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H I G H L I G H T S

• Fathead minnow larvae were main-
tained at the Elkhorn River Research
Station for an in-situ exposure to a
seasonally-occurring runoff.

• There was a 1.5– to 13-fold change in
waterborne agrichemical contaminants
including atrazine, acetochlor and
metolachlor.

• Peaks in sediment contamination by ag-
richemicals was discordant with those
of waterborne contaminants.

• Minnow larvae demonstrated compen-
sation following reduction in size and
androgenic gene expression by agri-
chemical exposure.
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Agriculturally-dominated waterways such as those found throughout the Midwestern United States often expe-
rience seasonal pulses of agrichemical contaminants which pose a potential hazard to aquatic organisms at vary-
ing life stages. The objective of this study was to characterize the developmental plasticity of fathead minnow
larvae in a natural environment subject to a seasonal episodic perturbation in the form of a complex mixture
of agricultural stressors. Fathead minnow larvae were maintained at the Elkhorn River Research Station for a
28-d in situ exposure to an agrichemical pulse event. Minnow larvae were sampled after 14 and 28 days to char-
acterize developmental plasticity through growth measures and relative gene expression. Concentrations of ag-
richemical contaminants measured in water using polar organic chemical integrative samplers and composite
sediment samples throughout the 28-d exposure were quantified using gas chromatography–mass spectrome-
try. Elevated concentrations of acetochlor, atrazine, and metolachlor were indicative of inputs from agricultural
sources and were associated with reductions in body mass, condition factor, and androgenic gene expression
in river exposed fathead minnow larvae. However, following a 14-d in situ depuration during the post-pulse pe-
riod, river exposed larvae overcompensated in previously suppressed biological endpoints. These results indicate
that fathead minnow larvae are capable of compensatory responses following episodic exposure to agrichemical
stressors.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Successful development of any organism requires an accommodat-
ing environment. This is especially true for aquatic vertebrates such as
fish that rely on a combination of environmental and genetic cues to
regulate early life growth and ontogeny (Baroiller et al., 2009; Pittman
et al. 2013). Diel and seasonal oscillations in abiotic factors such as tem-
perature, dissolved oxygen and suspended solids can profoundly alter
growth, metabolism and survival of fish larvae (Pérez-Domínguez
et al. 2006; Pérez-Domínguez and Holt 2006; Shrimpton et al. 2007;
Villamizar et al. 2012; Armstrong et al. 2013). Beyond growth and de-
velopment, several abiotic factors are also recognized to influence sexu-
al determination and differentiation in a wide variety of species (as
reviewed by Devlin and Nagahama 2002). For example, exposure of
West African cichlid larvae (Pelvicachromis pulcher) to slight acidic con-
ditions (pH 5.5) during early development results in a female-biased
sex ratio (Reddon and Hurd 2013). Although fish acclimate to natural
variation in their native environments, the presence of anthropogenic
stressors presents novel challenges for larval and juvenile fish.

Exposure to agricultural runoff is one such example of a widespread
anthropogenic stressor that can influence larval fish. In manyMidwest-
ern streams, agrichemical concentration is seasonal with the highest
concentrations occurring during the spring (Kolok et al. 2014). As a pol-
lutant mixture, agricultural runoff contains fertilizers (Kaushal et al.
2011), pesticides (Schulz 2004; Vecchia et al. 2009; Lerch et al.
2011a), and veterinary pharmaceuticals (Kolok and Sellin 2008;
Biswas et al. 2013; Jaimes-Correa et al. 2015) whichmove downstream
as “pulses” that persist on an order of days to weeks depending on the
hydrology of the affected watershed (Blann et al. 2009). Throughout
the spring there will be a series of short-term pulsatile events which
in composite will make up the overall spring pulse (Ali and Kolok
2015). The short-term peaks in agrichemicals tend to overlap with dra-
matic fluctuations in physicochemical parameters (e.g. temperature,
dissolved oxygen, salinity, suspended solids) related to increased river
discharge (Blann et al. 2009; Zhang et al. 2015). Early life stage fish
may be particularly sensitive to the covariation among stressors, as lar-
vae are balancing the metabolic demands of growth and organogenesis
while simultaneously responding to their unpredictable surroundings.

In the Midwestern United States, agrichemical pulses follow precip-
itation events from May until July (Crawford 2001; Smiley et al. 2014;
Zhang et al. 2015) making a predictable and natural setting for investi-
gating their biological impacts. Indeed,field studies exposingfish to sea-
sonally occurring agricultural runoff have documented endocrine
disruption in the reproductive axis of otherwise intact adult females
(Sellin et al. 2009; Sellin Jeffries et al. 2011a; Sellin Jeffries et al.
2011b; Knight et al. 2013; Ali and Kolok 2015; Zhang et al. 2015). Pe-
riods of elevated discharge and pesticide loads were associatedwith de-
creased expression of the steroid responsive genes vitellogenin (VTG),
estrogen receptor subtype α (ERα) and androgen receptor (AR)
(Knight et al. 2013; Ali and Kolok 2015; Zhang et al. 2015).

In larvalfish, steroid receptors regulate gene expression, growth and
organogenesis. Leet et al. (2012) found that fathead minnow larvae
(Pimphales promelas) (0–45 days post fertilization), exposed to agricul-
tural ditchwater contaminated with pesticides and androgenic steroids
under semi-natural conditions had increased body masses and a male
biased sex ratio relative to lab water controls. More recently, Ali et al.
(2016) reported that the brief in situ exposure of fathead minnow lar-
vae, 5–12 days post hatch (dph), to an agrichemical pulse resulted in
impaired growth and persistent suppression of the steroidogenic en-
zyme aromatase despite a 16 d recovery period in clean water.

Developmental plasticity presents amajor challenge for understand-
ing the response of larval fish towards episodic stressors. Plasticity al-
lows the larvae to match its rate of development to oscillations within
the environment (Pittman et al. 2013). Under adverse conditions devel-
opment may be attenuated. When optimal conditions are restored, de-
velopment may compensate, returning to a normal trajectory (Ali et al.

2003). Following a simulated cold front, red drum larvae (Sciaenops
ocellatus) reared under diel thermocycles exhibited enhanced growth
and feeding relative to larvae reared at constant temperatures (Pérez
Dominguez et al. 2006). While thermal effects on developmental de-
pression and compensation have been well studied, there is a paucity
of literature that highlights the influence ofweather-driven episodic ex-
posure to physicochemical stressors from agricultural sources.

To date, there are very few studies that utilize larval fish for in situ
exposures, and even fewer that investigate the impact of an episodic
stressor like agricultural runoff. Furthermore, many of these studies
only examine biological endpoints at a single time point after the expo-
sure, an experimental design that fails to characterize how larval plas-
ticity responds to intermittently polluted environments. The objective
of this study is to characterize the developmental plasticity of fathead
minnow larvae in a natural environment subject to a seasonal episodic
perturbation in the form of a complex mixture of agricultural stressors.
We hypothesized that 1) larval fish subjected to an agrichemical pulse
under natural conditions would experience down regulations in endo-
crine function and growth immediately following exposure, and 2) the
exposed larvae would show partial or complete compensation in endo-
crine function and growth following a recovery period in thefield. To as-
sess this, fathead minnow larvae were maintained at the Elkhorn River
Research Station over the course of an agricultural runoff event. Larvae
were assessed for changes in endocrine responsive gene markers and
growth after 14 and 28 d following the start of the exposure and com-
pared to controls maintained in clean water at the Elkhorn River Re-
search Station.

2. Materials and methods

2.1. Animal production and maintenance

Fathead minnow larvae (Pimphales promelas) used for this experi-
ment were obtained from the Animal Culture Unit at the University of
Nebraska at Omaha, Omaha, NE. All procedureswere conducted in com-
pliance with protocols approved by the University of Nebraska Medical
Center Institutional Animal Care and Use Committee (Protocol #98-
075-110). All fish were maintained in dechlorinated tap water at
25 ± 1.0 °C. Beginning on April 15, 2015, breeding triads of adult fat-
head minnows were established consisting of one male and two fe-
males. Fish were housed in 30 L aquaria, divided into two
compartments by a plastic, porous divider with two triads in each
aquarium. Breeding triads were provided with a breeding tile (12-cm-
long sections of polyvinyl chloride tubing 8 cm in diameter split in
half lengthwise) on which eggs were laid.

After the triads began to breed, the tiles with eggs were removed
daily from the aquaria and transferred to 1 L aerated beakers. Unfertil-
ized and fungus infected eggs were removed daily, and surviving em-
bryos all hatched by 5 days post fertilization. Upon hatching, the
larvae were transferred to 1 L beakers at a density of 100 larvae per
liter. A daily static renewal of the water within these beakers was con-
ducted replacing approximately 80% of the total volume. All larvae
were fed daily with a mixture of newly hatched (b24 h old) Artemia
nauplii (INVE Aquaculture, Salt Lake City, UT).

2.2. Exposure at the Elkhorn River Research Station

Exposure of all fatheadminnow larvaewas conducted at the Elkhorn
River Research Station (ERRS) where previous field studies have identi-
fied biological impacts and changes in endocrine responsive gene ex-
pression following in situ exposure to agricultural runoff (Knight et al.
2013; Ali and Kolok 2015; Zhang et al. 2015; Ali et al. 2016). The ERRS
is an open-air facility located approximately 10 km upstream from the
confluence of the Elkhorn and Platte Rivers, Nebraska, USA. The station
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is equipped to pump water continuously from the Elkhorn River into
stainless steel mesocosms capable of supporting aquatic organisms
(Ali and Kolok 2015; Zhang et al. 2015; Ali et al. 2016).

The sampling regime for water, sediment and biological samples is
outlined in Fig. 1A. Biological sampling consisted of a subset of fish
taken 14-d after the start of the exposure (Exposure 1) to evaluate the
immediate impact of the pulse, while the remaining fish were sampled
14 d after the pulse had subsided to evaluate their post-pulse recovery
(Exposure 2). Passive samplers (POCIS) were deployed over three dis-
tinct 14-d windows (i.e. pre-pulse, pulse and post-pulse) (see
Section 2.3Water and sediment sampling) to evaluate changes in aque-
ous agrichemical contamination. Finally, weekly sediment samples
(S) were collected across the larval fish exposure to quantify the overall
contribution of sediment-associated agrichemicals to the in-situ
exposure.

The start of the agrichemical pulse was determined using atrazine
test strips (Abraxis, Warminster, PA) as described in previous studies
within the Elkhorn River watershed (Knight et al. 2013; Ali and Kolok
2015; Zhang et al. 2015). Briefly, beginning April 15, 2015 atrazine
test strips were used to test whether concentrations of atrazine in sur-
face water in the Elkhorn River were above or below 3 μg·L−1. These
test strips have been demonstrated to accurately detect the presence
of atrazine and other triazine herbicides at 3 μg·L−1 in surface water
(USEPA2004), with further confirmation of there accuracy byprevious-
ly collected field data (Knight et al. 2013; Ali and Kolok 2015). Tests
were conducted every three to four days where the detection of three
consecutive positive atrazine strips determined the start of the spring
agrichemical pulse on May 8, 2015 (Fig. 1B). After the deployment of
fathead minnow larvae atrazine strip tests were conducted weekly
and following rainfall events.

Fathead minnow larvae, 5 days post-hatch (dph) were deployed
from May 8 until June 5, 2015 and sampled at the end of Exposure 1
(19 dph) and Exposure 2 (33 dph) (Fig. 1A). During the exposure, larvae
treatment groups were maintained at the ERRS in 3 L, half-crescent

shaped, stainless steel chambers designed to fit inside the 10 L
mesocosms (Ali et al. 2016). A portion of the 3 L chamber was made
of 86 μm stainless steel mesh, allowing for river water to flow freely be-
tween themesocosm and the larval chamber, without the loss of larvae.
The 10 L mesocosms are maintained within a larger insulation tank
(16.5 L) that circulates river water to maintain ambient water tempera-
ture of the Elkhorn River.

Two treatment groups, station control and river exposed, were
maintained in separate mesocosms at the ERRS for a 28-day exposure
(5–33 dph). One hundred larvae were transferred into each mesocosm
at the start of the exposure. Station control larvae were transferred to a
mesocosm at the ERRS that was supplied with dechlorinated tap water
replacing the total volume by 80% daily. River exposed larvae were
placed in a mesocosm at the ERRS that received continuous water
flow directly from the Elkhorn River. Both treatment groups were fed,
ad libitum, newly hatched A. nauplii once daily. Both station controls
and river exposed mesocosms were placed within insulating tubs that
circulated Elkhorn River water outside of the exposure chamber to
maintain similar water temperatures. Additionally, both mesocosms
were suppliedwith air-stones to control for differences in dissolved ox-
ygen between treatment groups.

At the end of Exposure 1 and Exposure 2, larvae were transferred to
aerated coolers containing water from their respective mesocosms and
transported to the laboratory. Larvae from each treatment group at the
end of Exposure 1 (n = 35–36) and Exposure 2 (n = 20) were eutha-
nized using a lethal dose of MS-222. Bodymass and lengthwere collect-
ed from both age groups for morphometric analysis. Whole larvae were
flash frozen in liquid nitrogen then stored at−80 °C for analysis of gene
expression by RT-qPCR.

2.3. Water and sediment sampling

Water quality measurements including temperature (°C), pH, con-
ductivity (μS·cm−1), dissolved oxygen (mg·L−1) and suspended solids
(mg·L−1) in both station control and river exposed mesocosms were
taken daily. Sampling for aqueous pesticides was conducted using
polar organic chemical integrative samplers (POCIS) (Environmental
Sampling Technologies, St. Joseph, MO, USA). Prior to deployment, all
POCIS were soaked in 2 L Nanopure water (19.7 MΩ) for 24 h. A single
POCISwas deployedwithin the receiving 10-Lmesocosm for each of the
three sampling periods; a Pre-pulse (April 21–May 5), Pulse (May 8–
22), and Post-pulse (May 22–June 5). A laboratory blank was main-
tained in dechlorinated laboratory tapwater for 14d to evaluate the lab-
oratory water used for the station control mesocosm. At the end of
deployment POCIS were stored separately at −20 °C until further
analysis.

Suspended solids carried in the Elkhorn River accumulated as shoals
of sediment in the bottom of the larval mesocosms over the course of
the 28-d exposure. Sediment was collected weekly from these shoals
for physical and chemical analysis. A composite sample was collected
weekly using glass jars and frozen at −20 °C for pesticide analysis by
the Water Sciences Laboratory at University of Nebraska Lincoln (de-
scribed below). The remaining bulk samplewas stored at room temper-
ature for approximately 48 h allowing suspended solids to settle before
removing excess water. The remaining sediment was dried at 100 °C
until a constant mass was reached (12–24 h). Dry sediment samples
were analyzed using standard methods to determine texture (Gee and
Or 2002) and total organic carbon (TOC) (Islam and Weil, 1998).

2.4. Water and sediment chemistry

Sediment and POCIS samples were stored at -20 °C. Sediments were
processed usingmicrowave assisted solvent extraction (MASE) and ex-
tracts were analyzed using gas chromatography–mass spectrometry
(GC/MS) Zhang et al. (2015). POCIS were extracted according to previ-
ously published protocols Sellin et al. (2009). Reference compounds

Fig. 1. Experimental design (A) for exposure of fathead minnow larvae at the Elkhorn
River Research Station above corresponding temporal changes in Elkhorn River
discharge (B). Exposure periods for fathead minnow larvae (Exposures 1 and 2), water
sampling periods by polar organic chemical integrative samplers (POCIS), and sediment
collection periods indicated by labelled lines. The temporal changes in discharge based
on data collected from the USGS Elkhorn River (06800500) gaging station at Waterloo,
Nebraska, USA. Detection of the agrichemical pulse conducted using atrazine test strips
(see Materials and methods). Positive atrazine test strip results are shown as solid
circles, and negative test results are represented as open circles. Pre-pulse, pulse and
post-pulse periods indicated by boxes.
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and high purity solvents (Optima, Fisher Scientific) were obtained from
Thermofisher (St. Louis, MO) or Sigma-Aldrich (St. Louis, MO). Labelled
internal standards 13C3-atrazine, 13C3-deethylatrazine, and 13C3-
deisopropylatrazine were obtained from Cambridge Isotopes (Tewks-
bury, MA). A complete list of target compounds is included in Supple-
mental Table 1. Surrogate compounds, terbuthylazine and butachlor,
were added at the beginning of sample processing to help quantify
losses of chemically similar target compounds, while internal standards
were added near the end of processing for calibration of the instrument
response for each compound as described below.

A suite of pesticides was selected for measurement due to regional
application practices and their regular detection during the spring
pulse in previous studies within the Elkhorn River watershed (Ali and
Kolok 2015; Zhang et al. 2015). Included in this suite of pesticides
were atrazine, acetochlor, metolachlor all of which are consistently de-
tected within spring to early summer runoff (Lerch et al. 2011a; Lerch
et al. 2011b; Knight et al. 2013; Ali and Kolok 2015; Fairbairn et al.
2016).

Extraction of POCIS followed published protocols Alvarez et al.
(2004), Kolok et al. (2014) and Sellin et al. (2009). Briefly, samplers
were rinsed with reagent water, disassembled, membranes separated
and sorbentmaterial quantitatively transferred using ~10mL of metha-
nol to glass chromatography columns packed with a small plug of glass
wool. Target compounds are then slowly eluted from the POCIS sorbent
using 50 mL of a 1:9 mixture of methanol and ethyl acetate into glass
evaporation tubes (RapidVap, Labconco, Kansas City, MO). The extract
was spiked with 2000 ng of surrogate compounds (terbuthylazine and
butachlor), evaporated by heating and vortexing under a nitrogen
streamat 50 °Cuntil 2–3mL solvent remained. The concentrated extract
was transferred to a glass culture tube and mixed with anhydrous sodi-
um sulfate to remove residual water. The dried extract was quantita-
tively transferred to a second culture tube with additional ethyl
acetate, spikedwith 5000 ng labelled internal standards and evaporated
to approximately 100 μL and then transferred to a 2mL autosampler vial
fitted with a 300 μL silanized glass insert using ~200 μL of ethyl acetate.
Converting the instrument detection limits (IDL = 3 s) based on the
variability of the lowest standard (250 ng·mL−1), the overall detection
limits in the POCIS are conservatively estimated to be near 20 picograms
(pg) on column corresponds to 5 ng recovered from the POCIS using a
250 μL final extract volume. Surrogate recovery averaged 52 ± 26% in
POCIS extracts. A fortified blankwas prepared by spiking 1000 ng of an-
alyte into the evaporation tube and analyzed as a sample. Target com-
pound recovery averaged 77 ± 40%. A laboratory reagent blank
containing only surrogate and internal standard compounds contained
no analyte above the estimated detection limit.

Sediment samples were extracted using MASE techniques with a
MARS XPress (CEM Corporation, Matthews, NC) microwave system.
Briefly, 5.0 g of thawed sediment was accurately weighed into a 10 mL
Teflon™ microwave tube, mixed with 6 mL of acetonitrile and spiked
with 400 ng of surrogate compounds. Samples were mixed by
vortexing, and then microwaved at 800 W temperature ramped to
90 °C over 10min andheld at 90 °C for 5min. After cooling to room tem-
perature and allowing particles to settle, the acetonitrile was trans-
ferred to glass evaporation tubes (RapidVap N2, Labconco, Kansas City,
KS). An additional 10mL of acetonitrilewas added to the sediment to ef-
fect quantitative transfer andmixed by vortexing for 30 s. After settling,
the second portion of acetonitrile combined in the evaporation tube and
concentrated under nitrogen at 45 °C until ~1–2mL of extract remained.
The concentrated extract was transferred to a glass culture tube, spiked
with 1000 ng labelled internal standard, any residual water removed by
pipetting, and then dried with anhydrous sodium sulfate. The extracted
sample was then transferred to a second culture tube using ethyl ace-
tate, evaporated to 100 μL, and then transferred to a 2 mL autosampler
vial fitted with a 300 μL silanized glass insert using ~200 μL of ethyl ac-
etate. Method detection limits (MDL)were determined by extraction of
8 replicates of sand spiked at 4 ng·g−1 (Supplemental Table 1).

All extracts were analyzed on an Agilent 5973 GC/MS outfitted with
a Leap CombiPAL autosampler with split-less injection using a Restek
(Bellefonte, PA) Rtx-1, 30 m × 0.25 mm ID and 0.25 μm film thickness
capillary column. Oven temperature was programed to run at 80 °C
for 0.75 min, ramp to 170 °C at 40 °C·min−1, ramp to 236 °C at
2.5 °C·min−1, ramp to 275 °C at 40 °C·min−1 and hold for 9.62 min.
The injection port temperature was 250 °C and the transfer line inter-
face temperature was 280 °C. Retention times, quantifying ions, and in-
strument detection limits determined from repeated analysis of the
lowest standard are included in Supplemental Table 1. 13C3-atrazine
was used as the internal standard for all compounds except for DEA
and DIA which used their respective labelled analogues.

2.5. Relative gene expression analysis

Whole larvae bodies were used for reverse transcription quantita-
tive polymerase chain reaction (RT-qPCR). RNA extraction utilized the
SV Total RNA Isolation System (Promega, Sunnyvale, CA, USA) following
manufacturer's recommendations. RNA was resuspended and stored in
nuclease-free water at −80 °C until analysis. Purity and concentration
of RNAwere assessed by Nanodrop (NanoDrop Technologies, Wilming-
ton, DE, USA) based on optical densities at 260 nm/280 nm and
260 nm/230 nm. Total extracted RNA samples were diluted to
15 ng/μL in preparation for cDNA synthesis. First-strand cDNA synthesis
was performed using iScript cDNA Synthesis Kit (Bio-Rad, Hercules, Cal-
ifornia, USA) per the manufacturer's recommendations. All PCR reac-
tions were performed on the CFX Connect Real-Time PCR Detection
System using the iTaq Universal SYBR® Green Supermix, 2× concentra-
tion, (Bio-Rad) per the manufacturer's protocol. Briefly, 2 μL of diluted
cDNA template was added to 20 μM forward and reverse primers in a
15-μL volume containing iTaq Supermix. Target genes involved in ste-
roid signaling and synthesis were selected for analysis (primer se-
quences and their sources are provided in Supplemental Table 2),
these included: androgen receptor (AR), insulin-like growth factor 1
(IGF1), 17β-hydroxysteroid dehydrogenase (HSD17B), gonadal aroma-
tase (CYP19A), doublesex and mab-3 related transcription factor 1
(DMRT1) and estrogen receptor subtype 1 (ERα). The reference gene ri-
bosomal protein (RPL8) was used to normalize gene expression (Kolok
et al. 2007). All reaction efficiencies were between 85 and 110%.

2.6. Statistical analysis

Data were analyzed using JMP 11 software (SAS, Cary, NC, USA).
Morphometric data for Exposure 1 (n = 35–36) and Exposure 2 (n =
35–36) larvae were compared between treatment groups using t-test.
Comparison of relative gene expression between station control and
river exposed larvae from Exposure 1 (n = 10–12) and Exposure 2
(n = 16–20) was also conducted using t-test. Welch's t-test was used
when the assumption of equal variances between treatment groups
was not satisfied as determined by Bartlett's test. Statistical significance
was assumed at p b 0.05.

3. Results

3.1. Water quality and chemistry

The 2015 spring pulse, as determined by atrazine testing, began in
early May and coincided with an approximately 2.5-fold increase in
Elkhorn River discharge (Fig. 1). Over the course of the 28-d sampling
period therewas amajor discharge event that peaked onMay 8, follow-
ed by two lesser peaks in river discharge on May 15 and May 26. There
was considerable fluctuation in the levels of suspended solids being
transported within the Elkhorn River which coincided with periods of
elevated discharge.

Within the mesocosms, fathead minnow larvae experienced varia-
tion in water quality parameters based on water source (i.e. laboratory
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or river water). Average values (±SD) for water quality parameters in
the river exposed mesocosm are summarized in Table 1. Station control
larvae experienced less variation in water pH (7.52 ± 0.32), conductivity
(457.1 ± 39.8 μS·cm−1), and suspended solids (240.1 ± 184.4 mg·L−1)
than did the river exposed fish, but larvae in both groupswere exposed to
natural diel oscillations in water temperature (Fig. 2). Changes in dis-
solved oxygen levels of station control larvae decreased from 7.78
(±1.15) mg·L−1 over the pulse period to 5.86 (±0.95) mg·L−1 as tem-
perature increased over the post-pulse period which were comparable
to variations measured in the river exposed mesocosm (Table 1).

Analytical chemistry data collected from POCIS confirmed the ele-
vated agrichemical concentrations during the 2015 pulse relative to
pre- and post-pulse periods (Table 1). Relative to the pre- and post-
periods there was a N5-fold increase in total pesticide concentrations
during the period betweenMay 8 through May 22. Atrazine, acetochlor
and metolachlor were consistently the most abundant herbicides mea-
sured in POCIS before, during and after the agrichemical pulse. Other
pesticides analyzed but not detected in POCIS samplers included ala-
chlor, butylate, chlorthalonil, cyanazine, deisopropylatrazine (DIA), s-
ethyl-dipropylthiocarbamate (EPTC), norflurazon, pendamethalin, per-
methrin, prometon, propachlor, simazine, telfluthrin, trifluralin.

3.2. Sediment characteristics and chemistry

Physical analysis of the suspended sediment deposited in the larval
mesocosm showed greater accumulation of sediment following high
flow events with a relatively consistent composition over the 28-d peri-
od (Table 2). Two to four times more sediment was accumulated in the
river water mesocosm in the first two weeks relative to the second half
of the exposure. Aswould be expected, duringweekswith reduced river
discharge there was a reduction in sand fraction and an increase in the
silt fraction. The percentage of clay and TOC remained stable throughout
the entire exposure.

The herbicides atrazine, acetochlor, deethylatrazine and metolachlor
were detected in sediment samples collected over the course of the 28-
d exposure (Table 2). The highest concentrations of sediment-associated
herbicides occurred during the third sampling period (S3) following the
pulse period. This increase in sediment associated agrichemicals was
discordant with the peak in agrichemicals observed in the water
chemistry during the two-week pulse period (Table 1). Other pesticides
analyzed but not detected in sediment samples included alachlor,
butylate, chlorthalonil, cyanazine, DIA, dimethenamid, EPTC, metribuzin,
pendamethalin, permethrin, prometon, propachlor, propazine, simazine,
telfluthrin, trifluralin.

3.3. Biological effects

Immediately following exposure to the Elkhorn River agrichemical
pulse there were differences in growth between station control and
river exposed larvae at 19 dph that were reversed by 33 dph (Fig. 3).
At the end of Exposure 1 (19 dph), river exposed larvae had a reduced
body mass (t-test, df = 70; p b 0.001) and condition factor (t-test,
df = 69; p b 0.001) relative to station controls. No significant difference
in larval body length was detected at 19 dph. Conversely, by the end of
Exposure 2 (33 dph) the river exposed larvae were significantly larger
than station controls in terms of body mass (t-test, Welch's correction,
df = 27.52; p = 0.011), length (t-test, df = 38; p = 0.038) and condi-
tion factor (t-test, df = 38; p=0.001). By the end of the 28-d exposure
therewas 25% and 8%mortality of station control and river exposed lar-
vae, respectively.

When compared to station controls, river exposed fathead minnow
larvae showed significant changes in the whole-body expression of en-
docrine responsive genes following the pulse (Exposure 1) and post-
pulse (Exposure 2) exposures (Fig. 4). At the end of Exposure 1 (5–
19 dph), larvae had an upregulation of IGF1 (t-test, Welch's correction
df = 22; p = 0.013) and a downregulation of AR (t-test, df = 21;
p = 0.044) (Table 3). No difference was detected in the expression of
CYP19A, DMRT1, ERα and HSD17B at the end of Exposure 1 (Table 3).

At the end of Exposure 2 (5–33 dph), river exposed larvae main-
tained the upregulation of IGF1 relative to controls at 33 dph (Fig. 4; t-
test, df=34; p b 0.001). However, by the endof Exposure 2 the river ex-
posed fatheadminnow larvae experienced a significant upregulation of
AR expression relative to station controls (t-test, df = 34; p b 0.0076).
No differences were detected in the expression of the steroidogenic
genes HSD17B and CYP19A, as well as genes DMRT1 and ERα
(Table 3).

4. Discussion

The objective of this study was to characterize the developmental
plasticity of fathead minnow larvae in a natural environment subject
to a seasonal episodic perturbation in the form of a complex mixture
of agricultural stressors. It was hypothesized that one of the short-
term agricultural pulses would elicit a down regulation in endocrine
gene expression and growth, and that post- pulse the larvae would
compensate. Larvae exposed to a 14-d pulse showed suppressed endo-
crine gene expression and growth. Their response to the pulse induced
suppression was an over compensation in both growth and endocrine
function.

Table 1
Water quality and chemical analysis of river water flowing into the larval mesocosm during the exposure period. Nanograms (ng) of pesticides in extracts from polar organic chemical
integrative samplers (POCIS) deployed across the 2015 agrichemical pulse. Analytical detection limits were determined at b5.0 ng in POCIS.

April 21–May 5
(Pre-pulse)a,b

May 8- May 22
(Pulse)

May 22–June 5
(Post-pulse)

Fold change
(Pre-pulse to pulse)

Fold change
(Pulse to post-pulse)

Temperature (°C) – 16.70 (2.05) 20.00 (2.08) – 0.8
Dissolved O2 (mg·L−1) – 8.42 (1.37) 5.75 (0.73) – 1.5
pH – 8.23 (0.16) 8.32 (0.09) – 1.0
Conductivity (μS·cm−1) – 530.0 (78.0) 584.0 (24.0) – 0.9
Suspended Solids (mg·L−1) – 5426.7 (3376.2) 4460.7 (4178.5) – 1.2
Acetochlor 244.2 1775.1 134.6 7.3 13.2
Atrazine 229.4 1517.4 339.9 6.6 4.5
Dimethenamid 75.4 136.1 20.9 1.8 6.5
Metolachlor 197.9 709.7 133.9 3.6 5.3
Deethylatrazine (DEA) 20.2 34.5 24.5 1.7 1.4
Propazine 3.6 23.2 4.3 6.4 5.4
Simazine 10.0 5.3 6.5 0.5 0.8
Metribuzin b 5.0 14.3 b 5.0 –

a ‘–a’ indicates not measured.
b b5.0 - below estimated detection limits.
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4.1. Agrichemical runoff in the Elkhorn River

Although the sampling time periods for the POCIS were different
than that for the sediment (Fig. 1), both illustrate short term changes
in the chemical environment that larvae were exposed to. Changes in
aqueous pesticide concentrations observed in this study are consistent
with previously published differences in agrichemical concentrations
during a discharge event relative to post-discharge. Knight et al.
(2013) used POCIS samplers to compare agrichemical concentrations
during and after a discharge event. The discharge event led to 1.6 to
28-fold increases in herbicide concentrations relative to post-
discharge. Similarly, the present study observed increases (up to 13-
fold) in atrazine, acetochlor andmetolachlor (Table 2). These three her-
bicides represent a signature combination of pollutants found in runoff
from corn and soybean production (Lerch et al. 2011a; Lerch et al.
2011b; Ali and Kolok 2015; Zhang et al. 2015; Fairbairn et al. 2016).
The nearly identical concentration of herbicides before and after the dis-
charge event highlights the ephemeral occurrence of waterborne agri-
chemicals in this watershed.

As seen in previous studies (Ali and Kolok 2015; Zhang et al. 2015),
increases in river discharge were accompanied with increases in water-
borne agrichemicals as well as the mobilization of sediments and other
suspended solids carrying their own pesticide burden. Chemical analy-
sis of accumulated suspended sediments revealed a mismatch between
the peaks of pesticides in water and sediment over the 28-d sampling
period (Table 2; Table 3). Specifically, the highest concentrations of wa-
terborne pesticides coincided with the major discharge event whereas

sediment-associated pesticide concentrations were the greatest during
a lesser spike in river discharge during the post-pulse period, S3 (Fig.
1; Table 3). One plausible explanation for observed differences in aque-
ous and sediment-associated pesticide concentrations is that a fraction
of dissolved pesticides entering the Elkhorn River during the pulse peri-
od partitioned into the sediment which was later mobilized as
suspended solids during the lesser discharge event (S3). The role of sed-
iments in the kinetics of agrichemicals in the Elkhorn River has been
previously documented (Kolok et al. 2014; Zhang et al. 2015).

The aquatic environments of the pulse and post-pulse periods were
distinct from one another not only in their pesticide profiles but in the
fluctuations of several physicochemical parameters that can affect
aquatic biota. This was evident bymeasured differences in conductance,
dissolved oxygen levels, and accumulatedmass of suspended solids be-
tween the pulse and post-pulse periods (Table 1; Table 2). All of these
abiotic factors varied relative to river discharge (Kolok et al. 2014;
Kjelland et al. 2015). Biological responses of fish living in this environ-
ment would be expected to be a function of these changing physico-
chemical parameters, as well as diurnal and seasonal (vernal) changes
in temperature (Table 1) and photoperiod, (Clark et al. 2005;
Blanco-Vives et al. 2011; Ali and Kolok 2015) regardless of the presence
of any agrichemicals in thewater. This underscores the importance of in
situ studies for understanding the impacts of natural, composite expo-
sures, as these are events that are not readily simulated under laborato-
ry conditions.

4.2. Biological response of larvae to an episodic exposure

The present study documented an interesting dynamic between the
expression of AR and IGF1 in fatheadminnow larvae following exposure
to a seasonal discharge event. Specifically, this is of interest due to their
endocrine interactions aswell as their responsiveness to environmental
stimuli, including endocrine disrupting agrichemicals.

At the molecular level, peptide and steroid hormones facilitate the
integration of environmental stimuli with the regulatory mechanisms
of multiple physiological systems (Bradshaw 2007; Pittman et al.
2013). The peptide hormone, IGF1, has endocrine, paracrine and auto-
crine activity which is readily upregulated or downregulated in re-
sponse to environmental factors including changes in salinity,
nutritional status, temperature and photoperiod (reviewed by
Reinecke 2010). As environmental conditions become optimal for sur-
vival and development of an organism, growth will occur. Warmer
water temperatures stimulate growth in rainbow trout (Oncorhynchus

Table 2
Physical and pesticide analysis of sediments obtained from within the larval mesocosm
over the course of the 2015 field season.

Pulse Post-pulse

Collection date May 13 (S1) May 20 (S2) May 27 (S3) June 3 (S4)
Mass (g) 2551.27 1140.95 631.57 403.70
Texture a % sand 10 3 3 8

% silt 67 73 71 72
% clay 23 24 26 20

Total organic carbon (%) 0.18 0.21 0.23 0.15
Pesticides (ng·g−1)b

Acetochlor b 0.3 b 0.3 3.92 b 0.3
Atrazine 7.32 7.50 8.74 3.12
Deethylatrazine (DEA) b 1.4 b 1.4 2.32 b 1.4
Metolachlor 1.49 2.94 3.47 1.09

a Using standard methods for sieve and hydrometer analysis.
b ”b” below method detection limits (ng·g−1) see Supplemental Table 1.

Fig. 2. Oscillation in water temperature over the exposure period. Water temperature of the Elkhorn River (solid grey) based on data collected from the USGS Elkhorn River (06800500)
gaging Station atWaterloo, Nebraska, USA. Temperature for station control (solid line) and river exposed (dotted line) mesocosms were collected at 30 min intervals using HOBO® data
loggers (Bourne, MA).
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mykiss) through the increased release of growth hormone and subse-
quent stimulation of IGF1 (Gabillard et al. 2003). The strong association
between IGF1 and growth in bony fish has led to the application of IGF1
mRNA as a molecularmarker of growth under a variety of environmen-
tal manipulations (Vera Cruz et al. 2006; Montserrat et al. 2007; Vera
Cruz and Brown, 2009; Reinecke 2010; Picha et al. 2014). However, it
has been demonstrated that nuclear receptors also modulate the ex-
pression of IGF1 following activation by steroid hormones (Riley et al.
2004; Johns et al., 2011; Norbeck and Sheridan 2011; Cleveland and
Weber 2015). Immature coho salmon (Oncorhynchus kisutch) injected
with 11-ketotestosterone or testosterone had a significant increase of
circulating IGF1 protein one to two weeks following treatment (Larsen
et al. 2004).More recently, analysis of hepatic gene expression in female

rainbow trout injectedwith either 17β-estradiol or dihydrotestosterone
demonstrated that androgens stimulate IGF1 expressionwhereas estro-
gens suppressed IGF1 expression (Cleveland and Weber 2015).

The link between IGF1 regulation and sex steroids in fish leaves their
early life growth and development susceptible to endocrine disruption
by steroidogenic contaminants, such as agrichemicals; however, effects
may be confounded by environmental conditions. Sustained in situ ex-
posure of juvenile fatheadminnows to agricultural ditchwater contain-
ing a mixture of androgens, estrogens and pesticides lead to increased
body size along with male-biased sex ratios at the end of a 6-week
study (Leet et al. 2012). During a subsequent 45-day laboratory study,
an increase in the body mass and length of fathead minnows when ex-
posed to a simulated mixture of agrichemicals was observed, but

Fig. 3.Morphometric results for station control (empty bar) and river exposed (filledbar) fatheadminnow larvae at the end of Exposures 1 and 2 (see Fig. 1 for description). Bodymass (A),
fork length (C) and condition factor (E) for station control and river exposed larvae following Exposure 1 (5–19 dph; n=35–36) and bodymass (B), fork length (D) and condition factor
(F) following Exposure 2 (5–33 dph; n = 20). Values presented as mean (±SEM) with significant differences at α = 0.05 and α = 0.01 denoted by single and double asterisks,
respectively.

823J.M. Ali et al. / Science of the Total Environment 603–604 (2017) 817–826



changes in steroid responsive genes at 20 dph or final sex ratio (Leet
et al. 2015) was not detected. Leet et al. (2015) speculated that the dis-
parity between outcomes from the in situ (Leet et al. 2012) and labora-
tory studies (Leet et al. 2015) was due to the absence of environmental
factors such as spikes in temperature or sediment interactions which
may contribute to the overall response of larval fish towards endocrine
disrupting chemicals. In these studies, endpoint analysis demonstrated

an effect of agrichemicals on growth and development, however they
overlook the developmental response that occurs with the exposure.

The present study documents compensatory growth in fatheadmin-
now larvae following exposure to a seasonal discharge event. Immedi-
ately after the major discharge event (Exposure 1; Fig. 1), river
exposed larvae displayed suppressed growth and endocrine gene ex-
pression as determined by body mass and androgen receptor expres-
sion, respectively (Table 3; Figs. 3 and 4). This suppression of growth
and endocrine function was reversed at the end of a depuration period
following themain discharge event which allowed river exposed larvae
to achieve greater growth and androgenic gene expression (i.e. mascu-
linization), relative to station controls. Curiously, river exposed larvae
maintained elevated IGF1 expression throughout the study which was
discordant with the observed compensation in other biological end-
points. An explanation for this discrepancy is that induction of compen-
satory growth by the growth hormone-IGF1 axis is not directly
mediated by IGF1 (Beckman 2011), rather the induction of compensato-
ry growth is controlled by multiple endocrine and paracrine mecha-
nisms (Won and Borski 2013). To our knowledge, this is the first
study to characterize compensation of larval fish following an in situ ep-
isodic exposure to seasonally occurring agrichemical stressor.

Given that molecular defeminization has been consistently docu-
mented in adult fathead minnows following exposure to an agrichemi-
cal pulse (Knight et al. 2013; Ali and Kolok 2015; Zhang et al. 2015), our
initial question was whether we would see a similar anti-estrogenic
profile in larval fathead minnows. Both Knight et al. (2013) and Ali
and Kolok (2015) found that the pulse-associated defeminization of
adult fish was absent during post-pulse periods with reduced

Fig. 4. Relative RNA expression in station control (empty bar) and river exposed (filled bar) fathead minnow larvae at the end of Exposures 1 and 2 (see Fig. 1 for description). Mean
expression values (±SEM) for insulin-like growth factor 1 (IGF1) following Exposure 1 (A) and Exposure 2 (B). Mean expression values (±SEM) for androgen receptor (AR) following
Exposure 1 (C) and Exposure 2 (D). Sample size of 10–12 per treatment group in Exposure 1 and n = 16–20 in Exposure 2. Significant differences at α = 0.05 and α = 0.01 denoted
by single and double asterisks, respectively.

Table 3
Summary of apical and molecular endpoints observed in river exposed larvae relative to
their station control counterparts. Significant increases (↑) and decreases (↓) represented
by arrows and no significant differences denoted by dash (−) (α = 0.05).

Exposure 1
(Pulse,
19 dph)

Exposure 2
(Post-pulse,
33 dph)

Apical Endpoints
Body mass ↓ ↑
Body length – ↑
Condition factor (K) ↓ ↑

Molecular Endpoints
Androgen receptor (AR) ↓ ↑
Insulin-like growth factor 1 (IGF1) ↑ ↑
Estrogen receptor α (ERα) – –
Doublesex mab-3 related transcription factor
1 (DMRT1)

– –

Gonadal aromatase (CYP19A) – –
17β-Hydroxysteroid dehydrogenase
(HSD17B)

– –

“dph” – days post-hatch.
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concentrations of agrichemicals, similar to the post-pulse concentra-
tions seen in this study. In a subsequent study on the Elkhorn River,
Zhang et al. (2015) found that agrichemical-laden sediments carried
by pulse events were responsible for reductions in hepatic estrogen-
and androgen-receptor expression in adult fish. The downregulation
of androgen receptor expression in adult fish (Zhang et al. 2015) is con-
sistent with the response observed in the present study immediately
following the pulse. It is likely that the absence of defeminization of
minnow larvae in thepresent study is due to either environmental or bi-
ological factors.While Zhang et al. (2015) confirmed that sedimentwas
amajor source of agrichemical exposure for adult fish, thismay not hold
true for larvae whose interactions with sediment and water may differ
from adult fish. A biological explanation for the absence of defeminiza-
tion is that the expression profile of estrogen receptors in fathead min-
now, namely receptor subtypesα, β and γ, has been shown to vary over
the course of ontogeny which would determine what type of response
larvae and juvenile fish might have towards an anti-estrogenic mixture
(Filby and Tyler 2007; Johns et al. 2011; Leet et al. 2013). Therefore,
while subtle differenceswere observed between the responses of larvae
from the present study and those observed in adult fish from previous
studies there is evidence for a consistent response of fish towards agri-
chemical pulses. Future studies are needed to investigate the impacts of
similar exposures onmultiple levels of endocrine activity and themech-
anisms by which compensatory responses occur.
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Supplemental Table 1. Pesticide compounds (include CAS# and molecular weight) measured in POCIS and sediment samples 
together with instrumental parameters, instrument detection limits (average IDL=20 pg) estimated from repeated injections of a 250 
pg∙uL-1 calibration standard. Sediment method detection limits (MDL=tn-1s) were estimated using the standard deviation of 8 replicate 
analyses of 5 gram of clean matrix fortified at 4 ng∙g-1. Recoveries = 100 x (measured/fortified). “NM” indicates not measured.  

Compound CAS# 

Molecular 
Weight 

(g∙mol-1) 
Quantitation 
Ion (m∙z-1) 

Retention 
Time (min) IDL (pg) 

MDL 
Sediment 
(ng∙g-1) Recovery (%) 

Acetochlor 34256-82-1 269.767 146 11.09 8.2 0.3 57.2 

Alachlor 15972-60-8 269.767 160 11.47 6.6 1.6 34.5 

Atrazine 1912-24-9 215.68 200 8.42 16.5 0.3 99.9 

Butylate 2008-41-5 217.37 146 5.14 25.5 2.8 62.6 

Chlorthalonil 1897-45-6 265.91 266 9.40 5.9 0.9 51.1 

Cyanazine 21725-46-2 240.69 212 12.51 12.8 1.0 68.0 

Deethylatrazine (DEA) 6190-65-4 187.63 172 7.17 29.3 2.3 114 

Deisopropylatrazine (DIA) 1007-28-9 173.60 158 7.00 26.7 1.4 81.3 

Dimethenamid 87674-68-8 275.79 154 10.84 2.9 3.2 103 

EPTC 759-94-4 189.32 128 4.59 15.9 4.8 44.2 

Metolachlor 51218-45-2 282.80 162 13.09 22.0 0.3 64.8 

Metribuzin 21087-64-9 214.29 198 10.45 9.2 7.2 105 

Norflurazon 27314-13-2 303.67 303 21.51 9.6 NM NM 

Pendamethalin 40487-42-1 281.31 252 14.68 28.5 3.1 128 

Permethrin 52645-53-1 391.29 183 30.97 80.6 4.3 115 

Prometon 1610-18-0 225.29 210 8.34 8.4 2.1 83.0 

Propachlor 1918-16-7 211.69 120 6.71 91.1 0.6 70.4 

Propazine 139-40-2 229.71 214 8.57 7.7 0.1 35.1 

Simazine 122-34-9 201.66 201 8.20 3.9 0.7 120 

Telfluthrin 79538-32-2 418.74 177 10.07 5.4 0.3 67.6 

Trifluralin 40487-42-1 303.67 306 7.67 5.8 0.3 98.2 
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Supplemental Table 2. Primers used for real-time polymerase chain reaction analysis with respective annealing temperature and 
NCBI ascension number for each gene. 

Gene Forward sequence 5´- 3´ Reverse sequence 5´- 3´ 
Temp 
(°C) 

Ascension Number 

ARa GTTTCCGTAACCTGCATGTGG CGCGCATTAGCGTTCTTGTA 60.9 AY727529 

CYP19Ab GCGGCTCCAGATACTC ACTCTCCAGAATGTTTAACC 55.0 AJ277867 

ERαa AGTGAGCAGTCAAGCCGTGTT GGTCAGGTGGCATGCATAAAG 63.0 AY727528 

DMRT1c AGGTCGTGGGTGATGTGAAT GGCCACTGCAGAGCTTAGAG 65.0 DT303249.1 

HSD17Bd ACAGCCAGCCGTAGAC TCCTAAAGCCAGTGATGAC 62.6 DT161033 

IGF1e GGCAAAACTCCACGATCCCTA ATGTCCAGATATAGGTTTCTTTGCTG 61.4 AY533140 

RPL8a GCCCATGTCAAGCACAGAAAA ACGGAAAACCACCTTAGCCAG 59.2 AY919670 

a Kolok et al. 2007, b Wood et al. 2015, c Leet et al. 2013, d Filby et al. 2006, e Beggel et al. 2011 
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