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Abstract 
Offspring of four crosses (I, II, III, and IV) of Penaeus vannamei from known high- and low-growth 
families were challenged with infectious hypodermal and hematopoietic necrosis virus (IHHNV) 
and Baculovirus penaei (BP) to compare their susceptibility to these viral agents and examine the ge-
netic component involved in disease resistance or susceptibility. Family crosses were made using 
broodstock from five families developed by the U.S. Marine Shrimp Farming Program. The preva-
lence of IHHNV infection was highest in cross I and lowest in cross III. Cross I was developed using 
male and female broodstock from the low-growth family 1.6, and cross III was developed using a 
female from the high-growth family 1.3 and a male from the low-growth family 1.6. The prevalence 
of BP infection at Day 4 was highest (100%) in cross IV, which was developed using a female from 
the low-growth family 1.4 and a male from the high-growth family 1.5. The reciprocal cross, cross 
III, had the lowest (68%) prevalence at Day 4 postexposure. Both crosses I and II had 88% prevalence 
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of infection at Day 4. Despite 100% prevalence of BP infection in cross IV at 4 days, animals from this 
cross and cross II exhibited high survival by Day 18 (85 and 77%). On the other hand, crosses I and 
III (with 88 and 68% prevalence at Day 4, respectively) showed low survival at Day 18 (19 and 24%). 
On the basis of prevalence of infection and mortality rates, it was concluded that the susceptibility 
to BP in penaeid shrimp is governed by the genetic background of the parental crosses. The random 
amplified polymorphic DNA polymorphisms for crosses I, II, III, and IV, were 43, 45, 53, and 51%, 
respectively, showing no clear relationship between IHHNV and BP prevalence of infection and lev-
els of nuclear genetic diversity. Though the mtDNA haplotypes in offspring from the different 
crosses were the same, major differences were observed in both steady-state levels and patterns of 
expression of the mitochondrial 12s rRNA in offspring obtained at various early developmental 
stages from each of the four crosses. The possible relationship among disease susceptibility, growth 
status, and expression of mitochondrial 12s rRNA is discussed in the context of a complex nuclear-
cytoplasmic genetic system involved in the regulation of gene expression. 
 
Keywords: IHHNV, Baculovirus penaeid, Penaeus vannamei, genetic diversity, susceptibility, 12s RNA, 
mtDNA 
 
Introduction 
 
Viral diseases cause severe economic losses to the shrimp aquaculture industry worldwide 
(Chamberlain, 1994). So far, at least 18 penaeid viruses have been reported to infect cul-
tured and wild shrimp (Lightner et al., 1994; Overstreet, 1994). Among these viruses, the 
infectious hypodermal and hematopoietic necrosis virus (IHHNV) and Baculovirus penaei 
(BP) are of considerable economic importance to the industry (Lightner, 1993; Overstreet, 
1994). 

IHHNV is a parvovirus containing single-stranded DNA that infects cultured Pacific 
white Penaeus vannamei and blue P. stylirostris shrimp as well as some wild populations of 
Pacific American penaeids (Lightner, 1993). Epizootiological data have linked IHHNV in-
fection to “runt deformity syndrome” in cultured P. vannamei. The growth rate of infected 
animals is greatly reduced and a variety of cuticular deformities are observed (Browdy et 
al., 1993). Bioassay, histopathological techniques, and nonradioactive genomic probes have 
been developed for detection of IHHNV (Lightner et al., 1994). 

B. penaei, a double-stranded DNA baculovirus (occluded), was the first shrimp virus 
reported 20 years ago in penaeid shrimp from the Gulf of Mexico (Overstreet, 1994). BP 
causes enteric infections resulting in high mortality by infecting the epithelial cells of the 
hepatopancreas and midgut of all the developmental stages of the host (LeBlanc and Over-
street, 1990; Lightner et al., 1994). Prevalence and severity of BP infection vary depending 
on the viral strain, inoculum level, resistance and age of host, host species, nutrition, and 
an undefined “general health state” (Overstreet, 1994). 

IHHNV and BP are considered high priority in importance for regulation by interna-
tional policy for sustainability of shrimp aquaculture and healthy natural resources (Johnson, 
1994). A long-term management strategy for viral diseases of shrimp has been imple-
mented by the U.S. Marine Shrimp Farming Program Consortium (MSFP) and accordingly, 
specific pathogen-free (SPF) P. vannamei seedstocks are being supplied to shrimp farmers 
(Wyban et al., 1993; Lotz et al., 1995). So far, three SPF (Nos. 1, 2, and 3) populations, one 
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“candidate” SPF (No. 4) population, and 12 families from population 1 have been devel-
oped by the MSFP (Wyban et al., 1993; Carr et al., 1994). Differences in growth rate have 
been reported between these populations and families (Carr et al., 1994). Molecular genetic 
analysis also revealed considerable variability at the nuclear and mitochondrial DNA 
(mtDNA) levels between and within these populations (Alcivar-Warren et al., 1994; Garcia 
et al., 1994). Significant differences in the expression levels of mitochondrial 12S rRNA, 
cytochrome oxidase subunit I (COI) mRNA, and the nuclear actin mRNA were also ob-
served among individuals of populations 1 and 2 (Alcivar-Warren et al., 1994, 1995, 1996). 

Studies with other aquatic animals have revealed a relationship between genetic varia-
bility and disease resistance. For instance, a relationship between the bacterial gill disease 
resistance and genetic (isozyme) heterozygosity of survivors has been presented for rain-
bow trout (Ferguson and Drahushchak, 1986). These researchers also noticed that re-
sistance to bacterial gill disease was related to size of the fish. This implies that expression 
of growth or metabolically important genes (like those encoded by the mitochondrial ge-
nome) could be involved in susceptibility to disease infection. Examples of genetic varia-
tion for disease or pollutant resistance between and within populations of marine species 
have also been reported by Nevo et al. (1986) and Chevassus and Dorson (1990). However, 
no information is available regarding the possibility that resistance to viral diseases in 
shrimp is genetically (inheritable) determined. 

We hypothesized that susceptibility of cultured P. vannamei to IHHNV and BP infection 
is genetically determined. This relationship is due in part to the differences in growth per-
formance and the expression of metabolic genes among the families used to perform the 
crosses. In this study, crosses were performed using individuals from five families of high 
health P. vannamei with the following objectives: (1) to determine if infection of high health 
shrimp with IHHNV and BP is influenced by the genetic background of the host, (2) to 
assess the relationship between nuclear and mitochondrial DNA polymorphisms and the 
prevalence of IHHNV and BP, and (3) to study if the expression of the mitochondrial 12s 
rRNA gene during development is associated with susceptibility to viral infections and 
growth status. 
 
Methods 
 
Sample Collection 
The high health shrimp used to perform the crosses for this study were obtained from the 
Oceanic Institute (OI) in Hawaii and were produced following specifications for stock cer-
tification (Lotz et al., 1995). These populations have been regularly screened and found 
negative to both IHHNV and BP pathogens. Third-generation offspring were obtained 
from four crosses (I, II, III, and IV) using broodstock from five high health families (Nos. 
1.3, 1.4, 1.5, 1.6, and 1.8) of population 1 (Table 1). These broodstock were chosen from 
families of known high (H) or low (L) growth rates (Carr et al., 1994). Families 1.3, 1.5, and 
1.8 had significantly higher growth than families 1.4 and 1.6 (Table 1). 
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Table 1. Details of Family Crosses and Growth Data for the Animals Used in This Study 
Family crosses: I II III IV 
(Female × male; population no., 
    family no.) 

(1.6 × 1.6) (1.3 × 1.8) (1.3 × 1.6) (1.4 × 1.5) 

Family growth status (Female × 
    male)b 

L × La 
(W379 × W373) 

H × H 
(B490 × G324) 

H × L 
(B492 × W382) 

L × H 
(R391 × W388) 

Mean weight (g) for families,c 
     ±SD 

1.6 = 9.4 ± 2.9 1.3 = 17.8 ± 2.0 
1.8 = 17.3 ± 2.2 

1.3 = 17.8 ± 2.0 
1.6 = 9.4 ± 2.9 

1.4 = 9.4 ± 1.9 
1.5 = 15.3 ± 2.9 

a. L, low growth; H, high growth. 
b. Letters and numbers in parentheses indicate the tag numbers of male and female broodstock. 
c. Taken from the 1992 U.S. Marine Shrimp Farming Program Implementation Plan, unpublished data. 

 
Pooled samples from various developmental stages were obtained from each of the four 

crosses during an 18-day sample collection period to extract total nucleic acids. The fol-
lowing samples were collected and placed in guanidine isothiocyanate (GT) buffer after 
confirmation of the developmental stages by microscopic examination: ~2000 nauplii 
stages 3 and 4 (N3/4), ~2000 zoea stage 1 (Z1), ~2000 zoea stage 3 (Z3), ~1000 mysis 1 (M1), 
~1000 mysis 3 (M3), and ~500 each from postlarvae 1 (PL1), PL2, PL4, PL6, PL8, and PL10. 
Total nucleic acids were also extracted from tail muscle obtained from the broodstock and 
from 12–15 third-generation juveniles from each of the five families (1.3, 1.4, 1.5, 1.6, and 
1.8) used to perform the crosses. Total RNA extracted from the brine shrimp Artemia, used 
to feed the animals at various stages of development, served as controls in the mRNA ex-
pression analysis. Postlarvae stage 10 (from the same crosses from which nucleic acids 
were extracted) were shipped from OI to the Gulf Coast Research Laboratory (Ocean 
Springs, Mississippi), where these animals were challenged with IHHNV and BP under 
controlled conditions. 
 
Challenge of High Health Shrimp with IHHNV and BP 
Fifteen animals weighing 1–2 g (~3 months old) were stocked into eight 40-L aquaria and 
challenged with IHHNV. Animals in each tank were fed IHHNV-positive tissue (10% of 
their body weight) and it is assumed that the amount of virus exposure should have been 
the same for each tank. Survival at Day 30 was 100% in each of the eight tanks. IHHNV 
prevalence at Day 30 was determined for the four families after pooling the 30 individuals 
from the duplicate tanks. Detection of IHHNV was done using nonradioactive probe and 
dot blot technique on Day 30 (Lightner et al., 1994). 

Experiments to test the susceptibility of postlarvae to BP were conducted using stage 
PL15 of the same spawns used for the genetic analyses. They were performed in eight 38-
L aquaria set within a 25–26°C water bath, maintained at 32 ppt salinity and constant light, 
aerated with air stones and dual sponge filters, and conditioned with No. 9 Fritz-Zyme 
(nitrifying bacteria). A pair of aquaria was initiated for each of four crosses with about 350 
free PL15 per aquarium plus exactly 100 additional specimens in an inserted “egg-cup” for 
documenting survival at 18 days. The egg-cup was made with a 28-cm-high cylinder of 
475-μm mesh nylon screening material fit into a 15-cm glass petri dish base. Shrimp in one 
aquarium of each pair were exposed to 0.4 g of heavily BP-infected PL material that had 
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been frozen at –70°C and then thawed. At each of Days 0, 4, 13, and 26 postexposure (PE), 
the fresh hepatopancreas of 25 shrimp per aquaria were used for light microscopic exami-
nation of BP polyhedra (Overstreet et al., 1988). Differences in infections were compared 
using χ2 analysis. 
 
Nucleic Acid Extraction and Randomly Amplified Polymorphic DNA (RAPD) 
Total nucleic acids were extracted using a GT-based protocol (Alcivar et al., 1989) with 
some modifications as reported earlier (Garcia et al., 1994). The RAPD analysis was per-
formed using six 10-mer oligonucleotide primers (OPA-20, OPB-13, OPB-19, OPG-07, OPM-
09, and OPZ-09; Operon Technologies, Alameda, California) using pooled DNA samples 
from eight different developmental stages (M1, M3, PL1, PL2, PL4, PL6, PL8, and PL10). 
These six primers were selected after initial screening of 41 primers (Astrofsky et al., un-
published results). The reaction mixture and the thermal cycles for the polymerase chain 
reaction (PCR) were the same as described by Garcia et al. (1994). The amplified products 
were run in a 2% agarose gel containing 0.3 μg/ml ethidium bromide in TAE buffer (40 mM 
Tris, 20 mM acetic acid, 1 mM sodium EDTA) at 1.8 V/cm of gel for 20 hr. The gel was 
photographed and individual DNA bands were scored as present or absent in each profile. 
 
Restriction Fragment Length Polymorphisms (RFLPs) 
Seven restriction endonucleases (BamHI, BclI, BstEII, CfoI, EcoRV, HhaI, and RsaI from Gibco 
BRL) were selected for RFLP analysis. All enzyme digestions were carried out as per the 
manufacturer’s instructions. Southern blot hybridizations to detect RFLPs in the mitochon-
drial COI gene were carried out according to the methods described by Alcivar et al. (1989). 
Digested DNA was electrophoresed in 0.8% agarose gels, blotted onto nitrocellulose mem-
branes (MSI, Westboro, Massachusetts), and hybridized with a COI DNA probe (Garcia et 
al., 1994) labeled using the random priming DNA system (Gibco BRL) and [α-32P]dCTP 
(Amersham) at specific activities of 1 to 5 × 107 cpm/ml of hybridization solution. 
 
Northern Blot Hybridizations 
The hybridizations for Northern blots were performed either at 65°C as previously de-
scribed (Alcivar et al., 1989; Alcivar-Warren et al., 1994) or at 42°C using custom-made 
hybridization solutions (5  3 Inc.) following the procedure suggested by the supplier. A 
152-bp DNA of 12s rRNA amplified by PCR was used for probe preparation in Northern 
blot hybridizations. The primers for PCR amplification of 12s rRNA gene were taken from 
a published sequence for penaeid shrimp (Palumbi and Benzie, 1991). The PCR-amplified 
DNA fragment was labeled using the random priming protocol and [α-32P]dCTP (Amer-
sham) with specific activities ranging from 1 to 3 × 107 cpm/ml of hybridization solution. 
 
Results 
 
Susceptibility to IHHNV and BP Infection Varies According to the Genetic Background of 
the Parental Broodstock 
The prevalence of infection in high health shrimp obtained after challenge with IHHNV is 
presented in Table 2. There were significant differences in the prevalence of infection to 
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IHHNV among the four crosses of high health shrimp (Table 2). The prevalence of infection 
was 48, 36, 6, and 20% for crosses I, II, III, and IV, respectively. The highest (P < 0.05) dif-
ference in susceptibility to IHHNV was between crosses I and III. Offspring of the most 
susceptible cross I originated from a homologous cross of broodstock from the low-growth 
family 1.6, while the most resistant offspring from cross III were derived from a heterolo-
gous cross of a female broodstock from the high-growth family 1.3 and a male broodstock 
from the low-growth family 1.6. 
 

Table 2. Genetic Variability and Prevalence of IHHNV and BP in Four Crosses of Penaeus vannamei 
Family crosses: I II III IV 
IHHNV prevalence 
   Infected/total (%) at 30 days PE 

 
15/31 (48)a 

 
5/14 (36)a 

 
2/31 (6)b 

 
3/15 (20)a,b 

BP, % prevalence at 
    4 days 
   13 days 
   26 days 
Survival (%) at 18 days PE 

 
88 
88 
36 
19 

 
88 
76 
52 
77 

 
68 
84 
52 
24 

 
100 
100 
84 
85 

% RAPD polymorphisms 43% 45% 53% 51% 

COI mtDNA type1 
    CfoI 
    EcoRV 
    HhaI 
    RsaI 

 
B × B 

[BD] × [BD] 
B × B 
A × A 

 
B × B 
B × B 
B × B 
A × A 

 
B × B 

B × [BD] 
B × B 
A × A 

 
B × A 

B × [ABC] 
B × A 
A × B 

Expected COI mtDNA types 
    in families of broodstocks 

B[BD]BA 
× B[BD]BA 

BBBA 
× BBBA 

BBBA 
× B[BD]BA 

BBBA 
× B[ABC]AB 

Observed COI mtDNA types in 
    PL10s of crosses used 

BBBA BBBA BBBA BBBA 

1. The mtDNA types of the maternal and paternal (M × P) families from which broodstock were taken; based 
on analysis of third-generation offspring. Letters in parentheses indicate different mtDNA types detected 
within the family. 
a, b. Different superscripts indicate significantly different at P < 0.05. 

 
The prevalence of BP infection at 0, 4, 13, and 26 days PE is shown in Tables 2 and 3. 

High levels of infection occurred in all exposed groups. There was 100% infection in cross 
IV at 4 and 13 days PE, which decreased to 84% by 26 days PE. The prevalence of infection 
was lower (68%) in cross III at 4 days PE. However, prevalence of infection in this cross 
was increased by Day 13 (84%) followed by a decrease at 26 days (52%). None of the shrimp 
in any of the control groups exhibited signs of infection. 

When the BP data were partitioned at each of the three different periods of PE (4, 13, 
and 26 days), significant differences (P < 0.05) were found among the crosses at Days 4 and 
26 but not at Day 13 (Table 3). For cross I, prevalence remained the same at 4 and 13 days 
and reduced to 36% at 26 days. For cross II, although the prevalence of infection at Day 4 
was the same as cross I (88%), it started to decline earlier and more dramatically to a 52% 
prevalence at 26 days PE. Each cross showed different features with regard to survivability 
after BP infection. This was in contrast to the prevalence of infection in these crosses. 
Crosses I and III had very low survivability by Day 18, whereas survivability in crosses II 
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and IV was about the same as in the controls (Table 3). In cross IV, most of the survivors 
(84%) remained infected until at least Day 26, whereas in cross II, only 52% of the survivors 
remained infected, indicating a greater resistance in the later cross. 
 

Table 3. Percentage of Postlarvae of Genetic Crosses Infected and Surviving after Exposure to BP 
  Prevalence of BP infection (%)  

Cross 
Test 

group 
4 days 

PEa 
13 days 

PE 
26 days 

PE 
Survival in % at 

18 days 
I Control 0 0 0 79 
L × L Exposed 88 88 36 19 
II Control 0 0 0 94 
H × H Exposed 88 76 52 77 
III Control 0 0 0 86 
H × L Exposed 68 84 52 24 
IV Control 0 0 0 100 
L × H Exposed 100 100 84 85 

a. PE, number of days postexposure to BP 

 
RAPD Polymorphisms and Susceptibility to IHHNV and BP 
The levels of genetic diversity calculated from the RAPD polymorphism data were 43, 45, 
53, and 51% in crosses I, II, III, and IV, respectively (Table 2). A trend between the levels of 
genetic diversity and the prevalence of IHHNV was noticed. For example, the lower ge-
netic diversity levels observed for crosses I and II may be related to the higher IHHNV 
prevalence of infection seen in these crosses (48 and 36% for crosses I and II). The crosses 
III and IV, which showed the lowest prevalence of IHHNV infection, had 53 and 51% ge-
netic polymorphisms. 

The BP survival rates, however, did not exhibit a trend with RAPD polymorphisms. For 
examples, cross IV which showed highest survival had 51% RAPD polymorphisms, whereas 
cross III with 24% survivability had 53% RAPD polymorphisms. In addition, although the 
survivability varied significantly between crosses I and II (19 and 77%, respectively) the 
RAPD polymorphisms were almost equivalent. 

Analysis of the RAPD data revealed that two (OPB-13 and OPM-09) of six primers am-
plified some DNA bands that showed differences in prevalence of IHHNV infection 
among the four crosses (Table 4). For instance, two OPB-13 bands (~675 and ~725 bp) were 
found associated 100% with crosses I and II and only 25% of samples in crosses III and IV. 
The primer OPM-09 amplified a band (~840 bp) predominantly present in crosses III and 
IV, whereas a ~800-bp band amplified by the same primer was mostly present in crosses I 
and II (Table 4). Two additional primers (OPB-19 and OPZ-09) amplified bands that could 
be considered cross-specific. For example, the primer OPB-19 amplified a ~475-bp band 
which was present in 100% of samples from cross I (from the low-growth family 1.6) and 
13% in cross II and absent in crosses III and IV. The primer OPZ-09 amplified a ~375-bp 
band which was present 100% in crosses I and IV and absent in crosses II and III. Cross I 
was produced with broodstock from low-growth family 1.6 and the maternal broodstock 
used to produce cross IV originated from another low-growth family (No. 1.4). 
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Table 4. Potential RAPD Markers Associated with IHHNV Susceptibility under Laboratory Conditions 

RAPD 
primer 

Sequence 
(5  3) 

Potential 
marker 

size (bp)a 
Cross 

I 
Cross 

II 
Cross 

III 
Cross 

IV 
OPB-13 TTCCCCCGCT 675 8/8 8/8 2/8 2/8 
  725 8/8 8/8 2/8 2/8 
OPM-09 GTCTTGCGGA 840 2/8 1/8 7/8 7/8 
  800 6/8 7/8 1/8 1/8 

a. All base pair sizes are approximations. Only strong DNA bands were considered. 

 
Mitochondrial DNA RFLPs 
In addition to nuclear DNA markers, attempts were also made to see if different mitochon-
drial haplotypes (indicative of cytoplasmic or maternal effects) could be associated with 
growth or susceptibility to viral diseases. Differences in COI mtDNA haplotypes were ex-
amined using samples from (a) offspring and broodstock of families used to perform the 
crosses (“expected”) and (b) siblings at PL10 of animals used for IHHNV and BP challenge 
experiments (“observed”). The expected results from the families used to perform the 
crosses are shown in Table 2. Four (CfoI, EcoRV, HhaI, and RsaI) of the seven restriction 
enzymes tested showed mtDNA polymorphisms among the families, but no differences 
were seen using the other three restriction enzymes (BamHI, BclI, and BstEII). The expected 
mtDNA haplotypes for CfoI, EcoRV, HhaI, and RsaI enzymes were most different in the 
paternal broodstock of cross IV (the most BP susceptible of all the crosses at Day 26 PE, but 
with the highest survivability). Mitochondrial DNA haplotype D was absent in families 
used to perform crosses II and IV, both of which had higher survivability in response to 
BP infection. The observed COI mtDNA haplotypes in the PL10s, siblings of the offspring 
challenged, were not different among the four crosses with all enzymes tested (Table 2). 
 
Mitochondrial 12s rRNA Expression 
The steady-state levels of 12s rRNA expression varied throughout development, from nauplii 
to PL10 stages, in each of the four crosses examined (Fig. 1). The 12s rRNA levels in cross 
I (L × L) were generally higher in the early part of development than later. The expression 
levels were low in N3/4 shrimp and increased to a maximum in Z1 and Z3. The levels 
remained high in M1 and M3 but gradually decreased when shrimp reached PL6 and PL8 
before levels began to increase again in PL10. In cross II (H × H), 12s rRNA levels remained 
somewhat constant at low levels, only slightly higher from N3 to M3, and decreasing after 
PL1. A similar trend was observed in cross IV (L × H). The 12s rRNA expression levels in 
cross III (H × L) were relatively high throughout the developmental stages examined, with 
higher levels in M1, M3, PL1, PL2, and PL4, a trend more similar to early developmental 
stages seen in cross I (L × L). 
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Figure 1. Autoradiogram of a Northern blot showing differential expression of mitochon-
drial 12s rRNA from nauplii stage 3 to postlarvae stage 10 (PL10) in four high health 
Penaeus vannamei family crosses. Aliquots of denatured total RNA were electrophoresed 
in 1% formaldehyde-agarose gels, blotted onto nitrocellulose membranes, and hybridized 
with a 32P-labeled PCR-amplified mitochondrial 12s rRNA probe. 

 
Discussion 
 
The susceptibility of shrimp to IHHNV appeared to be dependent on the genetic back-
ground of the parental crosses. Of four crosses, cross I was the most susceptible and cross 
III was the most resistant to IHHNV infection. Cross I originated from mating both pater-
nal and maternal broodstock from family 1.6, which has ranked for three generations as 
the lowest growth performer (Carr, unpublished data). The most resistant cross, III, was 
made using a female from the high-growth family 1.3 and a male from the low-growth 
family 1.6. The genetic effects observed could be specific either to the individual brood-
stock used to perform the crosses or to the families to which they belong. Because the males 
used in both crosses I and III originated from the same family, 1.6, the results suggested 
that IHHNV resistance may be influenced by the genetic background of the maternal 
broodstock. Alternatively, IHHNV susceptibility could be influenced directly, or in com-
bination, by the growth status and differential expression of metabolic (or other) genes in 
the families from which the broodstock were chosen. 

The results suggested that resistance to BP is genetically regulated and is an age-related 
phenomenon. It has been reported that mortality due to BP infection occurs mostly at lar-
val and young postlarval stages (Overstreet et al., 1988; LeBlanc and Overstreet, 1990). 
With increasing age, the intensity of BP infection decreased, the length of time needed for 
infection to be detected increased, and the ability to lose the BP infection increased (Stuck 
and Overstreet, 1994; Overstreet, 1994). A recent study has shown that susceptibility of 
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shrimp to BP appears to be at least partially dependent on lipid (triacylglycerides, TAG) 
reserves (Stuck et al., 1996) with high levels associated with increased susceptibility to BP 
infection in larval and postlarval shrimp (Stuck et al., 1996; Stuck and Overstreet, 1996). 
The differences in TAG levels were not only due to nutrition but may have been influenced 
by the genetic makeup (Overstreet, 1994). Crosses I and III showed highest mortalities after 
exposure to BP than did crosses II and IV. In cross IV, most of the survivors (85%) retained 
their infection until Day 26 PE, whereas only 52% of animals in cross II had the infection 
at the same time, indicating that cross II had greater resistance. Although survivability of 
cross IV was slightly higher than that of cross II, the later cross could be considered the 
best cross for BP resistance because (1) it cleared infection at a faster rate than the others 
and (2) it had relatively high survival. 

The genetic parameters associated with BP susceptibility did not correspond with the 
susceptibility to IHHNV, suggesting that different loci are involved in resistance to IHHNV 
and BP infection. The levels of genetic diversity determined by RAPD technique did not 
show any trend with the prevalence of BP infection or survival rate. However, it is tempt-
ing to speculate a relationship between the prevalence of IHHNV infection and the levels 
of genetic diversity. Possibly, genetic diversity is more crucial in monogenic disease re-
sistance than in polygenic resistance. In the case of monogenic resistance, for instance, if 
the gene for susceptibility is widely prevalent in the population, then a reduction in poly-
morphisms makes the population highly susceptible to disease. In contrast, for polygenic 
resistance, multiple loci are involved in resistance phenomena. Therefore, even when a 
population is relatively less polymorphic, it can still show resistance or tolerance to any 
particular disease. Evidence correlating genetic diversity of survivors with pollution or 
disease resistance has been presented for other marine species (Nevo et al., 1986; Ferguson 
and Drahushchak, 1990). Examples of genetic variation for disease resistance within and 
between fish populations have also been reported for viruses in sockeye salmon, rainbow 
trout, and channel catfish (reviewed in Chevassus and Dorson, 1990). Perhaps genotype-
genotype and genotype-environment interactions may occur not only at the family or pop-
ulation levels but also at the level of the individual host (Teale, 1994). 

We observed that at least for BP, the homologous cross involving high-growth animals 
(cross II) showed much more survivability (77%) than the homologous cross I involving 
low-growth animals (19%). Animals with higher growth have been shown to be more re-
sistant to disease in rainbow trout (Ferguson and Drahushchak, 1990). Genetic heterogeneity 
and size of survivors were correlated with resistance to bacterial gill disease in freshwater 
rainbow trout, with survivors being more heterozygous and larger than nonsurvivors (Fer-
guson and Drahushchak, 1990). These authors also hypothesized that survivors may have 
resisted disease because of the larger size (as seen in cross II in this study) rather than 
higher heterozygosity per se, although heterozygosity was considered an important factor 
in disease resistance because of its association with size (Ferguson and Drahuschark, 1990). 

Although no mtDNA haplotype was found to be associated with growth or disease re-
sistance, the RAPD assay provided some potential markers (OPB-13 and OPM-09) that 
could be associated with IHHNV infection in crosses I and II, while other markers (OPB-19 
and OPZ-09) could be considered specific for crosses I and IV. It is unknown if these po-
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tential cross-specific markers are associated with growth performance of these crosses. In-
deed, two of the families (1.6 and 1.4) used to produce crosses I and IV were the lowest 
growth performers in the breeding program for the past few years (data not shown). Ad-
ditional testing of these markers using inbred lines will help to determine if they are indeed 
related to disease susceptibility or growth. 

The differential expression of 12s rRNA detected during development of penaeid shrimp 
was influenced by the genetic background of the animals. Perhaps all, or most, mitochon-
drial genes are needed in early stages of shrimp development, as demonstrated for shrimp 
COI mRNA (Alcivar-Warren et al., 1995) and for various mitochondrial genes in the mouse 
(Taylor and Piko, 1995, and references therein). A possible relationship between growth 
performance and mitochondrial gene expression has been reported in other agriculturally 
important species (Smith and Alcivar, 1993; Danzmann and Ferguson, 1996). It is possible 
that the paternal mitochondrial genome or its interaction with nuclear genes influenced 
expression of the 12s rRNA, as seen in offspring derived from cross III (H × L) which ex-
pressed higher levels of 12s RNA than cross II (H × H). Our current efforts aimed at devel-
oping a linkage map for shrimp will help to elucidate the mechanisms involved in growth 
and viral disease resistance (Alcivar-Warren et al., 1996). 
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