: aim-50, allInter-

valSeries, bddLarge, bddSmall, bqwh-15-106 glb, bqwh-15-106, bqwh-18-141 glb,

chessboardColoration, coloring, dag-half, dag-rand, domino, driver, fapp01,

frb30-15, frb35-17, frb40-19, frb45-21, frb50-23, geom, golombRulerArity3, hos,

k-insertion, leighton-25, leighton-5, myciel, register-fpsol, register-inithx, register-

mulsol, register-zeroin, school, sgb-miles, hanoi, jnhSat, jnhUnsat, jobShop-

e0ddr1, jobShop-e0ddr2, jobShop-enddr2, jobShop-ewddr2, knights, langford,

langford2, langford3, langford4, lexVg, marc, nengfa, ogdVg, os-taillard-4, os-

121

taillard-7, pret, pseudo-garden, pseudo-jnh, pseudo-par, pseudo-primesDimacs,

pseudo-radar, pseudo-ssa, pseudo-uclid, queens, QWH-10, QWH-15, ramsey3,

ramsey4, rand-10-20-10, rand-2-25, rand-2-26, rand-2-27, rand-2-30-15-fcd, rand-

2-30-15, rand-2-40-19-fcd, rand-2-40-19, rand-2-50-23-fcd, rand-2-50-23, rand-3-

20-20-fcd, rand-3-20-20, rand-3-24-24-fcd, rand-3-24-24, rand-3-28-28-fcd, rand-

3-28-28, rand-8-20-5, renault, rlfapGraphs, rlfapScens, schurrLemma, ssa, subs,

super-jobShop-e0ddr1, super-jobShop-ewddr2, super-os-taillard-5, super-queens,

tightness0.1, tightness0.2, tightness0.35, tightness0.5, tightness0.65, tightness0.8,

tightness0.9, travellingSalesman-20, travellingSalesman-25, ukPuzzle, ukVg, varDi-

macs, wordsVg.

The 129 benchmarks best solved by STR2 and dom/wdeg are: aim-100, aim-

200, aim-50, allIntervalSeries, bddLarge, bddSmall, bqwh-15-106 glb, bqwh-15-

106, bqwh-18-141 glb, bqwh-18-141, chessboardColoration, coloring, composed-

25-1-80, composed-25-10-20, composed-75-1-80, dag-half, dag-rand, domino,

driver, dubois, ehi-85, ehi-90, fapp01, frb30-15, frb35-17, frb40-19, frb45-21,

frb50-23, geom, golombRulerArity3, golombRulerArity4, graceful, hos, full-

insertion, k-insertion, leighton-25, leighton-5, myciel, register-fpsol, register-

inithx, register-mulsol, register-zeroin, school, sgb-miles, sgb-queen, hanoi, jnhSat,

jnhUnsat, jobShop-e0ddr1, jobShop-e0ddr2, jobShop-enddr1, jobShop-enddr2,

jobShop-ewddr2, knights, langford, langford2, langford3, langford4, lexVg, marc,

modifiedRenault, nengfa, ogdVg, os-taillard-4, os-taillard-5, os-taillard-7, pret,

pseudo-aim, pseudo-garden, pseudo-jnh, pseudo-par, pseudo-primesDimacs, pseudo-

radar, pseudo-ssa, pseudo-uclid, QCP-10, QCP-15, queenAttacking, queens,

queensKnights, QWH-10, QWH-15, ramsey3, ramsey4, rand-10-20-10, rand-

2-25, rand-2-26, rand-2-27, rand-2-30-15-fcd, rand-2-30-15, rand-2-40-19-fcd,

122

rand-2-40-19, rand-2-50-23-fcd, rand-2-50-23, rand-3-20-20-fcd, rand-3-20-20,

rand-3-24-24-fcd, rand-3-24-24, rand-3-28-28-fcd, rand-3-28-28, rand-8-20-5, re-

nault, rlfapGraphs, rlfapGraphsMod, rlfapScens, rlfapScensMod, schurrLemma,

ssa, subs, super-jobShop-e0ddr1, super-jobShop-enddr1, super-jobShop-enddr2,

super-jobShop-ewddr2, super-os-taillard-4, super-os-taillard-5, super-queens, tight-

ness0.1, tightness0.2, tightness0.35, tightness0.5, tightness0.65, tightness0.8,

tightness0.9, travellingSalesman-20, travellingSalesman-25, ukPuzzle, ukVg, varDi-

macs, wordsVg.

Table A.1 reports a summary of the results of the five algorithms and two ordering

heuristics over the 195 benchmarks tested.

Table A.1: Results summary for STR2 and cluster-minimality algorithms

Algorithm Average time (ms) Avg NV

C
o
m

p
le

te

T
im

e
o
u
t

M
e
m

o
u

t

by one by all by all

STR2 3,059 1,379 600 892,092.1 123,222.6 1,117,820.8

Cl-PerTuple 2,623 1,523 892 2,037,417.5 487,988.3 68,905.3

Cl-AllSol 2,629 1,536 873 2,087,294.5 509,396.7 68,969.4

Cl-Portfolio 2,631 1,636 771 2,082,403.0 566,410.7 69,991.6d
om

/d
eg

Cl-Random 2,615 1,446 977 2,068,741.9 458,112.4 128,045.6

STR2 3,311 1,127 600 303,418.6 43,379.7 398,969.1

Cl-PerTuple 2,676 1,467 895 1,929,379.6 485,475.7 67,779.9

Cl-AllSol 2,696 1,467 875 1,964,438.7 507,647.0 67,834.6

Cl-Portfolio 2,690 1,576 772 1,955,051.3 549,490.9 68,768.1

d
om

/w
d
eg

Cl-Random 2,687 1,379 972 1,937,688.5 464,299.9 147,659.9

The first column indicates the ordering heuristic followed by the algorithm. For

each ordering and algorithm, we report:

123

1. The number of instances completed

2. The number of instances terminated with a timeout

3. The number of instances terminated with a memout

4. The CPU time (in milliseconds) averaged over instances completed by at least

one algorithm. In the case that an algorithm does not complete an instance,

the CPU time is treated as the time limit (i.e., 7,200,000 ms)

5. The CPU time (in milliseconds) averaged over instances completed by all algo-

rithms. Thus, no timeouts/memouts are included in this average

6. The average number (averaged over instances completed by all algorithms) of

nodes visited by the search

In each of the last six columns, we typeset the best entry for each ordering heuristic

in boldface.

Unsurprisingly, STR2 substantially benefits from the dom/wdeg ordering heuristic

whereas the cluster-minimality algorithms see consistent but relatively small improve-

ment. Also, all cluster-minimality approaches result in a significantly larger number

of memouts. This fact is due to the high-memory requirements of the data structures

needed for AllSol and PerTuple as well as for weight updates within the search

executed by these two algorithms.

Among the four minimality algorithms, Cl-Portfolio results in the fewest number

of memouts because our implementation delays building the costly data structures

until they are needed. Under dom/deg, Cl-Portfolio solves slight more instances than

the other three algorithms. Under dom/wdeg, Cl-AllSol outperforms the other

three.

124

Table A.2 reports results using the dom/deg ordering heuristic. Table A.3 reports

results using dom/wdeg. In both tables, the first column indicates the benchmark,

the number of instances included, and the total number of instances. The next five

columns report the results for a given algorithm: both the runtime (in milliseconds)

averaged over instances completed by at least one algorithm and the number of in-

stances completed by the given algorithm. In the case that an algorithm does not

complete an instance, the CPU time is treated as the time limit (i.e., 7,200,000 ms).

Finally, the last three columns report how often the portfolio selected ‘PerTuple’,

‘AllSol’, or ‘Neither’, respectively.

125

Table A.2: STR2 and cluster-minimality algorithms using dom/deg

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

aim-100 2,289,850.8 1,280,598.0 1,203,669.9 1,992,658.4 1,258,765.3 9% 91% 0%

24/24 18 20 21 18 20

aim-200 5,268,448.1 5,117,181.1 4,886,498.9 5,793,812.7 5,167,170.4 18% 74% 8%

24/24 8 7 8 5 7

aim-50 308.4 502.4 490.6 754.1 517.8 3% 97% 0%

24/24 24 24 24 24 24

allIntervalSeries 193,843.1 1,664,904.8 1,335,925.8 1,654,643.4 1,513,718.4 43% 55% 2%

18/25 18 14 15 14 15

bddLarge 159,319.5 7,200,000.0 7,200,000.0 7,200,000.0 7,200,000.0 - - -

35/35 35 - - - -

bddSmall 58,656.0 7,200,000.0 7,200,000.0 7,200,000.0 7,200,000.0 - - -

35/35 35 - - - -

BH-4-13 - - - - - - - -

0/7 - - - - -

BH-4-4 7,200,000.0 3,808.2 3,500,493.7 3,869.8 3,560.9 28% 72% 0%

10/10 - 10 10 10 10

BH-4-7 - - - - - - - -

0/20 - - - - -

bqwh-15-106 glb 24.0 447.6 482.7 418.9 496.9 3% 97% 0%

100/100 100 100 100 100 100

bqwh-15-106 1,613.8 6,092.7 25,180.1 15,292.3 7,300.0 13% 87% 0%

100/100 100 100 100 100 100

126

Table A.2: STR2 and cluster-minimality algorithms using dom/deg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

bqwh-18-141 glb 44.4 2,410.5 3,606.3 2,467.0 3,600.8 2% 98% 0%

100/100 100 100 100 100 100

bqwh-18-141 97,353.0 50,069.5 170,490.2 105,331.7 51,660.6 25% 75% 0%

100/100 100 100 100 100 100

chessboardColoration 2,344,170.4 2,621,827.0 2,652,924.1 2,658,117.8 3,678,644.0 70% 6% 25%

14/19 10 9 9 9 7

coloring 5,997.5 298,088.6 228,477.1 235,394.5 188,981.4 57% 42% 1%

22/22 22 22 22 22 22

composed-25-1-2 7,200,000.0 197.0 202.0 121.3 121.1 90% 10% 0%

10/10 - 10 10 10 10

composed-25-1-25 7,200,000.0 250.9 258.2 1,402.5 143.5 90% 10% 0%

10/10 - 10 10 10 10

composed-25-1-40 7,200,000.0 280.7 298.5 1,332.1 164.3 87% 13% 0%

10/10 - 10 10 10 10

composed-25-1-80 4,140,176.6 432.8 836.8 898.8 289.0 100% 0% 0%

10/10 5 10 10 10 10

composed-25-10-20 3,244,168.3 58,576.1 148,372.1 79,947.7 60,692.4 34% 66% 0%

10/10 6 10 10 10 10

composed-75-1-2 7,200,000.0 712.7 733.3 3,049.3 415.4 88% 12% 0%

10/10 - 10 10 10 10

composed-75-1-25 7,200,000.0 760.6 782.9 3,405.6 440.8 92% 8% 0%

10/10 - 10 10 10 10

127

Table A.2: STR2 and cluster-minimality algorithms using dom/deg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

composed-75-1-40 7,200,000.0 812.9 838.7 1,504.0 463.0 94% 6% 0%

10/10 - 10 10 10 10

composed-75-1-80 5,040,063.1 1,413.2 2,945.8 1,949.8 1,057.8 96% 4% 0%

10/10 3 10 10 10 10

cril 5,252,506.9 3,108,408.4 4,115,732.2 3,106,661.9 3,107,536.9 68% 32% 0%

7/8 2 4 3 4 4

dag-half 2,340,958.9 6,283,935.0 5,978,589.0 6,275,038.8 6,270,043.9 96% 4% 1%

14/25 14 2 3 2 2

dag-rand 84,898.6 948,651.7 983,687.3 958,896.8 994,743.0 0% 67% 33%

25/25 25 22 22 22 22

domino 289,014.7 293,294.6 293,256.4 293,557.1 293,631.2 0% 100% 0%

22/23 22 22 22 22 22

driver 80,075.0 3,466,730.4 3,524,246.7 4,261,936.3 3,468,135.8 40% 53% 7%

7/7 7 4 4 3 4

dubois 1,580,785.7 1,593,133.9 1,573,624.5 2,462,762.2 1,965,018.6 0% 100% 0%

7/13 7 7 7 6 6

ehi-85 446,748.4 29,337.8 41,181.1 35,871.3 22,187.2 81% 0% 19%

100/100 100 100 100 100 100

ehi-90 976,702.8 31,621.1 45,320.0 40,051.3 23,717.2 80% 0% 20%

100/100 95 100 100 100 100

fapp01 5,075,865.9 6,297,561.9 6,047,183.6 5,998,916.8 6,208,830.1 32% 66% 2%

11/11 10 5 9 8 7

128

Table A.2: STR2 and cluster-minimality algorithms using dom/deg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

fapp02 - - - - - - - -

0/11 - - - - -

fapp03 - - - - - - - -

0/11 - - - - -

fapp04 - - - - - - - -

0/11 - - - - -

fapp05 - - - - - - - -

0/11 - - - - -

fapp06 - - - - - - - -

0/11 - - - - -

fapp07 - - - - - - - -

0/11 - - - - -

fapp08 - - - - - - - -

0/11 - - - - -

fapp09 - - - - - - - -

0/11 - - - - -

fapp10 - - - - - - - -

0/11 - - - - -

fapp11 - - - - - - - -

0/11 - - - - -

fapp12 - - - - - - - -

0/11 - - - - -

129

Table A.2: STR2 and cluster-minimality algorithms using dom/deg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

fapp13 - - - - - - - -

0/11 - - - - -

fapp14 - - - - - - - -

0/11 - - - - -

fapp15 - - - - - - - -

0/11 - - - - -

fapp16 - - - - - - - -

0/11 - - - - -

fapp17 - - - - - - - -

0/11 - - - - -

fapp18 - - - - - - - -

0/11 - - - - -

fapp19 - - - - - - - -

0/11 - - - - -

fapp20 - - - - - - - -

0/11 - - - - -

fapp21 - - - - - - - -

0/11 - - - - -

fapp23 - - - - - - - -

0/11 - - - - -

fapp24 - - - - - - - -

0/11 - - - - -

130

Table A.2: STR2 and cluster-minimality algorithms using dom/deg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

fapp25 - - - - - - - -

0/11 - - - - -

fapp26 - - - - - - - -

0/11 - - - - -

fapp27 - - - - - - - -

0/11 - - - - -

fapp31 - - - - - - - -

0/11 - - - - -

fapp33 - - - - - - - -

0/11 - - - - -

fapp36 - - - - - - - -

0/11 - - - - -

fapp39 - - - - - - - -

0/10 - - - - -

frb30-15 4,002.2 205,937.1 246,811.5 267,993.5 204,662.7 84% 16% 0%

10/10 10 10 10 10 10

frb35-17 49,829.7 2,713,569.8 2,836,334.5 2,804,302.6 2,752,658.9 89% 11% 0%

10/10 10 8 10 8 8

frb40-19 384,871.0 7,200,000.0 7,200,000.0 7,200,000.0 7,200,000.0 - - -

10/10 10 - - - -

frb45-21 3,983,057.6 7,200,000.0 7,200,000.0 7,200,000.0 7,200,000.0 - - -

10/10 8 - - - -

131

Table A.2: STR2 and cluster-minimality algorithms using dom/deg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

frb50-23 1,200,655.9 7,200,000.0 7,200,000.0 7,200,000.0 7,200,000.0 - - -

2/10 2 - - - -

frb53-24 - - - - - - - -

0/10 - - - - -

frb56-25 - - - - - - - -

0/10 - - - - -

frb59-26 - - - - - - - -

0/10 - - - - -

geom 93,553.4 809,000.8 1,054,461.5 952,894.9 805,351.7 66% 34% 0%

100/100 100 93 89 90 93

golombRulerArity3 2,648,761.6 3,298,311.1 3,694,182.7 3,525,433.3 3,561,831.0 71% 11% 18%

9/14 6 5 5 5 5

golombRulerArity4 249,900.7 249,418.1 249,401.3 249,376.0 249,377.0 63% 38% 0%

2/14 2 2 2 2 2

graceful 2,811,900.0 2,537,964.9 2,612,469.2 2,534,769.2 2,551,260.6 57% 43% 0%

3/4 2 2 2 2 2

hos 3,050,276.2 3,192,506.4 3,549,763.5 3,319,302.6 3,185,207.9 51% 48% 0%

12/14 7 7 7 7 7

full-insertion 2,488,182.9 2,604,259.8 2,632,382.1 3,152,287.3 2,410,508.3 30% 70% 0%

32/41 21 21 21 19 22

k-insertion 527,444.6 1,184,167.4 1,364,132.0 1,185,267.8 1,149,488.0 5% 95% 0%

17/33 16 15 15 15 15

132

Table A.2: STR2 and cluster-minimality algorithms using dom/deg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

leighton-15 3,278,469.2 2,064,039.7 3,357,295.0 2,465,225.9 1,150,907.7 70% 7% 23%

9/26 5 7 5 6 8

leighton-25 18,185.2 2,580,024.7 2,580,463.2 2,454,850.5 2,454,817.9 96% 4% 0%

6/31 6 4 4 4 4

leighton-5 7,913.8 1,972,143.0 720,398.9 2,062,703.4 1,892,885.5 85% 10% 5%

8/8 8 6 8 6 6

mug 3,600,012.2 19,480.1 19,059.5 346,696.4 24,004.2 11% 89% 0%

8/8 4 8 8 8 8

myciel 268,654.8 1,696,739.7 1,440,433.3 1,417,127.9 1,415,336.1 31% 68% 1%

13/16 13 10 11 11 11

register-fpsol 43,380.7 3,638,391.6 3,638,802.7 3,614,225.3 3,614,119.2 67% 0% 33%

6/37 6 3 3 3 3

register-inithx 62,083.5 7,200,000.0 7,200,000.0 3,630,203.2 3,630,224.2 100% 0% 0%

6/32 6 - - 3 3

register-mulsol 9,896.3 3,208,585.0 2,351,666.8 1,637,574.2 1,465,719.6 68% 5% 27%

9/49 9 5 7 8 8

register-zeroin 9,397.9 3,609,961.7 3,610,109.0 3,602,821.1 3,602,754.9 75% 0% 25%

6/31 6 3 3 3 3

school 28,565.9 7,200,000.0 7,200,000.0 7,200,000.0 7,200,000.0 - - -

3/8 3 - - - -

sgb-book 1,672,291.7 436,830.9 726,704.7 1,340,712.8 435,278.1 83% 17% 0%

23/26 19 22 22 19 22

133

Table A.2: STR2 and cluster-minimality algorithms using dom/deg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

sgb-games 3,604,888.0 16,446.9 1,840,626.6 21,023.2 15,562.5 69% 31% 0%

4/4 2 4 3 4 4

sgb-miles 666,341.5 1,820,655.1 1,886,009.0 2,123,445.9 1,199,251.6 72% 14% 14%

11/42 10 9 9 8 10

sgb-queen 2,894,074.8 1,996,657.0 1,954,690.3 1,798,709.2 1,982,455.7 68% 14% 18%

15/50 9 11 12 12 11

hanoi 484.5 1,320.3 1,329.0 1,331.2 1,332.2 0% 100% 0%

5/5 5 5 5 5 5

haystacks 3,215,129.3 710,220.7 2,057,686.4 1,715,194.3 750,043.9 70% 30% 0%

7/51 4 7 5 6 7

jnhSat 5,876.8 494,488.9 544,997.1 518,512.0 1,310,073.7 22% 6% 73%

16/16 16 16 16 16 14

jnhUnsat 2,615.8 307,549.7 307,827.2 325,472.8 656,495.8 10% 0% 90%

34/34 34 34 34 34 33

jobShop-e0ddr1 1,446,656.6 2,783,994.4 1,864,011.8 2,053,703.7 2,363,417.3 35% 63% 3%

5/10 4 4 4 4 4

jobShop-e0ddr2 11,150.1 2,746,535.9 637,888.8 1,092,855.2 975,372.5 34% 62% 4%

4/10 4 4 4 4 4

jobShop-enddr1 808,161.5 2,025,407.3 579,259.0 1,634,787.8 1,091,202.1 36% 61% 3%

9/10 8 9 9 8 9

jobShop-enddr2 12,367.4 2,904,340.5 572,973.4 1,202,031.3 791,105.0 32% 64% 4%

3/6 3 3 3 3 3

134

Table A.2: STR2 and cluster-minimality algorithms using dom/deg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

jobShop-ewddr2 13,039.5 2,982,751.7 620,478.1 1,283,249.2 1,006,527.9 30% 65% 4%

10/10 10 10 10 10 10

js-taillard-15 - - - - - - - -

0/30 - - - - -

knights 217,974.4 345,568.3 326,801.2 344,146.0 327,687.6 20% 40% 40%

10/19 10 10 10 10 10

langford 23,110.9 583,670.8 211,366.1 379,465.4 553,630.7 61% 25% 14%

4/4 4 4 4 4 4

langford2 5,876.9 46,581.6 48,229.3 47,199.5 42,108.0 46% 31% 23%

16/24 16 16 16 16 16

langford3 174,421.0 2,476,237.0 1,813,865.4 2,105,588.0 2,285,935.5 85% 0% 15%

15/23 15 10 12 12 11

langford4 142,819.5 1,511,658.9 1,409,684.2 1,465,053.7 1,478,167.2 42% 0% 58%

13/24 13 11 11 11 11

lexVg 25,736.4 1,149,903.2 1,167,100.9 1,070,635.8 1,153,293.0 1% 99% 0%

63/63 63 57 56 57 56

marc 47,936.2 187,704.5 191,228.2 187,725.1 185,283.3 0% 50% 50%

10/10 10 10 10 10 10

modifiedRenault 248,697.8 39,287.4 36,821.1 224,612.7 37,430.9 58% 42% 0%

50/50 49 50 50 49 50

nengfa 2,975,942.6 4,445,915.8 4,460,109.6 4,441,261.6 4,445,499.5 34% 60% 5%

5/10 3 2 2 2 2

135

Table A.2: STR2 and cluster-minimality algorithms using dom/deg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

ogdVg 600,164.9 2,251,092.4 2,069,489.7 2,225,340.1 1,901,566.9 12% 88% 0%

43/65 42 32 32 31 33

os-gp - - - - - - - -

0/19 - - - - -

os-taillard-10 - - - - - - - -

0/30 - - - - -

os-taillard-15 - - - - - - - -

0/30 - - - - -

os-taillard-4 518,870.4 844,506.8 1,121,046.1 1,019,376.7 888,456.7 27% 70% 3%

30/30 29 29 27 28 27

os-taillard-5 3,715,048.7 5,003,526.2 4,043,962.7 4,819,209.8 3,444,165.4 38% 39% 23%

19/30 10 8 10 8 12

os-taillard-7 6,202,651.4 7,200,000.0 7,200,000.0 7,200,000.0 7,200,000.0 - - -

7/30 1 - - - -

pigeons 256,218.6 193,237.3 422,270.0 313,310.9 202,913.2 81% 19% 0%

13/24 13 13 13 13 13

pret 95,181.5 176,557.2 175,124.3 459,921.1 234,400.3 0% 100% 0%

4/8 4 4 4 4 4

pseudo-aim 1,952,036.6 1,704,745.6 1,712,151.9 2,350,053.5 1,703,246.6 9% 91% 0%

48/48 39 37 37 33 37

pseudo-garden 18.3 637.6 900.9 651.0 844.4 15% 85% 0%

6/7 6 6 6 6 6

136

Table A.2: STR2 and cluster-minimality algorithms using dom/deg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

pseudo-jnh 13,440.2 3,031,271.8 5,060,113.1 3,173,600.5 3,513,946.8 59% 7% 34%

16/16 16 11 7 11 10

pseudo-par 36,394.8 1,622,947.0 1,584,531.9 2,144,914.6 1,616,480.8 0% 100% 0%

20/30 20 17 17 15 17

pseudo-primesDimacs 4,933,882.5 7,200,000.0 7,200,000.0 7,200,000.0 7,200,000.0 - - -

3/11 1 - - - -

pseudo-radar 13,600.1 3,777,221.9 3,640,546.5 3,699,008.1 3,640,381.1 0% 100% 0%

6/12 6 3 3 3 3

pseudo-ssa 3,337,234.1 4,310,300.7 4,311,406.8 5,148,880.0 4,368,284.1 0% 100% 0%

7/8 4 3 3 2 3

pseudo-uclid 4,974,473.5 4,976,152.8 4,975,768.3 4,976,294.4 4,975,803.4 0% 100% 0%

9/36 3 3 3 3 3

QCP-10 178,137.2 58,158.1 87,559.5 56,489.4 62,848.9 17% 83% 0%

15/15 15 15 15 15 15

QCP-15 3,842,598.7 128,626.1 132,850.9 98,666.9 115,090.6 24% 71% 5%

15/15 8 15 15 15 15

QCP-20 7,200,000.0 2,273,913.0 2,351,278.5 1,138,250.2 2,158,952.1 42% 52% 6%

11/15 - 9 9 11 9

QCP-25 7,200,000.0 838,179.4 1,269,032.8 2,274,623.1 2,254,291.6 100% 0% 0%

4/15 - 4 4 3 3

queenAttacking 1,829,407.8 360,437.5 582,309.6 501,667.5 1,803,037.9 74% 14% 12%

4/10 3 4 4 4 4

137

Table A.2: STR2 and cluster-minimality algorithms using dom/deg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

queens 25,551.1 780,536.3 774,079.8 780,098.7 790,150.2 49% 30% 22%

10/14 10 9 9 9 9

queensKnights 1,543,653.4 1,518,278.8 1,743,128.7 1,654,649.1 1,517,909.0 67% 28% 5%

10/18 8 8 8 8 8

QWH-10 214.7 8,115.8 9,188.2 7,803.3 7,932.2 9% 91% 0%

10/10 10 10 10 10 10

QWH-15 16,322.7 69,833.0 46,425.8 46,843.8 60,288.5 6% 92% 1%

10/10 10 10 10 10 10

QWH-20 6,564,135.3 492,676.5 340,291.2 298,351.1 447,840.4 11% 85% 4%

10/10 1 10 10 10 10

QWH-25 7,200,000.0 7,200,000.0 5,130,443.6 4,774,416.0 7,200,000.0 - - -

2/10 - - 1 1 -

radar-8-30-3-0 - - - - - - - -

0/50 - - - - -

radar-9-28-4-2 - - - - - - - -

0/50 - - - - -

ramsey3 36.7 42,727.8 44,363.1 41,932.7 41,753.1 48% 52% 0%

2/8 2 2 2 2 2

ramsey4 1,022.5 717,853.6 803,870.2 638,556.1 331,441.7 43% 7% 50%

1/8 1 1 1 1 1

rand-10-20-10 1,048.0 2,572.9 2,559.0 2,559.1 2,558.8 0% 100% 0%

20/20 20 20 20 20 20

138

Table A.2: STR2 and cluster-minimality algorithms using dom/deg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

rand-2-23 432,574.9 446,742.5 1,713,566.1 1,492,744.4 379,067.9 93% 0% 7%

10/10 10 10 10 10 10

rand-2-24 956,969.7 859,555.3 5,101,956.2 3,689,564.9 720,362.5 90% 0% 10%

10/10 10 10 5 9 10

rand-2-25 1,938,422.0 2,841,952.8 5,701,803.2 5,486,425.0 2,490,051.0 87% 0% 13%

10/10 10 8 3 4 10

rand-2-26 3,400,379.9 4,014,201.3 7,200,000.0 7,200,000.0 7,200,000.0 - - -

4/10 4 3 - - -

rand-2-27 4,707,973.5 7,200,000.0 7,200,000.0 7,200,000.0 7,200,000.0 - - -

3/10 3 - - - -

rand-2-30-15-fcd 5,092.2 323,763.6 319,184.2 328,990.1 329,547.4 81% 19% 0%

50/50 50 50 50 50 50

rand-2-30-15 9,286.0 481,840.6 522,216.3 496,074.4 489,957.3 86% 14% 0%

50/50 50 50 50 50 50

rand-2-40-19-fcd 621,999.7 6,673,366.0 6,754,612.9 6,700,324.3 6,741,012.7 87% 13% 0%

50/50 50 5 5 5 4

rand-2-40-19 1,261,624.7 7,120,509.7 7,127,045.1 7,126,287.6 7,120,259.5 90% 10% 0%

50/50 50 1 1 1 1

rand-2-50-23-fcd 5,023,877.8 7,200,000.0 7,200,000.0 7,200,000.0 7,200,000.0 - - -

8/50 5 - - - -

rand-2-50-23 5,355,773.9 7,200,000.0 7,200,000.0 7,200,000.0 7,200,000.0 - - -

3/50 2 - - - -

139

Table A.2: STR2 and cluster-minimality algorithms using dom/deg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

rand-3-20-20-fcd 398,264.0 2,546,831.1 1,270,012.7 1,813,836.5 2,272,902.5 58% 42% 0%

50/50 50 43 49 47 44

rand-3-20-20 771,296.8 3,832,339.0 2,251,962.2 3,113,540.5 3,532,630.5 55% 45% 0%

50/50 49 35 47 41 37

rand-3-24-24-fcd 3,167,626.0 6,735,718.7 6,341,867.9 6,418,268.2 6,568,359.2 71% 29% 0%

22/50 20 2 4 4 4

rand-3-24-24 4,242,602.0 7,200,000.0 6,711,726.1 7,020,341.3 7,200,000.0 - - -

10/50 9 - 2 1 -

rand-3-28-28-fcd 1,623,802.1 7,200,000.0 7,200,000.0 7,200,000.0 7,200,000.0 - - -

2/50 2 - - - -

rand-3-28-28 1,243,947.5 7,200,000.0 7,200,000.0 7,200,000.0 7,200,000.0 - - -

1/50 1 - - - -

rand-8-20-5 106,144.3 460,707.5 433,656.6 534,658.7 308,758.8 40% 54% 6%

20/20 20 20 20 20 20

renault 962.4 35,296.2 19,433.3 32,329.4 21,900.2 46% 54% 0%

2/2 2 2 2 2 2

rlfapGraphs 522,872.3 1,791,870.3 1,612,793.4 1,715,885.0 1,788,760.0 24% 76% 0%

14/14 13 13 14 12 13

rlfapGraphsMod 4,201,029.1 462,767.4 945,847.3 524,672.7 449,657.1 46% 54% 0%

12/12 5 12 11 12 12

rlfapScens11 7,200,000.0 969,702.2 4,517,589.5 2,726,426.3 999,830.0 94% 4% 2%

8/12 - 7 3 5 7

140

Table A.2: STR2 and cluster-minimality algorithms using dom/deg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

rlfapScens 29,552.1 489,193.9 425,673.2 329,036.9 501,243.8 30% 69% 1%

11/11 11 11 11 11 11

rlfapScensMod 2,772,517.2 251,109.3 770,869.3 198,637.2 255,753.7 54% 46% 0%

13/13 8 13 12 13 13

schurrLemma 275,604.5 1,991,058.5 2,082,901.8 2,268,356.2 2,416,063.5 81% 5% 14%

9/10 9 7 7 7 7

ssa 1,029,518.4 1,032,751.8 1,032,727.3 1,034,173.1 1,034,356.6 6% 94% 0%

7/8 6 6 6 6 6

subs 1,419.8 3,012.6 3,234.8 2,861.4 2,877.3 52% 15% 33%

9/9 9 9 9 9 9

super-jobShop-e0ddr1 2,418,659.3 6,117,837.1 3,679,554.2 7,200,000.0 3,685,068.2 75% 16% 9%

3/10 2 1 2 - 2

super-jobShop-e0ddr2 - - - - - - - -

0/10 - - - - -

super-jobShop-enddr1 4,810,078.1 5,252,276.5 3,720,746.0 7,200,000.0 3,988,823.9 76% 17% 7%

3/10 1 2 2 - 2

super-jobShop-enddr2 3,619,861.2 7,200,000.0 4,704,472.8 7,200,000.0 3,237,503.5 74% 18% 8%

2/6 1 - 1 - 2

super-jobShop-ewddr2 43,841.9 7,200,000.0 5,484,080.6 7,200,000.0 2,361,430.1 71% 22% 8%

6/9 6 - 2 - 6

super-js-taillard-15 - - - - - - - -

0/25 - - - - -

141

Table A.2: STR2 and cluster-minimality algorithms using dom/deg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

super-os-taillard-10 - - - - - - - -

0/30 - - - - -

super-os-taillard-15 - - - - - - - -

0/30 - - - - -

super-os-taillard-4 1,623,196.1 2,907,544.3 1,286,475.3 2,028,325.5 1,202,340.0 36% 36% 27%

28/30 22 21 26 23 27

super-os-taillard-5 3,450,568.6 7,200,000.0 5,651,985.3 6,035,238.4 3,531,152.5 48% 20% 32%

8/28 5 - 2 3 7

super-os-taillard-7 - - - - - - - -

0/30 - - - - -

super-queens 530,363.1 1,442,133.0 1,479,454.8 1,444,328.8 1,442,571.2 100% 0% 0%

5/14 5 4 4 4 4

tightness0.1 76,313.7 655,965.5 1,124,358.3 800,347.1 4,324,708.2 14% 0% 86%

100/100 100 100 100 100 87

tightness0.2 84,550.6 4,893,936.8 5,737,126.2 5,125,682.9 5,003,628.5 95% 5% 0%

100/100 100 46 39 48 43

tightness0.35 76,661.5 5,361,446.1 5,360,711.4 5,474,983.9 5,441,963.9 64% 36% 0%

100/100 100 42 51 42 39

tightness0.5 128,389.3 5,576,751.0 5,938,348.6 5,814,471.1 5,732,698.7 42% 58% 0%

100/100 100 40 36 36 37

tightness0.65 126,396.1 3,037,537.2 3,463,681.1 2,986,661.7 3,162,833.6 35% 65% 0%

100/100 100 84 77 84 81

142

Table A.2: STR2 and cluster-minimality algorithms using dom/deg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

tightness0.8 199,408.2 1,390,618.2 1,560,327.1 1,257,908.2 1,380,876.6 40% 60% 0%

100/100 100 97 94 97 97

tightness0.9 277,714.9 820,339.6 896,032.2 791,656.8 813,590.9 41% 59% 0%

100/100 99 97 95 98 96

travellingSalesman-20 34,316.3 1,949,023.0 1,870,585.5 1,593,791.7 1,918,282.5 31% 69% 0%

15/15 15 12 13 13 12

travellingSalesman-25 278,859.6 4,795,258.4 4,863,280.3 4,688,381.9 4,776,402.6 32% 68% 0%

15/15 15 6 6 6 6

ukPuzzle 7.6 14.9 13.9 15.9 16.0 50% 50% 0%

1/22 1 1 1 1 1

ukVg 211,285.4 1,579,971.4 1,684,006.8 1,517,735.0 1,443,391.3 13% 87% 0%

36/65 36 30 29 31 30

varDimacs 624,308.2 2,002,799.2 1,767,887.4 1,812,056.2 1,770,251.0 4% 96% 0%

9/9 9 7 7 7 7

wordsVg 77,854.7 1,653,529.7 1,517,753.6 1,519,073.1 1,505,476.1 2% 98% 0%

65/65 65 54 55 54 55

143

Table A.3: STR2 and cluster-minimality algorithms using dom/wdeg

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

aim-100 147.7 4,114.2 10,211.6 5,879.5 3,978.9 8% 92% 0%

24/24 24 24 24 24 24

aim-200 2,908.0 182,995.0 234,708.6 157,868.5 176,658.9 18% 79% 3%

24/24 24 24 24 24 24

aim-50 25.9 426.5 434.0 546.9 460.1 3% 97% 0%

24/24 24 24 24 24 24

allIntervalSeries 802,873.7 1,665,719.4 1,330,272.4 1,651,533.8 1,438,644.2 43% 55% 2%

18/25 16 14 15 14 15

bddLarge 156,632.8 7,200,000.0 7,200,000.0 7,200,000.0 7,200,000.0 - - -

35/35 35 - - - -

bddSmall 59,776.7 7,200,000.0 7,200,000.0 7,200,000.0 7,200,000.0 - - -

35/35 35 - - - -

BH-4-13 - - - - - - - -

0/7 - - - - -

BH-4-4 70,069.1 3,804.9 3,921,972.9 3,898.0 3,537.8 28% 72% 0%

10/10 10 10 9 10 10

BH-4-7 - - - - - - - -

0/20 - - - - -

bqwh-15-106 glb 24.4 451.6 486.3 419.0 500.6 3% 97% 0%

100/100 100 100 100 100 100

bqwh-15-106 369.5 6,029.8 24,964.5 15,333.7 7,243.3 14% 86% 0%

100/100 100 100 100 100 100

144

Table A.3: STR2 and cluster-minimality algorithms using dom/wdeg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

bqwh-18-141 glb 44.0 2,199.7 3,617.5 2,290.1 3,588.0 2% 98% 0%

100/100 100 100 100 100 100

bqwh-18-141 7,788.7 43,271.3 162,971.5 100,633.9 45,436.8 25% 75% 0%

100/100 100 100 100 100 100

chessboardColoration 168,289.4 2,400,982.0 2,405,273.9 2,115,043.6 2,066,942.5 47% 4% 49%

14/19 14 10 10 11 11

coloring 33,323.7 366,322.9 394,885.2 398,181.5 350,956.5 60% 39% 1%

22/22 22 21 21 21 21

composed-25-1-2 167.1 196.9 202.2 122.0 121.5 90% 10% 0%

10/10 10 10 10 10 10

composed-25-1-25 213.8 251.1 259.0 1,434.1 144.1 90% 10% 0%

10/10 10 10 10 10 10

composed-25-1-40 244.2 281.3 299.3 1,392.0 165.2 87% 13% 0%

10/10 10 10 10 10 10

composed-25-1-80 284.6 433.3 832.2 899.1 289.8 100% 0% 0%

10/10 10 10 10 10 10

composed-25-10-20 320.5 59,248.1 148,901.9 79,981.7 61,716.9 34% 66% 0%

10/10 10 10 10 10 10

composed-75-1-2 471.9 714.3 735.0 3,097.8 417.1 88% 12% 0%

10/10 10 10 10 10 10

composed-75-1-25 586.7 761.8 784.6 3,565.3 442.7 92% 8% 0%

10/10 10 10 10 10 10

145

Table A.3: STR2 and cluster-minimality algorithms using dom/wdeg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

composed-75-1-40 634.1 814.8 840.4 1,501.6 464.6 94% 6% 0%

10/10 10 10 10 10 10

composed-75-1-80 622.1 1,416.1 2,956.2 1,944.1 1,059.7 96% 4% 0%

10/10 10 10 10 10 10

cril 2,765,996.6 625,532.0 1,726,567.6 630,008.0 675,353.3 44% 42% 14%

7/8 5 7 6 7 7

dag-half 2,841,465.2 5,994,070.5 5,956,297.5 5,704,275.3 6,016,502.5 97% 2% 0%

14/25 13 3 3 4 3

dag-rand 92,594.1 946,982.7 983,059.2 956,312.4 994,961.1 0% 68% 32%

25/25 25 22 22 22 22

domino 288,996.3 293,498.9 293,327.7 375,990.5 293,595.7 0% 100% 0%

22/23 22 22 22 21 22

driver 12,557.9 3,580,045.2 3,538,796.9 3,407,841.9 3,542,690.0 40% 53% 7%

7/7 7 4 4 4 4

dubois 1,208,932.1 1,955,813.5 1,943,293.7 2,562,174.0 2,141,086.9 0% 100% 0%

7/13 7 6 6 6 6

ehi-85 3,610.8 29,866.3 41,572.9 36,125.4 22,549.0 81% 0% 19%

100/100 100 100 100 100 100

ehi-90 3,697.4 32,424.9 45,104.2 40,034.2 24,124.4 80% 0% 20%

100/100 100 100 100 100 100

fapp01 4,865,546.5 6,323,888.0 6,042,528.0 6,041,389.4 6,223,084.6 33% 65% 2%

11/11 11 4 9 8 7

146

Table A.3: STR2 and cluster-minimality algorithms using dom/wdeg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

fapp02 - - - - - - - -

0/11 - - - - -

fapp03 - - - - - - - -

0/11 - - - - -

fapp04 - - - - - - - -

0/11 - - - - -

fapp05 - - - - - - - -

0/11 - - - - -

fapp06 - - - - - - - -

0/11 - - - - -

fapp07 - - - - - - - -

0/11 - - - - -

fapp08 - - - - - - - -

0/11 - - - - -

fapp09 - - - - - - - -

0/11 - - - - -

fapp10 - - - - - - - -

0/11 - - - - -

fapp11 - - - - - - - -

0/11 - - - - -

fapp12 - - - - - - - -

0/11 - - - - -

147

Table A.3: STR2 and cluster-minimality algorithms using dom/wdeg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

fapp13 - - - - - - - -

0/11 - - - - -

fapp14 - - - - - - - -

0/11 - - - - -

fapp15 - - - - - - - -

0/11 - - - - -

fapp16 - - - - - - - -

0/11 - - - - -

fapp17 - - - - - - - -

0/11 - - - - -

fapp18 - - - - - - - -

0/11 - - - - -

fapp19 - - - - - - - -

0/11 - - - - -

fapp20 - - - - - - - -

0/11 - - - - -

fapp21 - - - - - - - -

0/11 - - - - -

fapp23 - - - - - - - -

0/11 - - - - -

fapp24 - - - - - - - -

0/11 - - - - -

148

Table A.3: STR2 and cluster-minimality algorithms using dom/wdeg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

fapp25 - - - - - - - -

0/11 - - - - -

fapp26 - - - - - - - -

0/11 - - - - -

fapp27 - - - - - - - -

0/11 - - - - -

fapp31 - - - - - - - -

0/11 - - - - -

fapp33 - - - - - - - -

0/11 - - - - -

fapp36 - - - - - - - -

0/11 - - - - -

fapp39 - - - - - - - -

0/10 - - - - -

frb30-15 3,635.8 202,162.7 250,421.2 252,378.8 203,495.8 83% 17% 0%

10/10 10 10 10 10 10

frb35-17 41,669.5 2,720,434.9 2,846,686.5 2,851,968.7 2,782,980.4 90% 10% 0%

10/10 10 8 10 8 8

frb40-19 336,050.5 7,200,000.0 7,200,000.0 7,200,000.0 7,200,000.0 - - -

10/10 10 - - - -

frb45-21 2,937,978.2 7,200,000.0 7,200,000.0 7,200,000.0 7,200,000.0 - - -

10/10 10 - - - -

149

Table A.3: STR2 and cluster-minimality algorithms using dom/wdeg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

frb50-23 847,865.9 7,200,000.0 7,200,000.0 7,200,000.0 7,200,000.0 - - -

2/10 2 - - - -

frb53-24 - - - - - - - -

0/10 - - - - -

frb56-25 - - - - - - - -

0/10 - - - - -

frb59-26 - - - - - - - -

0/10 - - - - -

geom 72,522.9 812,351.1 1,053,114.7 948,983.9 829,741.6 66% 34% 0%

100/100 100 93 89 90 93

golombRulerArity3 555,360.0 3,327,754.4 3,805,032.2 3,704,735.4 3,630,972.6 71% 10% 19%

9/14 9 5 5 5 5

golombRulerArity4 248,948.8 249,340.3 249,361.2 249,363.8 249,334.0 63% 38% 0%

2/14 2 2 2 2 2

graceful 1,569,034.4 2,547,922.5 2,615,515.5 2,543,652.6 2,548,601.8 57% 43% 0%

3/4 3 2 2 2 2

hos 118,026.0 2,031,873.9 2,367,611.3 2,132,081.1 2,023,164.7 44% 56% 0%

12/14 12 9 9 9 9

full-insertion 121,758.7 2,435,924.8 2,528,618.4 2,846,691.5 2,240,350.8 29% 70% 0%

32/41 32 22 22 20 23

k-insertion 192,786.4 1,224,052.6 1,187,676.7 1,195,122.9 1,062,520.5 4% 95% 0%

17/33 17 15 16 15 16

150

Table A.3: STR2 and cluster-minimality algorithms using dom/wdeg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

leighton-15 1,587,880.6 1,960,107.9 3,356,928.3 2,464,417.4 1,029,962.0 69% 7% 25%

9/26 8 7 5 6 8

leighton-25 18,208.3 2,580,031.6 2,580,504.5 2,454,921.4 2,454,839.0 96% 4% 0%

6/31 6 4 4 4 4

leighton-5 6,679.0 1,955,949.6 728,513.5 2,095,130.1 1,896,232.1 85% 10% 5%

8/8 8 6 8 6 6

mug 3,600,012.7 1,471,388.5 1,238,042.7 3,237,005.5 1,317,636.5 12% 88% 0%

8/8 4 7 7 5 7

myciel 243,099.8 1,701,089.3 1,717,949.6 1,685,531.4 1,686,995.4 34% 64% 2%

13/16 13 10 10 10 10

register-fpsol 43,519.9 3,638,405.1 3,646,115.1 3,614,232.8 3,614,133.5 67% 0% 33%

6/37 6 3 3 3 3

register-inithx 61,996.6 7,200,000.0 7,200,000.0 3,630,302.0 3,630,206.4 100% 0% 0%

6/32 6 - - 3 3

register-mulsol 8,519.7 3,208,591.9 2,361,435.6 1,640,681.7 1,532,017.3 68% 5% 27%

9/49 9 5 7 8 8

register-zeroin 9,396.5 3,609,969.1 3,610,106.1 3,602,828.0 3,602,759.5 75% 0% 25%

6/31 6 3 3 3 3

school 28,555.0 7,200,000.0 7,200,000.0 7,200,000.0 7,200,000.0 - - -

3/8 3 - - - -

sgb-book 537,648.5 437,689.8 741,300.6 658,572.3 436,777.0 82% 18% 0%

23/26 23 22 22 23 22

151

Table A.3: STR2 and cluster-minimality algorithms using dom/wdeg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

sgb-games 153,403.6 16,336.3 1,841,056.3 20,705.7 15,561.5 69% 31% 0%

4/4 4 4 3 4 4

sgb-miles 666,374.8 2,178,878.0 1,887,992.1 2,127,445.4 1,226,239.2 71% 14% 15%

11/42 10 8 9 8 10

sgb-queen 482,789.9 1,998,636.1 2,030,370.3 1,854,275.9 1,970,204.8 69% 14% 17%

15/50 15 11 12 12 11

hanoi 484.9 1,320.7 1,329.4 1,331.3 1,332.0 0% 100% 0%

5/5 5 5 5 5 5

haystacks 5,143,146.1 393,391.0 2,009,199.5 2,176,003.9 363,636.2 73% 27% 0%

7/51 2 7 6 5 7

jnhSat 875.4 395,601.3 451,733.5 399,920.8 317,560.9 21% 6% 73%

16/16 16 16 16 16 16

jnhUnsat 914.3 281,352.9 251,904.8 261,011.6 191,446.1 8% 0% 92%

34/34 34 34 34 34 34

jobShop-e0ddr1 439,981.5 2,876,760.2 1,880,781.0 2,054,783.6 2,406,322.6 35% 63% 3%

5/10 5 4 4 4 4

jobShop-e0ddr2 11,173.6 2,782,736.3 642,291.2 1,104,881.1 1,034,785.5 34% 62% 4%

4/10 4 4 4 4 4

jobShop-enddr1 18,734.9 2,098,788.3 558,953.3 1,121,061.2 1,165,064.2 36% 61% 3%

9/10 9 9 9 9 9

jobShop-enddr2 12,386.2 2,995,150.1 563,680.7 1,184,432.5 920,125.3 32% 64% 4%

3/6 3 3 3 3 3

152

Table A.3: STR2 and cluster-minimality algorithms using dom/wdeg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

jobShop-ewddr2 13,041.4 2,967,877.5 652,563.6 1,273,023.6 1,071,276.4 30% 66% 4%

10/10 10 10 10 10 10

js-taillard-15 - - - - - - - -

0/30 - - - - -

knights 218,250.9 344,035.5 326,778.9 344,079.6 325,829.9 20% 40% 40%

10/19 10 10 10 10 10

langford 25,072.5 557,275.3 212,287.1 401,710.4 562,027.6 59% 25% 16%

4/4 4 4 4 4 4

langford2 6,014.7 44,159.2 46,302.2 45,942.5 40,536.3 46% 30% 24%

16/24 16 16 16 16 16

langford3 199,954.4 2,477,131.9 1,806,972.6 2,249,839.4 2,296,071.1 82% 0% 18%

15/23 15 10 12 11 11

langford4 145,051.3 1,525,418.5 1,402,432.2 1,479,883.8 1,495,135.6 42% 0% 58%

13/24 13 11 11 11 11

lexVg 38,602.7 1,212,695.3 1,241,073.5 1,162,807.8 1,249,681.5 1% 99% 0%

63/63 63 56 56 56 55

marc 47,944.0 188,050.7 191,275.8 187,885.4 185,305.0 0% 50% 50%

10/10 10 10 10 10 10

modifiedRenault 1,420.0 19,826.9 17,410.7 28,743.2 17,842.3 58% 42% 0%

50/50 50 50 50 50 50

nengfa 449,086.7 4,440,151.1 4,459,935.5 3,579,935.7 4,080,872.7 23% 40% 37%

5/10 5 2 2 3 3

153

Table A.3: STR2 and cluster-minimality algorithms using dom/wdeg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

ogdVg 458,909.9 2,264,148.8 1,968,976.1 2,018,979.6 1,793,415.9 11% 89% 0%

43/65 43 32 33 33 34

os-gp - - - - - - - -

0/19 - - - - -

os-taillard-10 - - - - - - - -

0/30 - - - - -

os-taillard-15 - - - - - - - -

0/30 - - - - -

os-taillard-4 72,518.8 718,753.1 243,910.9 443,736.7 422,644.8 27% 70% 3%

30/30 30 29 30 30 30

os-taillard-5 2,217,837.9 4,875,877.6 3,001,446.5 4,888,191.9 3,672,278.8 38% 39% 23%

19/30 16 10 15 8 11

os-taillard-7 1,742,861.1 7,200,000.0 7,200,000.0 7,200,000.0 7,200,000.0 - - -

7/30 7 - - - -

pigeons 261,160.4 207,801.8 424,787.9 322,454.2 209,119.5 90% 10% 0%

13/24 13 13 13 13 13

pret 94,820.2 183,807.1 180,861.4 403,906.0 239,985.4 0% 100% 0%

4/8 4 4 4 4 4

pseudo-aim 31,617.4 162,714.1 307,374.4 221,721.2 148,337.4 9% 90% 1%

48/48 48 48 47 48 48

pseudo-garden 18.9 638.1 900.1 652.4 845.2 15% 85% 0%

6/7 6 6 6 6 6

154

Table A.3: STR2 and cluster-minimality algorithms using dom/wdeg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

pseudo-jnh 1,330.3 3,427,706.0 3,594,663.4 2,556,383.0 3,394,572.2 58% 9% 33%

16/16 16 10 11 13 10

pseudo-par 40,346.9 2,118,631.7 1,891,449.7 2,063,282.5 1,913,312.5 0% 100% 0%

20/30 20 15 16 15 16

pseudo-primesDimacs 15,907.7 50,153.1 48,654.3 4,814,335.1 4,813,928.1 0% 100% 0%

3/11 3 3 3 1 1

pseudo-radar 13,605.2 3,768,486.7 3,640,323.6 3,700,945.6 3,640,578.8 0% 100% 0%

6/12 6 3 3 3 3

pseudo-ssa 41,778.3 311,130.4 314,041.3 1,324,639.3 434,575.8 0% 100% 0%

7/8 7 7 7 6 7

pseudo-uclid 384,581.6 2,888,425.4 2,686,612.6 2,728,544.4 2,691,541.1 0% 100% 0%

9/36 9 6 6 6 6

QCP-10 298.0 60,312.1 89,034.8 55,149.6 62,606.4 17% 83% 0%

15/15 15 15 15 15 15

QCP-15 78,940.8 134,226.6 132,522.4 97,142.1 102,843.9 25% 70% 5%

15/15 15 15 15 15 15

QCP-20 4,181,471.6 1,384,722.1 2,082,329.8 1,016,116.7 1,116,712.2 41% 53% 6%

11/15 5 11 10 11 11

QCP-25 5,403,980.1 837,841.5 1,259,769.9 2,281,713.4 2,252,573.3 100% 0% 0%

4/15 1 4 4 3 3

queenAttacking 178,886.7 350,966.2 595,489.5 511,757.8 1,393,533.9 73% 14% 13%

4/10 4 4 4 4 4

155

Table A.3: STR2 and cluster-minimality algorithms using dom/wdeg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

queens 25,090.9 780,941.1 774,706.9 781,047.4 792,249.0 49% 30% 22%

10/14 10 9 9 9 9

queensKnights 183,174.0 325,375.9 252,138.9 269,321.5 327,365.0 73% 22% 5%

10/18 10 10 10 10 10

QWH-10 185.4 8,102.6 9,088.1 7,841.4 7,885.7 9% 91% 0%

10/10 10 10 10 10 10

QWH-15 2,889.6 67,499.6 47,237.2 52,023.1 66,155.0 6% 93% 1%

10/10 10 10 10 10 10

QWH-20 947,171.9 476,163.4 342,075.3 295,832.8 404,047.6 12% 84% 4%

10/10 9 10 10 10 10

QWH-25 7,200,000.0 7,200,000.0 4,976,835.6 2,567,511.8 7,200,000.0 - - -

2/10 - - 1 2 -

radar-8-30-3-0 - - - - - - - -

0/50 - - - - -

radar-9-28-4-2 - - - - - - - -

0/50 - - - - -

ramsey3 35.9 28,197.2 44,420.3 34,086.5 28,236.6 49% 51% 0%

2/8 2 2 2 2 2

ramsey4 1,031.5 790,753.0 1,049,965.7 739,042.6 339,974.5 43% 8% 49%

1/8 1 1 1 1 1

rand-10-20-10 993.4 2,571.9 2,559.7 2,558.4 2,555.1 0% 100% 0%

20/20 20 20 20 20 20

156

Table A.3: STR2 and cluster-minimality algorithms using dom/wdeg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

rand-2-23 435,346.4 447,983.2 1,723,637.9 1,546,868.7 377,903.1 93% 0% 7%

10/10 10 10 10 10 10

rand-2-24 962,257.9 806,797.6 4,949,429.3 3,740,633.4 711,405.7 90% 0% 10%

10/10 10 10 6 9 10

rand-2-25 1,928,226.8 1,983,856.8 5,700,465.6 5,269,924.9 2,486,206.4 87% 0% 13%

10/10 10 10 3 5 10

rand-2-26 3,452,167.9 3,999,124.8 7,200,000.0 7,200,000.0 7,200,000.0 - - -

4/10 4 3 - - -

rand-2-27 4,904,442.5 5,773,562.1 7,200,000.0 7,200,000.0 7,200,000.0 - - -

3/10 3 1 - - -

rand-2-30-15-fcd 4,645.5 325,392.7 319,265.3 330,560.8 329,544.4 81% 19% 0%

50/50 50 50 50 50 50

rand-2-30-15 8,320.8 475,385.8 520,874.4 509,584.4 477,459.9 85% 15% 0%

50/50 50 50 50 50 50

rand-2-40-19-fcd 502,987.5 6,671,432.2 6,785,650.2 6,697,807.3 6,677,144.1 87% 13% 0%

50/50 50 5 4 5 5

rand-2-40-19 1,024,005.2 7,120,635.8 7,127,550.9 7,129,885.0 7,104,168.8 89% 11% 0%

50/50 50 1 1 1 1

rand-2-50-23-fcd 3,921,389.5 7,200,000.0 7,200,000.0 7,200,000.0 7,200,000.0 - - -

8/50 8 - - - -

rand-2-50-23 3,945,059.6 7,200,000.0 7,200,000.0 7,200,000.0 7,200,000.0 - - -

3/50 3 - - - -

157

Table A.3: STR2 and cluster-minimality algorithms using dom/wdeg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

rand-3-20-20-fcd 290,359.2 2,536,704.0 1,271,039.4 1,987,355.7 2,269,090.8 58% 42% 0%

50/50 50 43 50 48 44

rand-3-20-20 595,994.7 3,847,263.5 2,224,070.7 3,301,313.2 3,510,153.5 53% 47% 0%

50/50 50 34 47 40 37

rand-3-24-24-fcd 2,723,303.9 6,633,305.8 6,103,911.6 6,354,532.7 6,648,164.6 72% 28% 0%

22/50 19 4 6 5 3

rand-3-24-24 3,706,064.4 7,200,000.0 6,860,823.7 6,950,084.5 7,200,000.0 - - -

10/50 9 - 1 1 -

rand-3-28-28-fcd 1,335,236.1 7,200,000.0 7,200,000.0 7,200,000.0 7,200,000.0 - - -

2/50 2 - - - -

rand-3-28-28 1,275,396.6 7,200,000.0 7,200,000.0 7,200,000.0 7,200,000.0 - - -

1/50 1 - - - -

rand-8-20-5 117,099.7 468,115.0 488,111.0 569,480.9 387,863.7 41% 53% 6%

20/20 20 20 20 20 20

renault 963.8 35,439.0 19,435.6 32,323.2 21,894.7 46% 54% 0%

2/2 2 2 2 2 2

rlfapGraphs 9,738.0 1,803,871.0 1,624,526.3 1,789,369.0 1,793,931.0 24% 76% 0%

14/14 14 13 14 12 13

rlfapGraphsMod 32,877.1 600,269.4 946,641.2 529,850.2 539,188.1 46% 54% 0%

12/12 12 12 11 12 12

rlfapScens11 3,060,212.7 113,393.7 4,517,665.8 2,726,426.6 993,615.6 94% 4% 2%

8/12 5 8 3 5 7

158

Table A.3: STR2 and cluster-minimality algorithms using dom/wdeg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

rlfapScens 11,665.5 527,345.7 419,550.1 368,275.5 542,829.2 30% 69% 1%

11/11 11 11 11 11 11

rlfapScensMod 12,715.7 265,567.6 802,788.4 206,607.6 259,862.9 54% 46% 0%

13/13 13 13 12 13 13

schurrLemma 269,017.6 1,914,560.9 2,008,819.7 1,617,821.0 1,948,738.2 80% 5% 14%

9/10 9 7 7 8 7

ssa 27,228.3 262,534.8 262,314.2 1,058,488.7 1,060,205.6 6% 94% 0%

7/8 7 7 7 6 6

subs 1,421.4 3,029.8 3,236.0 2,862.6 2,886.7 52% 15% 33%

9/9 9 9 9 9 9

super-jobShop-e0ddr1 1,292,156.7 5,922,714.4 3,656,765.9 7,200,000.0 3,883,255.5 75% 15% 9%

3/10 3 1 2 - 2

super-jobShop-e0ddr2 - - - - - - - -

0/10 - - - - -

super-jobShop-enddr1 2,524,544.0 5,291,943.2 3,673,891.5 7,200,000.0 3,934,428.5 76% 17% 7%

3/10 2 2 2 - 2

super-jobShop-enddr2 91,438.5 7,200,000.0 2,678,751.0 7,200,000.0 2,920,604.5 74% 18% 8%

2/6 2 - 2 - 2

super-jobShop-ewddr2 43,852.4 7,200,000.0 5,447,144.4 7,200,000.0 2,732,403.6 71% 21% 8%

6/9 6 - 2 - 6

super-js-taillard-15 - - - - - - - -

0/25 - - - - -

159

Table A.3: STR2 and cluster-minimality algorithms using dom/wdeg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

super-os-taillard-10 - - - - - - - -

0/30 - - - - -

super-os-taillard-15 - - - - - - - -

0/30 - - - - -

super-os-taillard-4 450,234.1 2,928,777.3 962,934.7 1,806,995.8 1,215,920.5 36% 36% 28%

28/30 27 22 28 26 27

super-os-taillard-5 1,528,385.0 7,200,000.0 3,918,751.2 5,946,212.8 3,375,662.7 46% 21% 33%

8/28 8 - 6 3 7

super-os-taillard-7 - - - - - - - -

0/30 - - - - -

super-queens 600,842.2 1,442,265.6 1,478,818.2 1,444,357.0 1,442,428.9 100% 0% 0%

5/14 5 4 4 4 4

tightness0.1 69,167.6 641,680.5 1,129,957.2 774,925.5 4,064,362.9 14% 0% 86%

100/100 100 100 100 100 91

tightness0.2 86,170.7 4,754,039.2 5,711,894.5 5,092,659.0 4,871,417.6 95% 5% 0%

100/100 100 51 41 50 47

tightness0.35 75,475.9 5,428,074.1 5,386,234.2 5,511,861.9 5,500,011.6 65% 35% 0%

100/100 100 40 46 40 37

tightness0.5 115,561.4 5,701,803.6 6,032,732.0 5,950,109.1 5,833,049.8 44% 56% 0%

100/100 100 37 33 34 33

tightness0.65 100,633.0 3,100,915.2 3,573,962.0 3,087,074.3 3,243,634.0 37% 63% 0%

100/100 100 84 78 85 80

160

Table A.3: STR2 and cluster-minimality algorithms using dom/wdeg (continued)

STR2 Cl-PerTuple Cl-AllSol Cl-Random Cl-Portfolio

Benchmark Avg time Avg time Avg time Avg time Avg time Selection

instances completed completed completed completed completed %P %A %N

tightness0.8 108,416.4 1,262,723.1 1,434,802.0 1,130,900.2 1,253,463.9 41% 59% 0%

100/100 100 98 98 98 98

tightness0.9 143,122.2 761,303.3 860,299.8 762,711.3 762,963.8 41% 59% 0%

100/100 100 97 95 98 96

travellingSalesman-20 18,423.4 1,513,958.0 1,480,214.7 1,295,844.0 1,533,166.6 32% 68% 0%

15/15 15 13 14 14 13

travellingSalesman-25 287,828.5 4,620,826.6 4,541,672.7 4,529,165.1 4,579,528.4 33% 67% 0%

15/15 15 6 7 6 6

ukPuzzle 7.6 14.7 13.9 15.9 15.9 50% 50% 0%

1/22 1 1 1 1 1

ukVg 205,115.5 1,718,691.6 1,853,669.4 1,675,066.2 1,474,709.9 13% 86% 0%

36/65 36 29 28 30 30

varDimacs 301,255.7 1,851,967.7 1,710,796.3 1,730,780.2 1,712,151.8 4% 96% 0%

9/9 9 7 7 7 7

wordsVg 137,979.8 1,716,064.7 1,579,475.5 1,538,835.2 1,600,062.5 2% 98% 0%

65/6 65 52 54 54 53

161

Bibliography

[Amaldi et al., 2010] Edoardo Amaldi, Claudio Iuliano, and Romeo Rizzi. Effi-

cient Deterministic Algorithms for Finding a Minimum Cycle Basis in Undirected

Graphs. In Integer Programming and Combinatorial Optimization (IPCO 2010),

volume 6080 of LNCS, pages 397–410, 2010.

[Arnborg, 1985] Stefan A. Arnborg. Efficient Algorithms for Combinatorial Problems

on Graphs with Bounded Decomposability–A Survey. BIT, 25:2–23, 1985.

[Balafrej et al., 2015] Amine Balafrej, Christian Bessière, and Anastasia Paparrizou.

Multi-Armed Bandits for Adaptive Constraint Propagation. In Proceedings of the

24 th International Joint Conference on Artificial Intelligence, pages 290–296, 2015.

[Bayer et al., 2007] Kenneth M. Bayer, Martin Michalowski, Berthe Y. Choueiry,

and Craig A. Knoblock. Reformulating CSPs for Scalability with Application to

Geospatial Reasoning. In Proceedings of the 13 th International Conference on

Principles and Practice of Constraint Programming (CP 07), pages 164–179, Prov-

idence, Rhode Island, 2007. LNCS 4741, Springer.

[Bennaceur and Affane, 2001] Hachemi Bennaceur and Mohamed-Salah Affane.

Partition-k-AC: An Efficient Filtering Technique Combining Domain Partition and

Arc Consistency. In Principles and Practice of Constraint Programming (CP 01),

volume 2239 of LNCS, pages 560–564. Springer, 2001.

162

[Bessiere et al., 2013] Christian Bessiere, Hélène Fargier, and Christophe Lecoutre.

Global Inverse Consistency for Interactive Constraint Satisfaction. In Proceedings

of 19 th International Conference on Principles and Practice of Constraint Pro-

gramming (CP 13), volume 8124 of LNCS, pages 159–174, 2013.

[Boussemart et al., 2004] Frédéric Boussemart, Fred Hemery, Christophe Lecoutre,

and Lakhdar Sais. Boosting Systematic Search by Weighting Constraints. In Pro-

ceedings of the 16 th European Conference on Artificial Intelligence (ECAI 2004),

pages 146–150, 2004.

[Box et al., 1978] George E.P. Box, William G. Hunter (Author), and J.S̃tuart

Hunter. Statistics for Experimenters: An Introduction to Design, Data Analysis,

and Model Building. Wiley, 1978.

[Debruyne and Bessière, 2001] Romuald Debruyne and Christian Bessière. Domain

Filtering Consistencies. Journal of Artificial Intelligence Research, 14:205–230,

2001.

[Dechter and Pearl, 1987] Rina Dechter and Judea Pearl. The Cycle-Cutset Method

for improving Search Performance in AI Applications. In Proceedings of the Third

IEEE Conference on AI Applications, pages 224–230, Orlando, FL, 1987.

[Dechter and Pearl, 1988] Rina Dechter and Judea Pearl. Network-Based Heuristics

for Constraint-Satisfaction Problems. Artificial Intelligence, 34:1–38, 1988.

[Dechter and Pearl, 1989] Rina Dechter and Judea Pearl. Tree Clustering for Con-

straint Networks. Artificial Intelligence, 38(3):353–366, 1989.

[Dechter and Pearl, 1992] Rina Dechter and Judea Pearl. Structure Identification in

Relational Data. Artificial Intelligence, 58(1-3):237–270, 1992.

163

[Dechter and van Beek, 1997] Rine Dechter and Peter van Beek. Local and Global

Relational Consistency. Theor. Comput. Sci., 173(1):283–308, 1997.

[Dechter, 2003] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[Demeulenaere et al., 2016] Jordan Demeulenaere, Renaud Hartert, Christophe

Lecoutre, Guillaume Perez, Laurent Perron, Jean-Charles Régin, and Pierre

Schaus. Compact-Table: Efficiently Filtering Table Constraints with Reversible

Sparse Bit-Sets. In Proceedings of the 22 nd International Conference on Princi-

ples and Practice of Constraint Programming (CP 2016), pages 207–223. Springer

International Publishing, 2016.

[Freuder and Elfe, 1996] Eugene C. Freuder and Charles D. Elfe. Neighborhood In-

verse Consistency Preprocessing. In Proceedings of AAAI-96, pages 202–208, 1996.

[Freuder, 1982] Eugene C. Freuder. A Sufficient Condition for Backtrack-Free Search.

Journal of the ACM (JACM), 29(1):24–32, 1982.

[Freuder, 1985] Eugene C. Freuder. A Sufficient Condition for Backtrack-Bounded

Search. JACM, 32 (4):755–761, 1985.

[Freuder, 1991] Eugene C. Freuder. Completable Representations of Constraint Sat-

isfaction Problems. In Proceedings of the Second International Conference on Prin-

ciples of Knowledge Representation and Reasoning (KR 91), pages 186–195, 1991.

[Geschwender et al., 2013] Daniel J. Geschwender, Shant Karakashian, Robert J.

Woodward, Berthe Y. Choueiry, and Stephen D. Scott. Selecting the Appropriate

Consistency Algorithm for CSPs Using Machine Learning Classifiers. In Proceed-

ings of AAAI-2013, pages 1611–1612, 2013.

164

[Geschwender et al., 2016] Daniel J. Geschwender, Robert J. Woodward, Berthe Y.

Choueiry, and Stephen D. Scott. A Portfolio Approach for Enforcing Minimality in

a Tree Decomposition. Technical Report TR-UNL-CSE-2016-0003, Department of

Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE,

2016.

[Golumbic, 1980] Martin C. Golumbic. Algorithmic Graph Theory and Perfect

Graphs. Academic Press Inc., 1980.

[Gomes and Selman, 2001] Carla P. Gomes and Bart Selman. Algorithm Portfolios.

Artificial Intelligence, 126(1):43–62, 2001.

[Gottlob et al., 1999] Georg Gottlob, Nicola Leone, and Francesco Scarcello. A Com-

parison of Structural CSP Decomposition Methods. In Proceedings of the 16 th In-

ternational Joint Conference on Artificial Intelligence, pages 394–399, Stockholm,

Sweden, 1999.

[Gottlob, 2011] Georg Gottlob. On Minimal Constraint Networks. In Proceedings of

the 17 th International Conference on Principle and Practice of Constraint Pro-

gramming (CP 11), volume 6876 of Lecture Notes in Computer Science, pages

325–0339. Springer, 2011.

[Gyssens, 1986] M. Gyssens. On the Complexity of Join Dependencies. ACM Trans.

Database Systems, 11(1):81–108, 1986.

[Hall et al., 2009] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer,

Peter Reutemann, and Ian H Witten. The WEKA Data Mining Software: an

Update. ACM SIGKDD explorations newsletter, 11(1):10–18, 2009.

165

[Haralick and Elliott, 1980] Robert M. Haralick and Gordon L. Elliott. Increasing

Tree Search Efficiency for Constraint Satisfaction Problems. Artificial Intelligence,

14:263–313, 1980.

[Horton, 1987] Joseph D. Horton. A Polynomial-Time Algorithm to Find the Shortest

Cycle Basis of a Graph. SIAM Journal on Computing, 16(2):358–366, 1987.

[Janssen et al., 1989] Philippe Janssen, Philippe Jégou, Bernard Nougier, and Marie-

Catherine Vilarem. A Filtering Process for General Constraint-Satisfaction Prob-

lems: Achieving Pairwise-Consistency Using an Associated Binary Representation.

In IEEE Workshop on Tools for AI, pages 420–427, 1989.

[Jeavons et al., 1994] Peter G. Jeavons, David A. Cohen, and Marc Gyssens. A Struc-

tural Decomposition for Hypergraphs. Contemporary Mathematics, 178:161–177,

1994.

[Karakashian et al., 2010] Shant Karakashian, Robert Woodward, Christopher Ree-

son, Berthe Y. Choueiry, and Christian Bessiere. A First Practical Algorithm for

High Levels of Relational Consistency. In Proceedings of AAAI-2010, pages 101–

107, 2010.

[Karakashian et al., 2012] Shant Karakashian, Robert J. Woodward, Berthe Y.

Choueiry, and Stephen D. Scott. Algorithms for the Minimal Network of a CSP

and a Classifier for Choosing Between Them. TR-UNL-CSE-2012-0007, 2012.

[Karakashian et al., 2013] Shant Karakashian, Robert Woodward, and Berthe Y.

Choueiry. Improving the Performance of Consistency Algorithms by Localizing

and Bolstering Propagation in a Tree Decomposition. In Proceedings of AAAI-

2013, pages 466–473, 2013.

166

[Karakashian, 2013] Shant Karakashian. Practical Tractability of CSPs by Higher

Level Consistency and Tree Decomposition. PhD thesis, CSE, UNL, Lincoln, NE,

May 2013.

[Kavitha et al., 2007] Telikepalli Kavitha, Kurt Mehlhorn, and Dimitrios Michail.

New Approximation Algorithms for Minimum Cycle Bases of Graphs. In Sym-

posium on Theoretical Aspects of Computer Science (STACS 2007), volume 4393

of LNCS, pages 512–523, 2007.

[Kjærulff, 1990] Uffe Kjærulff. Triangulation of Graphs – Algorithms Giving Small

Total State Space. Technical Report R-90-09, Aalborg University, 1990.

[le Clément de Saint-Marcq et al., 2013] Vianney le Clément de Saint-Marcq, Pierre

Schaus, Christine Solnon, and Christophe Lecoutre. Sparse-Sets for Domain Im-

plementation. In Proceedings of the CP 2013 Workshop on Techniques foR Imple-

menting Constraint programming Systems (TRICS), pages 1–10, 2013.

[Lecoutre, 2011] Christophe Lecoutre. STR2: Optimized Simple Tabular Reduction

for Table Constraints. Constraints, 16(4):341–371, 2011.

[Mackworth, 1977] Alan K. Mackworth. Consistency in Networks of Relations. Arti-

ficial Intelligence, 8:99–118, 1977.

[Maier, 1983] David Maier. Theory of Relational Databases. Computer Science Press,

1983.

[Mairy et al., 2014] Jean-Baptiste Mairy, Yves Deville, and Christophe Lecoutre. Do-

main k-Wise Consistency Made as Simple as Generalized Arc Consistency. In

Proceedings of the 11 th Integration of AI and OR Techniques in Constraint Pro-

167

gramming for Combinatorial Optimization Problems (CPAIOR 2014), volume 8451

of LNCS, pages 235–250. Springer, 2014.

[Mehlhorn and Michail, 2009] Kurt Mehlhorn and Dimitrios Michail. Minimum Cycle

Bases: Faster and Simpler. ACM Trans. Algorithms, 6(1):1–13, December 2009.

[Montanari, 1974] Ugo Montanari. Networks of Constraints: Fundamental Properties

and Application to Picture Processing. Information Sciences, 7:95–132, 1974.

[O’Mahony et al., 2008] Eoin O’Mahony, Emmanuel Hebrard, Alan Holland, Conor

Nugent, and Barry O’Sullivan. Using Case-based Reasoning in an Algorithm Port-

folio for Constraint Solving. In Proceedings of the Irish Conference on AI and

Cognitive Science, pages 210–216, 2008.

[Paparrizou and Stergiou, 2016] Anastasia Paparrizou and Kostas Stergiou. Strong

Local Consistency Algorithms for Table Constraints. Constraints, 21(2):163–197,

Apr 2016.

[Paparrizou and Stergiou, 2017] Anastasia Paparrizou and Kostas Stergiou. On

Neighborhood Singleton Consistencies. In Proceedings of the 26 th International

Joint Conference on Artificial Intelligence, pages 736–742, 2017.

[Prosser, 1993] Patrick Prosser. Hybrid Algorithms for the Constraint Satisfaction

Problem. Computational Intelligence, 9 (3):268–299, 1993.

[Rice, 1976] John R. Rice. The Algorithm Selection Problem. Advances in Comput-

ers, 15:65–118, 1976.

[Sabin and Freuder, 1997] Daniel Sabin and Eugene C. Freuder. Understanding and

Improving the MAC Algorithm. In Proceedings of the Third International Confer-

168

ence on Principles and Practice of Constraint Programming (CP 97), volume 1330

of LNCS, pages 167–181. Springer, 1997.

[Samaras and Stergiou, 2005] Nikolaos Samaras and Kostas Stergiou. Binary Encod-

ings of Non-Binary Constraint Satisfaction Problems: Algorithms and Experimen-

tal Results. Journal of Artificial Intelligence Research, 24:641–684, 2005.

[Schneider et al., 2014] Anthony Schneider, Robert J. Woodward, Berthe Y.

Choueiry, and Christian Bessiere. Improving Relational Consistency Algorithms

Using Dynamic Relation Partitioning. In Proceedings of the 20 th International

Conference on Principles and Practice of Constraint Programming (CP 2014), vol-

ume 8656 of Lecture Notes in Computer Science, pages 688–704. Springer, 2014.

[Ullmann, 2007] Julian R. Ullmann. Partition Search for Non-binary Constraint Sat-

isfaction. Information Sciences, 177(18):3639–3678, September 2007.

[Waltz, 1975] David Waltz. Understanding Line Drawings of Scenes with Shadows. In

P.H. Winston, editor, The Psychology of Computer Vision, pages 19–91. McGraw-

Hill, Inc., 1975.

[Woodward and Choueiry, 2017] Robert J. Woodward and Berthe Y. Choueiry.

Weight-Based Variable Ordering in the Context of High-Level Consistencies. ArXiv

e-prints, November 2017.

[Woodward et al., 2011] Robert Woodward, Shant Karakashian, Berthe Y. Choueiry,

and Christian Bessiere. Solving Difficult CSPs with Relational Neighborhood In-

verse Consistency. In Proceedings of AAAI-2011, pages 112–119, 2011.

[Xu et al., 2008] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.

SATzilla: Portfolio-based Algorithm Selection for SAT. JAIR, 32(1):565–606, 2008.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	5-2018

	Effectively Enforcing Minimality During Backtrack Search
	Daniel J. Geschwender

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions
	Thesis Structure

	Background
	The Constraint Satisfaction Problem
	Solving CSPs
	Graphical Representations
	Constraint Networks
	Minimal Dual Graphs
	Tree-Structured Constraint Networks
	Graham Reduction
	Tree Decomposition

	Consistency Properties
	Arc Consistency
	Pairwise Consistency
	Minimality

	Consistency Algorithms
	Lookahead
	STR2 to Enforce Generalized Arc Consistency
	PW-AC2 to Enforce Pairwise Consistency (PWC)
	PerTuple, AllSol to Enforce Constraint Minimality

	Cluster-Based Minimality

	Improving Minimality Algorithms
	Unmarked-First (UF) Ordering Heuristic
	Dangle Identification
	Dom/wdeg Variable Ordering
	Maintaining Consistency
	The DualFC Algorithm
	The DualRFL Algorithm
	The DualDangleFC Algorithm

	Minimal Dual Graph
	Correctness
	Experimental Evaluation
	Setup
	Results
	Performance of the 64 Configurations
	Comparing the Original and Best Configurations
	ANOVA Results

	Discussion

	Which Minimal Dual Graph
	A Minimal Dual Graph in PerTuple
	The MaxDeg Heuristic for a Minimal Dual Graph
	Metrics for Dangle Identification
	Normalized Average Dangle Level
	Average Percent Dangles Identified

	Experimental Evaluation
	Setup
	Results
	Discussion

	Weight Update in High-Level Consistencies
	Weight-Update Strategies: Motivation
	Weight-Update Parameters
	Occurrence
	Distribution
	Scale

	Experimental Evaluation
	Setup
	Results
	Discussion

	Dynamic Portfolio for Cluster-Based Minimality
	Collecting Training Data
	Features
	General Features
	Graph Features
	Tree-Decomposition Features

	Aggregate Functions

	Decision-Tree Classifier
	Labels and Weights for Classification
	Training
	Training Results
	Trained Decision Tree
	Alternate Classifiers

	Experimental Evaluation
	Setup
	Cluster-Minimality Algorithms Using dom/deg
	Cluster-Minimality Algorithms Using dom/wdeg
	Discussion

	Conclusions and Future Work
	Conclusions
	Future Work

	Results of Experiments in Section 6.3
	Bibliography

