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Abstract: Buildings currently account for 30–40 percent of total global energy consumption. 

In particular, commercial buildings are responsible for about 12 percent of global energy  

use and 21 percent of the United States’ energy use, and the energy demand of this sector 

continues to grow faster than other sectors. This increasing rate therefore raises a critical 

concern about improving the energy performance of commercial buildings. Recently, 

researchers have investigated ways in which understanding and improving occupants’ 

energy-consuming behaviors could function as a cost-effective approach to decreasing 

commercial buildings’ energy demands. The objective of this paper is to present a detailed, 

up-to-date review of various algorithms, models, and techniques employed in the pursuit of 

understanding and improving occupants’ energy-use behaviors in commercial buildings. 

Previous related studies are introduced and three main approaches are identified: (1) monitoring 

occupant-specific energy consumption; (2) Simulating occupant energy consumption behavior; 

and (3) improving occupant energy consumption behavior. The first approach employs 

intrusive and non-intrusive load-monitoring techniques to estimate the energy use of individual 

occupants. The second approach models diverse characteristics related to occupants’  

energy-consuming behaviors in order to assess and predict such characteristics’ impacts on 

the energy performance of commercial buildings; this approach mostly utilizes agent-based 

modeling techniques to simulate actions and interactions between occupants and their  

built environment. The third approach employs occupancy-focused interventions to change 
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occupants’ energy-use characteristics. Based on the detailed review of each approach, 

critical issues and current gaps in knowledge in the existing literature are discussed, and 

directions for future research opportunities in this field are provided. 

Keywords: commercial building; energy consumption; occupant energy use behavior; 

occupancy related approaches; review 

 

1. Introduction 

The world’s growing energy use raises concerns about energy consumption and its impacts, particularly 

in terms of resource consumption and environmental degradation. In the last two decades, global energy 

use has increased by 50 percent, and current predictions show an increasing trend of 2 percent in annual 

global energy consumption [1,2]. Currently, residential and commercial buildings share 40 percent of 

this total global energy consumption [3] and are responsible for a similar percentage of CO2 emissions [4,5]. 

Such facts are particularly visible in the United States and European Union, where total energy-use  

in built environments is more pronounced than in other major energy end-use sectors—e.g., industry and 

transportation [2,3]. Contributing to this rising building energy use are population growth, increasing 

demand for maintaining a comfortable environment, and increasing time spent inside of buildings [2]. 

These factors point to the significance of residential and commercial building sectors in energy 

consumption [6,7]. The commercial building sector currently consumes about 12 percent of global 

energy use and 21 percent of United States’ total energy use [3]. Its energy use intensity (energy per unit 

floor area per year) increased by 12 percent [8], and it has the greatest intensity rate when compared to 

residential or industrial sectors [9]. In addition, the energy demands of the commercial sector currently 

has an increasing rate of 2.9 percent and continues to grow faster than other major sectors: industry, 

residential buildings, and transportation [3,10]. Such energy use intensity and its increasing rate raise a 

critical concern about improving the energy performance of commercial buildings, which has brought 

about a greater emphasis on the importance of maximizing energy savings during the operational phase.  

The need for improved operational efficiency has attracted attention from industry, research, and 

government to address energy saving approaches. Overall energy consumption in buildings during the 

operational phase generally depends on four main characteristics [2,11–17]: (1) climate characteristics 

(2) the building’s physical characteristics; (3) appliances’ and systems’ characteristics and; (4) occupants’ 

energy behavior characteristics. Improving climate characteristics is not possible at a given location. 

Enhancing the building’s characteristics (building envelope) and appliance and system approaches 

require large capital investments and sometimes are infeasible for existing commercial buildings [13]. 

This leaves occupants’ energy behavior characteristics as a prime target for energy conservation [18–20].  

The commercial built environment’s energy use is highly connected to the energy-use behavior of its 

occupants [21–23]. This behavior includes individual occupant’s presence in a building and such occupants’ 

actions and interactions that influence the energy-use of the building [24]. These occupancy actions and 

interactions use up to 70 percent of the United States’ total electricity of built environments [25].  

A single occupancy-driven energy parameter—e.g., heating, ventilation, and air conditioning (HVAC)  

set-points—can impact building energy performance up to 40 percent [26,27], and uncertainties in 
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occupancy energy-use behaviors can significantly impact total annual energy use on the order of 150 

percent for the commercial sector [8]. Occupant actions can also lead to excessive and unnecessary 

energy consumption [28]. In the United States’ commercial built environment, less than half of most 

buildings’ appliances and systems are turned off by occupants after operational hours [29]. Due to the 

fact that there are more non-working hours in a week than working hours, such behaviors can lead to 

more energy wasted during non-working hours than energy used during working hours [30]. In this 

context, therefore, a growing number of recent studies emphasize the importance of improving occupant 

energy-use behaviors as a cost-effective approach for saving energy in commercial buildings; such work 

spans various research communities, including psychology and economics [31]. It is of interest to 

explore how these studies address occupants’ behaviors. 

A glance at the current literature shows that a considerable number of approaches of varying complexity 

have been proposed to address problems related to occupants’ energy-use behaviors in commercial 

buildings. These approaches in the current literature can be grouped into the following three categories: 

1. Monitoring occupant-specific energy consumption: This approach provides individual occupant 

energy-use information in order to understand the energy behavior of individual occupants.  

2. Simulating occupant energy-consuming behaviors: This approach simulates realistic occupancy 

energy-use behaviors in order to capture and predict how such behaviors influence energy 

consumption in built environments and how such behaviors impact change over time. 

3. Improving occupant energy-consuming behaviors: This approach aims to adjust energy-consuming 

behaviors among occupants in order to achieve the most ideal energy-saving potential  

in buildings. 

These three categories share the ultimate goal of improving occupant energy-use behaviors, and 

advances in one area are expected to lead to advances in another area. However, despite the clear 

attention given to research in each category, there has been no attempt to comprehensively review these 

three areas in order to identify the gaps between them and the potential areas for further research. 

Motivated by this lack in knowledge, the objective of this paper is to present a detailed, up-to-date review 

of various algorithms, models, and techniques employed in each area and to provide in-depth 

understanding on how the current literature in each area can be connected.  

In the subsequent sections, we will review the literature of each main approach, discuss the gaps 

within and between each area, and conclude with directions for future research.  

2. Monitoring Occupant-Specific Energy Consumption 

Generally, commercial buildings contain a large number of end-users (i.e., occupants and appliances). 

In buildings with a single tenant, a single meter is installed at the main electrical service to measure  

the total aggregate energy consumption of all end-users. In buildings with multiple tenants, a meter is 

installed to measure each tenant’s aggregate consumption. In either case, the fact that the monitored 

energy consumption is an aggregate of all the users’ and building’s appliance (mechanical load, lighting, 

etc.) load significantly complicates the breakdown of observed energy loads to individual appliances or 

occupants [32,33]. 
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In order to estimate electrical consumption information for individual appliances, intrusive and  

non-intrusive load monitoring techniques have been widely employed in the related literature [34–41]. 

Intrusive load monitoring techniques require a meter to be installed at each point of interest (i.e., at a 

specific appliance, in a specific office, at a specific receptacle and so forth). However, non-intrusive load 

monitoring (NILM) techniques rely on the existing available data from the building’s electrical meter 

and employ techniques that identify specific signatures in order to associate energy use with the appliances 

in operation. In this context, NILM is considered a cost-effective tool to monitor appliance-specific 

energy consumption, and the current prevalence of NILM indicates its success and feasibility [34,41–43].  

It is worth mentioning that the effectiveness of NILM in commercial buildings is quite limited due to 

the number and abundance of similar appliances in use simultaneously (e.g., personal computers). 

Though NILM techniques work at an aggregate scale, there is still a need for effective tools to obtain 

detailed energy information regarding the consumption behaviors of individual occupants [44]. Using 

individual plug-in level meters in order to find the energy consumption of each occupant at his or her 

workspace has been used to address this challenge [45,46]. One criticism of this approach, though, is 

that this method is not reasonable in practice as it requires a large initial investment on the part of the 

business, which thereby decreases the likelihood that companies will adopt the approach. For this reason, 

researchers have begun looking for alternative means of tracking individual energy use. In their 

foundational work on this topic, Chen and Ahn [13] attempted to link energy-consuming data with 

occupancy-sensing data in order to track occupant-specific energy use without the need for capital-intensive 

plug-in meters. They proposed a coupled system that uses occupants’ wireless devices’ Wi-Fi 

connection/disconnection events to collect occupancy-sensing data and then correlates energy-load 

variations with these events to track occupant-specific energy use. This system confirmed that Wi-Fi 

connection information could be an effective indicator of energy load variations in commercial 

buildings. Therefore, this research capitalized on the breadth of research available regarding occupant 

detection in commercial buildings. 

Detection technologies typically include cameras [47], CO2 sensors [48], cellular phone  

control-channel traffic sensors [49], humidity sensors [50], infrared (IR) sensors [51], light sensors [52], 

motion sensors [53], radio frequency identification (RFID) [54], sound sensors [55], switch door  

sensors [56], telephone sensors [57], temperature sensors [50], ultra-wideband (UWB) [58], wireless 

sensor networks (WSN) [59], and Wi-Fi infrastructures [60]. These detection technologies can be 

divided to two main groups [61]: (1) precise technologies with incomplete coverage (e.g., cameras);  

and (2) imprecise technologies with full coverage (e.g., Wi-Fi infrastructures). Cost efficiency, 

resolution, accuracy, non-intrusiveness, and occupants’ privacy are criteria that must be evaluated for  

occupancy-detection techniques. For instance, some researchers point out that since there are usually 

multiple overlapping Wi-Fi access points in commercial buildings, Wi-Fi-based occupancy sensing 

could act as a cost-effective option [13]. 

In addition, the occupant resolution level of occupancy-sensing is significant for distinguishing the 

energy-load of a single occupant from a large group of people since the process of coupling occupancy 

with energy-load data aggregates energy-consumption for all persons within a specified location. There 

are four levels of occupant resolution (see Figure 1) [62]: (1) occupancy: a zone has at least one occupant 

in it; (2) count: the number of occupants in a zone; (3) identity: who they are; and (4) activity: what they 
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are doing. Considering all of these levels of occupancy resolution in conjunction with temporal and 

spatial resolution leads to correct and successful occupancy sensing. 

 

Figure 1. Dimensions of occupancy sensing resolution [62]. 

In commercial buildings, building management systems typically dedicate operational settings of 

main end-users—such as HVAC—according to assumed occupied and unoccupied periods during  

a day [63]. However, it has been found that average building occupancy for commercial buildings  

is at most a third of its maximum designed-for occupancy, even among office spaces at their peak 

working hours [64]. In this regards, occupancy-sensing data provides significant information for building 

management systems to adapt their system—e.g., HVAC and lighting—according to the exact number 

of occupants in a building at a given time [65–67]. The current status of sensing technologies therefore 

provides opportunities to economically monitor individual occupants and their energy consumption [68,69].  

Concerning the linkage between aggregated energy data and occupancy-sensing data in commercial 

buildings, in order to find the energy use of individual occupants, Kavulya and Becerik-Gerber [70] 

linked the results of occupants’ observations with NILM to study individual occupant’s energy-consuming 

behaviors in an office environment. They employed visual observation in order to collect  

occupancy-sensing data. Their research was conducted for five weeks in an office space containing  

five occupants, and their results identified the energy consumption and potential waste of each occupant. 

The outcome of their research indicated the ability of the linkage concept to monitor occupant-specific energy 

consumption. Although visual observation is not an effective method for collecting occupancy-sensing 

data, this research revealed opportunities for further research into the concept of coupling NILM with 

occupancy-sensing technologies to track the energy consumption of individual occupants. 

3. Simulating Occupant Energy-Consuming Behaviors 

Nowadays, simulation approaches are widely used in various branches of science in order to model  

a real process over time. In built environments, a number of simulation models and software exist to 

predict energy consumption during the operational phase. These common, traditional energy software 

(e.g., BLAST, DOE-2.2, eQUEST, EnergyPlus, and ENERGY-10) are typically employed during the 

construction phase of buildings to simulate and predict the energy use within the operational phase. 
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However, these software have some limitations for simulating occupant energy-use behavior. The main 

limitation is that they assume the same energy use pattern for all occupants in a building, and this pattern 

is constant over time [18,24,28,71–73]. In fact, they are not able to account for dynamic aspects of 

occupancy. Due to these limitation, the energy use estimated by these software normally deviates from 

the real levels by up to 30 percent [5,28,74]. Furthermore, in addition to traditional software, traditional 

building management systems also have limitations with real-time inputs of occupancy-related dynamic 

factors, such as the number of occupants and their preferences, actions, and decisions [63]. This 

limitation is problematic since the inputs of real-time occupancy information can reduce HVAC and 

lighting energy consumption by up to 20 and 30 percent, respectively [56,66,67,75]. In response to these 

limitations in modeling occupants’ energy-use behaviors, a number of studies have recently worked on 

various simulation techniques to attempt to overcome these particular limitations.  

It is noteworthy that the developed energy-modeling and simulation tools for modeling occupants’ 

energy-related characteristics and behaviors (discussed below) are mainly used during the early phase 

(i.e., design phase) of buildings [73,76–78]. Such tools could help users to choose the correct size and 

most energy-efficient building systems and the appliances that are proportionate to the number of 

occupants. These tools, therefore, help to improve overall building simulation capabilities. However,  

to achieve the best results, the application of these tools should be very sensitive to occupants’ input 

parameters to accurately represent occupants’ actions [73,79]. In fact, these tools could be used to 

analyze the specific dynamics for all individual occupants, and could be calibrated to ensure that they 

can be used for all sizes of commercial buildings with different numbers of occupants. Researchers might 

also set the simulations to consider the decreased occupancy of after-hours and non-working days.  

To maximize the benefits of such software, the systems should be flexible enough to consider all possible 

occupant actions as well as all of the common practices of occupants.  

In addition to simulating the design phase of the buildings, simulation tools could also be used  

during other phases such as the construction and operation phases [28,63,75,80–83]. For instance, within 

the renovation phase of buildings, such tools could help decision makers choose the most efficient 

appliances/systems when making a purchase. In addition, the use of such simulation techniques would 

help avoid the real resource-intensive process of testing which appliances and systems work well for  

a building. Time of a run, accuracy, and versatility (i.e., solving different occupancy problems in any 

commercial building) are the main criteria that must be evaluated for occupancy simulation tools [50]. 

Many effective options are discussed below. 

3.1. Agent-Based Modeling 

Simulation research has indicated that occupants’ dynamic energy use patterns can result in significant 

variations in energy consumption in the commercial sector [28]. In particular, a significant number of 

simulations employed Agent-Based Modeling (ABM) techniques to overcome software limitations in 

order to simulate actions and interactions between occupants and their built environment. These simulations 

sought to better predict building operational energy performance during the design phase. ABM is a kind 

of computational model that simulates the actions and interactions of agents with each other and their 

environments [84]; in ABM, building occupants are agents in the built environment. Unlike most 

mathematical models, ABM agents have heterogeneous features and abilities [85].  



Energies 2015, 8 11002 

 

 

Li et al. [86] employed ABM to simulate occupant load in HVAC design in order to optimize HVAC 

system size. By simulating the correct occupancy behavior characteristics, the model estimated a more 

accurate load and effectively designed an HVAC system that saved up to 43 percent of total energy. The 

number of occupants in each specific space at a given time became the main parameter of their proposed 

model. Erickson et al. [75] also used ABM to optimize HVAC loading and showed a total energy 

reduction of 14 percent at the room level of commercial buildings. They used wireless camera sensor 

networks to find occupants’ mobility patterns in buildings. Then, they employed ABM to simulate the 

mobility patterns for various control strategies of HVAC. Li et al.’s [86] and Erickson et al.’s [75] 

approaches feed various dynamic occupants’ information into the ABM simulation tools in order to 

directly calculate the HVAC loads. HVAC controls the indoor comfort; however, in their models, they 

did not clearly respond to the ventilation requirement that decreases CO2 levels inside the building.  

Lee and Malkawi [81] developed an ABM tool that simulates multiple occupant behaviors (i.e., adjusted 

clothing levels, adjusted activity levels, window use, blind use, and space heater/personal fan use) in 

order to predict such behavior changes due to changes in climate and buildings topologies. Their proposed 

tool is an open architecture program that can adapt to different building functions and climate topologies, 

and that provides opportunities for an occupant to make decisions based on his/her thermal comfort level. 

However, this tool cannot track the thermal comfort conditions of individual occupants to fully understand 

whether they are satisfied with the thermal comfort level. Azar and Menassa [28,80] proposed an ABM 

technique to simulate the diverse and dynamic energy-use patterns of occupants and their behavior 

changes over time. This technique also considers various interactions among occupants. Compared to 

common energy software, their proposed model showed a 25 percent reduction in energy use at a small 

office due to the correct modeling of occupant behavior. However, this technique is limited to interactions 

of occupants within a room, and could not account for occupants’ interactions in different rooms of a 

building. Such interactions may be considered to achieve more realistic results.  

Furthermore, social network type and structure can affect occupants’ energy-use behaviors.  

The commercial sector frequently has complex social structures due to presence of multiple independent 

entities within the same building [87]. In most commercial buildings in the United States, at least  

two companies (i.e., entities) work in the same building [88]. Some researchers recently employed  

ABM to simulate interactions of occupants in different entities within a commercial building. ABM can  

also differentiate the impact of various dynamic interactions of occupants from different social 

structures/networks [89], which greatly affect occupants’ energy use behaviors [32,90]. Anderson et al. [78] 

applied ABM to simulate the interactions of heterogeneous building occupants in their social networks 

to examine how social network type and structure can affect occupants’ energy use behaviors. They 

considered four social network types: random graph, scale-free network, small-world network, and 

regular ring lattice. The results from their case study of a commercial building with different social 

network structures and connectivity levels proved that network type and structure hold significant 

influence over an occupant’s energy-use behavior. Anderson and Lee [91] employed ABM to evaluate 

the effect of static and dynamic social networks on occupants’ energy-use behavior. Their results 

indicated that dynamic networks increase the uncertainties of energy behavior and therefore have more 

influence on occupant energy behavior than static networks. However, Anderson et al. [78] and Anderson 

and Lee [91] did not mention at what rate occupants’ energy-use behaviors can be affected. Finding  

a rate for behavioral change would better indicate how different social networks affect occupants’ 
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behaviors. Such studies would also improve if they could find which types of networks are most common 

in commercial buildings. In addition, they could find whether there is any relationship between the 

building type and network type.  

Azar and Menassa [12,87] used ABM to model occupancy-related behaviors in social sub-networks 

to show how occupants’ interactions impact the energy-use of buildings. They tested various numbers 

of sub-networks in a typical United States’ commercial building, and concluded that traditional modeling 

techniques (such as single-network modeling and bounded confidence models) are not applicable to 

simulate social networks and sub-networks in commercial buildings. However, in their studies, they did 

not considered the four main social network types studied by Anderson et al. [78]. In fact, they only 

considered the small-world and scale-free network. Studying all social network types could be more 

effective to show the limitations of traditional modeling techniques. 

3.2. Multi Agent Systems 

Compared to ABM, Multi Agent Systems (MAS) provide the opportunity for agents (i.e., occupants) 

to communicate more with each other as well as with their built environment. MAS divides a complex 

problem into sub-problems solved by representative agents [63]; for this reason, this approach is 

employed to model complex problems with multiple cyber agents. ABM is related to, but clearly distinct 

from, the MAS concept [92]. A MAS can contain combined ABM, and in cases where the problem of 

energy saving is a multi-dimensional problem, MAS is an appropriate application [92,93]. MAS may 

balance between occupants’ preferences and energy saving; ABM fails to achieve this aim. In fact, 

concerning the commercial sector, MAS typically helps make tradeoffs between both building demands 

and occupant comfort [94,95].  

Qiao et al. [96] introduced some prospects to indicate how MAS can simulate occupant behaviors to 

adjust device control in commercial buildings. Dounis and Caraiscos [93] presented MAS architecture 

for energy efficiency and comfort in built environments. They indicated that various advanced 

techniques (e.g., Fuzzy Logic, Markov Chain Model, and Neural Networks) are implementing methods 

used in order to develop a MAS tool for improving the efficiency of building control systems. In addition, 

their simulation results from implementing MAS on a building showed that this model can manage 

occupants’ preferences for thermal and luminance comfort, indoor air quality, and energy conservation. 

However, they did not clearly respond to the balance between thermal comfort and energy conversation. 

In some cases, achieving a level of thermal comfort could lead to an increase in energy consumption. 

They proposed MAS architecture for managing both energy efficiency and occupant comfort, and 

conducted a tradeoff between these two parties is needed. Klein et al. [63] proposed a MAS tool to model 

the management and control of appliances and occupants in a building. Their model could simulate and 

predict how changes to the building, occupant behavior (i.e., preferences and schedule), and operational 

policies affect energy use and occupant comfort. In fact, their model simulated occupancy behavior as 

well as building operational policies. Based on their results from employing the model on a case study 

of a three-story university building, an improvement in occupants’ comfort level and a reduction in 

energy consumption were realized. For this model, some data needed to be manually input. However, 

since such models need a large group of input data to simulate and predict energy use and occupant 
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comfort in a commercial building, the process of inputting the data into these tools needs to be totally 

automated in order to facilitate the tool’s operation.  

3.3. Other Techniques 

In addition to ABM and MAS, some researchers have proposed other models and techniques aimed 

at simulating occupants’ energy-related characteristics. Yamada et al. [97] developed a system that 

combines neural networks, fuzzy systems, and predictive control in order to control air-condition 

systems. Their system can predict the number of occupants in order to estimate building performance to 

achieve energy savings and high comfort levels for indoor conditions. However, neural network- and 

fuzzy system-based models typically need a training process, and for Yamada et al.’s [97] developed 

tool, this training process needs a considerable amount of time. Their proposed system therefore needs 

to be improved in its training level. Yamada et al. [97] also considered only the temperature as an 

indicator for comfort level. Such works on comfort level may consider other aspects of indoor comfort, 

such as humidity and air speed. Wang et al. [98] proposed a Markov chain-based model for  

building-occupancy simulations in commercial buildings; the model can simulate occupants’ stochastic 

movements in order to predict each occupant’s location. It can also produce nonsynchronous occupants’ 

location-changes according to the time and distribution of occupants in space; such predictions become 

inputs for building management processes for energy savings. However, they validated the model by single 

offices, which is problematic since for such studies, more cases—especially multiple offices—need to 

be considered to study occupants’ stochastic movements. Jazizadeh et al. [82,83] developed a framework 

that models occupants’ thermal preference profiles into HVAC control logic in order to set room conditions 

at occupants’ desired temperatures. They employed a fuzzy based model to put occupants’ comfort 

profiles into the framework. The results from their test bed of a university building showed up to a  

40 percent reduction in HVAC daily average airflow. However, similar to Dounis and Caraiscos [93], they 

did not clearly respond to the balance between thermal comfort and energy conversation, which is 

important since achieving a level of thermal comfort might lead to increasing total energy consumption 

of a building. Zhao et al. [99] developed a practical data-mining approach that collects the energy 

consumption data of various systems and appliances within office spaces to find occupants’ passive 

energy behaviors. The proposed data-mining approach is based on nominal classification (i.e., C4.5 decision 

tree, locally weighted naïve bayes, and support vector machine) and numeric regression algorithms (i.e., 

linear regression and support vector regression). The approach has the capability to separately find the 

behaviors of individual occupants and the schedule of an occupant groups and use this information to 

set various office appliances and systems in order to reduce the energy consumption. However, the 

validity of their proposed data-mining approach was limited to data that may have included some incorrect 

outcomes; such data-mining models require a considerable sample of validated data to test the models 

and show their effectiveness. Hong et al. [18] presented a framework, DNAs, to observe and simulate 

occupant energy use behaviors in built environments. This framework is developed based on four key 

components: (a) drivers of occupants’ energy-related behaviors; (b) needs of occupants, (c) actions 

carried out by occupants; and (d) building’s systems acted on by occupants. Such occupancy components 

directly and indirectly influence building’s energy consumption, and therefore DNAs provide the 
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opportunities to incorporate more energy-related behaviors into simulation tools. In addition,  

this framework has the capability to evolve into BIM. 

Another approach, Relative Agreement (RA) modeling, is an extension of a Bounded Confidence 

model [100] that can take into account different energy use characteristics of occupants, uncertainties 

about their opinion dynamics, and their interactions to each other. RA was defined and introduced by 

Deffuant et al. [101–103], and it can consider occupants as a population of agents that are selected 

randomly to interact with each other. In addition, each occupant (i.e., agent) is characterized by two 

variables: its opinion, and its uncertainty [100,101]. These two variables change over time. The ABM 

model developed by Azar and Menassa [12,87] is based on an RA concept. Additionally, Verplanken 

and Wood [104] and Göckeritz et al. [105] employed RA concepts to simulate pre-environmental 

behaviors of occupants in order to understand occupants’ responses to the new energy characteristics of 

their built environment. Their results shows that an occupant’s energy-conserving behavior is highly 

connected to his/her belief regarding other occupants’ energy-conserving behaviors.  

Figure 2 shows the framework of current research. Although MAS tools have potential to 

simultaneously integrate ABM and other techniques for simulating occupancy related behavior [93], 

such MAS tools have not been directly addressed by literature. In this context, hybrid simulation 

approaches could be proposed.  

 

Figure 2. Framework of current research. 

4. Improving Occupant Energy-Consuming Behaviors 

Improving occupant energy-consuming behaviors is a more cost-effective technique for cutting 

energy consumption than improving building’s physical properties [18–20]. Failure to improve occupant 

behaviors undermines the investment in retrofitting building envelopes and appliances since occupants 

define the success of such sustainable retrofitting projects [13,31]. Furthermore, if occupants learn 

appropriate energy-saving behaviors, they can practice such behaviors in all buildings. Therefore, adopting 

energy-saving behaviors among occupants would then provide an opportunity for general energy savings 

within all built environments.  

Changing energy-use behaviors and motivating occupants to have sustainable behaviors are typically 

achieved by providing intervention tools for their behaviors and habits in order to improve the occupant’s 

intentions and beliefs [45]. Such interventions have used several techniques (e.g., prompts, providing 

information and feedback, goal setting, and motivations) to attempt to improve occupant behavior, and 

each technique has had a level of success in reducing energy consumption [91,106–109]. Generally, 

there are two main occupancy-focused intervention approaches (see Figure 3) [12,79]: (1) continuous 
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interventions; (2) discrete interventions. These approaches mainly provide occupants with the information 

about their consumption behaviors and associated impacts. The continuous intervention typically includes 

occupancy interactions (peer pressure and word-of-mouth) and continuous feedback techniques [110–112]. 

The discrete intervention mainly includes green community-based social marketing campaigns, energy 

efficiency education and training, and discrete feedback techniques [104,113–115]. Social marketing 

campaigns are some commercial marketing techniques for the purpose of social engagement to influence 

occupants to change their social behaviors in order to save energy in built environments [116,117].  

Education and training are also important for improving occupants’ knowledge regarding  

energy-saving behaviors. Verplanken and Wood [104] and Göckeritz et al. [105] discussed how improving 

occupants’ energy behaviors first requires changing individuals’ beliefs and intentions regarding energy 

use. In this context, periodically holding energy meetings and workshops for occupants in individual 

commercial buildings has shown to be effective in improving energy-saving knowledge of built 

environments. In particular, these discrete interventions educate occupants about how to conserve energy, 

and occupants can share their energy-saving knowledge with each other through continuous interventions. 

Some consider combining discrete and continuous interventions as the most ideal and effective 

intervention technique.  

In addition to dividing interventions into continuous and discrete categories (see Figure 3),  

Archer et al. [118] divided the models motivating energy-saving behaviors into two groups:  

(1) rational-economic model; and (2) attitude model. In the rational-economic model, occupants are 

assumed to perform energy-saving behaviors that are economically advantageous. In the attitude model, 

occupant energy-saving behaviors result from promising and desirable attitudes about conservation. 

While occupancy-focused interventions assume the non-energy-saving behavior of occupants and work 

to improve occupants’ behaviors, the rational-economic model assumes occupants have energy-saving 

behaviors. However, the attitude model needs occupancy-focused intervention to change the occupants’ 

attitude to saving energy. 

 

Figure 3. Occupancy-focused interventions for improving energy-use behaviors [12,79]. 

It is noteworthy that the influence of an intervention technique significantly depends on social 

structures/networks within the built environment [85,119]. In fact, organizational network and structure 

dynamics determine occupant engagement levels with an intervention technique, and therefore 

structures/networks could impact the results achieved by employing an intervention tool for improving 

energy-saving behaviors [68]. Misunderstanding the influence of social structures might change 

occupants’ behaviors into bad habits, a concept known as the rebound effect [120]. Some intervention 
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studies [121–123] show that ignoring the effects of social networks can change occupants’ energy-saving 

behaviors into bad behaviors.  

In addition to the effects of social structures, the variability of individual occupants’ energy intensity 

(e.g., kWh/ft2/occupant/year) over time can also influence the success of intervention techniques [12,104]. 

Studies indicate that low variability in energy intensity demonstrate that an occupant has strong energy 

habits. Therefore, interventions seeking to influence such rigid occupants are much harder to accomplish 

than interventions targeting occupants with flexible habits [12,99,101,122,123]. Furthermore, in addition 

to rigid occupants, extremists can affect the performance of occupancy-intervention tools. Such 

occupants significantly affect their peers’ opinions and therefore cloud the interventions’ performance; even 

a small number of extremists could push their ideas onto a large number of occupants within a built 

environment [79,124–127]. Finding the number of extremists and studying how they may interrupt  

an intervention study can help researchers reduce such occupants’ effects on occupancy-intervention 

techniques. Since organizational network and structure dynamics affect the occupants’ communication 

within commercial buildings, studying the extremists’ effects within different structures/networks could 

also help researchers understand how extremists influence overall energy consumption.  

With these categories and concerns in mind, occupancy-focused intervention efforts in commercial 

sectors mainly focused on occupancy interactions and feedback techniques, described below. 

4.1. Occupancy Interactions 

Occupant behaviors are significantly influenced by peers in their built environment, especially when 

there are strong relationship ties among occupants. Peer pressure capitalizes on the fact that occupants 

influenced by interventions interact with other occupants to influence them to improve their energy-use 

behaviors [105,128–131]. In one case, an occupant could observe and adjust his or her own behavior  

to follow other occupants’ energy-saving behaviors. In fact, peer pressure interactions engage occupants 

to help themselves. Azar and Menassa [12,87] modeled peer pressure interactions among occupants. 

Each occupant sent a message to other occupants, and the interaction occurred when the two occupants’ 

energy-use characteristics paralleled each other. In fact, Azar and Menassa assumed that peer pressure 

is most effective when the energy-use characteristics of the two occupants are the same and is least 

effective otherwise. They employed their experiment on a case study of medium office buildings and 

achieved up to 24.7 percent energy-savings through peer-pressure intervention. However, the mentioned  

main assumption of these works could limit the achieved conclusions. For example, an extremist could 

significantly affect his/her peers—even those who have energy-saving behavior—and therefore,  

two occupants with different energy-behavior characteristics could significantly affect each other’s 

behavior. Carrico and Riemer [132] also studied the effect of peer pressure during a case study of office 

buildings for a four-month period of time. In their study, they disseminated energy-saving information 

among occupants, and considered that each occupant would educate and encourage others to have 

energy-saving behaviors. Their results indicated a 4 percent reduction in total energy use. However, they 

did not clearly discuss how peer pressure affects occupants’ behavior. Since the peer-pressure concept 

involves different kinds of interactions among occupants, such research might significantly discuss 

which kind of peer-pressure interaction influenced occupants’ energy behavior.  
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Within the boundary of peer-pressure concept, Word-of-Mouth (WOM)—a type of informal, 

occupant-to-occupant, face-to-face communication [133]—is considered a very influential communication 

method to influence occupancy-related behaviors [110]. WOM includes relating pleasant information 

and recommendations to others [134]. In energy-related research, WOM is typically employed when 

occupants with various energy characteristics share a common space [28], and it can be significantly 

effective in improving occupant energy-use behaviors [135]. Azar and Menassa [28,80] studied WOM 

interactions among 10 students in a small graduate student office building in a 40-month period to 

understand how occupants from different groups with different energy use behaviors can influence others 

within their group and in other groups. In their research, they considered three groups of occupants: 

high-energy consumption, medium energy consumption, and low energy consumption. The results 

indicate the effectiveness of WOM to adopt energy saving behaviors among high and medium energy 

consumption categories and convert them to low energy consumption category. However, WOM is 

obviously connected to occupants’ social structures/networks, and such WOM interactions need to be 

evaluated through medium or big office buildings since the structures/networks of small offices are 

completely different with other sizes of office buildings. 

4.2. Feedback Techniques 

Feedback techniques typically provide occupants with their energy-use information. A growing body 

of energy-saving literature has shown that feedback is a more prevalent and cost-effective intervention 

technique than occupancy interaction for bringing about reductions in energy use. The earliest studies  

in this field date back to the 1970s. For example, in 1977, Seligman and Darley [136] provided daily 

electrical energy use feedback to a group of households within a one-month period; they saw an 11 

percent reduction in energy use. In 1980, a United States local T.V. channel in West Texas provided 

information about the amount of gasoline people used daily via a nightly news television program [137]. 

The results showed a reduction of up to 31.5 percent in fuel consumption. 

Feedback techniques are generally divided into continuous and discrete techniques (see Figure 3).  

In continuous techniques, the energy-use related information is typically provided to occupants through 

bulletins and announcements installed on boards located in places where occupants have the opportunity 

to see the information every time they are nearby. However, discrete techniques provide information 

periodically. For example, occupants could be informed about their energy-use information via  

weekly e-mail. 

There are certain characteristics that help a feedback technique to be more effective. The most 

important characteristic emphasizes giving positive comments to occupants rather than negative ones 

(e.g., using language such as “saved” instead of “wasted”). Comments on specifics energy behaviors are 

also more effective than general comments. Overloading on feedback tends to reduce occupant’s ability 

to effectively use comments [138]; therefore, a well-timed plan regarding when to provide feedback to 

occupants is also important.  

In particular, representative units significantly affect the success of feedback. There are three 

meaningful units for representing the energy-saving related feedback [139]: (1) Direct energy units  

(e.g., kWh); (2) Monetary units (e.g., $); and (3) Environmental externality units (e.g., greenhouse gas 

emission). The representative unit has a significant influence on occupants’ behaviors as it effectively 
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dictates comprehension, relevance, and importance of energy consumption to associated problems [140]. 

Since commercial occupants have no direct financial responsibility about their energy consumption in 

the commercial sector, financial incentives (i.e., monetary units) do not efficiently motivate occupants. 

However, sharing energy-consumption information with direct energy and/or environmental externality 

units has been shown to improve energy saving behaviors in the commercial sector [28,117,132,141]. In 

fact, commercial building occupants who are aware of their ecological consequences are more likely to 

improve their behaviors [142,143]. 

A group of researchers [144] developed a site (StepGreen.org) that provides environmental 

externalities (e.g., the equivalent CO2) of occupants’ activities to them in order to motivate energy-saving 

behaviors. They deployed StepGreen on a case study of 32 students in a local community for a  

three-week period of time. Their findings indicate the effectiveness of the environmental externalities 

unit in changing behavior actions. However, such sites need to provide a motivation for occupants to use 

the data that is shared through the website. Conventional feedback delivers data to occupants; however, 

sharing data through a site may not actually deliver data since some occupants could forget to access the 

site. Matthies et al. [45] provided environmental externalities feedback over the whole period of November 

2008 to January 2009 for 15 university buildings in the German state of North Rhine-Westphalia. They 

gave information on the reduction of CO2 emission to all occupants through different methods such  

as posters, websites, e-mails, and brochures. Their results showed 8 percent reductions in electrical 

energy consumption, and therefore show how feedback using environmental externalities units is an 

effective strategy for improving occupant behavior. This research is a good case study for showing how 

a feedback study could be implemented within large-scale buildings. Further researcher might follow the 

methodology explored in this research to employ such feedback studies on large-scale buildings. 

However, in their work, the authors assumed that all objective data (e.g., meter reading) is highly reliable, 

and this assumption inevitably affected their results. Employing a data analysis method in order to verify 

the data at the early stage of such works could be helpful in yielding more reliable results  

and conclusions. 

In addition to representative units, the means of communicating information also play a role in 

audience response. Staats et al. [145] provided feedback about heating-related behaviors to 384 office 

spaces at a large office building over the course of two successive winters; each study was performed 

during a four-week period. Their feedback sought to reduce natural gas used for radiators, and they used 

posters, brochures, and individual feedback to provide energy information to occupants. They assessed 

the long-term effects of the first feedback during the 11-month-long gap between the two feedback 

periods. The work overall achieved a 6 percent reduction in total gas consumption during the duration 

of the study. Such studies can reveal how occupants with previous experience using a feedback tool will 

respond to a similar feedback study after a short-term or long-term passage of time. Carrico and Reimer [132] 

provided energy feedback for occupants at a mid-sized private university in the southern United States; 

the case study’s 24 buildings were used primarily for office space, research, and teaching, and the 

monthly feedback was presented to the 2300 employees via e-mail over the course of a four-month 

duration. Their feedback showed an average reduction of 7 percent in total energy consumption. Similar 

to the research of Matthies et al. [45], this research is also a good case to show how a feedback study 

can be implemented within large-scale buildings. In such studies, a single feedback method applies to 

hundreds of occupants who work in various commercial buildings, which means that handling such 
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studies is relatively hard work. Collecting data after each feedback to fully understand how the feedback 

influences occupant behavior over time would also be necessary, but Matthies et al.[45] and Carrico and  

Reimer [132] only looked at overall energy reduction. One likely reason for the limited examination is 

that separately analyzing the data from each feedback would be a highly time-consuming activity for 

their studies. 

Research also shows that comparative feedback among different groups is more effective than 

individual feedback for changing behavior strategies [146]. Occupants in commercial buildings typically 

work in different groups, and information about the outcomes of other groups mostly leads to competitive 

feelings and the motivation for better performance. Therefore, comparative, group-based feedback yields 

more energy-saving actions than groups who only received feedback about their own actions [146].  

In fact, providing individual occupants with access to the energy information of others in their organization 

can result in significant energy savings [68]. Siero et al. [147] studied the effect of environmental 

feedback on occupants of two units of a company over a four-month period. They chose two units with 

the same social structures and personal characteristics. The weekly feedback was presented through 

various energy bulletins and announcements. Occupants of the first group just received the feedback for 

their own behavior; however, the second unit received information both regarding their own energy-use 

behavior as well as comparative feedback about the first group. The results show the second unit saved 

more energy than the first unit. In addition, occupants in the second group reported being more 

competitive at the end of the study than the first group, and they also continued their energy-savings 

behaviors after completing the study. Similar to the Siero et al. [147], Gulbinas and Taylor [68] and 

Peschiera and Taylor [123] divided their occupant samples into two groups and provided a comparative 

feedback for one group. Their results also indicate the comparative method is more effective than 

individual feedback. They also discussed how occupants who receive energy-use feedback only for their 

own behavior may not have sufficient information to significantly improve their energy-use behaviors. 

However, although all of these comparative feedback research projects indicated that comparative 

feedback would encourage occupants to save energy; they do not provide any insight about the negative 

impact of comparative feedback. In such a case, occupants in a comparative feedback group could be 

negatively impacted by the information that shows that they consume more energy than other groups.  

Understanding the individual energy-efficiency behavior of each occupant can lead to providing 

better energy-saving feedback to individual occupants. The energy consumption of appliances of 

individual occupants (e.g., personal computer, desk lamp) is typically less than 10 percent of overall 

energy use in commercial buildings [148,149], and a workdesk can offer the simplest environment in 

such buildings for understanding individual occupant’s energy behaviors [45]. Murtagh et al. [46] 

investigated the influence of individual feedback on energy use in commercial buildings. They chose a 

case study of 83 office workers at a medium-sized university in the south of England and measured their 

energy consumption at the desk level within an 18-week period—each desk was under control of an 

individual occupant. Then, Murtagh et al. [46] provided an environmental externalities-based feedback 

named MyEcoFootprint to all individual occupants. Their results indicate a significant energy reduction. 

Similarly, Staats et al. [145] provided individual feedback to occupants once within the last two weeks 

of the second intervention period (i.e., the second winter). They gave each occupant a separate personal 

letter that provided information about the particular windows and thermostats within his/her office space. 

This information, for example, could have revealed to an occupant that the window of his/her space was 
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open in the winter on a specific day and therefore wasted a specific quantity of energy. What is most 

promising about such studies is that since they provide feedback to individual occupants by collecting 

data at the level of individual occupants, there is a potential for these studies to investigate how occupants 

with different energy behavior characteristics adopt energy-saving behaviors. In addition, these studies 

also can help researchers find extremists within a built environment and can reveal how extremists 

influence their peers. 

Table 1 provides a summary of presented feedback techniques employed in commercial buildings. 

This summary shows that most researchers provide weekly feedback to occupants. In addition, the 

logical length for feedback studies seems to be between two to four months. Furthermore, as mentioned, 

these studies indicate that occupants typically control less than 10 percent of total energy use in 

commercial buildings [148,149]—Table 1 shows that feedback research has led to energy savings of less 

than 10 percent, which could confirm that occupants control less than 10 percent of overall  

energy consumption. 

Table 1. Summary of feedback techniques. 

Feedback features References 

Type 
Individual [46,145] 

Comparative [68,123,147] 

Frequency 
Weekly [45,123,145,147] 

Biweekly [68] 
Monthly [132] 

Duration 
Less than 2 Months [123,145] 

2–4 Months [45,68,132,147] 
More than 4 Months [46] 

Energy saving 
Less than 10 percent [45,46,68,123,132,145,147] 
More than 10 percent NA 

5. Discussion and Future Research Prospects 

The recent evaluations of occupancy-related energy-use behaviors have grown in importance, and an 

increasing portion of research has focused on the variety of methods and techniques used to evaluate this 

topic in commercial buildings. In the previous sections, we have discussed exciting literature and have 

highlighted the main limitations of these works. The following sub-sections will discuss the overall 

challenges of the current literature to point out important research directions for future studies. We will 

first go through individual approaches and then argues connection between these approaches.  

5.1. Overview of Current Approaches 

Despite the attention given to the topic, there are still various limitations and issues that should to be 

addressed by future studies. The first point that the current literature failed to consider is the effect of 

ambient temperature and humidity on occupant behavior in commercial buildings. Occupancy  

energy-use behavior varies according to weather conditions [73,150]. Individual occupant’s behaviors 

may have a larger impact on energy consumption in hot-dry climates than in mild-humid ones [8].  

For instance, Paatero and Lund has shown that in sub-tropical countries, occupant energy behaviors are 
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markedly different during different seasons [151]. Consequently, conducting occupant-related energy 

research during different seasons could foreseeably lead to dramatically different results. Further studies 

are therefore recommended to consider the effect of ambient temperature on built environments and their 

occupants’ energy consumption activities. Such studies could, for example, examine two groups of 

occupants who are residents of the same commercial building and have similar energy behavior 

characteristics; the studies could evaluate the difference in these groups’ behaviors during two different 

seasons. Such results would offer an appropriate mode for addressing temperature-related issues in  

this discussion. 

Another area prime for analysis is the role of building size on occupant energy use. Occupant  

energy-use behaviors vary according to building size [73]. In a small building, occupants typically have 

more control over different appliances, and therefore they are more engaged in energy-saving behavior. 

However, in a large building, building management systems typically control more appliances. We found 

that current research mainly focused on small- and medium-sized offices; however, there are very few 

papers that examine large-sized office or other such large-scale cases. Therefore, we recommend that 

researchers next evaluate the influence of building size on occupants’ energy behavior.  

Another point that is well-represented in the literature is the role of permanent occupants in 

commercial buildings’ energy consumption. However, temporary occupants have the potential to 

influence occupancy-related energy consumption. Permanent occupants are those who work full-time in 

buildings, whereas temporary occupants are less often in the buildings. For example, in a case study of 

a university building, Klein et al. [63] considered faculty and staff as permanent occupants and students 

as temporary occupants; what is particularly interesting about these designations in Klein et al.’s study 

is that the number of people in the temporary group was eight times as populous as that of the permanent 

group. This difference between the numbers of people in each group highlights the significant role 

temporary occupants have on the total occupant energy-use. Therefore, dividing occupants into permanent 

and temporary groups and finding the energy-related role of temporary groups is recommended for  

future research. 

The process of planning occupant group activities according to the total energy efficiency of a 

building to save energy is a concept known as a green schedule. Future research into green schedules 

could provide energy-saving recommendations and policies for a series of commercial buildings’ 

specific occupant-related activities. A case study that did address these options indicated that changing 

the time and location of meetings can save energy in commercial buildings [63]. Therefore, detecting 

the different kind of occupant group activities in a commercial building and suggesting green schedule 

options for such activities (i.e., schedules targeting energy savings) would be a valuable topic for future 

research. Such studies could provide general policies to higher-level management in commercial 

buildings to save energy by green planning. 

Furthermore, future work should be undertaken to consider the effect different occupant 

characteristics have on energy consumption. Age, educational level, gender, and nationality are all 

occupant characteristics that influence energy behavior [28,152–154]. Such characteristics could greatly 

impact occupant energy-saving adoption and the relevant intervention methods. However, the current 

literature has generally failed to consider the significance of these kinds of characteristics. Conducting 

research specifically to examine the influence of such characteristics is therefore recommended for 

further studies.  
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While the research topics highlighted above provide new categorical options for future research, there 

are still several lingering gaps in knowledge relevant to the three approaches discussed in the previous 

sections. The following subsections discuss the issues and challenges of each approach separately.  

5.1.1. Monitoring Occupant-Specific Energy Consumption 

In regard to monitoring occupant-specific energy consumption in commercial buildings, load 

disaggregation among individual occupants is still a challenging issue. Although the literature has 

demonstrated a large variety of occupancy-sensing techniques, very little research has been conducted 

in the area of monitoring occupant-specific energy consumption. In fact, building management systems 

have been utilizing increasingly extensive sensor networks, but these networks often fail to correctly 

collect building occupancy data [155] and therefore do not effectively leverage total energy consumption 

data as a measurement of individual occupant’s energy consumption. The fact that there are so few 

publications about approaches for monitoring occupant-specific energy use [156–159], gives evidence 

to the fact that less attention has been paid to this approach than to the other two main approaches  

(i.e., simulation and improvement of occupants’ energy consumption). However, the success of 

simulation and improvement approaches highly depends on detailed occupant-specific energy consumption. 

In fact, outputs of monitoring individual occupant’s energy consumption can form the inputs for the 

second and third approaches.  

Monitoring occupant-specific energy consumption also provides researchers with the ability to 

quantitatively classify occupants into different energy-related groups based on their specific energy-use 

behaviors. Such classifications could help improve occupant-driven energy-conserving behaviors. 

Furthermore, the outcomes of occupant-specific energy use would provide researchers with an opportunity 

to present explicit feedback to individual occupants about their own individual energy actions and 

decisions. Future research is therefore recommended to propose models and techniques that would 

monitor the energy load of individual occupants. 

One option for future actions would be to extend the concept of existing non-intrusive load monitoring 

techniques. Such NILM techniques have been widely employed to disaggregate total energy consumption to 

identify specific loads and subsequently individual users. This concept would be helpful for developing 

related reliable methods for estimating the energy consumption of individual occupants. Chen and Ahn [13] 

indicated that Wi-Fi connection/disconnection events could be an effective indicator for occupancy 

energy load variation in commercial buildings. Developing such occupancy frameworks as well as 

occupancy-detection technologies could also be helpful in developing occupancy non-intrusive load 

monitoring techniques. 

Furthermore, Gulbians et al. [160] recently proposed a three-stage clustering algorithm as a new  

set of metrics that classifies commercial building occupants according to their energy-use efficiency, 

entropy, and intensity. This algorithm segments building occupants’ energy consumption data in order 

to understand individual occupant’s energy-use characteristics. Further developing the concept of such 

algorithms in order to estimate energy-use information of individual occupants is recommended.  
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5.1.2. Simulating Occupant Energy-Consuming Behaviors 

In simulation research, it is necessary to accept certain assumptions, and these assumptions greatly 

influence the results. In fact, the accuracy of a simulation technique significantly depends on the adequacy 

of its assumptions. However, the validation of a simulation technique mainly focuses on technical 

validation. Future simulation research is recommended to test and verify the assumptions used to develop 

the models. 

In order to develop the practical aspect of occupancy-related models, future research should indicate 

how the developed models can be integrated into current energy simulation software or can be developed 

as new software. Such moves would be a step toward the practical application of models that shape  

the future of energy software in built environments. For this reason, future research is recommended  

to monitor and collect data from a large number of commercial buildings to better validate any  

proposed models and their corresponding software. Testing and validating the scalability of future 

models for different building types, different occupant social networks, and within multiple buildings 

are also recommended.  

Although there are several studies in the literature that consider occupants’ social networks,  

they simply represent the first step necessary for understanding how various social networks affect 

energy-use in commercial buildings. More comprehensive studies are still needed. In [123], it was shown 

that larger network degrees can play a positive role in inspiring occupants to use less electricity. 

However, the results of [12] indicate non-significant differences in energy savings between moderate 

and high levels of connection among sub-networks. Therefore a moderate level of connection might be 

enough to maximize energy savings. Further investigation is needed to determine at what network degree 

the ideal energy saving can be achieved. Furthermore, mediocre and poor relative networks should be 

studied in order to completely understand the influence of all network types on occupants’ energy use.  

Chen et al. [161] proposed a block configuration model as a novel agent-based simulation model  

in order to emulate occupant peer networks and their impact on building energy consumption. Compared 

with other models, their proposed model can generate a more accurate random network, and allow for a 

controlled network size and connectivity for occupants’ energy use simulation. However, they just tested 

and validated their model for residential buildings. Future research is thus recommended to verify such 

models in commercial buildings.  

5.1.3. Improving Occupant Energy-Consuming Behaviors 

Different intervention techniques must be individually examined according to whether they are 

effective, comprehensible, inexpensive, and easy to implement on large-scale groups of occupants in 

commercial buildings. Furthermore, an intervention technique must be suitable to its target group.  

In order to find a suitable intervention technique and to adjust it for its targeted group, pre-surveys should 

be employed to find the energy-related characteristics of occupants in a studied group. Ignoring this step 

might lead to getting worse energy-consumption behaviors. In [162–164], the results indicate that the 

occupants had a limited understanding of the goal of the feedback studies and that some occupants had 

a hard time understanding the used representative units. In such cases, a pre-survey could help identify 

the general knowledge of the targeted occupants for the feedback study and could help reveal which 

representative units would work better for them. Therefore, conducting a pre-survey is critically  
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needed for intervention studies, especially in order to find how the targeted occupants understand the 

terminology and what their preferences are. Pre-surveys also help researchers evaluate their audiences, 

select intervention techniques according to the audience’s need, and provide tailored information that 

will reach participants—such tailored information seems to be more effective than non-tailored information 

for knowledge improvement and behavior change [165]. The pre-survey could also provide some general 

energy-saving information to initially motivate occupants to engage in energy-saving actions. 

Section 4.2 indicates the importance of representative units. However, the methods for communicating 

the information to users are also important. In this regards, distributional graphs typically appear to be 

the most easily comprehended and preferred method of presenting energy-consumption information to 

occupants [166]. That said, future research in this area is needed to conduct various displaying methods 

to verify the most effective means. 

The success of feedback depends mainly on its data resolution, and various levels of resolution might 

have different levels of success in improving energy behavior. In this regards, although high resolution 

feedback—which typically requires more time and capital investment—has a clear record of success in 

the literature, it is currently unclear whether a high level of resolution is always needed or whether a 

lower level can still be effective [68,119]. In fact, higher resolution data do not necessarily lead to more 

energy knowledge. Future research is therefore recommended to study the effects of different levels of 

resolution on energy behavior.  

Future research is also needed to evaluate the frequency at which energy-related feedback should be 

provided to occupants to achieve the best possible behavior adaptation. Furthermore, researchers need 

to develop policies regarding how to avoid providing intrusive feedback to occupants. Intrusive feedback 

might lead to decreases in the quality of energy-saving behavior and may therefore increase the energy 

consumption. Deeper research into these concerns would be warranted. 

In most corresponding studies [12,113,114,119,145,167,168], the promoted energy-saving  

behavior during the feedback experimental period were rarely remained over time by occupants in built 

environment. Therefore, the cost and time investment for conducting such studies have typically 

achieved short-term and temporary results but failed to lead to long-term or permanent energy-saving 

behaviors. Future research therefore needs to assess and evaluate the long-term effectiveness of 

feedback. In particular, an alternative long-term technique could be occupant-interaction techniques in 

which peers are able to influence their co-workers over a longer period of time to improve energy-saving 

behaviors. The long-term cost investment for such interactions is typically less than feedback techniques 

and should be examined.  

Individual occupants also have their own strategies and intentions—known as personalized 

behavioral strategies—to change their behaviors to energy-saving behaviors. In [46,132,147], the 

authors studied the personalized behavioral strategies. For example, Murtagh et al. [46] provided 

individualized feedback to individual occupants and found that different occupants needed different 

motivations to adopt energy-efficient behaviors. Future research should investigate such strategies  

to better understand how personalized strategies affect behavior changing. Adjusting occupants’ own 

strategies to energy-saving strategies could also provide an opportunity for occupants to continue their 

energy-savings for longer periods of time and therefore could be considered as a way of achieving  

long-term energy-saving behaviors. 
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Energy savings could be adopted suddenly during one part of a study or be adopted steadily 

throughout the whole duration of a study. In this context, identifying a rate for behavioral changes could 

potentially be considered a means of determining whether an intervention method can lead to  

energy-saving behaviors during specific amounts of time. In fact, the speed at which occupants adopt 

certain energy-saving behavior is valuable information. This rate could also be considered an indicator 

for comparing several intervention methods. For example, this rate could be defined as the amount of 

energy saved by an occupant per day. By dividing the total amount of energy saved by the total number 

of occupants and feedback durations, this rate could reveal which methods are the most effective at 

inspiring change. Considering this rate in further studies would provide even better opportunities for 

understanding which intervention techniques are most efficient.  

One of the most effective feedback tools to motivate energy-saving behavior is historical  

comparison [169], which allows occupants to make a good comparison regarding their own energy 

consumption. In particular, historical comparisons could provide energy-use related information for 

individual occupants over a period of time to show them, for example, when they used less energy. Then, 

occupants can check their own behavior across time to understand their own energy-saving actions. 

However, there is a gap in the literature to study how historical comparison feedback works for 

commercial occupants. Further research needs to study the influence of historical comparison feedback 

on improving occupant energy-use behaviors.  

5.2. Connections between Three Main Approaches 

Apart from the importance of each individual research category, their connections are also very 

important in helping the ultimate goal of improving occupancy-related behaviors to bring about general 

energy savings within all built environments. We therefore argue that by understanding the connections 

between these areas, researchers can understand how efforts in each area bring about change in other 

areas, and researchers can identify which kinds of connections were missed; failure to achieve such 

connections can undermine the overall efforts of three areas for general energy saving. 

Finding individual occupants’ energy consumption, as happens in the first approach, could form  

the input data for the second and third approaches. The current status of simulation models shows  

the maturity of the second approach’s ability to model the dynamic behaviors of individual occupants. 

Such models need as one of their input data the occupant-specific energy use to simulate the real process 

of occupants’ energy use over time. However, the current status of this research indicates that the 

literature has failed to consider this link between the first and second approaches. The immaturity of the 

first approach as compared to second approach could be the main reason for missing this link. Failing to 

provide occupant-specific energy consumption might disturb the performance of a simulation tool.  

In addition, in the field of improving occupant behavior, there is a need for researchers to know  

the energy consumption of individual occupants during the three phases of their research: before starting 

using the intervention tools, during the studies, and after finishing these studies. In particular, such energy 

knowledge about individual occupants not only helps to track changes in occupants’ energy behaviors 

over time but also shows the performance of an intervention tool. The current status of the literature 

shows that researchers have used the overall energy consumption of all occupants for tracking occupants’ 

changes in behavior and intervention tools’ performance. However, in these cases, energy data of 
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individual occupants would provide a much better opportunity for researchers for tracking process.  

In addition, Azar and Menassa [79] mentioned how an extremist could influence the energy consumption 

of his/her peers. In such a case, an intervention tool has to be adopted based on the presence or absence 

of extremists. In such cases, monitoring occupant-specific energy consumption would therefore help 

researchers find extremists before starting a research for improving energy behavior. Furthermore,  

in [28,80], researchers at the first step of their works divided the subject occupants to three groups:  

high energy-consuming occupants, medium energy-consuming occupants, and low energy-consuming 

occupants. Then, they studied how occupants’ energy behaviors change with time and therefore how an 

occupant will move from one group to another group. In this research, based on different performance 

of individual occupants, they assigned occupants to three groups. For example, if an occupant turned off 

all of his/her appliances before leaving the work desk, this occupant will be assigned to group of low 

energy consumers. However, the amount of energy used by an occupant compared to other occupants is 

a better index to assign him/her to such groups of energy consumers. In such studies, therefore, finding 

occupant-specific energy consumption provides this opportunity to find this index for researchers.  

In summary, there is a critical need for a link between the first and third approaches. However, the 

first approach has fairly ignored and therefore the literature failed to provide this link. Therefore, future 

research may propose tools to monitor occupant-specific energy consumption, which will lead to 

improvements in the whole topic of occupant-performance in commercial buildings’ energy consumption. 

In addition to the connections between the first approach and the two other approaches, there are 

mutual connections between the second and third approaches. Simulating occupants’ behaviors could be 

a great help in understanding how an improving method performs over time. In [12,28,80,81,85], authors 

simulated occupants’ behaviors to assess the performance of their intervention tools for improving 

behavior. The current literature therefore shows that there is a good link for a connection between the 

second and third approaches. On the other hand, correlating the real results of an intervention method 

for improving occupant behavior with the results achieved from a simulation tool could be helpful to 

find flaws of the simulation tool and would therefore provide an opportunity to adjust the tool to work 

better. In fact, this link between the third and second approaches is the most effective method to evaluate 

different simulation tools. However, the literature seems to fail to consider this link. Testing various 

simulation tools by using the results of an intervention method also could help to find the most 

appropriate simulation technique for an occupancy-related behavior-improving problem. It is worth 

highlighting that monitoring individual occupants’ energy consumption, as happens in the first approach, 

also plays a key role for improving this connection between the third and second approaches. Tracking 

the individual occupants’ energy use over time provides more accurate results of an improving study, 

and therefore could help to better understand the performance of simulation tools. 

In summary, a broad discussion of the topic of occupancy-related energy use behaviors indicates  

that currently, a good link only exists between the second and third approaches, i.e., using the results of 

simulation tools to test the performance of intervention models. Further research may therefore address 

the abovementioned links between all three approaches. In this context, a special attention to the first 

approach is critically needed.  
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6. Summary and Conclusions 

Energy consumption in commercial built environments is highly correlated to occupants. However, 

the available research in this domain is insufficient and not proportional to the importance of the topic. 

This paper evaluated the current status of the topic and revealed many issues that are still open in  

this domain. One such consideration that appears to be critical is the need for tools to monitor the  

energy-consumption of individual occupants. To the best of our knowledge, there is no applicable,  

cost-effective technique for providing good-resolution energy use data regarding the energy-use 

behaviors of individual occupants. Failing to track occupant-specific energy consumption might lead to 

incorrect simulations and flawed approaches for improving occupant energy-use behavior.  

In the field of simulating occupant behavior, ABM and MAS has a clear record of success for 

modeling occupant-related energy-use behaviors. Furthermore, other predictive techniques such as fuzzy 

modeling, neural networks, and Markov chains were also employed to model such behaviors, and the 

results from such studies indicated the success of the techniques. However, there is a critical need to 

show how theses developed techniques can be integrated into current energy-simulation software or 

developed as new software. 

With regards to improving occupant behavior, the literature also indicates promising results. However, 

there is a need for better-defined policies, especially with regards to which type of occupant-focused 

interventions should or should not be applied to which type of occupants. In addition, there is a need for 

an occupant-focused intervention technique that can promote energy-saving behaviors for a long-term 

period. Identifying a rate for occupant behavioral change as well as for finding the most effective 

frequency of providing feedback is also needed.  

The connections between three approaches are critically important to helping the main goal of general 

energy savings within all built environments. There is an ongoing need for such connections since most 

links are missed. In this case, the immaturity of techniques for monitoring occupant-specific energy 

consumption appears to be the main reason for the missed opportunities. As such, this area of research 

provides fertile ground for broader applications in the field. 

Apart from the general themes manifested in the literature, green recommendations and policies for 

group activities (such as the coordination of meetings and working sessions according to the optimal 

energy-saving periods of the day) are almost completely absent in the literature and still need to be 

proposed in commercial built environments. As discussed in this paper, such literature gaps should be 

addressed in future studies.  
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