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The gross primary production (GPP) metric is useful in determining trends in the 

terrestrial carbon cycle.  Models that determine GPP utilizing the light use efficiency 

(LUE) approach in conjunction with biophysical parameters that account for local 

weather conditions and crop specific factors are beneficial in that they combine the 

accuracy of the biophysical model with the versatility of the LUE model.  One such 

model developed using in situ data was adapted to operate with remote sensing derived 

leaf area index (LAI) data and gridded weather datasets.  The model, known as the Light 

Use Efficiency GPP Model (EGM), uses a four scalar approach to account for biophysical 

parameters including temperature, water stress, light quality, and phenology. The 

model was calibrated for four locations (seven fields) in the northern Midwest and was 

driven using remotely sensed LAI data and gridded weather data for these locations.  

Results showed reasonable error estimates (RMSE = 3.5 g C m-2 d-1). However, poor 

gridded weather atmospheric pressure and incoming solar radiation inputs, increased 

climatic variation in the study sites and contributed to higher RMSE that observed when 

the model was applied exclusively to in situ data from the Nebraska sites 

(2.6 g C m- 2 d- 1). Additionally, the application of LAI algorithms calibrated using solely 

Nebraska sites to sites in Iowa, Minnesota, and Illinois without verification of their 
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accuracy potentially lead to increased error.  Despite this, the study showed there is 

good correlation between measured and modeled GPP using this model for the field 

years under study.  As the ultimate objective of research is to develop regional 

estimates of GPP, the decrease in model accuracy is somewhat offset by the model’s 

ability to function with gridded weather datasets and remotely sensed biophysical data.  
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CHAPTER 1 INTRODUCTION 

Gross primary production (GPP) in maize and soybean crops at a landscape level 

is an important measure for quantifying large scale carbon flux or plant productivity.  

GPP is defined as the total amount of organic matter produced due to photosynthesis in 

a defined area over a unit of time (Gitelson et al., 2006).  GPP is a useful metric in 

determining the patterns and dynamics of the terrestrial carbon cycle (Cui et al., 2016), 

and it is essential in the study of ecosystem respiration and biomass accumulation (Beer 

et al., 2010).  The need to quantify the North American carbon sink necessitates precise 

carbon dioxide flux measurements (Suyker and Verma, 2012) and while in situ data 

sources are available for this quantification, they represent field level data collection at 

specific locations.  Therefore, GPP determination at the regional scale can help 

determine large scale patterns and dynamics of the ecological system and help to 

quantify long term carbon trends.  Models have been created in an attempt to derive an 

accurate estimation of GPP at the landscape level with varying degrees of accuracy (e.g., 

Matsushita and Tamura., 2002 [20% error]; Heinsch et al., 2003 [18% error]; Heinsch et 

al., 2006 [20%-30%]; Xiao et al., 2004; Cui et al., 2016 [Root Mean Square Error (RMSE) = 

2.97 g C m-2 d-1]).  These landscape models use respective regional input data to 

generate estimates of GPP at course temporal scales over a range of managed and 

unmanaged ecosystems.    

In estimating GPP on a regional scale, the use of satellite imagery and modeled 

weather data is essential as monetary, personnel, time, and equipment constraints 
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hinder the collection of daily in situ data.  As a result, there is a push to develop new, 

and adapt proven, GPP models to function accurately with satellite and modeled 

weather data as input (Cui et al., 2016), although many of these models also do not 

estimate GPP at a daily temporal resolution.  While the overall accuracy of these 

adjusted models may currently be lower than those that utilize in situ field-level input, 

due in part to the generalization of model parameters to work on heterogeneous 

regions, the spatial and temporal restrictions of satellite data, and the accuracy of 

modeled weather input data, the ability to study large regions may offset the loss of 

accuracy depending upon the scope and objectives of the research being conducted (Cui 

et al., 2016; Matsushita and Tamura., 2002).  The quality of the remotely sensed and 

modeled weather inputs in GPP models is directly tied to the accuracy in estimating GPP 

(Matsushita and Tamura, 2002), therefore it is of equal importance that accurate input 

data are utilized by the researcher. 

In 2015, a light use efficiency model, known as the Light use Efficiency GPP 

Model (EGM), was introduced by Nguy-Robertson et al. (2015).  The model is essentially 

a hybrid of Monteith’s (1972) light use efficiency relationship with elements of eco-

physiological models (Reich et al., 1991; Kalfas et al., 2011; Suyker and Verma, 2012; 

Gilmanov et al., 2013).  Nguy-Robertson et al. (2015) used in situ data inputs including 

destructive leaf area and meteorological measurements.  This model takes into account 

the effects that environmental and canopy factors (light quality, water availability, 

temperature, and phenology) have on photosynthesis in maize and soybean plants.  The 



3 
 

 

EGM uses daily weather inputs and information on photosynthesizing leaf material 

(green leaf area) to estimate plant photosynthesis under varying environmental 

conditions.  Previously developed GPP models use a maximum (constant) light use 

efficiency (Ɛ0) input in modeling GPP which, as environmental conditions change, can be 

downregulated (e.g. Heinsch et al., 2003; Xiao et al., 2004; Li et al., 2012; Cui et al., 

2016).  The EGM uses scalars to account for water stress, daily temperature, amount of 

diffuse light, and phenology, using green leaf area index (gLAI) as a proxy, in such a way 

that instead of using solely a maximum Ɛ0 value, Ɛ0 is used in conjunction with the 

scalars to produce a more descriptive daily light use efficiency (Ɛ).  This variable can 

increase with increased diffuse lighting conditions and decrease with environmental 

stress. For example, increases in diffuse lighting will increase light use efficiency while 

added stressors due to less optimal temperature, water stress, and plant age can 

decrease light use efficiency.  Nguy-Robertson et al. (2015) drove this model using in situ 

mass and energy flux measurements, micrometeorological observations and leaf area 

measurements specific to each individual study site to determine the scalars which drive 

the EGM to simulate daily GPP for three research fields in southeastern Nebraska. The 

model yielded results that were more accurate than achieved with a previous model 

that incorporated diffuse lighting effects alone on GPP (e.g. Suyker and Verma, 2012).  

The EGM of Nguy-Robertson et al. (2015) improved the bias error of the Suyker and 

Verma model (2012) (RMSE of 2.6 g C m-2 d-1 and a Mean Normalized Bias (MNB) of 1.7% 

compared to an RMSE of 3.1 g C m-2 d-1 and an MNB of 12.5%). 
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 As a means toward the goal of daily, regional GPP estimates, the objective of 

this study is to employ the enhanced four-scalar light use efficiency approach of Nguy-

Robertson et al. (2015) to demonstrate its applicability in using input data derived from 

remotely sensed and gridded weather datasets to estimate daily GPP over the entire 

growing season in seven northern Midwest agricultural sites located in Mead, Nebraska, 

Rosemont, Minnesota, Brooksfield, Iowa and Bondville, Illinois.  An analysis of the 

resulting daily GPP estimates was then conducted to determine how well the EGM 

functioned using the adjusted input data and study sites.  
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CHAPTER 2 METHODS 

Locations and Attributes of Study Sites  

Seven Midwestern agricultural sites from the AmeriFlux network were used in 

this study (Table 1). All sites are characterized by a humid continental climate (Dfa 

Koeppen climate classification) with hot humid summers and severe cold winters.  Three 

of the sites are located in southeastern Nebraska (US-Ne1, US-Ne2, and US-Ne3), one in 

Illinois (US-Bo1), two in Iowa (US-Br1 and US-Br3) and one in Minnesota (US-Ro1) (Table 

1).   The Nebraska sites are located at the University of Nebraska’s Agricultural and 

Development Research Center near Mead, NE. US-Ne1 (41.1650°N, 96.4766°W, 361m), 

and US-Ne2 (41.1650°N, 96.4700°W, 362m) are irrigated while US-Ne3 (41.1797°N, 

96.4396°W, 363 m) is rainfed.  The three Nebraska sites are located roughly 40 km 

northeast of Lincoln.  US-Ne1 and US-Ne2 are adjacent to one another while US-Ne3 is 

located approximately 3 km to the northeast of US-Ne1 and US-Ne2.  All three sites have 

been under no-till management save for an initial disking conducted in 2001.  Since 

2005 a conservation-plow tillage has been in effect at US-Ne1 (only).  US-Ne1 is planted 

with maize every year with no rotation between crop types.  US-Ne2 and US-Ne3 both 

have a maize-soybean rotation (maize planted on odd numbered years and soybean 

planted on even numbered years) except in 2010 and 2012 when US-Ne2 was planted 

with maize.  The mean annual temperature at the three sites is approximately 10°C and 

the mean annual precipitation for the three sites is approximately 790mm.  
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US-Bo1 (40.0062°N, 88.2904°W, 219m) is located approximately seven miles 

south of Champaign, Illinois.  The site is not irrigated and is under no-till management 

administered by NOAA.  US-Bo1 alternates annually between maize and soybean crops, 

with maize cultivation on odd years and soybean cultivation on even years.  US-Bo1 has 

a mean annual temperature of 11°C and a mean annual precipitation of 991mm. 

The two Iowa Brooksfield sites, US-Br1 (41.9749°N, 93.6906°W, 313m) and US-

Br3 (41.9747°N, 93.6935°W, 313m), are located directly adjacent to one another 

approximately five miles southwest of Ames, Iowa.  Neither field is irrigated while they 

are both under a tillage management system overseen by the USDA.  Both fields at the 

site are under an annual maize-soybean rotation; US-Br1 is cultivated with maize in odd 

years and soybean in even numbered years, while US-Br3 is cultivated with soybean in 

odd numbered years and maize on even numbered years.  The mean annual 

temperature at the two fields is approximately 9°C and the mean annual precipitation is 

approximately 845mm. 

The Minnesota Rosemont site, US-Ro1 (44.7143°N, 93.0898°W; 290 m), is 

located approximately 24 km south of Saint Paul, Minnesota.  This field is not irrigated 

but is under chisel plow tillage management in the fall succeeding maize harvest and in 

the spring following soybean harvest in the fall.  The US-Ro1 is managed jointly by the 

University of Minnesota and the USDA.  Crop type is alternated annually between maize 

and soybean, with maize being planted on odd numbered years and soybeans being 
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planted on even numbered years.  The mean annual temperature is 6°C and the mean 

annual precipitation is 879mm.  

Table 1: Ameriflux study sites with crop rotations and management status 

Location Site Lat., Long. Mgmt. Maize crop Soybean crop 

Mead, NE US-Ne1 41.1650°N, 
96.4766°W, 
361m 

Irrigated 2002-2013 -- 

US-Ne2 41.1650°N, 
96.4700°W, 
362m 

Irrigated 2003-2013 
Odd Years;  
2010, 2012 

2002-2008 
Even years 

US-Ne3 41.1797°N, 
96.4396°W, 
363 m 

Rainfed 2003-2013 
Odd Years 

2002-2012 
Even years 

Brooksfield, 
IA 
  

US-Br1 41.9749°N, 
93.6906°W, 
313m 

Rainfed 2005-2011 
Odd Years 

2006-2010 
Even Years 

US-Br3 41.9747°N, 
93.6935°W, 
313m 

Rainfed 2006-2010 
Even Years 
 

2005-2011 
Odd years 
 

Bondville, 
IL 

US-Bo1 40.0062°N, 
88.2904°W, 
219m 

Rainfed 2001-2007 
Odd Years 
 

2002-2006 
Even years 

Rosemont, 
MN 

US-Ro1 44.7143°N, 
93.0898°W; 
290 m 

Rainfed 2005-2011 
Odd Years 
 

2006-2012 
Even years 
  

 

 
Input Data 

Daymet Data 

Weather data were obtained from the Daymet website 

(https://daymet.ornl.gov), obtained and distributed by the Oak Ridge National 

Laboratory Distributed Active Archive Center (ORNL DAAC), one of NASA’s data 
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distribution and archive centers.  The data are provided in a 1km x 1km grid of daily 

weather estimates and are generated using a network of ground observation sites to 

provide input data which is then processed using the Daymet model algorithm 

(https://daymet.ornl.gov/overview.html).  The algorithm processes the input data, 

subsetting the data into 2o x 2o tiles which are then processed separately.  The data are 

interpolated by an estimation of station density using a Gaussian filter; the search radius 

of stations changes depending on the concentration level of stations with more dense 

areas having a smaller search radius than less dense areas.  The model then produces 

output data [minimum temperature (Tmin, oC), maximum temperature (Tmax, oC), 

incoming shortwave radiation (Rg, J m-2 d-1), vapor pressure (P, kPa), snow-water 

equivalent (kg m2), precipitation (mm), and day length (s)] in continuous raster form for 

the entire continental United States.  Data for the respective years of the selected 

AmeriFlux study sites (referred to as “field years”) were extracted for the various sites 

under study by using the “Single Pixel Extraction” tool 

(https://daymet.ornl.gov/dataaccess.html#SinglePixel) with specified latitude, 

longitude, and date range.  Data were then downloaded in CSV format in which average 

daily temperature, vapor pressure deficit and incoming PAR were calculated in 

Microsoft Excel.  Average daily temperature (T) was calculated as: 

𝑇 =
𝑇𝑚𝑖𝑛+𝑇𝑚𝑎𝑥

2
 (1) 

Vapor pressure deficit (VPD) was calculated utilizing vapor pressure, P, as: 
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𝑉𝑃𝐷 =  
0.61078 ∙𝑒(17.269)(𝑇)

𝑇+237.8
− 𝑃 (2) 

Incoming PAR (µmol m-2 d-1) was calculated from incoming shortwave radiation (Rg) as: 

𝑃𝐴𝑅𝑖𝑛 = 𝑅𝑔 ∙ 2.07 (3) 

The constant 2.07 is computed as the product of 0.45 [since PAR is 45% of total 

shortwave at the top of the atmosphere (Rg, J m-2d-1) (Weiss and Norman, 1985)] and 

4.6 [an average 4.6  µmol/Joules over the PAR range] and thus has units of µmol/J.

  

MODIS Data 

Surface reflectance data were obtained from MODIS products MOD09Q1 and 

MYD09Q1 (Terra and Aqua, respectively) via Google Earth Engine from which the Wide 

Dynamic Range Vegetation Index (WDRVI) values were calculated; green leaf area index 

(gLAI) values were determined from the WDRVI time series.  The MODIS products are 

each eight day composite data of surface reflectance (ρ), from MODIS band 1 in the red 

region (620-670nm, ρred) and MODIS band 2 in the near infra-red region (841-876nm, 

ρNIR) at 250m spatial resolution.  Both products provide the best observation per pixel 

over an eight day period.  A WDRVI time series was calculated at eight day intervals as: 

𝑊𝐷𝑅𝑉𝐼 =  (𝛼(𝜌𝑁𝐼𝑅) − 𝜌𝑟𝑒𝑑)/(𝛼(𝜌𝑁𝐼𝑅) + 𝜌𝑟𝑒𝑑) (4) 

Where α is a weighting parameter; WDRVI is equal to Normalized Difference Vegetation 

Index (NDVI) when α equals 1, and WRDVI equals zero when α equals (ρred / ρNIR) 
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(Gitelson, 2006). Google Earth Engine (https://code.earthengine.google.com) allowed 

for the quick processing of a time series of WDRVI values, calculated by Google Earth 

Engine from MODIS data, and downloading for each site over a specified range of time; 

the range in this case was the respective study dates for each location.  The geographic 

coordinates used to select the pixels for extraction were obtained through the 

AmeriFlux website (Site Info tab).  The WDRVI values from the pixel nearest the 

geographic center for each field were downloaded and analyzed. Many pixels from the 

MODIS products not at the geographic center for each field were found to be mixed due 

to the 250m pixel resolution, with some reflectance coming undoubtedly from non-

cultivated areas adjacent to the sites.  As an example, US-Br1 inclusion of surrounding 

pixels resulted in a saw tooth pattern in the WDRVI calculated LAI response curves, 

indicating the inclusion of vegetated areas in which plant material was removed 

multiple times throughout the season (mowed or harvested).  

 Once obtained, WDRVI data were converted to gLAI values.  The conversion 

factors for maize and soybean used in this study are from Nguy-Robertson and Gitelson 

(2015) and were determined from ground samples at the Nebraska sites: 

𝑔𝐿𝐴𝐼 =  (5.06)  ∗  (𝑊𝐷𝑅𝑉𝐼 𝑉𝑎𝑙𝑢𝑒)  +  (−0.47)  (𝑀𝑎𝑖𝑧𝑒)  (5) 

𝑔𝐿𝐴𝐼 =  (3.68)  ∗  (𝑊𝐷𝑅𝑉𝐼 𝑉𝑎𝑙𝑢𝑒)  +  (−0.24)   (𝑆𝑜𝑦𝑏𝑒𝑎𝑛) (6) 
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gLAI data were interpolated to continuous daily values for the growing season using 

Curve Expert 1.4 software (https://www.curveexpert.net/) and a cubic spline interpolation 

algorithm. 

Flux Data 

Flux data are provided by the AmeriFlux Network, a system of sites located 

throughout North and South America and supported by the U.S. Department of Energy.  

The sites measure carbon, water, and energy fluxes at the field scale using the eddy 

covariance technique (http://ameriflux.lbl.gov/about/about-ameriflux/).  AmeriFlux 

data were used to calculate daily Gross Primary Production (GPP) values which were 

then used to both calibrate and validate the model.  For field years in which no GPP 

values were reported, half-hourly (or hourly) averages of GPP were calculated using 

half-hour (or hourly) averages of net ecosystem exchange (NEE, µmol m-2 s-1) and 

ecosystem respiration (Re, µmol m-2 s-1) measurements; NEE was estimated from half-

hour (or hourly) averages of canopy carbon dioxide flux (Fc, µmol m-2 s-1).  NEE values 

were screened by graphing these values as a function of concurrent AmeriFlux 

measured half-hour (or hourly) averages of PAR (µmol m-2 s-1) and removing obvious 

outliers.  For field years where PAR was not available, it was calculated from incoming 

solar radiation (Rg, µmol m-2 s-1) by dividing Rg by 2, as PAR comprises roughly half of Rg 

(Weiss and Norman, 1985).  Daytime interpolation of NEE and nighttime interpolation of 

AmeriFlux measured ecosystem respiration (Re, µmol m-2 s-1) were then conducted.  
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Half-hour averages were converted into half hour fluxes by multiplying the averages by 

1800 s (half-hour)-1; hourly averages were converted to hourly fluxes by multiplying the 

averages by 3600 s h-1. Daily GPP was determined as the sum of daily NEE [half-hourly 

NEE fluxes (hourly for Mead sites)] and daily Re [half-hourly Re fluxes (hourly for Mead 

sites)]: 

𝐺𝑃𝑃 = 𝑁𝐸𝐸 − 𝑅𝑒 (7) 

All units were converted to mg CO2 µmol-1 (by multiplying µmol m-2 s-1 by 44 µg CO2 

µmol-1 *1000 mg µg-1). Note the sign convention is that fluxes towards the surface (i.e., 

GPP) are positive and fluxes away from the surface (i.e., Re) are negative.  Daily GPP 

values were integrated from hourly average CO2 (mg C m-2 s-1) to daily units of C (g C m-2 

d-1) for all sites.  CO2 was converted to C by multiplying GPP by 12 g C mol-1/44 g CO2 

mol-1 (carbon has an atomic mass of 12 while oxygen has an atomic mass of 16).  The 

fluxes are reported as positive when the direction of the flux is towards the earth’s 

surface and are likewise reported as negative when their direction is away from the 

earth’s surface.  Field year growing season start and end dates were determined using 

GPP data; start dates were determined to be days in which GPP values commenced to 

be greater than zero and end dates were determined to be days in which GPP values fell 

below the zero threshold. 
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Light Use Efficiency Model 

A simple light use efficiency model is used to estimate GPP (Monteith, 1972).  

The model has been adapted by Nguy-Robertson et al. (2015) to incorporate scalars 

taken from other GPP models.  The four scalar light use efficiency modeling approach of 

Nguy-Roberson et al. (2015) hereto referred to as the light use Efficiency GPP Model 

(EGM) was used in estimating GPP where: 

𝐺𝑃𝑃 =  Ɛ0  × 𝐶𝑠𝑐𝑎𝑙𝑎𝑟   ×  𝑇𝑠𝑐𝑎𝑙𝑎𝑟 × 𝑊𝑠𝑐𝑎𝑙𝑎𝑟  ×  𝑃𝑠𝑐𝑎𝑙𝑎𝑟  ×  𝐴𝑃𝐴𝑅     (8) 

Ɛ0 is the daily light use efficiency during clear sky conditions, APAR is the absorbed 

photosynthetically active radiation, and the scalars account for impact of diffuse light 

(Cscalar), air temperature (Tscalar), water stress (Wscalar), and phenology (Pscalar).  Ɛ0 and the 

four scalars combined represent the well-known daily light use efficiency term, Ɛ of 

Monteith (1972): 

𝐺𝑃𝑃 =  Ɛ 𝑥 𝐴𝑃𝐴𝑅  (9) 

The calculations of the scalars in this study follow that of Nguy-Robertson et al. (2015) 

but instead of AmeriFlux on-site meteorological and biophysical observations as model 

input, gridded Daymet and MODIS derived LAI values were used. A summary is provided 

here but the reader is directed to the Nguy-Robertson et al. (2015) paper for details (see 

Appendix). 

 Cscalar accounts for the effects of diffuse lighting on photosynthesis (Suyker and 

Verma, 2012), 
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 Tscalar accounts for the effects of daytime air temperatures (Raich et al. 1991; 

Kalfas et al. 2011), 

 Wscalar accounts for water stress effects (Wu et al, 2008; Maselli et al. 2009), 

 Pscalar incorporates phenology effects (Kalfas et al, 2011; Wang et al, 2012), and 

  𝐴𝑃𝐴𝑅 =  𝑃𝐴𝑅𝑖𝑛 𝑥 (1 – 𝑒−𝑘 × 𝑔𝐿𝐴𝐼) (10) 

Where gLAI is the leaf area of the canopy engaged in photosynthesis and k is the 

light extinction coefficient. 

Cscalar accounts for the effects of diffuse lighting on photosynthesis (Suyker and 

Verma, 2012).  Plants tend to use diffuse light more efficiently than direct sunlight on 

overcast days where lighting is more diffuse than on clear days, penetrating the canopy 

more effectively, so that Ɛ will increase. Cscalar is calculated as: 

𝐶𝑠𝑐𝑎𝑙𝑎𝑟 =  1 +  𝛽 ×  ((
𝑃𝐴𝑅𝑑

𝑃𝐴𝑅𝑖𝑛
) –  0.17) (11) 

The term β is the sensitivity of the daily light use efficiency to diffuse light and PARd is 

the diffused PAR.  On days in which there is a negligible amount of diffuse light, the 

quotient of terms PARd and PARin is equal to 0.17.  The term -0.17 ensures the terms 

sum to zero when diffuse light is insignificant (i.e., when the quotient of terms PARd and 

PARin is equal to 0.17).  PARd is approximated using the approach outlined by Nguy-

Robertson et al. (2015) using a cloudiness coefficient (CC) term which is determined 

using PARin and PAR potential: 
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𝐶𝐶 =  1 – (
𝑃𝐴𝑅𝑖𝑛  

𝑃𝐴𝑅𝑝𝑜𝑡
) (12) 

PARpot refers to the estimated potential amount of incoming photosynthetically 

active radiation, accounting for influences such as time of year, latitude, atmospheric 

pressure and elevation (according to Weiss and Norman, 1985, with corrections in Nguy-

Robertson et al., 2015).   

Tscalar, initially developed by Raich et al. (1991), takes into account temperature 

effects on photosynthesis and is calculated using Eq. 8 and the given constants in Nguy-

Robertson et al. (2015).  The weather input from Daymet for this variable is the mean 

daily temperature, T, calculated as the average of the Daymet minimum and maximum 

temperatures.  Tmin, Tmax, and Topt, are constants first identified by Kalfas et al. (2011) as 

10, 48, and 28 oC respectively: 

𝑇𝑠𝑐𝑎𝑙𝑎𝑟  =
 (𝑇 – 10) × (𝑇 – 48)  

[(𝑇 – 10) × (𝑇 –48)]−(𝑇 – 28)2 (13) 

 

Wscalar accounts for water stress effects on photosynthesis and was calculated 

based on VPD using Eq. 2 and associated constants in Nguy-Robertson et al. (2015).  

Nguy-Robertson et al. (2015) modeled this scalar by synthesizing the approach of Wu et 

al. (2008) and Maselli et al. (2009), as water stress can be introduced both through 

atmospheric water deficits and soil water deficits.  Unlike models in which the scalar 

remains constant until a critical threshold for VPD is reached, the EGM utilizes no 

threshold for VPD and the scalar was allowed to vary based on the Daymet data. 
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σWscalar is a term for the curvature parameter for water stress as proposed by 

Gilmanov et al. (2013) to account for varying convexity for the relationship between 

photosynthesis and water stress: 

𝑊𝑠𝑐𝑎𝑙𝑎𝑟  =  𝑒𝑥𝑝  { − [ ( 𝑉𝑃𝐷/𝜎𝑊𝑠𝑐𝑎𝑙𝑎𝑟) 2 ] } (14) 

 

Pscalar accounts for leaf phenology, as leaves that are immature do not 

photosynthesize as efficiently as mature leaves, and leaves that are senescing do not 

have an optimal photosynthetic capacity (Reich et al. 1991; Field and Mooney 1983).  

The scalar is calculated using green leaf area index (gLAI), maximum gLAI (gLAImax), a 

constant maximum LAI value that is specific to each crop (as defined in Nguy-Robertson 

et al., 2015); σPscalar which is the curvature parameter for relationship between 

photosynthesis and phenology: 

𝑃𝑠𝑐𝑎𝑙𝑎𝑟  =  𝑒𝑥𝑝 { − [ ((𝑔𝐿𝐴𝐼𝑚𝑎𝑥 –  𝑔𝐿𝐴𝐼) / ( 𝜎𝑃𝑠𝑐𝑎𝑙𝑎𝑟  ))2 ] }   (15) 

 

Calibration and Validation 

Four basic steps were followed in this study: 

1) Select field years for model calibration; remaining field years will be used for 

validation. 

2) Calibrate the EGM by establishing scalars using AmeriFlux cropland sites for 

selected years and satellite derived input and gridded weather datasets; 

3) Apply the EGM with estimated scalars (from step 2), satellite data and gridded 

weather data sets for the field years held for validation;  
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4) Evaluate the EGM estimated daily GPP to AmeriFlux observed daily GPP 

1. Data Selection; 

To run the EGM, several coefficients were calculated from the Daymet and MODIS 

derived gLAI data using an R script (A. Nguy-Robertson, personal communication, 2015).  

For statistical purposes, a certain number of field years were chosen randomly to 

calibrate the model (i.e., to obtain the EGM scalar coefficients); the remaining field 

years were used for “validation.”  Field years for calibration were sampled randomly 

without replacement using a random number generator in Microsoft Excel.  First, each 

geographic location (Mead, Bondville, Brooksfield, and Rosemont) was assigned a 

number and was chosen at random using the random number generator.  From there, 

each site at the location (for locations that contain multiple sites) was assigned a 

number and was selected at random using the random number generator.  Once the 

site was selected, approximately 75% of the field years for the site for a particular crop 

were randomly selected for calibration, while ensuring that at least one field year for 

each crop type was reserved for validation purposes.  This process was repeated until 

the desired number of calibration and validation field years for each site and crop was 

fulfilled (Tables 2 and 3).   
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Table 2: Ameriflux calibration field years 

Calibration Years 

Site Maize Soybean 

US-Ne1 (NE - irrigated) 2002-2005, 2007, 2009-2012 -- 

US-Ne2 (NE - irrigated) 2003, 2005, 2007, 2009,2013 2002, 2004, 2008 

US-Ne3 (NE) 2003, 2005, 2011, 2013 2006, 2008, 2010, 2012 

US-Br1 (IA) 2005, 2007, 2009 2006,2008 

US-Br3 (IA) 2006, 2010 2007, 2009, 2011 

US-Bo1 (IL) 2001, 2005, 2007 2002, 2004 

US-Ro1 (MN) 2005, 2009, 2011 2006, 2010, 2012 

Field Years 29 17 

 
 

 

Table 3: Ameriflux validation field years 

Validation Years 

Site Maize Soybean 

US-Ne1 (NE - irrigated) 2006, 2008, 2013 N/A 

US-Ne2 (NE - irrigated) 2011,2012 2006 

US-Ne3 (NE) 2007, 2009 2002, 2004 

US-Br1 (IA) 2011 2010 

US-Br3 (IA) 2008 2005 

US-Bo1 (IL) 2003 2006 

US-Ro1 (MN) 2007 2008 

Field Years 11 7 
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2. Calibrate the EGM by establishing scalars using AmeriFlux cropland sites for 

selected years and satellite derived input and gridded weather datasets; 

Selected field year flux data, Daymet derived (Tavg, VPD, CC, APAR and Tscalar) and 

remotely-derived gLAI were used to derive Ɛ0, β and CC (for the Cscalar), Tscalar, σWscalar and 

VPD (for the Wscalar), and σPscalar (for the Pscalar) values. These data were input into an R 

script that, through an iterative training process as described in Nguy-Robertson et al. 

(2015) (see Appendix), determined separate parameters for irrigated and non-irrigated 

maize and soybean crops.  The script trained the parameters using a step-by-step 

method in which each scalar was estimated one at a time.  During the iteration in which 

a parameter is calculated, assumptions are made about the other parameters to mimic 

optimal field conditions.  Once the parameters are calculated the iterations are 

repeated using the entire calibration dataset to include the calculated parameters, 

AmeriFlux derived GPP, Daymet derived Tavg, VPD, CC, APAR and Tscalar, and remotely 

derived gLAI data.  Output from the R script for both maize and soybean were Ɛ0, β, 

σWscalar, and σPscalar values along with the corresponding standard deviation for each.  

Additionally, gLAImax values for both irrigated and rainfed soybean and maize were 

calculated in Microsoft Excel from MODIS derived gLAI data.  From these outputs, 

scalars were calculated through an Excel template that utilized Eqs.  8-15.  
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3. Apply the EGM with estimated scalars (from step 2), satellite data and gridded 

weather data sets to independent data from cropland sites;  

The validation data left out from the calibration step for each site along with the 

calibrated scalars were used in the EGM to estimate GPP for validation years.  

4. Evaluate the estimated daily GPP to AmeriFlux observed daily GPP 

The estimated GPP were compared to the observed AmeriFlux determined GPP using 

linear regression and the root mean squared error (RMSE) index (Willmott, 1981),:   

𝑅𝑀𝑆𝐸 = √𝑁−1 ∑ (𝑀𝑖 − 𝑂𝑖)
𝑁
𝑖=1

2
  (16) 

where M is modeled GPP and O is observed or measured GPP. RMSE was calculated as a 

way to quantify the magnitude of the error in the model which could be concealed by 

opposing high and low residuals in a simple linear regression where R2 is reported.  

Additionally, mean normalized bias (MNB) was calculated to provide a unitless measure 

of model error to allow for cross-species comparisons between maize and soybean (Yu 

et al., http://www.ecd.bnl.gov/steve/pres/metrics.pdf): 

𝑀𝑁𝐵 =
1

𝑁
 ∑ (

𝑀𝑖−𝑂𝑖

𝑂𝑖

𝑁
𝑖=1 ) 𝑥 100% (17) 

Where M is the modeled (EGM) GPP and O is the measured (Ameriflux) value.  
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CHAPTER 3 RESULTS AND DISCUSSION 

 For each site, field years for a particular crop were randomly selected for 

calibration and the process repeated; 46 out of the 65 total field years were designated 

as calibration field years while 19 out of 65 were designated as validation field years 

(resulting in 71% of field years used for calibration and 29% used for validation) (Tables 

2 and 3).  Crop type, daily GPP (from AmeriFlux), T, VPD, APAR, CC, and Tscalar (derived 

from Daymet gridded data using Eqs. 1, 2, 10, 12, and 13, respectively), and gLAI 

(derived from MODIS data from Eqs. 5 and 6) for the calibration field years were then 

read in to the R script iterative process along with constants from Nguy-Robertson et al. 

(2015) to estimate the parameters Ɛ0, β, σWscalar, σPscalar, and gLAImax  to represent the 

selected AmeriFlux sites and crops in the EGM.  These parameters, used to drive the 

EGM, differed slightly from those reported in Nguy-Robertson et al. (2015) (Table 4).  In 

using field years from more climatically diverse locations in the calibration process, the 

parameters were generalized to best fit conditions across all study locations of the 

northern Midwest region (and not just southeastern Nebraska as in the Nguy-Robertson 

et al. (2015) study).  The parameters o, , Pscalar and gLAImax differed from those of 

Nguy-Robertson et al. (2015) while Wscalar was the same. The constants k, Tmin, Tmax, and 

Topt, were the same as those used by Nguy-Robertson (2015) study.  Data from the   
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validation field year datasets (Tables 2 and 3) and parameters derived from the iterative 

process (Table 4) along with specified constants were used to calculate daily values of 

the scalars, Cscalar, Wscalar, and Pscalar (Eqs. 11, 14, and 15) and APAR (Eq. 10) from which 

daily GPP values were estimated (Eq. 8). 

Estimated daily GPP for maize and soybean for the selected validation field years 

were compared to observed AmeriFlux determined daily GPP and indicate a strong 

correlation (R2 = 0.80) and an overall RMSE of 3.5 g C m-2d-1 (Fig. 1a).   However, the 

(MNB) was 30.5%. The RMSE for overall maize field years was 3.7 g C m-2d-1, the R2 was 

0.82, and the MNB was 17.9% (Fig. 1b) while the RMSE for overall soybean field years 

was 3.2 g C m-2d-1 with an R2 of 0.64 and a MNB of 53.6% (Fig. 1c).  The lower RMSE for 

soybeans is attributed to soybeans having approximately 30% lower GPP than maize. 

Despite the lower RMSE, the model performed less effectively with soybean as soybean 

RMSE is only 14% lower than maize RMSE while soybean GPP was 30% less than maize.  

In a measure of cumulative bias, growing season GPP modeled values agree with 

measured growing season GPP values with an RMSE of 126 g C m-2 y-1, an R2 of 0.9, and 

MNB of 4.5% (Fig. 2).  

Two trends are apparent from the comparison graphs for each crop and site.  

One is that, for soybean crops, the model tends to overestimate GPP when daily GPP 

values are higher and, for both maize and soybean crops, the model tends to 

underestimate when GPP values are very low (Figs. 3 and 4).  Model underestimation at  
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a) 

 

b) 

 

c) 

 

Figure 1: The relationship between AmeriFlux measured and EGM modeled GPP for a) all validation data, b) all maize 
validation data, and c) all soybean validation data. 
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Figure 2: AmeriFlux measured GPP yearly total vs EGM modeled GPP yearly totals for every validation field year. 

low GPP could be due to the insensitivity of the MODIS sensors to low levels of biomass. 

The other trend is that the strength of the correlation between measured and modeled 

GPP values is stronger with the maize than with the soybean datasets (R2 of 0.69 to 0.89 

for maize and 0.55 to 0.75 for soybeans).  The increased sensitivity to diffuse light of 

soybean plants when compared to maize (β of 0.294 ± 0.002 for soy, 0.181 ± 0.014 for 

maize) combined with the concerns regarding PARin data (discussed below) may 

partially explain the poorer estimates. Estimates of soybean gLAI may be a factor as well 

since the gLAI algorithm for soybean was developed for the Mead, NE training sites (US-

Ne2 and US-Ne3) and may not adequately estimate gLAI for the other locations that 

may have varying planting densities. The Mead sites have lower RMSE and higher 

correlation between measured and modeled GPP than the other soybean sites (Table 5).   
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a) 

 

b) 

 

c) 

 

d) 

 
e) 

 

f) 

 

g) 

 

  

 

Figure 3: Measured AmeriFlux vs modeled EGM GPP for all maize validation years by site. 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

 

 

Figure 4: Measured AmeriFlux vs modeled EGM GPP for all soybean validation years by site. 

Additionally, there were fewer soybean field years (17) than maize field years (29) with 

which to train the scalars which may have allowed for more error in the soybean scalars 

due to the smaller sample size (Table 2). 
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The agreement is not as strong as that between modeled maize and soybean 

GPP reported by Nguy-Robertson et al. (2015) with an overall R2 value of 0.91 and an 

RMSE of 2.6 g C m-2 d-1; the MNB for this study was 1.7%, thus, the MNB of 30.5% for 

the current study is of concern.   It was expected that error would increase when using 

modeled input data as opposed to measured input data specific for the site (as was the 

case for Cui et al., 2016, who attained an RMSE of 2.973 g C m-2d-1 when comparing their 

modeled GPP data to in situ derived GPP of mixed land cover in the Heihe River Basin, 

China). There are inherent errors and uncertainties in the gridded Daymet data 

(Mourtzinis et al., 2016) which are attributed to the weaker agreement between 

measured and modeled daily GPP values.  In addition, the LAI algorithms used in this 

study were developed using the Mead sites (Nguy-Robertson and Gitlson, 2015) and 

may not be ideal estimators of the LAI for the other sites as the red band is known to be 

insensitive to high biomass, regardless of crop type (Nguy-Robertson and Gitelson, 

2015).   

Table 4: RMSE values for the comparison of modeled daily GPP values to observed 
daily GPP values for each AmeriFlux research site in the study. The top row indicates 
the total error for the site while the second and third rows indicate error for maize and 
soybean, respectively. The final column totals error overall and by crop type. 

 Daily GPP RMSE (g C m-2 d-1)  
US-Bo1 US-Br1 US-Br3 US-Ne1 US-Ne2 US-Ne3 US-Ro1 All 

Total 3.47 3.34 4.29 3.44 3.21 3.14 4.05 3.51 

Maize 3.77 3.34 4.45 3.44 3.34 3.53 4.26 3.65 

Soybean 3.07 3.34 4.08 N/A 2.85 2.59 3.84 3.20 
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Comparison of Daymet derived values to those measured at the AmeriFlux sites 

demonstrated Tave values did not have a data quality issue as did PARin and VPD (Fig. 5). 

Tave values (Eq. 1, using Daymet Tmin and Tmax) had an R2 value of 0.95, an RMSE of 2.4°C, 

and a MNB of 2.98% when compared to AmeriFlux measurements (Fig. 5a) while daily 

PARin values had an R2 value of 0.48, an RMSE of 30.5 mol-1d-1, and a MNB of 57.9% 

when compared to AmeriFlux measured PARin values (Fig. 5b), and VPD (Eq. 2 using 

Daymet vapor pressure) comparison to measured values had an R2 value of 0.54, an 

RMSE of 0.31 kPa, and a MNB of 98.3% (Fig. 5c).  

In their study, Mourtzinis et al. (2016) calculated an R2 value of 0.24 for Daymet 

incoming shortwave radiation, an R2 value of 0.48 for relative humidity (calculated from 

vapor pressure), an R2 value of 0.94 for Tmin, and an R2 value of 0.92 for Tmax when 

modeled Daymet data were compared to measured weather data retrieved from 

MESONET weather network stations (http://mrcc.isws.illinois.edu/gismaps/mesonets.htm). 

Since the daily temperature products from Daymet are derived from interpolated 

ground station measurements, it is not surprising to find a strong correlation between 

their values and the values obtained from the AmeriFlux network.  Mourtzinis et al. 

(2016) also conclude good levels of accuracy in modeled Daymet minimum and 

maximum temperature values. Since vapor pressure and incoming shortwave are 

modeled, however, these products have a much weaker correlation to the measured 

AmeriFlux data (Fig. 5).   
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 a) 

 

 b) 

 

 c) 

 

Figure 5: AmeriFlux measured values as functions of estimated Dayment daily values for: a) 
average daily temperature, b) PARin and c) VPD.  
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The Daymet model calculates incoming shortwave radiation, Rg, (from which 

PARin is estimated) using sun-slope geometry based on time of year and location on 

Earth (https://daymet.ornl.gov/overview.html).  The model does not take into account 

the many local weather factors and local aerosol variability that can affect the amount 

of shortwave radiation that reaches the ground, therefore on days in which weather 

conditions hinder the penetration of incoming shortwave radiation the model will 

overestimate the product.  Mourtzinis et al. (2016) attributed the model to poor 

estimates of Rg. Additionally, studies conducted using other sources of modeled 

incoming shortwave have found similar trends in overestimation of the data (e.g. Liu 

1997; Matsushita and Tamura 2002); in the Matsushita and Tamura (2002) study, the 

data were corrected using a reduction coefficient of 0.63.  Likewise, in the Liu (1997) 

study, incoming shortwave radiation was corrected using a reduction coefficient of 0.62.  

The Daymet model estimates vapor pressure (which is used to calculate VPD for this 

study) using an algorithm that produces vapor pressure values as a function of minimum 

daily temperature and average daily daylight temperature.  Mourtzinis et al. (2016) 

likewise attributed the method the Daymet model uses to the poor estimates, stating 

that there are uncertainties in the way vapor pressure is estimated from Tmin and Tmax.  

The trend in this study for an overestimation of PARin (Fig. 5b) would result in a 

trend for a decrease in the Cscalar value and should be self-corrected in the calibration. 

This suggests an unsystematic bias in the PARin (and thus APAR) and brings to question 
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the Daymet models used to calculate shortwave radiation (which PARin is estimated 

from). An overestimation of PARin reduces the model’s ability to properly account for 

the contributions of diffuse light to GPP and, thus, would inaccurately lower the 

modeled GPP.  The overestimation of VPD by Daymet likely is due to the air mass over 

agricultural fields, especially irrigated agricultural fields, having lower VPD than what is 

reported within the grid the fields are located. The overestimation of VPD decreases the 

Wscalar value which causes the model to not always represent water stress conditions at 

the sites.  Additionally, the calibration is influenced by the two irrigated Mead sites (US-

Ne1 and US-Ne2) which may have biased the σWscalar parameter to better reflect 

irrigated crop management practices while the other five fields are under rainfed crop 

management.  A direct comparison of Wscalar values calculated from Daymet data against 

Wscalar values calculated from AmeriFlux data at the three Nebraska sites shows an R2 of 

0.51, indicating that the poor quality VPD data from Daymet likely had an effect on the 

scalar and minimized the benefit of including such a scalar (Fig 6).  Although the scalars 

may not have been as effective as they could have been if more accurate input data 

were available, overall the model performed better with the scalars derived in this study 

using the Daymet and MODIS data than it did when run as strictly a LUE model. For 

comparison purposes the EGM was run with all scalars set to a value of 1 so as not to 

have any effect on the GPP calculation.   GPP calculated with the scalars set to 1 had an 

RMSE of 5.35 g C m-2 d-1, an R2 of 0.72, and a MNB value of 103.44% (Fig. 7). 
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Figure 6: AmeriFlux derived Wscalar values (unitless) plotted as a function of Daymet derived Wscalar values for US-Ne1, 
US-Ne2, and US-Ne3 validation years. The maximum value for the scalar is 1 and the value is downgraded as water-
stress conditions increase. 

 

Figure 7: AmeriFlux measured GPP plotted as a function of EGM modeled GPP when all scalar values are set to 1.  In 
this configuration, the model is run as a pure LUE model with the scalars completely negated. 

Suyker and Verma (2012) showed through isolating PAR and LAI as variables for 

GPP modeling that PAR was one of the predominant factors in GPP variability.  

Additionally, Hazarika et al. (2004) concluded that LAI is the primary determinant of 
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productivity using their model (Sim-CYCLE) to estimate net primary productivity. Thus, 

PARin and gLAI values (which also affect APAR values) likely are the main contributors to 

the scatter about the 1:1 line and the high MNB. An overestimation of PARin greatly 

affects APAR in a manner that causes an overestimation of GPP and, as there is more 

weight assigned to the APAR variable than the scalars, the result is an overall 

overestimation of GPP when PARin is overestimated. This overestimation will inflate the 

MNB.  Estimated APAR (Eq. 10) for the three Nebraska sites was plotted as a function of 

measured APAR in an attempt to determine how well the model was estimating the 

variable.  Two of the inputs in calculating APAR are gLAI and PARin, and a good portion 

of the increased error is attributed to this term in the GPP equation (Eq. 8).  When 

compared to measured APAR, estimated APAR for the three Nebraska sites (US-Ne1, US-

Ne2, and US-Ne3) had a combined RMSE of 10.8 m2 d-1 and an R2 of 0.53 (Fig 8a).  When 

the data are separated into green-up (DOY ≤ 220) and post-green peak (DOY > 220) sets, 

it becomes apparent that there is a stronger correlation between measured and 

modeled APAR during the green-up phase than the post green-up phase.  Measured vs 

modeled APAR at all Nebraska sites are show a green-up RMSE of 9.0 Mol m2 d-1 and an 

R2 of 0.7 while the post green peak RMSE is 12.7 Mol m2 d-1 and the R2 is 0.33 (Figs 8b 

and 8c). The data show that APAR is estimated more accurately by the model before 

green peak is reached and that post-green peak APAR data are contributing error to the 

model. 
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 c) 

 

Figure 8:  AmeriFlux derived APAR as a function of Daymet and MODIS derived APAR for: a) all growing season days 
for all three Nebraska sites, b) all green-up days for all three Nebraska sites, c) all post green peak days for all three 
Nebraska sites. 
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This study utilized seven fields from four separate geographic locations.  

However, three of the seven fields, which include 36 of the 65 total field years, are 

located in southeastern Nebraska, which may have contributed to a calibration bias.  

This bias may have led to lower error being reported for the Nebraska sites and to a 

higher error being reported for the non-Nebraska sites than would have otherwise been 

the case if the field years were more evenly represented for model calibration (Table 2).    

When comparing the results of this study to the previous Nguy-Robertson et al. (2015) 

study, some of the increase in error experienced in this study could be explained by the 

inclusion of four sites not utilized in the Nguy-Robertson study.  Since the Nguy-

Robertson modeled GPP for only three fields located within a couple of miles from one 

another, there is less climatic variation in the data to cause inaccuracies in the model.  

Not only does the addition of more sites in itself add variation to the data, the addition 

of more sites located hundreds of miles from one another add a considerable amount of 

climatic variation.  Additionally, the inclusion of more field years in general also certainly 

contributed to increased error for this study.  Inherently then, larger error was expected 

from this new study of the EGM and larger error was indeed observed. However, the 

effectiveness of the model in estimating daily GPP at four separate geographical 

locations in the upper Midwest may counterbalance this increased error for researchers 

interested in modeling GPP at a broader, regional scale.  For such researchers, the EGM 

provides an improved remote sensing daily GPP model over a simple LUE model (Figs. 1a 
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and 7), and the EGM’s accuracy will increase as more accurate gridded weather data are 

developed.  
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CHAPTER 4 SUMMARY AND CONCLUSIONS 

By incorporating MODIS imagery and Daymet weather data into the EGM used 

by Nguy-Robertson et al. (2015), daily GPP estimates were derived over seven sites in 

four upper-Midwestern locations.  Overall RMSE between measured GPP and modeled 

GPP for all field years was found to be 3.5 g C m-2d-1. While this is an increase in RMSE of 

0.9 g C m-2d-1 when compared to Nguy-Robertson et al. (2015), this study incorporates 

sites geographically separated within the northern Midwest region.  Of concern was the 

MNB of 30.5% for this study. Through calibrating the model with remotely sensed gLAI 

data and modeled weather data from all seven sites, a set of generalized scalars were 

developed that functioned for maize and soybeans at each site. However, GPP 

estimation was better at some sites than others, especially at the Mead sites.  Although 

the accuracy of the EGM was reduced when utilizing remotely sensed and gridded 

weather data inputs, the difference in accuracy was offset by the reduction in resources 

required as such inputs negate the need for in situ data.  While this study indicates that 

the parameters of the Nguy-Robertson et al. (2015) EGM can estimate GPP that has 

promising correlation to measured GPP for regions outside merely eastern Nebraska, 

future research could be conducted to determine if more generalized coefficients can be 

derived to allow the model to function accurately at broader regional scales 

The overestimation of modeled PARin and VPD accuracy issues in the Daymet 

data may have led directly to an overestimation in GPP which could account for much of 
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the increase in error between this study and the Nguy-Robertson et al. (2015) study.  In 

particular, the inclusion of 17 irrigated field years from US-Ne1 and US-Ne2 may have 

biased σWscalar, the curvature parameter for water stress, which would increase error in 

modeled GPP at the other five study sites.  The VPD overestimation at the two irrigated 

sites, due to the VPD at the sites being anthropogenically lowered through the irrigation 

practice, would have contributed to this process. Further studies should focus on 

reducing this error by obtaining more accurate modeled weather inputs.   

Since Daymet incoming shortwave (from which PARin was estimated) tends to 

be overestimated, future researchers may attempt to predict and minimize error related 

to this overestimation as in the Matsushita and Tamura (2002) study. Likely, other 

sources of PARin are needed (e.g., Nasahara, 2009; Sakamoto et al., 2011). Likewise, due 

to the poor quality of the Daymet vapor pressure product, and due to the fact that the 

vapor pressure product is not inaccurate in as predictable a manner as incoming 

shortwave, a new source for this variable may need to be found.  One such source for 

both VPD and PARin data could be PRISM (Parameter-elevation Relationships on 

Independent Slopes Model; PRISM Climate Group (2004)), which was found by 

Mourtzinis et al. (2016) to be more accurate than Daymet, though it does still have 

accuracy issues of its own. 

  Additionally, the gLAI algorithms utilized in the model were developed from a 

previous study (Nguy-Robertson and Gitelson, 2015) which used the same three 

Nebraska sites used in this study.  While the algorithms were able to derive a gLAI 



40 
 

 

estimate that correlates to measured gLAI estimates at the other study locations, gLAI 

estimations were not confirmed with measured values at these sites.  Due to lack of in 

situ gLAI data for these sites, a direct comparison was not possible.  Of concern is the 

relationship with the gLAI after peak green up. When adapting this model to provide 

regional estimates of GPP, future researches should focus on developing and confirming 

generalized, regional gLAI algorithms for maize and soybean.  
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APPENDIX 

Permission has been granted by Elsevier, the publisher of Agricultural and Forest 

Meteorology, to include the Nguy-Robertson et al., 2015 paper in the appendix of this thesis. 
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