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 In many Midwestern vineyards a three to four-foot weed-free strip is maintained directly 

beneath the vines to reduce vine-weed competition.  Conventionally, this strip has been 

conserved with repeated applications of herbicide, mainly glyphosate.  The necessity for this 

weed-free strip to reduce vine-weed competition has been well documented in more arid 

climates.  However, in areas with higher soil fertility and adequate rainfall, this strip may be 

unnecessary.  Moreover, stand establishment and early vine growth have not been well 

documented when planting groundcovers (GC) immediately following the vine planting.  The 

main objective of this project is to assess the severity of competition for water between 

‘Edelweiss’ grapevines and neighboring permanent GC treatments.  In year one (2014), the 

vineyard and GCs were established, where the GCs were planted immediately after the vines.  

Midday leaf water potential (Ψmd) measurements began in 2015 and lasted through 2017 to 

assess water competition between vines and GCs.  Additional data collected during the four year 

project included: pruning weights, bud break, yield and fruit quality and soil nutrition.  

Generally, GC treatments had lower Ψmd than the herbicide sprayed control, however, none of 

the treatments exhibited even slight water stress.  Vine-GC competition was most apparent in the 

three years of pruning weights, where the most native grass GC treatment had up to 99% in 

2014, 193% in 2015 and 183% in 2016 lower weights than the control.  Harvest in 2016 and 

2017 showed significantly lower yields between GC treatments and the control.  However, no 



differences were found in berry quality (pH, Titratable Acidity, °Brix).  An additional 

greenhouse project was done to define water stress thresholds for ‘Edelweiss’ grapevines using 

Ψmd and high resolution thermal infrared images.  Fully irrigated and 14-day dry vines exhibited 

a Ψmd of -8.7 bars and -13.3 bars, respectively.  The grapevines exhibited a mild, moderate and 

severe water stress level at 8, 10 and 12 days-dry, respectively (Ψmd of -12 bars, -12.5 bars and -

13 bars).  Results suggest that planting groundcovers in both the alleyways and in-row areas of 

the vineyard during the first year of establishment is detrimental to vine growth and causes 

reduced yields. 
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INTRODUCTION AND REVIEW OF LITERATURE 

INTRODUCTION 

With over 280 million pounds of glyphosate being sprayed in the United States annually, 

chemical weed control in agriculture has become heavily scrutinized due to the extensive use 

of this specific chemical herbicide.   Recently, outrage has surfaced after the World Health 

Organization issued a statement possibly linking glyphosate to cancer (FRITSCHI et al., 2015).  

In addition, glyphosate has been linked to many other health issues including Parkinson’s 

disease, infertility and fatal kidney disease (JAYASUMANA et al., 2014).  In 2010, more than 

400,000 pounds of Roundup were applied to wine grapes (Vitis spp.) in California alone.  

The consuming public has voiced their concern over the ever increasing use of herbicides and 

as a result research investigating chemical-free weed control strategies has become 

widespread.  

The benefits of replacing herbicides with groundcovers in the vineyard extend far beyond 

just eliminating the use of chemicals and reducing vine vigor.  Planting permanent 

groundcovers in the vineyard has been shown to improve soil erosion protection, water 

infiltration and organic matter while reducing soil crusting and soil temperature (GREENSPAN, 

2015).  Soil left bare, whether from herbicide applications or cultivation, increases the 

intensity of runoff and erosion (BLAVET et al., 2009).  Use of groundcovers prevents the 

direct contact of raindrops with the soil surface, which weakens and breaks aggregates apart, 

contributing to the formation of surface crusts that reduce water infiltration (EPSTEIN AND 

GRANT, 1973).      
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Replacing chemically controlled strips beneath the vines is not an end-all solution for all 

vineyards.  There are a variety of factors that determine which weed control management 

strategy should be employed in the vineyard.  The factors include vine age, vineyard design, 

climatic conditions, soil texture and fertility, vine age and social and economic 

considerations such as availability of labor, aesthetics, and public perceptions (BAKER et al., 

2005; BAVOUGIAN, 2014; RIPOCHE et al., 2010; THOMSON AND HOFFMANN, 2007).  

Traditional grape growing regions tend to be situated on well drained – low fertility soils.  In 

these places, a highly water competitive groundcover may have detrimental effects on overall 

yield and/or fruit quality.  

In areas that receive moderate to heavy amounts of rainfall, such as Southeast Nebraska 

(annual precipitation over 30 inches), and have highly fertile soils overly vigorous growth is 

common in many winegrape cultivars.  Grapevines have an indeterminate growth habit 

where vegetative growth is not reduced by a shortening photoperiod, but rather continues as 

long as sufficient heat, nutrients and moisture are available (KELLER, 2010).   ‘Overly 

vigorous’ is characterized by vines that have large, dense canopies which result in low light 

penetration (DOKOOZLIAN AND KLIEWER, 1995) and shade the fruit zone which compromises 

fruit quality.  Additionally, excessive shading can delay veraison and fruit maturation, 

causing reduced soluble solids (°Brix) and anthocyanin concentrations as well as increase the 

concentration of undesirable flavor compounds such as methoxypyrazines (CHORTI et al., 

2010; SCHEINER et al., 2011).  Overly vigorous vines may also have a problem not reaching 

full dormancy in the late fall which can result in reduced cold hardiness (BYRNE AND 

HOWELL, 1978).  Finally, dense canopies reduce air flow as well as light infiltration into the 

canopy, thus increasing disease pressure and reducing spray penetration and effectiveness of 
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fungicide applications (AUSTIN AND WILCOX, 2011).  Shoot and cluster thinning, hedging, 

leaf removal and lateral shoot pulling are the main methods to increase light and air 

penetration into the canopy, however these practices require significant amounts of labor and 

time (SMART AND ROBINSON, 1991).      

Maintaining a slight-to-moderate water deficit and thus inducing a certain level of stress 

can be highly beneficial in grapevine cultivation because it stimulates optimal quality 

parameters without significantly compromising yield.  As a vineyard manager, gauging the 

level of grapevine water stress can be quite difficult.  Several methods have been developed 

to measure the water potential of grapevines.  Traditionally, water status in plants has been 

evaluated by measuring in-situ soil water status (soil water content or soil water potential) or 

by measuring in-situ physiological variables that characterize water status in leaves (relative 

water content, leaf water potential and stomatal conductance).  A more recent strategy for 

assessing water stress is through the use of remote sensing which offers a non-destructive 

method of quantifying the amount of water present in plants.  In this project, infrared 

thermography (IRT) was employed to attempt to measure the water status in grapevines.  

Infrared thermography measures the amount of sensible heat released by the leaf during 

periods of water stress which allows the leaf temperature to exceed the air temperature 

(ANDERSON AND KUSTAS, 2008; FUCHS, 1990; MCVICAR AND JUPP, 1998).  These leaf 

temperature data are then typically combined with meteorological data to further refine the 

level of water stress.  One of the most widely used indices for quantifying water stress is the 

Crop Water Stress Index (CWSI) which combines leaf/canopy temperatures with ambient air 

temperature, relative humidity and/or irradiance (IDSO et al., 1981; JACKSON et al., 1981; 
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JACKSON et al., 1988)    Non-destructive thermal imagery is beneficial because it allows 

growers to rapidly assess the water status of the vines over a large area. 

The following research evaluated five different native grass and legume groundcover 

mixtures and their effect on neighboring ‘Edelweiss’ grapevines in a commercial vineyard 

located in Southeast Nebraska.  Groundcovers were established immediately following the 

planting of the grapevines so that the covers were established simultaneously with the vines, 

which is atypical to normal practices.   

The objectives for the research project were to answer the following questions: 

1. How quickly will five different native grass and legume groundcover mixtures 

establish and reach 100% ground cover? 

2. How do the five chosen groundcover treatments compete with newly planted 

‘Edelweiss’ grapevines for water? 

3. What impact do these groundcovers have on vine growth, bud break, fruit yield, 

and fruit quality (e.g. pH, titratable acidity and soluble solids)? 

4. What type of insects are present when flowering and non-flowering groundcover 

mixtures are planted in the vineyard? 

5. Can infrared thermography (IRT) be used to assess grapevine water status using 

the crop water stress index (CWSI) and be correlated to leaf water potential 

(LWP)? 

6. Will a grower-affordable infrared sensor be sensitive enough to measure grape 

water status?  
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REVIEW OF LITERATURE 

GRAPE 

The grapevine (Vitis vinifera) belongs to the family Vitaceae which comprises about 60 inter-

fertile wild species distributed in Asia, North America and Europe under subtropical, 

Mediterranean and continental – temperate climatic conditions (TERRAL et al., 2010). The genus 

Vitis includes more than 70 species (ALLEWELDT AND POSSINGHAM, 1988) and some of the 

species currently found in Nebraska include V. aestivalis Michx., V. cinerea (Engelm)., V. 

riparia Michx., and V. vulpine L. (KAUL et al., 2006). The North American V. rupestris, 

V.riparia or V. berlandieri, are used in breeding rootstock due to their resistance against 

grapevine pests, such as Phylloxera and mildews (TERRAL et al., 2010).   

‘EDELWEISS’ GRAPE 

‘Edelweiss’ originated in Osceola, Wisconsin and was developed from crosses that date back 

to 1949 (SWENSON et al., 1980). The pedigree of ‘Edelweiss’ is ‘MN 78’ X ‘Ontario’ (SMILEY et 

al., 2008). ‘Edelweiss’ was introduced by the University of Minnesota in 1980. It was introduced 

as a table grape with the goal of improving table grape quality in cold winter regions but then 

became an important cultivar for white wine, especially when grown in Nebraska (QRUNFLEH, 

2010). The ‘Edelweiss’ vine is considered highly vigorous, producing conical shaped clusters 

that are medium in size, very loose to moderately compact and often double-shouldered. The 

vine is usually trained to a Geneva Double Curtain (GDC) trellis system. Berries are round, 

medium sized and green skinned with a white bloom (SWENSON et al., 1980). Berries are also of 

a slip skin type, have tender flesh and have the lubrusca fruit flavor (BROOKS AND OLMO, 1997). 

‘Edelweiss’ breaks bud early, making it highly susceptible to spring freeze. In addition, it is not 
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productive on secondary buds (SMILEY et al., 2008). The juice is relatively low in acidity (0.6-

0.8%) and has moderate soluble solids (14-16%) when harvested for wine (SWENSON et al., 

1980). It is also known to be an early maturing cultivar and Nebraska grape growers usually 

harvest ‘Edelweiss’ in mid-August at 14-15 °Brix (QRUNFLEH, 2010). 

CULTIVATION 

The most traditional and popular technique used for controlling weeds throughout the world 

is still through the use of tillage.  Tillage eliminates surface crusts, leading to less run-off than 

when herbicides are the only means of weed control (MERWIN AND STILES, 1994).  The main 

disadvantages of tillage cultivation in the under-vine area of the vineyard is soil compaction and 

loss of structure, cumulative loss of fertility and soil organic matter, risk of damage to the vine 

roots, trunks, and cordons, weed emergence, and contribution to the directional spread of soil 

pests and pathogens (MERWIN AND STILES, 1994; SALAZAR AND MELGAREJO, 2005; 

STEENWERTH AND BELINA, 2008a).   

A study in Bordeaux, France on dry-farmed Cabernet Sauvignon, Sauvignon blanc and 

Merlot planted to a tall fescue cover crop (Festuca arundinacea) regime reduced vine vigor, 

yields, leaf nitrogen and juice nitrogen (RODRIGUEZ-LOVELLE et al., 1997).  In another study, 

three of four sites in France also showed lower yields under cultivation than to other vineyard 

floor management practices (GAVIGLIO, 2007).  This result was attributed to reduced nutrient 

uptake due to damage to surface roots of the grapevine by cultivation equipment.    

HERBICIDES 

 The most common method of controlling weeds in the United States is through the use of 

“burndown” herbicides, such as glyphosate.  However there are many documented advantages 
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and disadvantages of using such herbicides.  A major advantage is their specificity to certain 

weed species, their low cost and ease of use, whereas the main disadvantages include the risk of 

developing resistant weeds, risk of toxicity to both the operator and the vines and the potential of 

these chemicals polluting surface and groundwater resources (MERWIN AND STILES, 1994; 

TOURTE et al., 2008).  There are also some indirect effects which include soil compaction during 

application and decreased soil fertility from loss of soil organic matter (SMITH et al., 2008; 

STEENWERTH AND BELINA, 2010).   

 Recently, work has begun to limit off-target interaction with herbicides applied in the 

vineyard.  Herbicides are used at the lowest possible dosage and sprayers can be equipped with 

infrared sensors that detect weeds and limit the amount of herbicide applied (GAVIGLIO, 2007; 

SALAZAR AND MELGAREJO, 2005).  In a five year study on California’s central coast, the 

economics and efficacy of weed control practices were evaluated.  Post emergence (burndown) 

herbicides required fewer applications than preemergence herbicides or cultivation and provided 

similar results, while being less costly.  Coupling both preemergence (diuron, oxyfluorfen) and 

postemergence (glyphosate) herbicides has been shown to be the least expensive and most 

effective method of controlling weeds in Lodi, California vineyards (ELMORE et al., 1997).  

When cultivation was done in the fall, coupled with a single postemergent herbicide treatment in 

a Napa California vineyard, a level of weed control similar to two herbicide treatments was 

observed.  This program used half the amount of herbicide (BAUMGARTNER et al., 2007). 

 Resistance has become a main area of concern regarding the use of herbicides in all areas 

of agriculture.  Horseweed (Conyza Canadensis) (SHRESTHA et al., 2010)  and Italian ryegrass 

(Lolium multiflorum) (JASIENIUK et al., 2008) have both shown glyphosate resistance in 

California.  As of 2012, 348 resistant biotypes and 194 weed species were shown to be resistant 
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to herbicides (GUERRA AND STEENWERTH, 2012).  There are countless studies looking at the 

effect of herbicide resistant species in row cropping situations but very few have addressed the 

problem in winegrape vineyards. 

 As a result, a shift in weed communities is beginning to take place.  Annual weed 

populations have been effectively controlled by herbicide, however, perennial weed populations 

have begun to take hold and have been shown to be more difficult to control (ELMORE et al., 

1997).  A shift in weed communities can result from a couple of different factors including the 

herbicide mode of action and the timing of application (BAUMGARTNER et al., 2007; 

SANGUANKEO AND LEÓN, 2011). 

 Increased public concern regarding the toxicity and long-term health effects of herbicides 

has spurred the development of organic herbicide type products (ELMORE et al., 1997; TOURTE et 

al., 2008).  A number of organic herbicides have been accepted for use in organic agriculture and 

include: acetic and citric acid, clove oil, ammonium nonanoate, and corn gluten meal 

(BAVOUGIAN, 2014; LANINI, 2011).  Organic herbicides tend to have different application 

instructions compared to conventional herbicides in order to increase their effectiveness.  To 

improve weed control, organic herbicides should be applied at higher rates, include an 

organically-certified surfactant, be applied during warm periods and when weeds are at young 

stages.  A major problem with organic herbicides is that they are relatively ineffective against 

grasses and weeds that posses waxy or pubescent leaves.   A study in California comparing 

different methods of weed control found differences in control but no differences in vine growth, 

yield or fruit quality; suggesting that complete control of weeds in the vineyard is not only 

unrealistic but unnecessary (SHRESTHA et al., 2012). 
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To control weed germination and seedling growth, herbicides have been combined with 

mulches.  In Lodi, California, a mulch consisting of fresh residues of wheat (Triticum aestivum), 

oats (Avena sativa), and barley (Hordeum vulgare) grown in interrows and chopped and 

transported to the vine rows showed to be effective at limiting seedling germination and growth 

(ELMORE et al., 1997).  Allowing the cover crop to mature and increase in biomass and then 

burning-down and desiccating the cover crop to act as mulch is another option.  A desiccated 

cover-crop mulch in an Indiana vineyard provided better weed suppression than when the same 

cover crop was either mowed or incorporated into the soil (BORDELON AND WELLER, 1997). 

The effects of vineyard floor management on the grapevine may not be apparent in the short 

term but may be in the long term when grapevines have significant nitrogen (N) stores. This is 

especially true when N fertilization is part of the management system (SCHREINER et al., 2006; 

SMITH et al., 2008).  Weed management practices not only affect vine N composition but also 

soil N availability.  A five year study in a Chardonnay vineyard in the Central Coast of 

California showed greater nitrous oxide emissions and nitrate leaching when weeds were 

chemically controlled with a herbicide than from cultivation that supported greater vegetation 

cover (SMITH et al., 2008; STEENWERTH AND BELINA, 2010).  However, the grapevines showed 

similar leaf and petiole nutrition over the five-year trial.  This suggests there were changes in soil 

characteristics related to soil N availability and was confirmed by the high N stores in the 

grapevines. 

Herbicides can not only provide weed control, they can also be used to control periods of 

competition between the cover crop and the vine.  In a South African vineyard, a postemergence 

herbicide was applied to specifically eliminate competition from a cover crop just before or after 

bud break and showed increased shoot biomass and crop yields (FOURIE et al., 2006).  This 
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practice can also be useful in establishing new vineyards, where it can help accelerate the young 

vine development by freeing the vines from unnecessary competition.  A contrasting study 

conducted in Croce, France showed decreased yields when native vegetation was killed before 

(March) or after (June) vine budbreak (GUERRA AND STEENWERTH, 2012).  This can be explained 

by the decomposing cover crop causing microbial N immobilization and limiting soil inorganic 

N required by the vine during budbreak.  However, a cover crop not burned-down until after bud 

break could sequester N and compete with the vines for water (CELETTE et al., 2009; 

STEENWERTH AND BELINA, 2008a).  The vines growing amongst the cover crop that was burned-

down after budbreak produced wine higher in alcohol, total polyphenols, anthocyanins and lower 

in acidity.  These wines were judged to be superior compared to wines produced with a cover 

crop desiccated before bud break.  This suggests that for vine-cover crop competition to 

negatively affect wine quality, the cover crop growth must be prolonged during most of the 

growing season. 

 Generally speaking, non-organic herbicides are more effective at controlling vineyard 

weeds than cultivation or other non-conventional methods.  Herbicides are also more cost 

effective when compared to other methods and are included in most vineyard weed management 

schemes.   

COVER CROPS 

 Cover crops are widely used in viticultural areas which have high summer rainfall, 

mainly to prevent soil erosion and allow access into the vineyard with machinery (LOPES et al., 

2004).   Other benefits of establishing groundcovers in the vineyard include: improved water 

infiltration and water-holding capacity, improved soil structure and prevention of crusts, 

increased fertility and organic matter, vine growth regulation, weed suppression and improved 
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wine and juice characteristics.  Cover crops are also beneficial to the environment by reduced 

nutrient leaching, increased biodiversity and microbial biomass, and reduced herbicide inputs 

(ALJIBURY AND CHRISTENSEN, 1972; BAVOUGIAN, 2014; GUERRA AND STEENWERTH, 2012; 

GULICK et al., 1994; LOPES et al., 2004; MONTEIRO AND LOPES, 2007; NICHOLLS et al., 2000; 

SMITH et al., 2008). 

 A major hurdle for cover crop use in the vineyard is the increased water and nutrient 

competition that takes place between the cover crop and grapevine.  However, this competition 

may also be beneficial if soils are deep and soil moisture is excessive and/or in areas where vines 

are overly vigorous.  Other disadvantages include increased labor and costs associated with 

management, increased risk of spring frost due to changes in the radiation balance and damage to 

the vines from higher rodent populations (CELETTE et al., 2009; CELETTE et al., 2008; INGELS et 

al., 2005).  A foremost challenge of managing cover crops in the vineyard is treating it also as an 

income producing crop.  Care must not only be given to the vines but also the cover crops and 

they should be treated as an integral part of the vineyard system.  For example, irrigation and 

fertilization practices may need to be altered to meet the needs of both the cover crop and the 

vines (COLUGNATI et al., 2004; LAKSO et al., 2008). 

 A distinction should be made between cover crops and groundcovers.  A cover crop is 

considered to be an annual or biennial “cover” that is intended to cover the ground for only a 

portion of the year (BAVOUGIAN, 2014).  After being desiccated, it is typically tilled in to benefit 

the soil.  A groundcover refers to a permanent or perennial herbaceous plant that covers the 

ground throughout the entire year and flourishes year after year. 

 The most frequently used cover crops belong to the Poaceae family (cereals or grasses) 

and the Fabaceae family (legumes).  Other cover crops that are used more often in arid areas are 
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the forbs found in families such as Brassicaceae and Asteraceae (MCGOURTY AND REGANOLD, 

2005).  Since vineyards are established in many different areas and climates a variety of species 

have been adapted for use as cover crops and groundcovers with over 50 plant species used in 

California alone. (INGELS, 1998).  Different species can each benefit the vineyard in a variety of 

ways.  For example, grass species have extensive fibrous root systems that reach deep into the 

soil and contribute much organic matter to the soil, as well as reducing compaction and 

improving soil structure.  They also tend to have slower decomposition rates than many other 

types of vegetation due to their high C:N ratio compared to legumes which have a much lower 

C:N ratio (COLUGNATI et al., 2004; MCGOURTY AND REGANOLD, 2005).  Legumes can be highly 

beneficial as they are able to fix atmospheric nitrogen into the soil and help meet the microbial N 

needs (FOURIE et al., 2006; MCGOURTY AND REGANOLD, 2005).  The amount of atmospheric N 

fixed by legumes depends on type, inoculation effectiveness, soil moisture and temperature 

(MADGE, 2005).  Strawberry clover (Trifolium fragiferum L.) has been shown to have one of the 

highest N fixation rates, ranging from 100 to over 330 kg/ha where vetches (Viciasp.) generally 

fix 50 to 220 kg/ha N (INGELS, 1998).  While legumes contribute nitrogen to the soil once tilled 

into the soil, rye and triticale decrease nitrogen, sodium and phosphorus concentrations 

compared to a bare soil treatment (SMITH et al., 2008).  Permanent perennial groundcovers have 

been shown to compete for nitrogen more strongly than nonpermanent barley cover crops and 

permanent perennial groundcovers reduced nitrogen content in grapevine storage organs, which 

influenced the current and following years’ nutrition levels.  A greater effect was noticed in years 

when water was a limiting factor (CELETTE et al., 2009). 

 Permanent groundcovers are best suited for soils with high water holding capacity and 

fertility or sites with abundant rainfall due to potential vine-groundcover water competition.  
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This is especially true in non-irrigated vineyards (COLUGNATI et al., 2004).  A groundcover does 

not necessarily need to be planted; it can easily be introduced by continually mowing the 

naturally present plant species.  This practice tends to favor the grass species as the continuous 

mowing discourages the growth of the broadleaf species (LIPECKI AND BERBEĆ, 1997).  

Alternatively, groundcovers can be seeded directly into the vineyard (typically once the vines 

have been established) or the natural reseeding of annuals can flourish year after year.  

Reseeding annuals can be problematic, as they have imperfect seeding and will not typically 

cover the vineyard floor until a large seedbank is achieved (MCGOURTY et al., 2008).  Mowing 

legume groundcovers and cover crops during establishment at the flowering stage tends to 

promote rapid soil coverage (COLUGNATI et al., 2004).  Permanent grass groundcovers consisting 

of grasses will typically benefit from nitrogen fertilization, especially with taller species that 

compete with the grapevines (AGULHON, 1996; CARSOULLE, 1995; COLUGNATI et al., 2004; 

SPRING AND MAYOR, 1996).  Due to the symbiotic growing relationship between permanent 

groundcovers and the grapevines, groundcovers tend to impact vine growth and quality to a 

higher degree than non-permanent cover crops.   

   The greatest concern regarding the use of cover crops and groundcovers is amount of 

water consumption by species other than the vines.  Higher leaf transpiration rates were observed 

in weed species compared to 25-year-old Riesling vines in a German study (LOPES et al., 2004).  

Cover crop species generally have higher transpiration rates than grapevines.  For example, a 

stand of common mallow (Malva neglecta) contributes as much as 5 mm H2O d-1 whereas, vine 

transpiration rates fall around 0.9 mm H2O d-1.  Also interesting, is that the peak water 

consumption between vines and cover crops is quite different.  Cover crop species water 
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consumption peaks between 12 and 15 hours into the day while the grapevines peaked earlier, 

between 8 to 10 hours (GUERRA AND STEENWERTH, 2012).     

 A common practice to achieve multiple benefits from a cover crop or groundcover is to 

plant a mix of grasses, legumes and forbs (GUERRA AND STEENWERTH, 2012).  There are several 

studies comparing cover crop mixes and their effectiveness in different soil types, topographies 

and climates (BREIL, 1999).  Deep soils with high water availability or areas with high rainfall 

can support a more aggressive mix, whereas a steep hillside and a limited moisture vineyard 

would call for a mix with more fescue species (Festuca spp.).  Soil N mineralization and 

nitrification rates associated with decomposition of single species grown alone are not 

necessarily additive when grown in a mixture (EVINER AND HAWKES, 2008), revealing a need for 

more research on effects of these occurrences on vine growth and N storage (GUERRA AND 

STEENWERTH, 2012).   

CULTURAL AND BIOLOGICAL IMPACTS OF COVER CROPS AND GROUNDCOVERS 

 An often overlooked benefit of establishing cover crops or groundcovers in the vineyard 

is the increased habitat diversification, which favors increased populations of beneficial 

arthropod species.  By increasing species diversity, groundcovers and cover crops may stabilize 

the ecosystem and enhance the natural control of pests by bringing pest-predator relationships 

into balance (SULLIVAN, 2003).  For example, cutworms prefer to feed on broadleaf plants more 

than on grasses, and the presence of a broadleaf cover crop may reduce the number of cutworms 

feeding on grape buds early in the season (OLMSTEAD, 2006).   

Cover crops can also be manipulated to achieve certain results from beneficial insects, such 

as waiting to till in the cover crop, in the previous example, until the threat of cutworm damage 
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has passed.  Mowing the alleyways has also been shown to move the predatory and parasitoid 

insects into the grape canopy where they feed on the vine (SHAPOSHNIKOVA et al., 2012).  

Planting cover crops and groundcover mixtures that bloom throughout the season have been 

shown to harbor beneficial insects for longer periods of time.  In California vineyards and 

orchards, cover crop systems had lower population densities of insect pests and less damage to 

fruit, as well as increased numbers and diversity of beneficial insects (ALTIERI AND SCHMIDT, 

1985).  However, a permanent groundcover of subterranean clover (T. subterraneum) in central 

Italy lowered beneficial insects in the first year, but increased them the second year through the 

increase of organic matter in the vineyard (FAVRETTO et al., 1992).   

Below-ground beneficial organisms can also be impacted by planting cover crops and 

groundcovers.  Within three years of planting a groundcover in two Australian vineyards, a 

drastic increase of beneficial parasitic nematodes and a decrease of plant parasitic nematodes 

was observed in the soil (RAHMAN et al., 2009).  Cover crops also reduced the incidence of 

Botrytis by reducing soil water content and opening up the vine canopy (DAVID et al., 2001; 

MORLAT AND JACQUET, 2003; TESIC et al., 2007).  Mammalian rodent species populations have 

been shown to increase when planting clover in the California Central Valley (INGELS et al., 

2005), which will dig underneath the vines and damage roots.  In some cases choosing the proper 

cover crop hinges on what type of insects feed on it.  For example the Glassy Winged 

Sharpshooter is a vector of Pierce’s disease and feeds on many plants that are typically used in 

cover crop and groundcover mixtures.  Choosing plants that are not a food source for this insect 

should be taken into account (MCGAHA et al., 2007).   

There are some cover crop species that have revealed a weed suppressive effect due to the 

release of toxic isothiocyanates after being tilled into the ground.  This has been most often 
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observed in Brassicaceae cover crops, such as kale (Brassica spp.), arugula (Eruca spp.) and 

mustard (Sinapis spp.) (ANGELINI et al., 1998).  Sometimes mustard cover crops are grown 

before vineyard establishment as a biofumigant when conventional chemical fumigation is 

unwanted (MATTHIESSEN AND KIRKEGAARD, 2006; OLMSTEAD, 2006).  The amount of weed 

suppression is highly depend upon the species and cultivar planted.  For example, rye (Secale 

cereale) releases allelopathic compounds (BARBERI, 2002) and sorghum (Sorghum spp.) contains 

sorgoleone, which reduces weed seed germination (DUKE et al., 2000).  However, the weed 

suppressing ability of legume species is typically low compared to grasses (BARBERI, 2002).  A 

study in Iowa, USA showed better weed control using herbicides rather than the cover crop 

creeping red fescue in May and June.  However the cover crop provided better weed control than 

the herbicide in July.  In addition, under-vine creeping red fescue provided better weed control 

than cultivation (WASKO, 2010; WASKO AND NONNECKE, 2008).      

 Cover crops and groundcovers can enhance soil properties in a variety of ways, including 

increased water infiltration, increased soil nitrate and ammonium pools, and nitrogen 

mineralization rates (CELETTE et al., 2008; STEENWERTH AND BELINA, 2008b).  Increased soil 

organic matter is often a benefit of planting cover crops in addition to improving soil structure 

and the depth of low bulk density soil (WHEATON et al., 2008).  Decomposing legumes or other 

cover crops also provide nitrogen to the grapevines, which can be especially important in the 

early part of the season when nitrogen demand is the highest.  Incorporating or mowing the cover 

crops can be timed to release nitrogen at key vine growth stages (BAVOUGIAN, 2014; PATRICK et 

al., 2004).  Groundcovers and cover crops are also used to reduce soil erosion in vineyards 

planted on sloping terrains.  These result from the increased water infiltration into the soil and 

conserve topsoil and protect surface water (ALJIBURY AND CHRISTENSEN, 1972).  A study in a 
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Brazilian table grape vineyard, reported better soil quality in cover crop plots that were 

mechanically mowed rather than burned down with herbicide (ROSA et al., 2013).  Mowing may 

also reduce competition between the vines and cover crops because mowing has been shown to 

temporarily decrease evapotranspiration of fescue cover crops (CENTINARI et al., 2013).    

 Grapevine roots have been shown to occupy more shallow soil depths when grown 

alongside groundcovers under non-irrigated conditions (VAN HUYSSTEEN, 1988).  Which may 

decrease the vines’ ability to withstand drought periods.  Studies conducted in Bordeaux, France 

in the 1980s showed that groundcovers reduced vine vigor, yield, leaf N and Botrytis infection 

(CARSOULLE, 1995).  More recent studies have confirmed these results, showing that permanent 

groundcovers have a devigorating effect on neighboring vines.  This was well documented in a 

17-year study in the Loire Valley, France where a permanent tall fescue stand inhibited vine 

growth, lowered pruning weights and lateral shoots, and eventually decreased yields.  However, 

increased canopy exposure and fruit temperature was observed and reduced Botrytis incidence 

resulted (MORLAT AND JACQUET, 2003).  In an extensive vineyard cover crop project in Indiana, 

nine cover crop treatments were planted alongside newly established and irrigated grapevines.  

Plants in the best cover crop plots had 30% less leaf area, 25% fewer leaves, 50% less shoot dry 

weight and 50% less root dry weight than weed-free control vines.  Fall planted cover crops 

limited vine growth more than the same cover crops planted in spring (BORDELON AND WELLER, 

1997).  In a Swiss study, berry, cluster and pruning weights were also reduced by a tall fescue (F. 

arundinacea) cover crop.  Vine foliage density was decreased and caused vine growth to stop 

earlier than did the herbicide control and low fescue (F. rubra) (DAVID et al., 2001).  Water 

competition between cover crops and vines should also be considered.  Under-vine creeping red 

fescue reduced stem water potential and petiole nitrogen concentration at bloom, reduced the 
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number of leaf layers by 21%, and reduced cane pruning weight by 47% compared to the 

herbicide control (HATCH et al., 2011).  Alleyway groundcovers reduced predawn leaf water 

potential of ‘Cabernet Sauvignon’, but yield and fruit chemistry were unaffected during the first 

two years.  In the third year, vine vigor was reduced and improved juice quality was observed 

(LOPES et al., 2008).    

Reduced vine vigor induced by cover crops may be desirable in regions where vines tend to 

be excessively vigorous, which can cause self-shading and reduced vine-balance (WHEELER et 

al., 2008).  It has been shown that groundcovers and cover crops can be a valuable tool to control 

overly vigorous vines by competing for water, nutrients and other resources (GIESE et al., 2010; 

HATCH et al., 2011; TESIC et al., 2007).  A permanent groundcover can also improve soil 

physical properties and juice quality (MORLAT AND JACQUET, 2003).  In an Australian vineyard, 

canopy openness increased and shoot length decreased with increasing soil coverage by 

permanent groundcovers.  Reduction in berry weights, cluster numbers and yield was not noticed 

until three years after groundcover establishment (TESIC et al., 2007).  These results were more 

pronounced in dry, arid sites than in cool, humid sites, suggesting that irrigation and fertilization 

practices may compensate for establishment of groundcovers in warm climates (GUERRA AND 

STEENWERTH, 2012).  CASPARI AND MONTANO (2013) reported as much as an 80% decrease in 

pruning weights when planted with inter-row rye grass and chicory cover crops, however total 

yields were not affected.  Nutrient competition has also been demonstrated in a Spanish 

‘Tempranillo’ vineyard where vine vigor was reduced through a reduction in nitrate availability 

(PÉREZ-ÁLVAREZ et al., 2013).  In an irrigated California vineyard, no-till treatments reduced 

petiole nitrate but tillage and cover cropping did not affect yields (STEENWERTH et al., 2013).        



19 
 

Vine devigoration is not a universal response in groundcover and cover crop studies.  In a 10-

year study in South Africa the cover crop was burned down before bud break and vines with this 

treatment showed the highest plant and juice nitrogen levels at harvest (FOURIE et al., 2006).  

However in areas where excessive vigor can be problematic, higher N levels may be undesirable. 

To compensate for this FOURIE et al. (2006) recommended rotating N-scouring grass species 

with legumes to decrease soil N levels.  A study in Oregon with established ‘Pinot Noir’ vines 

demonstrated that they were unaffected by 5 different cover crop treatments when compared to 

clean cultivation.  No differences were found among pruning weights, leaf water potential 

(LWP), soil water content, fine root density, shoot growth, yield and cluster weight, or juice 

quality (SWEET AND SCHREINER, 2010). Likewise, in-row cover crops did not affect yield, 

pruning weight, berry size, or midday stem water potential in New York. 

IMPACT ON JUICE AND WINE QUALITY 

Effects on wine and juice quality can mostly be attributed to competition that exists between 

cover crops and grapevines for nutrients and water which overall leads to a less dense canopy 

and increased fruit exposure (AFONSO et al., 2003; DAVID et al., 2001; TESIC et al., 2007; 

WHEELER et al., 2005).  Other impacts of vine-cover crop competition include reduced berry size 

and yield, lower ambient/canopy temperature and increased Botrytis incidence caused by the 

increased canopy humidity from cover crop transpiration (MORLAT AND JACQUET, 2003; 

NAZRALA, 2008).  When using permanent cover crops (groundcovers) in a study in the Bordeaux 

region of France, juice quality was enhanced through increased soluble solids and phenolic 

compounds while it deceased pH, titratable acidity (TA) and N (CARSOULLE, 1995).  An often 

overlooked benefit of groundcovers is the economic return of reducing vineyard operations such 

as leaf pulling and fruit thinning.  The majority of studies in France with permanent 
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groundcovers have shown an overall increase in soluble solids over time as a result of reduced 

yields and increased fruit exposure (AGULHON, 1998; DAVID et al., 2001; MORLAT AND 

JACQUET, 2003).  However, in other studies, the groundcovers had no effect on soluble solids in 

Portugal, Uruguay and Switzerland (AFONSO et al., 2003; NAZRALA, 2008).  Wine and juice 

quality can usually be enhanced by reducing TA and pH and several studies have mirrored this 

when cover cropping was compared to bare soil.  NAZRALA (2008) attributed this to reduction in 

reflected radiation (170 vs. 370 µmol m-2 s-1) and lower vine canopy temperature (26.7 vs. 30.8 

°C).  Soil temperature may also affect the absorption of potassium (K) into the plant and may 

influence juice acidity and pH.  GUERRA AND STEENWERTH (2012) reported an agreement in the 

literature that groundcover treatments lowered leaf petiole nitrogen at bloom, reduced juice N 

concentration and extended fermentation time.  To attain appropriate juice N levels in 

groundcover treatments supplemental N was added, however, after this addition wine ratings 

were highest amongst all treatments. 

Another positive effect of permanent groundcovers is the general increase in anthocyanin and 

tannin levels, both in juice and wine (AGULHON, 1998; BOURDE et al., 1999; MORLAT AND 

JACQUET, 2003; NAZRALA, 2008; WHEELER et al., 2005).  Grape clusters exposed to direct 

sunlight had greater total polyphenols, anthocyanins and flavanols than those growing in 

moderate sun exposure or shade (PRICE et al., 1995).  More research isolating the effects of 

sunlight exposure and berry temperature may help explain the changes in grape nutrition and 

juice composition observed in vineyards where cover crops and groundcovers are used (SPAYD et 

al., 2002).    

GRAPEVINE WATER RELATIONS 
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Water is vital to all living organisms.  The main driving force for vineyard water use is net 

radiation.  Net radiation provides the energy to convert water in the liquid state (inside the leaf) 

to the vapor state (lost via stomata) outside the leaf (WILLIAMS AND AYARS, 2005).  Throughout 

the world’s wine grape growing regions, more and more acres are experiencing seasonal drought 

where soil and atmospheric water deficits, together with high temperatures, exert large 

constraints on yield and quality (CHAVES et al., 2007).  The level of vineyard water use depends 

on a variety of factors.  For example, a newly planted vineyard will have a lower water 

requirement than mature vines.  In the first two years of growth, vines only use about 50 percent 

as much water as a mature vine of the same variety (CHAVES et al., 2007).  Vine water use also 

varies throughout the season.  Water use is low early in the season, from bud break until one 

month later.  As the canopy begins to develop and leaf area increases, evaporative demand 

increases and vine water usage increases linearly until a full canopy is developed.  After harvest, 

water usage begins to decrease as leaves begin to senesce and fall off the vine. 

There is still controversy concerning the positive and negative effects of grapevine irrigation 

practices because if water is applied in excess it can reduce color and sugar content and produce 

acidity imbalances in the wine (BRAVDO et al., 1985; ESTEBAN et al., 2001; MATTHEWS et al., 

1990).  However, vines that are moderately water stressed have increased grape yield and fruit 

quality (FERREYRA et al., 2003; REYNOLDS AND NAYLOR, 1994; SANTOS et al., 2003).  The key 

to improving grape quality in irrigated vineyards is to maintain a balance between vegetative and 

reproductive development, because an excess of shoot vigor may have negative impacts on fruit 

quality (MCCARTHY, 1997).  A moderate water stress may reduce vine vigor and competition for 

carbohydrates by apical shoots, as well as promoting a shift in the partition of photoassimilates 
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towards clusters and berries and secondary metabolites, thus resulting in increased fruit and wine 

quality (MATTHEWS AND ANDERSON, 1989).         

REMOTE SENSING TO PREDICT PLANT WATER CONTENT 

Detection and monitoring of water stress is challenging because its onset is relatively slow 

compared to other natural disasters and each water stress event is distinct based on its duration, 

intensity and spatial extent (SWAIN, 2012; WILHITE AND GLANTZ, 1985).  Water stress impacts 

both the survival and productivity of crops.  Plants experience water stress when the transpiration 

demand exceeds the amount of moisture available in the root zone (KACIRA et al., 2002).  

Relative Water Content (RWC) is a biophysical variable that quantitatively expresses water 

volume per leaf and is expressed as the ratio of the amount of water present in the leaf at 

sampling time to the amount when the leaf is fully turgid and contains the maximum amount of 

water (SMART AND BINGHAM, 1974).  Traditionally, water status in plants is determined either by 

measuring in-situ soil water status (such as soil water content or soil water potential) or by 

measuring in-situ physiological variables that characterize the water use and status in leaves 

(relative water content (RWC), leaf water potential (LWP), stomatal conductance (gl) or 

photosynthetic rate).  The problem with these methods is that they are time consuming, labor 

intensive and may not provide a good indication of the entire field or vineyard (JACKSON, 1982). 

Infrared thermography in addition to other remote sensing techniques offers a non-

destructive method of quantifying the water status of plants.  There has been much research on 

various portions of the electromagnetic spectrum and their ability to quantify plant water content.  

The portions of the electromagnetic spectrum which have been the most studied are the near-

infrared (NIR, 700-1300 nm) and the middle-infrared regions (MIR, 1300-2500) (CHEN et al., 

2005; GAO, 1996; JACKSON et al., 2004; USTIN et al., 1998).  Spectral reflectance of vegetation in 
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the NIR region is determined by cell structure, leaf tissue characteristics, canopy architecture and 

the presence of two weak water absorption bands (970 and 1200nm). The reflectance in the MIR 

region of the electromagnetic spectrum is primarily controlled by the volume of water in leaf 

cells with the most absorption happening at 1450, 1950 and 2250 nm (CARTER, 1991; SIMS AND 

GAMON, 2003; TUCKER, 1980).   

There have been many indices developed to help better understand plant water content 

using remote sensing techniques, for example, the Moisture Stress Index (MSI) (ROCK et al., 

1986), Normalized Difference Infrared Index and the Normalized Difference Water Index (GAO, 

1996; HARDISKY et al., 1983).  The main problem with using such indices that make use of the 

NIR and MIR portions of the spectrum is that they have been shown to be less sensitive to RWC 

differences of 6% or less (RIGGS AND RUNNING, 1991), which are important when looking for 

early signs of drought/water stress.  Another problem with using NIR and MIR bands is that they 

tend to saturate when the vegetation canopy closes or when the leaf area index (LAI)  reaches 4 

or greater (LILLESAETER, 1982).  Relative water content in cotton has been shown to be weak and 

even statistically non-significant when it ranged from 92-100% (BOWMAN, 1989). 

Another option making use of remote sensing is in the thermal infrared portion of the 

electromagnetic spectrum.  Thermal sensors have the ability to sense vegetation temperature, 

which employs the principle that adequate moisture allows the plant to transpire at maximum 

rates, thus resulting in leaf temperatures lower than ambient air temperatures.  Leaf temperatures 

are able to be lower than air temperatures because the amount of heat energy that is required for 

converting each mole of liquid water into water vapor is removed from the leaf as latent heat.  

This latent heat keeps the leaf cool (JONES et al., 2009).  Therefore, leaf temperature begins to 

increase when soil moisture begins to diminish.  Plants respond to this change by closing stomata 
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to limit water movement out of the leaf via transpiration.  As stomata close, the incident radiation 

on the leaf surface is primarily converted to sensible heat rather than latent heat which increases 

the leaf temperature and allows it to become warmer than the ambient air temperature 

(ANDERSON AND KUSTAS, 2008; FUCHS, 1990; MCVICAR AND JUPP, 1998).  Use of thermal 

instruments to detect water stress can be used more quickly than other methods to identify 

changes in the MIR and NIR regions (JACKSON AND EZRA, 1985).  

In the past few decades instruments have been developed to measure leaf and canopy 

temperatures of plants.  In the late 1970’s and 1980’s small portable infrared thermometers 

(IRT’s) were used to measure soil and plant temperatures using a small field of view (FOV) 

(FUCHS, 1990; IDSO et al., 1981; JACKSON et al., 1981; JACKSON et al., 1988; JONES, 1999; 

PAYERO AND IRMAK, 2006).  The most commonly used index, which utilizes canopy temperature 

and other meteorological measurements such as ambient air temperature, relative humidity and 

irradiation (IDSO et al., 1981; JACKSON et al., 1981; JACKSON et al., 1988), is the Crop Water 

Stress Index (CWSI).  For accurate results using the CWSI, upper and lower temperature 

baselines representing fully transpiring and non-transpiring leaves must be inserted into the 

equation (GUILIONI et al., 2008; LEINONEN et al., 2006).  IDSO et al. (1981) developed an 

empirical method for quantifying stress by determining “non-water-stressed baselines” for crops.  

These baselines represent the lower temperature limit that a particular crop would attain if it 

were transpiring at its full potential which provides a simple method to normalize thermal 

images, both for incoming solar radiation (irradiance) and for measurement error within the 

sensor itself.  For example, leaves sprayed with water or covered with petroleum jelly have 

proven to be convenient and accurate temperature indicators for transpiring and non-transpiring 

grape leaves (JONES, 2004; JONES et al., 2002; LEINONEN et al., 2006).  MERON et al. (2003) and 
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MÖLLER et al. (2007) used a large “wet artificial reference surface” (WARS) as an indicator for 

airborne thermal imagery on ‘Merlot’ grapevines.  This reference surface was constructed from a 

5 cm thick slab of expanded polystyrene foam which was floated on a 40 cm x 30 cm x 12 cm 

plastic tray of water.  The foam was coated with a double piece of 0.5 mm thick water absorbent 

non-woven polyester and viscose mixture cloth, overlaid on another 2 mm thick polyester non-

woven water absorbent cloth.  The edges of the cloth were placed in the water and acted as a 

wick, soaking up water to replace what was lost due to evaporation.  In this particular experiment 

the upper baseline (dry reference) temperature was simply determined by adding 5 °C to the 

measured dry bulb temperature as suggested by IRMAK et al. (2000) and used by COHEN et al. 

(2005).  It was concluded that the CWSI computed with air temperature +5 °C and the WARS 

for the dry and wet reference surfaces, respectively provided the most robust stress index 

(MÖLLER et al., 2007).    

A serious limitation to using IRTs and water stress indices to determine water stress of a 

canopy is that the temperature data received by the thermal sensor are spatial averages of all 

materials within the field of view of the sensor.  This would include all non-transpiring material 

such as brown trunks and canes, bare soil and blue sky, all of which will skew the canopy 

temperature average (SWAIN et al., 2012).  Another potential issue with measuring grapevine 

canopy with a thermal sensor is that as the leaf area index (LAI) increases, the internal shading 

of leaves also increases.  GRANT et al. (2006) and JONES et al. (2002) have reported significant 

temperature differences between sunlit and shaded leaves within a grape canopy.   

Past studies have used thermal imaging approaches to estimate stomatal conductance of 

grapevine canopies (JONES et al., 2002), French beans and lupins (GRANT et al., 2006), stomatal 

resistance and stem water potential in olive trees (BEN-GAL et al., 2009) and LWP in cotton 
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(ALCHANATIS et al., 2010; COHEN et al., 2005).  Stomatal conductance is considered to be a very 

sensitive and early indicator of plant water stress and has been predicted using the CWSI 

(MÖLLER et al., 2007), however, RWC is a more direct measure of water status because it 

compares the actual water content in a leaf against the content at full turgor.  It has been argued 

that cell elasticity or turgor, which directly drives cell expansion and contraction, is the real 

indicator of water stress (JONES, 2007).   

The research in this dissertation evaluates a broad spectrum of parameters relating to the 

impact that establishing groundcovers around newly planted ‘Edelweiss’ grapevines has on 

growth.  The groundcovers were planted both in the alleyways as well as under-vine areas of the 

vineyard, which are conventionally controlled with burn-down herbicides. The following 

chapters outline the experimental design, methods of planting the groundcovers and the 

grapevines, and finally the results and conclusions from this four-year study. 
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CHAPTER 1 

 

Establishment of ‘Edelweiss’ Grapevines and Groundcover Treatments 

 

Materials and Methods 

Site Selection: 

This research project was started in the spring of 2014 at Oak Creek Vineyards located 

near Raymond, Nebraska (40.947450° N -96.766140° W) within Lancaster County, Nebraska.  

Oak Creek Vineyards is a commercial vineyard that grows grapes on contract for James Arthur 

Vineyards and was gracious enough to allow the University of Nebraska Viticulture Program to 

conduct this research on their property.  

Grapevines: 

 ‘Edelweiss’ (Minnesota 78 x Ontario) grapevines were chosen for this experiment 

because of their popularity amongst grape growers, wineries, consumers in Nebraska and across 

the cool climate regions of the Midwest.  This cultivar has a vigorous growth habit, which in 

some cases can become problematic for growers.  Excessive growth can shade the fruiting zone 

and increase labor costs through extra leaf pulling, shoot thinning, and more intense pruning.  

Bare rooted ‘Edelweiss’ plants from Double A Vineyards Inc. (Fredonia, NY). were planted in 

May of 2014.  Blue –X® (Double A Vineyards Inc. Fredonia, NY) grow tubes were placed 

around the young plants soon after planting and left in place until fall of the same year.  Vines 

were trained to a 6 foot (1.83 m) high-wire trellis system with a spacing of 8 feet (2.44 m) 

between plants and 12 feet (3.66 m) between rows, with row orientation north to south.   
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Experimental Design: 

The experiment consisted of four groundcover treatments (Trt 1, Trt 2, Trt 3 and Trt 4) 

and a control treatment.  The five treatments are explained in more detail in the following 

sections.  A randomized complete block design was used with four blocks to account for the 

change in elevation and soil types across the vineyard (Figure 1.1).  Change in elevation occurs 

from East (1287 feet above sea level) to West (1266 feet above sea level) across the vineyard.  

Soil types from East to West include Aksarben silty clay loam, Pawnee Clay Loam and Yutan 

silty clay loam, respectively (Web Soil Survey, 2018).  

Figure 1.1.  Layout of experiment and treatments at Oak Creek Vineyards.  Blocking 

occurs from top to bottom to account for change in slope and soil types.  Each replicate 

consisted of four plants, with one buffer plant on either end of the replicate and four plants 

in the middle used for data collection.  Trt 1 – Red, Trt 2 – Orange, Trt 3 – Yellow, Trt 4 – 

Pink, Control – Blue.   

 

Irrigation: 

Precipitation can be highly inconsistent in late spring and summer in Nebraska so it was 

important to install a drip irrigation system to provide the young vines with supplemental water.  

In addition to providing the vines with adequate water in the first year it was also necessary to 
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irrigate the groundcover plots to speed up establishment in order to outcompete resident weed 

populations.  Additionally, with heavy spring rains it was important to establish the 

groundcovers as quickly as possible to reduce soil erosion.   

An irrigation system for supplementing the grapevines with water was constructed using 

½ inch drip line which was pulled into the ground and offset from the vine 18 inches (45.72 cm).  

The drip line was offset because the machine used to pull the pipe into the ground could not 

drive directly over the row.  Grapevines were watered every three days consistently throughout 

the hot summer months.  

 The irrigation structure for the groundcover plots was constructed as an overhead 

irrigation system.  Supply water lines ran west to east, perpendicular to the rows and were buried 

12 inches below the surface.  At each groundcover plot a ½ inch polyvinyl chloride (PVC) pipe 

was attached to the wood trellis post and a Rainbird® (Azusa, CA) rotary sprinkler head was 

attached to the top of the PVC at a height of 6 feet (Figure 1.2).  This was done to increase the 

height of the sprinkler and increase spray distance.  Each rotary sprinkler used a 4 gallon per 

minute (GPM) tip.  Groundcover plots were watered for 30 minutes every other day just before 

dawn. 
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Figure 1.2.  Layout of irrigation system to water groundcover plots.  The black vertical 

lines are the buried supply lines and the blue circles indicate the area that the rotary 

sprinkler head was watering.  The control and natural vegetation plots did not receive 

supplementary irrigation.   Trt 1 – Red, Trt 2 – Orange, Trt 3 – Yellow, Trt 4 – Pink, 

Control – Blue.   

 

Groundcover Selection: 

 Groundcover seed was provided by Stock Seed Farms near Murdock, Nebraska.  The 

selection of species in each groundcover mixture were chosen based upon a variety of factors 

including:  rate of establishment, water usage, native range in the Midwest, ability to grow in 

compacted soils, low-growth habit and nitrogen fixing ability.  Treatment 2, 3 and 4 are 

groundcover mixtures that are currently commercially available through Stock Seed Farms.  

Treatment 1 was a custom mixture put together specifically for this project.  The groundcovers 

mixtures were as follows: 

Treatment 1 (Stock Seed Farms Roadside Mix®): Western Yarrow (Achillea 

millefolium), Birdsfoot Trefoil (Lotus corniculatus) and Dutch Clover (Trifolium repens). 
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Treatment 2 (Custom Native Grass Mix): Hard Fescue (Festuca brevipila), Sheep’s 

Fescue (Festuca ovina), Sideoats Grama (Bouteloua curtipendula), Texoca Buffalograss 

(Buchloe dactyloides) and Blue Grama (Bouteloua gracilis). 

Treatment 3 (Stock Seed Farms Orchard/Vineyard Mix®): Kentucky Bluegrass (Poa 

pratensis), White Clover (Trifolium repens), Red Fescue (Festuca rubra), Hard Fescue 

(Festuca brevipila), Chewing’s Fescue (Festuca rubra ssp. commutata) and Perennial 

Ryegrass (Lolium perenne). 

Treatment 4 and 5: Natural Vegetation in 2014 and was planted to Texoca Buffalograss 

(Buchloe dactyloides) in 2015. 

Control – natural vegetation allowed to grow in the alleyways and a three foot swath 

beneath the vines was controlled as minimally as possible with herbicide. 

Figure 1.3.  Images of the 4 groundcover treatments and the control in the spring of 2015, 

one year after they were planted.  Treatment 1 – Image A, Treatment 2 – Image B, 

Treatment 3 - Image C, Treatment 4 – Image D and Control – Image E. 

  
A B 
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Figure 1.4.  Image of treatment 1 showing the plant species growing un-mowed under the 

vines.  This was done to allow the groundcovers to flower. 

 

Groundcover Establishment: 

Groundcovers were drilled into the vineyard soil immediately after all of the vines were 

planted.  The soil was prepared by using a soil conditioner attached to a skid loader.  Once the 

ground was level and free of large clods, the grass seed mixtures were loaded into a native grass 

C D 

E 
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seed drill which was acquired from Pheasants Forever in Louisville, Nebraska.  The drill was set 

to an 8-inch spacing between rows.  The drill would not fit between plants, so in these areas the 

groundcovers were hand seeded and then incorporated into the soil using a hard rake.  Once the 

seed had been drilled, plots were rolled and compacted using a Fimco® landscape roller to 

increase seed-soil contact and immediately watered.  The seed was sown at a rate recommended 

by Stock Seed Farms based upon their commercial seeding rates for establishing new stands.  

Seeding rates and cost are as follows: 

Treatment 1: 0.50 lbs/1000 ft2 (21.8 lbs/acre) @ $8.75/lb. 

Treatment 2: 0.75 lbs/1000 ft2 (30.0 lbs/acre) @ $9.00/lb. 

Treatment 3: 2.3 lbs/1000 ft2 (100.0 lbs/acre) @ $2.15/lb. 

Treatment 4: 3.0 lbs/1000 ft2 (130.7 lbs/acre) @ $12.00/lb. 

*Wholesale prices were for 2014.  A retail customer would typically pay 15-20% more. 

Climatic Conditions from 2014-2017 

 Average monthly temperatures, monthly minimum and maximum temperatures and total 

monthly precipitation data from a weather station at the research vineyard are presented in Figure 

1.5, 1.6 and 1.7, respectively.  Overall, the 2016 growing season was warmer than 2014, 2015 

and 2017 averaging 65.7 °F, whereas 2014, 2016 and 2017 averaged 62.6 °F, 63.9 °F and 63.9 

°F, respectively.  Precipitation was the highest in 2017 with 35 inches; 2014 and 2015 had very 

similar precipitation totals (32.2 and 32.9 inches) and 2016 had the lowest total precipitation with 

25 inches.  Heavy and fast rainfall events in May of 2015 caused fairly severe soil erosion in 

parts of the vineyard that had no groundcover.   
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Figure 1.5. Average monthly temperature from March – October, 2014-2017.  Data were 

recorded from a weather station located on the vineyard site 1 mile south of Raymond, 

Nebraska. 

 

Figure 1.6.  Minimum and Maximum temperatures during the growing season from March 

to October, 2014-2017.  Data were recorded from a weather station located on the vineyard 

site 1 mile south of Raymond, Nebraska. 
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Figure 1.7.  Total monthly precipitation from March to October, 2014-2017.  Data were 

recorded from a weather station located on the vineyard site 1 mile south of Raymond, 

Nebraska. 

 

Preliminary First Year Data Collection 

Rate of Groundcover Establishment 

 Data collection in year one was primarily focused on the rate of establishment by each 

groundcover treatment.   The speed of establishment or how quickly the groundcover fills a 

given area is important because groundcovers reduce the resident weed seed population’s ability 

to become established.  Rate of establishment was assessed weekly beginning July 7, 2014 by 

placing a 24 x 24 inch PVC square on the ground in two predetermined places within each 

replication.  The location for the square was randomly chosen on the first date but the same spot 

was used on the following dates.  Location 1 was within the alleyway of the row and Location 2 

was directly beneath the vines.  A digital image was taken of the PVC square in each of the 

locations.  The images were processed using Click to Crop® where all pixels outside of the PVC 

square were removed from the image.  Images were then analyzed using the University of 

Nebraska’s Center for Advanced Land Management Information Technologies (CALMIT) 
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VegFraction software which compared the percent of green vs. non-green material within each 

image (Figure 1.8).  The rate at which the percentage of green vs. non-green material in each 

image increased over the growing season was used as an indicator for the rate of groundcover 

establishment.  

Figure 1.8.  Cropped digital image of 24x24” square placed on the ground (left), both in the 

alleyway and under-row areas of the vineyard.  The same image (right) after being 

processed with VegFraction software.  All green material in the image is yellow and any 

non-green material is blue.   

 

Shoot Length and Pruning Weights 

 Since this was the first year of vine growth, data collection involving the grapevines was 

minimal.  As a preliminary gauge of how the groundcovers affected vine growth, shoot lengths 

were taken throughout the growing season and pruning weights were collected in the dormant 

season of year one.  Shoot lengths were measured beginning on July 29th when the vines had just 

reached the top of the grow tubes.  In each replication, the center two vines of four vines were 

used for data collection.  The longest vine was measured from the top of the grow tube to the end 

of the vine and recorded.  When a vine reached the six foot high wire, that specific date was 

recorded.  This was done because the goal for plant growth in the first year of establishment is to 
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reach the trellis wire and this date indicates how quickly that goal was reached or not reached.  

All of these measurements were done on the same two plants per replication on July 29, August 

5, 12 and 19.  The shoot lengths on each date from the two plants per replication were averaged 

together to obtain a single value for each replication.          

 Pruning weights were collected on March 15, 2015.  Following standard first year 

protocol, all vines were cut back to the ground at the end of year one.  Pruning weights collected 

in 2015 were actually the entire weight of the above ground portion of the vine.  This total vine 

weight is an excellent indicator of vine growth in the first year of establishment.  The two center 

vines from each replication were cut off just above ground level leaving one or two buds.  The 

woody vine was then weighed using a digital balance.  The two weights of each single plant 

experimental unit were recorded and averaged together to obtain a single value for each 

replication.   

Results and Discussion: 

Rate of Groundcover Establishment 

 The rate at which a groundcover is able to fill a given area and cover the bare ground is 

essential at limiting resident weed seed from becoming established.  The quicker a groundcover 

is able to establish the less likely weeds will overtake the plot.  Groundcover establishment in 

both the alleyways and the under-row portions of the vineyard were slightly different.  In both 

areas the groundcovers had similar rate of fill (slopes were similar), however, percent of cover of 

each treatment was different between the two areas.  In the alleyway, Trt 1 and Trt 3 were not 

different from one another, in that, they had similar percent cover throughout all collection dates 

(Figure 1.9).  Percent cover for these two treatments started at 20% and increased linearly to an 
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end point of around 90% cover.  Trt 2 was different from Trt 1 and Trt 3 in that it consistently 

had a lower percent cover throughout all dates.  This was expected as native prairie grass species 

are typically slower growing and spread more gradually.  The herbicide control and the natural 

vegetation treatments were nearly identical in their percent cover and rate of establishment.  

Interestingly, by the end of the first year these two treatments only covered around 50% of the 

ground, making the soil highly susceptible to erosion.   

 Groundcover establishment under the vine-row showed differences compared to 

establishment in the alleyways (Figure 1.10).  The control and natural vegetation treatments 

again had similar rates of establishment throughout the first year with slight differences in the 

percent cover across all dates.  The three groundcover treatments also showed similar rates of 

establishment.  Trt 2 (native grass mix) showed a faster rate of establishment and final percent 

groundcover in the under-row areas of the vineyard.  This can most likely be attributed to the 

difference in seeding practices between the two areas.  In the alleyways, the seed was drilled on 

8” centers, whereas, under the rows the seed was hand seeded at heavier rates.  This difference in 

seeding rates is clearly seen in the two plots (Figure 1.9 and 1.10).  All groundcover treatments 

ended up with over 90% cover by the end of the year.    

 

 

 

 

 

 

 

 



48 
 

Figure 1.9.  Rate of groundcover establishment in the vineyard alleyways in 2014.  Trt 1 = 

Western Yarrow, Birdsfoot Trefoil and Dutch Clover; Trt 2 = Hard Fescue, Sheep’s 

Fescue, Sideoats Grama, Buffalograss and Blue Grama; Trt 3 = KY Bluegrass, White 

Clover, Red Fescue, Hard Fescue and Chewing’s Fescue; Trt 4 = Natural Vegetation; 

Control = weeds controlled by herbicide under-row. 
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Figure 1.10.  Rate of groundcover establishment under the vine-row in 2014.  Trt 1 = 

Western Yarrow, Birdsfoot Trefoil and Dutch Clover; Trt 2 = Hard Fescue, Sheep’s 

Fescue, Sideoats Grama, Buffalograss and Blue Grama; Trt 3 = KY Bluegrass, White 

Clover, Red Fescue, Hard Fescue and Chewing’s Fescue; Trt 4 = Natural Vegetation; 

Control = weeds controlled by herbicide under-row.   

 

Shoot Length 

 Shoot length is a direct indicator of vine growth and can be used to gauge the amount of 
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all measurement dates, with an ending length of 62 inches.  Finally, Trt 3 showed the slowest 

vine growth in the first year.  It had the slowest growth rate and did not reach the trellis wire, 
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treatments had a negative impact on vine growth in the first year.  Because none of the vines had 

much more growth beyond the height of the wire, the vines were cut back to just a few buds 

above the ground in the winter of 2015.   

Figure 1.11.  Average shoot length measured from the top of the grow tube to the end of the 

longest shoot in 2014.  Trt 1 = Western Yarrow, Birdsfoot Trefoil and Dutch Clover; Trt 2 

= Hard Fescue, Sheep’s Fescue, Sideoats Grama, Buffalograss and Blue Grama; Trt 3 = 

KY Bluegrass, White Clover, Red Fescue, Hard Fescue and Chewing’s Fescue; Trt 4 = 

Natural Vegetation; Control = weeds controlled by herbicide under-row.   

 

Pruning Weights/Total Vine Weight 

Pruning weights were collected in winter, 2015.  Following first year standard protocol, 

the entire vine was cut back, leaving just a few buds on a short portion of the trunk above the 

ground.  Pruning weights represent the entire weight of above ground growth put on by the vine 

in the first growing year (2014).  There were clear differences between vines growing with 

groundcovers, natural vegetation and control treatments (Figure 1.13).  As expected, the vines 
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with the herbicide sprayed under-vine area (control) had the most amount of growth in the first 

year and had the highest pruning weights of 0.3 lbs/vine.  Natural vegetation affected growth of 

the vines slightly and led to reduced pruning weights by 0.06 lbs/vine compared to the control.  

The three groundcover treatments were not statistically significantly different from one another, 

however, they significantly reduced pruning weights when compared to the herbicide sprayed 

control.  Groundcovers reduced vine weight by up to 67% (Figure 1.12 and 1.13).  This reduction 

in vine growth in the first year would not be a positive result of using groundcovers.  The goal 

for newly planted vines in the first year of establishment is to put on as much growth as possible 

and reach the trellis wire and beyond.  If insufficient growth occurs in the first year, vines are 

typically cut back to the ground and allowed to regrow from a few buds in the following year.  

This technique allows energy reserves in the root system to push new growth to a greater extent 

in the second year.    
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Figure 1.12.  Average pruning weight of two vines/replicate in all treatments. Data 

represent growth from the first year of growth (2014).  Trt 1 = Western Yarrow, Birdsfoot 

Trefoil and Dutch Clover; Trt 2 = Hard Fescue, Sheep’s Fescue, Sideoats Grama, 

Buffalograss and Blue Grama; Trt 3 = KY Bluegrass, White Clover, Red Fescue, Hard 

Fescue and Chewing’s Fescue; Trt 4 = Natural Vegetation; Control = weeds controlled by 

herbicide under-row.   

 

*Error bars represent mean ± SE. 
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Figure 1.13.  Pruning weight average of all replications for each treatment.  Data represent 

growth from the first year of growth (2014).  Trt 1 = Western Yarrow, Birdsfoot Trefoil 

and Dutch Clover; Trt 2 = Hard Fescue, Sheep’s Fescue, Sideoats Grama, Buffalograss and 

Blue Grama; Trt 3 = KY Bluegrass, White Clover, Red Fescue, Hard Fescue and 

Chewing’s Fescue; Trt 4 = Natural Vegetation; Control = weeds controlled by herbicide 

under-row.   

 

*Columns with same letters are not significantly different at p≤ 0.05.  Error bars represent mean 

± SE. 

 

Conclusions 

1. The use of supplementary irrigation increased the rate of groundcover establishment and 

limited the infestation of native weed species.  It is recommended that growers should 

irrigate newly planted groundcovers. 

2. All of the planted groundcover treatments became established and filled the ground area 

much faster than the natural vegetation and control treatments.  In 2015, heavy rainfall 
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12 inch deep gullies running through the vineyard.  As a result, remedial measures had to 

be taken, where the vineyard manager was forced to haul in soil to fill in the gullies.  In 

the areas where the groundcovers were planted, little-to-no soil erosion was noticed. 

3. Vine growth was affected by the groundcovers in 2014.  The control and natural 

vegetation treatments had much higher shoot lengths and vine weights.  This preliminary 

data indicates that planting groundcovers simultaneously with grapes is detrimental to the 

growth of young vines.  This effect is probably magnified by the fact that the 

groundcovers were planted in the vine row, an area of the vineyard that is typically kept 

weed-free through the use of herbicides.  Further investigation is needed comparing the 

effects of groundcovers planted in the first or second year of vineyard establishment.       
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CHAPTER 2 

 

Leaf Water Potential and Vine Growth in 2015, 2016 and 2017 

 

Introduction 

 In years 2015, 2016 and 2017 the bulk of the data were collected and used to accomplish 

the major objectives of this project.  This included Midday Leaf Water Potential (Ψmd), pruning 

weights, soil samples, petiole samples (2017) and harvest parameters including: total yield, 

clusters per plant, cluster weight, berry weight, pH, TA and °Brix.  The main objective of these 

sections is to determine how the groundcovers impacted the grapevine growth parameters listed 

above. 

Materials and Methods 

Leaf Water Potential 

Leaf water potential measurements were taken on June 30, 2015.  On this date the vines 

had reached full canopy and the dry summer season had begun.  Ψmd was measured using a 

pressure chamber (model 2005HGPL, Soil Moisture Equipment Corp., Santa Barbara, CA).  In 

the first year, the center two vines of the 6 vine experimental unit in each replication were 

chosen.  A single mature, fully expanded leaf on each plant was used for Ψmd.  The leaves were 

exposed to direct solar radiation and were located on the East side of the canopy.  Midday 

measurements occurred as close to solar noon as possible (12:30 – 2:30 pm, Central Daylight 

Time) when the vines were at a peak water stress level.  Leaf blades were covered with a plastic 

bag, quickly sealed and then petioles cut within 1 to 2 seconds.  The time from leaf excision to 

the pressure chamber measurement was generally less than 10 seconds.  Measurements were 
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repeated every week throughout the growing season and were only collected on days when skies 

were clear to mostly clear and no precipitation events had occurred that day.  In 2016 and 2017, 

the same methods were used with one exception; the center four plants were used for data 

collection in order get a better degree of the Ψmd in the whole replicate and to increase statistical 

power, rather than just two plants which was done in 2014 and 2015.   

Figure 2.1. Specially constructed data collection cart.  Data from multiple devices was 

collected simultaneously when Midday Leaf Water Potential (Ψmd) was measured.  Devices 

included a pressure bomb, weather station (air temp and relative humidity), pyranometer 

(irradiance) and Anemometer (wind speed). 

 

Pruning Weights 

 Pruning weights were measured on March 17, 2015, February 17, 2016 and February 16, 

2017.  Vines were pruned leaving 4 to 5 buds on each cane.  Prunings were collected and 

weighed from the four center plants within each replication.     

Bud Break 

 Bud counts were taken every three days and began on April 7, 2016 and April 8, 2017 

and concluded April 22, 2016 and April 29, 2017, respectively.  Bud break was determined as 

stage four of the modified Eichhorn-Lorenz (E-L) scale of grapevine development (COOMBE, 

1995).  Stage four indicates that the bud scales have expanded to the point where the first leaf 
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tissue is visible.  Buds on one preselected cane per plant within each four plant replication were 

counted and recorded.  Bud break counts were taken on each preselected cane until bud break 

had reached 60% (three out of five buds open).  Complete bud break was considered when 60% 

of the buds had reached stage four.  The Julian date (beginning January 1) was recorded when 

the cane had reached 60% bud break.  

Harvest 

 Harvest occurred on August 10, 2016 and August 15, 2017.  The four center vines were 

again chosen for data collection where all of the fruit from each plant was harvested individually.  

Total number of clusters were counted and the weight was recorded.  Using these data, average 

cluster weight was calculated.  Once the fruit from each plant was weighed, 100 berry samples 

were taken from each plant and placed into a plastic freezer bag.  These samples were taken back 

to the lab where they were frozen and later analyzed for pH, TA and °Brix. 

Berry analysis was conducted on September 15, 2016 and September 19, 2017 to 

measure pH, TA and °Brix.  Berries were removed from the freezer the day before testing and 

placed in a cooler (40 °F) to thaw.  On the day of testing, the berries were removed from the 

cooler and warmed to room temperature.  Berry samples were then crushed within the plastic 

freezer bag and the juice was extracted by cutting a small hole in the bag, allowing the clear juice 

to run out into a 100 mL beaker (LOSEKE et al., 2015).  The extracted juice was then poured into 

test tubes to conduct the analyses.  Juice pH was measured with a Hanna pH/ORP meter model 

HI 2211 (Hanna Instruments, Woonsocket, RI).  Soluble solids (°Brix) content was measured 

using an Atago PR-101 digital refractometer (Atago U.S.A, Bellevue, WA).  TA was determined 

with the use of a Hanna HI 900 (Hanna Instruments, Woonsocket, RI) automated titration 

system.  
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Soil Samples 

 Soil samples were collected in the spring of 2015, 2016 and 2017 before the grapevines 

had broken dormancy.  Samples were taken at a depth of 12 inches from each replication in the 

vineyard.  Each sample consisted of a composite of 6 subsamples, two taken from within the 

alleyway on either side of the vine row and two taken from within the vine row.  All samples 

were taken randomly within each replication.  Samples were taken to AgSource laboratories 

(Lincoln, NE) where they were analyzed for pH, EC, organic matter and a variety of nutrients.    

Statistical Analyses 

 All data (Ψmd, harvest, pruning weights, soil samples and bud break) were treated as a 

Randomized Complete Block Design with a Two-Way ANOVA using the GLIMMIX procedure.  

Main and simple effects were compared at P ≤ 0.05, when appropriate.  A repeated measure 

covariance structure was also fit to the residual of each model for Ψmd to account for the 

dependencies imposed by sampling over time.  In 2015 and 2016 the ANTE(1) covariance 

structure was used and in 2017 the SP(POW) structure was used to accommodate unequally 

spaced collection dates in the three years.  Data were analyzed using SAS/STAT® Version 9.2 

(SAS Institute, Cary, NC). 

Results and Discussion 

Leaf Water Potential 

 In many growing regions across the world, vines are grown for wine production without 

the supplementation of irrigation.  Under dry conditions when a relatively small amount of water 

supplements the vines, a large increase in grape production can occur (DOS SANTOS et al., 2003; 

FERREYRA et al., 2003; MATTHEWS AND ANDERSON, 1989; REYNOLDS AND NAYLOR, 1994). 
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However, it is generally thought that wine quality is diminished with increased irrigation and 

berry size.  Due to this, a full irrigation regime is seldom applied to wine grape vineyards 

(GIRONA et al., 2006).  The most common irrigation practice is to apply only enough water to 

keep the vines from becoming moderately to seriously water stressed.  Maintaining a mild water 

stress during the final stage of berry development increases the proportion of skin to grape juice, 

thus improving wine color and flavor (WILLIAMS et al., 1994). 

 LWP thresholds have been defined for vinifera grapevines by WILLIAMS AND ARAUJO 

(2002); CHONÉ et al. (2001) and GRIMES AND WILLIAMS (1990). Generally speaking, in 

California it is advised that irrigation should be initiated when Ψmd levels reach -10 bars, where -

15 to -16 bars is the lowest Ψmd value achieved under dry conditions.  There have not been any 

Ψmd thresholds established for many of the grape cultivars grown in the Midwest United States, 

including ‘Edelweiss’ which was the grape used in this project.  In order to design an irrigation 

regime to maintain a slight water deficit one must first have a baseline for no water stress and 

complete water stress.   A separate greenhouse project was conducted to determine these 

baselines and is outlined in detail in the following chapter. 

Midday leaf water potential was measured in 2015, 2016 and 2017 to observe the effects 

different groundcover treatments had on the water status of neighboring ‘Edelweiss’ grapevines.  

Because environmental conditions varied greatly between years, comparisons between 

treatments across the three years was not possible.  Therefore, the treatments were only 

compared within each individual year. 

2015 – Midday Leaf Water Potential 

 In 2015 there was not a treatment*date interaction so the data were averaged across all 

dates for each individual treatment.  The only significant difference that was observed when data 
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from all dates was averaged was between Trt 2 and Trt 4 (p=0.0235), where Trt 2 had a lower 

Ψmd.  There was only one instance where a treatment was statistically significantly different from 

the control in 2015 which was on July 29, where Trt 1 had a higher Ψmd of 1.79 bars (p=0.0193).  

Other than that, there were no significant differences between any of the treatments and the 

control (Appendix H), indicating that in 2015 the groundcovers did not reduce the availability of 

water to their neighboring grapevines, thus causing higher water stress.   

The four groundcover treatments and the control showed a similar pattern of change in 

Ψmd across all dates in 2015, however, there were clear significant difference in Ψmd between the 

dates (Figure 2.2).  When data from all the treatments is averaged from each collection date 

drastic differences in Ψmd between dates can be seen, with high and low Ψmd throughout the 

summer.  Most apparent was the change on August 15 when Ψmd was only -2.7 bars.  Ψmd values 

on all other dates ranged from -7 to -9.8 bars.  This can be explained by the rainfall event that 

happened the day before data collection and the cooler temperatures (between 75 °F and 80 °F) 

on the day of collection.  On this date, the grapevines exhibited no water stress and the stomata 

would have all been fully open and transpiration was occurring at full capacity.  The two dates 

that exhibited the lowest water potential in 2015 were July 14 and 29 where vines had an average 

water potential of -9.8 bars.  If these grapes were managed using California Ψmd thresholds, 

irrigation would not even have been used in 2015.     
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Figure 2.2.  Plot of Midday Leaf Water Potential (Ψmd) collected weekly from ‘Edelweiss’ 

grapevines from June 30 to August 12, 2015.  Trt 1 = Western Yarrow, Birdsfoot Trefoil 

and Dutch Clover; Trt 2 = Hard Fescue, Sheep’s Fescue, Sideoats Grama, Buffalograss and 

Blue Grama; Trt 3 = KY Bluegrass, White Clover, Red Fescue, Hard Fescue and 

Chewing’s Fescue; Trt 4 = Texoka Buffalograss; Control = weeds controlled by herbicide 

under-row.    

 

 

2016 – Midday Leaf Water Potential 

 Similar to what was observed in 2015 the Treatment*Date interaction was not significant 

so again the data were combined and averaged within each collection date.  Generally speaking 

the treatments followed the same pattern across all collection dates, but in a few cases the 

treatment line crossed indicating a possible interaction (Figure 2.3).  For example, on August 1st, 

Trt 1 is at the bottom of the Ψmd values but then jumps to the top on August 10th.  This is a sign 

that there could be differences between treatments within certain dates but not others, which is 

another sign of interaction.  The simple effects show smaller significant differences among 

treatments as what was seen in 2015 (Appendix H).   
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 When the data from each treatment are averaged across all dates a very small difference 

is observed in Ψmd, with the lowest being Trt 3 (-7.6 bars) and the highest being Trt 2 (-6.7 bars).  

This is only a difference of 1.1 bars and would typically be insignificant to the grape grower, 

especially since these vines do not appear to be water stressed at these Ψmd levels.  The statistics 

indicate that there are only two instances where treatments are significantly different from one 

another.  Trt 2 had a significantly higher Ψmd compared to Trt 1 (p=0.0297) and Trt 3 

(p=0.0098).  However, none of the treatments were significantly different from the control in any 

of the dates (Appendix H). 

Figure 2.3.  Plot of Midday Leaf Water Potential (Ψmd) collected weekly from ‘Edelweiss’ 

grapevines from July 06 to August 10, 2016.  Trt 1 = Western Yarrow, Birdsfoot Trefoil 

and Dutch Clover; Trt 2 = Hard Fescue, Sheep’s Fescue, Sideoats Grama, Buffalograss and 

Blue Grama; Trt 3 = KY Bluegrass, White Clover, Red Fescue, Hard Fescue and 

Chewing’s Fescue; Trt 4 = Texoka Buffalograss; Control = weeds controlled by herbicide 

under-row.    
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 In 2017, it appeared that there was a very strong interaction between the treatments and 

the dates, so it’s most appropriate to look only at the simple effects and not the main effects, 

unlike in 2015 and 2016.  Generally speaking most of the treatments showed more negative Ψmd 

than the control, especially as the season progressed.  Trt 1 had the lowest Ψmd throughout the 

entire season.  By merely looking at the plot (Figure 2.4) it is clear that from July 14 to July 27 

there was a dry period in the vineyard.  The Ψmd during these weeks of all treatments dropped.  

Interestingly, the control showed a less sharp drop in Ψmd during this dry period than the vines 

growing alongside groundcovers.  The treatment comparisons throughout the collection dates are 

shown in Appendix I.  As the season progressed, all of the groundcover treatments were 

significantly different from the control.  At this point the grapevines had been growing within 

their groundcovers for 3 years and began to exhibit the negative effects of water competition.  

Although, if the goal is to keep the vines moderately water stressed and control vine vigor than 

groundcover treatments were beneficial.  It will be important to examine harvest and yield results 

before making these conclusions.   
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Figure 2.4.  Plot of Midday Leaf Water Potential (Ψmd) collected weekly from ‘Edelweiss’ 

grapevines from July 07 to August 10, 2017.  Trt 1 = Western Yarrow, Birdsfoot Trefoil 

and Dutch Clover; Trt 2 = Hard Fescue, Sheep’s Fescue, Sideoats Grama, Buffalograss and 

Blue Grama; Trt 3 = KY Bluegrass, White Clover, Red Fescue, Hard Fescue and 

Chewing’s Fescue; Trt 4 = Texoka Buffalograss; Control = weeds controlled by herbicide 

under-row.    

 

 

Pruning Weights 2015 and 2016 

Pruning weights are a direct measure of the vegetative growth in the year prior to 

pruning.  Pruning weight measurements are used in conjunction with yield measurements to 

calculate yield-to-pruning weight ratios (DOBROWSKI et al., 2003).  These indices are 

representations of the vegetative and reproductive balance and can be used as an indirect 

measurement of fruit quality (SMART AND ROBINSON, 1991).  Pruning weights were collected in 

the winter of 2016 and 2017, which means the growing season of 2015 and 2016 were the years 

of interest, respectively.   
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The second growing season was 2015 and the third was in 2016, which was the first year 

the vines produced fruit and were harvested.  It would be expected that the vegetative growth 

would increase dramatically across all treatments from the second to third year of growth.  

Interestingly, this was not the case in any of the groundcover treatments.  The control was the 

only treatment that showed significantly greater pruning weights from 2015 to 2016 (p=0.0391).  

In Trt 2, the pruning weights actually decreased from 2015 to 2016 (0.126 lbs down to 0.095 lbs) 

(Figure 2.5 and 2.6).  This is an indication that the groundcover treatments are restricting the 

growth of the grapevines on some level, possibly water or nutrient competition or even an 

allelopathic characteristic by some of the groundcover species.  

Figure 2.5.  Chart of pruning weights in 2015 and 2016.  Data were collected in winter of 

2016 and 2017, respectively. Trt 1 = Western Yarrow, Birdsfoot Trefoil and Dutch Clover; 

Trt 2 = Hard Fescue, Sheep’s Fescue, Sideoats Grama, Buffalograss and Blue Grama; Trt 3 

= KY Bluegrass, White Clover, Red Fescue, Hard Fescue and Chewing’s Fescue; Trt 4 = 

Texoka Buffalograss; Control = weeds controlled by herbicide under-row. 

 

*Columns in the same year with same letters are not significantly different at p≤ 0.05. 

 

In 2015, the vines that were grown with a chemically controlled area beneath (control) 

had the highest pruning weights when compared to the four groundcover treatments (Figure 2.5).  
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The control vines had an average of 0.30 lbs per vine and the four groundcover treatments 

ranged from 0.1 lbs to 0.25 lbs per vine, with the greatest being Trt 4 and the lowest being Trt 1, 

however there were not significant differences among any of the treatments.  Trt 1 and Trt 3 both 

had significantly lower pruning weights compared to the control. 

In 2016, a similar pattern emerged where the control had 193% higher pruning weights 

than the vines growing under the native grass groundcover treatment (Trt 2).  The other three-

groundcover treatments had reduced pruning weights ranging from 20% to 136%.  The control 

had an average of 0.5 lbs of growth per plant.  Treatment 2 (native grass) had the lowest pruning 

weights at 0.009 lbs per plant.  All of the treatments with the exception of Trt 4 were 

significantly different than the chemically maintained control.     

These results clearly show the detrimental effects planting groundcovers has on the 

growth of newly planted vines and coincide with past studies that have found that increasing soil 

coverage by a perennial grass groundcover reduces vine vigor (GIESE et al., 2010; HATCH et al., 

2011; MORLAT AND JACQUET, 2003). 
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Figure 2.6.  Images showing vines growing within the Treatment 2 groundcover (native 

grass mixture) in the summer and winter of 2016.  Vines had significantly less growth 

under this treatment when compared to all other treatments. 
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Bud Break 

 Winegrape production can be compromised by late spring freeze events occurring at the 

onset of bud burst or even after buds have opened.  Severe crop loss represents an important 

economic challenge for grape growers in cold growing regions (MOLITOR et al., 2014).   

‘Edelweiss’ grapevines are one of the earliest varieties to break bud in the vineyard making them 

highly vulnerable to late spring freeze events.  Bud break data were collected in 2016 and 2017 

to check for any effects groundcovers had on the timing of bud break.  In 2016, bud break 

occurred between April 11 and April 16 in all of the treatments.  Trt 2 completed bud break the 

earliest and Trt 4 was the latest, however Trt 1, 3, 4 and the control showed no statistical 

difference in the date of bud break (Figure 2.7) (p ≤ 0.05).  Vines growing within the Trt 2 

groundcover broke bud significantly earlier (up to 4 days) than all other treatments.   

 In 2017, bud break occurred within a three day timeframe ranging from April 23 to April 

26.  Trt 1 had the earliest bud break in 2017 and was significantly earlier than Trt 2 (p = 0.0200) 

but was not different from the control (p = 0.4325).  Although some statistical differences were 

observed in both 2016 and 2017 the actual difference (in days) was not large enough that a 

grower would consider that the groundcovers positively or negatively affected the rate of bud 

break.  The likelihood that a bud delay of 3 to 4 days would help vines avoid a late spring freeze 

would be low.      
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Figure 2.7.  Julian date of bud break in 2016 and 2017.  Bud break was determined when 

60% of buds had reached stage 4 on the modified Eichhorn-Lorenz Scale of Grapevine 

Development.  Trt 1 = Western Yarrow, Birdsfoot Trefoil and Dutch Clover; Trt 2 = Hard 

Fescue, Sheep’s Fescue, Sideoats Grama, Buffalograss and Blue Grama; Trt 3 = KY 

Bluegrass, White Clover, Red Fescue, Hard Fescue and Chewing’s Fescue; Trt 4 = Texoka 

Buffalograss; Control = weeds controlled by herbicide under-row. 

*Columns in the same year with same letters are not significantly different at p≤ 0.05. 

 

Harvest Results 

Number of Clusters per Plant 

 The average number of clusters per plant is important to grape growers for a few reasons, 

one of which and possibly the most important is in the ease of harvest.  Many small clusters on a 

plant are much more difficult and time consuming to hand harvest than if there are fewer, larger 

and fuller clusters on the plants.  It isn’t possible to gauge the size of the clusters by just looking 

at the average cluster number per plant data, but typically if there is a huge amount of clusters on 

a plant it means their size has greatly decreased.  From looking at Figure 2.8 all of the vines in 

each treatment showed an increase in number of clusters from 2016 to 2017.  The largest change 
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to 150 clusters per plant.  Trt 1 increased from 46 clusters per plant to 112 clusters, Trt 2 – 32 

clusters to 54 clusters, Trt 3 – 53 clusters to 116 clusters and Trt 4 – 61 clusters to 106 clusters.   

Figure 2.8.  Average number of clusters harvested from each ‘Edelweiss’ vine under four 

different groundcover treatments and a herbicide sprayed control.  Trt 1 = Western 

Yarrow, Birdsfoot Trefoil and Dutch Clover; Trt 2 = Hard Fescue, Sheep’s Fescue, 

Sideoats Grama, Buffalograss and Blue Grama; Trt 3 = KY Bluegrass, White Clover, Red 

Fescue, Hard Fescue and Chewing’s Fescue; Trt 4 = Texoka Buffalograss; Control = weeds 

controlled by herbicide under-row. 

 

*Columns in the same year with same letters are not significantly different at p≤ 0.05. 

 

 The simple effect comparisons of treatment*year shows no significant differences 

between treatments in 2016.  In 2017, there were four treatment comparisons that showed 

significant differences at p ≤ 0.05.  Trt 2 had significantly fewer clusters than all of the other 

treatments (Trt 1, 3, 4 and control) (Figure 2.8).  This was expected as visual difference between 

Trt 2 and the rest was quite obvious in the number of clusters that were present on each plant. 
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Table 2.1. Measured values for average number of clusters per vine, total cluster weight, 

average cluster weight, average weight of a single berry, soluble solids (°Brix), pH and 

titratable acidity (TA) in 2016 and 2017.  Trt 1 = Western Yarrow, Birdsfoot Trefoil and 

Dutch Clover; Trt 2 = Hard Fescue, Sheep’s Fescue, Sideoats Grama, Buffalograss and 

Blue Grama; Trt 3 = KY Bluegrass, White Clover, Red Fescue, Hard Fescue and 

Chewing’s Fescue; Trt 4 = Texoka Buffalograss; Control = weeds controlled by herbicide 

under-row. 

2016 
Cluster 

Number 

Avg Vine 

Yield (g) 

Avg Cluster 

Weight (g) 

Avg Berry 

Weight (g) 
°Brix pH TA 

Trt 1 46.1 a 2709.6 a 58.6 a 1.8 a 15.8 a,b 3.2 10.3 a 

Trt 2 32.3 a 2575.1 a 58.0 a 1.8 a 15.8 a,b 3.2 10.3 a 

Trt 3 53.3 a 2345.1 a 57.5 a 1.8 a 15.9 a,b 3.2 10.2 a 

Trt 4 60.9 a 2345.1 a 58.6 a 1.8 a 15.9 b 3.2 10.0 a 

Control 51.2 a 2382.1 a 59.1 a 1.8 a 16.0 a 3.2 10.0 a 

2017 
Cluster 

Number 

Avg Vine 

Yield (g) 

Avg Cluster 

Weight (g) 

Avg Berry 

Weight (g) 
°Brix pH TA 

Trt 1 112.0 a 4989.5 a 43.7 a,b,d 2.3 a 18.0 3.4 7.6 a,b 

Trt 2 52.4 b 1583.0 b 29.1 a,b 2.0 a 17.1 3.3 8.5 b 

Trt 3 118.0 a 5302.5 a,c 56.0 c,d 2.1 a 18.2 3.5 6.5 a 

Trt 4 105.6 a 4136.8 a,b 36.3 a 2.0 a 15.7 3.4 8.2 b 

Control 150.5 a 7833.5 c 49.9 d,c 2.1 a 17.0 3.4 8.2 b 

*Values with the same letter in the same column indicate no statistical differences at p≤ 0.05. 

Average Vine Yield  

 From 2016 to 2017 the average cluster weight increased significantly in all of the 

treatments with the exception of Trt 2, which actually decreased.  In 2016, Trt 2 had an average 

yield of 1848.2 grams (4 lbs) and dropped to 1682.6 grams (3.7) in 2017.  This result is 

concerning because a drop in yield from the second to third year is the opposite of what should 

occur.  The drop alone is negative but the total weight is also concerning.  ‘Edelweiss’ 

grapevines should yield 20-30 lbs per plant after the third or fourth year they are planted.  For 

example, the control yielded 3040 grams (6.7 lbs) per plant in 2016 and jumped up to 7833.0 

grams (17 lbs) in 2017, which would be the typical expectation for ‘Edelweiss’ vines. 
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Figure 2.9.  Average yield per vine when grown under four different groundcover 

treatments and a herbicide sprayed control.  Trt 1 = Western Yarrow, Birdsfoot Trefoil 

and Dutch Clover; Trt 2 = Hard Fescue, Sheep’s Fescue, Sideoats Grama, Buffalograss and 

Blue Grama; Trt 3 = KY Bluegrass, White Clover, Red Fescue, Hard Fescue and 

Chewing’s Fescue; Trt 4 = Texoka Buffalograss; Control = weeds controlled by herbicide 

under-row. 

 

*Columns in the same year with same letters are not significantly different at p≤ 0.05. 

 

Statistically, there were no significant differences in total yield between treatments in 

2016 (Appendix L).  However, Figure 2.9 clearly shows that Trt 2 produced much less fruit than 

all of the other treatments and still should be considered an important result, especially after 

seeing the results from 2017 where Trt 2 yields decreased from 2016 (Table 2.1).  In 2017, Trt 2 

had significantly lower yields than all other treatments and the control with the exception of Trt 4 

(p ≤ 0.05).  Treatments 1, 2 and 4 were all had significantly lower yields than the control.  The 

only Trt that was not different from the control was Trt 4, which was grown as a control in the 

first year and then was converted to a Texoka Buffalograss groundcover treatment in the year 

following the grapes being planted (2015).  This is one indication that planting a groundcover 
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after the vines have one year to establish may limit the amount of competition between the vines 

and groundcovers, thus producing higher yields.   

Figure 2.10.  Side by side comparison of vines at time of harvest in 2017.  The herbicide 

sprayed control (top and bottom left) has significantly more canopy than the native grass 

treatment (top and bottom right). 

 

 

Average Weight of Clusters 

 Similar to yield, there were no significant differences between treatments in average 

cluster weights in 2016 (Figure 2.11).  In 2017, the average cluster weight dropped across the 

board, all treatments showed lower average weights than in 2016, however total yields increased 

from 2016 to 2017.  A drop in cluster weight but an increase in total yield typically means one 

thing, more clusters, which reduces the average.  This is proven by the cluster number data 
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which shows a large increase in cluster number from 2016 to 2017.  Increased cluster numbers 

can result from a variety of factors but most likely it was caused by more buds left at pruning 

than in the previous year and/or an environmental event caused vines to grow and produce 

additional clusters from secondary buds (hail, wind, herbicide drift, etc.).  In 2016, the vineyard 

was severely damaged from herbicide drift with an estimated 50% yield loss.  In 2017, the 

vineyard was hit once-again with herbicide drift which caused secondary buds to burst and 

produce secondary clusters, thus explaining the increase in cluster number and the decrease in 

weight (Table 2.1).  Treatment 2 produced 54% less fruit than the control.  

Figure 2.11.  Average weight of clusters harvested from ‘Edelweiss’ vines grown under four 

different groundcover treatments and a herbicide sprayed control.  Trt 1 = Western 

Yarrow, Birdsfoot Trefoil and Dutch Clover; Trt 2 = Hard Fescue, Sheep’s Fescue, 

Sideoats Grama, Buffalograss and Blue Grama; Trt 3 = KY Bluegrass, White Clover, Red 

Fescue, Hard Fescue and Chewing’s Fescue; Trt 4 = Texoka Buffalograss; Control = weeds 

controlled by herbicide under-row. 

 

*Columns in the same year with same letters are not significantly different at p≤ 0.05. 
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Figure 2.12.  Image of leaf damaged by a herbicide drift event that occurred in the spring 

of 2016 when the vines were flowering.  An estimated 50% crop loss was attributed to this 

event. 

 

 

Average Single Berry Weight 

 In 2016 and 2017, single berry weights consistently ranged from 1.82 grams to 2.2 grams.  

In both years there were no significant differences (p ≤ 0.05) between any of the treatments 

(Figure 2.13).  Reduced berry size has been associated with decreasing water potential (SHELLIE, 

2006).  Berry size is an important factor in juice and wine quality, because much of the favorable 

anthocyanins, tannins and other polyphenols are located in the skins (CHEYNIER et al., 1998; 

CORTELL et al., 2008).  The ratio of skin to pulp is higher in smaller berries, resulting in a higher 

fruit quality. 
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Figure 2.13.  Average weight of single berries harvested from ‘Edelweiss’ vines grown 

under four different groundcover treatments and a herbicide sprayed control.  Trt 1 = 

Western Yarrow, Birdsfoot Trefoil and Dutch Clover; Trt 2 = Hard Fescue, Sheep’s 

Fescue, Sideoats Grama, Buffalograss and Blue Grama; Trt 3 = KY Bluegrass, White 

Clover, Red Fescue, Hard Fescue and Chewing’s Fescue; Trt 4 = Texoka Buffalograss; 

Control = weeds controlled by herbicide under-row. 

 

*Columns in the same year with same letters are not significantly different at p≤ 0.05. 

 

Soluble Solids (°Brix) 

 ‘Edelweiss’ grapes are typically harvested before they are phenologically ripe when used 

for wine production.  The level at which they are typically harvested is between 14 and 16 °Brix, 

depending on the winery’s preference.  In 2015, the fruit ranged from 15.1 °Brix (Trt 4) to 16.3 

°Brix (control) and all samples fell within the recommended range.  The only significant difference 

between treatments was Trt 4 had a lower °Brix than the control (p = 0.037), however the 

difference was small and probably would not be considered significant to the wine maker.  Soluble 

solids were higher across the board in 2017 ranging from 15.7 °Brix (Trt 4) to 18.2 °Brix (Trt 3) 

and exceeded the typical level wanted by a winery.  However, the winemaker made the ultimate 

decision on when to pick these grapes.  Treatment 4 was again significantly lower than the control 
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in 2017 (p = 0.028).  Treatments 1, 2 and 3 were also all had significantly higher °Brix than Trt 4 

at p ≤ 0.05. 

Figure 2.14.  Measured values of soluble solids (°Brix) from juice collected from 100-berry 

samples of ‘Edelweiss’ grapevines grown under four different groundcover treatments and 

a herbicide sprayed control.  Trt 1 = Western Yarrow, Birdsfoot Trefoil and Dutch Clover; 

Trt 2 = Hard Fescue, Sheep’s Fescue, Sideoats Grama, Buffalograss and Blue Grama; Trt 3 

= KY Bluegrass, White Clover, Red Fescue, Hard Fescue and Chewing’s Fescue; Trt 4 = 

Texoka Buffalograss; Control = weeds controlled by herbicide under-row. 

 

*Columns in the same year with same letters are not significantly different at p≤ 0.05. 

 

pH 

 The optimum juice pH range for producing white wine with grapes grown in the Midwest 
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Although some statistical differences were seen within pH, the value of this is diminished 

because all samples would still be considered satisfactory by the winemaker. 

Figure 2.15.  Measured values of pH from juice collected from 100-berry samples of 

‘Edelweiss’ grapevines grown under four different groundcover treatments and a herbicide 

sprayed control.  Values from 2016 and 2017 were averaged.  Trt 1 = Western Yarrow, 

Birdsfoot Trefoil and Dutch Clover; Trt 2 = Hard Fescue, Sheep’s Fescue, Sideoats Grama, 

Buffalograss and Blue Grama; Trt 3 = KY Bluegrass, White Clover, Red Fescue, Hard 

Fescue and Chewing’s Fescue; Trt 4 = Texoka Buffalograss; Control = weeds controlled by 

herbicide under-row. 

 

*Columns in the same year with same letters are not significantly different at p≤ 0.05. 

 

Titratable Acidity (TA) 

 The recommended range for titratable acidity (TA) is 7.0 to 9.0 g/L.  In 2016, 

groundcover treatments had no significant effects on TA where the mean among treatments was 

10.1 g/L.  However, all samples were above the recommended range in 2016.  Inverse to the pH 

results, the TA in 2017 was significantly lower than in 2016 and TA values fell to within the 

recommended ranges (Figure 2.16).  Trt 3 was the only groundcover which significantly affected 

TA when compared to the control (p = 0.006).  Even though some statistical differences were 

seen amongst the treatments in 2017, all values were still in the acceptable range. 
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Figure 2.16.  Measured values of titratable acidity (TA) from juice collected from 100-berry 

samples of ‘Edelweiss’ grapevines grown under four different groundcover treatments and 

a herbicide sprayed control.  Trt 1 = Western Yarrow, Birdsfoot Trefoil and Dutch Clover; 

Trt 2 = Hard Fescue, Sheep’s Fescue, Sideoats Grama, Buffalograss and Blue Grama; Trt 3 

= KY Bluegrass, White Clover, Red Fescue, Hard Fescue and Chewing’s Fescue; Trt 4 = 

Texoka Buffalograss; Control = weeds controlled by herbicide under-row. 

 

 

*Columns in the same year with same letters are not significantly different at p≤ 0.05. 

 

Soil Samples 

 Soil samples were collected in the late winter of 2015, 2016 and 2017 at a depth of 12 

inches.  Samples were tested for a variety of factors including: pH, organic matter, bulk density 
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calcium (Ca), magnesium (Mg) and zinc (Zn).  Each of these elements is essential to grapevine 

health and fruit quality.   
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above 8 will decrease yields and hinder vine health.  Soil pH levels were not significantly 

different in any of the years so the data were averaged to acquire a single pH value for the 3 

years of data.  Trt 4 had significantly higher pH than all of the other treatments (Table 2.2), 

however it still fell within the recommended range of optimal pH.  Overall, the soil of each 

groundcover treatment fell within the recommended range for optimal grapevine growth.     

Table 2.2.   Average soil pH from 2015, 2016 and 2017. Trt 1 = Western Yarrow, Birdsfoot 

Trefoil and Dutch Clover; Trt 2 = Hard Fescue, Sheep’s Fescue, Sideoats Grama, 

Buffalograss and Blue Grama; Trt 3 = KY Bluegrass, White Clover, Red Fescue, Hard 

Fescue and Chewing’s Fescue; Trt 4 = Texoka Buffalograss; Control = weeds controlled by 

herbicide under-row. 

Treatment  pH 

Standard 

Error 

Trt 1 6.1 a 0.058 

Trt 2 6.1 a 0.058 

Trt 3 6.1 a 0.058 

Trt 4 6.3 b 0.058 

Control 6.1 a 0.058 

*Value with the same letter indicate no statistical differences at p≤ 0.05. 

 Soil organic matter (OM) is important because it improves moisture retention, soil 

fertility, reduces compaction and overall soil structure.  The optimal level of organic matter for 

winegrapes is 2-3%.  Nitrogen is released from OM at roughly 20 lbs of N per acre for each 1% 

of OM present (WOLF, 2008). If OM is too high, grapes tend to be less winter hardy because 

excess nitrogen promotes vegetative growth too late into the fall, not allowing vines to acclimate 

for winter.   

 Similar to pH, there were no significant differences in OM between the three years of 

data collection, so values were combined.  OM values all fell within the recommended range of 

2-3% with some minor statistical differences between treatments (Table 2.3).  The control and 

Trt 4 had the lowest OM, which was expected as there was less vegetation present in these plots.   
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Table 2.3.   Average soil organic matter from 2015, 2016 and 2017.  Trt 1 = Western 

Yarrow, Birdsfoot Trefoil and Dutch Clover; Trt 2 = Hard Fescue, Sheep’s Fescue, 

Sideoats Grama, Buffalograss and Blue Grama; Trt 3 = KY Bluegrass, White Clover, Red 

Fescue, Hard Fescue and Chewing’s Fescue; Trt 4 = Texoka Buffalograss; Control = weeds 

controlled by herbicide under-row. 

Treatment  

% Organic 

Matter 

Standard 

Error 

Trt 1 2.3 a,d 0.062 

Trt 2 2.5 b 0.062 

Trt 3 2.4 c,d 0.062 

Trt 4 2.2 a 0.062 

Control 2.2 a 0.062 

   *Values with the same letter indicate no statistical differences at p≤ 0.05. 

 Cation exchange capacity (CEC) is basically the soil’s capability to hold nutrients.  Each 

soil type will have a unique CEC, for example, fine-textured clay soils will have a CEC around 

25 meq/100 g of soil.  The greater the clay and organic matter content of the soil, the higher the 

CEC.  Nutrient levels and pH tend to be more stable in soils with higher CEC.  CEC levels below 

6 meq/100g of soil may have rapid changes in K, Ca and Mg (BROWN, 2013).  CEC levels were 

similar throughout the 3 years soil samples were collected and all stayed right around the 25 

meq/100 g of soil level with no significant difference among treatments (Table 2.4). 

Table 2.4.  Average soil Cation Exchange Capacity (CEC) collected in 2015, 2016 and 2017.  

Trt 1 = Western Yarrow, Birdsfoot Trefoil and Dutch Clover; Trt 2 = Hard Fescue, 

Sheep’s Fescue, Sideoats Grama, Buffalograss and Blue Grama; Trt 3 = KY Bluegrass, 

White Clover, Red Fescue, Hard Fescue and Chewing’s Fescue; Trt 4 = Texoka 

Buffalograss; Control = weeds controlled by herbicide under-row.  

Treatment 

CEC 

(meq/100g) 

Standard 

Error 

Trt 1 26.4 a 0.608 

Trt 2 26.2 a 0.608 

Trt 3 25.8 a 0.608 

Trt 4 25.8 a 0.608 

Control 26.5 a 0.608 

*Values with the same letter indicate no statistical differences at p≤ 0.05. 
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 The recommended range for nitrate (NO3) levels in the vineyard is generally between 20-

60 lbs/acre (5-15 ppm) for self-rooted American and hybrid grapevines.  Grapevines that are 

grown in soils with excess nitrogen levels may become overly vigorous which can lead to 

reduced fruit quality, higher disease incidence and reduced winter hardiness.  Soil NO3 levels 

were statistically different from year to year so the data were not averaged across years, as 

previously done.  Generally speaking, all NO3 levels were below the recommended rates for 

American and hybrid winegrapes throughout the three years.  In 2016 and 2017, Trt 1 had 

significantly higher NO3 rates than all other treatments (Table 2.5) and was the only Trt that had 

NO3 rates within the recommended range.  This was exciting to see because Trt 1 was 

specifically chosen because it had NO3 producing species such as Birdsfoot Trefoil and Dutch 

clover.  It is also important to note that soil samples were collected at a depth of only 12 inches 

and nitrate readily leaches down into the soil profile, so it is conceivable that NO3 levels were 

higher deeper in the soil.     

Table 2.5.  Soil nitrate (NO3) levels collected from vineyard soil samples from 2015 to 2017.  

Trt 1 = Western Yarrow, Birdsfoot Trefoil and Dutch Clover; Trt 2 = Hard Fescue, 

Sheep’s Fescue, Sideoats Grama, Buffalograss and Blue Grama; Trt 3 = KY Bluegrass, 

White Clover, Red Fescue, Hard Fescue and Chewing’s Fescue; Trt 4 = Texoka 

Buffalograss; Control = weeds controlled by herbicide under-row. 

Treatment 2015 2016 2017 

Trt 1 2.4 a 7.4 a 8.0 a 

Trt 2 5.4 a 1.8 b 1.2 b 

Trt 3 2.6 a 3.4 a 3.2 b 

Trt 4 2.4 a 1.6 b 1.0 b 

Control 3.4 a 2.6 b 1.2 b 

*Values with the same letter in the same column indicate no statistical differences at p≤ 0.05. 

 The recommended range for P is 40-50 ppm, K between 250-300 ppm, Ca between 500-

2000 ppm, Mg between 100-250 ppm and Zn around 2 ppm.  Soil samples collected in all 

treatments were drastically below the recommended range for P (12.2 to 17.5 ppm).  Trt 3 had 
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the lowest P values while Trt 2 had the highest concentration.  None of the treatments were 

significantly different from the control.  Potassium was also below the recommended range in all 

treatments, but not as severely as P.  Trt 4 had the lowest K levels at just 200 ppm and was the 

only Trt that was significantly different from the control (Table 2.6).  Ca and Mg were both well 

above the recommended ranges.  There were not any significant differences between in Ca 

across the treatments.  Trt 3 showed significantly lower Mg concentrations than the control, 

which would actually be a positive in this case, however it was still considerably higher than the 

recommended range.  Zn hovered right around the recommended 2 ppm for vineyard soil 

samples.  Soil sample results can be compared to petiole samples that were collected at bloom in 

2017.  Generally speaking all of the nutrients of the petiole analyses fell within or just outside the 

recommended range for bloom petiole levels (Appendix N). 

Table 2.6.  Average Potassium (K), Calcium (Ca), Magnesium (Mg), Sodium (Na) and Zinc 

(Zn) concentrations of soil samples collected from 2015-2017.  Trt 1 = Western Yarrow, 

Birdsfoot Trefoil and Dutch Clover; Trt 2 = Hard Fescue, Sheep’s Fescue, Sideoats Grama, 

Buffalograss and Blue Grama; Trt 3 = KY Bluegrass, White Clover, Red Fescue, Hard 

Fescue and Chewing’s Fescue; Trt 4 = Texoka Buffalograss; Control = weeds controlled by 

herbicide under-row. 

Treatment P (ppm) K (ppm) Ca (ppm) Mg (ppm) Zn (ppm) 

Trt 1 13.4 a,c 215.7 a,c 3455.4 a 674.0 a,d 2.5 a 

Trt 2 17.5 b,c 243.0 b,d 3232.9 a 662.7 a,c,d 2.2 a 

Trt 3 12.2 a 218.8 a,c 3285.9 a 617.1 d 2.0 a 

Trt 4 14.3 a,c 200.0 c 3351.3 a 689.6 c,e 1.5 a 

Control 15.1 a,c 227.8 a,d 3298.5 a 717.9 a,e 2.2 a 

*Values with the same letter in the same column indicate no statistical differences at p≤ 0.05. 

Insect Populations 

Insect populations were collected in 2016 by a University of Nebraska undergraduate 

Entomology student as part of his senior thesis project.  The goal of these collections was to 

evaluate the types and numbers of insects present in the vineyard (including beneficials) where 
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the groundcovers were grown and also in a vineyard where the under-vine areas were controlled 

with herbicides.  His results indicated that there were seven main insect orders present in the 

vineyard with groundcovers and included: Orthoptera, Diptera, Hymenoptera, Coleoptera, 

Mantodea, Lepidoptera and Hemiptera.  It was visually noted by many of the workers in the 

vineyard that there was a large increase in pollinating insects in the treatments containing 

flowering species such as yarrow and trefoil.  So much so, working in these treatments became 

slightly hazardous because the bees began stinging the workers.  This would be an important 

consideration when choosing a groundcover, especially in vineyards close to the winery/tasting 

room where guests may be venturing into the vineyards.   

Figure 2.17.  Image of a lady beetle resting on white clover in Treatment 3.  These insects 

prey on herbivorous insects such as aphids and scale insects.   
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Conclusions 

1. A main objective of this project was to evaluate the effect groundcovers that were planted 

both in the alleyways and vine-rows had on the water status of neighboring grapevines.  

In 2015 and 2016, there were no differences noticed among groundcover treatments and 

the herbicide-managed control.  In 2017, the vines growing with groundcovers all showed 

a decrease in Ψmd as the season progressed.  The control also decreased during the dry 

period of summer but never had as low of a Ψmd as any of the treatments.  From this 

information, it can be said that the herbicide sprayed control is less affected by seasonal 

drought periods and is quicker to recover when the moisture returns.  In 2017, the 

groundcovers clearly competed with the grapevines for water.  Interestingly, none of the 

grapevines in any treatment reached a Ψmd below -10 bars, indicating the vines never 

even reached a mild water stress level, making it much more difficult to notice minute 

Ψmd differences.   

2. Vine growth was severely impacted by groundcovers in all treatments.  This was seen 

most harshly in Trt 2, where vines actually had a decrease in pruning weights from 2015 

to 2016.  The visual differences in the vines growing within the native grass groundcover 

was easily recognized.  Throughout the growing season, the canopy of these vines never 

came close to reaching the ground, while the control vines had a full dense canopy that 

touched the ground by mid-season.  In many of the Trt 2 vines there weren’t even canes 

to prune and weigh.  The Ψmd data does not explain this drastic difference in vine growth, 

so there is clearly something happening on a different level that needs to be explored 

further.   

3. In addition to decreased vine growth, groundcovers all reduced the total yield of the 

vines.  Again, this was most pronounced in the vines growing within the Trt 2 (native 
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grass) groundcover, where vines produced 133% less fruit compared to the control.  

Lower yields can sometimes lead to increased fruit quality, however, yields this low 

would not be acceptable to a grower or winemaker would want.  Harvest data suggest that 

the lower yields in all of the treatments did not increase the fruit quality when compared 

to the control. 

4. Slight differences were noticed in the soil samples between vines with groundcovers and 

the control.  In most cases, the statistical difference was only marginally significant.  

Generally speaking, many of the measured soil nutrients were either well below or above 

the recommended range for optimal grapevine health.  Contrary to the soil samples, most 

of the nutrients in the petiole analyses were within the recommended range.  This 

difference may be caused by the collection timing of the soil and petiole samples.  Soil 

samples were collected in the late winter while vines were still dormant (following soil 

sampling protocol) and the petiole samples were collected at bloom.  If comparisons are 

to be made between soil and petiole samples it may be necessary to collect both at the 

same time.  Sampling deeper into the soil profile might provide more complete 

information on the soil nutrition.  
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CHAPTER 3 

Non-Invasive Estimation of Leaf Water Potential in ‘Edelweiss’ Grapevines Using Infrared 

Thermography 

 

Introduction 

For many of the vineyards in Nebraska and across the Midwest, irrigation is an important 

tool to increase grapevine vigor and fruit yield.  However, with enhanced pressure on water 

resources, agricultural acres, including vineyards, are likely to experience water restrictions in 

the future, if they have not already.  Fortunately for grape growers, grapevines are a drought 

tolerant plant and will actually produce higher quality fruit if deficit irrigation practices are used.  

Deficit irrigation basically is the restriction of water during specific times throughout the 

growing season.  Deficit irrigation is a common practice in more prominent wine grape regions 

across the world, but has yet to be fully adopted in the Midwest, where hybrid grape cultivars 

(“varieties”) are grown.     

Water stress poses a serious threat to the survival, productivity and fruit quality in 

winegrapes.  Plants experience water stress when the transpiration demands exceed the amount 

of moisture available in the root zone (KACIRA et al., 2002).  Understanding water stress levels in 

grapevines is important to the viticulturist, particularly as it relates to irrigation management, in 

order to optimize vine yields.  Once the pressure chamber (SCHOLANDER et al., 1965) was 

developed, measurement of leaf water potential has been used as a tool to assess the water status 

of plants (JONES, 1990) and to monitor the water relations of grapevines (SMART AND COOMBE, 

1983).  Grapevine leaf water potential has been shown to be relatively consistent when leaves are 

uniformly exposed to solar radiation (LIU et al., 1978).   
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In Nebraska, the use of irrigation regimes tends to be more instinctive, rather than 

scientific and technical.  That is, when the dry days begin to accumulate in the summer months, 

growers will begin to irrigate in the vineyard, usually with no measurements of the actual water 

stress within the vines.  This practice not only unnecessarily wastes water, but it can actually 

reduce fruit quality, increase vine vigor (when it’s not necessary), increase disease pressure and 

make vines more susceptible to drought conditions by inhibiting their ability to grow deeper root 

systems.  The key to improving wine grape quality in irrigated vineyards is to maintain a mild 

water stress so that the berry skin to pulp ratio is high, thus concentrating sugars and phenols at a 

higher level.   

Using midday leaf water potential (Ψmd) to determine grapevine water status and stress 

can be problematic as the measurements can vary greatly from one grape cultivar to another and 

across different climatic conditions.  A major reason that growers have not yet adopted this 

practice is that there is very little information available outlining exactly what a “mild water 

stress” level is in the specific hybrid grape cultivars that are grown in the Midwest.  There is a 

vast amount of research and data on common vinifera varieties but this area has yet to be fully 

explored in hybrid grapes.   The main objective of this research was to determine the point at 

which ‘Edelweiss’ grapevines became water stressed and identify the corresponding 

measurement of leaf water potential.  In addition, Ψmd was correlated to the Crop Water Stress 

Index (CWSI), to determine if this index accurately predicts the water stress level in ‘Edelweiss’ 

grapevines. 

Materials and Methods 

 The experiment was conducted in a greenhouse at the University of Nebraska – Lincoln 

(40.82°, 96.68°W, and elevation of 370.03 m above sea level), USA, during March, April and 
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May of 2016.  Sixty bare-rooted ‘Edelweiss’ (Minnesota 78 x Ontario) grapevines from Double 

A vineyards were planted in five gallon pots on March 17, 2016.  To maintain unvarying plant 

growth and development, an equal amount of soil mix (23% soil, 38% sphagnum peat moss, 19% 

sand, 20% horticultural vermiculite) was placed within each pot.  The vines broke dormancy on 

March 23, 2016 (buds began to open).  Once the grapevines began to grow shoots, all of the 

shoots except the strongest were removed.  The single shoot was then tied to a bamboo pole 

which was inserted into the pot.  The pots were arranged in 8 columns and 7 rows with spacing 

of 3 feet between pots.  The positions of the pots were changed randomly throughout the 

experiment to minimize the impact of solar radiation difference across the greenhouse floor.  

Vines were watered at least twice per week in the early stages of the experiment and were 

watered more frequently as they began to grow larger.  Fertigation using a 1:15 Hozon™ 

proportioner (Earth City, MO) began on April 4, using a 20-10-20 fertilizer at a rate of 400 ppm 

nitrogen.  A granular fertilizer application was done on April 20, where 15 grams of 20-10-20 

fertilizer was added to the top of each pot.  As the vines grew taller [above the top of the bamboo 

pole (4 feet)] the shoots were cut off at the top of the pole to encourage lateral growth and 

increase leaf area.     
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Figure 3.1.  Image showing layout of ‘Edelweiss’ grapevines when the 14 days drying 

period began.  Plants were randomly moved throughout the 14 days to minimize effects of 

differences in solar radiation across the greenhouse floor. 

 

Figure 3.2.  Experimental design and layout of the selected 48 potted ‘Edelweiss’ 

grapevines during the 14-day water stress timeframe.  Blocking occurred from East to 

West to account for difference in solar radiation and temperature gradients.   

 

Irrigation Treatments 

All pots were watered in the same manner in the early stages of development.  In the 

weeks before the water deficit regime began, pots were always watered to field capacity.  Excess 

< North 1 2 3 4 5 6 7 8

1 14 C 12 6 4 2 10 8 Block 1

2 6 10 2 4 C 8 14 12 Block 2

3 12 4 10 2 6 C 8 14 Block 3

4 2 6 8 12 10 14 4 C Block 4

5 4 8 14 C 12 6 10 2 Block 5

6 C 10 4 14 2 8 12 6 Block 6

Control 2-days dry 4-days dry 6-days dry 8-days dry 10-days dry 12-days dry 14-days dry
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water was allowed to drain through the bottom of the pots.  On May 26 the 48 most similar 

looking plants were chosen from the original 60 and randomly grouped into 8 water deficit 

treatments: 2, 4, 6, 8, 10, 12, 14 day dry (DD) and a control (0 DD) (Figure 3.2).  Plants were 

chosen based upon their visual health (fully expanded, healthy leaves) as well as similar leaf 

numbers.  A handful of plants exhibited nutritional deficiencies and were not included in the 

study.  Each of the 8 treatments had 6 single plant replicates (each plant was an experimental 

unit).  The plants were arranged in a randomized complete block design where blocking was 

done from East to West to account for differences in solar radiation and temperature gradients 

across the greenhouse floor.  A moisture deficit strategy was implemented on the same day, 

where all plants were watered to field capacity to start the experiment.  Two days later, the 14 

DD treatment had its water withheld while all other pots were watered to field capacity.  Two 

days after that, the next treatment (12 DD) had its water withheld.  This process continued until 

only the control pots (0 DD) remained.  On day 14, water deficit amongst the treatments ranged 

from fully irrigated to 14 days dry.  Many of the leaves on the plants that had been dry for the 

full 14 days were beginning to desiccate and fall off.  One additional plant was kept in both the 

control and 14 DD treatment groups.  These extra plants were later used as fully transpiring and 

non-transpiring plants during the image acquirement to ease the calculation of the Crop Water 

Stress Index (CWSI). 

Thermal Image Acquisition and Processing 

 Thermal images were acquired and measurements of leaf water potential were taken on 

day 14 after the water stress regime began.  Images of the plant canopies were acquired using 

two different thermal cameras (an expensive, non-grower affordable model and a lower-end, 

grower affordable model); the FLIR ThermaCAM S65 and the FLIR C2 (FLIR Systems, Inc.).  
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The spectral range and resolution of the S65 camera is 7.5 to 13 µm and 1.1 milliradians, 

respectively.  The acquired thermal images using this device were 320 x 240 pixels at 14-bit 

radiometric resolution.  The instrument is sensitive to a temperature range between -40 °F to 

+248 °F, with an accuracy of ±3.6 °F.  The camera had an 8 mm lens with an angular field of 

view of 20° x 15°.  The spectral range and resolution of the C2 camera is 7.5 – 14 µm and 1.1 

milliradians, respectively.  The acquired thermal images using this device were 80 x 60 pixels at 

14-bit radiometric resolution.  The instrument is sensitive to a temperature range between 14 °F 

to +302 °F, with an accuracy of ±3.6 °F.  The camera had an 8 mm lens with an angular field of 

view of 41° x 31°.  Emissivity was set at 0.96, corresponding to the normally accepted value for 

vegetation (JENSEN, 2009).  Both cameras were mounted to a tripod at a distance of 10 feet from 

the potted vines and pointed towards the face of the canopy.  At this distance three potted vine 

were able to fit within the field of view of the camera.   

Leaf temperature varies with wind speed, humidity, irradiance and air temperature (JONES 

et al., 2009).  These conditions change rapidly in both the field and the greenhouse, which makes 

the conditions of each image taken somewhat different.  During image acquisition, three plants 

were imaged.  The center plant was the vine of interest and on either side was a plant that was 

completely water stressed (14 DD) and on the other side was a plant that was not water stressed 

(0 DD).  This was done to calibrate the leaf temperature of the plant of interest against the same 

for a fully transpiring and non-transpiring plant under the environmental conditions of when the 

image was taken.  These two plants represented the fully transpiring and non-transpiring plants 

for the calculation of the CWSI.   

Thermal and true color images were taken of 48 total potted grapevines.  Many studies 

have recommended solar noon as the ideal time for thermal image acquisition because this is 
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when plants experience maximum water stress and the environmental conditions (irradiance, 

relative humidity, and air temperature) that affect the leaf temperatures are relatively stable 

(ALCHANATIS et al., 2010; BEN-GAL et al., 2009; GRANT et al., 2006).  The first image of this 

experiment was taken at 10:50 a.m. CST and the last image was taken at 1:15 p.m. CST.  The 

environment conditions at the time of data collection were typical for a late May day in Eastern 

Nebraska and fairly ideal for the computation of the CWSI, with the exception of a stray cloud.  

The outside air temperature was 83 °F with mostly sunny skies and relative humidity during 

collection time ranging from 60% - 62%.  Greenhouse conditions were warmer with an air 

temperature ranging from 94 – 100 °F and relative humidity of 35% - 42%.  One environmental 

factor that was not ideal for data collection was the random cloud that reduced downwelling 

irradiance during the acquisition of some images.  This is shown by the large range of irradiance 

during the time of image collection (147 - 1055 w/m2).  As expected the solar irradiance also 

increased as the experiment progressed through the two hour collection period. 

 The raw thermal images, one for each plant from each camera (96 total), were processed 

using the Crop Water Stress Index (CWSI) (IDSO et al., 1981; JACKSON et al., 1981) and is 

defined as: 

𝐶𝑊𝑆𝐼 =  
𝑇𝑐𝑎𝑛𝑜𝑝𝑦 − 𝑇𝑤𝑒𝑡

𝑇𝑑𝑟𝑦 − 𝑇𝑤𝑒𝑡
 

where Tcanopy is the actual leaf temperature under given environmental conditions; Twet is the 

lower boundary for canopy temperature, corresponding to a well-watered plant with fully open 

stomata.  Tdry is the upper boundary for canopy temperature, representing the temperature of a 

non-transpiring leaf with stomata that are completely closed.  The CWSI was computed using 
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leaf temperature values from three leaves on each plant.  Only fully expanded, healthy leaves, 

located in full sun were chosen for data collection.       

Leaf Water Potential Measurements 

 Leaf water potential measurements were done immediately following the acquisition of 

the thermal and digital images.  A healthy fully expanded leaf was chosen from each plant of 

interest.  This leaf blade was covered with a plastic bag, quickly sealed, and the petioles then cut 

within 1 – 2 seconds.  The time from leaf excision from the plant to when it was placed in the 

pressure chamber was around 15 seconds.  The petiole was placed through the chamber lid and 

secured tightly, with the cut end of the petiole facing outside and the bagged leaf in the chamber.  

The chamber was then sealed and slowly pressurized using nitrogen gas.  As the pressure inside 

the chamber increased and began to exceed the negative pressure inside the leaf, sap was forced 

out of the cut edge of the petiole on the outside of the chamber.  The point at which the drop of 

sap first began to exude from the cut end of the petiole, the pressure (bars) was recorded and 

used as the value for the leaf water potential.  Leaves chosen for midday leaf water potential 

measurements were the youngest fully expanded leaves on the plant and were growing in full 

sun.   

Data Analysis 

 The raw thermal images were processed using FLIR Systems proprietary software.  

Within each image (one for each plant) contained the plant of interest, a fully water stressed 

plant and a fully irrigated plant.  The water stressed plant acted as the non-transpiring variable in 

the CWSI and the non-water stressed plant was the fully transpiring variable in the formula.  For 

each image two leaves were chosen from the plant of interest that were in full sun and an ellipse 
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was drawn over the leaf in the FLIR software which averaged all pixels that fell within the 

ellipse.  This was also done to both the water stressed and non-water stressed plants in the image.  

The temperature values obtained from the two leaves from each plant were then averaged 

together for a final temperature value of the plant.  The three temperatures were then input into 

the CWSI formula to obtain the CWSI value. 

Differences among the treatments were examined with one-way Analysis of Variance 

(ANOVA).  Data were tested for homogeneity of variances using Shapiro-Wilk and Levene’s 

tests.  The Pearson Product Moment Correlation coefficients were used to evaluate the 

relationship between Ψmd and the CWSI.  A stepwise regression was conducted to determine 

which environmental variables should be included as predictor variables.  All data were analyzed 

using SAS (Version 9.2, Cary, NC) and Microsoft Excel (2013) was used for producing graphics.     

Results and Discussion  

Leaf Water Potential 

The response of the ‘Edelweiss’ grapevines to water stress treatments, as detected by Ψmd 

is shown in Figures 3.4.  Overall, the Ψmd values decreased in a linear fashion as the 14-day 

drying period progressed.  The control plants (0 DD, fully watered) exhibited a Ψmd of -8.7 bars 

and that value decreased significantly after having water withheld for just two days (-9.93 bars).  

With this information a baseline can be laid-forth for ‘Edelweiss’ vines that are at full water 

potential  fully transpiring at full water potential.  The point at which the vines began to show the 

most water stress was at 8 DD.  While the plants that were 2-6 DD showed no statistical 

differences, the 8 DD treatment had a significantly lower Ψmd than 6 DD (-12 bars).  It was at this 

point that it was determined the plants had reached a significant/mild level of water stress.  This 
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was determined both by the comparing the Ψmd and visual water stress symptoms at the time of 

data collection.  Plants that had been dry for 8 days showed the first signs of water stress which 

corresponded to the larger difference in Ψmd when compared to the control and 2, 4 and 6 DD 

water stress treatments.  At 14 DD the vines exhibited severe water stress and had leaves that 

were exceptionally dry and were beginning to fall off (Figure 3.3).  The Ψmd at this point was -

13.3 bars, which was not statistically different from the 8 DD treatment (-12 bars) but the visual 

diffences between the two treatments was extreme.  This is an indication that the Ψmd of the 14 

DD treatment had “bottomed out” and was unable to go any lower because the leaves had very 

little moisture left in them.  With this information it can be said that ‘Edelweiss’ vines would be 

mildy water stressed at -12 bars, moderately stressed at -12.5 bars and severely stressed at -13 

bars or lower.  It is interesting that the different stress levels all occur in such a small water 

potential spectrum, affirming that careful and precise water potential measurements need to be 

taken to keep plants at the optimum water stress level. 
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Figure 3.3.  Example of images collected for the Crop Water Stress Index (CWSI).  The 

plant on the left is the control (0 DD), the plants in the middle and right had water withheld 

for 14 days.  The center plant was changed for each image and the two outside plants 

served as baselines for use in the CWSI. 

 

An increase in Ψmd was noticed from 4 to 6 DD and from 8 to 10 DD (Figure 3.4).  This 

is most likely the effect of the intermittent cloud cover which caused the grapevines to transpire 

more efficiently when the direct sun was blocked, thus causing a slightly less negative Ψmd.  

Additionally, Ψmd measurements were taken over a fairly long period of time, so the plants that 

were measured first and the ones that were measured last had moderately different environmental 

conditions at the time of data collection.  This could have been overcome by speeding up the data 

collection process and completing it in a shorter amount of time.  To do this, there would not 

have been time to collect the CWSI data.    
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Figure 3.4.  Least Square Means of the Midday Leaf Water Potential (Ψmd) of potted 

‘Edelweiss’ grapevines that had water withheld from 0 to 14 days.   A mild water stress 

threshold began at -12 bars. 

  

*bars represent the standard error of Ψmd for the 6 plant replicates. 

 

Table 3.1.  Means, lower and upper bounds and standard deviation of Ψmd of potted 

‘Edelweiss’ grapevines after a 14-day drying period. 

Treatment Means (bars) Lower Upper 
Standard 

Deviation 

Control -8.70 -9.78 -7.62 1.185 

2-Days -10.62 -11.70 -9.53 1.160 

4-Days -10.77 -11.85 -9.68 1.675 

6-Days -9.93 -11.02 -8.85 1.171 

8-Days -12.03 -13.12 -10.95 0.742 

10-Days -10.73 -11.82 -9.65 0.755 

12-Days -12.70 -13.78 -11.62 0.827 

14-Days -13.37 -14.45 -12.28 2.254 

 

 In addition to determining the severity of water stress, two thermal imaging cameras were 

used to collect leaf temperature data used in the CWSI index.  The CWSI index has been shown 
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to be a sensitive indicator of Ψmd in warm arid growing regions (LEINONEN et al., 2006), but has 

not been well documented in more humid regions like Nebraska.  A non-grower affordable 

(Flir® S65) and grower affordable (Flir® C2) camera were compared to determine if the 

cheaper, less sensitive camera was able to gather precise temperature values to be used in the 

CWSI.  The Flir® C2 camera is now sold at Home Depot ($499) for industrial use, making it 

readily available to the public.  The camera had just been released to market at the time of this 

project.  The Flir® S65 camera is used primarily for research purposes and costs in excess of 

$50,000. 

 Pearson Product Moment Correlation coefficients were used to evaluate the relationship 

between Ψmd and the CWSI produced by both the Flir® S65 and C2 cameras.  The correlations 

between the Flir® S65 CWSI and Ψmd were only marginally significantly different from zero (p 

= 0.0510).  The correlation between the Flir® C2 CWSI and Ψmd was more significantly different 

from zero (p = 0.0158) indicating that the CWSI calculated from data of the C2 camera was more 

accurate than the expensive S65 camera.  This can be clearly seen in Figure 3.5 where the C2 

CWSI is consistently higher than the S65 CWSI.  The closer the CWSI is to a value of 1, the 

more water stressed the plants, which mirrors the Ψmd data. 

 A stepwise regression was conducted to determine which environmental variables should 

be included as predictor variables (treatment, relative humidity, air temperature and irradiance).  

The stepwise regression indicated that the only variable that increased the R2 values was the 

treatment variable.  Using this regression model, an R2 of 0.5114 was obtained correlating the 

Flir® C2 CWSI and the Ψmd.  This R2 value is quite a bit lower than what other studies have 

found, however, those were all done in the field and not the greenhouse (JONES, 1999; LEINONEN 

et al., 2006).  SWAIN et al. (2012) obtained an R2 of 0.85 and 0.75 between the CWSI and 
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soybean relative water content (RWC) and stomatal conductance, respectively in a very similar 

experiment in a Nebraska greenhouse.  The CWSI may more effectively predict different plant 

water status measures such as RWC and stomatal conductance than Ψmd in more humid regions 

such as the Midwest.  Further investigation is necessary to determine if this is true for woody 

grapevines.       

Figure 3.5.  Graph comparing the difference in the Crop Water Stress Index (CWSI) of 0-

14 day dry ‘Edelweiss’ grapvines.  Leaf temperature data were collected with an expensive 

Flir® S65 and inexpensive C2 thermal cameras. 

 

*bars represent the standard error of the CWSI and Ψmd of the 6 plants replicates. 
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Figure 3.6.  Regression model of Ψmd versus CWSI.  Ψmd predicted CWSI using measured 

leaf temperature from the Flir C2 thermal camera.  The solid line is the best fit function for 

Ψmd prediction.   

 

CONCLUSIONS 

1. ‘Edelweiss’ grapevines that are at full water capacity and complete transpiration will 

have a Ψmd of around -8.7 bars under Eastern Nebraska environmental conditions.  This 

information is important to growers because it provides a baseline for the Ψmd after being 

irrigated. 

2. ‘Edelweiss’ grapevines experience mild water stress at -12 bars, moderate stress at -12.5 

bars and severe stress at -13 bars or lower.  This relatively small range for the three stress 

levels proves that careful attention needs to be paid to the vines to keep them at the 

optimal water stress level.  Additional research is necessary to determine the volume of 

water that is needed when irrigating to keep the vines at the mild stress level.  Also, more 
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research is needed to better understand the timing of implementing a mild water stress 

regime on the ‘Edelweiss’ vines.  Up to this point, no research has been conducted to 

outline the specific times during the growing season when water should be withheld on 

this cultivar. 

3. The leaf temperature date obtained by the Flir® C2 camera produced more accurate 

CWSI’s than its more expensive counterpart.  This may be attributed to the age of the two 

intruments.  The C2 was purchased brand new and was a state-of-the-art camera at the 

time.  The S65, while very expensive, was an older camera that was used heavily in the 

past.  Even with the C2 temperature data, the R2  values were still relatively low at only 

0.51.  Much more research is necessary to increase the correlations between the CWSI 

and Ψmd and get it to a point where the Ψmd can be accurately predicted using the CWSI.  
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CONCLUSIONS 

1. Establishing groundcovers immediately following the planting of grapevines is 

challenging because an irrigation system is essential to speed the germination and 

establishment of the groundcovers.  Without irrigation the groundcovers are slow to fill in 

the bare ground and weed populations quickly outcompete the planted cover.  It is highly 

recommended that growers provide supplementary irrigation for successful groundcover 

growth. 

2. All of the planted groundcover treatments became established and filled the ground area 

much faster than the natural vegetation and control treatments.  In 2015, heavy rainfall 

events created severe soil erosion in this new vineyard.  In the control, treatments that 

had little vegetation covering the ground, the water eroded soil so badly that there were 

12 inch deep gullies running through the vineyard.  As a result, remedial measures had to 

be taken, where the vineyard manager was forced to haul in soil to fill in the gullies.  In 

the areas where the groundcovers were planted, little-to-no soil erosion was noticed. 

3. Vine growth was affected by the groundcovers in 2014.  The control and natural 

vegetation treatments had much higher shoot lengths and vine weights.  This preliminary 

data indicates that planting groundcovers simultaneously with grapes is detrimental to the 

growth of young vines.  This effect is probably magnified by the fact that the 

groundcovers were planted in the vine row, an area of the vineyard that is typically kept 

weed-free through the use of herbicides.  Further investigation is needed comparing the 

effects of groundcovers planted in the first or second year of vineyard establishment.   

4. A main objective of this project was to evaluate the effect groundcovers that were planted 

both in the alleyways and vine-rows had on the water status of neighboring grapevines.  

In 2015 and 2016, there were no differences noticed among groundcover treatments and 
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the herbicide-managed control.  In 2017, the vines growing with groundcovers all showed 

a decrease in Ψmd as the season progressed.  The control also decreased during the dry 

period of summer but never had as low of a Ψmd as any of the treatments.  From this 

information, it can be said that the herbicide sprayed control is less affected by seasonal 

drought periods and is quicker to recover when the moisture returns.  In 2017, the 

groundcovers clearly competed with the grapevines for water.  Interestingly, none of the 

grapevines in any treatment reached a Ψmd below -10 bars, indicating the vines never 

even reached a mild water stress level, making it much more difficult to notice minute 

Ψmd differences.   

5. Vine growth was severely impacted by groundcovers in all treatments.  This was seen 

most harshly in Trt 2, where vines actually had a decrease in pruning weights from 2015 

to 2016.  The visual differences in the vines growing within the native grass groundcover 

was easily recognized.  Throughout the growing season, the canopy of these vines never 

came close to reaching the ground, while the control vines had a full dense canopy that 

touched the ground by mid-season.  In many of the Trt 2 vines there weren’t even canes 

to prune and weigh.  The Ψmd data does not explain this drastic difference in vine growth, 

so there is clearly something happening on a different level that needs to be explored 

further.   

6. In addition to decreased vine growth, groundcovers all reduced the total yield of the 

vines.  Again, this was most pronounced in the vines growing within the Trt 2 (native 

grass) groundcover, where vines produced 133% less fruit compared to the control.  

Lower yields can sometimes lead to increased fruit quality, however, yields this low 

would not be acceptable to a grower or winemaker would want.  Harvest data suggest that 
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the lower yields in all of the treatments did not increase the fruit quality when compared 

to the control. 

7. Slight differences were noticed in the soil samples between vines with groundcovers and 

the control.  In most cases, the statistical difference was only marginally significant.  

Generally speaking, many of the measured soil nutrients were either well below or above 

the recommended range for optimal grapevine health.  Contrary to the soil samples, most 

of the nutrients in the petiole analyses were within the recommended range.  This 

difference may be caused by the collection timing of the soil and petiole samples.  Soil 

samples were collected in the late winter while vines were still dormant (following soil 

sampling protocol) and the petiole samples were collected at bloom.  If comparisons are 

to be made between soil and petiole samples it may be necessary to collect both at the 

same time.  Sampling deeper into the soil profile might provide more complete 

information on the soil nutrition.  

8. ‘Edelweiss’ grapevines that are at full water capacity and complete transpiration will 

have a Ψmd of around -8.7 bars under Eastern Nebraska environmental conditions.  This 

information is important to growers because it provides a baseline for the Ψmd after being 

irrigated. 

9. ‘Edelweiss’ grapevines experience mild water stress at -12 bars, moderate stress at -12.5 

bars and severe stress at -13 bars or lower.  This relatively small range for the three stress 

levels proves that careful attention needs to be paid to the vines to keep them at the 

optimal water stress level.  Additional research is necessary to determine the volume of 

water that is needed when irrigating to keep the vines at the mild stress level.  Also, more 

research is needed to better understand the timing of implementing a mild water stress 
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regime on the ‘Edelweiss’ vines.  Up to this point, no research has been conducted to 

outline the specific times during the growing season when water should be withheld on 

this cultivar. 

10. The leaf temperature date obtained by the Flir® C2 camera produced more accurate 

CWSI’s than its more expensive counterpart.  This may be attributed to the age of the two 

intruments.  The C2 was purchased brand new and was a state-of-the-art camera at the 

time.  The S65, while very expensive, was an older camera that was used heavily in the 

past.  Even with the C2 temperature data, the R2  values were still relatively low at only 

0.51.  Much more research is necessary to increase the correlations between the CWSI 

and Ψmd and get it to a point where the Ψmd can be accurately predicted using the CWSI.  

FUTURE WORK 

 This reasearch has laid the foundation for future research projects that could provide a 

more clear insight as to how groundcovers compete with neighboring grapevines for water 

and nutrients.  The results from this work clearly showcase the negative effects that planting 

groundcovers along with newly planted vines has on the vine growth and yield.  More 

research is necessary to determine when the optimal time for groundcover planting.  Planting 

groundcovers in the second and third year of vine growth would help determine if it’s 

necessary for the vines to grow unincumbered for a year or two.  Results from this research 

indicated that there is more than just water competition taking place between groundcovers 

and neighboring vines.  A more in depth study looking at nutrient usage amongst the 

groundcovers and vines would also be beneficial.  Finally, determining water stress 

thresholds for grapevines grown in the field, rather than in the greenhouse, would provide 

clear information that would be directly applicable to grape growers in the Midwest. 
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APPENDIX A: Satellite image of commercial vineyard and layout of groundcover plots. 
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APPENDIX B. Modified Eichhorn and Lorenz Bud Growth Stages.  Coombe (1995) 
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APPENDIX C. Julian Date Calendar  
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APPENDIX D. Grapevine shoot length - 2014 

Treatment Plant # 29-Jul 5-Aug 12-Aug 19-Aug Final Length 

T1-A 1 69 75 85 89  
T1-A 2 50 53 57 59 74 

T1-B 1 56 60 65 70  
T1-B 2 44 52 58 60 65 

T1-C 1 42 48 52 55  
T1-C 2 49 57 65 74 64.5 

T1-D 1 57 57 59 61  
T1-D 2 48 52 56 59 60 

T1-E 1 38 43 46 49  
T1-E 2 39 41 42 43 46 

T2-A 1 52 60 71 86  
T2-A 2 43 54 66 76 81 

T2-B 1 57 62 66 68  
T2-B 2 50 54 57 59 63.5 

T2-C 1 50 52 54 55  
T2-C 2 53 59 64 65 60 

T2-D 1 45 49 51 53  
T2-D 2 41 43 44 45 49 

T2-E 1 37 47 54 62  
T2-E 2 44 50 52 54 58 

T3-A 1 58 62 65 68  
T3-A 2 48 55 62 69 68.5 

T3-B 1 45 46 48 47  
T3-B 2 35 40 46 50 48.5 

T3-C 1 43 43 44 47  
T3-C 2 48 48 49 50 48.5 

T3-D 1 37 40 42 46  
T3-D 2 37 40 41 43 44.5 

T3-E 1 49 50 50 51  
T3-E 2 39 41 44 47 49 

T4-A 1 48 51 61 72  
T4-A 2 47 57 64 70 71 

T4-B 1 48 54 61 70  
T4-B 2 43 51 58 67 68.5 

T4-C 1 65 68 68 69  
T4-C 2 65 68 68 69 69 

T4-D 1 76 83 87 95  
T4-D 2 60 68 73 80 87.5 

T4-E 1 64 69 75 90  
T4-E 2 54 61 65 71 80.5 

T6-A 1 72 72 78 84  
T6-A 2 45 52 53 54 69 
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T6-B 1 63 73 80 89  
T6-B 2 . . . . 89 

T6-C 1 57 60 62 67  
T6-C 2 54 67 79 97 82 

T6-D 1 57 67 70 79  
T6-D 2 54 60 64 66 72.5 

T6-E 1 52 57 61 67  
T6-E 2 41 45 50 55 61 
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APPENDIX E: 2014 Vegetation Fraction Data 

Date Treatment 

Veg 

Fraction  Date Treatment 

Veg 

Fraction 

7/11/2014 T1-A 0.057300422  7/29/2014 T3-B 0.896746627 

7/11/2014 T1-B 0.117677486  7/29/2014 T3-C 0.805815983 

7/11/2014 T1-C 0.045244407  7/29/2014 T3-D 0.354029269 

7/11/2014 T1-D 0.124682098  7/29/2014 T3-E 0.640229644 

7/11/2014 T1-E 0.132521876  8/5/2014 T3-A 0.99266671 

7/15/2014 T1-A 0.106548235  8/5/2014 T3-B 0.978644015 

7/15/2014 T1-B 0.296227747  8/5/2014 T3-C 0.922744515 

7/15/2014 T1-C 0.084944394  8/5/2014 T3-D 0.520372645 

7/15/2014 T1-D 0.218460386  8/5/2014 T3-E 0.832253007 

7/15/2014 T1-E 0.182063343  8/12/2014 T3-A 0.957562826 

7/22/2014 T1-A 0.243946399  8/12/2014 T3-B 0.993157033 

7/22/2014 T1-B 0.625773201  8/12/2014 T3-C 0.919859153 

7/22/2014 T1-C 0.280866093  8/12/2014 T3-D 0.592541704 

7/22/2014 T1-D 0.485721367  8/12/2014 T3-E 0.882414113 

7/22/2014 T1-E 0.380366611  8/19/2014 T3-A 0.963535605 

7/29/2014 T1-A 0.331665697  8/19/2014 T3-B 0.995937325 

7/29/2014 T1-B 0.8274306  8/19/2014 T3-C 0.984500948 

7/29/2014 T1-C 0.436742963  8/19/2014 T3-D 0.842272296 

7/29/2014 T1-D 0.49452832  8/19/2014 T3-E 0.973719234 

7/29/2014 T1-E 0.43037146     
8/5/2014 T1-A 0.558687874  7/11/2014 T5-A 0 

8/5/2014 T1-B 0.947680935  7/11/2014 T5-B 0.162709061 

8/5/2014 T1-C 0.767371438  7/11/2014 T5-C 0.007071964 

8/5/2014 T1-D 0.728547028  7/11/2014 T5-D 0.18623917 

8/5/2014 T1-E 0.631034743  7/11/2014 T5-E 0.517549248 

8/12/2014 T1-A 0.591841243  7/15/2014 T5-A 5.39E-06 

8/12/2014 T1-B 0.981876913  7/15/2014 T5-B 0.159697077 

8/12/2014 T1-C 0.942467887  7/15/2014 T5-C 0.007635027 

8/12/2014 T1-D 0.929533601  7/15/2014 T5-D 0.155596685 

8/12/2014 T1-E 0.688512975  7/15/2014 T5-E 0.567758847 

8/19/2014 T1-A 0.735427712  7/22/2014 T5-A 0 

8/19/2014 T1-B 0.997949804  7/22/2014 T5-B 0.271541877 

8/19/2014 T1-C 0.977124553  7/22/2014 T5-C 0.011395965 

8/19/2014 T1-D 0.997386741  7/22/2014 T5-D 0.18757274 

8/19/2014 T1-E 0.851372904  7/22/2014 T5-E 0.784209449 

    7/29/2014 T5-A 3.50E-05 

7/11/2014 T2-A 0.002365404  7/29/2014 T5-B 0.240339023 

7/11/2014 T2-B 0.134574766  7/29/2014 T5-C 0.007276715 

7/11/2014 T2-C 0.243733566  7/29/2014 T5-D 0.132740097 

7/11/2014 T2-D 0.223659964  7/29/2014 T5-E 0.92231885 

7/11/2014 T2-E 0.007066576  8/5/2014 T5-A 0.002551295 
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7/15/2014 T2-A 0.014143929  8/5/2014 T5-B 0.429972736 

7/15/2014 T2-B 0.326916031  8/5/2014 T5-C 0.018960947 

7/15/2014 T2-C 0.434921764  8/5/2014 T5-D 0.305640868 

7/15/2014 T2-D 0.493908681  8/5/2014 T5-E 0.9669975 

7/15/2014 T2-E 0.030987327  8/12/2014 T5-A 0.007228221 

7/22/2014 T2-A 0.048210591  8/12/2014 T5-B 0.428235053 

7/22/2014 T2-B 0.814086814  8/12/2014 T5-C 0.021719686 

7/22/2014 T2-C 0.766743717  8/12/2014 T5-D 0.304633282 

7/22/2014 T2-D 0.782668434  8/12/2014 T5-E 0.962525324 

7/22/2014 T2-E 0.100758653  8/19/2014 T5-A 0.022107634 

7/29/2014 T2-A 0.190759839  8/19/2014 T5-B 0.482949157 

7/29/2014 T2-B 0.849018277  8/19/2014 T5-C 0.081625286 

7/29/2014 T2-C 0.770456162  8/19/2014 T5-D 0.40206205 

7/29/2014 T2-D 0.827519505  8/19/2014 T5-E 0.995355403 

7/29/2014 T2-E 0.230009914     
8/5/2014 T2-A 0.503513082  7/11/2014 T6-A 0.021218587 

8/5/2014 T2-B 0.908934652  7/11/2014 T6-B 0.003766326 

8/5/2014 T2-C 0.922073689  7/11/2014 T6-C 0.132756261 

8/5/2014 T2-D 0.950614789  7/11/2014 T6-D 0.007152787 

8/5/2014 T2-E 0.771242834  7/11/2014 T6-E 0.344449114 

8/12/2014 T2-A 0.626155761  7/15/2014 T6-A 0.007890965 

8/12/2014 T2-B 0.844559572  7/15/2014 T6-B 0.005019074 

8/12/2014 T2-C 0.918202293  7/15/2014 T6-C 0.108609207 

8/12/2014 T2-D 0.748644877  7/15/2014 T6-D 0.01815811 

8/12/2014 T2-E 0.839607849  7/15/2014 T6-E 0.346202961 

8/19/2014 T2-A 0.840224794  7/22/2014 T6-A 0.01544517 

8/19/2014 T2-B 0.919985775  7/22/2014 T6-B 0.038934868 

8/19/2014 T2-C 0.944474977  7/22/2014 T6-C 0.225238696 

8/19/2014 T2-D 0.931756218  7/22/2014 T6-D 0.031038515 

8/19/2014 T2-E 0.917544937  7/22/2014 T6-E 0.440234493 

    7/29/2014 T6-A 0.036968188 

7/11/2014 T3-A 0.115465645  7/29/2014 T6-B 0.122254731 

7/11/2014 T3-B 0.224575952  7/29/2014 T6-C 0.302927928 

7/11/2014 T3-C 0.262875016  7/29/2014 T6-D 0.052033493 

7/11/2014 T3-D 0.165521682  7/29/2014 T6-E 0.486303289 

7/11/2014 T3-E 0.461135178  8/5/2014 T6-A 0.06977402 

7/15/2014 T3-A 0.258874305  8/5/2014 T6-B 0.229255571 

7/15/2014 T3-B 0.41124348  8/5/2014 T6-C 0.471531639 

7/15/2014 T3-C 0.423323742  8/5/2014 T6-D 0.10864423 

7/15/2014 T3-D 0.163840575  8/5/2014 T6-E 0.572823721 

7/15/2014 T3-E 0.563186991  8/12/2014 T6-A 0.000309819 

7/22/2014 T3-A 0.451239816  8/12/2014 T6-B 0.240077697 

7/22/2014 T3-B 0.797793008  8/12/2014 T6-C 0.496241756 

7/22/2014 T3-C 0.759968102  8/12/2014 T6-D 0.167264753 

7/22/2014 T3-D 0.312720915  8/12/2014 T6-E 0.493682379 
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7/22/2014 T3-E 0.703254989  8/19/2014 T6-A 0.000220915 

7/29/2014 T3-A 0.625414889  8/19/2014 T6-B 0.224538234 

    8/19/2014 T6-C 0.674573796 

    8/19/2014 T6-D 0.265000647 

    8/19/2014 T6-E 0.482539657 
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APPENDIX F.  2014 Alleyway Vegetation Fraction Data 

Date Treatment 

Veg 

Fraction  Date Treatment 

Veg 

Fraction 

7/11/2014 T1-A 0.037528557  7/29/2014 T3-C 0.772880835 

7/11/2014 T1-B 0.218231389  7/29/2014 T3-D 0.202163886 

7/11/2014 T1-C 0.262419716  7/29/2014 T5-A 0 

7/11/2014 T1-D 0.265237726  7/29/2014 T5-B 0.341359003 

7/11/2014 T1-E 0.180231368  7/29/2014 T5-C 0.108205095 

7/11/2014 T2-A 0.002718328  7/29/2014 T5-D 0.297254192 

7/11/2014 T2-B 0.058811802  7/29/2014 T5-E 0.183873766 

7/11/2014 T2-C 0.009968102  7/29/2014 T6-A 0.012883098 

7/11/2014 T2-D 0.045820941  7/29/2014 T6-B 0.266789517 

7/11/2014 T2-E 0.041750183  7/29/2014 T6-C 0.404322385 

7/11/2014 T3-A 0.049269365  7/29/2014 T6-D 0.207269171 

7/11/2014 T3-B 0.17396224  7/29/2014 T6-E 0.038894457 

7/11/2014 T3-C 0.321603302  8/5/2014 T1-A 0.475332988 

7/11/2014 T3-D 0.018492176  8/5/2014 T1-B 0.970984741 

7/11/2014 T3-E 0.380385469  8/5/2014 T1-C 0.995711022 

7/11/2014 T5-A 0  8/5/2014 T1-D 0.977534053 

7/11/2014 T5-B 0.12485452  8/5/2014 T1-E 0.495024031 

7/11/2014 T5-C 0.011695008  8/5/2014 T2-A 0.757117764 

7/11/2014 T5-D 0.148575908  8/5/2014 T2-B 0.796327428 

7/11/2014 T5-E 0.441576146  8/5/2014 T2-C 0.450302276 

7/11/2014 T6-A 0.038999526  8/5/2014 T2-D 0.906224406 

7/11/2014 T6-B 0.064350834  8/5/2014 T2-E 0.706240032 

7/11/2014 T6-C 0.002020561  8/5/2014 T3- E 0.934439523 

7/11/2014 T6-D 0.061282275  8/5/2014 T3-A 0.728476982 

7/11/2014 T6-E 0.001842752  8/5/2014 T3-B 0.881390362 

7/15/2014 T1-A 0.066217833  8/5/2014 T3-C 0.913757058 

7/15/2014 T1-B 0.409656666  8/5/2014 T3-D 0.344904414 

7/15/2014 T1-C 0.464395017  8/5/2014 T5-A 0.000113151 

7/15/2014 T1-D 0.386032264  8/5/2014 T5-B 0.483431398 

7/15/2014 T1-E 0.256678628  8/5/2014 T5-C 0.229269042 

7/15/2014 T2-A 0.028964072  8/5/2014 T5-D 0.690687099 

7/15/2014 T2-B 0.222916397  8/5/2014 T5-E 0.355327816 

7/15/2014 T2-C 0.02302901  8/5/2014 T6-A 0.036391655 

7/15/2014 T2-D 0.100252166  8/5/2014 T6-B 0.338153045 

7/15/2014 T2-E 0.074873917  8/5/2014 T6-C 0.721159856 

7/15/2014 T3- E 0.559035411  8/5/2014 T6-D 0.426785637 

7/15/2014 T3-A 0.092315402  8/5/2014 T6-E 0.149529613 

7/15/2014 T3-B 0.278040002  8/12/2014 T1-A 0.538878292 

7/15/2014 T3-C 0.519761089  8/12/2014 T1-B 0.985990775 

7/15/2014 T3-D 0.072174447  8/12/2014 T1-C 0.971469675 

7/15/2014 T5-A 0  8/12/2014 T1-D 0.992704427 
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7/15/2014 T5-B 0.145682465  8/12/2014 T1-E 0.528972154 

7/15/2014 T5-C 0.023586685  8/12/2014 T2-A 0.665570175 

7/15/2014 T5-D 0.027304517  8/12/2014 T2-B 0.772791931 

7/15/2014 T5-E 0.032792362  8/12/2014 T2-C 0.552542674 

7/15/2014 T6-A 0  8/12/2014 T2-D 0.695067675 

7/15/2014 T6-B 0.067858528  8/12/2014 T2-E 0.507497629 

7/15/2014 T6-C 0.070372107  8/12/2014 T3- E 0.951886396 

7/15/2014 T6-D 0.04324001  8/12/2014 T3-A 0.793129553 

7/15/2014 T6-E 0.000748955  8/12/2014 T3-B 0.944146299 

7/22/2014 T1-A 0.163996832  8/12/2014 T3-C 0.943995431 

7/22/2014 T1-B 0.72142657  8/12/2014 T3-D 0.48166408 

7/22/2014 T1-C 0.884081749  8/12/2014 T5-A 0.000651968 

7/22/2014 T1-D 0.720041812  8/12/2014 T5-B 0.430735161 

7/22/2014 T1-E 0.456374736  8/12/2014 T5-C 0.276173003 

7/22/2014 T2-A 0.147562934  8/12/2014 T5-D 0.78966227 

7/22/2014 T2-B 0.554199534  8/12/2014 T5-E 0.287331889 

7/22/2014 T2-C 0.184482629  8/12/2014 T6-A 0.020518126 

7/22/2014 T2-D 0.46614617  8/12/2014 T6-B 0.370740657 

7/22/2014 T2-E 0.17925611  8/12/2014 T6-C 0.837180482 

7/22/2014 T3- E 0.836444998  8/12/2014 T6-D 0.159686301 

7/22/2014 T3-A 0.187276391  8/12/2014 T6-E 0.253464589 

7/22/2014 T3-B 0.445778913  8/19/2014 T1-A 0.825102914 

7/22/2014 T3-C 0.766353076  8/19/2014 T1-B 0.990185461 

7/22/2014 T3-D 0.166117074  8/19/2014 T1-C 0.979112785 

7/22/2014 T5-A 0  8/19/2014 T1-D 0.996379154 

7/22/2014 T5-B 0.260331803  8/19/2014 T1-E 0.669069787 

7/22/2014 T5-C 0.089381547  8/19/2014 T2-A 0.725653584 

7/22/2014 T5-D 0.183555864  8/19/2014 T2-B 0.976453726 

7/22/2014 T5-E 0.08447293  8/19/2014 T2-C 0.751161149 

7/22/2014 T6-A 0  8/19/2014 T2-D 0.848727316 

7/22/2014 T6-B 0.160039226  8/19/2014 T2-E 0.684967563 

7/22/2014 T6-C 0.290928488  8/19/2014 T3- E 0.988043666 

7/22/2014 T6-D 0.179107936  8/19/2014 T3-A 0.966873572 

7/22/2014 T6-E 0.019451269  8/19/2014 T3-B 0.978716755 

7/29/2014 T1-A 0.190937648  8/19/2014 T3-C 0.980327816 

7/29/2014 T1-B 0.846547804  8/19/2014 T3-D 0.752599789 

7/29/2014 T1-C 0.975219837  8/19/2014 T5-A 0.00038256 

7/29/2014 T1-D 0.880827299  8/19/2014 T5-B 0.695862429 

7/29/2014 T1-E 0.312567352  8/19/2014 T5-C 0.601976378 

7/29/2014 T2-A 0.268532588  8/19/2014 T5-D 0.846957304 

7/29/2014 T2-B 0.568782598  8/19/2014 T5-E 0.415602504 

7/29/2014 T2-C 0.235425018  8/19/2014 T6-A 0.021237446 

7/29/2014 T2-D 0.606823031  8/19/2014 T6-B 0.609703004 

7/29/2014 T2-E 0.26827665  8/19/2014 T6-C 0.931026122 

7/29/2014 T3- E 0.850944545  8/19/2014 T6-D 0.3080844 
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7/29/2014 T3-A 0.340119725  8/19/2014 T6-E 0.468320294 

7/29/2014 T3-B 0.627228006     
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APPENDIX G. 2014 Pruning Weights (A.K.A total vine weight) 

Treatment  
Plant 

# 

Weight 

(lbs)  
Treatment  

Plant 

# 

Weight 

(lbs) 

T1-A 1 0.30  T6-A 1 0.54 

T1-A 2 0.08  T6-A 2 0.18 

T1-B 1 0.16  T6-B 1 0.40 

T1-B 2 0.08  T6-C 1 0.16 

T1-C 1 0.06  T6-C 2 0.32 

T1-C 2 0.10  T6-D 1 0.40 

T1-D 1 0.06  T6-D 2 0.28 

T1-D 2 0.04  T6-E 1 0.22 

T1-E 1 0.08  T6-E 2 0.16 

T1-E 2 0.04     
T2-A 1 0.18     
T2-A 2 0.16     
T2-B 1 0.22     
T2-B 2 0.12     
T2-C 1 0.08     
T2-C 2 0.16     
T2-D 1 0.06     
T2-D 2 0.06     
T2-E 1 0.16     
T2-E 2 0.06     
T3-A 1 0.22     
T3-A 2 0.20     
T3-B 1 0.06     
T3-B 2 0.06     
T3-C 1 0.06     
T3-C 2 0.04     
T3-D 1 0.08     
T3-D 2 0.02     
T3-E 1 0.40     
T3-E 2 0.08     
T4-A 1 0.26     
T4-A 2 0.20     
T4-B 1 0.18     
T4-B 2 0.16     
T4-C 1 0.12     
T4-C 2 0.10     
T4-D 1 0.46     
T4-D 2 0.38     
T4-E 1 0.46     
T4-E 2 0.14     
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APPENDIX H. 2015 Midday Leaf Water Potential Statistical Analyses 

Model Information 

Data Set WORK.LWP 

Response Variable AvgWP 

Response Distribution Gaussian 

Link Function Identity 

 

Class Level Information 

Class Levels Values 

Block 5 1 2 3 4 5 

Trt 5 1 2 3 4 6 

Date 6 30JUN2015 07JUL2015 14JUL2015 29JUL2015 05AUG2015 12AUG2015 

Rep 5 E B A C D 

 

Number of Observations Read 150 

Number of Observations Used 150 

 

Covariance Parameter Estimates 

Cov Parm Subject Estimate Standard 

Error 

Block   0.07485 0.08155 

Block*Trt   0 . 

Var(1) Block*Trt*Rep 2.2143 0.7220 

Var(2) Block*Trt*Rep 0.6009 0.2236 

Var(3) Block*Trt*Rep 0.6078 0.1945 

Var(4) Block*Trt*Rep 0.8913 0.2903 

Var(5) Block*Trt*Rep 1.0168 0.3803 

Var(6) Block*Trt*Rep 2.2049 0.7310 

Rho(1) Block*Trt*Rep 0.02033 0.2398 
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Covariance Parameter Estimates 

Cov Parm Subject Estimate Standard 

Error 

Rho(2) Block*Trt*Rep 0.04452 0.2468 

Rho(3) Block*Trt*Rep -0.4722 0.1935 

Rho(4) Block*Trt*Rep -0.1886 0.2339 

Rho(5) Block*Trt*Rep 0.6188 0.1462 

 

Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

Trt 4 14 1.99 0.1509 

Date 5 102 353.59 <.0001 

Trt*Date 20 102 1.08 0.3860 

 

Trt*Date Least Squares Means 

Trt Date Estimate Standard 

Error 

DF t Value Pr > |t| 

1 30JUN15 -8.7600 0.6766 102 -12.95 <.0001 

1 07JUL15 -7.0000 0.3676 102 -19.04 <.0001 

1 14JUL15 -9.7800 0.3695 102 -26.47 <.0001 

1 29JUL15 -8.7800 0.4396 102 -19.97 <.0001 

1 05AUG15 -2.6000 0.4673 102 -5.56 <.0001 

1 12AUG15 -9.4200 0.6752 102 -13.95 <.0001 

2 30JUN15 -9.7144 0.6778 102 -14.33 <.0001 

2 07JUL15 -7.6044 0.3698 102 -20.56 <.0001 

2 14JUL15 -9.7244 0.3717 102 -26.16 <.0001 

2 29JUL15 -9.7444 0.4414 102 -22.08 <.0001 

2 05AUG15 -3.0644 0.4690 102 -6.53 <.0001 

2 12AUG15 -9.6844 0.6764 102 -14.32 <.0001 

3 30JUN15 -8.6956 0.6778 102 -12.83 <.0001 
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Trt*Date Least Squares Means 

Trt Date Estimate Standard 

Error 

DF t Value Pr > |t| 

3 07JUL15 -6.8956 0.3698 102 -18.65 <.0001 

3 14JUL15 -10.0156 0.3717 102 -26.95 <.0001 

3 29JUL15 -10.5756 0.4414 102 -23.96 <.0001 

3 05AUG15 -3.0556 0.4690 102 -6.52 <.0001 

3 12AUG15 -9.2556 0.6764 102 -13.68 <.0001 

4 30JUN15 -7.6000 0.6766 102 -11.23 <.0001 

4 07JUL15 -6.9500 0.3676 102 -18.90 <.0001 

4 14JUL15 -9.5400 0.3695 102 -25.82 <.0001 

4 29JUL15 -9.8800 0.4396 102 -22.48 <.0001 

4 05AUG15 -2.3800 0.4673 102 -5.09 <.0001 

4 12AUG15 -8.5000 0.6752 102 -12.59 <.0001 

6 30JUN15 -8.0000 0.6766 102 -11.82 <.0001 

6 07JUL15 -6.7800 0.3676 102 -18.44 <.0001 

6 14JUL15 -10.3400 0.3695 102 -27.98 <.0001 

6 29JUL15 -10.2000 0.4396 102 -23.20 <.0001 

6 05AUG15 -2.5800 0.4673 102 -5.52 <.0001 

6 12AUG15 -9.5400 0.6752 102 -14.13 <.0001 

 

 

Simple Effect Comparisons of Trt*Date Least Squares Means By Date 

Simple Effect 

Level 

Trt Trt Estimate Standard 

Error 

DF t Value Pr > |t| Alpha Lower Upper 

Date 

30JUN2015 

1 2 0.9544 0.9420 102 1.01 0.3134 0.05 -0.9140 2.8228 

Date 

30JUN2015 

1 3 -0.06441 0.9420 102 -0.07 0.9456 0.05 -1.9328 1.8040 

Date 

30JUN2015 

1 4 -1.1600 0.9411 102 -1.23 0.2206 0.05 -3.0267 0.7067 
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Simple Effect Comparisons of Trt*Date Least Squares Means By Date 

Simple Effect 

Level 

Trt Trt Estimate Standard 

Error 

DF t Value Pr > |t| Alpha Lower Upper 

Date 

30JUN2015 

1 6 -0.7600 0.9411 102 -0.81 0.4212 0.05 -2.6267 1.1067 

Date 

30JUN2015 

2 3 -1.0188 0.9445 102 -1.08 0.2833 0.05 -2.8923 0.8547 

Date 

30JUN2015 

2 4 -2.1144 0.9420 102 -2.24 0.0270 0.05 -3.9828 -0.2460 

Date 

30JUN2015 

2 6 -1.7144 0.9420 102 -1.82 0.0717 0.05 -3.5828 0.1540 

Date 

30JUN2015 

3 4 -1.0956 0.9420 102 -1.16 0.2475 0.05 -2.9640 0.7728 

Date 

30JUN2015 

3 6 -0.6956 0.9420 102 -0.74 0.4619 0.05 -2.5640 1.1728 

Date 

30JUN2015 

4 6 0.4000 0.9411 102 0.43 0.6717 0.05 -1.4667 2.2667 

Date 

07JUL2015 

1 2 0.6044 0.4919 102 1.23 0.2220 0.05 -0.3713 1.5801 

Date 

07JUL2015 

1 3 -0.1044 0.4919 102 -0.21 0.8323 0.05 -1.0801 0.8713 

Date 

07JUL2015 

1 4 -0.05000 0.4903 102 -0.10 0.9190 0.05 -1.0225 0.9225 

Date 

07JUL2015 

1 6 -0.2200 0.4903 102 -0.45 0.6546 0.05 -1.1925 0.7525 

Date 

07JUL2015 

2 3 -0.7088 0.4968 102 -1.43 0.1567 0.05 -1.6942 0.2766 

Date 

07JUL2015 

2 4 -0.6544 0.4919 102 -1.33 0.1864 0.05 -1.6301 0.3213 

Date 

07JUL2015 

2 6 -0.8244 0.4919 102 -1.68 0.0968 0.05 -1.8001 0.1513 

Date 

07JUL2015 

3 4 0.05441 0.4919 102 0.11 0.9121 0.05 -0.9213 1.0301 

Date 

07JUL2015 

3 6 -0.1156 0.4919 102 -0.23 0.8147 0.05 -1.0913 0.8601 
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Simple Effect Comparisons of Trt*Date Least Squares Means By Date 

Simple Effect 

Level 

Trt Trt Estimate Standard 

Error 

DF t Value Pr > |t| Alpha Lower Upper 

Date 

07JUL2015 

4 6 -0.1700 0.4903 102 -0.35 0.7295 0.05 -1.1425 0.8025 

Date 

14JUL2015 

1 2 -0.05559 0.4947 102 -0.11 0.9108 0.05 -1.0368 0.9257 

Date 

14JUL2015 

1 3 0.2356 0.4947 102 0.48 0.6349 0.05 -0.7457 1.2168 

Date 

14JUL2015 

1 4 -0.2400 0.4931 102 -0.49 0.6275 0.05 -1.2180 0.7380 

Date 

14JUL2015 

1 6 0.5600 0.4931 102 1.14 0.2587 0.05 -0.4180 1.5380 

Date 

14JUL2015 

2 3 0.2912 0.4996 102 0.58 0.5613 0.05 -0.6997 1.2821 

Date 

14JUL2015 

2 4 -0.1844 0.4947 102 -0.37 0.7101 0.05 -1.1657 0.7968 

Date 

14JUL2015 

2 6 0.6156 0.4947 102 1.24 0.2162 0.05 -0.3657 1.5968 

Date 

14JUL2015 

3 4 -0.4756 0.4947 102 -0.96 0.3386 0.05 -1.4568 0.5057 

Date 

14JUL2015 

3 6 0.3244 0.4947 102 0.66 0.5135 0.05 -0.6568 1.3057 

Date 

14JUL2015 

4 6 0.8000 0.4931 102 1.62 0.1078 0.05 -0.1780 1.7780 

Date 

29JUL2015 

1 2 0.9644 0.5984 102 1.61 0.1102 0.05 -0.2226 2.1514 

Date 

29JUL2015 

1 3 1.7956 0.5984 102 3.00 0.0034 0.05 0.6086 2.9826 

Date 

29JUL2015 

1 4 1.1000 0.5971 102 1.84 0.0683 0.05 -0.08433 2.2843 

Date 

29JUL2015 

1 6 1.4200 0.5971 102 2.38 0.0193 0.05 0.2357 2.6043 

Date 

29JUL2015 

2 3 0.8312 0.6025 102 1.38 0.1707 0.05 -0.3638 2.0262 
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Simple Effect Comparisons of Trt*Date Least Squares Means By Date 

Simple Effect 

Level 

Trt Trt Estimate Standard 

Error 

DF t Value Pr > |t| Alpha Lower Upper 

Date 

29JUL2015 

2 4 0.1356 0.5984 102 0.23 0.8212 0.05 -1.0514 1.3226 

Date 

29JUL2015 

2 6 0.4556 0.5984 102 0.76 0.4482 0.05 -0.7314 1.6426 

Date 

29JUL2015 

3 4 -0.6956 0.5984 102 -1.16 0.2478 0.05 -1.8826 0.4914 

Date 

29JUL2015 

3 6 -0.3756 0.5984 102 -0.63 0.5317 0.05 -1.5626 0.8114 

Date 

29JUL2015 

4 6 0.3200 0.5971 102 0.54 0.5932 0.05 -0.8643 1.5043 

Date 

05AUG2015 

1 2 0.4644 0.6390 102 0.73 0.4690 0.05 -0.8031 1.7319 

Date 

05AUG2015 

1 3 0.4556 0.6390 102 0.71 0.4775 0.05 -0.8119 1.7231 

Date 

05AUG2015 

1 4 -0.2200 0.6378 102 -0.34 0.7308 0.05 -1.4850 1.0450 

Date 

05AUG2015 

1 6 -0.02000 0.6378 102 -0.03 0.9750 0.05 -1.2850 1.2450 

Date 

05AUG2015 

2 3 -0.00882 0.6428 102 -0.01 0.9891 0.05 -1.2838 1.2661 

Date 

05AUG2015 

2 4 -0.6844 0.6390 102 -1.07 0.2867 0.05 -1.9519 0.5831 

Date 

05AUG2015 

2 6 -0.4844 0.6390 102 -0.76 0.4502 0.05 -1.7519 0.7831 

Date 

05AUG2015 

3 4 -0.6756 0.6390 102 -1.06 0.2929 0.05 -1.9431 0.5919 

Date 

05AUG2015 

3 6 -0.4756 0.6390 102 -0.74 0.4584 0.05 -1.7431 0.7919 

Date 

05AUG2015 

4 6 0.2000 0.6378 102 0.31 0.7545 0.05 -1.0650 1.4650 

Date 

12AUG2015 

1 2 0.2644 0.9400 102 0.28 0.7791 0.05 -1.6001 2.1289 
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Simple Effect Comparisons of Trt*Date Least Squares Means By Date 

Simple Effect 

Level 

Trt Trt Estimate Standard 

Error 

DF t Value Pr > |t| Alpha Lower Upper 

Date 

12AUG2015 

1 3 -0.1644 0.9400 102 -0.17 0.8615 0.05 -2.0289 1.7001 

Date 

12AUG2015 

1 4 -0.9200 0.9391 102 -0.98 0.3296 0.05 -2.7828 0.9428 

Date 

12AUG2015 

1 6 0.1200 0.9391 102 0.13 0.8986 0.05 -1.7428 1.9828 

Date 

12AUG2015 

2 3 -0.4288 0.9426 102 -0.45 0.6501 0.05 -2.2984 1.4407 

Date 

12AUG2015 

2 4 -1.1844 0.9400 102 -1.26 0.2105 0.05 -3.0489 0.6801 

Date 

12AUG2015 

2 6 -0.1444 0.9400 102 -0.15 0.8782 0.05 -2.0089 1.7201 

Date 

12AUG2015 

3 4 -0.7556 0.9400 102 -0.80 0.4234 0.05 -2.6201 1.1089 

Date 

12AUG2015 

3 6 0.2844 0.9400 102 0.30 0.7628 0.05 -1.5801 2.1489 

Date 

12AUG2015 

4 6 1.0400 0.9391 102 1.11 0.2707 0.05 -0.8228 2.9028 

 

Trt Least Squares Means 

Trt Estimate Standard 

Error 

DF t Value Pr > |t| Alpha Lower Upper 

1 -7.7233 0.2478 14 -31.17 <.0001 0.05 -8.2548 -7.1919 

2 -8.2561 0.2510 14 -32.89 <.0001 0.05 -8.7945 -7.7177 

3 -8.0823 0.2510 14 -32.20 <.0001 0.05 -8.6207 -7.5438 

4 -7.4750 0.2478 14 -30.17 <.0001 0.05 -8.0065 -6.9435 

6 -7.9067 0.2478 14 -31.91 <.0001 0.05 -8.4381 -7.3752 
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Differences of Trt Least Squares Means 

Trt Trt Estimate Standard Error DF t Value Pr > |t| Alpha Lower Upper 

1 2 0.5327 0.3074 14 1.73 0.1050 0.05 -0.1265 1.1920 

1 3 0.3589 0.3074 14 1.17 0.2624 0.05 -0.3004 1.0182 

1 4 -0.2483 0.3047 14 -0.81 0.4288 0.05 -0.9020 0.4053 

1 6 0.1833 0.3047 14 0.60 0.5571 0.05 -0.4703 0.8370 

2 3 -0.1738 0.3152 14 -0.55 0.5900 0.05 -0.8498 0.5021 

2 4 -0.7811 0.3074 14 -2.54 0.0235 0.05 -1.4404 -0.1218 

2 6 -0.3494 0.3074 14 -1.14 0.2747 0.05 -1.0087 0.3099 

3 4 -0.6073 0.3074 14 -1.98 0.0683 0.05 -1.2665 0.05202 

3 6 -0.1756 0.3074 14 -0.57 0.5769 0.05 -0.8349 0.4837 

4 6 0.4317 0.3047 14 1.42 0.1785 0.05 -0.2220 1.0853 

 

Date Least Squares Means 

Date Estimate Standard 

Error 

DF t Value Pr > |t| Alpha Lower Upper 

30JUN15 -8.5540 0.3218 102 -26.58 <.0001 0.05 -9.1922 -7.9158 

07JUL15 -7.0460 0.1975 102 -35.68 <.0001 0.05 -7.4377 -6.6543 

14JUL15 -9.8800 0.1982 102 -49.85 <.0001 0.05 -10.2731 -9.4869 
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Date Least Squares Means 

Date Estimate Standard 

Error 

DF t Value Pr > |t| Alpha Lower Upper 

29JUL15 -9.8360 0.2250 102 -43.72 <.0001 0.05 -10.2823 -9.3897 

05AUG15 -2.7360 0.2359 102 -11.60 <.0001 0.05 -3.2039 -2.2681 

12AUG15 -9.2800 0.3212 102 -28.89 <.0001 0.05 -9.9171 -8.6429 
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APPENDIX I. 2016 Midday Leaf Water Potential Statistical Analyses 

Model Information 

Data Set WORK.LWP 

Response Variable AvgWP 

Response Distribution Gaussian 

Link Function Identity 

 

Class Level Information 

Class Levels Values 

Block 5 1 2 3 4 5 

Trt 5 1 2 3 4 6 

Date 5 06JUL2016 12JUL2016 22JUL2016 01AUG2016 10AUG2016 

Rep 5 E B A C D 

 

Number of Observations Read 125 

Number of Observations Used 125 

 

Covariance Parameter Estimates 

Cov Parm Subject Estimate Standard 

Error 

Block   0.03393 0.06512 

Block*Trt   0 . 

Var(1) Block*Trt*Rep 1.0700 0.3927 

Var(2) Block*Trt*Rep 0.3205 0.1298 

Var(3) Block*Trt*Rep 0.5020 0.1619 

Var(4) Block*Trt*Rep 1.1265 0.3831 

Var(5) Block*Trt*Rep 1.2283 0.4381 

Rho(1) Block*Trt*Rep 0.4201 0.2329 

Rho(2) Block*Trt*Rep 0.1146 0.2458 
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Covariance Parameter Estimates 

Cov Parm Subject Estimate Standard 

Error 

Rho(3) Block*Trt*Rep 0.2262 0.2283 

Rho(4) Block*Trt*Rep 0.08827 0.2310 

 

Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

Trt 4 14 2.56 0.0849 

Date 4 82 15.75 <.0001 

Trt*Date 16 82 1.06 0.4020 

 

Trt*Date Least Squares Means 

Trt Date Estimate Standard 

Error 

DF t Value Pr > |t| 

1 06JUL16 -7.3750 0.4699 82 -15.70 <.0001 

1 12JUL16 -6.9250 0.2662 82 -26.01 <.0001 

1 22JUL16 -8.4200 0.3274 82 -25.72 <.0001 

1 01AUG16 -7.9500 0.4818 82 -16.50 <.0001 

1 10AUG16 -6.5700 0.5024 82 -13.08 <.0001 

2 06JUL16 -6.4932 0.4715 82 -13.77 <.0001 

2 12JUL16 -5.7982 0.2690 82 -21.55 <.0001 

2 22JUL16 -7.0982 0.3297 82 -21.53 <.0001 

2 01AUG16 -6.6182 0.4833 82 -13.69 <.0001 

2 10AUG16 -7.5982 0.5039 82 -15.08 <.0001 

3 06JUL16 -7.0618 0.4715 82 -14.98 <.0001 

3 12JUL16 -6.8618 0.2690 82 -25.51 <.0001 

3 22JUL16 -8.1518 0.3297 82 -24.73 <.0001 

3 01AUG16 -7.8118 0.4833 82 -16.16 <.0001 

3 10AUG16 -8.3118 0.5039 82 -16.49 <.0001 
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Trt*Date Least Squares Means 

Trt Date Estimate Standard 

Error 

DF t Value Pr > |t| 

4 06JUL16 -6.6250 0.4699 82 -14.10 <.0001 

4 12JUL16 -6.2400 0.2662 82 -23.44 <.0001 

4 22JUL16 -7.4700 0.3274 82 -22.82 <.0001 

4 01AUG16 -7.6800 0.4818 82 -15.94 <.0001 

4 10AUG16 -7.8700 0.5024 82 -15.66 <.0001 

6 06JUL16 -6.4900 0.4699 82 -13.81 <.0001 

6 12JUL16 -6.7400 0.2662 82 -25.31 <.0001 

6 22JUL16 -7.8100 0.3274 82 -23.85 <.0001 

6 01AUG16 -7.0700 0.4818 82 -14.68 <.0001 

6 10AUG16 -7.7600 0.5024 82 -15.44 <.0001 

 

Simple Effect Comparisons of Trt*Date Least Squares Means By Date 

Simple Effect Level Trt Trt Estimate Standard 

Error 

DF t Value Pr > |t| 

Date 06JUL2016 1 2 -0.8818 0.6554 82 -1.35 0.1821 

Date 06JUL2016 1 3 -0.3132 0.6554 82 -0.48 0.6340 

Date 06JUL2016 1 4 -0.7500 0.6542 82 -1.15 0.2550 

Date 06JUL2016 1 6 -0.8850 0.6542 82 -1.35 0.1799 

Date 06JUL2016 2 3 0.5687 0.6588 82 0.86 0.3905 

Date 06JUL2016 2 4 0.1318 0.6554 82 0.20 0.8411 

Date 06JUL2016 2 6 -0.00316 0.6554 82 -0.00 0.9962 

Date 06JUL2016 3 4 -0.4368 0.6554 82 -0.67 0.5069 

Date 06JUL2016 3 6 -0.5718 0.6554 82 -0.87 0.3855 

Date 06JUL2016 4 6 -0.1350 0.6542 82 -0.21 0.8370 

Date 12JUL2016 1 2 -1.1268 0.3601 82 -3.13 0.0024 

Date 12JUL2016 1 3 -0.06316 0.3601 82 -0.18 0.8612 

Date 12JUL2016 1 4 -0.6850 0.3581 82 -1.91 0.0592 
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Simple Effect Comparisons of Trt*Date Least Squares Means By Date 

Simple Effect Level Trt Trt Estimate Standard 

Error 

DF t Value Pr > |t| 

Date 12JUL2016 1 6 -0.1850 0.3581 82 -0.52 0.6068 

Date 12JUL2016 2 3 1.0637 0.3663 82 2.90 0.0047 

Date 12JUL2016 2 4 0.4418 0.3601 82 1.23 0.2234 

Date 12JUL2016 2 6 0.9418 0.3601 82 2.62 0.0106 

Date 12JUL2016 3 4 -0.6218 0.3601 82 -1.73 0.0880 

Date 12JUL2016 3 6 -0.1218 0.3601 82 -0.34 0.7360 

Date 12JUL2016 4 6 0.5000 0.3581 82 1.40 0.1664 

Date 22JUL2016 1 2 -1.3218 0.4498 82 -2.94 0.0043 

Date 22JUL2016 1 3 -0.2682 0.4498 82 -0.60 0.5527 

Date 22JUL2016 1 4 -0.9500 0.4481 82 -2.12 0.0370 

Date 22JUL2016 1 6 -0.6100 0.4481 82 -1.36 0.1772 

Date 22JUL2016 2 3 1.0537 0.4547 82 2.32 0.0230 

Date 22JUL2016 2 4 0.3718 0.4498 82 0.83 0.4108 

Date 22JUL2016 2 6 0.7118 0.4498 82 1.58 0.1173 

Date 22JUL2016 3 4 -0.6818 0.4498 82 -1.52 0.1334 

Date 22JUL2016 3 6 -0.3418 0.4498 82 -0.76 0.4494 

Date 22JUL2016 4 6 0.3400 0.4481 82 0.76 0.4502 

Date 01AUG2016 1 2 -1.3318 0.6724 82 -1.98 0.0510 

Date 01AUG2016 1 3 -0.1382 0.6724 82 -0.21 0.8377 

Date 01AUG2016 1 4 -0.2700 0.6713 82 -0.40 0.6886 

Date 01AUG2016 1 6 -0.8800 0.6713 82 -1.31 0.1935 

Date 01AUG2016 2 3 1.1937 0.6757 82 1.77 0.0810 

Date 01AUG2016 2 4 1.0618 0.6724 82 1.58 0.1181 

Date 01AUG2016 2 6 0.4518 0.6724 82 0.67 0.5035 

Date 01AUG2016 3 4 -0.1318 0.6724 82 -0.20 0.8450 

Date 01AUG2016 3 6 -0.7418 0.6724 82 -1.10 0.2731 

Date 01AUG2016 4 6 -0.6100 0.6713 82 -0.91 0.3662 
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Simple Effect Comparisons of Trt*Date Least Squares Means By Date 

Simple Effect Level Trt Trt Estimate Standard 

Error 

DF t Value Pr > |t| 

Date 10AUG2016 1 2 1.0282 0.7020 82 1.46 0.1469 

Date 10AUG2016 1 3 1.7418 0.7020 82 2.48 0.0151 

Date 10AUG2016 1 4 1.3000 0.7009 82 1.85 0.0672 

Date 10AUG2016 1 6 1.1900 0.7009 82 1.70 0.0934 

Date 10AUG2016 2 3 0.7137 0.7052 82 1.01 0.3145 

Date 10AUG2016 2 4 0.2718 0.7020 82 0.39 0.6996 

Date 10AUG2016 2 6 0.1618 0.7020 82 0.23 0.8182 

Date 10AUG2016 3 4 -0.4418 0.7020 82 -0.63 0.5308 

Date 10AUG2016 3 6 -0.5518 0.7020 82 -0.79 0.4341 

Date 10AUG2016 4 6 -0.1100 0.7009 82 -0.16 0.8757 

 

Trt Least Squares Means 

Trt Estimate Standard 

Error 

DF t Value Pr > |t| Alpha Lower Upper 

1 -7.4480 0.2261 14 -32.94 <.0001 0.05 -7.9329 -6.9631 

2 -6.7212 0.2294 14 -29.30 <.0001 0.05 -7.2131 -6.2292 

3 -7.6398 0.2294 14 -33.31 <.0001 0.05 -8.1318 -7.1479 

4 -7.1770 0.2261 14 -31.74 <.0001 0.05 -7.6619 -6.6921 

6 -7.1740 0.2261 14 -31.73 <.0001 0.05 -7.6589 -6.6891 
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Differences of Trt Least Squares Means 

Trt Trt Estimate Standard Error DF t Value Pr > |t| Alpha Lower Upper 

1 2 -0.7268 0.3003 14 -2.42 0.0297 0.05 -1.3708 -0.08285 

1 3 0.1918 0.3003 14 0.64 0.5332 0.05 -0.4521 0.8358 

1 4 -0.2710 0.2978 14 -0.91 0.3782 0.05 -0.9096 0.3676 

1 6 -0.2740 0.2978 14 -0.92 0.3731 0.05 -0.9126 0.3646 

2 3 0.9187 0.3076 14 2.99 0.0098 0.05 0.2589 1.5785 

2 4 0.4558 0.3003 14 1.52 0.1512 0.05 -0.1881 1.0998 

2 6 0.4528 0.3003 14 1.51 0.1537 0.05 -0.1911 1.0968 

3 4 -0.4628 0.3003 14 -1.54 0.1455 0.05 -1.1068 0.1811 

3 6 -0.4658 0.3003 14 -1.55 0.1431 0.05 -1.1098 0.1781 

4 6 -0.00300 0.2978 14 -0.01 0.9921 0.05 -0.6416 0.6356 

 

Date Least Squares Means 

Date Estimate Standard 

Error 

DF t Value Pr > |t| Alpha Lower Upper 

06JUL16 -6.8090 0.2227 82 -30.58 <.0001 0.05 -7.2520 -6.3660 

12JUL16 -6.5130 0.1400 82 -46.51 <.0001 0.05 -6.7916 -6.2344 

22JUL16 -7.7900 0.1639 82 -47.53 <.0001 0.05 -8.1161 -7.4639 
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Date Least Squares Means 

Date Estimate Standard 

Error 

DF t Value Pr > |t| Alpha Lower Upper 

01AUG16 -7.4260 0.2277 82 -32.61 <.0001 0.05 -7.8790 -6.9730 

10AUG16 -7.6220 0.2365 82 -32.23 <.0001 0.05 -8.0924 -7.1516 

 

 

Differences of Date Least Squares Means 

Date Date Estimate Standard 

Error 

DF t Value Pr > 

|t| 

Alpha Lower Upper 

06JUL16 12JUL16 -0.2960 0.1896 82 -1.56 0.1223 0.05 -0.6731 0.08114 

06JUL16 22JUL16 0.9810 0.2451 82 4.00 0.0001 0.05 0.4935 1.4685 

06JUL16 01AUG16 0.6170 0.2948 82 2.09 0.0394 0.05 0.03055 1.2034 

06JUL16 10AUG16 0.8130 0.3031 82 2.68 0.0088 0.05 0.2101 1.4159 

12JUL16 22JUL16 1.2770 0.1709 82 7.47 <.0001 0.05 0.9369 1.6171 

12JUL16 01AUG16 0.9130 0.2380 82 3.84 0.0002 0.05 0.4396 1.3864 

12JUL16 10AUG16 1.1090 0.2487 82 4.46 <.0001 0.05 0.6143 1.6037 

22JUL16 01AUG16 -0.3640 0.2270 82 -1.60 0.1127 0.05 -0.8156 0.08759 

22JUL16 10AUG16 -0.1680 0.2607 82 -0.64 0.5211 0.05 -0.6866 0.3506 

01AUG16 10AUG16 0.1960 0.2931 82 0.67 0.5055 0.05 -0.3870 0.7790 
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APPENDIX J. 2017 Midday Leaf Water Potential Statistical Analyses 

Model Information 

Data Set WORK.LWP2 

Response Variable AvgWP 

Response Distribution Gaussian 

Link Function Identity 

 

Class Level Information 

Class Levels Values 

Block 5 1 2 3 4 5 

Trt 5 1 2 3 4 6 

Date 5 07JUL2017 14JUL2017 20JUL2017 27JUL2017 10AUG2017 

Rep 5 E B A C D 

 

Number of Observations Read 125 

Number of Observations Used 125 

 

Covariance Parameter Estimates 

Cov Parm Subject Estimate Standard 

Error 

Block   0 . 

Block*Trt   0.08194 0.04272 

SP(POW) Block*Trt*Rep 0.01934 233.18 

Residual   0.2295 0.03589 

 

Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

Trt 4 14 20.26 <.0001 

Date 4 82 74.12 <.0001 
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Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

Trt*Date 16 82 7.28 <.0001 

 

Trt*Date Least Squares Means 

Trt Date Estimate Standard 

Error 

DF t Value Pr > |t| Alpha Lower Upper 

1 07JUL17 -7.3200 0.2496 82 -29.33 <.0001 0.05 -7.8165 -6.8235 

1 14JUL17 -6.2700 0.2496 82 -25.12 <.0001 0.05 -6.7665 -5.7735 

1 20JUL17 -7.8100 0.2496 82 -31.29 <.0001 0.05 -8.3065 -7.3135 

1 27JUL17 -9.3600 0.2496 82 -37.50 <.0001 0.05 -9.8565 -8.8635 

1 10AUG17 -8.7600 0.2496 82 -35.10 <.0001 0.05 -9.2565 -8.2635 

2 07JUL17 -5.3819 0.2589 82 -20.79 <.0001 0.05 -5.8969 -4.8668 

2 14JUL17 -4.8219 0.2589 82 -18.63 <.0001 0.05 -5.3369 -4.3068 

2 20JUL17 -5.7119 0.2589 82 -22.06 <.0001 0.05 -6.2269 -5.1968 

2 27JUL17 -6.6719 0.2589 82 -25.77 <.0001 0.05 -7.1869 -6.1568 

2 10AUG17 -7.4719 0.2589 82 -28.86 <.0001 0.05 -7.9869 -6.9568 

3 07JUL17 -6.3180 0.2589 82 -24.40 <.0001 0.05 -6.8330 -5.8030 

3 14JUL17 -6.1380 0.2589 82 -23.71 <.0001 0.05 -6.6530 -5.6230 

3 20JUL17 -6.3180 0.2589 82 -24.40 <.0001 0.05 -6.8330 -5.8030 

3 27JUL17 -7.5680 0.2589 82 -29.23 <.0001 0.05 -8.0830 -7.0530 

3 10AUG17 -7.7680 0.2589 82 -30.01 <.0001 0.05 -8.2830 -7.2530 

4 07JUL17 -6.3100 0.2496 82 -25.28 <.0001 0.05 -6.8065 -5.8135 

4 14JUL17 -5.7000 0.2496 82 -22.84 <.0001 0.05 -6.1965 -5.2035 

4 20JUL17 -6.3100 0.2496 82 -25.28 <.0001 0.05 -6.8065 -5.8135 

4 27JUL17 -7.6500 0.2496 82 -30.65 <.0001 0.05 -8.1465 -7.1535 

4 10AUG17 -8.0500 0.2496 82 -32.25 <.0001 0.05 -8.5465 -7.5535 

6 07JUL17 -7.3400 0.2496 82 -29.41 <.0001 0.05 -7.8365 -6.8435 

6 14JUL17 -5.6500 0.2496 82 -22.64 <.0001 0.05 -6.1465 -5.1535 
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Trt*Date Least Squares Means 

Trt Date Estimate Standard 

Error 

DF t Value Pr > |t| Alpha Lower Upper 

6 20JUL17 -5.4900 0.2496 82 -22.00 <.0001 0.05 -5.9865 -4.9935 

6 27JUL17 -6.5200 0.2496 82 -26.12 <.0001 0.05 -7.0165 -6.0235 

6 10AUG17 -6.1200 0.2496 82 -24.52 <.0001 0.05 -6.6165 -5.6235 

 

Simple Effect Comparisons of Trt*Date Least Squares Means By Date 

Simple Effect 

Level 

Trt Trt Estimate Standard 

Error 

DF t Value Pr > |t| Alpha Lower Upper 

Date 

07JUL2017 

1 2 -1.9381 0.3596 82 -5.39 <.0001 0.05 -2.6535 -1.2228 

Date 

07JUL2017 

1 3 -1.0020 0.3596 82 -2.79 0.0066 0.05 -1.7174 -0.2867 

Date 

07JUL2017 

1 4 -1.0100 0.3530 82 -2.86 0.0053 0.05 -1.7121 -0.3079 

Date 

07JUL2017 

1 6 0.02000 0.3530 82 0.06 0.9549 0.05 -0.6821 0.7221 

Date 

07JUL2017 

2 3 0.9361 0.3661 82 2.56 0.0124 0.05 0.2078 1.6644 

Date 

07JUL2017 

2 4 0.9281 0.3596 82 2.58 0.0116 0.05 0.2128 1.6435 

Date 

07JUL2017 

2 6 1.9581 0.3596 82 5.45 <.0001 0.05 1.2428 2.6735 

Date 

07JUL2017 

3 4 -0.00796 0.3596 82 -0.02 0.9824 0.05 -0.7233 0.7074 

Date 

07JUL2017 

3 6 1.0220 0.3596 82 2.84 0.0057 0.05 0.3067 1.7374 

Date 

07JUL2017 

4 6 1.0300 0.3530 82 2.92 0.0045 0.05 0.3279 1.7321 

Date 

14JUL2017 

1 2 -1.4481 0.3596 82 -4.03 0.0001 0.05 -2.1635 -0.7328 

Date 

14JUL2017 

1 3 -0.1320 0.3596 82 -0.37 0.7144 0.05 -0.8474 0.5833 
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Simple Effect Comparisons of Trt*Date Least Squares Means By Date 

Simple Effect 

Level 

Trt Trt Estimate Standard 

Error 

DF t Value Pr > |t| Alpha Lower Upper 

Date 

14JUL2017 

1 4 -0.5700 0.3530 82 -1.61 0.1102 0.05 -1.2721 0.1321 

Date 

14JUL2017 

1 6 -0.6200 0.3530 82 -1.76 0.0827 0.05 -1.3221 0.08213 

Date 

14JUL2017 

2 3 1.3161 0.3661 82 3.59 0.0006 0.05 0.5878 2.0444 

Date 

14JUL2017 

2 4 0.8781 0.3596 82 2.44 0.0168 0.05 0.1628 1.5935 

Date 

14JUL2017 

2 6 0.8281 0.3596 82 2.30 0.0238 0.05 0.1128 1.5435 

Date 

14JUL2017 

3 4 -0.4380 0.3596 82 -1.22 0.2267 0.05 -1.1533 0.2774 

Date 

14JUL2017 

3 6 -0.4880 0.3596 82 -1.36 0.1785 0.05 -1.2033 0.2274 

Date 

14JUL2017 

4 6 -0.05000 0.3530 82 -0.14 0.8877 0.05 -0.7521 0.6521 

Date 

20JUL2017 

1 2 -2.0981 0.3596 82 -5.83 <.0001 0.05 -2.8135 -1.3828 

Date 

20JUL2017 

1 3 -1.4920 0.3596 82 -4.15 <.0001 0.05 -2.2074 -0.7767 

Date 

20JUL2017 

1 4 -1.5000 0.3530 82 -4.25 <.0001 0.05 -2.2021 -0.7979 

Date 

20JUL2017 

1 6 -2.3200 0.3530 82 -6.57 <.0001 0.05 -3.0221 -1.6179 

Date 

20JUL2017 

2 3 0.6061 0.3661 82 1.66 0.1016 0.05 -0.1222 1.3344 

Date 

20JUL2017 

2 4 0.5981 0.3596 82 1.66 0.1001 0.05 -0.1172 1.3135 

Date 

20JUL2017 

2 6 -0.2219 0.3596 82 -0.62 0.5390 0.05 -0.9372 0.4935 

Date 

20JUL2017 

3 4 -0.00796 0.3596 82 -0.02 0.9824 0.05 -0.7233 0.7074 
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Simple Effect Comparisons of Trt*Date Least Squares Means By Date 

Simple Effect 

Level 

Trt Trt Estimate Standard 

Error 

DF t Value Pr > |t| Alpha Lower Upper 

Date 

20JUL2017 

3 6 -0.8280 0.3596 82 -2.30 0.0238 0.05 -1.5433 -0.1126 

Date 

20JUL2017 

4 6 -0.8200 0.3530 82 -2.32 0.0226 0.05 -1.5221 -0.1179 

Date 

27JUL2017 

1 2 -2.6881 0.3596 82 -7.48 <.0001 0.05 -3.4035 -1.9728 

Date 

27JUL2017 

1 3 -1.7920 0.3596 82 -4.98 <.0001 0.05 -2.5074 -1.0767 

Date 

27JUL2017 

1 4 -1.7100 0.3530 82 -4.84 <.0001 0.05 -2.4121 -1.0079 

Date 

27JUL2017 

1 6 -2.8400 0.3530 82 -8.05 <.0001 0.05 -3.5421 -2.1379 

Date 

27JUL2017 

2 3 0.8961 0.3661 82 2.45 0.0165 0.05 0.1678 1.6244 

Date 

27JUL2017 

2 4 0.9781 0.3596 82 2.72 0.0080 0.05 0.2628 1.6935 

Date 

27JUL2017 

2 6 -0.1519 0.3596 82 -0.42 0.6739 0.05 -0.8672 0.5635 

Date 

27JUL2017 

3 4 0.08204 0.3596 82 0.23 0.8201 0.05 -0.6333 0.7974 

Date 

27JUL2017 

3 6 -1.0480 0.3596 82 -2.91 0.0046 0.05 -1.7633 -0.3326 

Date 

27JUL2017 

4 6 -1.1300 0.3530 82 -3.20 0.0019 0.05 -1.8321 -0.4279 

Date 

10AUG2017 

1 2 -1.2881 0.3596 82 -3.58 0.0006 0.05 -2.0035 -0.5728 

Date 

10AUG2017 

1 3 -0.9920 0.3596 82 -2.76 0.0072 0.05 -1.7074 -0.2767 

Date 

10AUG2017 

1 4 -0.7100 0.3530 82 -2.01 0.0475 0.05 -1.4121 -0.00787 

Date 

10AUG2017 

1 6 -2.6400 0.3530 82 -7.48 <.0001 0.05 -3.3421 -1.9379 
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Simple Effect Comparisons of Trt*Date Least Squares Means By Date 

Simple Effect 

Level 

Trt Trt Estimate Standard 

Error 

DF t Value Pr > |t| Alpha Lower Upper 

Date 

10AUG2017 

2 3 0.2961 0.3661 82 0.81 0.4210 0.05 -0.4322 1.0244 

Date 

10AUG2017 

2 4 0.5781 0.3596 82 1.61 0.1117 0.05 -0.1372 1.2935 

Date 

10AUG2017 

2 6 -1.3519 0.3596 82 -3.76 0.0003 0.05 -2.0672 -0.6365 

Date 

10AUG2017 

3 4 0.2820 0.3596 82 0.78 0.4351 0.05 -0.4333 0.9974 

Date 

10AUG2017 

3 6 -1.6480 0.3596 82 -4.58 <.0001 0.05 -2.3633 -0.9326 

Date 

10AUG2017 

4 6 -1.9300 0.3530 82 -5.47 <.0001 0.05 -2.6321 -1.2279 
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APPENDIX K.  Pruning Weight Data (2015 and 2016) and Statistical Analyses 

Year Treatment Plant # 
Weight 

(lbs) 
 Year Treatment Plant # 

Weight 

(lbs) 

2015 T1-A 1 0.30  2015 T4-E 1 0.46 

2015 T1-A 2 0.08  2015 T4-E 2 0.14 

2015 T1-B 1 0.16  2015 T6-A 1 0.54 

2015 T1-B 2 0.08  2015 T6-A 2 0.18 

2015 T1-C 1 0.06  2015 T6-B 1 0.40 

2015 T1-C 2 0.10  2015 T6-B 2 . 

2015 T1-D 1 0.06  2015 T6-C 1 0.16 

2015 T1-D 2 0.04  2015 T6-C 2 0.32 

2015 T1-E 1 0.08  2015 T6-D 1 0.40 

2015 T1-E 2 0.04  2015 T6-D 2 0.28 

2015 T2-A 1 0.18  2015 T6-E 1 0.22 

2015 T2-A 2 0.16  2015 T6-E 2 0.16 

2015 T2-B 1 0.22  2016 T1-A 3 0.12 

2015 T2-B 2 0.12  2016 T1-A 2 0.08 

2015 T2-C 1 0.08  2016 T1-A 1 0.02 

2015 T2-C 2 0.16  2016 T1-A 4 0.02 

2015 T2-D 1 0.06  2016 T1-B 3 0.08 

2015 T2-D 2 0.06  2016 T1-B 2 0.28 

2015 T2-E 1 0.16  2016 T1-B 1 0.20 

2015 T2-E 2 0.06  2016 T1-B 4 0.62 

2015 T3-A 1 0.22  2016 T1-C 3 0.12 

2015 T3-A 2 0.20  2016 T1-C 2 0.04 

2015 T3-B 1 0.06  2016 T1-C 1 0.10 

2015 T3-B 2 0.06  2016 T1-C 4 0.02 

2015 T3-C 1 0.06  2016 T1-D 3 0.00 

2015 T3-C 2 0.04  2016 T1-D 2 0.14 

2015 T3-D 1 0.08  2016 T1-D 1 0.00 

2015 T3-D 2 0.02  2016 T1-D 4 0.02 

2015 T3-E 1 0.40  2016 T1-E 3 0.02 

2015 T3-E 2 0.08  2016 T1-E 2 0.02 

2015 T4-A 1 0.26  2016 T1-E 1 0.00 

2015 T4-A 2 0.20  2016 T1-E 4 0.00 

2015 T4-B 1 0.18  2016 T2-A 3 0.00 

2015 T4-B 2 0.16  2016 T2-A 2 0.02 

2015 T4-C 1 0.12  2016 T2-A 1 0.00 

2015 T4-C 2 0.10  2016 T2-A 4 0.00 

2015 T4-D 1 0.46  2016 T2-B 3 0.02 

2015 T4-D 2 0.38  2016 T2-B 2 0.02 
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2016 T2-B 1 0.02  2016 T4-C 2 0.00 

2016 T2-B 2 0.02  2016 T4-C 1 0.04 

2016 T2-C 3 0.00  2016 T4-C 4 0.12 

2016 T2-C 2 0.00  2016 T4-D 3 0.18 

2016 T2-C 1 0.00  2016 T4-D 2 1.02 

2016 T2-C 4 0.00  2016 T4-D 1 1.22 

2016 T2-D 3 0.02  2016 T4-D 4 0.00 

2016 T2-D 2 0.02  2016 T4-E 3 0.46 

2016 T2-D 1 0.00  2016 T4-E 2 1.20 

2016 T2-D 4 0.00  2016 T4-E 1 0.52 

2016 T2-E 3 0.02  2016 T4-E 4 0.06 

2016 T2-E 2 0.00  2016 T6-A 3 0.90 

2016 T2-E 1 0.00  2016 T6-A 2 1.12 

2016 T2-E 4 0.02  2016 T6-A 1 0.60 

2016 T3-A 3 0.34  2016 T6-A 4 0.34 

2016 T3-A 2 0.10  2016 T6-B 3 1.46 

2016 T3-A 1 0.50  2016 T6-B 2 0.98 

2016 T3-A 4 0.44  2016 T6-B 1 0.00 

2016 T3-B 3 0.10  2016 T6-B 4 0.90 

2016 T3-B 2 0.24  2016 T6-C 3 0.40 

2016 T3-B 1 0.30  2016 T6-C 2 0.04 

2016 T3-B 4 0.32  2016 T6-C 1 0.36 

2016 T3-C 3 0.00  2016 T6-C 4 0.14 

2016 T3-C 2 0.04  2016 T6-D 3 0.60 

2016 T3-C 1 0.02  2016 T6-D 2 0.70 

2016 T3-C 4 0.38  2016 T6-D 1 0.48 

2016 T3-D 3 0.00  2016 T6-D 4 0.66 

2016 T3-D 2 0.00  2016 T6-E 3 0.00 

2016 T3-D 1 0.00  2016 T6-E 2 0.02 

2016 T3-D 4 0.00  2016 T6-E 1 0.32 

2016 T3-E 3 0.16  2016 T6-E 4 0.00 

2016 T3-E 2 0.10      
2016 T3-E 1 0.10      
2016 T3-E 4 0.16      
2016 T4-A 3 0.78      
2016 T4-A 2 0.36      
2016 T4-A 1 0.22      
2016 T4-A 4 0.54      
2016 T4-B 3 0.42      
2016 T4-B 2 0.44      
2016 T4-B 1 0.06      
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2016 T4-B 4 0.50      
2016 T4-C 3 0.04      

 

Model Information 

Data Set WORK.PRUNE 

Response Variable AvgPrunWeight 

Response Distribution Gaussian 

Link Function Identity 

 

Class Level Information 

Class Levels Values 

Trt 5 1 2 3 4 6 

Year 2 2015 2016 

Block 5 1 2 3 4 5 

 

Number of Observations Read 50 

Number of Observations Used 50 

 

Covariance Parameter Estimates 

Cov Parm Estimate Standard 

Error 

Block 0.001562 0.002699 

Residual 0.02074 0.004891 

 

Type III Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

Year 1 36 1.88 0.1792 

Trt 4 36 10.54 <.0001 

Trt*Year 4 36 1.95 0.1238 
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Trt*Year Least Squares Means 

Trt Year Estimate Standard 

Error 

DF t Value Pr > |t| 

1 2015 0.1000 0.06679 36 1.50 0.1430 

1 2016 0.09500 0.06679 36 1.42 0.1635 

2 2015 0.1338 0.06736 36 1.99 0.0547 

2 2016 0.01676 0.06736 36 0.25 0.8049 

3 2015 0.1142 0.06736 36 1.70 0.0985 

3 2016 0.1572 0.06736 36 2.33 0.0253 

4 2015 0.2460 0.06679 36 3.68 0.0008 

4 2016 0.4090 0.06679 36 6.12 <.0001 

6 2015 0.3060 0.06679 36 4.58 <.0001 

6 2016 0.5010 0.06679 36 7.50 <.0001 

 

Simple Effect Comparisons of Trt*Year Least Squares Means By Year 

Simple Effect 

Level 

Trt Trt Estimate Standard 

Error 

DF t Value Pr > |t| 

Year 2015 1 2 -0.03376 0.09150 36 -0.37 0.7143 

Year 2015 1 3 -0.01424 0.09150 36 -0.16 0.8772 

Year 2015 1 4 -0.1460 0.09109 36 -1.60 0.1177 

Year 2015 1 6 -0.2060 0.09109 36 -2.26 0.0299 

Year 2015 2 3 0.01952 0.09275 36 0.21 0.8345 

Year 2015 2 4 -0.1122 0.09150 36 -1.23 0.2279 

Year 2015 2 6 -0.1722 0.09150 36 -1.88 0.0679 

Year 2015 3 4 -0.1318 0.09150 36 -1.44 0.1585 

Year 2015 3 6 -0.1918 0.09150 36 -2.10 0.0432 

Year 2015 4 6 -0.06000 0.09109 36 -0.66 0.5143 

Year 2016 1 2 0.07824 0.09150 36 0.86 0.3982 

Year 2016 1 3 -0.06224 0.09150 36 -0.68 0.5007 

Year 2016 1 4 -0.3140 0.09109 36 -3.45 0.0015 
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Simple Effect Comparisons of Trt*Year Least Squares Means By Year 

Simple Effect 

Level 

Trt Trt Estimate Standard 

Error 

DF t Value Pr > |t| 

Year 2016 1 6 -0.4060 0.09109 36 -4.46 <.0001 

Year 2016 2 3 -0.1405 0.09275 36 -1.51 0.1386 

Year 2016 2 4 -0.3922 0.09150 36 -4.29 0.0001 

Year 2016 2 6 -0.4842 0.09150 36 -5.29 <.0001 

Year 2016 3 4 -0.2518 0.09150 36 -2.75 0.0092 

Year 2016 3 6 -0.3438 0.09150 36 -3.76 0.0006 

Year 2016 4 6 -0.09200 0.09109 36 -1.01 0.3192 

 

Simple Effect Comparisons of Trt*Year Least Squares Means By Trt 

Simple Effect 

Level 

Year Year Estimate Standard 

Error 

DF t Value Pr > |t| 

Trt 1 2015 2016 0.005000 0.09109 36 0.05 0.9565 

Trt 2 2015 2016 0.1170 0.09109 36 1.28 0.2072 

Trt 3 2015 2016 -0.04300 0.09109 36 -0.47 0.6397 

Trt 4 2015 2016 -0.1630 0.09109 36 -1.79 0.0819 

Trt 6 2015 2016 -0.1950 0.09109 36 -2.14 0.0391 

 

Year Least Squares Means 

Year Estimate Standard 

Error 

DF t Value Pr > |t| Alpha Lower Upper 

2015 0.1800 0.03379 36 5.33 <.0001 0.05 0.1115 0.2485 

2016 0.2358 0.03379 36 6.98 <.0001 0.05 0.1673 0.3043 

 

Differences of Year Least Squares Means 

Year Year Estimate Standard Error DF t Value Pr > |t| Alpha Lower Upper 

2015 2016 -0.05580 0.04073 36 -1.37 0.1792 0.05 -0.1384 0.02681 
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Trt Least Squares Means 

Trt Estimate Standard 

Error 

DF t Value Pr > |t| Alpha Lower Upper 

1 0.09750 0.04885 36 2.00 0.0536 0.05 -0.00158 0.1966 

2 0.07526 0.04963 36 1.52 0.1381 0.05 -0.02539 0.1759 

3 0.1357 0.04963 36 2.74 0.0096 0.05 0.03509 0.2364 

4 0.3275 0.04885 36 6.70 <.0001 0.05 0.2284 0.4266 

6 0.4035 0.04885 36 8.26 <.0001 0.05 0.3044 0.5026 

 

Differences of Trt Least Squares Means 

Trt Trt Estimate Standard Error DF t Value Pr > |t| Alpha Lower Upper 

1 2 0.02224 0.06500 36 0.34 0.7342 0.05 -0.1096 0.1541 

1 3 -0.03824 0.06500 36 -0.59 0.5600 0.05 -0.1701 0.09358 

1 4 -0.2300 0.06441 36 -3.57 0.0010 0.05 -0.3606 -0.09938 

1 6 -0.3060 0.06441 36 -4.75 <.0001 0.05 -0.4366 -0.1754 

2 3 -0.06048 0.06674 36 -0.91 0.3708 0.05 -0.1958 0.07488 

2 4 -0.2522 0.06500 36 -3.88 0.0004 0.05 -0.3841 -0.1204 

2 6 -0.3282 0.06500 36 -5.05 <.0001 0.05 -0.4601 -0.1964 

3 4 -0.1918 0.06500 36 -2.95 0.0056 0.05 -0.3236 -0.05994 

3 6 -0.2678 0.06500 36 -4.12 0.0002 0.05 -0.3996 -0.1359 

4 6 -0.07600 0.06441 36 -1.18 0.2457 0.05 -0.2066 0.05462 
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APPENDIX L. Harvest Data 2016 & 2017 

Year Trt Plant # 
Cluster 

# 

Total 

Cluster 

Weight 

(oz) 

Total 

Cluster 

Weight 

(g) 

Avg 

Cluster 

Weight 

(g) 

Berry 

Sample 

Weight 

(g) 

Avg 

Berry 

Weight 

°Brix pH 
TA 

(g/L) 

2016 T1-A 3 74 181 5131.26 69.34 168.86 1.6886 14 3.11 11.59 

2016 T1-A 2 89 214.5 6080.97 68.33 179.59 1.7959 14.6 3.11 11.47 

2016 T1-A 1 46 81 2296.31 49.92 192.2 1.922 15.7 3.17 11.94 

2016 T1-A 4 37 75 2126.21 57.47 194.59 1.9459 16.3 3.15 8.08 

2016 T1-B 3 32 62 1757.67 54.93 177.59 1.7759 15.2 3.03 11.4 

2016 T1-B 2 111 192 5443.10 49.04 178.44 1.7844 15.6 3.07 9.055 

2016 T1-B 1 56 82.5 2338.83 41.76 163.59 1.6359 16 3.25 11.39 

2016 T1-B 4 53 163.5 4635.14 87.46 192.51 1.9251 14.2 3.11 12.22 

2016 T1-C 3 77 146 4139.03 53.75 180.65 1.8065 15.9 3.2 9.79 

2016 T1-C 2 30 65.5 1856.89 61.90 176.85 1.7685 15.3 3.118 10.72 

2016 T1-C 1 46 91 2579.80 56.08 179.17 1.7917 16 3.16 10.52 

2016 T1-C 4                   

2016 T1-D 3 27 48.5 1374.95 50.92 165.87 1.6587 17 3.24 7.935 

2016 T1-D 2 39 85.5 2423.88 62.15 189.31 1.8931 16.6 3.25 8.997 

2016 T1-D 1 26 37 1048.93 40.34 187.35 1.8735 17.8 3.22 8.543 

2016 T1-D 4 35 54.5 1545.05 44.14 183.75 1.8375 16.4 3.21 9.297 

2016 T1-E 3 51 129.5 3671.26 71.99 188.22 1.8822 14.6 3.17 10.21 

2016 T1-E 2 22 49 1389.13 63.14 173.54 1.7354 16.2 3.21 10.44 

2016 T1-E 1 7 14 396.89 56.70 190.89 1.9089 16.2 3.21 13.74 

2016 T1-E 4 17 44 1247.38 73.38 198.64 1.9864 16.3 3.14 8.916 

2016 T2-A 3                   

2016 T2-A 2 32 68.5 1941.94 60.69 202.47 2.0247 15.2 3.16 9.469 

2016 T2-A 1 33 81 2296.31 69.59 181.08 1.8108 15.8 3.24 8.337 
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2016 T2-A 4 43 98.5 2792.43 64.94 195.08 1.9508 16.8 3.17 7.961 

2016 T2-B 3                   

2016 T2-B 2                   

2016 T2-B 1                   

2016 T2-B 4                   

2016 T2-C 3                   

2016 T2-C 2                   

2016 T2-C 1                   

2016 T2-C 4 20 38.5 1091.46 54.57           

2016 T2-D 3 41 50 1417.47 34.57 171.56 1.7156 12.9 3.04 12.28 

2016 T2-D 2 15 42.5 1204.85 80.32 237.09 2.3709 17.2 3.09 9.627 

2016 T2-D 1 11 26.5 751.26 68.30 190.63 1.9063 17 3.07 8.901 

2016 T2-D 4 29 74 2097.86 72.34 174.82 1.7482 15.3 2.93 10.8 

2016 T2-E 3 64 131.5 3727.96 58.25 183.12 1.8312 15.5 3.2 9.54 

2016 T2-E 2 21 30.5 864.66 41.17 177.5 1.775 16.6 3.14 10.03 

2016 T2-E 1                   

2016 T2-E 4 46 62 1757.67 38.21 167.64 1.6764 15.6 3.13 9.564 

2016 T3-A 3 98 219.5 6222.71 63.50 213.09 2.1309 16.1 3.18 9.7 

2016 T3-A 2 52 144.5 4096.50 78.78 197.57 1.9757 15.7 3.19 9.163 

2016 T3-A 1 48 135.5 3841.36 80.03 201.12 2.0112 15.7 3.22 10.63 

2016 T3-A 4 51 163 4620.97 90.61 210.79 2.1079 16.1 3.16 9.758 

2016 T3-B 3 77 171 4847.76 62.96 184.15 1.8415 16.3 3.21 9.572 

2016 T3-B 2 52 119 3373.59 64.88 201.39 2.0139 14.6 3.13 12.45 

2016 T3-B 1 97 160.5 4550.09 46.91 170.66 1.7066 15.4 3.18 10.07 

2016 T3-B 4 65 174.5 4946.99 76.11 188.21 1.8821 15.6 3.24 11.17 

2016 T3-C 3 31 59.5 1686.79 54.41 180.27 1.8027 17.6 3.28 8.387 

2016 T3-C 2 37 79.5 2253.78 60.91 170.24 1.7024 15.7 3.17 10.93 

2016 T3-C 1 41 84.5 2395.53 58.43 191.6 1.916 17.3 3.3 9.19 
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2016 T3-C 4 54 91 2579.80 47.77 171.75 1.7175 17 3.22 8.357 

2016 T3-D 3 40 102.5 2905.82 72.65 180.66 1.8066 15.2 3.1 11.09 

2016 T3-D 2 34 66 1871.07 55.03 183.02 1.8302 16.3 3.2 10.15 

2016 T3-D 1                   

2016 T3-D 4 7 10.5 297.67 42.52 189.42 1.8942 16 3.26 11.13 

2016 T3-E 3 62 127 3600.39 58.07 165.72 1.6572 16.7 3.24 8.8 

2016 T3-E 2 93 155.5 4408.35 47.40 173.28 1.7328 17.1 3.29 8.248 

2016 T3-E 1 68 89.5 2537.28 37.31 159.7 1.597 16.1 3.22 9.06 

2016 T3-E 4 65 113 3203.49 49.28 183.95 1.8395 16.7 3.3 8.558 

2016 T4-A 3 122 81.5 2310.48 18.94 198.78 1.9878 16 3.09 9.54 

2016 T4-A 2 75 163 4620.97 61.61 178.69 1.7869 13.3 3.21 11.55 

2016 T4-A 1 103 200 5669.90 55.05 200.94 2.0094 12.7 3.04 13.14 

2016 T4-A 4 55 151 4280.77 77.83 199.38 1.9938 15.6 3.23 8.395 

2016 T4-B 3 63 123.5 3501.16 55.57 168.51 1.6851 13.1 2.99 13.62 

2016 T4-B 2 57 128.5 3642.91 63.91 203.12 2.0312 14.6 2.95 11.53 

2016 T4-B 1 38 98.5 2792.43 73.48 160.12 1.6012 14 3.03 11.22 

2016 T4-B 4 58 119.5 3387.76 58.41 184.18 1.8418 14.4 2.75 9.773 

2016 T4-C 3                   

2016 T4-C 2 44 55 1559.22 35.44 178.44 1.7844 15.5 3.06 9.782 

2016 T4-C 1 36 80 2267.96 63.00 175.95 1.7595 14.9 3.18 9.084 

2016 T4-C 4 37 99 2806.60 75.85 207.17 2.0717 15.9 3.14 9.623 

2016 T4-D 3 28 60 1700.97 60.75 228.55 2.2855 17.2 3.15 7.876 

2016 T4-D 2 96 287.5 8150.48 84.90 203.24 2.0324 15.4 3.25 8.669 

2016 T4-D 1 50 153.5 4351.65 87.03 201.12 2.0112 15.5 2.96 8.342 

2016 T4-D 4                   

2016 T4-E 3 98 188.5 5343.88 54.53 169.97 1.6997 14.1 3.07 11.96 

2016 T4-E 2 56 167 4734.37 84.54 174.13 1.7413 15.7 2.89 9.626 

2016 T4-E 1 45 115 3260.19 72.45 212.09 2.1209 16.4 3.28 7.907 
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2016 T4-E 4 59 116 3288.54 55.74 184.13 1.8413 15.4 3.21 8.903 

2016 T6-A 3 21 30.5 864.66 41.17 202.99 2.0299 16 3.31 9.907 

2016 T6-A 2 19 46.5 1318.25 69.38 254.77 2.5477 15.6 2.91 12.28 

2016 T6-A 1                   

2016 T6-A 4                   

2016 T6-B 3 103 238 6747.18 65.51 207.82 2.0782 15.5 3.19 9.376 

2016 T6-B 2 88 217.5 6166.01 70.07 217.38 2.1738 16.4 3.34 7.66 

2016 T6-B 1                   

2016 T6-B 4 55 83.5 2367.18 43.04 163.64 1.6364 17.2 3.34 8.835 

2016 T6-C 3 74 152 4309.12 58.23 205.81 2.0581 16.3 3.38 8.831 

2016 T6-C 2 27 53.5 1516.70 56.17 182.1 1.821 15.8 3.22 9.355 

2016 T6-C 1 50 107.5 3047.57 60.95 169.54 1.6954 16.3 2.99 8.948 

2016 T6-C 4 46 78 2211.26 48.07 210.94 2.1094 15.3 3.17 11.17 

2016 T6-D 3 86 214.5 6080.97 70.71 232.71 2.3271 16.4 3.28 9.22 

2016 T6-D 2 99 205 5811.65 58.70 170.68 1.7068 16.9 3.21 8 

2016 T6-D 1 105 222 6293.59 59.94 192.14 1.9214 16.5 3.13 9.587 

2016 T6-D 4 78 158 4479.22 57.43 178.94 1.7894 16 3.3 8.173 

2016 T6-E 3 11 17 481.94 43.81 170.11 1.7011 18 3.24 8.203 

2016 T6-E 2 27 52 1474.17 54.60 195.73 1.9573 16.4 3.14 12 

2016 T6-E 1 5 5 141.75 28.35 161.1 1.611 17.7 3.31 9.333 

2016 T6-E 4 7 7.5 212.62 30.37 153.84 1.5384 16.7 3.15 12.54 

2017 T1-A 1 183 18.4 8346.10 45.61 94.1 1.88 18.4 3.19 9.6 

2017 T1-A 2 104 9.6 4354.49 41.87 98.98 1.98 18.6 3.35 7.81 

2017 T1-B 1 147 20.8 9434.72 64.18 122.74 2.45 17.5 3.44 5.98 

2017 T1-B 2 91 7.6 3447.30 37.88 168.31 3.37 17.5 3.5 8.08 

2017 T1-C 1 120 9.9 4490.56 37.42 116.38 2.33 17.9 3.42 7.56 

2017 T1-C 2 128 11.5 5216.31 40.75 97.66 1.95 16.9 3.5 6.04 

2017 T1-D 1 120 10.5 4762.72 39.69 124.4 2.49 18.3 3.35 7.75 
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2017 T1-D 2 66 5.4 2449.40 37.11 99.81 2.00 19.9 3.56 6.32 

2017 T1-E 1 71 7.2 3265.87 46.00 104.62 2.09 17.9 3.47 8.14 

2017 T1-E 2 89 9.1 4127.69 46.38 97.77 1.96 17.5 3.39 8.3 

2017 T2-A 1 75 6.4 2902.99 38.71 102.94 2.06 16 3.32 8.31 

2017 T2-A 2 64 4.7 2131.88 33.31 110.71 2.21 18.4 3.38 7.51 

2017 T2-B 1 50 3.2 1451.50 29.03 111.84 2.24 13.4 3.21 10.17 

2017 T2-B 2 47 3.2 1451.50 30.88 115.81 2.32 15.6 3.26 9.44 

2017 T2-C 1 22 0.8 362.87 16.49 98.91 1.98 15.6 3.3 8.73 

2017 T2-C 2 50 4.5 2041.17 40.82 124.24 2.48 16.7 3.2 10.03 

2017 T2-D 1 57 4.2 1905.09 33.42 92.36 1.85 19.6 3.36 8.34 

2017 T2-D 2 48 2.4 1088.62 22.68 95.18 1.90 17.5 3.29 8.71 

2017 T2-E 1 43 2.4 1088.62 25.32 89.03 1.78 18.8 3.34 7.34 

2017 T2-E 2 68 3.1 1406.14 20.68 76.32 1.53 19.6 3.35 6.02 

2017 T3-A 1 199 21.8 9888.31 49.69 104.62 2.09 15.6 3.46 7.71 

2017 T3-A 2 135 19.2 8708.97 64.51 118.06 2.36 15.9 3.34 7.35 

2017 T3-B 1 158 15.5 7030.68 44.50 98.41 1.97 18 3.44 6.42 

2017 T3-B 2 121 13.4 6078.14 50.23 123.32 2.47 17.5 3.48 6.37 

2017 T3-C 1 88 7.2 3265.87 37.11 90.28 1.81 18.7 3.43 5.46 

2017 T3-C 2 224 16.3 7393.56 33.01 134.38 2.69 18.9 3.5 7.35 

2017 T3-D 1 91 7.9 3583.38 39.38 104.18 2.08 18.7 3.32 5.48 

2017 T3-D 2 55 2.9 1315.42 23.92 73.29 1.47 19.4 3.31 6.95 

2017 T3-E 1 99 8.8 3991.61 40.32 101.66 2.03 19.7 3.63 5.67 

2017 T3-E 2 10 3.9 1769.01 176.90 93.01 1.86 19.2 3.68 6.09 

2017 T4-A 1 47 3.5 1587.57 33.78 90.34 1.81 13.8 3.3 8.55 

2017 T4-A 2 38 2.5 1133.98 29.84 84.54 1.69 14.6 3.46 8.63 

2017 T4-B 1 83 5.4 2449.40 29.51 82.39 1.65 15.9 3.36 8.25 

2017 T4-B 2 73 4.5 2041.17 27.96 111.74 2.23 15.4 3.28 8.21 

2017 T4-C 1 44 2.9 1315.42 29.90 75.63 1.51 14.6 3.32 7.63 
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2017 T4-C 2 60 4 1814.37 30.24 93.45 1.87 16 3.33 7.45 

2017 T4-D 1 286 25.8 11702.68 40.92 123.8 2.48 16.7 3.44 7.55 

2017 T4-D 2 204 18.5 8391.46 41.13 125.16 2.50 15.9 3.39 7.55 

2017 T4-E 1 107 12.8 5805.98 54.26 104.81 2.10 17.1 3.38 8.52 

2017 T4-E 2 114 11.3 5125.59 44.96 97.81 1.96 16.5 3.25 9.47 

2017 T6-A 1 152 19 8618.26 56.70 112.47 2.25 16.6 3.2 8.22 

2017 T6-A 2 172 24.8 11249.09 65.40 113.67 2.27 16.6 3.39 8.7 

2017 T6-B 1 209 17.3 7847.15 37.55 115.96 2.32 17.5 3.35 7.55 

2017 T6-B 2 52 2.3 1043.26 20.06 95.39 1.91 16.6 3.37 8.1 

2017 T6-C 1 167 36.2 16420.04 98.32 107.89 2.16 16.3 3.41 8.67 

2017 T6-C 2 195 14.3 6486.37 33.26 112.23 2.24 16.1 3.41 8.41 

2017 T6-D 1 161 18.2 8255.38 51.28 106.4 2.13 18 3.4 7.72 

2017 T6-D 2 142 17.5 7937.87 55.90 105.26 2.11 17.3 3.36 8.4 

2017 T6-E 1 158 15.5 7030.68 44.50 99.26 1.99 17.1 3.42 8.35 

2017 T6-E 2 97 7.6 3447.30 35.54 88.35 1.77 18 3.57 7.89 
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APPENDIX M.  Soil Samples 2015, 2016 & 2017 

Year Trt Block  pH 

 

Buffer 

pH 

 OM 

% 

 Bulk 

Density 

 NO3 

ppm 

 Bray 

1 P 

ppm 

 K 

ppm 

 Ca 

ppm 
 Mg ppm 

 Na 

ppm 

2015 T1-E blk 1 6.4 6.9 2.3 1.35 2 5.6 254 4058 977 42 

2015 T2-B blk 1 6.1 6.7 2.5 1.3 2 6.6 284 3222 763 16 

2015 T3-A blk 1 5.9 6.6 2.3 1.26 3 7.8 208 2918 622 18 

2015 T4-C blk 1 6.4 6.7 2.4 1.31 2 5.6 227 3665 1001 131 

2015 T6-A blk 1 6.1 6.7 2.3 1.31 5 11.1 272 3397 774 14 

2015 T1-B blk 2 6.4 7 1.9 1.29 2 8 239 3615 751 23 

2015 T2-C blk 2 6.2 6.7 2.3 1.32 1 4.9 237 3289 794 21 

2015 T3-B blk 2 6 6.7 2.3 1.32 2 4.3 214 3691 667 22 

2015 T4-E blk 2 6.2 6.8 1.9 1.24 2 12 207 3070 725 15 

2015 T6-B blk 2 6.2 6.8 2 1.34 2 8.7 247 3459 852 13 

2015 T1-A blk 3 6.4 7 1.9 1.32 2 3.4 194 3851 654 30 

2015 T2-D blk 3 5.9 6.7 2.7 1.36 20 14.5 289 3288 700 17 

2015 T3-E blk 3 6.1 6.8 2.3 1.23 3 8.7 254 3065 693 16 

2015 T4-D blk 3 5.9 6.7 2.1 1.17 2 6.2 202 2834 634 13 

2015 T6-C blk 3 6.4 6.9 1.9 1.26 2 15.7 244 3672 835 14 

2015 T1-D blk 4 5.9 6.7 2.4 1.33 3 7.6 242 3454 695 19 

2015 T2-A blk 4 6.2 6.7 2.4 1.32 3 8.3 198 3362 672 23 

2015 T3-C blk 4 6.2 6.5 2.2 1.31 4 9.7 263 3735 814 19 

2015 T4-B blk 4 6.5 6.8 2.1 1.34 3 3.5 199 4002 592 15 

2015 T6-E blk 4 5.8 6.6 2.2 1.27 2 5.4 202 3158 717 14 

2015 T1-C blk 5 5.9 6.6 2.7 1.4 3 10.7 212 3281 623 24 

2015 T2-E blk 5 6.1 6.6 2.5 1.23 1 7.9 213 3148 581 22 

2015 T3-D blk 5 6 6.6 2.2 1.25 1 3.8 179 3660 589 19 
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2015 T4-A blk 5 6.4 6.7 1.9 1.23 3 2.5 171 3116 717 15 

2015 T6-D blk 5 5.8 6.6 2.3 1.25 6 9.4 215 3200 683 11 

2016 T1-E blk 1 6.2 6.9 2.3 1.3 3 17.1 238 3817 870 38 

2016 T2-B blk 1 6.3 6.8 2.6 1.26 1 22.3 300 3517 766 18 

2016 T3-A blk 1 6.1 6.8 2.1 1.33 3 10.8 221 3507 723 24 

2016 T4-C blk 1 6.3 6.8 2.6 1.17 2 19.7 192 3366 810 99 

2016 T6-A blk 1 5.9 6.8 2.2 1.24 2 15.2 295 3510 725 16 

2016 T1-B blk 2 6.4 6.9 2.1 1.31 3 19.7 194 3682 751 22 

2016 T2-C blk 2 6.3 6.9 2.4 1.33 1 17.5 258 3575 783 17 

2016 T3-B blk 2 5.6 6.7 2.3 1.28 4 22.2 273 3562 596 19 

2016 T4-E blk 2 6.2 6.8 2 1.26 1 34.1 245 3817 821 24 

2016 T6-B blk 2 6.2 6.9 2.3 1.31 3 35.2 235 3447 758 13 

2016 T1-A blk 3 6.6 7.5 2 1.3 2 7 139 3785 645 26 

2016 T2-D blk 3 6.1 6.8 2.6 1.3 2 18.6 258 3253 655 18 

2016 T3-E blk 3 5.7 6.6 2.7 1.37 4 15.1 268 3628 736 16 

2016 T4-D blk 3 6.2 6.8 2.5 1.34 3 17.2 256 3818 796 33 

2016 T6-C blk 3 6 6.8 2.2 1.28 4 19.4 241 3626 777 15 

2016 T1-D blk 4 5.8 6.7 2.5 1.33 24 11.8 265 3485 636 18 

2016 T2-A blk 4 5.9 6.7 2.5 1.38 2 28.5 205 3426 691 23 

2016 T3-C blk 4 6.3 6.9 2.1 1.23 5 11.7 234 3463 681 16 

2016 T4-B blk 4 6.6 7.5 2 1.3 1 5.2 179 4231 571 22 

2016 T6-E blk 4 5.9 6.7 2.3 1.26 2 16.4 231 3461 741 14 

2016 T1-C blk 5 6 6.8 2.6 1.37 5 19.5 256 3425 562 21 

2016 T2-E blk 5 6 6.6 2.9 1.37 3 30.9 270 3779 650 18 

2016 T3-D blk 5 6.3 6.9 2.4 1.29 1 4.2 195 3734 545 19 

2016 T4-A blk 5 6.6 7.5 1.9 1.23 1 9.4 181 3371 718 24 

2016 T6-D blk 5 5.9 6.7 2.6 1.36 2 7.3 218 3677 721 15 

2017 T1-E blk 1 6.4 6.9 2.5 1.36 5 16.2 244 3897 887 48 

2017 T2-B blk 1 6.1 6.7 2.5 1.21 1 17.5 277 2851 644 16 

2017 T3-A blk 1 5.8 6.8 2.5 1.06 3 16.4 169 2390 497 18 
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2017 T4-C blk 1 6.2 6.7 2.2 1.21 1 21.6 211 3001 744 115 

2017 T6-A blk 1 6.2 6.8 2 1.24 1 16 224 3036 656 13 

2017 T1-B blk 2 6 6.8 2.2 1.33 8 26.6 230 3039 615 22 

2017 T2-C blk 2 6.4 6.8 2.2 1.25 1 25 240 3301 701 19 

2017 T3-B blk 2 6 6.8 2.4 1.18 2 20 207 2944 530 17 

2017 T4-E blk 2 6.3 7 2.2 1.09 1 24.1 170 2486 522 17 

2017 T6-B blk 2 6.4 6.9 2 1.17 1 25.2 239 3219 722 15 

2017 T1-A blk 3 6.2 6.9 1.9 1.24 3 9.2 168 3119 495 26 

2017 T2-D blk 3 6.1 6.8 2.6 1.31 1 20.7 247 2888 526 18 

2017 T3-E blk 3 6.4 7 2.9 1.02 4 26.9 252 2640 505 12 

2017 T4-D blk 3 6 6.8 2.3 1.17 1 14.8 209 2764 582 19 

2017 T6-C blk 3 6.2 6.8 1.9 1.22 1 16.1 190 2942 643 15 

2017 T1-D blk 4 5.8 6.7 2.3 1.28 10 10.4 210 3034 544 18 

2017 T2-A blk 4 5.9 6.8 2.5 1.14 1 16.5 146 2346 467 16 

2017 T3-C blk 4 6.3 6.9 2.3 1.19 4 16.4 182 2903 568 15 

2017 T4-B blk 4 6.6 7.5 2.1 1.34 1 8.1 185 3625 485 22 

2017 T6-E blk 4 6 6.6 2.2 1.27 1 16 204 3138 643 15 

2017 T1-C blk 5 5.8 6.8 2.6 1.09 14 28.1 151 2289 405 17 

2017 T2-E blk 5 5.9 6.7 2.6 1.32 2 23.4 222 3238 547 21 

2017 T3-D blk 5 6.2 6.8 2.2 1.22 3 5.6 163 3448 491 24 

2017 T4-A blk 5 6.4 6.8 2 1.18 1 30.1 166 3103 626 22 

2017 T6-D blk 5 6 6.8 2.4 1.02 2 8.8 160 2535 521 14 

Year Trt Block 
 S 

ppm 

 Zn 

ppm 
 % K  % Mg  % Ca  % Na  % H  CEC 

 Soluble 

Salts 

mmhos/cm 
 

2015 T1-E blk 1 11 0.3 2.1 25.7 64.1 0.6 7.6 31.7 0.42  
2015 T2-B blk 1 5 0.4 2.7 23.3 59.1 0.3 14.7 27.3 0.34  
2015 T3-A blk 1 6 0.7 2.1 20.4 57.5 0.3 19.7 25.4 0.33  
2015 T4-C blk 1 4 0.2 1.8 26.2 57.6 1.8 12.6 31.8 0.46  
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2015 T6-A blk 1 4 0.6 2.5 22.9 60.2 0.2 14.2 28.2 0.36  
2015 T1-B blk 2 11 0.3 2.3 23.1 66.8 0.4 7.4 27 0.36  
2015 T2-C blk 2 6 0.2 2.2 23.8 59.2 0.3 14.4 27.8 0.35  
2015 T3-B blk 2 6 0.3 1.9 19.4 64.4 0.3 14 28.7 0.36  
2015 T4-E blk 2 3 0.1 2.1 24.2 61.4 0.3 12 25 0.31  
2015 T6-B blk 2 2 0.2 2.3 25.3 61.6 0.2 10.7 28.1 0.34  
2015 T1-A blk 3 14 0.1 1.8 19.9 70.4 0.5 7.3 27.3 0.38  
2015 T2-D blk 3 7 1 2.7 21.5 60.7 0.3 14.8 27.1 0.43  
2015 T3-E blk 3 6 0.7 2.6 23.3 61.7 0.3 12.1 24.8 0.32  
2015 T4-D blk 3 6 0.3 2.2 22 59 0.2 16.6 24 0.31  
2015 T6-C blk 3 3 0.4 2.2 24.5 64.6 0.2 8.4 28.4 0.35  
2015 T1-D blk 4 7 0.6 2.2 20.9 62.2 0.3 14.4 27.8 0.36  
2015 T2-A blk 4 8 0.7 1.9 20.7 62.2 0.4 14.8 27 0.36  
2015 T3-C blk 4 4 0.5 2.1 21.1 58 0.3 18.6 32.2 0.4  
2015 T4-B blk 4 4 0.1 1.8 17.3 70.2 0.2 10.5 28.5 0.36  
2015 T6-E blk 4 4 0.1 1.9 21.9 57.7 0.2 18.3 27.3 0.34  
2015 T1-C blk 5 9 1.5 2 19.1 60.2 0.4 18.4 27.2 0.37  
2015 T2-E blk 5 8 1.1 2.1 18.5 60 0.4 19.1 26.2 0.34  
2015 T3-D blk 5 6 0.1 1.6 17.1 63.7 0.3 17.4 28.7 0.36  
2015 T4-A blk 5 7 0.1 1.7 22.9 59.8 0.3 15.3 26.1 0.34  
2015 T6-D blk 5 6 0.2 2 20.9 58.6 0.2 18.3 27.3 0.36  
2016 T1-E blk 1 10 3.1 2.1 24.6 64.7 0.6 8.1 29.5 0.4  
2016 T2-B blk 1 11 2.2 2.8 22.9 63.2 0.3 10.8 27.8 0.36  
2016 T3-A blk 1 10 3.8 2.1 22.1 64.4 0.4 11 27.2 0.37  
2016 T4-C blk 1 11 2.1 1.8 24.5 61.2 1.6 10.9 27.5 0.42  
2016 T6-A blk 1 10 2.9 2.8 22 64 0.3 10.9 27.4 0.36  
2016 T1-B blk 2 10 1.3 1.8 22.6 66.6 0.3 8.7 27.7 0.37  
2016 T2-C blk 2 10 4.5 2.4 23.7 64.9 0.3 8.7 27.5 0.36  
2016 T3-B blk 2 13 4.1 2.5 18 64.6 0.3 14.5 27.6 0.38  
2016 T4-E blk 2 9 5.3 2.1 23.1 64.3 0.4 10.1 29.7 0.38  
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2016 T6-B blk 2 14 2.5 2.3 23.7 64.8 0.2 9 26.6 0.37  
2016 T1-A blk 3 12 0.7 1.4 21.7 76.4 0.5 0 24.8 0.34  
2016 T2-D blk 3 11 2.6 2.6 21.4 63.9 0.3 11.8 25.5 0.34  
2016 T3-E blk 3 10 1.7 2.3 20.4 60.4 0.2 16.6 30 0.39  
2016 T4-D blk 3 10 2.3 2.2 22.5 64.7 0.5 10.2 29.5 0.4  
2016 T6-C blk 3 9 7.1 2.2 22.9 64.1 0.2 10.6 28.3 0.37  
2016 T1-D blk 4 11 3.3 2.5 19.3 63.4 0.3 14.6 27.5 0.46  
2016 T2-A blk 4 15 2.6 1.9 20.9 62.3 0.4 14.5 27.5 0.38  
2016 T3-C blk 4 9 1.5 2.3 21.8 66.4 0.3 9.2 26.1 0.36  
2016 T4-B blk 4 8 0.6 1.7 18 79.9 0.4 0 26.5 0.34  
2016 T6-E blk 4 10 3.9 2.1 21.9 61.5 0.2 14.2 28.1 0.37  
2016 T1-C blk 5 12 7.3 2.6 18.3 67 0.4 11.7 25.6 0.36  
2016 T2-E blk 5 12 3.2 2.3 18 62.8 0.3 16.6 30.1 0.4  
2016 T3-D blk 5 6 0.7 1.9 17.3 71.3 0.3 9.2 26.2 0.33  
2016 T4-A blk 5 12 1.8 2 25.6 72 0.4 0 23.4 0.33  
2016 T6-D blk 5 7 0.8 1.9 20.7 63.4 0.2 13.8 29 0.37  
2017 T1-E blk 1 10 3.4 2.1 24.5 64.6 0.7 8.1 30.2 0.42  
2017 T2-B blk 1 9 2 2.9 21.8 58 0.3 16.9 24.6 0.32  
2017 T3-A blk 1 9 1.9 2.2 21 60.5 0.4 15.9 19.8 0.28  
2017 T4-C blk 1 10 2 2.1 24 58.1 1.9 13.9 25.8 0.4  
2017 T6-A blk 1 8 1.9 2.4 22.8 63.4 0.2 11.1 23.9 0.31  
2017 T1-B blk 2 10 3.9 2.5 21.6 64.1 0.4 11.4 23.7 0.35  
2017 T2-C blk 2 9 1.8 2.4 22.8 64.3 0.3 10.2 25.7 0.34  
2017 T3-B blk 2 9 4.5 2.4 19.7 65.6 0.3 12 22.4 0.31  
2017 T4-E blk 2 9 1.6 2.2 22.4 64 0.4 11 19.4 0.27  
2017 T6-B blk 2 11 6.4 2.4 24 64.1 0.3 9.3 25.1 0.33  
2017 T1-A blk 3 11 4.1 1.9 18.2 68.8 0.5 10.7 22.7 0.33  
2017 T2-D blk 3 10 1.9 2.8 19.2 63.2 0.3 14.5 22.8 0.31  
2017 T3-E blk 3 8 2.3 3.2 20.8 65.1 0.3 10.7 20.3 0.29  
2017 T4-D blk 3 8 3.6 2.4 21.4 60.9 0.4 14.9 22.7 0.3  
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2017 T6-C blk 3 7 1.9 2.1 23 63 0.3 11.7 23.3 0.31  
2017 T1-D blk 4 8 4.3 2.2 18.5 61.7 0.3 17.3 24.6 0.36  
2017 T2-A blk 4 10 6.1 1.9 19.9 60.1 0.4 17.7 19.5 0.27  
2017 T3-C blk 4 9 3.7 2.1 21.4 65.5 0.3 10.8 22.2 0.31  
2017 T4-B blk 4 8 1 2.1 17.8 79.7 0.4 0 22.7 0.31  
2017 T6-E blk 4 10 2 2 20.3 59.4 0.2 18.1 26.4 0.34  
2017 T1-C blk 5 8 3.8 2.1 18.3 62 0.4 17.2 18.5 0.31  
2017 T2-E blk 5 12 2.6 2.2 17.7 62.7 0.4 17 25.8 0.35  
2017 T3-D blk 5 10 2.8 1.7 16.2 68.4 0.4 13.3 25.2 0.34  
2017 T4-A blk 5 11 1.4 1.8 21.7 64.6 0.4 11.4 24 0.33  
2017 T6-D blk 5 9 1.3 2 21.2 61.9 0.3 14.6 20.5 0.28  
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APPENDIX N.  2017 Petiole Samples   

Year Treatment 
Nitrate 

(ppm) 

Phosphorus 

(%) 

Potassium 

(%) 

Magnesium 

(%) 

Calcium 

(%) 

Sodium 

(%) 

Sulfur 

(%) 

2017 Trt 1 160.1 0.32 3.96 0.25 1.11 0.03 0.1 

2017 Trt 2 61.9 0.49 4.02 0.18 1.45 0.03 0.08 

2017 Trt 3 41.2 0.42 4.36 0.23 1.15 0.02 0.08 

2017 Trt 4 1.2 0.5 3.83 0.15 1.35 0.03 0.07 

2017 Trt 6 26 0.51 3.89 0.19 1.3 0.02 0.09 
         

Year Treatment 
Zinc 

(ppm) 

Manganese 

(ppm) 

Copper  

(ppm) 

Iron  

(ppm) 

Boron  

(ppm) 

Aluminum  

(ppm) 
 

2017 Trt 1 42.49 76.2 10.7 36.7 33 24.9  

2017 Trt 2 48.49 77.8 8.3 30.5 33.7 19.3  

2017 Trt 3 42.42 74.1 9.2 31.4 31 19.1  

2017 Trt 4 45.84 88.4 7.8 29.9 33.5 17  

2017 Trt 6 49.28 90.6 8.9 34 32.9 19.6  
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APPENDIX O. Data for Greenhouse Estimation of Leaf Water Potential 

Treatment Time 
Air 

Temp °F 

Air 

Temp 

°C 

Relative 

Humidity 

Irradiance 

(w/m2) 
LWP 

S65 

CWSI 

C2 

CWSI 

C-1 10:50 95.30 35.17 42.00 344.00 9.00 -0.02 -1.35 

C-2 11:21 96.60 35.89 41.00 770.00 7.60 0.16 0.23 

C-3 11:25 96.00 35.56 40.00 750.00 10.20 0.20 0.56 

C-4 12:09 98.90 37.17 37.00 668.00 9.00 0.04 0.19 

C-5 12:29 96.20 35.67 36.00 147.00 7.00 -0.02 -0.54 

C-6 12:57 97.30 36.28 35.00 878.00 9.40 -0.43 -0.41 

2-1 10:54 95.30 35.17 42.00 318.00 10.30 -1.14 -4.33 

2-2 11:23 95.90 35.50 40.00 747.00 10.80 -0.01 -0.01 

2-3 11:47 98.00 36.67 38.00 746.00 11.80 0.01 0.29 

2-4 12:11 98.40 36.89 37.00 588.00 12.00 0.28 0.07 

2-5 12:32 95.90 35.50 36.00 225.00 9.00 0.00 -0.28 

2-6 1:00 97.50 36.39 35.00 859.00 9.80 -0.32 -0.25 

4-1 10:57 94.10 34.50 42.00 302.00 12.00 -0.56 -0.27 

4-2 11:31 96.90 36.06 41.00 768.00 12.40 -0.18 0.50 

4-3 11:50 98.60 37.00 38.00 681.00 11.80 0.66 0.50 

4-4 12:13 97.70 36.50 37.00 483.00 9.00 0.32 0.60 

4-5 12:35 95.50 35.28 38.00 440.00 8.40 0.20 0.55 

4-6 1:02 97.50 36.39 37.00 759.00 11.00 -0.34 0.34 

6-1 11:01 93.30 34.06 42.00 331.00 9.20 0.12 0.68 

6-2 11:34 97.10 36.17 40.00 763.00 10.80 -0.15 -0.11 

6-3 11:52 98.90 37.17 39.00 574.00 8.00 0.30 0.32 

6-4 12:15 97.30 36.28 36.00 386.00 10.00 0.67 0.76 

6-5 12:41 95.00 35.00 36.00 792.00 11.20 0.08 0.26 

6-6 1:04 97.70 36.50 36.00 877.00 10.40 0.38 0.10 

8-1 11:04 93.20 34.00 41.00 360.00 12.20 0.62 0.63 

8-2 11:37 97.30 36.28 38.00 769.00 11.00 0.49 0.18 

8-3 12:38 95.30 35.17 36.00 685.00 12.00 -0.02 0.63 

8-4 12:18 97.10 36.17 36.00 490.00 12.60 0.38 0.71 

8-5 12:43 95.30 35.17 37.00 831.00 11.40 0.68 0.81 

8-6 1:07 97.80 36.56 37.00 915.00 13.00 0.21 1.23 

10-1 11:06 93.50 34.17 42.00 435.00 12.20 0.73 0.96 

10-2 11:39 97.30 36.28 39.00 794.00 10.80 0.38 0.52 

10-3 11:58 99.50 37.50 39.00 379.00 10.40 0.35 0.60 

10-4 12:21 97.30 36.28 36.00 339.00 10.60 0.25 0.54 

10-5 12:46 95.00 35.00 35.00 829.00 10.20 0.18 0.07 

10-6 1:11 98.40 36.89 36.00 1019.00 10.20 0.31 0.90 

12-1 11:09 94.10 34.50 41.00 545.00 12.40 -0.01 0.48 
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12-2 11:42 97.50 36.39 40.00 781.00 12.60 0.08 0.34 

12-3 12:01 99.10 37.28 39.00 806.00 12.00 0.53 0.89 

12-4 12:24 97.10 36.17 36.00 216.00 13.00 0.51 1.02 

12-5 12:48 95.50 35.28 35.00 842.00 14.20 0.45 0.26 

12-6 1:13 98.70 37.06 36.00 1065.00 12.00 0.41 1.23 

14-1 11:13 94.40 34.67 40.00 639.00 14.20 0.65 2.02 

14-2 11:44 97.10 36.17 40.00 767.00 13.60 0.57 0.71 

14-3 12:03 99.80 37.67 37.00 806.00 17.20 0.36 0.88 

14-4 12:27 96.80 36.00 36.00 157.00 10.60 0.48 1.08 

14-5 12:51 96.20 35.67 35.00 872.00 12.40 0.08 0.01 

14-6 1:15 98.70 37.06 35.00 1034.00 12.20 0.61 0.41 
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