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Study of the genetic diversity of the aflatoxin biosynthesis cluster in Aspergillus
section Flavi using insertion/deletion markers in peanut seeds from Georgia, USA
Paola C. Faustinelli a, Edwin R. Palenciaa, Victor S. Soboleva, Bruce W. Horn a, Hank T. Shepparda,
Marshall C. Lamba, Xinye M. Wanga, Brian E. Schefflerb, Jaime Martinez Castilloc, and Renée S. Ariasa

aNational Peanut Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 1011 Forrester Drive S.E.,
Dawson, Georgia 39842-0509; bGenomics and Bioinformatics Research Unit, Agricultural Research Service, United States Department of
Agriculture, 141 Experiment Station Road, Stoneville, Mississippi 38776; cCentro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130,
Colonia Chuburná de Hidalgo, Mérida, Yucatán 97200, México

ABSTRACT
Aflatoxins are among themost powerful carcinogens in nature. Themajor aflatoxin-producing fungi are
Aspergillus flavus and A. parasiticus. Numerous crops, including peanut, are susceptible to aflatoxin
contamination by these fungi. There has been an increased use of RNA interference (RNAi) technology
to control phytopathogenic fungi in recent years. In order to develop molecular tools targeting specific
genes of these fungi for the control of aflatoxins, it is necessary to obtain their genome sequences.
Although high-throughput sequencing is readily available, it is still impractical to sequence the genome
of every isolate. Thus, in this work, the authors proposed a workflow that allowed prescreening of 238
Aspergillus section Flavi isolates from peanut seeds fromGeorgia, USA. The aflatoxin biosynthesis cluster
(ABC) of the isolateswas fingerprinted at 25 InDel (insertion/deletion) loci using capillary electrophoresis.
All isolates were tested for aflatoxins using ultra-high-performance liquid chromatography. The neigh-
bor-joining, three-dimension (3D) principal coordinate, and Structure analyses revealed that the
Aspergillus isolates sampled consisted of three main groups determined by their capability to produce
aflatoxins. Group I comprised 10 non-aflatoxigenicA. flavus; Group II included A. parasiticus; andGroup III
includedmostly aflatoxigenic A. flavus and the three non-aflatoxigenic A. caelatus. Whole genomes of 10
representative isolates from different groups were sequenced. Although InDels in Aspergillus have been
used by other research groups, this is the first time that the cluster analysis resulting from fingerprinting
was followed by whole-genome sequencing of representative isolates. In our study, cluster analysis of
ABC sequences validated the results obtained with fingerprinting. This shows that InDels used here can
predict similarities at the genome level. Our results also revealed a relationshipbetweengroups and their
capability to produce aflatoxins. The database generated of Aspergillus spp. can be used to select target
genes and assess the effectiveness of RNAi technology to reduce aflatoxin contamination in peanut.
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INTRODUCTION

The genus Arachis has a considerable number of spe-
cies, including A. hypogaea (peanut), the most impor-
tant species for human consumption. The value of its
seeds lies mainly in the high oil (42–52%) and protein
(25–32%) contents (Roca and Mroginski 1991).
Approximately 30 million tons of peanuts are produced
annually, with the United States positioned as the third-
ranked producer after China and India. In the United
States, Georgia is the main producer, with over 49% of
the national total (http://nationalpeanutboard.org).

Numerous agricultural products, including pista-
chio, almond, maize, fig, hazelnut, and peanut, have
been reported to contain aflatoxins (Spanjer et al.
2008; Liao et al. 2013). These carcinogenic substances

are secondary metabolites produced by multiple species
from section Flavi, including Aspergillus flavus and
A. parasiticus (Horn 2007). Aflatoxins are mainly asso-
ciated with acute toxicity (Azziz-Baumgartner et al.
2005), liver cancer (Murugavel et al. 2007), and child
growth impairment (Gong et al. 2004). The high sus-
ceptibility of peanut to Aspergillus spp. makes the crop
a potential health risk because of aflatoxin contamina-
tion (Wu et al. 2014). Since approximately 5000 million
people worldwide are at risk of exposure to aflatoxins
(Strosnider et al. 2006), it is critical to control aflatoxins
in the food supply (Wang et al. 2001).

Different control methods have been developed to
prevent aflatoxin contamination in peanut and other
crops. Several strategies, including biocontrol, and
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cultural and storage practices (Khlangwiset and Wu
2010), help minimize contamination, but they are
costly and not entirely effective (Yu 2012). In the
United States alone, control of aflatoxins costs the pea-
nut industry between 25 and 58 million dollars
annually (Lamb and Sternitzke 2001; Leidner 2012).
In addition, worldwide efforts have not yet produced
aflatoxin-resistant breeding lines of peanut (Nigam
et al. 2009).

The aflatoxin biosynthesis cluster (ABC) includes 25
identified genes clustered within a 70-kb DNA region.
Despite the high level of conservation of gene order and
intergenic distances (Ehrlich et al. 2005), deletions have
been observed and show different patterns (Chang et al.
2005). Callicott and Cotty (2015) proposed a practical
method for monitoring deletions that affect aflatoxin
biosynthesis using cluster amplification patterns
(CAPs). This multiplex polymerase chain reaction
(PCR) amplified insertion/deletion (InDel) regions
associated with atoxigenicity in A. flavus. Nucleotide
sequence data were obtained for characterizing intras-
pecific variability in this species. The method proposed
was neither expensive nor time-consuming. InDel mar-
kers, together with a sensitive analytical tool such as
fluorescent capillary electrophoresis, would allow quan-
tifying single-base-pair changes to obtain large amounts
of high-quality data. These data are valuable in biotech-
nology programs, especially for RNA interference
(RNAi) methods, where the development of fungal
resistance in plants is possible by silencing fungal
genes through the generation of siRNAs in the plant
host (Tinoco et al. 2010; Arias et al. 2015).

Genetic variability in section Flavi is expected, espe-
cially in this biosynthesis cluster, because natural popu-
lations are diverse (Bayman and Cotty 1993), there is
evidence of sexual reproduction (Horn et al. 2009a,
2009b) and deletions are common in the ABC (Chang
et al. 2005). By sequencing 21 intergenic regions,
Carbone et al. (2007) found five distinct recombination
blocks within the entire ABC from 24 A. parasiticus
isolates from a single Georgia field. Moore et al. (2009)
also examined patterns of linkage disequilibrium span-
ning 21 regions in the same ABC but of A. flavus,
showing that recombination events are randomly dis-
tributed across the cluster in this species. They empha-
sized the importance of population studies to elucidate
the specific mechanisms that regulate and maintain
aflatoxigenicity. Ehrlich et al. (2003) compared the
nucleotide sequences of the aflJ/aflR genes from differ-
ent Aspergillus species and found variability in elements
that may affect the expression of genes required for
aflatoxin accumulation. A single nucleotide mutation
in the pksA-nrps gene was identified as responsible for

the lack of production of aflatoxins and cyclopiazonic
acid (CPA) in the biocontrol A. flavus K49 (Chang et al.
2012). High-throughput DNA sequencing technologies
allow analyzing genetic variation at the nucleotide level;
however, their cost makes them impractical for analyz-
ing large numbers of fungal isolates. Here, we propose a
workflow using InDel markers to identify the predomi-
nant aflatoxigenic strains within a particular geographic
region, with the objective of sequencing the whole
genomes of a few representative isolates and generating
an Aspergillus spp. database. This genetic information
can be used to determine the predominant genetic
variants to develop control strategies to reduce afla-
toxin contamination in susceptible crops.

MATERIALS AND METHODS

A total of 151 peanut samples were obtained from the
Georgia Federal-State Inspection Service (www.gafsis.
com). These seeds were collected from the entire state
of Georgia, USA, during the 2014 harvest season. For
fungal isolation, samples were shelled and approxi-
mately 10 mL seed volume was placed into sterile 50-
mL centrifuge tubes. Sterile water was added to cover
the seeds, and tubes were placed in a KLECO (Visalia,
California, USA) tissue pulverizer for 2 min. The liquid
obtained was plated on two modified dichloran Rose
Bengal (MDRB) agar plates (50 and 100 μL each) and
incubated at 37 C for 72 h (Horn and Dorner 1999).
Spores from Aspergillus section Flavi colonies were
streak plated on fresh MDRB plates and then trans-
ferred to Czapek-Dox (OXOID, Hampshire, UK) agar
slants (Raper and Fennell 1965) for identification
according to Horn and Dorner (1998). A total of 562
isolates were collected and grown in 1 mL of modified
YES broth (20 g yeast extract; 150 g sucrose; 10 g
soytone; 1 L distilled water) and screened for aflatoxins
and CPA production by thin-layer chromatography
(TLC) (Hicks et al. 1997). Finally, single-spore culture
of 238 isolates were randomly selected for aflatoxin B1,
B2, G1, and G2 quantifications, including 14 Aspergillus
spp. strains for reference (NRRL 50429 [TX21-5],
NRRL 3357, NRRL 21882, NRRL 50428 [NC7-8],
NRRL 50427 [AL4-7], NRRL 29487 [F10], NRRL
29459 [F35], NRRL 29473 [F86], NRRL 29537 [F90],
NRRL 18543 [AF36], 99-8Q, 51-1EP, 144EP). After a
cleanup procedure (Sobolev and Dorner 2002), aflatox-
ins were quantified using the following equipment (all
from Waters): Acquity ultra-high-performance (UPLC)
instrument equipped with a matching UPLC H-class
quaternary solvent manager, UPLC sample manager,
UPLC fluorescence detector (FLR), and an Acquity
UPLC BEH C18 2.1 × 50 mm, 1.7 µm column. The
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mobile phase was composed of a H2O/MeOH/CH3CN
(64:23:13, v/v/v) mixture, and the flow rate was 0.30
mL/min. The column was maintained at 35 C in the
system column heater. Concentrations of aflatoxins
were determined by reference to peak areas of corre-
sponding commercial standards (Sigma, St. Louis,
Missouri, USA). The results were expressed in µg/mL
of culture broth. Detection limit for aflatoxins G1 and
B1 was 0.1 µg/mL and for aflatoxins G2 and B2 was 0.01
µg/mL.

Insertion-deletion (InDel) primers were designed
based on seven ABCs of Aspergillus spp. arbitrarily
chosen from the National Center for Biotechnology
Information (NCBI) GenBank database for the purpose
of observing InDels; accession numbers were
AY371490.1, AB196490.1, AY510454.1, AY510451.1,
AY510453.1, AY510452.1, and AY510455.1. The ABC
sequences were aligned, and a consensus was generated

and realigned with the seven sequences to visualize
InDels especially in conserved areas adjacent to the
distal end and telomeric region. This alignment ren-
dered approximately 28 random InDel areas for which
we could design primers that, including these con-
served areas, would generate 100–500-bp amplicons,
suitable for our capillary electrophoresis platform.
Alignments and primer design were performed using
Clone Manager Professional 9 (Sic-Ed Software,
Morrisville, North Carolina). A total of 25 InDel primer
sets (TABLE 1) were designed (FIG. 1) and tested on
the 248 Aspergillus spp. isolates, including the 14 refer-
ence strains. Forward primers were 5′ tailed with the
sequence 5′-CAGTTTTCCCAGTCACGAC-3′ and
labeled with 6-carboxyfluorescein (6-FAM) (Integrated
DNA Technologies, Coralville, Iowa) for product label-
ing (Waldbieser et al. 2003). Reverse primers were
tailed at the 5′ end with the sequence 5′-GTTT-3′ to

Table 1. InDel markers designed throughout the aflatoxin biosynthesis cluster to discriminate Aspergillus species.

Marker
name Forward 5′ → 3′ Reverse 5′ → 3′

Range of amplicon sizes
(bp)

Number of
alleles

(mean ± SE)
Total number of amplicons/

marker

AFLC01 CCGACCTCACGACGCATTAT CCGGCTAGCTTCAACAGACG 143–370 0.99 ± 0.01 8
AFLC02 GGTTGGCGGATTGAGAGGTA GGAGATCAGCCGAGAAGACA 104–296 1.04 ± 0.02 11
AFLC03 TCCGCCGAGAGCCATAATAG GGATGCTGACACCTCGATAG 121–161 1.06 ± 0.02 4
AFLC04 ACAGCTGGCATGCTCCGTAT ATTGCTGCGCACGACGCTTA 197–370 0.98 ± 0.01 3
AFLC05 GTGGATGGACTGCCACTTAG AGACCACAGTGAGTGCTTCT 154–175 0.98 ± 0.01 3
AFLC06 GCTGTCCTGGACGGATAGTA CATCGGTCAACGACGAAGTA 230–232 0.93 ± 0.02 3
AFLC07 GTCAGCAAGAGGAGCCTTCA GGTCACGGAGATCCTCCATA 161–407 0.60 ± 0.03 4
AFLC08 CGCCAGCACGGAGATCGAAT CGTCTCCTCAGGCGGTCTAT 224–399 1.06 ± 0.03 6
AFLC09 AACACTCCGCTGCTCAACTA AACGCTCAGGCAACGTCGAA 113–158 1.04 ± 0.01 3
AFLC10 GACGTTGCCTGAGCGTTAAT TGACTGGTCGTCGCCAGAAT 202–208 1.00 ± 0.01 3
AFLC11 CTCGACGTAGCGTTGAACAG AACGCATGGCCAGCTAATCT 215–468 0.98 ± 0.01 3
AFLC12 CGCAAGGAGCTCGACCAATA TTCAGCTCAGCGACGAGAGT 240–360 1.06 ± 0.03 4
AFLC13 TCGGTTCAATGCTCGAACAC TCCAACCTTCGGCCTAGTCT 139–417 1.00 ± 0.01 6
AFLC14 GACGCCTCGGCTTGTCAAGA CTCCAACCTTCGGCCTAGTC 95–107 0.92 ± 0.02 4
AFLC15 GCTCTACAGGCTGATTCAAG TCGACAGTCCGACAATATGC 206–370 1.02 ± 0.01 4
AFLC16 ATCGCAGCGGAAGCTTGGAA AGTCTCGGACTCCGGTGACA 147–416 1.15 ± 0.04 12
AFLC17 GCACAACTCGTACAGCTATC TCTAAGTGCGAGGCAACGAA 127–391 1.13 ± 0.03 10
AFLC18 GGCAGCCAGACCAAGGAATA CCTTCTCGTAGCCGCTCATC 133–412 1.01 ± 0.01 5
AFLC19 ACAGGACCGCACGGATCAAT AGGAGCGGATGTCGAAGTCT 262–490 0.98 ± 0.01 6
AFLC20 GCCTAGCGCTCCATTCTCAG CCATCGTATCCGGCTCTATC 116–370 0.98 ± 0.02 6
AFLC21 TACCTTACTCCGCTAAGCAG GCGGTCACCTACCAATGAAT 151–371 1.01 ± 0.01 5
AFLC22 TTCGCAGGAGTGTAGCCAAG GTTGGAACACGCTCCATAGG 121–371 0.98 ± 0.01 5
AFLC23 GGCGTCAGTGGATTCCGGAT CGTGGTCCGCAGCAATAGTG 125–149 1.05 ± 0.01 2
AFLC24 GAACGAGATAACGGCTGCAT ATCAATCCACGGACCGTTGT 102–427 0.99 ± 0.02 8
AFLC25 CAGTGCGACCGGATGGTACA CGGCTGAACGCGATGACTCT 182 1.00 ± 0.01 1

Figure 1. Location of InDel markers in the aflatoxin biosynthesis cluster of Aspergillus flavus NRRL 3357.
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promote nontemplate adenylation (Brownstein et al.
1996). DNA was extracted from single-spore fungal
isolates by using the DNeasy Plant Mini Kit (Qiagen,
Valencia, California) following the manufacturer’s
instructions. Fungal material was vigorously disrupted
twice for 40 s at room temperature in a bead mill Omni
Bead Ruptor 24 homogenizer (Omni International,
Kennesaw, Georgia). DNA was isolated using an auto-
mated QIAcube robotic station (Qiagen), and DNA
concentrations were determined on a NanoDrop
(Thermo Scientific, Waltham, Massachusetts). The
PCR amplification used 10 ng DNA template and
Titanium Taq DNA polymerase (Clontech, Mountain
View, California) in 5-μL reactions on an M&J thermal
cycler (Bio-Rad Laboratories, Hercules, California).
Amplification conditions were 95 C for 1 min, 60 C
for 1 min (two cycles), 95 C for 30 s, 60 C for 30 s, 68 C
for 30 s (for 27 cycles), and final extension at 68 C for 4
min. Fluorescently labeled PCR fragments were ana-
lyzed on an ABI 3730XL DNA analyzer, and data
were processed using GeneMapper version 4.0 (both
from Applied Biosystems, Foster City, California).
Presence of alleles was converted to a binary matrix,
where different size amplicons (bp) at each locus were
scored as “1” and absence of an amplicon was scored as
“0”; samples that showed no amplification were con-
sidered to have “null allele or part of a larger deletion”
and scored as “0.” Isolate relationships according to
InDel data and aflatoxin production were studied
using a principal coordinate analysis (PCoA) on the
NTSYSpc software (Rohlf 2000).

Cluster analysis was performed for the results of
25 InDels and 248 Aspergillus DNA samples; genetic
distances and neighbor joining (Saitou and Nei 1987)
were calculated using NTSYSpc software (Rohlf 2000).
The confidence levels for the dendrograms were
assessed by bootstrap resampling (100 replicates)
(Felsenstein 1985; Efron et al. 1996) by using
WinBoot (Yap and Nelson 1996).

An assignment test of the 248 isolates was made with
Structure 2.1 (Pritchard et al. 2000) using the admix-
ture model with 200,000 burn-ins and 200,000 itera-
tions to allow the Markov chain to reach stationarity. A
total of 10 independent simulations were run for each
value of K tested, ranging from 1 to 10. The data
generated were used to obtain the ideal K with the
method of Evanno et al. (2005) using the Structure
Harvester program (Earl and vonHoldt 2011).

Genomic DNA of representative isolates was pro-
cessed for whole-genome sequencing using Next-
Generation Sequencing (Illumina Hiseq2500; San
Diego, California, USA) at the High-Throughput
Genomics Centre, University of Washington. The

sequenced reads obtained were processed as published
in Faustinelli et al. (2016) using Geneious 8.1.7 (Kearse
et al. 2012). The ABC sequences from the 10 genomes
were aligned to the ABC (92,078 bp) of A. flavus NRRL
3357 (Nierman et al. 2015) using the Clone Manager
multiway alignment tool (Clone Manager 9
Professional Edition; Denver, Colorado, USA) to gen-
erate, according to sequence similarity, the correspond-
ing dendrogram.

RESULTS

More than 500 Aspergillus isolates were collected from
peanut seeds in Georgia during 2014. The predominant
species from section Flavi were A. flavus (95.5%), A.
parasiticus (3.3%), and A. caelatus (1.2%). The 25 InDel
markers designed were used to assess the genetic varia-
tion within the ABC of 234 randomly selected
Aspergillus isolates as well as 14 reference Aspergillus
strains. The InDel markers detected 129 alleles, ranging
from 1 to 12 alleles per marker. Some primers identi-
fied deletion patterns associated with a deficiency of
aflatoxin production. TABLE 1 includes sequences of
InDel primers and amplicon sizes, alleles per sample,
and number of amplicons obtained per marker.

The dendrogram obtained from InDel markers
(FIG. 2) revealed, with a 25% cutoff distance criterion
(0.4025), that the section Flavi isolates sampled in this
study belonged to three main groups; five groups were
represented by one isolate (25-5, 55-2, 69-1, NC7-8
[NRRL 50428], TX21-5 [NRRL 50429]). Group I com-
prised 10 non-aflatoxigenic producers, including one
used as a biocontrol agent (NRRL 21882). Group II
included A. parasiticus (aflatoxin B and G producers).
Group III, the largest, included mostly aflatoxigenic A.
flavus and the three non-aflatoxigenic A. caelatus iso-
lates that formed a subgroup (GIII-a). Four additional
subclusters were distinguished based on their capability
to produce either large or small amounts of aflatoxin
B1. Half of subgroup GIII-b, which represented 18.5%
of the Group III total, produced between 50 and 100
µg/mL of aflatoxin B1, whereas the rest produced less.
GIII-c represented almost 43% of the Group III total
and comprised the higher aflatoxin B1 producers, e.g.,
isolate 53-2 with 407.5 µg/mL, 23-1 with 313.4 µg/mL,
and 24-1 with 254.8 µg/mL. The other two A. flavus
subgroups (GIII-d and GIII-e) produced average afla-
toxin B1 concentrations of 57.24 ± 44.8 (±SD; n = 17)
and 6.47 ± 17.9 (n = 17) µg/mL, respectively.

Estimates of ancestral components of the 248
Aspergillus isolates using Structure program are shown
in FIG. 3. The value that captures the major structure
in our data is K = 10 (ΔK = 14.2271). Color coding was
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Figure 2. Cluster analysis of 248 Aspergillus isolates from peanut seeds from Georgia. Dendrogram obtained by DNA samples and 25
InDel markers coded as presence/absence of amplification using Neighbour Joining algorithm with NTSYSpc software. GI to GVII
represent groups with different aflatoxin-producing capability. (An enlarged version of FIGURE 2 is included with the online
supplemental files available at www.tandfonline.com/umyc.)

Figure 3. Estimates of ancestral components of 248 isolates of Aspergillus section Flavi from Georgia peanut seeds, using Structure
program (k = 10) and 16 InDel markers. GI to GVII represent groups with different ancestral components.
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used to show the probability of belonging to a group
(Peña-Malavera et al. 2014). Each individual is repre-
sented by a vertical line partitioned into colored seg-
ments whose lengths are proportional to the
contributions of the ancestral components. This struc-
ture clustering provided data comparable with the den-
drogram obtained with InDels (FIG. 2). Group I (GI),
comprising the 10 non-aflatoxigenic isolates, was
clearly differentiated in red, and Group II (GII), A.
parasiticus, was shown in green. Group III was hetero-
geneous as expected and showed subpopulations in
yellow (GIII-d) and orange (GIII-e). We can also iden-
tify two admixed subpopulations, GIII-b (blue and light
blue) and GIII-c (purple, light orange, and turquoise),
and the subgroup comprising A. caelatus (GIII-a) was
shown in fuchsia.

The data obtained by UPLC showed that all the
isolates from Group I and subgroup GIII-a (A. caelatus)
were non-aflatoxigenic. In Group II, A. parasiticus pro-
duced aflatoxin B1 ranging from 1.41 to 122.15 µg/mL,
aflatoxin G1 from 0.5 to 137.92 µg/mL, and trace
amounts of B2 and G2. The 223 A. flavus isolates in
Group III produced aflatoxin B1 ranging from not
detected to 407.49 µg/mL (SUPPLEMENTARY
TABLE 1). The principal coordinate analysis (PCoA)
based on the aflatoxin production data showed that the
first three coordinates explained more than 89% of the
total observed variation. The first (PCo1) and second
(PCo2) coordinates distinguished most of the isolates
that do not produce aflatoxins, including Group I. The
third coordinate (PCo3) contributed to the differentia-
tion of Group II (A. parasiticus) isolates, which pro-
duced B and G aflatoxins (SUPPLEMENTARY FIG. 1).

The sensitivity of capillary electrophoresis for
detecting insertions/deletions allowed grouping of
individuals that do not produce aflatoxins. Isolates
from Group I, for example, were characterized by a
deletion of 40 bp between the aflD and aflB genes
(marker AFLC09) and an insertion of a 173-bp seg-
ment into the aflC gene region (marker AFLC04). In
Group II, the presence of a 135-bp insertion was
detected, which separated all of the A. parasiticus
isolates into one cluster (marker AFLC21) except for
isolate 206-3, which was the highest aflatoxin B2
(4.1 µg/mL) and G2 (6.6 µg/mL) producer. Group III
was more heterogeneous in exhibiting distinct sub-
clusters. The non-aflatoxigenic A. caelatus was clearly
discriminated, forming a homogeneous group with
marker AFLC17 (SUPPLEMENTARY FIG. 2).

These analyses allowed for the selection of 10 repre-
sentative section Flavi isolates from various groups for
whole-genome sequencing using Illumina. The DNA
dendrogram generated by multiple alignments of the

entire ABC of the 10 isolates (FIG. 4) showed a cluster-
ing comparable to the one obtained with the InDels
(FIG. 2). Alignment of the ABC of A. flavus 26-3
(aflatoxin and CPA nonproducer) with A. flavus
NRRL 3357 showed 95% base matching in the 92,078-
bp total length of aligned sequences, whereas A. para-
siticus 68-5 showed an 81% base matching with A.
flavus NRRL 3357. Group III included two isolates
(78-6, 54-2) that only produced low aflatoxin B1
(0.002 and 0.004 µg/mL, respectively) and that shared
98–99% of bases with A. flavus NRRL 3357. Despite the
high percentage of ABC homology, genetic differences
were enough to differentiate section Flavi isolates in
their capability to produce toxins.

The genome sequences of eight A. flavus isolates
and one A. parasiticus isolate have been submitted to
NCBI and the nucleotide sequence accession num-
bers are as follows: LOAN00000000, LLET00000000,
LOAO00000000, LOAM00000000, LIZI00000000,
LIZJ00000000, LOAK00000000, LOAL00000000, and
LOAP00000000 (Faustinelli et al. 2016).

DISCUSSION

Although the cost of sequencing entire genomes of
microorganisms has significantly decreased in recent
years (Baym et al. 2015; Previte et al. 2015; Rowan
et al. 2015), it is still impractical to sequence hundreds
or thousands of individuals to generate genetic data.
Here, we propose a workflow that allows prescreening
the predominant aflatoxigenic strains as a means to
obtain DNA sequencing information without sequen-
cing all the individuals. This approach involves finger-
printing with InDel markers within the ABC using
capillary electrophoresis, UPLC detection of aflatoxin
production, and whole-genome sequencing of few
representatives within groups. The genetic data were

Figure 4. Cluster analysis of Aspergillus isolates from Georgia.
Dendrogram generated according to aflatoxin biosynthesis clus-
ter sequence similarity of 10 isolates using Geneious 8.1.7 and
Clone Manager 9 software. Group I to Group III are groups with
different capability to produce aflatoxins.
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organized into a genomic Aspergillus spp. database that
will be useful for future target gene selection to develop
aflatoxin control strategies (FIG. 5).

Callicott and Cotty (2015) used CAP markers to
characterize the ABC as a practical tool for assessing
intraspecific variability in A. flavus. However, they
indicated that one disadvantage of CAP markers is
the presence of multiple genotypes with the same
CAP profile and/or lesion. In our studies, InDel
fingerprinting efficiently identified genetic biodiver-
sity within the section Flavi. Using fluorescent capil-
lary electrophoresis, these markers were able to locate
insertions and deletions within the ABC that may
result in the inability of the fungus to produce afla-
toxins. For example, the insertion detected in the
aflC gene region may be associated with the inability
of Group I isolates to produce aflatoxins. A large
deletion in A. oryzae (Lee et al. 2006) and a prema-
ture stop codon in the A. flavus biocontrol AF36
pksA gene (Ehrlich and Cotty 2004) are responsible
for their lack of aflatoxin-producing capability.
Ehrlich et al. (2008) showed that biosynthesis of
AFG1 involves nadA reduction in A. parasiticus,
and it was confirmed by Cai et al. (2008) that the
nadA gene encodes the cytosol enzyme required for
the last biosynthesis step of G aflatoxins. The

insertion we found between nadA and hxtA in A.
parasiticus from Group II may contribute to its
capability to produce G aflatoxins.

All analyses (neighbor-joining, three-dimensional
principal coordinate, Structure) revealed that the
Aspergillus isolates sampled in this study were
grouped by their capability to produce aflatoxins.
InDel markers were capable of distinguishing non-
aflatoxigenic from aflatoxigenic Aspergillus spp. as
well as Aspergillus spp. by mycotoxin profile and
amount of aflatoxins produced. Interestingly, these
markers differentiated groups within the toxigenic
A. flavus group (GIII) and showed some association
with the amount of aflatoxin produced. Although
higher concentration of aflatoxin are expected from
S strains (Horn and Dorner 1999), in the year 2014
only L strains were observed in the dilutions plated;
using the same sampling protocol, we usually recover
L and S strains from other geographical areas
(Mohammed et al. 2016). Since point mutations
(Ehrlich and Cotty 2004) or small deletions (Calvo
et al. 2004) in regulatory genes are sufficient to affect
aflatoxin production, further studies should be con-
ducted to determine if the insertions/deletions
observed are related to the capability to produce
large or small amounts of aflatoxins.

Figure 5. Workflow to carry out screening of Aspergillus spp. isolates for aflatoxin-cluster genotype variations (using InDels) and
aflatoxin production.
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Finally, we selected two representative isolates from
the main groups to perform whole-genome sequencing
using Illumina. The dendrogram generated according
to genomic DNA sequences matched the cluster analy-
sis obtained with InDels. Despite the high percentage of
ABC homology observed, the genetic differences
obtained allowed discrimination between species
(A. flavus, A. parasiticus) and an association of isolates
with their aflatoxin-production capability. The genetic
information generated here is required for the design of
control strategies where the identification of conserved
regions within genomes is essential. The effectiveness of
RNAi-mediated resistance is difficult to predict. For
example, in transgenic tobacco plants, silencing of the
glucuronidase (GUS) gene translocated from the plant
to the pathogen Fusarium verticillioides was 62–97%
effective (Tinoco et al. 2010). In transgenic wheat,
silencing of a gene within the phytopathogenic fungus
Puccinia striiformis f. sp. tritici infecting wheat was
70–90% effective (Yin et al. 2011). Elbashir et al.
(2001) performed extensive analysis of small interfering
RNA (siRNA) duplexes, concluding that the target
recognition is a highly sequence-specific process. The
Aspergillus database generated using InDel markers and
DNA sequencing will provide a full view of relevant
targets from the genome of this pathogen.

In conclusion, InDel markers based on the aflatoxin
biosynthesis cluster (ABC) have the ability to distinguish
groups within section Flavi, showing their potential
application for the selection of the most abundant geno-
types in a sampled area and minimizing the number of
entire genomes to DNA sequences. In this work, we
developed a workflow that involves fingerprinting with
25 new InDel markers using capillary electrophoresis.
Although InDels in Aspergillus have been used by other
research groups, this is the first time that the cluster
analysis resulting from fingerprinting was followed by
whole-genome sequencing of representative isolates. In
our study, the cluster analysis of the 10 ABC sequences
validated the results obtained with the InDels. This shows
that the 25 InDels used here can predict similarities at the
genome sequence level. Our results also revealed a rela-
tionship between groups and their capability to produce
aflatoxins. The database generated of Aspergillus spp.
genomes will provide valuable information to design
RNAi targets and to evaluate the effectiveness of the
technology to reduce aflatoxin contamination in peanut.
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