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Abstract

Background: Maize (Zea mays ssp. mays) is 1 of 3 crops, along with rice and wheat, responsible for more than one-half of all
calories consumed around the world. Increasing the yield and stress tolerance of these crops is essential to meet the
growing need for food. The cost and speed of plant phenotyping are currently the largest constraints on plant breeding
efforts. Datasets linking new types of high-throughput phenotyping data collected from plants to the performance of the
same genotypes under agronomic conditions across a wide range of environments are essential for developing new
statistical approaches and computer vision–based tools. Findings A set of maize inbreds—primarily recently off patent
lines—were phenotyped using a high-throughput platform at University of Nebraska-Lincoln. These lines have been
previously subjected to high-density genotyping and scored for a core set of 13 phenotypes in field trials across 13 North
American states in 2 years by the Genomes 2 Fields Consortium. A total of 485 GB of image data including RGB,
hyperspectral, fluorescence, and thermal infrared photos has been released. Conclusions Correlations between
image-based measurements and manual measurements demonstrated the feasibility of quantifying variation in plant
architecture using image data. However, naive approaches to measuring traits such as biomass can introduce nonrandom
measurement errors confounded with genotype variation. Analysis of hyperspectral image data demonstrated unique
signatures from stem tissue. Integrating heritable phenotypes from high-throughput phenotyping data with field data from
different environments can reveal previously unknown factors that influence yield plasticity.

Keywords: maize; image; phenomics; field-phenotype

Data description
Background

The green revolution created a significant increase in the yields
of several major crops in the 1960s and 1970s, dramatically re-
ducing the prevalence of hunger and famine around the world,
even as population growth continued. One of the major compo-
nents of the green revolution was new varieties of major grain
crops produced through conventional phenotypic selectionwith

higher yield potentially. Since the green revolution, the need for
food has continued to increase, and a great deal of effort in the
public and private sectors is devoted to developing crop varieties
with higher yield potential. However, as the low-hanging fruit
for increased yield vanish, each new increase in yield requires
more time and resources. Recent studies have demonstrated
that yield increases may have slowed or stopped for somemajor
grain crops in large regions of the world [1]. New approaches to
plant breeding must be developed if crop production continues
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to grow to meet the needs of an increasing population around
the world.

Themajor bottleneck in modern plant breeding is phenotyp-
ing. Phenotyping can be used in 2 ways. First, by phenotyping a
large set of lines, a plant breeder can identify those lines with
the highest yield potential and/or greatest stress tolerance in
a given environment. Second, sufficiently detailed phenotyping
measurements from enough different plants can be combined
with genotypic data to identify regions of the genome of a par-
ticular plant species that carry beneficial or deleterious alleles.
The breeder can then develop new crop varieties that incorpo-
rate as many beneficial alleles and exclude as many deleterious
alleles as possible. Phenotyping tends to be expensive and low
throughput, yet as breeders seek to identify larger numbers of
alleles, each with individually smaller effects, the amount of
phenotyping required to achieve a given increase in yield po-
tential is growing. High-throughput computer vision–based ap-
proaches to plant phenotyping have the potential to ameliorate
this bottleneck. These tools can be used to precisely quantify
even subtle traits in plants and will tend to decrease in unit cost
with scale, while conventional phenotyping, which remains a
human labor–intensive process, does not.

Several recent pilot studies have applied a range of im-
age processing techniques to extract phenotypic measurements
from crop plants. RGB (R: Red channel; G: Green channel; B: Blue
channel) camera technology, widely used in the consumer sec-
tor, has also been the most widely used tool in these initial ef-
forts at computer vision–based plant phenotyping [2–5]. Other
types of cameras including fluoresence [6,7] and near-infrared
(NIR) [6,8,9] have also been employed in high-throughput plant
phenotyping efforts, primarily in studies of the response of
plants to different abiotic stresses.

However, the utility of current studies is limited in 2 ways.
First, current analysis tools can extract only a small number of
different phenotypic measurements from images of crop plants.
Approximately 150 tools for analyzing plant image data are
listed in a field-specific database; however, the majority of these
either are developed specifically forArabidopsis thaliana, which is
a model plant, or are designed specifically to analyze images of
roots [10]. Second, a great deal of image data is generated in con-
trolled environments; however, there have been comparatively
few attempts to link phenotypic measurements in the green-
house to performance in the field. However, one recent report
in maize suggested that more than 50% of the total variation in
yield under field conditions could be predicted using traits mea-
sured under controlled environments [5].

Advances in computational tools for extracting phenotypic
measurements of plants from image data and statistical models
for predicting yield under different field conditions from such
measurements require suitable training datasets. Here, we gen-
erate and validate such a dataset consisting of high-throughput
phenotyping data from 32 distinct maize (Zea mays) accessions,
drawn primarily from recently off-patent lines developed byma-
jor plant breeding companies. These accessions were selected
specifically because paired data from the same lines exist for a
wide range of plant phenotypes collected in 54 distinct field tri-
als at locations spanning 13 North American states or provinces
over 2 years [11]. This extremely broad set of field sites captures
much of the environmental variation among areas in which
maize is cultivated, with total rainfall during the growing sea-
son ranging from 133.604 mm to 960.628 mm (excluding sites
with supplemental irrigation) and peak temperatures during the
growing season ranging from 23.5◦C to 34.9◦C. In addition, the
same lines have been genotyped for approximately 200 000 sin-

gle nucleotide polymorphism (SNP) markers using genotype by
sequencing (GBS) [11]. Toward these existing data, we added
RGB, thermal infrared, fluorescent and hyperspectral images
collected once per day per plant, as well as detailed water use
information (single-day, single-plant resolution). At the end of
the experiment, 12 different types of ground truth phenotypes
weremeasured for individual plants, including destructivemea-
surements. A second experiment focused on interactions be-
tween genotype and environmental stress, collecting the same
types of data described above from 2 maize genotypes under
well–watered and water-stressed conditions [12]. We are releas-
ing this curated dataset of high-throughput plant phenotyping
images from accessions where data on both genotypic variation
and agronomic performance under field conditions are already
available. All data were generated using a Lemnatec-designed
high-throughput greenhouse-based phenotyping system con-
structed at the University of Nebraska-Lincoln. This system is
distinguished from existing public sector phenotyping systems
in North America by both the ability to grow plants to a height
of 2.5 meters and the incorporation of a hyperspectral camera
[9]. Given the unique properties described above, this compre-
hensive dataset should lower the barriers to the development
of new computer vision approaches or statistical methodologies
by independent researchers who do not have the funding or in-
frastructure to generate the wide range of different types of data
needed.

Methods

Greenhouse management
All imaged plants were grown in the greenhouse facility of the
University of Nebraska-Lincoln’s Greenhouse Innovation Center
(Latitude: 40.83, Longitude: −96.69) between 2 October 2015 to
10 November 2015. Kernels were sown in 1.5 gallon pots with
Fafard germination mix supplemented with 1 cup (236 mL) of
Osmocote plus 15 September 2012 and 1 tablespoon (15 mL) of
MicromaxMicronutrients per 2.8 cubic feet (80 L) of soil. The tar-
get photoperiod was 14:10 with supplementary light provided by
light-emitting diode (LED) growth lamps from 07:00 to 21:00 each
day. The target temperature of the growth facility was between
24−26◦C. Pots were weighed once per day and watered back to
a target weight of 5400 grams from 10 September 2015 to 11 July
2015 and a target weight of 5500 grams from 11 August 2015 to
the termination of the experiment.

Experimental design
A total of 156 plants, representing the 32 genotypes listed in
Table 1, were grown and imaged, as well as 4 pots with soil but
no plant, which serve as controls for the amount of water lost
from the soil as a result of nontranspiration mechanisms (e.g.,
evaporation). The 156 plants plus control pots were arranged in
a 10-row by 16-column grid, with 0.235-meter spacing between
plants in the same row and 1.5-meter spacing between rows
(Table 2). Sequential pairs of 2 rows consisted of a complete repli-
cate with either 31 genotypes and 1 empty control pot or 32
genotypes. Within each pair of rows, genotypes were blocked in
groups of 8 (one half row), with order randomized within blocks
between replicates in order to maximize statistical power to an-
alyze within-greenhouse variation.

Plant imaging
The plants were imaged daily using 4 different cameras in sep-
arate imaging chambers. The 4 types of cameras were thermal
infrared, fluorescence, conventional RGB, and hyperspectral [12].
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Table 1: 32 genotypes in maize phenotype map

Genotype ID Genotype Source Released year

ZL1 740 Novartis Seeds 1998
ZL2 2369 Cargill 1989
ZL3 A619 Public sector 1992
ZL4 A632 Public sector 1992
ZL5 A634 Public sector 1992
ZL6 B14 Public sector 1968
ZL7 B37 Public sector 1971
ZL8 B73 Public sector 1972
ZL9 C103 Public sector 1991
ZL10 CM105 Public sector 1992
ZL11 LH123HT Holden’s Foundation 1984
ZL12 LH145 Holden’s Foundation 1983
ZL13 LH162 Holden’s Foundation 1990
ZL14 LH195 Holden’s Foundation 1989
ZL15 LH198 Holden’s Foundation 1991
ZL16 LH74 Holden’s Foundation 1983
ZL17 LH82 Holden’s Foundation 1985
ZL18 Mo17 Public sector 1964
ZL19a DKPB80 DEKALB Genetics ?
ZL20 PH207 Pioneer Hi-Bred 1983
ZL21 PHB47 Pioneer Hi-Bred 1983
ZL22b PHG35 Pioneer Hi-Bred 1983
ZL23 PHG39 Pioneer Hi-Bred 1983
ZL24 PHG47 Pioneer Hi-Bred 1986
ZL25 PHG83 Pioneer Hi-Bred 1985
ZL26 PHJ40 Pioneer Hi-Bred 1986
ZL27 PHN82 Pioneer Hi-Bred 1989
ZL28 PHV63 Pioneer Hi-Bred 1988
ZL29 PHW52 Pioneer Hi-Bred 1988
ZL30 PHZ51 Pioneer Hi-Bred 1986
ZL31 W117HT Public sector 1982
ZL32 Wf9 Public sector 1991

aNot currently available for order.
bGenotype represented by only a single plant in the dataset.

Images were collected in the order that the camera types are
listed in the previous sentence. On each day, plants were imaged
sequentially by row, starting with row 1 column 1 and conclud-
ing with row 10, column 16 (Table 2).

Plantswere imaged from the side at 2 angles offset 90 degrees
from each other, as well as a top down view. On the first day of
imaging orwhen plants reached the 2-leaf stage of development,
the pot was rotated so that the major axis of leaf phylotaxy was
parallel to the camera in the PA0 orientation and perpendicular
to the camera in the PA90 orientation. This orientation is con-
sistent for all cameras and was not adjusted again for the re-

mainder of the experiment. The fluorescence camera captured
images with a resolution of 1038 × 1390 pixels and measured
emission intensity at wavelengths between 500–750 nm based
on excitation, with light at 400–500 nm. Plants were imaged us-
ing the same 3 perspectives employed for the thermal infrared
camera. The RGB camera captured images with a resolution of
2454 × 2056 pixels. Initially the zoom of the RGB camera in side
views was set such that each pixel corresponded to 0.746 mm at
the distance of the pot from the camera. Between 5 November
2015 and 10 November 2015, the zoom level of the RGB camera
was reduced to keep the entire plant in the frame of the image.
As a result of a system error, this same decreased zoom level
was also applied to all RGB images taken on 20 October 2015.
At this reduced zoom level, each pixel corresponds to 1.507 mm
at the distance of the pot from the camera, an approximate ×2
change. Plants were also imaged using the same 3 perspectives
employed for the thermal infrared camera. The hyperspectral
camera captured images with a resolution of 320 horizontal pix-
els. As a result of the scanning technology employed, vertical
resolution ranged from 494 to 499 pixels. Hyperspectral imaging
was conducted using illumination from halogen bulbs (Manu-
facturer Sylvania, model # ES50 HM UK 240V 35W 25◦ GU10).
A total of 243 separate intensity values were captured for each
pixel spanning a range of light wavelengths between 546 nm–
1700 nm. Data from each wavelength was stored as a separate
grayscale image.

Ground truth measurement
Ground truth measurements were collected at the termina-
tion of data collection on 11-12 November 2015. Manually
collected phenotypes included plant height, total number of vis-
ible leaves, number of total fully extended leaves, stem diame-
ter at the base of the plant, stem diameter at the collar of the
top fully extended leaf, length and width of top fully extended
leaf, and presence/absence of visible anthocyanin production in
the stem. After these measurements, total above-ground fresh
weight biomass was measured for 4 out of 5 replicates, result-
ing in the destruction of the plants. Ground truth data for the
drought-stressed subset of this dataset were collected following
the procedure previously described in Ge et al. [12].

RGB image processing
Pixels covering portions of the plant were segmented out of RGB
images using a green index ((2×G)/(R+B)). Pixels with an index
value greater than 1.15 [12] were considered plant pixels. This
method produced some false-positive plant pixels within the re-
flective metal columns at the edge of the image. To reduce the
impact of false positives, these areas were excluded from the

Table 2: Experimental layout (ID: ZL1-ZL32)

9 7 3 10 23 25 26 19 13 5 29 21 2 4 18 20 UP UP UP UP
11 16 1 32 17 27 6 22 24 31 14 30 15 28 8 12 UP UP UP UP

29 31 15 13 1 17 25 9 21 30 3 5 a 19 14 6 UP UP UP UP
12 23 32 16 7 28 2 18 10 11 8 26 27 4 20 24 UP UP UP UP
25 9 21 27 28 12 5 11 15 6 a 7 4 23 31 20 UP UP UP UP

19 32 29 24 16 13 3 8 17 14 18 30 10 26 1 2 UP UP UP UP
8 1 17 23 21 5 7 24 27 18 3 11 31 15 19 2 NA NA NA NA
25 30 4 9 16 32 14 20 a 10 6 29 28 12 26 13 NA NA NA NA

15 10 5 32 31 21 16 26 2 18 9 25 6 8 24 a NA NA NA NA
29 13 23 14 27 7 11 30 12 1 28 4 3 20 17 19 NA NA NA NA

At the time this experiment was conducted, the total size of the UNL greenhouse system was 10 rows by 20 columns. Positions marked with UP indicate pots filled
with plants from an unrelated experiment, while positions marked with NA indicate pots that had no plants. The first complete replicate is shown in color, and the 4
incomplete blocks within the first replicate are marked in different colors. aMarks empty pots within the experimental design.
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analysis. Therefore, when plant leaves cross the reflective metal
frame, some true plant pixels were excluded. If no plant pixels
were identified in the image-often the case in the first several
days when the plant had either not germinated or had not risen
above the edge of the pot-the value was recorded as “NA” in the
output file.

Heritability analysis
A linear regression model was used to analyze the genotype
effect (excluding genotype ZL22, which lacked replication) and
greenhouse position effect on plant traits. The responses were
modeled independently for each day as

yh,i j,t = μh,t + αh,i,t + γh,ν(i, j),t + εh,i j,t, (1)

where the subscript h = 1, . . . , 6 denotes the 3 responses ex-
tracted from the images: plant height, width, and size for the
2 views 0 and 90 degrees. The subscripts i, j, and t denote the
jth plant in the ith row and day t, respectively, and ν(i, j) stands
for the genotype at this pot. The parameters α and γ denote row
effect and genotype effect, respectively. The error term is εh,ij,t.
Let SSα,t, SSγ ,t, and SSε,t be the sum of squares of the regression
model (1) for the row effect, genotype effect, and the error at
time t, respectively. Let SSt = SSα,t + SSγ ,t + SSε,t be the total sum
of squares at time t. The heritability HRt (2) of a given trait within
this population was defined as the ratio of the genotype sum
of squares over the sum of genotype and error sum of squares.
For the estimate of the heritability of measurement error, the
row effect term was replaced by a replicate effect (each replicate
consisted of 2 sequential rows), with exclusion of ZL22 as only 1
plant of this genotype was grown.

HRt = SSγ,t

SSε,t + SSγ,t
. (2)

As the heritability index may change over the growth of the
plant, a nonparametric smoothing method was provided for an-
alyzing the time-varying heritability of plants. The definition in
(3) excludes the variation brought by the greenhouse row effect,
which can be considered the percentage of the variation in plant
response that can be explained by the genotype effect after ad-
justing the environmental effect. To compare with this defini-
tion of heritability (2), the response in the model without con-
sidering the row effect was constructed as

yh,i j,t = μh,t + γh,ν(i, j),t + εh,i j,t, (3)

where, similarly as (1), ν(i, j) is the genotype of the jth plant in
the ith row. Let ˜SSγ,t and ˜SSt be the genotype sum of squares
and total sum of squares under (4). The classical heritability is
defined as

˜HRt =
˜SSγ,t

˜SSt
. (4)

Hyperspectral image processing
Two methods and thresholds were used to extract plant re-
gions of interest from hyperspectral images. First, the com-
monly used Normalized Difference Vegetation Index (NDVI)
formula was applied to all pixels using the formula (R750nm-
R705nm)/(R750nm+R705nm), and pixels with a value greater than 0.25
were classified as originating from the plant [13]. Second, based

on the difference in reflectance between stem and leaves at
wavelengths of 1056 nm and 1151 nm, the stem was seg-
mented from other parts of the plant by selecting pixels where
(R1056nm/R1151nm) produced a value greater than 1.2. Leaf pixels
were defined as pixels identified as plant pixels based on NDVI
but not classified as stem pixels. In addition to the biological
variation between individual plants, overall intensity variation
existed both between different plants imaged on the same day
and the same plant on different days as a result of changes in
the performance of the lighting used in the hyperspectral imag-
ing chamber. To calibrate each individual image and make the
results comparable, a python script (hosted on Github; see the
Code availability section) was used to normalize the intensity
values of each plant pixel using data from the nonplant pixels
in the same image.

In order to visualize variation across 243 separatewavelength
measurements across multiple plant images, we used a prin-
cipal component analysis (PCA)–based approach. After the nor-
malization described above, PCA analysis of intensity values for
individual pixels was conducted. PCA values of each individ-
ual plant pixel per analyzed plant were translated to intensity
values using the formula [x-min(x)]/[max(x)-min(x)]. False color
RGB images were constructed with the values for the first prin-
cipal component stored in the red channel, the second principal
component in the green channel, and the third principal com-
ponent in the blue channel.

Fluorescence image processing
A consistent area of interest was defined for each zoom level
to exclude the pot and nonuniform areas of the imaging cham-
ber backdrop. Within that area, pixels with an intensity value
greater than 70 in the red channel were considered to be plant
pixels. The aggregate fluorescence intensity was defined as the
sum of the red channel intensity values for all pixels classi-
fied as plant pixels within the region of interest, and the mean
fluorescence intensity as the aggregate fluorescence intensity
value divided by the number of plant pixels within the region of
interest.

Plant biomass prediction
Two methods were used to predict plant biomass. The first was
a single variable model based on the number of zoom level–
adjusted plant pixels identified in the 2 RGB side view images
on a given day. The secondwas amultivariatemodel based upon
the sum of plant pixels identified in the 2 RGB side views, sum of
plant pixels identified in the 2 RGB side views plus the RGB top
view, aggregate fluorescence intensity in the 2 side views, aggre-
gate fluorescence intensity in the 2 side views plus the top view,
number of plant stem pixels identified in the hyperspectral im-
age, and number of plant leaf pixels identified in the hyperspec-
tral image. Traits were selected to overlap with those employed
by Chen et al. [14] where possible. This multivariate dataset was
used to predict plant biomass using linear modeling as well as
Multivariate Adaptive Regression Splines (MARS), Random For-
est, and Support Vector Machines (SVM) [14]. MARS analysis was
performed using the R package earth [15], Random Forest with
the R package randomForest [16], and SVM with the R package
e1071 [17].

Data validation and quality control

Validation against ground truth measurements
A total of approximately 500 GB of image data was ini-
tially generated by the system during the course of this
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Figure 1: Segmentation of images into plant and not-plant pixels for 1 representative plant (path to this image in the released dataset: Genotype˙ZL019 −> Plant˙008-19
−> Image˙Type −> Day˙32). The area enclosed by the green border is composed of pixels scored as “plant,” the area outside the green border is composed of pixels
scored as “not-plant.” Minimum bounding rectangle of plant pixels is shown in red. (A) Side view, angle 1. (B) Side view, 90 degree rotation relative to A. (C) Top view.

experiment, consisting of RGB images (51.1%), fluorescence im-
ages (4.3%), and hyperspectral images (44.6%). A subset of the
RGB images within this dataset were previously analyzed in
Choudhury et al. [18], and were made available for download
from http://plantvision.unl.edu/dataset under the terms of the
Toronto Agreement. To validate the dataset and ensure that
plants had been properly tracked through both the automated
imaging system and ground truth measurements, a simple
script was written to segment images into plant and not-plant
pixels (Fig. 1). Source codes for all validation analyses are posted
online [19].

Based on the segmentation of the image into plant and non-
plant pixels, plant height was scored as the y-axis dimension
of the minimum bounding box. Plant area was scored as the to-
tal number of plant pixels observed in both side view images
after correcting for the area of each pixel at each zoom em-
ployed (see the Methods). Similar approaches to estimate plant
biomass have been widely employed across a range of grain
crop species including rice [20], wheat [21], barley [21,22], maize
[12], sorghum [23], and seteria [9]. Calculated values were com-
pared with manual measurements of plant height and plant
fresh biomass, which were quantified using destructive meth-
ods on the last day of the experiment. In both cases, manual
measurements and image-derived estimates were highly corre-
lated, although the correlation between manual and estimated
height was greater than the correlation betweenmanually mea-
sured and estimated biomass (Fig. 2A, B). Using the PlantCV soft-
ware package [24], equivalent correlations between estimated
and ground truth biomass were obtained (r = 0.91). Estimates
of biomass using both software packages were more correlated
with each other (r = 0.96) than either was with ground truth
measurements. This suggests that a significant fraction of the
remaining error is the result of the expected imperfect corre-
lation between plant size and plant mass, rather than inaccu-
racies in estimating plant size using individual software pack-
ages. Recent reports have suggested that estimates of biomass
incorporating multiple traits extracted from image data can in-
crease accuracy [14]. We tested the accuracy of biomass predic-
tion of 4 multivariate estimation techniques on this dataset (see
the Methods). The correlation coefficients (r values) of the es-
timated biomass measures with ground truth data were 0.949,
0.958, 0.925, and 0.951 for multivariate linear model, MARS, Ran-
dom Forest, and SVM, respectively.

The residual value-difference between the destructively
measured biomass value and the predicted biomass value based
on image data and the linear regression line equation—was cal-
culated for each individual plant (Fig. 2C). Using data from the
multiple replicates of each individual accession, the proportion

of error that is controlled by genetic factors rather than ran-
dom error can be ascertained. We determined that 58% of the
total error in biomass estimate was controlled by genetic vari-
ation between different maize lines. As such, this error is sys-
tematic rather than random and thus more likely to produce
misleading downstream results when used in quantitative ge-
netic analysis. As mentioned above, biomass and plant size are
imperfectly correlated, as different plants can exhibit different
densities, for example, as a result of different leaf-to-stem ra-
tios. Recent reports have suggested that estimates of biomass
incorporating multiple traits extracted from image data can in-
crease accuracy [14]. We tested the accuracy of biomass predic-
tion of 4 multivariate estimation techniques on this dataset (see
the Methods). The correlations of the estimated biomass mea-
sures with ground truth data were 0.949, 0.958, 0.925, and 0.951
for multivariate linear model, MARS, Random Forest, and SVM,
respectively. However, even when employing the most accurate
of these 4 methods (MARS), 63% of the error in biomass estima-
tion could be explained by genetic factors. This source of error,
with the biomass of some lines systematically underestimated
and the biomass of other lines systematically overestimated,
presents a significant challenge to downstream quantitative ge-
netic analysis, given the prevalence of plant pixel counts as a
proxy for biomass [9,12,20–23].

Patterns of change over time
One of the desirable aspects of image-based plant phenotyp-
ing is that, unlike destructively measured phenotypes, the same
plant can be imaged repeatedly. Instead of providing a snapshot
in time, this allows researchers to quantify rates of change in
phenotypic values over time, providing an additional set of de-
rived trait values. Given the issues with biomass quantification
presented above, measurements of plant height were selected
to validate patterns of change in phenotypic values over time.
As expected, height increases over time, and the patterns of in-
crease tended to cluster together by genotype (Fig. 3A). Increases
in height followed by declines, as observed for ZL26, were de-
termined to be caused by a change in the angle of the main
stalk. While the accuracy of height estimates was assessed by
comparison with physical ground truth measurements only on
the last day, the heights of 3 randomly selected plants (Plant
007-26, Plant 002-7, and Plant 041-29) were manually measured
from image data and compared with software-based height es-
timates, and no significant differences were observed between
the manual and automatedmeasurements (Fig. 3B; Supplemen-
tary Table 1). To perform a similar test of the accuracy of biomass
estimation at different stages in the maize life cycle, a set of
existing ground truth measurements for 2 genotypes under 2

http://plantvision.unl.edu/dataset
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Figure 2: Correlation between image-based and manual measurements of individual plants. (A) Plant height. (B) Plant fresh biomass. (C) Variation in the residual

between estimated biomass and ground truth measurement of biomass across inbreds.

stress treatments [12] were combined with additional later grow
stage data (Supplementary Table 2). The correlation between to-
tal plant pixels observed in the 2 side views and plant biomass
was actually substantially higher in this dataset (r = 0.97) than
the primary dataset, likely as a result of the smaller amount of
genetic variability among these plants (Supplementary Fig. 1).

Heritability of phenotypes
The proportion of total phenotypic variation for a trait con-
trolled by genetic variation is referred to as the heritability of
that trait and is a good indicator of how easy or difficult it
will be to either identify the genes that control variation in
a given trait or to breed new crop varieties in which a given
trait is significantly altered. Broad-sense heritability can be es-
timated without the need to first link specific genes to variation
in specific traits [25]. Variation in a trait that is not controlled
by genotype can result from environmental effects, interactions
between genotype and environment, random variance, and
measurement error. Controlling for estimated row effects on dif-
ferent phenotypic measurements significantly increased over-

all broad sense heritability (Fig. 4A,B). This result suggests that
even within controlled environments such as greenhouses, sig-
nificant micro-environmental variation exists, and that proper
statistically based experimental design remains critically impor-
tant in even controlled environment phenotyping efforts.

If the absolute size of measurement error was constant in
this experiment, as the measured values for a given trait be-
came larger, the total proportion of variation explained by the
error term should decrease and, as a result, heritability should
increase as observed (Fig. 4A). This trend was indeed observed
across 6 different phenotypic measurements (three traits calcu-
lated from each of 2 viewing angles (Fig. 4B). Plant height also ex-
hibited significantly greater heritability than plant area or plant
width and greater heritability when calculated solely from the
90-degree side angle photo thanwhen calculated solely from the
0-degree angle photo.

In previous studies, fluorescence intensity has been treated
as an indicator for plant abiotic stress status [7,26–28] or
chlorophyll content level [29,30]. Using the fluorescence images
collected as part of this experiment, the mean fluorescence
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Figure 3: (A) Plant growth curves of each of 5 replicates of 8 selected genotypes. (B) Comparison of manual measurements of plant height from image data with
automated measurements for 3 randomly selected plants on each day of the experiment. DAP: days after planting.

intensity value for each plant image was calculated (see the
Methods). We found that this trait exhibited moderate heritabil-
ity, with the proportion of variation controlled by genetic factors
increasing over time and reaching approximately 60% by the last
day of the experiment (Fig. 4B).

Hyperspectral image validation
Hyperspectral imaging of crop plants has been employed pre-
viously in field settings using airborne cameras [31–33]. As
a result of the architecture of grain crops such as maize,
aerial imagery will largely capture leaf tissue during veg-
etative growth, and either tassels (maize) or seed heads
(sorghum, millet, rice, oats, etc.) during reproductive growth.
The dataset described here includes hyperspectral imagery
taken from the side of individual plants, enabling quantifica-
tion of the reflectance properties of plant stems in addition to
leaf tissue.

Many uses of hyperspectral data reduce the data from a
whole plant or whole plot of genetically identical plants to a
single aggregate measurement. While these approaches can in-
crease the precision of intensity measurements for individual
wavelengths, these approaches also sacrifice spatial resolution
and can in some cases produce apparent changes in reflectiv-
ity between plants that result from variation in the ratios of
the sizes of different organs with different reflective properties.
To assess the extent of variation in the reflectance properties
of individual plants, a principal component analysis of varia-
tion in intensity values for individual pixels was conducted. Af-
ter nonplant pixels were removed from the hyperspectral data
cube (Methods), (Fig. 5A), false color images were generated
encoding the intensity values of the first 3 principal compo-
nents of variation as the intensity of the red, green, and blue
channels, respectively (Fig. 5B, C, and D). The second princi-
pal component (green channel) marked boundary pixels where
intensity values likely represent a mixture of reflectance data
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Figure 4: (A) The time course broad sense heritability of PH90. The heritability in the G model was calculated using a linear model that only considers the effect of
genotype with residual values in the error term while heritability in the G + E model was calculated using a linear model that considers the effect of both genotype
and environment (row effect) with residual values in the error term. (B) The time course broad sense heritability of PA90 before and after controlling for the row effect.
(B) Variation in broad-sense heritability (H2) after controlling row effects for 6 trait measurements every second day across the phenotyping cycle. PA0: Plant Area in

0 degrees (the major axis of leaf phylotaxy was parallel to the camera at 0 degree). PA90: Plant Area in 90 degrees (the major axis of leaf phylotaxy was perpendicular
to the camera at 90 degrees). PH0: Plant Height in 0 degrees. PH90: Plant Height in 90 degrees. PW0: Plant Width in 0 degrees. PW90: Plant Width in 90 degrees. PF0:
Average of plant fluorescence intensity in 0 degrees. PF90: Average of plant fluorescence intensity in 90 degrees.

from the plant and from the background. The first principal
component (red channel) appeared to indicate distinctions be-
tween pixels within the stem of the plant and pixels within the
leaves.

Based on this observation, an index was defined that accu-
rately separated plant pixels into leaf and stem (see the Meth-
ods). Stem pixels were segmented from the rest of the plant
using an index value derived from the difference in intensity val-
ues observed in the 1056-nm and 1151-nm hyperspectral bands.
Thismethodologywas previously described [12]. The reflectance
pattern of individual plant stems is quite dissimilar from the
data observed from leaves and exhibits significantly different
reflective properties in some areas of the near-infrared (Fig. 6).
Characteristics of the stem are important breeding targets for
both agronomic traits (lodging resistance, yield for biomass
crops) and value-added traits (biofuel conversion potential for
bioenergy crops, yield for sugarcane and sweet sorghum). Hyper-
spectral imaging of the stem has the potential to provide nonde-
structive measurements of these traits. The calculated patterns
of leaf reflectance for the data presented here are comparable
with those observed in field-based hyperspectral studies [34–36],
both providing external validation and suggesting that the data
presented here may be of use in developing new indices for use
under field conditions.

In conclusion, while the results presented above highlight
some of the simplest traits that can be extracted from plant
image data, these represent a small fraction of the total set
of phenotypes for which image analysis algorithms currently
exist, and those in turn represent a small fraction of the to-
tal set of phenotypes that can potentially be scored from im-
age data. Software packages already exist to measure a range
of plant architectural traits such as leaf length, angle, and
curvature from RGB images [6,37]. Tools are also being devel-
oped to extract phenotypic information on abiotic stress re-
sponse patterns from fluorescence imaging [6,7]. The analysis
of plant traits from hyperspectral image data, while common-
place in the remote sensing realm, where an entire field may
represent a single data point, is just beginning for single-plant
imaging. Recent work has highlighted the potential of hyper-
spectral imaging to quantify changes in plant composition and
nutrient content throughout development [12,38]. While these

techniques have great potential to accelerate efforts to link
genotype to phenotype through ameliorating the current bot-
tleneck of plant phenotypic data collection, it will be important
to balance the development of new image analysis tools with
the awareness of the potential for systematic error resulting
from genetic variation between different lines of the same crop
species.

Availability of source code and requirements
� Project name: Maize Phenotype Map
� Project home page: https://github.com/shanwai1234/Maize˙
Phenotype˙Map

� Operating system(s): Linux
� Programming language: Python 2.7
� Other requirements: OpenCV module 2.4.8, Numpy >1.5,
CMake > 2.6, GCC > 4.4.x, Scipy 0.13

� License: BSD 3-Clause License

Availability of supporting data and materials

The image data sets from 4 types of cameras, pot weight records
per day, and ground truth measurements with corresponding
documentation for 32 maize inbreds and same types of image
data for 2 maize inbreds under 2 stress treatments were de-
posited in the CyVerse data commons under a CC0 license [39].
All image datawere stored in the following data structure: Geno-
type −> Plant −> Camera type −> Day. For the hyperspectral
camera, each photo is stored as 243 sub-images, each image
representing intensity values for a given wavelength, so these
require 1 additional level of nesting in the data structure Day
−> wavelength. The grayscale images from the IR camera and
the hyperspectral imaging system are stored as 3-channel im-
ages with all 3 channels in a given pixel set to identical val-
ues. The fluorescence images contain almost all information in
the red channel, with the blue and green channels having in-
tensities equal to or very close to 0, but data for all 3 channels
exist. Genotype data of 32 inbreds were generated as part of a
separate project, and SNP calls for individual inbred lines were
made available either through the Publicly Released Genomes 2

https://github.com/shanwai1234/Maize_Phenotype_Map
https://github.com/shanwai1234/Maize_Phenotype_Map
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Figure 5: Segmentation and visualization of variation in hyperspectral signatures of representative maize plant images. (A) RGB photo of Plant 013-2 (ZL02) collected

on DAP 37. (B) False color image constructed of the same corn plant from a hyperspectral photo taken on the same day. For each plant pixel, the values for each of
the first 3 principal components of variation across 243 specific wavelength intensity values are encoded as 1 of the 3 color channels in the false image. (C) Equivalent
visualization for Plant 048-9 (ZL09). (D) Equivalent visualization for Plant 008-19 (ZL19).

Fields 2014 Field Trial dataset [40] or the ZeaGBSv2.7 GBS SNP
dataset stored in Panzea. Measurements for 13 core phenotypes
at each field trial as well as local weather data can be retrieved
from publicly released Genomes 2 Fields datasets released on
CyVerse [11,40]. Data from the 2014 G2F field trials is posted [40],
and data from the 2015 G2F field trials is posted [11]. Genetically
identical seeds from themajority of the accessions used in creat-
ing both this dataset and theGenomes 2 Fields field trial data can
be ordered frompublic domain sources (e.g., USDAGRIN) and are
listed in Table 1. Further supporting metadata and snapshots of
the Maize Phenotype Map code are available in the GigaScience
database, GigaDB [41].

Additional file

Figure S1. Correlation of freshweight biomasswith total number
of plant pixels identified in 2 side view images for maize plants
destructively sampled at 8 different time points between 13 days
and 39 DAP.

Abbreviations

DAP: days after planting; GBS: genotyping by sequencing; LED:
light-emitting diode; MARS: Multivariate Adaptive Regression
Splines; NDVI: Normalized Difference Vegetation Index; NIR:
near-infrared; RGB: an image with separate intensity values for
the red, blue and green channels; SNP: single nucleotide poly-

morphism; SVM: Support Vector Machines; UNL: University of
Nebraska-Lincoln; PA0: Plant Area calculated from a 0-degree
image (plants were initially orientated; then leaves would be ar-
ranged parallel to the camera at 0 degrees); PA90: Plant Area
calculated from a 90-degree image (plants were initially orien-
tated; then leaves would be arranged perpendicular to the cam-
era at 90 degrees); PCA: principal component analysis; PH0: Plant
Height calculated from a 0-degree image; PH90: Plant Height
calculated from a 90-degree image; PW0: Plant Width calcu-
lated from a 0-degree image; PW90: Plant Width calculated from
a 90-degree image; PF0: average of plant fluorescence inten-
sity in 0-degree; PF90: average of plant fluorescence intensity in
90 degrees.
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Figure 6: Reflectance values for 3 plants: Plant 090-6 (ZL06), Plant 002-7 (ZL07),
and Plant 145-16 (ZL16) on 3 days across development. (A) Reflectance values for

nonstem plant pixels (i.e., leaves). (B) Reflectance values for pixels within the
plant stem.
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