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The gross primary production (GPP) metric is useful in determining trends in the
terrestrial carbon cycle. Models that determine GPP utilizing the light use efficiency
(LUE) approach in conjunction with biophysical parameters that account for local
weather conditions and crop specific factors are beneficial in that they combine the
accuracy of the biophysical model with the versatility of the LUE model. One such
model developed using in situ data was adapted to operate with remote sensing derived
leaf area index (LAI) data and gridded weather datasets. The model, known as the Light
Use Efficiency GPP Model (EGM), uses a four scalar approach to account for biophysical
parameters including temperature, water stress, light quality, and phenology. The
model was calibrated for four locations (seven fields) in the northern Midwest and was
driven using remotely sensed LAl data and gridded weather data for these locations.
Results showed reasonable error estimates (RMSE = 3.5 g C m?2 d!). However, poor
gridded weather atmospheric pressure and incoming solar radiation inputs, increased
climatic variation in the study sites and contributed to higher RMSE that observed when
the model was applied exclusively to in situ data from the Nebraska sites

(2.6 g C m 2d1). Additionally, the application of LAl algorithms calibrated using solely

Nebraska sites to sites in lowa, Minnesota, and lllinois without verification of their



accuracy potentially lead to increased error. Despite this, the study showed there is
good correlation between measured and modeled GPP using this model for the field
years under study. As the ultimate objective of research is to develop regional

estimates of GPP, the decrease in model accuracy is somewhat offset by the model’s

ability to function with gridded weather datasets and remotely sensed biophysical data.
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CHAPTER 1 INTRODUCTION

Gross primary production (GPP) in maize and soybean crops at a landscape level
is an important measure for quantifying large scale carbon flux or plant productivity.
GPP is defined as the total amount of organic matter produced due to photosynthesis in
a defined area over a unit of time (Gitelson et al., 2006). GPP is a useful metric in
determining the patterns and dynamics of the terrestrial carbon cycle (Cui et al., 2016),
and it is essential in the study of ecosystem respiration and biomass accumulation (Beer
et al., 2010). The need to quantify the North American carbon sink necessitates precise
carbon dioxide flux measurements (Suyker and Verma, 2012) and while in situ data
sources are available for this quantification, they represent field level data collection at
specific locations. Therefore, GPP determination at the regional scale can help
determine large scale patterns and dynamics of the ecological system and help to
qguantify long term carbon trends. Models have been created in an attempt to derive an
accurate estimation of GPP at the landscape level with varying degrees of accuracy (e.g.,
Matsushita and Tamura., 2002 [20% error]; Heinsch et al., 2003 [18% error]; Heinsch et
al., 2006 [20%-30%]; Xiao et al., 2004; Cui et al., 2016 [Root Mean Square Error (RMSE) =
2.97 g Cm=2d?]). These landscape models use respective regional input data to
generate estimates of GPP at course temporal scales over a range of managed and
unmanaged ecosystems.

In estimating GPP on a regional scale, the use of satellite imagery and modeled

weather data is essential as monetary, personnel, time, and equipment constraints



hinder the collection of daily in situ data. As a result, there is a push to develop new,
and adapt proven, GPP models to function accurately with satellite and modeled
weather data as input (Cui et al., 2016), although many of these models also do not
estimate GPP at a daily temporal resolution. While the overall accuracy of these
adjusted models may currently be lower than those that utilize in situ field-level input,
due in part to the generalization of model parameters to work on heterogeneous
regions, the spatial and temporal restrictions of satellite data, and the accuracy of
modeled weather input data, the ability to study large regions may offset the loss of
accuracy depending upon the scope and objectives of the research being conducted (Cui
et al., 2016; Matsushita and Tamura., 2002). The quality of the remotely sensed and
modeled weather inputs in GPP models is directly tied to the accuracy in estimating GPP
(Matsushita and Tamura, 2002), therefore it is of equal importance that accurate input
data are utilized by the researcher.

In 2015, a light use efficiency model, known as the Light use Efficiency GPP
Model (EGM), was introduced by Nguy-Robertson et al. (2015). The model is essentially
a hybrid of Monteith’s (1972) light use efficiency relationship with elements of eco-
physiological models (Reich et al., 1991; Kalfas et al., 2011; Suyker and Verma, 2012;
Gilmanov et al., 2013). Nguy-Robertson et al. (2015) used in situ data inputs including
destructive leaf area and meteorological measurements. This model takes into account
the effects that environmental and canopy factors (light quality, water availability,

temperature, and phenology) have on photosynthesis in maize and soybean plants. The



EGM uses daily weather inputs and information on photosynthesizing leaf material
(green leaf area) to estimate plant photosynthesis under varying environmental
conditions. Previously developed GPP models use a maximum (constant) light use
efficiency (&) input in modeling GPP which, as environmental conditions change, can be
downregulated (e.g. Heinsch et al., 2003; Xiao et al., 2004, Li et al., 2012; Cui et al.,
2016). The EGM uses scalars to account for water stress, daily temperature, amount of
diffuse light, and phenology, using green leaf area index (gLAl) as a proxy, in such a way
that instead of using solely a maximum &g value, & is used in conjunction with the
scalars to produce a more descriptive daily light use efficiency (€). This variable can
increase with increased diffuse lighting conditions and decrease with environmental
stress. For example, increases in diffuse lighting will increase light use efficiency while
added stressors due to less optimal temperature, water stress, and plant age can
decrease light use efficiency. Nguy-Robertson et al. (2015) drove this model using in situ
mass and energy flux measurements, micrometeorological observations and leaf area
measurements specific to each individual study site to determine the scalars which drive
the EGM to simulate daily GPP for three research fields in southeastern Nebraska. The
model yielded results that were more accurate than achieved with a previous model
that incorporated diffuse lighting effects alone on GPP (e.g. Suyker and Verma, 2012).
The EGM of Nguy-Robertson et al. (2015) improved the bias error of the Suyker and
Verma model (2012) (RMSE of 2.6 g C m2d™ and a Mean Normalized Bias (MNB) of 1.7%

compared to an RMSE of 3.1 g Cm2d™* and an MNB of 12.5%).



As a means toward the goal of daily, regional GPP estimates, the objective of
this study is to employ the enhanced four-scalar light use efficiency approach of Nguy-
Robertson et al. (2015) to demonstrate its applicability in using input data derived from
remotely sensed and gridded weather datasets to estimate daily GPP over the entire
growing season in seven northern Midwest agricultural sites located in Mead, Nebraska,
Rosemont, Minnesota, Brooksfield, lowa and Bondville, Illinois. An analysis of the
resulting daily GPP estimates was then conducted to determine how well the EGM

functioned using the adjusted input data and study sites.



CHAPTER 2 METHODS

Locations and Attributes of Study Sites

Seven Midwestern agricultural sites from the AmeriFlux network were used in
this study (Table 1). All sites are characterized by a humid continental climate (Dfa
Koeppen climate classification) with hot humid summers and severe cold winters. Three
of the sites are located in southeastern Nebraska (US-Nel, US-Ne2, and US-Ne3), one in
Illinois (US-Bo1), two in lowa (US-Brl and US-Br3) and one in Minnesota (US-Ro1) (Table
1). The Nebraska sites are located at the University of Nebraska’s Agricultural and
Development Research Center near Mead, NE. US-Nel (41.1650°N, 96.4766°W, 361m),
and US-Ne2 (41.1650°N, 96.4700°W, 362m) are irrigated while US-Ne3 (41.1797°N,
96.4396°W, 363 m) is rainfed. The three Nebraska sites are located roughly 40 km
northeast of Lincoln. US-Nel and US-Ne2 are adjacent to one another while US-Ne3 is
located approximately 3 km to the northeast of US-Nel and US-Ne2. All three sites have
been under no-till management save for an initial disking conducted in 2001. Since
2005 a conservation-plow tillage has been in effect at US-Nel (only). US-Nel is planted
with maize every year with no rotation between crop types. US-Ne2 and US-Ne3 both
have a maize-soybean rotation (maize planted on odd numbered years and soybean
planted on even numbered years) except in 2010 and 2012 when US-Ne2 was planted
with maize. The mean annual temperature at the three sites is approximately 10°C and

the mean annual precipitation for the three sites is approximately 790mm.



US-Bo1 (40.0062°N, 88.2904°W, 219m) is located approximately seven miles
south of Champaign, Illinois. The site is not irrigated and is under no-till management
administered by NOAA. US-Bol alternates annually between maize and soybean crops,
with maize cultivation on odd years and soybean cultivation on even years. US-Bol has

a mean annual temperature of 11°C and a mean annual precipitation of 991mm.

The two lowa Brooksfield sites, US-Brl (41.9749°N, 93.6906°W, 313m) and US-
Br3 (41.9747°N, 93.6935°W, 313m), are located directly adjacent to one another
approximately five miles southwest of Ames, lowa. Neither field is irrigated while they
are both under a tillage management system overseen by the USDA. Both fields at the
site are under an annual maize-soybean rotation; US-Brl is cultivated with maize in odd
years and soybean in even numbered years, while US-Br3 is cultivated with soybean in
odd numbered years and maize on even numbered years. The mean annual
temperature at the two fields is approximately 9°C and the mean annual precipitation is

approximately 845mm.

The Minnesota Rosemont site, US-Ro1 (44.7143°N, 93.0898°W; 290 m), is
located approximately 24 km south of Saint Paul, Minnesota. This field is not irrigated
but is under chisel plow tillage management in the fall succeeding maize harvest and in
the spring following soybean harvest in the fall. The US-Rol is managed jointly by the
University of Minnesota and the USDA. Crop type is alternated annually between maize

and soybean, with maize being planted on odd numbered years and soybeans being



planted on even numbered years. The mean annual temperature is 6°C and the mean

annual precipitation is 879mm.

Table 1: Ameriflux study sites with crop rotations and management status

Location Site Lat.,, Long. | Mgmt. Maize crop Soybean crop
Mead, NE US-Nel | 41.1650°N, | Irrigated | 2002-2013 --
96.4766°W,
361m
US-Ne2 | 41.1650°N, | Irrigated | 2003-2013 2002-2008
96.4700°W, 0Odd Years; Even years
362m 2010, 2012
US-Ne3 | 41.1797°N, | Rainfed 2003-2013 2002-2012
96.4396°W, 0Odd Years Even years
363 m
Brooksfield, | US-Brl | 41.9749°N, | Rainfed 2005-2011 2006-2010
A 93.6906°W, 0Odd Years Even Years
313m
US-Br3 | 41.9747°N, | Rainfed 2006-2010 2005-2011
93.6935°W, Even Years Odd years
313m
Bondville, US-Bol | 40.0062°N, | Rainfed 2001-2007 2002-2006
IL 88.2904°W, Odd Years Even years
219m
Rosemont, | US-Rol | 44.7143°N, | Rainfed 2005-2011 2006-2012
MN 93.0898°W; 0Odd Years Even years
290 m
Input Data

Daymet Data

Weather data were obtained from the Daymet website

(https://daymet.ornl.gov), obtained and distributed by the Oak Ridge National

Laboratory Distributed Active Archive Center (ORNL DAAC), one of NASA’s data




distribution and archive centers. The data are provided in a 1km x 1km grid of daily
weather estimates and are generated using a network of ground observation sites to
provide input data which is then processed using the Daymet model algorithm
(https://daymet.ornl.gov/overview.html). The algorithm processes the input data,
subsetting the data into 2° x 2° tiles which are then processed separately. The data are
interpolated by an estimation of station density using a Gaussian filter; the search radius
of stations changes depending on the concentration level of stations with more dense
areas having a smaller search radius than less dense areas. The model then produces
output data [minimum temperature (Tmin, °C), maximum temperature (Tmax, °C),
incoming shortwave radiation (Rg, J m2 d), vapor pressure (P, kPa), snow-water
equivalent (kg m?), precipitation (mm), and day length (s)] in continuous raster form for
the entire continental United States. Data for the respective years of the selected
AmeriFlux study sites (referred to as “field years”) were extracted for the various sites
under study by using the “Single Pixel Extraction” tool
(https://daymet.ornl.gov/dataaccess.html#SinglePixel) with specified latitude,
longitude, and date range. Data were then downloaded in CSV format in which average
daily temperature, vapor pressure deficit and incoming PAR were calculated in

Microsoft Excel. Average daily temperature (T) was calculated as:

T = Tmin-;Tmax (1)

Vapor pressure deficit (VPD) was calculated utilizing vapor pressure, P, as:



0.61078 -¢(17:269)(T)

VPD = —P )

T+237.8

Incoming PAR (umol m2 d1) was calculated from incoming shortwave radiation (Rg) as:

PARin = Rg - 2.07 (3)

The constant 2.07 is computed as the product of 0.45 [since PAR is 45% of total
shortwave at the top of the atmosphere (Rg, ] m2d1) (Weiss and Norman, 1985)] and

4.6 [an average 4.6 umol/Joules over the PAR range] and thus has units of umol/J.

MODIS Data

Surface reflectance data were obtained from MODIS products MOD09Q1 and
MYDO09Q1 (Terra and Aqua, respectively) via Google Earth Engine from which the Wide
Dynamic Range Vegetation Index (WDRVI) values were calculated; green leaf area index
(gLAl) values were determined from the WDRVI time series. The MODIS products are
each eight day composite data of surface reflectance (p), from MODIS band 1 in the red
region (620-670nm, pred) and MODIS band 2 in the near infra-red region (841-876nm,
pnir) at 250m spatial resolution. Both products provide the best observation per pixel

over an eight day period. A WDRVI time series was calculated at eight day intervals as:

WDRVI = (a(pnir) — Prea)/(@(pnir) + Prea) (4)

Where a is a weighting parameter; WDRVI is equal to Normalized Difference Vegetation

Index (NDVI) when a equals 1, and WRDVI equals zero when o equals (pred / pnIR)
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(Gitelson, 2006). Google Earth Engine (https://code.earthengine.google.com) allowed
for the quick processing of a time series of WDRVI values, calculated by Google Earth
Engine from MODIS data, and downloading for each site over a specified range of time;
the range in this case was the respective study dates for each location. The geographic
coordinates used to select the pixels for extraction were obtained through the
AmeriFlux website (Site Info tab). The WDRVI values from the pixel nearest the
geographic center for each field were downloaded and analyzed. Many pixels from the
MODIS products not at the geographic center for each field were found to be mixed due
to the 250m pixel resolution, with some reflectance coming undoubtedly from non-
cultivated areas adjacent to the sites. As an example, US-Br1 inclusion of surrounding
pixels resulted in a saw tooth pattern in the WDRVI calculated LAl response curves,
indicating the inclusion of vegetated areas in which plant material was removed
multiple times throughout the season (mowed or harvested).

Once obtained, WDRVI data were converted to gLAl values. The conversion
factors for maize and soybean used in this study are from Nguy-Robertson and Gitelson
(2015) and were determined from ground samples at the Nebraska sites:

gLAI = (5.06) x (WDRVI Value) + (—0.47) (Maize) (5)

gLAI = (3.68) * (WDRVIValue) + (—0.24) (Soybean) (6)
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gLAl data were interpolated to continuous daily values for the growing season using
Curve Expert 1.4 software (https://www.curveexpert.net/) and a cubic spline interpolation

algorithm.

Flux Data

Flux data are provided by the AmeriFlux Network, a system of sites located
throughout North and South America and supported by the U.S. Department of Energy.
The sites measure carbon, water, and energy fluxes at the field scale using the eddy
covariance technique (http://ameriflux.lbl.gov/about/about-ameriflux/). AmeriFlux
data were used to calculate daily Gross Primary Production (GPP) values which were
then used to both calibrate and validate the model. For field years in which no GPP
values were reported, half-hourly (or hourly) averages of GPP were calculated using
half-hour (or hourly) averages of net ecosystem exchange (NEE, umol m2s?) and
ecosystem respiration (Re, pmol m? s') measurements; NEE was estimated from half-
hour (or hourly) averages of canopy carbon dioxide flux (Fc, umol m2 st). NEE values
were screened by graphing these values as a function of concurrent AmeriFlux
measured half-hour (or hourly) averages of PAR (umol m st) and removing obvious
outliers. For field years where PAR was not available, it was calculated from incoming
solar radiation (Rg, pmol m2 s!) by dividing Rg by 2, as PAR comprises roughly half of Rg
(Weiss and Norman, 1985). Daytime interpolation of NEE and nighttime interpolation of

AmeriFlux measured ecosystem respiration (Re, umol m=2 s!) were then conducted.
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Half-hour averages were converted into half hour fluxes by multiplying the averages by
1800 s (half-hour)?; hourly averages were converted to hourly fluxes by multiplying the
averages by 3600 s h'l. Daily GPP was determined as the sum of daily NEE [half-hourly
NEE fluxes (hourly for Mead sites)] and daily Re [half-hourly Re fluxes (hourly for Mead

sites)]:

GPP = NEE — Re (7)

All units were converted to mg CO; pmol? (by multiplying pmol m2 s by 44 pg CO;
umol? *1000 mg pgt). Note the sign convention is that fluxes towards the surface (i.e.,
GPP) are positive and fluxes away from the surface (i.e., Re) are negative. Daily GPP
values were integrated from hourly average CO2 (mg C m2 s!) to daily units of C (g C m
d?) for all sites. CO2 was converted to C by multiplying GPP by 12 g C mol*/44 g CO2
mol™* (carbon has an atomic mass of 12 while oxygen has an atomic mass of 16). The
fluxes are reported as positive when the direction of the flux is towards the earth’s
surface and are likewise reported as negative when their direction is away from the
earth’s surface. Field year growing season start and end dates were determined using
GPP data; start dates were determined to be days in which GPP values commenced to
be greater than zero and end dates were determined to be days in which GPP values fell

below the zero threshold.
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Light Use Efficiency Model

A simple light use efficiency model is used to estimate GPP (Monteith, 1972).
The model has been adapted by Nguy-Robertson et al. (2015) to incorporate scalars
taken from other GPP models. The four scalar light use efficiency modeling approach of
Nguy-Roberson et al. (2015) hereto referred to as the light use Efficiency GPP Model

(EGM) was used in estimating GPP where:

GPP = 80 X Cscalar X Tscalar X Wscalar X Pscalar X APAR (8)

&o is the daily light use efficiency during clear sky conditions, APAR is the absorbed
photosynthetically active radiation, and the scalars account for impact of diffuse light
(Cscalar), air temperature (Tscalar), Water stress (Wscalar), and phenology (Pscalar). €0 and the
four scalars combined represent the well-known daily light use efficiency term, € of

Monteith (1972):

GPP = €x APAR (9)

The calculations of the scalars in this study follow that of Nguy-Robertson et al. (2015)
but instead of AmeriFlux on-site meteorological and biophysical observations as model
input, gridded Daymet and MODIS derived LAl values were used. A summary is provided
here but the reader is directed to the Nguy-Robertson et al. (2015) paper for details (see

Appendix).

—  Cscalar accounts for the effects of diffuse lighting on photosynthesis (Suyker and

Verma, 2012),
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—  Tscalar accounts for the effects of daytime air temperatures (Raich et al. 1991;
Kalfas et al. 2011),
—  Wsaalar accounts for water stress effects (Wu et al, 2008; Maselli et al. 2009),

— Psaaarincorporates phenology effects (Kalfas et al, 2011; Wang et al, 2012), and
APAR = PARin x (1 - e~kxgLAD) (10)

Where glLAl is the leaf area of the canopy engaged in photosynthesis and k is the

light extinction coefficient.

Cscalar accounts for the effects of diffuse lighting on photosynthesis (Suyker and
Verma, 2012). Plants tend to use diffuse light more efficiently than direct sunlight on
overcast days where lighting is more diffuse than on clear days, penetrating the canopy

more effectively, so that € will increase. Cscalar is calculated as:

PARd
PARiIn

Cscalar = 1 + B X (( ) - 0.17) (11)

The term B is the sensitivity of the daily light use efficiency to diffuse light and PARd is
the diffused PAR. On days in which there is a negligible amount of diffuse light, the
qguotient of terms PARd and PARin is equal to 0.17. The term -0.17 ensures the terms
sum to zero when diffuse light is insignificant (i.e., when the quotient of terms PARd and
PARin is equal to 0.17). PARd is approximated using the approach outlined by Nguy-
Robertson et al. (2015) using a cloudiness coefficient (CC) term which is determined

using PARin and PAR potential:
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PARiIn
PARpot

CC =1-( ) (12)

PARpot refers to the estimated potential amount of incoming photosynthetically
active radiation, accounting for influences such as time of year, latitude, atmospheric
pressure and elevation (according to Weiss and Norman, 1985, with corrections in Nguy-

Robertson et al., 2015).

Tscalar, initially developed by Raich et al. (1991), takes into account temperature
effects on photosynthesis and is calculated using Eq. 8 and the given constants in Nguy-
Robertson et al. (2015). The weather input from Daymet for this variable is the mean
daily temperature, T, calculated as the average of the Daymet minimum and maximum
temperatures. Tmin, Tmax, and Topt, are constants first identified by Kalfas et al. (2011) as

10, 48, and 28 °C respectively:

(T - 10) x (T - 48)

Tscalar = [(T - 10) x (T -48)]—(T - 28)2 (13)

W.calar accounts for water stress effects on photosynthesis and was calculated
based on VPD using Eg. 2 and associated constants in Nguy-Robertson et al. (2015).
Nguy-Robertson et al. (2015) modeled this scalar by synthesizing the approach of Wu et
al. (2008) and Maselli et al. (2009), as water stress can be introduced both through
atmospheric water deficits and soil water deficits. Unlike models in which the scalar
remains constant until a critical threshold for VPD is reached, the EGM utilizes no

threshold for VPD and the scalar was allowed to vary based on the Daymet data.
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0Wscalar is @ term for the curvature parameter for water stress as proposed by
Gilmanov et al. (2013) to account for varying convexity for the relationship between

photosynthesis and water stress:
Wiscatar = exp { — [ (VPD/oWscqiar) 2 13 (14)

Pscalar accounts for leaf phenology, as leaves that are immature do not
photosynthesize as efficiently as mature leaves, and leaves that are senescing do not
have an optimal photosynthetic capacity (Reich et al. 1991; Field and Mooney 1983).
The scalar is calculated using green leaf area index (gLAI), maximum gLAI (gLAlmax), a
constant maximum LAl value that is specific to each crop (as defined in Nguy-Robertson
et al., 2015); oPscalar Which is the curvature parameter for relationship between

photosynthesis and phenology:

Pscalar = €xp { - [ ((gLAImax - gLAI) [/ (0Pscqiar ))2 ] } (15)

Calibration and Validation
Four basic steps were followed in this study:

1) Select field years for model calibration; remaining field years will be used for
validation.

2) Calibrate the EGM by establishing scalars using AmeriFlux cropland sites for
selected years and satellite derived input and gridded weather datasets;

3) Apply the EGM with estimated scalars (from step 2), satellite data and gridded

weather data sets for the field years held for validation;
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4) Evaluate the EGM estimated daily GPP to AmeriFlux observed daily GPP

1. Data Selection;

To run the EGM, several coefficients were calculated from the Daymet and MODIS
derived gLAIl data using an R script (A. Nguy-Robertson, personal communication, 2015).
For statistical purposes, a certain number of field years were chosen randomly to
calibrate the model (i.e., to obtain the EGM scalar coefficients); the remaining field
years were used for “validation.” Field years for calibration were sampled randomly
without replacement using a random number generator in Microsoft Excel. First, each
geographic location (Mead, Bondville, Brooksfield, and Rosemont) was assigned a
number and was chosen at random using the random number generator. From there,
each site at the location (for locations that contain multiple sites) was assigned a
number and was selected at random using the random number generator. Once the
site was selected, approximately 75% of the field years for the site for a particular crop
were randomly selected for calibration, while ensuring that at least one field year for
each crop type was reserved for validation purposes. This process was repeated until
the desired number of calibration and validation field years for each site and crop was

fulfilled (Tables 2 and 3).



Table 2: Ameriflux calibration field years
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Calibration Years

Site

Maize

Soybean

US-Nel (NE - irrigated)

2002-2005, 2007, 2009-2012

US-Ne2 (NE - irrigated)

2003, 2005, 2007, 2009,2013

2002, 2004, 2008

US-Ne3 (NE) 2003, 2005, 2011, 2013 2006, 2008, 2010, 2012
US-Br1l (IA) 2005, 2007, 2009 2006,2008
US-Br3 (IA) 2006, 2010 2007, 2009, 2011
US-Bo1 (IL) 2001, 2005, 2007 2002, 2004
US-Rol (MN) 2005, 2009, 2011 2006, 2010, 2012
Field Years 29 17
Table 3: Ameriflux validation field years

Validation Years
Site Maize Soybean
US-Nel (NE - irrigated) | 2006, 2008, 2013 N/A
US-Ne2 (NE - irrigated) | 2011,2012 2006
US-Ne3 (NE) 2007, 2009 2002, 2004
US-Brl (IA) 2011 2010
US-Br3 (IA) 2008 2005
US-Bo1 (IL) 2003 2006
US-Rol (MN) 2007 2008
Field Years 11 7
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2. Calibrate the EGM by establishing scalars using AmeriFlux cropland sites for
selected years and satellite derived input and gridded weather datasets;
Selected field year flux data, Daymet derived (Tavg, VPD, CC, APAR and Tscalar) and
remotely-derived gLAI were used to derive €o, f and CC (for the Cscalar), Tscalar, OWscalar and
VPD (for the Wscalar), and oPscalar (for the Pscaiar) values. These data were input into an R
script that, through an iterative training process as described in Nguy-Robertson et al.
(2015) (see Appendix), determined separate parameters for irrigated and non-irrigated
maize and soybean crops. The script trained the parameters using a step-by-step
method in which each scalar was estimated one at a time. During the iteration in which
a parameter is calculated, assumptions are made about the other parameters to mimic
optimal field conditions. Once the parameters are calculated the iterations are
repeated using the entire calibration dataset to include the calculated parameters,
AmeriFlux derived GPP, Daymet derived Tavg, VPD, CC, APAR and Tscalar, and remotely
derived glLAl data. Output from the R script for both maize and soybean were €, B,
0Wscalar, and oPscalar values along with the corresponding standard deviation for each.
Additionally, gLAlmax values for both irrigated and rainfed soybean and maize were
calculated in Microsoft Excel from MODIS derived gLAl data. From these outputs,

scalars were calculated through an Excel template that utilized Egs. 8-15.
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3. Apply the EGM with estimated scalars (from step 2), satellite data and gridded
weather data sets to independent data from cropland sites;
The validation data left out from the calibration step for each site along with the

calibrated scalars were used in the EGM to estimate GPP for validation years.

4. Evaluate the estimated daily GPP to AmeriFlux observed daily GPP
The estimated GPP were compared to the observed AmeriFlux determined GPP using

linear regression and the root mean squared error (RMSE) index (Willmott, 1981),:

RMSE=\/N—1 N (M; - 0)° (16)

where M is modeled GPP and O is observed or measured GPP. RMSE was calculated as a
way to quantify the magnitude of the error in the model which could be concealed by
opposing high and low residuals in a simple linear regression where R? is reported.
Additionally, mean normalized bias (MNB) was calculated to provide a unitless measure
of model error to allow for cross-species comparisons between maize and soybean (Yu

et al., http://www.ecd.bnl.gov/steve/pres/metrics.pdf):

MNB =~ ?zl(Mio;ioi) x 100% (17)

Where M is the modeled (EGM) GPP and O is the measured (Ameriflux) value.
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CHAPTER 3 RESULTS AND DISCUSSION

For each site, field years for a particular crop were randomly selected for
calibration and the process repeated; 46 out of the 65 total field years were designated
as calibration field years while 19 out of 65 were designated as validation field years
(resulting in 71% of field years used for calibration and 29% used for validation) (Tables
2 and 3). Crop type, daily GPP (from AmeriFlux), T, VPD, APAR, CC, and Tscalar (derived
from Daymet gridded data using Eqgs. 1, 2, 10, 12, and 13, respectively), and gLAIl
(derived from MODIS data from Egs. 5 and 6) for the calibration field years were then
read in to the R script iterative process along with constants from Nguy-Robertson et al.
(2015) to estimate the parameters &g, 8, 0Wiscaiar, 0Pscaiar, and gLAImax o represent the
selected AmeriFlux sites and crops in the EGM. These parameters, used to drive the
EGM, differed slightly from those reported in Nguy-Robertson et al. (2015) (Table 4). In
using field years from more climatically diverse locations in the calibration process, the
parameters were generalized to best fit conditions across all study locations of the
northern Midwest region (and not just southeastern Nebraska as in the Nguy-Robertson
et al. (2015) study). The parameters €o, 3, Gpscalar and gLAImax differed from those of
Nguy-Robertson et al. (2015) while cwscalar Was the same. The constants k, Tmin, Tmax, and

Topt, Were the same as those used by Nguy-Robertson (2015) study. Data from the
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validation field year datasets (Tables 2 and 3) and parameters derived from the iterative
process (Table 4) along with specified constants were used to calculate daily values of
the scalars, Cscalar, Wscalar, and Pscalar (EQs. 11, 14, and 15) and APAR (Eq. 10) from which

daily GPP values were estimated (Eq. 8).

Estimated daily GPP for maize and soybean for the selected validation field years
were compared to observed AmeriFlux determined daily GPP and indicate a strong
correlation (R? = 0.80) and an overall RMSE of 3.5 g C m2d™ (Fig. 1a). However, the
(MNB) was 30.5%. The RMSE for overall maize field years was 3.7 g C m2d%, the R was
0.82, and the MNB was 17.9% (Fig. 1b) while the RMSE for overall soybean field years
was 3.2 g C m2d! with an R? of 0.64 and a MNB of 53.6% (Fig. 1c). The lower RMSE for
soybeans is attributed to soybeans having approximately 30% lower GPP than maize.
Despite the lower RMSE, the model performed less effectively with soybean as soybean
RMSE is only 14% lower than maize RMSE while soybean GPP was 30% less than maize.
In @ measure of cumulative bias, growing season GPP modeled values agree with
measured growing season GPP values with an RMSE of 126 g C m2y?, an R? of 0.9, and

MNB of 4.5% (Fig. 2).

Two trends are apparent from the comparison graphs for each crop and site.
One is that, for soybean crops, the model tends to overestimate GPP when daily GPP
values are higher and, for both maize and soybean crops, the model tends to

underestimate when GPP values are very low (Figs. 3 and 4). Model underestimation at
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Figure 1: The relationship between AmeriFlux measured and EGM modeled GPP for a) all validation data, b) all maize
validation data, and c) all soybean validation data.
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Figure 2: AmeriFlux measured GPP yearly total vs EGM modeled GPP yearly totals for every validation field year.

low GPP could be due to the insensitivity of the MODIS sensors to low levels of biomass.
The other trend is that the strength of the correlation between measured and modeled
GPP values is stronger with the maize than with the soybean datasets (R? of 0.69 to 0.89
for maize and 0.55 to 0.75 for soybeans). The increased sensitivity to diffuse light of
soybean plants when compared to maize (8 of 0.294 + 0.002 for soy, 0.181 + 0.014 for
maize) combined with the concerns regarding PARin data (discussed below) may
partially explain the poorer estimates. Estimates of soybean gLAI may be a factor as well
since the glLAl algorithm for soybean was developed for the Mead, NE training sites (US-
Ne2 and US-Ne3) and may not adequately estimate gLAl for the other locations that
may have varying planting densities. The Mead sites have lower RMSE and higher

correlation between measured and modeled GPP than the other soybean sites (Table 5).
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Figure 3: Measured AmeriFlux vs modeled EGM GPP for all maize validation years by site.
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Figure 4: Measured AmeriFlux vs modeled EGM GPP for all soybean validation years by site.

Additionally, there were fewer soybean field years (17) than maize field years (29) with
which to train the scalars which may have allowed for more error in the soybean scalars

due to the smaller sample size (Table 2).



Table 4: RMSE values for the comparison of modeled daily GPP values to observed

daily GPP values for each AmeriFlux research site in the study. The top row indicates
the total error for the site while the second and third rows indicate error for maize and
soybean, respectively. The final column totals error overall and by crop type.

Daily GPP RMSE (g C m2 d)
US-Bol |US-Brl |US-Br3 |US-Nel [US-Ne2 |US-Ne3 |US-Rol |All
Total 3.47 3.34 4.29 3.44 3.21 3.14 4.05 3.51
Maize 3.77 3.34 4.45 3.44 3.34 3.53 4.26 3.65
Soybean |3.07 3.34 4.08 N/A 2.85 2.59 3.84 3.20

The agreement is not as strong as that between modeled maize and soybean
GPP reported by Nguy-Robertson et al. (2015) with an overall R? value of 0.91 and an
RMSE of 2.6 g C m2 d'1; the MNB for this study was 1.7%, thus, the MNB of 30.5% for
the current study is of concern. It was expected that error would increase when using
modeled input data as opposed to measured input data specific for the site (as was the
case for Cui et al., 2016, who attained an RMSE of 2.973 g C m2d"! when comparing their
modeled GPP data to in situ derived GPP of mixed land cover in the Heihe River Basin,
China). There are inherent errors and uncertainties in the gridded Daymet data
(Mourtzinis et al., 2016) which are attributed to the weaker agreement between
measured and modeled daily GPP values. In addition, the LAl algorithms used in this
study were developed using the Mead sites (Nguy-Robertson and Gitlson, 2015) and
may not be ideal estimators of the LAl for the other sites as the red band is known to be
insensitive to high biomass, regardless of crop type (Nguy-Robertson and Gitelson,

2015).
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Comparison of Daymet derived values to those measured at the AmeriFlux sites
demonstrated Tave values did not have a data quality issue as did PARin and VPD (Fig. 5).
Tave values (Eq. 1, using Daymet Tmin and Tmax) had an R? value of 0.95, an RMSE of 2.4°C,
and a MNB of 2.98% when compared to AmeriFlux measurements (Fig. 5a) while daily
PARin values had an R? value of 0.48, an RMSE of 30.5 mol*d?, and a MNB of 57.9%
when compared to AmeriFlux measured PARin values (Fig. 5b), and VPD (Eq. 2 using
Daymet vapor pressure) comparison to measured values had an R?value of 0.54, an
RMSE of 0.31 kPa, and a MNB of 98.3% (Fig. 5c).

In their study, Mourtzinis et al. (2016) calculated an R? value of 0.24 for Daymet
incoming shortwave radiation, an R? value of 0.48 for relative humidity (calculated from
vapor pressure), an R? value of 0.94 for Tmin, and an R? value of 0.92 for Tmax When
modeled Daymet data were compared to measured weather data retrieved from
MESONET weather network stations (http://mrcc.isws.illinois.edu/gismaps/mesonets.htm).
Since the daily temperature products from Daymet are derived from interpolated
ground station measur