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Breeding for Biomass Yield in Switchgrass Using Surrogate
Measures of Yield

Michael D. Casler1 & Guillaume P. Ramstein2

# US Government (outside the USA) 2017

Abstract Development of switchgrass (Panicum virgatum L.)
as a dedicated biomass crop for conversion to energy requires
substantial increases in biomass yield. Most efforts to breed for
increased biomass yield are based on some form of indirect
selection. The objective of this paper is to evaluate and compare
the expected efficiency of several indirect measures of breeding
value for improving sward-plot biomass yield of switchgrass.
Sward-plot biomass yield, row-plot biomass, and spaced-plant
biomass were measured on 144 half-sib families or their mater-
nal parents from the WS4U-C2 breeding population of upland
switchgrass. Heading date was also scored on row plots and
anthesis date was scored on spaced plants. Use of any of these
indirect selection criteria was expected to be less efficient than
direct selection for biomass yield measured on sward plots,
when expressed as genetic gain per year. Combining any of
these indirect selection criteria with half-sib family selection
for biomass yield resulted in increases in efficiency of 14 to
36%, but this could only be achieved at a very large cost of
measuring phenotype on literally thousands of plants that
would eventually have no chance of being selected because
they were derived from inferior families. Genomic prediction
methods offered the best solution to increase breeding efficien-
cy by reducing average cycle time, increasing selection

intensity, and placing selection pressure on all additive genetic
variance within the population. Use of genomic selection
methods is expected to double or triple genetic gains over
field-based half-sib family selection.

Keywords Panicum virgatum . Genomic selection .

Genomic prediction . Biomass yield

Introduction

Development of switchgrass (Panicum virgatum L.) as a ded-
icated biomass crop for conversion to energy requires substan-
tial increases in biomass yield. Using the best available
forage-type cultivars, biomass production can be economic
and sustainable only under the best management conditions,
which are generally more likely to be achieved by the most
experienced growers [1]. Biomass yield is a heritable trait in
switchgrass and yield gains have been achieved in several
breeding programs during the past 20 years [2–4]. Gains in
biomass yield as high as 27% have been reported from a single
generation of selection within wild or relatively unimproved
populations, e.g., [3]. However, long-term gains from
sustained selection and breeding are in the range of 1 to 4%
year−1 for both upland and lowland ecotypes of switchgrass
[2].

Breeding for increased biomass yield in switchgrass pre-
sents the breeder with the fundamental challenge of measuring
biomass yield accurately and precisely. Selection of individual
widely spaced plants using classical phenotypic selection
methods can only go so far. Spaced-plant biomass is not
equivalent to sward-plot biomass yield—these are different
traits with a highly variable and inconsistent genetic correla-
tion [5]. At the most fundamental level, spaced plantings or
row plantings do not allow for any interplant competition,
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whereas sward-plot likely include a significant mortality fac-
tor due to intensive interplant competition. Phenotypic selec-
tion of individual plants with the greatest amount of biomass
is very effective on relatively raw and unimproved germplasm
[2–4], easily allowing breeders to discard plants with low
vigor, tillering, or whole-plant biomass. However, the genetic
correlation between spaced-plant biomass and sward-plot bio-
mass yield diminishes to near zero for elite and highly im-
proved germplasm [6]. Any use of sward-plot evaluation in-
creases both time and funding costs. Clonal propagation of
individual genotypes is prohibitive in switchgrass, so sward
plot evaluations require seed produced from either full-sib or
half-sib matings. Usually, these matings must occur in the
field in order to generate sufficient seed for field trials at a
minimum of two locations [7]. All of these are reasons that
sward-plot field trials are seldom used in switchgrass
breeding.

Indirect selection is a potential solution to these challenges.
Strong genetic correlations have been reported for spaced-
plant biomass with morphological or physiological traits such
as tiller number, tiller mass, and flowering time [8, 9]. These
correlations imply that these traits could be used as indirect
selection criteria to either speed up the breeding process or to
increase selection intensity per generation, potentially increas-
ing the rate of gain for biomass yield. While there is some
evidence that these potential indirect selection criteria may
have positive genetic correlations with sward-plot biomass
yield [10], the only results to date have demonstrated a near-
zero genetic correlation for all vigor-related or tillering traits
[6]. Indeed, divergent selection for several of these traits failed
to generate any correlated responses in sward-plot biomass
yield [11]. Conversely, selection of late flowering genotypes
in spaced plantings have resulted in strong correlated re-
sponses for increased biomass yield of sward plots [2, 11].

Genomic prediction is an alternative approach to accom-
plish indirect selection of biomass yield, involving the use of
genome-wide DNA markers to predict breeding value of elite
genotypes [12]. Selection based on genomic estimated breed-
ing values (GEBV) allows selection pressure to be placed on a
large number of loci impacting the trait of interest, limited
only by genomic marker coverage. Selection based on
GEBV requires a training period, in which prediction equa-
tions are developed to predict GEBVof unknown genotypes
using observed relationships between markers and biomass
yield [13]. The advantage of selection on GEBV derives from
the next step, which involves two or three generations of rapid
selection on GEBV, which can theoretically be accomplished
in 1 year per generation.

The objective of this paper is to evaluate and compare the
expected efficiency of several indirect measures of breeding
value for improving sward-plot biomass yield of switchgrass.
Both phenotypic (field-based) predictors and GEBV predic-
tors were investigated in this study.

Materials and Methods

Plant Materials, Field Designs, and Field Data

A total of 144 half-sib families were developed from the
WS4U-C2 switchgrass population, as previously described
[5, 11]. Parental genotypes were vegetatively propagated and
established in a randomized complete block design with three
replicates at Arlington, WI (Plano silt loam; fine-silty, mixed,
mesic Typic Argiudoll). The parental experiment was
established in 2009 using vegetative propagules with approx-
imately 8–12 tillers each.

Half-sib families were established in two types of plots:
row plots and sward plots. Row plots consisted of five 12-
week old seedlings transplanted to the field in May 2011, with
spacing of 0.3 m within rows and 0.9 m between rows. The
design was a randomized complete block with four replicates
at each of two locations: Arlington, WI and Mead, NE
(Haynie very fine sandy loam; coarse-silty, mixed,
superactive, calcareous, mesic Mollic Udifluvent). Sward
plots consisted of five drilled rows, 15 cm apart, with a
seeding rate of 600 PLS m−2. Sward plots were 0.9 m wide
and 1.8 m long, and established at Arlington, WI and
Marshfield, WI (Withee silt loam; fine-loamy, mixed,
superactive frigid Aquic Glossudalf) inMay 2008. The design
was a randomized complete block with three replicates at each
location. All plants and plots were allowed to grow during the
establishment year and biomass was removed after killing
frost. No fertilizer was applied during the establishment year.
Pre-emergence herbicide was applied to the parental experi-
ment and the progeny row plots before establishment as
follows: application of 1.12 kg ha−1 alachlor [2-chloro-N-
2,6-diethylphenyl)-N-(methoxymethyl)-acetamide] with
0.07 kg ha−1 imazethapyr {(±)-2-[4,5-dihydro-4-methyl-
4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-ethyl-3-pyri-
dine- carboxylic acid}.

All plants and plots were fertilized with 112 kg N ha−1 in
early spring following the establishment year. Pre-emergence
herbicide was applied to the parental experiment and the prog-
eny row plots as described above. Biomass from all plants and
plots was harvested between 2 and 4 weeks post-anthesis at a
cutting height of 9 cm. Parental genotypes were cut with a
sickle-bar mower and weighed by hand. Progeny row plots
and sward plots were cut with a flail chopper and plot weights
determined by a load cell. Biomass samples of approximately
200 to 400 g were sampled from each plant or plot, dried at
60 °C for 5–7 days, and reweighed to determine dry matter
concentration. All biomass yields were adjusted to a dry mat-
ter basis. Biomass yields were determined for 4 years on
sward plots (2008–2011) and 2 years each for row plots
(2012–2013) and parental spaced plants (2008–2009).

Heading date of progeny row plots was determined at both
locations for 2 years. Heading date was scored on each
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individual plant in every row and defined as the calendar date
on which approximately 50% of the panicles were fully
emerged from the boot. Anthesis date was determined on pa-
rental spaced plants for 2 years, defined as the calendar date on
which approximately 50% of the panicles reached anthesis [6].

Biomass Yield and Field Traits

Sward-plot biomass yield, measured on half-sib family plots
for 4 years at Arlington and Marshfield, was used as the best
estimate of the true breeding value of these 144 parental ge-
notypes. Best linear unbiased predictors (BLUPs) were used
as estimates of the breeding values for Arlington, Marshfield,
and means over two locations, depending on the specific anal-
ysis described below.

Spaced-plant biomass of the maternal parents and row-plot
biomass of the half-sib families were used as two different
indirect measures of breeding value. Spaced plantings are
commonly used in breeding perennial grasses, but are charac-
terized by a complete lack of competition between neighbors.
Row plots have been proposed as a compromise, creating an
opportunity to evaluate breeding value of genotypes by testing
their half-sib progeny in a plot type that contains a modest
level of competition between neighbors. Heading date of pa-
rental spaced plants and anthesis date of progeny row plots
were also used as indirect predictors of sward-plot biomass
yield on a per-area basis.

General linear mixed models were used to estimate vari-
ance components for all effects. There were no fixed effects in
any of these models. Heritability was computed as the ratio of
estimated additive genetic variance to phenotypic variance,
except for parental spaced plants, where the heritability could
be computed only in the broad sense as the ratio of genotypic
to phenotypic variance. Genetic correlations were estimated as
the correlation between BLUPs for each trait; this was the only
mechanism of estimating the genetic correlation between ob-
served biomass yield and GEBV, because GEBVs consisted
of a single vector of values, one per family [14].

Expected gains from selection were computed as the ratio
of correlated response (CRY|X) trait Y (sward-plot biomass
yield) from indirect selection for trait X. All values of CRY|X

were expressed as a percentage of the expected direct response
(RY) for selection based on sward-plot biomass yield. Three
selection schemes were used to generate expectations: (1)
half-sib family selection with intercrossing of parental geno-
types (HSF) with 5 years per cycle, (2) individual phenotypic
selection (PS) with 2 years per cycle, and (3) combined half-
sib family selection for biomass yield and within-family indi-
rect selection for trait X (AWFX-HS) with 4 years per cycle
[15]. For HSF and PS, CRY|X/RY computations were made
according to equation 19.9 of [16]. For AWFX-HS, CRY|X/
RY computations were made as the ratio of equation 4 to
equation 1 of [15].

Genomic DNA Data and Prediction Methods

Marker Sequencing, Genotyping, and Imputation

DNA marker data were used to develop genomic predic-
tion equations for sward-plot biomass yield. DNA
markers were single nucleotide polymorphisms (SNPs)
scored on maternal parents. Biomass yield was measured
on half-sib families. Two methods for generating se-
quence data were assessed: exome-capture sequencing
(ECS), with targeted coverage and high sequencing depth,
and genotyping-by-sequencing (GBS), with (generally)
broader genome coverage but lower sequencing depth.
When calling SNPs, the sequences generated by either
method were aligned to the hardmasked P. virgatum
v1.1 reference genome (http://phytozome.jgi.doe.gov/pz/
portal.html#!info?alias=Org_Pvirgatum).

In ECS, specific exonic sequences were captured using
the Roche-Nimblegen protocol for preparation of SeqCap
EZ Developer libraries using the Roche-Nimblegen
probeset ‘120911_Switchrass_GLBRC_R_EZ_HX1’ [17,
18]. Sequencing was performed on the Illumina HiSeq
2000 platform, generating 150-nucleotide paired-end
reads. In GBS, the genome space was reduced using re-
striction enzymes PstI and MspI, following [19].
Sequencing was barcoded and multiplexed 96 times. The
Illumina HiSeq 2500 platform was used to generate 100-
nucleotide single-end reads.

In ECS, initial quality control (using FastQC v0.10.0;
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/),
sequence trimming (using Cutadapt v1.1; https://code.google.
com/p/cutadapt/), alignment using BowTie v0.12.7 [20], SNP
calling using SAMTools package v0.1.18 [21], and genotype
calling using the algorithm of [22], as shown in the R script in
File S1, were performed as described in [13].

In GBS, initial quality control was performed using
FastQC v0.11.2. Adapters were trimmed using Skewer [23]
and the resulting sequences reads were merged into tags, with
counts, using TASSEL v4.3.6 [24, 25]. Tags were filtered for
counts greater than 10 and merged into a master tag count file.
The master tags were then aligned to the reference genome
using Bowtie v2.2.1 [26], to generate a “Tags On Physical
Map” (TOPM) file. Tag counts by individual (maternal par-
ent) were determined from barcodes and stored in a “Tags by
Taxa” (TBT) file. The TOPM and TBT files were subsequent-
ly used for calling SNPs. Genotype were then called directly
from allele counts, with no account of possible false homozy-
gote calls.

In ECS and GBS, marker variables from the matrices of
genotype calls were filtered for (i) proportion of missing
values (strictly lower than 5% in ECS, strictly lower than
80% in GBS), (ii) polymorphism (variance strictly greater
than 0 and minor allele frequency strictly greater than 1/2N,
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withN the number of genotypes assayed), and (iii) availability
of genomic-location information (available information on
chromosome and position from the reference genome se-
quence and annotation of P. virgatum v1.1; DOE-JGI, http://
phytozome.jgi.doe.gov/). The resulting marker genotype
matrices MECS and MGBS, obtained from ECS and GBS,
contained expected allelic dosages at q∗ = 120,203 markers
and hard genotype calls at q∗ = 10,856 markers, respectively.

In ECS, missing values were imputed using the multi-
variate normal expectation-maximization algorithm of
[27], implemented in the R package rrBLUP [28]. In
GBS, missing values were imputed using three different
approaches: (i) mean imputation (MI); (ii) imputation by
hidden Markov model (HMM), as implemented in Beagle
v4.1 [29]; and (iii) imputation by iterated Random Forest
(RFI), as implemented in the R package missForest [30].
When imputing by MI, missing values were replaced with
the average allelic dosage at each marker. When imputing
by HMM, Beagle v4.1 was run over 20 iterations, preced-
ed by 10 burn-in iterations, with an assumed recombina-
tion rate of 1 cM/Mb, as was suggested by a previous
mapping study on switchgrass [31]; window size was set
to 48 markers, with an overlap of 7 markers between
windows, based on the developers’ recommendation of
about 5 cM per window with a 1-cM overlap and the
pattern of linkage-disequilibrium decay in this population
[13]; effective population size was set to 75, based on the
observed heterozygote excess in the ECS data [32], which
was deemed plausible given that WS4U-C2 was produced
by two cycles of selection from a collection of 162 plants;
error rate was set to 0.001. When imputing by RFI,
Random Forest was run over 10 iterations, with 100 trees
per iteration, bootstrap samples of size N and random
subsets of 3618 markers per tree.

GEBV Predictions

Following the methodology described in [13], prediction
procedures were evaluated with respect to three compo-
nents: (1) marker-data transformation—potentially ac-
counting for correlation among markers; (2) prediction
model—potentially accounting for differential amplitudes
(heteroscedasticity) and/or non-linearity of marker effects;
and (3) environment learning scheme—set of locations to
include for training and testing.

Four different prediction models were assessed:
Genomic BLUP (GBLUP), a linear and homoscedastic
model, i.e., with linear marker effects of equal variance
[33, 34]; BayesB, a linear heteroscedastic model [35];
Reproducing kernel Hilbert space (RKHS), a non-linear
homoscedastic model [36]; and Random Forests (RF), a
non-linear heteroscedastic model [37].

The GBLUP model was considered the standard in model
comparisons. For a sample of n instances and q marker fea-
tures, we define GBLUP as follows:

g ¼ μþ Zuþ e

where g = {gi} is the n vector of HS-family BLUPs; μ is the n
vector of grand mean; Z is the n ×m design matrix attributing
the n observations tom parent genotypes; u∼Normalð0;Kσ2

u),
K being the m ×m genomic relationship matrix derived from
marker features asK ∝XXT, withX them × qmatrix of mark-
er features; e∼Normalð0; Iσ2

e), with I the identity matrix. As
explained in the next subsection, the marker features in X
were not necessarily the original marker variables, i.e., X ≠
M. The normalizing factor in K was the sum of sample vari-
ances over marker features.

BayesB is a Bayesian linear regression model, which has
the following specification:

g ¼ μþ Xbþ e

where g, μ, X are as described above; b∼Normalð0; Iσ2b); σ2
b

¼ 0 with probability π and σ2
b∼χ−2 df b; S

2
b

� �
with probability

1 − π; π was chosen to follow a Beta(0.2, 1.8) in order to
reflect possibly sparse distributions of causal variants across

the genome while allowing uncertainty about π; S2b∼Gamma
rb; sbð Þ and e∼Normal 0; Iσ2

e

� �
, with σ2

e∼χ−2 df e; S
2
e

� �
. The

hyperparameters dfb, rb, sb, dfe and S2e were set through the
heuristics described in [38], based on a prior estimation of the
proportion of variance explained by the model, which was

here chosen to be σ2u
σ2uþσ2e

from a GBLUP model with an update

on marker effects from the heteroscedastic effects model
(HEM) of [39]. BayesB was fitted by a Gibbs sampling algo-
rithm with 5000 burn-in iterations, followed by 15,000 itera-
tions for actual sampling of parameter values.

The RKHS is a semi-parametric model modeling relation-
ships among individuals through a non-linear function of
marker-based distances. The pairwise distances were
Euclidean distances based on marker features, scaled by the
maximum distance over pairs of individuals; the non-linear
function was the Gaussian kernel, with its scale parameter
determined by tuning, through minimization of the
generalized-cross-validation criterion (GCV) [40, 41] over a
grid of values (strictly greater than 0 and lower than 1, with
steps of 0.025).

The RFmodel is a machine-learning method that combines
results from several regression trees fitted to different varia-
tions of the data—bootstrap samples of instances and random
subsets of features [37]. The RF model was fitted with 200
trees, bootstrap samples of size n, and subsets of q/3 features.

The GBLUP and RKHS models were fitted using the R
package rrBLUP [28]; the BayesB models were fitted using
the R package BGLR [36]; the HEM of was fitted using the R
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package bigRR [39], and the RF model was fitted using the R
package randomForest [42].

Marker-Data Transformations

The input X to prediction models were transformations of the
marker-data matrix M. The following transformations of M
were made: (1) Base, where features are centered allelic dos-
ages: XBase =M − P, with P the m × q matrix with uniform
columns containing the mean allelic dosages within the
population, q = q∗; (2) PCA, where features are uncorrelated
synthetic variables each contributed differentially by marker
variables: XPCA =XBaseV, with V the q∗ × d rotation matrix in
the singular value decomposition ofXBase (XBase =UDVT; d is
the number of principal components, here equal to m), q = d;
(3) Cor, where features are marker variables scaled through a
correlation matrix: XCor =XBaseR

−1/2, R being the block-
diagonal matrix of Pearson correlation between marker vari-
ables (with blocks corresponding to chromosomes), and R−1/2

being the square-root, from eigendecomposition, of its in-
verse, q = q∗; (iv) LD, where features are marker variables
weighted based on their relative degree of tagging: XLD =
XBaseW

1/2, with W the diagonal matrix of weights supposed
to adjust for redundancy in marker information due to linkage
disequilibrium; W = diag(w) and w was the least-absolute-
error solution to R-Rð Þ w ¼ 1q* subject to wj ≥ 0, j = 1 ,… ,
q∗, withR°R the matrix of squared correlation between mark-
er variables and 1q* the q

∗ vector of one values, q ≤ q∗ (as a
result of some weights being exactly zero). The linear pro-
gramming solver CLP (https://projects.coin-or.org/Clp; R
script in File S1) was used to calculate w. For computational
tractability, when solving R-Rð Þ w ¼ 1q* , we applied two
heuristics, following [43]: (i) values in R°R less than 0.001
were set to zero; (ii) whenever a chromosome block in R°R
was too large (more than 2000 markers), markers within the
chromosome were first pruned out in a sliding-window ap-
proach (1000 markers by window, overlap of 500 markers),
by solving (R°R)w = 1 restricted to each window separately
and discarding markers with weights equal to zero.

Training, Testing, and Validation

We considered three types of sets, for training and testing,
regarding observations at maternal parents. The HS-family
BLUPs used for training and/or testing the prediction model
could be either from Arlington, Marshfield, or the average
over the two locations

Prediction procedures were evaluated using prediction ac-
curacy estimated in five-fold cross-validation, replicated 20
times. Given a random partition of instances in five subsets
of similar size, four subsets were used for training and the
remaining subset was used for testing. For each of the five

subsets used sequentially for testing, prediction accuracy
was computed as the Pearson coefficient of correlation be-
tween “observed” and predicted HS-family BLUPs.

Finally, expected gains from GEBV-based selection were
computed in a manner parallel to those for field-based selec-
tion systems. Expected gain from GEBV-based selection on
an individual-plant basis was computed using the formula
given by [11] forΔGINDGS and one of the two different selec-
tion intensities (0.10 or 0.01). Both computations were
expressed as a percentage of the HSF selection method ap-
plied to sward-plot biomass yield (direct selection) with a
selection intensity of 0.10. Phenotypic selection using the
HSF method was based on 5 years per cycle (20 years for four
generations or recombination events). Genomic selection was
based on a 5-year training cycle followed by three selection
cycles of 1 year each (October to October), resulting in a total
of 8 years for four generations or recombination events.

Results

Biomass Yield and Field Traits

There was significant genetic variability for biomass yield
within this switchgrass population, with significant family ×
method and family × location interactions, as indicated by
relatively narrow confidence intervals (Table 1). The family
× year interactions were the least important, largely because
repeated harvests on the same plots are correlated with each
other (Table 2). Harvesting sward plots for 2 years is probably
sufficient to obtain the most efficient biomass yield estimates,
because the additional information provided in the third and
fourth years does not offset the added cost from extending
cycle time by another year or two.

This was also confirmed by an analysis of the correlation
coefficients between BLUP values from individual years,
locations, and plot methods (Table 3). The highest mean and
maximum correlation coefficients were observed between
individual years within locations and methods. Correlation
coefficients, both the maximum and the mean, were substan-
tially lower for location-to-location comparisons within plot
methods. Finally, the lowest values, by far, were the correla-
tion coefficients between plot methods (spaced plants, row
plots, and sward plots). Figure 1 provides a visualization of
the family × location interactions for sward plots (Fig. 1a) and
row plots (Fig. 1b), clearly showing a modest positive rela-
tionship between the twoWisconsin locations and no relation-
ship between Wisconsin and Nebraska. For BLUP values
computed over years and locations of the three plot methods,
there were small positive relationships of row-plot biomass
and spaced-plant biomass with sward-plot biomass yield
(Fig. 2). The low correlations between plot methods indicate
that either row plots or spaced plants will require an additional
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advantage, such as increased selection intensity or reduced
cycle time, to be advantageous.

Narrow-sense heritability for biomass was the lowest for
sward plots and row plots compared to spaced plants, but this
may be due to the fact that spaced plants were only established
at one location (Table 4). The largest family × location inter-
action was observed for row plots, which were established at
the two most divergent locations: Arlington, WI and Mead,
NE, two distinctly different hardiness zones and climatic
zones. Nevertheless, the family variance was significant for
all three plot types, indicating that any of these methods can be
used effectively in a switchgrass breeding program. However,
the strong family ×method interaction (Tables 1 and 3) clearly
indicates that these three measures of biomass should proba-
bly be considered as potentially different traits, i.e., that sim-
ply considering them as one trait measured on three different
plot types may be too simplistic of an interpretation.

Heading and anthesis dates were considered as possible
indirect selection criteria in this study, because of the impor-
tant role they have played in switchgrass breeding programs
during the past 20 years [44]. Genetic variation and heritabil-
ity estimates were high for both heading date scored on row
plots and anthesis date scored on spaced plants (Table 5).
Heading date was far less susceptible to family × location
interactions than biomass yield, with family × year
interactions as the most important source of environmental
interaction for these traits.

Expected gains for various indirect selection criteria are
presented in Table 6. Despite the advantages offered by using

Table 2 Correlation coefficients of best linear unbiased predictors
(BLUPs) for biomass yield of switchgrass sward plots over 4 years with
BLUPs based on 1, 2, or 3 years of biomass yield measurements from two
locations

Location First-year
BLUP

Two-year
BLUP

Three-year
BLUP

4-year Arlington BLUP 0.462 0.847 0.894

4-year Marshfield BLUP 0.654 0.814 0.870

4-year BLUPs over two locations 0.578 0.851 0.899

Table 1 Estimates of random effects associated with half-sib families
of WS4U-C2 switchgrass evaluated across multiple plot methods (M),
locations (L), and years (Y), including 95% confidence intervals (CI)

Source of
variation

df Estimate Lower
95% CI

Upper
95% CI

Half-sib family (F) 143 0.1053 0.0269 6.6166

F × M 429 0.3259 0.1542 1.0867

F × L/M 286 0.4010 0.2230 0.9242

F × Y/M 715 0.0617 0.0067 > 1011

F × (L × Y)/M 572 0.5922 0.2841 1.9044

Residual 4410 13.2694 12.7172 13.8585

Table 3 Minimum (Min), maximum (Max), and mean correlation
coefficients between best linear unbiased predictors (BLUPs) for
biomass yield of switchgrass measured under 14 combinations of plot
method, location, and year (n = number of individual correlation
coefficients pooled together)

Correlation coefficient Number Min Max Mean SE

Between years
(within locations
and methods)

15 − 0.222 0.748 0.224 0.063

Between locations
(within methods)

24 − 0.259 0.575 0.134 0.036

Between plot types
(within the
Arlington location)

20 − 0.178 0.184 0.028 0.024

Fig. 1 Scatterplots and linear regressions of best linear unbiased
predictors (BLUPs) for biomass yield of 144 switchgrass half-sib
families measured at two locations in either sward plots or row
plots. a Sward BLUPs from Marshfield vs. sward BLUPs from
Arlington. b Row-plot BLUPs from Mead, NE vs. row-plot
BLUPs from Arlington, WI
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row plots or spaced plants (increased selection intensity and
cycle time reduced from 4 to 2 years), indirect selection was
less efficient than HSF selection on a family mean basis, even
with a 10 times increase in selection intensity. Conversely,
when two selection trials are established concomitantly, one
to measure biomass yield of sward plots and one to measure
biomass, heading date, or anthesis date of individual plants, as
was done by [7], all of these options demonstrated expected
gains greater than HSF for biomass yield selection alone, with
spaced-plant biomass and row-plot heading date giving the
greatest expected gains.

Genomic Estimated Breeding Values

Two genomic DNA platforms were investigated: ECS and
GBS. The ECS platform was based on a defined gene space

of approximately 60 MB of the genome with relatively little
missing data due to the use of specific probe sequences [18].
Conversely, the GBS platform utilized DNA from the entire
genome, but contained massive amounts of missing data or
missing cells in the datamatrix. There was a clear difference in
performance between the two DNA platforms, with the ECS
platform giving consistently higher prediction accuracies for
GEBVs compared to GBS (Table 7). Several marker-data
transformation and imputation methods were applied in an
attempt to improve the accuracy of GEBV prediction from
GBS, all without any success, even though, among GBS-
based procedures, relatively good results were obtained with
HMM imputation and Cor marker-data transformation, as
well as with MI imputation and LD marker-data transforma-
tion. Likewise, several prediction models were applied to the
phenotypic and genomic data without any substantial benefit
compared to the classical GBLUP method. Lastly, even
though there was significant family × location interaction for
biomass yield of sward plots, genomic predictions could be
made across locations without any substantial loss in accuracy
(Table 8).

The expected gain from selection based on GEBV was
184% relative to the expected gains from HSF selection, i.e.,
almost double the gain expected from the field-based pro-
gram. If funds are sufficient to conduct DNA analysis of a
larger population, potentially allowing an increase in selection
intensity of 10 times, expected gains for GEBV-based selec-
tion increase to 278%, almost a 3 times improvement over
field-based HSF selection. While the accuracies of GEBV
prediction in this population are low, the gains result from
the drastic reduction in average cycle time: one 3-year training
period followed by three 1-year selection cycles. However,
this selection scheme has one potential caveat: decay of link-
age disequilibrium over generations will erode the prediction
accuracy and decrease the realized gains made in the second
and third selection cycles [13, 33].

Discussion

Plant breeders are always looking for ways to increase the
efficiency of breeding programs. If we loosely define efficien-
cy as rate of gain per unit of time, this gives us two mecha-
nisms for increasing efficiency: increasing the rate of gain per
se or shortening the cycle time, or perhaps both. Breeding
perennial energy grasses officially began in 1992 [45], but is
really a tangential application of forage breeding, an activity
that traces its roots to Wales and Denmark in the late nine-
teenth century [46]. Much like breeding forage, fodder, and
pasture crops, a very large proportion of breeding activity in
the energy grasses takes place in spaced-planted nurseries.
The clear advantage of this method is that it allows breeders
and other staff members to make repeated observations and

Fig. 2 Scatterplots and linear regressions of best linear unbiased
predictors (BLUPs) for biomass yield of 144 switchgrass half-sib
families measured in sward plots, row plots, or spaced plants. a Sward
BLUPs based on two locations and 4 years vs. row-plot BLUPs based on
two locations and 2 years. b Sward BLUPs based on two locations and
4 years vs. row-plot BLUPs based on one locations and 2 years
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measurements on individual plants over the course of several
years without fear of contamination. Even seed set on fertile
plants prior to biomass harvests can be controlled with tillage
or pre-emergence herbicides. Every breeder uses spaced-
planted nurseries for one purpose or another. The critical ques-
tion here is whether or not they are being overused or misused.

Spaced plantings consist of a highly unnatural environ-
ment, in which individual genotypes are not allowed to
compete with each other, taking away an extremely essential
component a sward environment or community established in
a production field. Indeed, the distinction between environ-
ments with vs. without interplant competition can be used as
a method of classifying traits as simple or complex traits.
Simple traits are those that can be effectively measured on
spaced plants and genetic gains are realized in sward plots
[47]. Numerous examples, far too many to cite here, include
flowering time, simple morphological traits such as stem and
leaf characteristics, biomass quality traits (e.g., lignin, ash, or
N concentrations), pest resistances, and some stress tolerances
[47]. Conversely, for traits such as biomass yield, the literature
contains numerous examples of failures to make breeding
progress when selection is conducted on spaced plants and
evaluations are conducted in sward plots to simulate realistic
production conditions [46–48]. Biomass yield should be

classified as a complex trait, i.e., a trait which cannot be reli-
ably measured on spaced plantings without interplant
competition.

This conclusion, derived from numerous observations
on a wide range of species [e.g.,49–52], is supported by
the results of the present study. The correlations between
sward-plot biomass yield, row-plot biomass, and spaced-
plant biomass were all positive and low, indicating that
each of these three traits can be used to make progress
toward improving sward-plot biomass yields. This helps
to explain the fact that much of the early progress in
breeding for increased biomass yields of switchgrass for
biomass production were accomplished in spaced-plant or
row-plot nurseries [11, 44]. With a small positive correla-
tion between these three plot types, genetic progress is
possible, but the results in Table 6 clearly show that gains
resulting from selection without interplant competition
will be lower than those using sward plots as a direct
measure of biomass yield. Even allowing for the fact that
these indirect selection measures involve a halving in cy-
cle or generation time and a possible 10 times increase in
selection intensity, selection for increased biomass or later
flowering on spaced plantings or row plots is less efficient
than direct selection for biomass yield of sward plots!

Table 4 Estimates of random
effects associated with half-sib
families of WS4U-C2
switchgrass evaluated in three
plot types with multiple blocks
(B), locations (L), and years (Y),
including lower and upper 95%
confidence limits

Source of
variation

Sward-plot biomass yield Row-plot biomass Spaced-plant biomass

Estimate Lower Upper Estimate Lower Upper Estimate Lower Upper

Family (F) 0.995 0.576 2.116 0.071 0.034 0.238 0.022 0.016 0.033

F × L 0.000 – – 0.035 0.008 6.685 NA

F × B/L 2.786 2.051 4.005 0.501 0.404 0.636 0.018 0.014 0.024

F × Y 0.031 0.024 > 1020 0.000 – – 0.004 0.003 0.009

F × L × Y 1.585 0.849 3.941 0.035 0.011 0.518 NA

Residual 21.309 19.955 22.807 1.058 0.962 1.170 0.019 0.016 0.022

Heritability 0.33 0.25 0.66

NA not applicable

Table 5 Estimates of random
effects associated with heading
and anthesis dates for half-sib
families of WS4U-C2
switchgrass evaluated in two plot
types with multiple blocks (B),
locations (L), and years (Y),
including lower and upper 95%
confidence limits

Source of variation Row-plot heading date Spaced-plant anthesis date

Estimate Lower Upper Estimate Lower Upper

Family (F) 10.071 7.709 13.718 7.934 5.911 11.212

F × L 0.207 0.032 > 105 NA

F × B/L 6.270 5.382 7.400 0.000

F × Y 2.634 2.006 3.614 3.509 2.560 5.110

F × L × Y 0.000 NA

Residual 6.876 6.270 7.574 4.477 3.984 5.067

Heritability 0.75 0.76

NA not applicable
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Given the positive correlations for biomass production
among the three plot types, there is a distinct advantage to a
combined selection protocol that utilized sward plots to

identify the best families and spaced plants or row plots to
identify the best plants within those families (Table 6).
Utilization of the vast amounts of additive genetic variance

Table 6 Predicted correlated responses to selection for indirect selection criteria using two selection intensities, all expressed as a percentage of the
expected response to direct selection for sward-plot biomass yield with a selection intensity of 10%

Selection method and traitsa Indirect selection criterion (trait X)

Selection intensity Row-plot
biomass

Spaced-plant
biomass

Row-plot
heading date

Spaced-plant
anthesis date

---------------------------------- % -------------------------------

Individual selection for trait X 0.10 27 63 56 25

Individual selection for trait X 0.01 40 95 85 38

Combined selection for traits X and Y 0.10 110 124 121 109

Combined selection for traits X and Y 0.01 115 136 132 114

a Individual selection is based on selection of individual plants within either spaced plantings or row plots and requires 2 years per cycle, 1 year for
establishment and 1 year for selection and recombination in situ. Combined selection (AWFX-HS of Casler and Brummer, 2008) is based on measuring
biomass yield on sward plots and trait X on either row plots or spaced plants of the same families established at the same time: 1 year for establishment,
2 years for data collection, and a fourth year for creation of a recombination block by transplanting selected individual, followed by seed production

Table 7 Mean prediction
accuracy for genomic predicted
breeding values, across marker-
data types, marker-data
transformations, and prediction
models for sward plot yield in WI
averaged over years and locations

Data type Data transformationa,b,c,d Prediction model (Mean)

GBLUP RKHS BayesB RF

ECS Base 0.235 0.234 0.214 0.237 0.230

PCA 0.235 0.234 0.185 0.027 0.170

Cor 0.207 0.196 0.177 0.188 0.192

LD 0.197 0.209 0.183 0.177 0.192

(Mean) 0.219 0.218 0.190 0.157 0.098

GBS_HMM Base 0.145 0.117 0.103 − 0.001 0.091

PCA 0.145 0.117 0.086 0.040 0.097

Cor 0.159 0.105 0.144 0.133 0.135

LD 0.062 0.079 0.045 0.031 0.054

(Mean) 0.128 0.105 0.095 0.051 0.098

GBS_MI Base 0.109 0.067 0.105 0.183 0.116

PCA 0.109 0.067 0.087 0.117 0.095

Cor − 0.023 0.098 − 0.020 0.137 0.048

LD 0.168 0.152 0.167 0.208 0.174

(Mean) 0.091 0.096 0.085 0.161 0.098

GBS_RFI Base 0.131 0.051 0.081 0.082 0.086

PCA 0.131 0.051 0.073 0.075 0.083

Cor 0.101 0.061 0.015 0.069 0.062

LD 0.114 0.050 0.102 0.122 0.097

(Mean) 0.119 0.053 0.068 0.087 0.098

GBLUP genomic best linear unbiased predictor, RKHS reproducing kernel Hilbert space, BayesBBayesian B, RF
random forest, ECS exome capture sequencing, GBS genotype-by-sequencing, HMM hidden Markov model,MI
mean imputation, RFI random forest imputation
a Base = standard input data based on allelic dosages
b PCA = input data are principal components of the data matrix
c Cor = input data are marker variables scaled through a correlation matrix
d LD = input data are marker variables adjusted for redundancy due to linkage disequilibrium

Bioenerg. Res.



within half-sib families is critically ignored in the HSF breed-
ing system [47, 48, 53, 54]. Simple traits such as plant bio-
mass or flowering time can be used to apply positive and
meaningful selection pressure within families, but at a fairly
high cost in either labor or time. This combined selection
method, AWFX-HS [15], involves the use of simultaneous
and concomitant experiments—a sward-plot study to measure
biomass yield for 2 years and a spaced-plant or row-plot nurs-
ery fromwhich to select the best plants within the best families
after the yield evaluation has been completed. The intensive
labor requirement arises from the need to score or measure all
plants on all families prior to the completion of the sward-plot
yield trial, a massive amount of investment into data collection
on plants and families that have no chance of being selected
for recombination. The alternative is to delay data collection
on the spaced-plant or row-plot nursery until after the highest-
yielding families have been identified, but this would increase
cycle or generation time by at least 1, possibly 2 years. The
disadvantage of this would be to decrease the relative efficien-
cies in Table 6. For example, just adding 1 year to the cycle
time would decrease the values on the bottom line of Table 6
by 20% each, resulting in values of 92, 109, 105, and 91%,
respectively. Essentially, a 1-year delay would defeat the
whole purpose of this selection scheme.

Strictly from a historical standpoint, we already know that
“Godzilla” selection (PS) as described above [7], selection for
later flowering time [11], and selection for spaced-plant bio-
mass [2] are all effective for increasing biomass yield of sward
plots. However, the demonstrated inefficiency of these methods
compared to direct selection for biomass yield in this population
brings us full circle to the dilemma of the best way forward. It is
clear that genomic methods offer a clear advantage to improve
the efficiency of breeding for increased biomass yield in three
ways: decreasing average cycle time, increasing selection inten-
sity, and allowing meaningful selection pressure to be exerted
on all of the additive genetic variance within a population, i.e.,
both among and within families [12, 13]. As a result, genomic
methods allowed for possibly doubling or tripling the expected
gains compared to field-based HSF selection, despite

accuracies of GEBV for sward plot yield being quite low in
the WS4U-C2 population. Such accuracies could not be im-
proved substantially by alternate marker-data transformations
or prediction models, compared to a standard GBLUP ap-
proach. In our analysis, the ECS platform yielded markedly
higher prediction accuracies compared to the less expensive
GBS platform. These results should not generalize to all con-
texts, but they do suggest that investing in more expensive
genotyping platforms may be worthwhile regarding prediction
accuracy and genetic gains. Selection methods based on DNA
markers could be further improved using more sophisticated
approaches, such as selection methods that combine both geno-
mic data and phenotypic data together into selection indices
[12]. Furthermore, the relatively low prediction accuracies ob-
served for the WS4U-C2 population, while still of a magnitude
tomake genomic selection advantageous, are clearly lower than
those observed for switchgrass populations that contain larger
amounts of genetic variability [13].

The two protocols for determining genotype used in this
study illustrated very distinct sequencing approaches. The
two methods differed by the type of representation reduction
and were characterized by very different sequencing depths.
The GBS protocol was designed as a cost-efficient option
for genotyping and was multiplexed at 96 times, whereas
ECS was multiplexed at 12 times. As a result of these major
differences in multiplexing and genome space reduction,
more markers were discovered by ECS, compared to GBS,
resulting in better genome coverage (average physical dis-
tance between markers were 9.1 and 100.8 kb for ECS and
GBS, respectively). Given the short extent of LD in WS4U-
C2 [12], the larger marker density in ECS certainly
contributed to the higher genomic prediction accuracies in
comparison to GBS. Naturally, the superiority of ECS over
GBS may also have been due to the higher uncertainty in
genotype calling and the higher proportions of missing
values in GBS [25, 55, 56].

As a result of the low sequencing depth in GBS, a
liberal threshold on proportions of missing values was
used in GBS, so as to retain a large number of markers.
In GBS, thresholds for maximum proportions of missing
values at 60, 40, and 20% resulted in only 3652; 1039 and
100 markers selected, respectively, while a threshold at
80% resulted in 10,856 markers selected. Besides, thresh-
olds lower than 80% did not result in significant gains in
prediction accuracy, based on GBS_MI and GBLUP: pre-
diction accuracies were 0.109, 0.061, -0.033, and 0.122
for thresholds at 80, 60, 40, and 20% missing values,
respectively. Notably, the gain in prediction accuracy re-
alized for < 20% missing values was non-significant
(p = 0.50 based on a paired t test). Therefore, we chose
to use 80% as a cutoff for missing values, in order to
maximize the amount of marker information available
for imputation and model calibration. However, deeper

Table 8 Mean prediction accuracy for genomic predicted breeding
values, across training schemes for sward plot yield measured in
Arlington and/or Marshfield averaged over years, using the optimal
prediction procedure identified in Table 7: Base—GBLUP with exome
capture sequencing

Training location Testing location

Arlington Marshfield Combined

Arlington 0.200 0.235 0.229

Marshfield 0.206 0.209 0.219

Combined 0.214 0.231 0.235
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analyses on this aspect of genomic prediction protocols
may prove useful, as optimization of such cutoffs by im-
putation approaches, prediction models, and/or marker-
data transformations could probably yield further increases
in prediction accuracy.

Conclusions

In conclusion, breeders of perennial energy grasses are
strongly encouraged to cease or drastically reduce the
use of spaced plantings with no interplant competition or
row plantings with minimal interplant competition for the
purpose of selection for increased biomass yield. We fur-
thermore recommend that biomass measurements from
sward plots and biomass or non-competitive plots be
treated as different traits, e.g., biomass yield on a per-
hectare basis can be extrapolated from sward plots, but
not from plants within no or minimal interplant competi-
tion. Instead, we suggest the term “plant biomass” or
something similar to distinguish this as a different trait
than what is measured on sward plots created by either
drill planting or broadcast seeding.

We also recommend that breeders of perennial energy
grasses strongly consider modifications to improve breed-
ing efficiency by one or more of the following three fac-
tors: (1) decrease cycle time by spending only the amount
of time necessary to obtain accurate assessments of phe-
notype, (2) increase selection intensity by evaluating larg-
er populations for shorter periods of time and with simpler
and more efficient phenotypic evaluation methods, and (3)
devise selection schemes that capture ALL of the additive
genetic variance in the population undergoing selection.
Genomic selection may not be an option for every energy
grass breeder, but as costs continue to decrease and tech-
nology continues to become more mainstream, more
breeding programs are going to have such access and be
able to fund this type of activity.
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