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We designed and constructed a state-of-the-art high current ultrafast gas elec-

tron diffraction experimental setup, which resolved two main challenges that con-

straint temporal resolution in previous setups. These aforementioned bottlenecks

were: the space charge effect due to the Coulomb expansion, and the velocity mis-

match between the sub-relativistic electrons (probe) and the exciting laser pulse

(pump). In our setup, the problem of space charge effect was ameliorated by

compressing 90 keV photo-emitted electron pulses using a radio-frequency elec-

tric field. The compression allowed us to increase the beam current by almost

two orders of magnitude higher than previously reported. We developed a laser-

activated streak camera with a streak velocity of 1.89 mrad/ps to evaluate the

compression by measuring the electron pulse duration in situ with a resolution of

100 fs. Electron pulses composed of half a million electrons with a duration of 350

fs were obtained. The velocity mismatch problem, on the other hand, was resolved

by employing the technique of laser intensity front tilting. We also constructed a

setup to measure the duration of the tilted front laser pulses by an interferometric

technique. The timing between the pump and the probe was determined either by

photo-ionization induced lensing of the electrons in the gas for normal front laser

pulses, or by a transient space charge/surface polarization creation in a copper

foil that deflected the electron pulses. The change in the timing between the laser

and the electrons was measured by the streak camera with a resolution of 70 fs

RMS.
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Chapter 1

Introduction to the Theory of Time-Resolved Gas Phase
Electron Diffraction

1.1 Introduction

In this chapter, we will briefly review the history, development and theory of

ultrafast electron diffraction (UED) techniques for studying atoms and molecules

in the gas phase. The chapter starts with a description of the wave-like behavior of

electrons and continues to the physics of the diffraction from atoms and molecules.

We explain the first Born approximation and its validity and review the analytic

formalism of diffraction patterns. Inelastic scattering and scattering from non-

stationary potentials will be included in this chapter as well. We give a comparison

between electron diffraction experiments versus those with x-rays and neutrons to

show why electrons are preferred for gas phase diffraction experiments. Finally,

we review the history of electron diffraction experiments in general with a focus

on setups that generate ultrafast electron pulses.

1.2 The wave nature of electrons

As Louis de Broglie proposed for the first time in his PhD dissertation, elec-

trons, like all quantum particles, exhibit the properties of waves [1]. In fact, there

is a wave function associated to an electron with a wavelength λ related to its

momentum p as

λ =
2πh̄

p
, (1.1)
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Figure 1.1: Molecules in gas phase come out of a nozzle. An ultrafast laser pulse
excites the molecules. An ultrafast electron pulse probes the molecules and reveals
the laser induced dynamics.

where h̄ is the reduced Planck’s constant. The wave-like nature of electrons can

cause an interference pattern resulting from its interaction with other objects. An

example of which is a single electron diffraction from a double slit, which is dis-

cussed nicely in the first chapter of [2]. In that example, a single electron passing

through the double slit will interfere with itself due to its wave-like nature. Con-

sequently, if we repeat the experiment many times, with many single electrons

passing through the slits, and record where electrons land on a far distance detec-

tor, a diffraction pattern will form. From this pattern, we can extract information

about the slits. This is the whole idea behind all electron diffraction experiments:

to gain knowledge about the scatterer from the diffraction pattern.

The schematic of a gas phase electron diffraction experiment is shown in Fig-

ure1.1. Molecules in the gas phase are ejected from a nozzle into the path of the

electrons. In the gas phase, molecules are almost completely isolated from each

other’s potentials. The electron wave function is diffracted by all of the atoms

inside the molecule and shows an interference pattern on the detector. That in-

terference reveals important information about the structure of the molecule. The

molecules can be excited by laser pulses, and all the deformations caused by the

laser will be reflected in the electron diffraction pattern, allowing us to observe the

dynamical evolution of the molecule. The relativistic energy of an electron with
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mass of me and momentum p is

E =
√
p2c2 +m2

ec
4. (1.2)

The total energy of an electron with the kinetic energy of Ek = eV , where V is

the electron accelerating voltage, is

E = Ek +mec
2. (1.3)

Replacing E in equation (1.2) by equation (1.3) and solving the result for p and

plugging it in equation (1.1) gives

λ =
2πh̄√

E2
k

c2
+ 2meeV

. (1.4)

Figure 1.2 shows the electron wavelength as a function of its kinetic energy. The

wavelength should be short enough in comparison to the size of the scatterer for

a good resolution and it is obtained by increasing the accelerating voltage V . An

electron with a kinetic energy of Ek has a velocity

v = c

√
1−

(
mec2

Ek +mec2

)2

, (1.5)

which as a function of Ek is plotted in Figure 1.3.

Figure 1.2: de Broglie wavelength of a free electron as a function of its kinetic
energy.
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Figure 1.3: Velocity of a free electron in units of c as a function of its kinetic
energy.

1.3 Electron scattering by a potential

Suppose an electron is traveling toward an atom or a molecule which we will

refer to as the target. The electron will be affected by the target potential V ( #»r ),

where #»r is the position vector of the electron. The Schrödinger equation for the

electron wave function Ψ will be

ih̄
∂Ψ

∂t
=

[
−h̄2

2me

∇2 + eV ( #»r )

]
Ψ, (1.6)

where e and me are the charge and the mass of the electron, respectively. By use

of the Schrödinger equation for a real-valued potential, the time derivative of the

probability density ρ = |Ψ|2 will be

∂ρ

∂t
= Ψ∗

∂Ψ

∂t
+ Ψ

∂Ψ∗

∂t
= − h̄

2me

∇ · (Ψ∇Ψ∗ −Ψ∗∇Ψ), (1.7)

where “*” indicates the complex conjugate. The probability current density (PCD)

is defined as

#»

J =
h̄

2me

(Ψ∇Ψ∗ −Ψ∗∇Ψ), (1.8)

which inserted into equation (1.7) gives

∂ρ

∂t
+∇ · #»

J = 0. (1.9)
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This is a continuity equation for the probability density and current. In the

quantum theory of diffraction, the PCDs determine the scattering process. For a

better illustration, let us write the wave vector of an electron that is scattered by

a potential of a target located at the coordinate origin as

Ψ = Ψi + Ψs = A

[
eikz + f(θ, φ)

eikr

r

]
, (1.10)

where Ψi = Aeikz is a plane wave moving along the z axis and represents the

incident and unscattered part of the wave function and Ψs = Af(θ, φ) e
kr

r
is a

spherical wave and represents the scattered part of the wave function; k is the

electron wave number. As we will see, f(θ, φ) is the scattering amplitude and A

is the normalization constant and is set equal to one if |f(θ, φ)/r|� 1. In this

equation, we have assumed that the scattering is elastic, i.e., after the scattering,

the energy and hence the wave number of the electron are the same as they were

before the scattering. We can show that equation (1.10) satisfies the Schrödinger

equation outside of the potential region and for kr � 1. The PCD corresponding

to the wavefunction in equation (1.10) for kr � 1 is

#»

J =
#»

J i +
#»

J s ≈
h̄k

me

ẑ +
h̄k

me

|f(θ, φ)|2 r̂
r2
, (1.11)

where we have used the approximation

∇Ψs ≈
∂Ψs

∂r
r̂ (1.12)

for kr � 1. The differential scattering cross section is the probability current

crossing a differential area over the incident beam PCD, i.e.:

dσ(θ, φ) =

#»

J s(θ, φ)

| #»J i|
· r2r̂dΩ = |f(θ, φ)|2dΩ, (1.13)

where dΩ is shown figuratively in Figure 1.4. What we detect on the screen is

proportional to |f(θ, φ)|2. The goal is to relate f(θ, φ) to the potential function of
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Figure 1.4: Concept of cross section for an electron hitting a target. The incoming
electrons that fall into the differential cross section dσ are scattered to all space.
A detector, extended over the differential solid angle of d~Ω far from the target,
will detect the probability current ~Js · r2d~Ω.

the target so that by measuring |f(θ, φ)|2, we find information about V ( #»r ).

We demand that Ψ satisfies the time-independent Schrödinger’s equation that

describes the scattering process. We have

− h̄2

2me

∇2Ψ( #»r ) + eV ( #»r )Ψ( #»r ) = EkΨ( #»r ), (1.14)

or

(∇2 + k2)Ψ( #»r ) = U( #»r )Ψ( #»r ), (1.15)

for

U( #»r ) =
2eme

h̄
V ( #»r ); k2 =

2meEk

h̄2 =
4π2

λ2
, (1.16)

where Ek is the kinetic energy of the electron and λ its wavelength. A solution to

equation (1.15) is

Ψ( #»r ) = Ψ0( #»r ) +

∫
d3 #»r ′G( #»r − #»r ′)U( #»r ′)Ψ( #»r ′), (1.17)

where Ψ0( #»r ) satisfies the homogeneous equation (∇2 + k2)Ψ( #»r ) = 0 and G( #»r ) is
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the Green’s function satisfying

(∇2 + k2)G( #»r − #»r ′) = δ( #»r − #»r ′), (1.18)

where δ( #»r ) is the Dirac delta function. It can be shown that the Green’s function

G( #»r − #»r ′) = − 1

4π

ei
#»
k ·( #»r− #»r ′)

| #»r − #»r ′|
(1.19)

satisfies equation (1.18) [3]. Therefore, we have

Ψ( #»r ) = Ψ0( #»r )− 1

4π

∫
d3 #»r ′

ei
#»
k ·( #»r− #»r ′)

| #»r − #»r ′|
U( #»r ′)Ψ( #»r ′). (1.20)

The distances over which the potential is extended is usually much smaller than

the distance between the potential location and the detector, i.e., r � r′. Thus,

we make the approximations

| #»r − #»r ′|≈ r;
#»

k · ( #»r − #»r ′) ≈ k(r − r̂ · #»r ′), (1.21)

where r̂ is a unit vector in the direction of #»r . By these approximations, the

integral equation (1.20) becomes

Ψ( #»r ) = Ψ0( #»r )− eikr

4πr

∫
d3 #»r ′e−i

#»
k · #»r ′U( #»r ′)Ψ( #»r ′). (1.22)

By comparing this equation to equation (1.10), we find

Ψ0( #»r ) = eikz; f(θ, φ) = − 1

4π

∫
d3 #»r ′e−i

#»
k · #»r ′U( #»r ′)Ψ( #»r ′) (1.23)

for A = 1. By use of equation (1.16), the scattering amplitude is related to the

target potential as

f(θ, φ) = − 1

2π

eme

h̄2

∫
d3 #»r ′e−i

#»
k · #»r ′V ( #»r ′)Ψ( #»r ′), (1.24)
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and the differential cross section will be

dσ(θ, φ) =
e2m2

edΩ

4π2h̄4

∣∣∣∣∫ d3 #»r ′e−i
#»
k · #»r ′V ( #»r ′)Ψ( #»r ′)

∣∣∣∣2 . (1.25)

Altough equation (1.25) relates the differential cross section to the target potential,

it is not practical since the electron wave function is not known in general. To

proceed, we need to apply an approximation known as the Born approximation.

1.3.1 The Born approximation

The Born approximation begins by assuming a simple wave function for Ψ( #»r ′)

and inserting it in equation (1.22) to get an updated function for Ψ( #»r ′). This

process should be repeated till the wave function converges to its final form. The

electron wave function, in the N−th Born approximation is written in the series

of

ΨN( #»r ) =
n=N∑
n=0

φn( #»r ) (1.26)

where

φ0( #»r ) = eikz; (1.27)

and

φn( #»r ) =

∫
G( #»r − #»r ′)U(r′) · · ·G( #»r (n−1) − #»r (n))U( #»r (n))φ0( #»r (n))d3 #»r ′ · · · d3 #»r (n).

(1.28)

The Green’s functions in equation (1.28) are given by equation (1.19) [4]. Then,

the N−th Born approximation scattering amplitude will be

fN(θ, φ) = − 1

2π

eme

h̄2

∫
d3 #»r ′e−i

#»
k · #»r ′V ( #»r ′)ΨN−1( #»r ′). (1.29)

The scattering amplitude fN converges if the wave function ΨN converges [4]. For

a high-energy electron and a confined potential with a finite integral over all space,

ΨN and hence fN converge [4]. In many applications, the first Born approximation
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suffices. By writting f = f1 and dropping the primes, we have

f(θ, φ) = − 1

2π

eme

h̄2

∫
d3 #»r e−i(

#»
k · #»r−kz)V ( #»r ). (1.30)

The argument of the exponential inside the integral in equation (1.30) can be

rewritten as

#»

k · #»r − kz = k(r̂ − ẑ) · #»r = #»s · #»r , (1.31)

where the vector #»s :

#»

( s) = k(r̂ − ẑ) (1.32)

is the momentum transferred to the electron by the scattering potential. Equation

(1.30), using the momentum transfer function, will be

f(θ, φ) = − 1

2π

eme

h̄2

∫
d3 #»r e−i

#»s · #»r V ( #»r ). (1.33)

Equation (1.33) shows that the scattering amplitude is in fact the Fourier trans-

form of scattering potential. Consequently, by taking the inverse Fourier transform

from the scattering amplitude, we can find the scattering potential. However, in

practice, the intensity that we can detect I(s), is

I(s) = |f(s)|2, (1.34)

which means the phase of f is lost. For obtaining the scattering potentials in

general, we need to assign a phase to the scattering amplitude so we can perform

the inverse Fourier transform. Properties of the Born approximation are discussed

in detail in [5] and [6].

1.3.2 Scattering amplitude from a charge distribution

Let us go back to equation (1.33) and express it in terms of the target charge

distribution instead of the scattering potential. The potential of a charge distri-
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bution with a charge density of ρ( #»r ) is

V ( #»r ) =
1

8πε0

∫
d3 #»r ′

ρ( #»r ′)

| #»r − #»r ′|
, (1.35)

where the integral is taken over the charge distribution. We insert this equation

into equation (1.33), giving

f( #»s ) = − eme

16π2ε0h̄
2

∫
d3 #»r e−i

#»s · #»r
∫
d3 #»r ′

ρ( #»r ′)

| #»r − #»r ′|
. (1.36)

By changing the the order of integration, we find

f( #»s ) = − eme

16π2ε0h̄
2

∫
d3 #»r ′ρ( #»r ′)

∫
d3 #»r

e−i
#»s · #»r

| #»r − #»r ′|
. (1.37)

We define a vector #»x = #»r − #»r ′, by use of which the second integral in equation

(1.37) can be written as

∫
d3 #»r

e−i
#»s · #»r

| #»r − #»r ′|

= e−i
#»s · #»r ′

∫
d3 #»x

e−i
#»s · #»x

x

= 2πe−i
#»s · #»r ′

∫ ∞
x=0

x2dx

∫ π

α=0

sinα dα
e−isx cosα

x

=
4π

s
e−i

#»s · #»r ′
∫ ∞
x=0

sin(sx)dx.

(1.38)

To evaluate the last integral, we use the following trick:

∫ ∞
x=0

sin(sx)dx = lim
κ→0

∫ ∞
x=0

e−κx sin(sx)dx =
1

s
(1.39)

for κ being an arbitrary real and positive number. Now, equation (1.37), by

dropping the primes, becomes

f( #»s ) = − eme

4πε0h̄
2

1

s2

∫
d3 #»r ρ( #»r )e−i

#»s · #»r . (1.40)
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This equation shows that the scattering amplitude is proportional to the Fourier

transform of the target charge density distribution. For an atom with an atomic

number Z, the charge distribution will be

ρ( #»r ) = Zeδ( #»r )− ρe( #»r ), (1.41)

where Zeδ( #»r ) and ρe(
#»r ) are the nuclear and electronic charge densities, respec-

tively, where the nucleus charged is localized at the origin. By plugging equation

(1.41) in 1.40, we have

f( #»s ) = − eme

4πε0h̄
2

Ze− ge(s)
s2

, (1.42)

where

ge(
#»s ) =

∫
d3 #»r ρe(

#»r )e−i
#»s · #»r . (1.43)

1.3.3 Scattering from atoms

An atom can be modeled as a localized charge at the nucleus screened by a

cloud of electrons. The potential of an atom, in this regard, can be approximated

by the Yukawa Potential [6]

V ( #»r ) = γ
e−µr

r
, (1.44)

for γ = − Ze
4πε0

, where Z is the atomic number of the scatterer, ε0 is the permittivity

of free space, and µ is a constant characterizing the spatial extent of the potential.

This potential is spherically symmetric, so the scattering amplitude corresponding

to it is

f( #»s ) = −γ eme

h̄2

∫
drr2 e

−µr

r

∫
dα sin(α)e−i

#»s · #»r . (1.45)

For the argument of the exponential, we may write

#»s · #»r = k(r̂ − ẑ) · #»r = 2k sin
θ

2
/, r cosα, (1.46)
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where α is the angle between #»s and #»r and θ is the angle between unit vectors r̂

and ẑ. By inserting equation (1.46) into equation (1.45), we get

f(s) = −γ eme

h̄2

∫
drr′2

e−µr

r

∫
dα sin(α)e−i2k sin θ

2
r cosα

= −γ 2eme

h̄2s

∫ ∞
0

dr sin(sr)e−µr = −γ 2eme

h̄2

1

µ2 + s2
.

(1.47)

where

s = | #»s |= 2k sin
θ

2
. (1.48)

By plugging equation (1.48) into equation (1.47) and inserting the result in equa-

tion (1.25), the scattering cross section will be obtained as:

dσ

dΩ
=

(
β

(4π
λ

)2 sin2( θ
2
) + µ2

)2

, (1.49)

where β = γ eme
h̄2

is a constant and has a dimension of L−1. The accuracy of this

result can be evaluated by comparing the second Born approximation scattering

amplitude to the first Born approximation one. The result is [6]

∣∣∣∣f2

f1

∣∣∣∣
θ=0

=

∣∣∣∣∣ γme

h̄2
√

(4π/λ)2 + µ2

∣∣∣∣∣ . (1.50)

In case of high energy electrons, their wavelength is much shorter than 1/µ; hence,

the convergence condition becomes

|γ|meλ

4πh̄2 � 1. (1.51)

By plugging γ = − Ze
4πε0

into equation 1.51, we find

Z � (4π)2ε0h̄
2

meλe2
≈ 168 (1.52)

for an electron with a kinetic energy of 90 keV. The atomic number condition

in equation (1.52) holds for all atoms and that is the reason why the first Born
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approximation provides fairly accurate results in electron diffraction experiments.

Here, we give two examples of scattering of an electron with a kinetic energy

of 90 keV from helium and from neon atoms. For each example, we used the

analytical data from [7] together with a function in equation (1.49) fit to it. The

cross section data was obtained by using the relativistic Dirac partial-wave analysis

[7]. Figures 1.5a and 1.5b show the cross sections for helium and neon, respectively.

From the fit curves we can obtain the atomic potentials, and hence the charge

distribution.

The Yukawa potential corresponds to the charge density distribution

ρ(r) = 4πγε0

(
δ( #»r )− µ2

4π

e−µr

r

)
, (1.53)

where the delta function represents the localized nucleus charge and the second

term represents the electron cloud around the nucleus. This charge distribution

can model the structure of some atoms accurately for the purpose of high energy

electron scattering, like the two examples we provided here, but should be replaced

by a more accurate descriptions for many other atoms. More accurate charge

distribution densities have been obtained from their wave functions by the Hartree-

Fock or other methods [7, 8].

In the Yukawa model, the charge density and hence the scattering potential of

the atoms is linearly proportional to the atomic number Z. The Fourier transform

is linear which means the scattering factor is also linearly proportional to Z. The

total scattering cross section can be obtained by integrating equation (1.49) over

all angles and is equal to 1
µ2

4πβ2

( 4π
λ

)2+µ2
which increases proportionally to Z2

µ2
.

A more rigorous analysis of the scattering process, by use of partial wave

analysis, provides functions for f(s) that are not real and hence in the literature

they are called the “scattering factors” instead of the “scattering amplitudes”

[4, 6]. For scattering from isolated atoms, the complex nature of functions of

f(s) do not change the detected intensity. However, the phases of f(s) becomes

important if we consider scattering from a molecule.
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(a)

(b)

Figure 1.5: Scattering cross section of atomic (a) helium and (b) neon for an
electron with 90 keV kinetic energy in units of square of Bohr radius. The data
are taken from [7]. We fit the function in equation (1.49) to both measurements.
For helium we got µ = 4.6Å−1 and for neon µNe = 4.9Å−1.

The phase of f(s), can be obtained analytically for a high energy electron

scattered by the Yukawa potential as [9]

η(s) =
Ze2meλ

8π2ε0h̄
2

µ2 + s2

s
√

(2µ)2 + s2
ln

(√
(2µ)2 + s2 + s√
(2µ)2 + s2 − s

)
. (1.54)
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Figure 1.6: Scattering of an electron from a molecule.

1.3.4 Scattering from randomly-oriented isolated molecules

Suppose there is a molecule composed of N atoms where the i−th atom is

located at #»r i as shown in Figure 1.6. The scattering factor of the i−th atom will

be fi(θ)e
i

#»
k · #»r i since it gains an extra phase because of its distance from the origin.

The total scattering factor of the molecule will be

F (θ, φ) =
N∑
i=1

fi(θ)e
i #»s · #»r i . (1.55)

The differential scattering cross section of the molecule will be

dσ

dΩ
= FF ∗ =

N∑
i=1

N∑
j=1

|fi|eiηiei
#»s · #»r i |fj|e−iηje−i

#»s · #»r j

=
N∑
i=1

N∑
j=1

|fi||fj|ei(ηi−ηj)ei
#»s ·( #»r i− #»r j),

(1.56)

where ηi is the phase of fi. For an ensemble of M randomly-oriented molecules

we have to average FF ∗ over all angles between #»s and ( #»r i − #»r j), or
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〈 dσ
dΩ
〉 = M

N∑
i=1

N∑
j=1

|fi||fj|ei(ηi−ηj)
1

4π

∫ 2π

β=0

∫ π

α=0

ei|
#»s || #»r i− #»r j |cosα sinαdαdβ

= M
N∑
i=1

N∑
j=1

|fi||fj|ei(ηi−ηj)
1

4π

∫ 2π

β=0

∫ π

α=0

eisrij cosα sinαdαdβ

= M

N∑
i=1

N∑
j=1

|fi||fj|ei(ηi−ηj)
sin srij
srij

= M

N∑
i=1

N∑
j=1

|fi||fj|cos(ηi − ηj)
sin srij
srij

,

(1.57)

where rij = | #»r i − #»r j|. The last equality in equation (1.57) can be separated in

two terms as

〈 dσ
dΩ
〉 = M

N∑
i=1

|fi|2+M
N∑
i=1

N∑
j 6=i

|fi||fj|cos(ηi − ηj)
sin srij
srij

. (1.58)

The first term on the right hand side of 1.58 is just a summation of the scattering

cross section from each atom of the molecule and we label it as

Iatom = M
N∑
i=1

|fi|2. (1.59)

This term has no information about the molecule’s structure, and by finding the

scattering factors from available tables, it can be determined and subtracted from

the measured diffraction pattern.

However, the second term has interference terms
sin srij
srij

that depend on the

distances between the atoms and we label it as

Imolecule = M
N∑
i=1

N∑
j 6=i

|fi||fj|cos(ηi − ηj)
sin srij
srij

. (1.60)

In all electron diffraction experiments, this term is used to extract the structural

information. In this model, we ignore multiple scattering which means that an

electron which is scattered from an atom will not be rescattered from another
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atom. Furthermore, we assume that the atomic bonds inside the molecule have

a negligible contribution to the scattering signal as if the atoms are independent

from each other. This assumption is regarded as the independent atom model in

the literature [10]. The other assumption that we have made is that the scat-

tered electrons from atoms of two different molecules do not add coherently. This

assumption is true if the distance between adjacent molecules in the ensemble is

larger than the coherence length of the electron wave function. In a gas phase

experiment, if the gas density is in order of 1017 molecules per cm3 or less, the

average distance between molecules will be of the order of 20 nm or more, which

is larger than a typical transverse coherence of the electron beam that is of order

of 4 nm (see Section 2.7.)

1.4 Inelastic scattering

The theory developed with the Born approximation assumes elastic scattering

of electrons from a target. In elastic scattering, the energy of the incoming and

scattered electrons are the same but their momenta differ and all the informa-

tion about the structure of the target is encoded in that momentum difference.

Nonetheless, not all the electrons are scattered elastically. In fact, if the incident

electron penetrates deeply into the atom, there will be a significant chance to lose

energy [11]. The total intensity I(s) for the first Born approximation, by including

the inelastic electron scattering from an atom, is [8]

I(s) ∝ |f(s)|2+
4S(s)

a2
0s

4
, (1.61)

where f(s) is the elastic scatting factor, S(s) is called the inelastic scattering

factor, and a0 is the Bohr radius. The values of S(s) for different atoms are

tabulated in [8] and used in Figure 1.7 to illustrate |f(s)|2 and 4S(s)

a20s
4 for a 90 keV

electron scattered from a neon atom. As we see, the inelastic scattering cross

section is bigger than the elastic scattering cross section for s < 1.6Å−1, but it
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Figure 1.7: Functions |f(s)|2 and 4S(s)

a20s
4 for a 90 keV electron scattered from a

neon atom. The data points are taken from [8]. The curve fit to |f(s)|2 is a

squared Lorentzian and the curve fit to 4S(s)

a20s
4 is a summation of two zero-centered

Gaussians.

drops quickly. For s > 2Å−1 most of the detected signal is due to the elastically

scattered electrons. The curve fit to |f(s)|2 is a squared Lorentzian function (see

equation (1.49)) and the curve fit to 4S(s)

a20s
4 is a summation of two Gaussians, both

centered at s = 0. The inelastic electron wave functions do not add coherently

and hence they do not show interference patterns in diffraction from molecules [8].

Instead, they form a smooth background signal that, together with the atomic

scattering cross section in equation (4.2a), can be subtracted from the measured

diffraction pattern as we will discuss it in more details in Section 4.4.1.

1.5 Electron momentum spread and blurred diffraction patterns

An actual electron beam may have a finite momentum spread that can be due

to the creation, acceleration, compression or the space charge effect. This is in

contrast to a plane wave model with a single wavelength that we considered in the

previous sections. The incident electron pulse can be decomposed into its plane

wave components as

Ψi =

∫
dkA(k)eikz, (1.62)

where each component has its own wavelength and the integral is over all electron

momenta. Now, it is possible that two components with different wavelengths gain



19

momenta such that they are deflected to the same angle. This process will blur

the diffraction pattern on the detector. To explain this blurring effect consider

the momentum transfer in equation (1.48). The differential of s is

ds =
∂s

∂λ
dλ+

∂s

∂θ
dθ. (1.63)

Suppose we are looking at the diffraction pattern from a fixed angle θ, so dθ is

zero. From equation (1.63), we have

ds = −4π

λ2
dλ sin(

θ

2
). (1.64)

This equation means that two plane-wave components with wavelengths λ and

λ+dλ that gain the momenta s and s+ds from the scattering potential respectively,

will be deflected to the same angle, where ds is determined by equation (1.64).

Therefore, there is an ambiguity for the detected signal at angle θ in the sense

that we do not know if it is because of the electron pulse wavelength spread or the

scattering potential. As a result, the wavelength (or momentum) spread of the

electron pulse should be as small as possible. This problem can be ameliorated if

the detector has a narrow bandwidth around the wavelengths of interest.

The same argument holds for the transverse momentum spread of the electron

pulse, since the angle θ is measured from the initial direction of the electron to

the angle of scatter. For this reason, a collimated electron beam on the target is

preferred.

1.6 Scattering from non-stationary potentials

So far, we assumed that the target is in a stationary state which means that the

scattering potential is not a function of time. We also assumed that the wave func-

tion of the incident electron is a plane wave. In time-resolved experiments, these

assumptions are not true. The target can be excited and put into a non-stationary

state. The incident electron beam is composed of highly-charged electron bunches
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with a femtosecond duration which cannot be described by a single wavelength

plane wave function that exists everywhere and in all time.

For non-stationary targets, if we assume that 1) the time scale over which the

target evolves is longer than the duration of the electron pulse such that the target

is temporally frozen while the collision process takes place [12] and 2) the electron

pulse is a passive probe meaning that it does not change the state of the target,

we may generalize equation (1.33) to

f( #»s ; t) = − 1

2π

me

h̄2

∫
d3 #»r e−i

#»s · #»r V ( #»r ; t). (1.65)

However, these assumptions do not hold in general, and equation (1.65) is not

a valid description. A valid description can be obtained through the Hamilto-

nian that describes the whole quantum system, not just the electron. In other

words, the true Hamiltonian has three terms due to the target Htarget, the elec-

tron Helectron and the interaction between the two eV :

H = Htarget +Helectron + eV. (1.66)

This equation should be used instead of the Hamiltonian in equation (1.6), where

Htarget was absent. Also the electron should not be described by a plane wave,

for such an assumption prevents the probe-induced dynamics in the calculations.

Instead, the whole quantum system, including the target, should be modeled by a

wave packet [13]. This problem was first addressed in ultrafast x-ray experiments

on isolated molecules [14–18]. The treatment has been based on quantum electro-

dynamics. Nevertheless, the results are generalizable to electrons if we replace the

scattering operator for x-rays by the electron scattering operator [19].

1.7 Electrons vs. x-rays and neutrons

In this section, we compare the diffraction experiments done with electrons, x-

rays and neutrons. Electrons interact with the target molecules and atoms through
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the Coulomb potential and are affected by both the nuclei and all the electrons of

the target. The probability of multiple scattering is highest for electrons. Electrons

that are used in diffraction experiments have a typical kinetic energy of 10 keV

or higher corresponding to de Broglie wavelengths of 12 pm or shorter by which

a good spatial resolution can be achieved. Electrons are charged particles and

because of the Coulomb repulsion it is difficult to make bright electron pulses.

Nevertheless, as we discuss in this dissertation, there are techniques to overcome

the space charge effect and to generate ultrafast bright electron pulses to observe

ultrafast dynamics at the level of atoms and molecules.

X-rays interact mostly with the electron cloud around the nuclei since the

nuclei themselves are much heavier than the electrons and have negligible induced

dipole moments due to the x-ray field. Hence, the atoms have a much weaker

interaction with x-rays than with electrons. The elastic scattering cross section

of x-rays is around 106 times smaller than that of electrons [20] and similar to

electrons it increases drastically with Z. The typical wavelengths of x-ray photons

for diffraction experiments are around 1−10Å and are sufficient to observe atomic

structure. By use of a free electron laser, ultrafast x-ray pulses have been achieved

[21]. So similar to electrons, x-rays are suitable for gas phase ultrafast diffraction

experiments [22, 23]. Nonetheless, if we can generate bright ultrafast electron

pulses, then the electron diffraction will be superior to the x-ray diffraction for gas

phase samples due to their higher scattering cross section. A comparison between

ultrafast electron and x-ray diffraction experiments on molecules is given in [19].

The other particles used for diffraction experiments are neutrons. Neutrons

interact with both the nucleus of each atom through the short range strong force

and the magnetic moment of unpaired electrons. The neutrons scattering cross

section due to the nuclei interactions is not a smooth function of Z and does not

vary too much among different atoms [24]. In contrast to both electrons and x-rays,

the scattering signal from a single atom is not a function of angle since the size of

the nucleus is around five orders of magnitude smaller than the typical wavelength
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of a neutron (∼ 1Å) [24]. Therefore, neutrons can reveal more information on fine

details of the molecular structures than electrons or x-rays. Moreover, neutrons

can be used to divulge magnetic properties of materials. The neutron beams have

low density and cannot be used for gas phase experiments due to the dilute nature

of the sample. There is no ultrafast neutron source for time resolved diffraction

experiments.

1.8 History of gas phase electron diffraction experiments

So far we reviewed the theory of electron diffraction. Now we will review

the history of electron diffraction experiments. The history of gas phase electron

diffraction experiments begins in the 1930s [25–39]. Figure 1.8 shows the schematic

of the first electron diffraction apparatus [26]. The electrons were generated by a

cold cathode of a gas discharge tube, with a kinetic energy of 43 ± 0.2 kV. The

gas molecules were injected to the path of the electrons (from the bottom in the

figure) by a nozzle and went up to a liquid air trap. There was a fluorescent screen

that detected the electrons. The design was adapted by many other researchers

afterwards and became the basis for almost all modern gas phase static electron

diffraction apparatuses. However, there have been significant improvements in the

electron gun and hence the beam profile and stability, the vacuum, and specially

in the detection techniques [40]. Another type of apparatus was also developed

during the same period for lower energy electrons (below 800 V) but with a beam

current of around 10 mA [41]. In that design, shown in Figure 1.9, the electron

gun could rotate around the gas steam and the scattered electrons were trapped

by a fixed Faraday cup. The current of scattered electrons at a particular angle

was directly measured by a galvanometer. A review on the history, development

and applications of static electron diffraction experiments both in crystallography

and in gas phase can be found in [42].

The continuous electron beam was later used to observe formation of molecules

by heating an ensemble of their parent species where both coexist in a reversible
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Figure 1.8: Schematic of the first gas phase electron diffraction apparatus. (Figure
courtesy of [26]; used with permission.)

Figure 1.9: Schematic of the other type of gas phase electron diffraction experi-
ment. Electrons are generated by tungsten filament F located inside two cylinders
and go out through holes S1 and S2. The gun could rotate around the axis O
where gas was injected by a capillary. sceterred electrons were trapped by the
Faraday cup K. The potential of concentric cylinders around the Faraday cup
were chosen to filter inelastically scattered electrons. (Figure courtesy of [43];
used with permission.)
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equilibrium [44–46]. The first time-resolved electron diffraction with pulsed elec-

trons was done by synchronizing the electron pulses to either a flash lamp to

photo-excite the gas phase target [47] or to a microsecond laser pulse [48]. In

1992, the group of Professor Ahmed Zewail reported their first results using UED

of isolated molecules [49]. They used ultrafast laser pulses for both generation of

the electrons by photo-emission and excitation of the gas molecules. Figure 1.10

shows their electron diffraction apparatus. In that setup, the electron photo-gun

and the charged-couple device (CCD) camera were all in the same high vacuum

chamber. They used a homemade femtosecond laser at 620 nm (or 310 nm by

use of a frequency doubler) to pump the gas molecules. Another optical setup

was designed to convert a part of the 620 nm laser pulses to 258 nm to generate

electrons. The electrons were generated by back illumination of a photo-cathode

that was a 25 nm layer of gold deposited on a glass disk and kept at -15 kV to

accelerate the electrons. A series of electrostatic lenses with an electrostatic de-

flector were used to focus and direct the beam to the sample. The electrons were

detected directly by a CCD camera in the direct electron bombardment mode.

The photo-electron pulses had the same duration as the laser pulse on the surface

of the photo-cathode. But as the electron pulses left the cathode, the space charge

effect increased their duration in traveling to the target. The number of electrons

were kept low (under 10,000) to minimize that effect. With the repetition rate of

30 Hz, the average beam current was lower than 100 fA. More details on the setup

are provided in [50].

The proximity of the electron gun and the gas source made their first UED

setup prone to arcing, and inspired them to develop their second generation UED

setup [51]. In 1997, the Zewail group introduced their second generation UED

setup: UED-2 [52]. In that design, the electron gun, the scattering site, and the

detector were in three different and differentially pumped chambers with small

apertures between them. The schematic of UED-2 is shown in Figure 1.11. Beside

using three chambers instead of one, the diffraction pattern was now detected by
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Figure 1.10: Schematic of the first UED setup. The homemade laser setup, com-
posed of a colliding-pulse mode-locked (CPM) ring dye laser and a four stage
pulse dye amplifier (PDA), was used to generate 620 nm, 60 fs, 0.3-0.5 mJ pulses
at the repetition rate of 30 Hz. Part of the laser was converted to 258 nm to
generate electrons in a photo-emission process and the rest of it was sent to the
sample. This method introduced a minimum jitter between the pump and the
probe. The timing between the excitation and probe was controlled by a moving
stage. (Figure courtesy of [50]; used with permission.)

a phosphor scintillator together with an image intensifier connected to a CCD

camera. With this configuration, they were able to detect a single electron hitting

the phosphor screen. This produced diffraction patterns of higher quality. The

new setup was a source of inspiration for other researchers in the field [53, 54].

In 2001, the Zewail’s group revealed their third generation UED setup, dubbed

UED-3. It was equipped with a time-of-flight spectrometry chamber. Also the

phosphor screen was coated with a 500 nm layer of aluminum to filter out the

laser photons without affecting the electrons. For this setup, the electron pulse

duration could reach 1 ps for a significantly higher number of electrons per pulse

in comparison to UED-2, due to a higher accelerating electric field (6 kV/mm in

UED-3 vs. 2.7 kV/mm in UED-2) as well as a narrower photo-electron energy

spread [51].

However, there were two barriers for reaching a femtosecond resolution for

the setup. The first was the space charge effect: the number of electrons had
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Figure 1.11: Schematic of UED-2 setup. (Figure courtesy of [51]; used with per-
mission.)

to be kept low to prevent Coulomb expansion. This would in turn reduce the

number of scattering events. It was also not possible to get the target close to

the electron gun, in order to reduce the amount of pulse expansion, due to the

arcing problem. One idea was to use relativistic electrons [55–57], which was

implemented later [58]. However, this solution is limited to a few large facilities

which can produce relativistic electrons. For table-top setups, it was suggested

to compress the electrons in their path [59–61]. Radio-frequency electric field

compression has been the most reported [62–65]. However, all UED experiments

using radio-frequency compression were on condensed samples. We reported the

first implementation of the radio-frequency compression technique for gas phase

targets [66].

The other barrier was the pump-probe velocity mismatch. In 1993, Williamson

and Zewail investigated the effect of velocity mismatch between the laser and the

electrons, since the two do not propagate with same velocity unless the electrons

are accelerated to velocities close to that of light [67]. This problem was solved

later by the use of a laser front-tilting technique [68, 69]. We used the same

technique to minimize the total temporal resolution of the setup.

This dissertation is organized in the following way to describe the gas phase
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UED setup that we implemented: In Chapter 4, we explain the generation and

compression of electrons in our setup, measurement of beam current, numerical

simulation of the electron beam, the pump-probe velocity mismatch problem, and

the laser intensity tilting technique. In Chapter 3, we review the electron pulse

duration measurement by use of a homemade laser activated streak camera. Fi-

nally, in Chapter 4, we review the gas line, the setup calibration, the diffraction

experiments and the temporal overlap of the pump and the probe.
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Chapter 2

Table-Top High Current Ultrafast Gas Electron Diffraction
Setup

2.1 Introduction

The major elements of a gas phase ultrafast electron diffraction experiment are:

1) electron pulses of femtosecond duration and high kinetic energy for temporally

and spatially resolved observation, respectively; 2) ultrafast laser pulses to excite

the sample under study; and 3) the target that is a gas jet coming out of a nozzle

in the path of the electrons and the laser. In gas phase experiments, a typical

density of the gas jet is around 1016 − 1017 atoms or molecules per cm3 for small

molecules and even lower for bigger molecules. A condensed sample has a typical

density around 1023 atoms or molecules per cm3. Usually the path length through

a gas jet is about 1000 times that of a condensed sample, so there are about 103 to

104 fewer scattering events in gas phase experiments, with a concomitantly lower

signal. Furthermore, if the condensed sample has a crystalline structure, the total

diffraction signal will be a coherent superposition of diffraction signals from each

of its cells (over the transverse coherence of the electron beam) and will be much

brighter than the total diffraction signal from molecules in the gas phase, which is

an incoherent superposition of diffraction signals from each molecule, since they

are randomly spread. Therefore, in gas phase experiments, we need to increase the

charge density of the electron pulses to compensate the low level diffraction signal.

However, increasing the charge density, while maintain the pulse duration, is not

feasible since the space charge expands the pulse size in all directions, resulting in

a low temporal resolution, and a large transverse size of the beam. For relativistic
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electrons, the rest frame dynamics of the electron pulse are slower in the lab frame.

Thus, for ultrafast photo-emitted relativistic electron pulses, no relevant dynamics

is usually observed in the lab frame and consequently, the electron pulse preserves

its temporal width between the source and the target. Successful ultrafast gas

phase electron diffraction experiments have been reported which use relativistic

electron pulses [58, 70–72]. For sub-relativistic electron pulses, however, we should

either put the target close to the electron gun to reduce the travel time or use a

device to temporally compress the electron pulse. Previous experiments have

obtained a temporal resolution of between 850 fs and 1 ps when a 10 cm distance

between the electron source was used (with only a few thousands of electrons per

pulse) [53, 54, 73]. However, issues arise when one attempts distances shorter

than this, as the gas density cannot be too high around the accelerating stage.

Alternatively, the electron pulses can be recompressed by radio-frequency (RF)

electric fields [59, 62, 63, 65, 74–77] or by static fields [61], and can therefore allow

for the distance between the electron gun and the target to be increased, whilst

keeping the number of electrons in the pulse in the order of 105. In our setup, we

generate ultrafast electron pulses by femtosecond ultraviolet (UV) laser pulses in

a photo-emission process, and accelerate them to 90 keV kinetic energy. Radio-

frequency compression technology is then used to compensate the space charge

broadening and temporally focus the beam on the target. There are magnetic

lenses to compress the beam transversely and magnetic deflectors to guide the

beam to the target. Sections 2.3, 2.4, 2.5 and 2.6 of this chapter will concentrate

on these components of the electron gun, and provide insight into how the electron

beam is manipulated. A simulation of the electron beam, as it passes through the

apparatus, using General Particle Tracer, will be given in Section 2.7.

The other topic of this chapter is the pump laser preparation. Sub-relativistic

electron pulses travel at velocities smaller than that of light leading to a discrep-

ancy in the pump and probe timings, i.e. different parts of the sample will be

excited and observed at different time intervals. Such mistiming depends on the
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size of the electron beam, laser beam and gas jet, as well as the angle between the

pump and probe [67]. This problem will increase the overall temporal resolution

of the experiment and will not be completely solved if we do not manipulate the

laser beam such that its velocity matches the electrons velocity, by a technique

called “laser front tilting” [68, 69]. In Section 2.8 we explain the mismatch velocity

problem and its effect on the experiment and then provide details about the laser

front tilting technique employed in our setup.

2.2 Overview of the experimental setup

In this section, we will give a brief review on the whole UED setup and its

elements that are shown in Figure 2.1. In the next sections, we will provide more

details on each part. Using this setup, we generate ultrafast laser and electron

pulses to do pump-probe experiments on molecules in the gas phase. The begin-

ning point of the setup is a Ti:Sapphire laser oscillator (Coherent, Mantis) that

generates femtosecond laser pulses with a repetition rate of ∼75 MHz, a power of

400 mW, a central wavelength of 795 nm and a bandwidth of 60 nm. The output

of the oscillator then goes to a laser amplifier (Coherent, Legend Elite Duo) to

output 10 W, 5 KHz, 40 fs laser pulses with a central wavelength of 800 nm and

a bandwidth of 30 nm. The amplifier output is split into three paths to generate

the electrons, to pump the sample and to trigger the streak camera, a device that

measures the electron pulse duration and timing. The streak camera will be the

topic of Chapter 3.

The part of the laser that is used to generate electrons is first converted a UV

wavelength by a frequency tripler and sent to a copper cathode to photo-emit the

electrons. The cathode is held at -90 kV with respect to the grounded anode plate

in front of it. The generated electrons will be accelerated electrostatically in the

region between the cathode and anode, and leave that region through a small hole

on the center of the anode plate. By use of two magnetic deflectors, the electron

beam is centered and guided to the gas target and detector. The electron pulses
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Figure 2.1: UED setup layout. (Adapted from Structural Dynamics, Vol. 4,
044022, (2017); used in accordance with the Creative Commons Attribution (CC
BY) license.)
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are compressed transversely by magnetic lenses and longitudinally by a ∼ 3 GHz

microwave cavity whose compressing field is synchronized to the arrival time of

electrons. The synchronization is done by a fast photo-diode that generates a ∼75

MHz electric signal by sampling the laser oscillator output and feeding it to a

femtosecond synchronizer that generates the ∼3 GHz signal, which is amplified

and fed to the cavity.

The other part of the laser is used to excite the sample under study and is

referred to as the pump laser. We made an angle of 58.3o between the pump and

probe so the laser velocity component in the direction of electrons motion have

the same value as the speed of electrons. By use of an optical grating, we tilt the

intensity front of a laser pulse to match the electrons.

2.3 Electron photo-gun

We generate electron pulses in a photo-emission process, by use of UV laser

pulses. We accelerate the electrons in a static electric filed. In this section, we will

review the optical setup used to generate the electrons, the high voltage chamber

that accelerate the electrons and the way we measure the beam current.

2.3.1 UV laser setup

The ultraviolet laser pulses are generated from the infrared laser pulse by use

of a frequency tripler setup shown in Figure 2.2. A beam splitter is used to

separate off 10% of the laser amplifier output, which is sent to a frequency tripler,

which consists of four optical crystals: 1) a BBO crystal that generates the second

harmonic at 400 nm, from the 800 nm input laser; 2) a calcite group velocity

delayer that overlaps the fundamental and second harmonics in time; 3) a zero-

order wave plate (half-wave for 800 nm and full-wave for 400 nm laser) that rotates

the polarization of the second harmonic to match it to that of the fundamental

harmonic; and 4) a second BBO crystal that makes the third harmonic at 267

nm by combining the the fundamental and second harmonics. After these four
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crystals, we use three harmonic separators to filter the fundamental and second

harmonics. Since a high intensity is needed in the BBO crystals to induce the

nonlinear responses necessary for the harmonic generations, a telescope with a

demagnification of 4 is used to make the IR beam intense enough. The IR beam

has maximum fluence of 8.5 mJ/cm2 on the first crystal.

The generated UV beam is first trimmed by a 400 µm pinhole and then trun-

cated by a 200 µm pinhole, which is 10 cm away from the first pinhole. By this

method, the beam would be uniform on the second pinhole in spite of fluctuations

in the beam pointing, and has a smaller divergence in comparison to the case of

using only one pinhole. There is an adjustable UV filter between the two pinholes

to set the UV laser intensity for a desired number of photo-emitted electrons, and

hence the beam current. The second pinhole is imaged onto the cathode surface

by a demagnification of 4. By this method, we get a stable beam on the cathode,

which is necessary to get a stable electron beam.

Figure 2.2: Optical setup for electron photo-emission.
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2.3.2 High voltage chamber

Figure 2.3 shows the UV beam setup by which the electrons are created. By

use of two periscopes, the beam is brought up to the center of the high voltage

accelerator chamber. Then, the beam passes through a lens that images the second

pinhole discussed in Section 2.3.1 to a photo-cathode by a demagnification of 4.

The beam goes inside the vacuum chamber through a UV window and is guided

to a photo-cathode by a mirror. The photo-cathode is made of pure copper with

a work function of 4.7 eV. The energy of a 266.6 nm photon is 4.65 eV; therefore,

one electron is released by absorbing one photon. The 50µm UV beam cannot be

observed directly on the cathode. To make sure that the UV laser is hitting the

center of the cathode, we first remove the imaging lens so the laser beam becomes

large on the cathode. There is a small reflection from the surface of the cathode

which is directed out by another mirror (see Figure 2.3). The cathode is made on

a lathe with a flat center that has a diameter of 100µm so the grooves can be seen

in the reflected beam. We change the beam pointing until the eccentric circles are

observed in the reflected beam. At this point, electrons should be detected on the

phosphor screen with all electron optics (the magnetic lenses and the RF cavity)

being off except for the first electron beam deflector. We turn on the magnetic

lenses to make the electron beam transversely small to avoid beam clipping. Then,

we adjust the laser beam pointing to make the electron beam brightest and the

most symmetric. Working with the reflection from the cathode is difficult since

the beam is too dim and has a big divergence. However, there is another small

reflection from the vacuum chamber window. After we were sure that the laser

is hitting the center of the cathode, we put two distant pinholes centered on that

reflected beam. The pinholes help to steer the laser beam to the center of the

cathode quickly, in the case of any change in the UV beam pointing and loss of

the electron beam. The beam steering is done mostly by the two mirrors on the

second periscope. Once the laser pointing is fixed, we put the imaging lens back.

The lens is mounted on a tube with one pinhole at each end. The aim of pinholes
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Figure 2.3: Electron pulse creation by illuminating the cathode by UV laser pulses.

is to mount the lens such that the UV beam is at its center and perpendicular

to it to avoid aberrations and deflections. Both of the discussed reflections are

blocked by the lens mount and cannot be used any more. However, only very

small adjustments may be needed in the UV beam pointing to get the brightest

and the most symmetric electron beam.

The schematic of the high voltage chamber is shown in Figure 2.4. The cathode

is connected to a piece of metal that itself is held by an isolating cone. The cone

is made of PEEK (Polyetheretherketone) and is designed to withstand voltages

over 100 kV. The cathode is connected to a high voltage supply (Matsusada, AU-

100N 1.5). We set the cathode at -90 kV as we found that at this voltage the

chamber was the most stable regarding the number of breakdowns. The chamber

was purchased from AccTec BV and more details about its structure and design

can be found in [78]. The electrons are accelerated between the cathode and the

anode plate, and they leave the acceleration stage through a 8 mm hole on the

anode plate in front of the cathode tip. The distance between the cathode and the

anode is around 1 cm resulting in an accelerating field of around E0 = 9 MV/m.

The shape of the cathode and anode is designed so that the electric filed is radially

uniform in the acceleration region (around the cathode axis). An electron pulse

that is generated by this technique has a profile of a uniformly charged spheroid
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Figure 2.4: The high voltage chamber. The photo-created electrons are accelerated
by the electric field across the cathode and anode. (Reproduced from [79].)

[80]. The idea comes from the fact that an oblate spheroid with a uniform mass

density collapses into a disk under its own gravity force. Hence, if we generate a

surface charge with a density of

ρ(r, z) ≈ σ0

√
1−

(
r

b

)2

δ(z) (2.1)

on the surface of the cathode (z=0), where σ0 is the surface charge density at

the center of the pulse and b is the lateral semiaxis and r =
√
x2 + y2, it will

evolve into a uniformly charged spheroid because of the linear Coulomb repulsion

force inside the bunch [80]. The approximation sign is used since in reality the

beam has some initial thickness that comes from the laser pulse duration τ and

that thickness is necessary since a two dimensional object will not evolve into a

three dimensional object. However, that finite creation time as well as the image

charge on the cathode surface prevent the linear force inside the bunch that is

essential for obtaining a uniformly charged spheroid. The condition for which a

uniform spheroid charge distribution evolves from equation (2.1) in spite of the
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image charge force and the finite creation time is given by [80]

eE0τl
mec

� σ0

ε0E0

� 1 (2.2)

for me = 9.11× 10−31kg the electron mass, e = 1.6× 10−19C the electron charge,

E0=9 MV/m the accelerating field, c = 3× 108m/s the light velocity in vacuum,

τl = 100 fs the laser pulse duration, and ε0 = 8.85 × 10−12 F/m the permittivity

of vacuum. For a 16 fC electron pulse (a pulse of 105 electrons) with a radius

of b = 25µm, we will have eE0τl
mec

= 5.3 × 10−6 and σ0
ε0E0

= 0.1, which fulfill the

condition. The UV beam truncation by the pinhole that we described above results

in an electron beam distribution very close to equation (2.1). Consequently, the

electron pulse will be a uniformly charged spheroid. For the spheroid pulse with

a longitudinal semi-axis a and transverse semi-axis b, the electrostatic potential

inside the bunch in its rest frame and measured from the bunch center is [81]

φ(r, z) = − 3Q

16πε0

∫ ∞
0

ds
z2

a2+s
+ r2

b2+s

(b2 + s)
√
a2 + s

= − 3Q

16πε0a3
(Czz

2 + Crr
2), (2.3)

where −Q is the total charge of the pulse, and Cr and Cz are two constants that

depend only on the ratio b/a:

Cz =

∫ ∞
0

ds

[( b
a
)2 + s][1 + s]

3
2

; Cr =

∫ ∞
0

ds

[( b
a
)2 + s]2[1 + s]

1
2

. (2.4)

Figure 2.5 shows the value of Cz and Cr as functions of b/a obtained numerically

[79]. The resultant electric field of the pulse inside the bunch will be

#»

E(r, z) = −∇φ(r, z) =
3Q

8πε0a3
[Czzẑ + Crrr̂). (2.5)

The Coulomb force inside such pulses is linear with respect to the distance from

the pulse center. Equation (2.5) gives the electric field at one time instant where

generally the force is not equal in r̂ and ẑ directions; therefore, the aspect ratio

b/a changes and subsequently do Cr and Cz. However, the force remains linear
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Figure 2.5: Cr and Cz in equation (2.4) as functions of the aspect ratio b/a of a
uniformly charged spheroid. (Reproduced from [79].)

and consequently the charge distribution remains a uniformly charge spheroid, in

spite of changes in the aspect ratio. The main outcome of this property is that

we can reversibly compress the electron pulse in both directions by use of linear

forces without changing its spheroid profile. In other words, we can theoretically

compress such a pulse to its original dimensions at the cathode by use of linear

forces. The detail of temporal evolution of such pulses in their rest frame can be

found in [82].

2.3.3 Beam current measurement

We measured the electron beam current by use of a homemade copper Faraday

cup as seen in figures 2.6a and 2.6b. The cup contains a recess that is ten times

longer than its opening diameter, with a curved end to minimize electron back

scattering. To measure the beam current, we focused the electron beam using

magnetic lenses (discussed in detail in Section 2.5), on the Faraday cup entrance.

The Faraday cup is connected to a picoameter (Keithley, 6485) through a vacuum

feedthrough and a low noise coaxial cable [83]. Figure 2.7 shows the number of

electrons in each pulse for a given UV laser power. That number almost linearly
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(a) (b)

Figure 2.6: (a) Faraday cup dimension (b) Photograph of the Faraday cup.

increases with the laser energy as is expected for a one-photon photo-emission.

2.4 Electron pulse deflection

As is shown in Figure 2.1, we use two magnetic deflectors, one commercial and

one homemade, to guide the electrons and keep the beam centered on different

components, such as the magnetic lenses and the RF cavity. Each deflector is

composed of two pairs of coils sitting on the sides of a square magnetic core. Each

pair of coils are on opposite sides of the square and generate equal magnetic field

in the same direction at the center of the square core and deflects the electrons

that are going through that center. In Figure 2.8, one pair of coils is shown that

can deflect electrons moving on the z-axis along the ŷ direction. For a small angle

of deflection Θ, we have

tan Θ =
py
pz
≈ 2evzBx∆t

meγvz
=

2eBxl

meγvz
, (2.6)

where, e and me are the charge and mass of an electron, respectively, py is the

momentum that the electrons with longitudinal velocity vz and momentum pz gain

in the y direction due to the Lorentz magnetic force, ∆t is the time the electrons

spend in the field region, l is the length of the field region and is approximately
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Figure 2.7: Number of electrons per pulse vs the UV laser power. The red dots
show the measured values and the blue line a linear fit to the points. (Reproduced
from [83].)

Figure 2.8: Magnetic field of a pair of coils sitting on a magnetic square core. An
electron beam moving toward the plane of the page and through the center of the
square core will be deflected upward. With another pair of coils on the other sides
of the square, the electrons can be deflected horizontally.
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Figure 2.9: A magnetic lens is a coil whose field transversely compress the elec-
trons.

equal to the magnetic core thickness, γ is the relativistic gamma factor, and B is

the magnetic field produced by one of the coils. For example, for a deflection of

Θ = 2o, and l = 1cm each coil should produce a magnetic field of Bx = 1.8mT,

which is feasible for a 100 turn coil with a length of 5 cm and a diameter of 3.9

cm, an iron core and a current in the order of 100 mA.

2.5 Transverse compression of the electron pulses: Magnetic lenses

We control the transverse size of the electron beam by three magnetic lenses

that are shown in Figure 2.1. Each magnetic lens is a coil through which the

electrons traverse. As is shown in Figure 2.9, at the entrance of each coil, the

magnetic field has a radial component that exerts an azimuthal force on the elec-

tron bunch so it starts to rotate around the coil axis. Inside the coil, the magnetic

field is along the coil axis and exerts an inward radial force to the electrons and

hence compresses them transversely. Note that the electrons will not have a net

azimuthal velocity after the lens, since the radial forces at the entrance and exit of

the coil cancel the effect of each other; however, the electron pulse will be rotated

azimuthally with the same amount for each electron, neglecting the momentum

spread of the pulse. The equation of motion of an electron inside a paraxial elec-
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tron pulse at the radial distance r is

γme
dvr
dt

= −evφBz +
γmev

2
φ

r
+

3Q

8πε0a(t)3
Cr(t)r, (2.7)

where vr is the radial velocity of the electron and vφ is the azimuthal velocity

that it gained at the entrance of the coil and Bz is the axial magnetic field which

is assumed uniform in the radial direction. The first, second and third terms on

the righ-hand-side of equation (2.7) show the Lorentz force on the electron in a

magnetic filed, the relativistic centripetal force because of the electron azimuthal

velocity, and a radial force due to the space charge effect in equation (2.5), respec-

tively.

From the conservation of angular momentum, it can be shown that [84]

vφ =
erBz

2γme

. (2.8)

By inserting equation (2.8) into equation (2.7) we get

d2r

dt2
=

{
− eBz

2γme

+
3Q

8πε0a(t)3γme

Cr(t)

}
r. (2.9)

This equation shows that by a large enough value of Bz, we can overcome the space

charge effect and radially compress the pulse. Note that the compressing force is

linear so the electron pulse retains its spheroid profile. Finding the focus point

from equation(2.9) is not straightforward because a(t) and Cr(t) are functions of

time. However, by ignoring the space charge effect, the focus point can be easily

obtained [84].

In our setup, we used three magnetic lenses to make the beam size small on the

compressing RF cavity, at the target and at the detector. The coils are depicted

in Figure 2.1 and their parameters are summarized in Table 2.1. The RF electric

field, which we use to longitudinally compress the electron pulses, diverges the

beam transversely. The aim of the third coil that is placed after the RF cavity is



43

Table 2.1: Parameters of three magnetic lenses

Coil 1 Coil 2 Coil 3
Inner diameter (mm) 85 40 43
Outer diameter (mm) 140 70 94
Length (mm) 60 60 25
Number of turns 360 935 216
Distance from cathode (mm) 43.9 275 650
Current range (A) 7.5–8.5 1.2–1.3 1–3
Axial magnetic field (mT) ∼ 60 ∼ 20 ∼ 10

to compensate that effect.

After all the electron optics and around 10 cm before the target position, we

use a an electron collimator with a diameter of 400 µm to cut the stray electrons

and to give the most symmetric beam profile.

2.5.1 Transverse profile of the electron beam

By use of magnetic coils, we have a control over the beam transverse radius

at different positions. The beam size can be measured on the detector directly. If

the electron pulses are uniformly charged spheroids with the transverse semi-axes

bs, the detected intensity on the phosphor screen at (x, y) plane, As(x, y), will be

As(x, y) = As

√
1− (x− x0)2 + (y − y0)2

b2
s

, (2.10)

where (x0, y0) is the center of the beam on the detector, As is a constant and we

have ignored the finite resolution of the detector that can blur the signal. On

the other hand, if the beam has a Gaussian profile on the detector with a radial

standard deviations of σr, the detected signal on the phosphor screen will be

Ag(x, y) = Ag exp
− (x−x0)

2+(y−y0)2

2σ2r , (2.11)

where Ag is a constant. Figures 2.10a, 2.10b and 2.10c show the detected electron

beam on the CCD camera, and its projection onto the x and y axes, respec-

tively. We fitted a Gaussian and spheroid functions to the measured profiles. The
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spheroid functions had slightly less fitting errors in both directions. The standard

deviation of the Gaussian fit was 20.11 and 19.4 pixels in x and y directions, corre-

sponding to around 860 µm and 850 µm on the phosphor screen, respectively. The

full width half maximum (FWHM) of the beam is around 2 mm in both directions.

The standard deviation for the spheroid fit is equal to bs/
√

5 and is equal to 17.4

and 16.8 pixels in x and y directions, respectively.

At the target (or anywhere else in the beam line), the transverse size of the

beam can be measured indirectly by first blocking the beam completely by a

grounded conductor plate and then gradually unblocking it from one side (for

instance, moving the plate away in x direction while z is the direction of propa-

gation) and measuring the beam current by the Faraday cup. If the beam has a

spheroid profile with bt the transverse semi-axes, the current we read as a function

of the blocking plate position will be of the form

I(x) =


0, x ≤ −bt

I0(x+ 2bt
3
− x3

3b2t
), −bt < x < bt

I0, x ≥ bt,

(2.12)

which comes from integration of the spheroid and I0 is the total beam current. On

the other hand, if the beam has a Gaussian profile with the standard deviation of

σb, the current will be

I(x) = I0(1 + erf (
x√
2σb

)). (2.13)

Figure 2.11 shows the measured current as a thin foil of copper intruding the beam.

The two functions in equations (2.12) and (2.13) are fitted to the measurement

with almost the same fitting error. The standard deviation of the Gaussian fit is

130 µm corresponding to the FWHM of 306 µm, the standard deviation of the

spheroid fit was 120 µm.
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(a)

(b)

(c)

Figure 2.10: (a) The electron beam on a phosphor screen as detected by a CCD
camera. (b) the projection of the beam onto the x axis (c) the projection of the
beam onto the y-axis. For both one dimensional plots, we fitted a Gaussian and
spheroid profiles onto the measured data.
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Figure 2.11: Measurement of the electron beam transverse size. We read the
beam current while a copper foil intruded the beam in x direction. Functions in
equations (2.12) and (2.13) are fitted to the data points.

2.6 Longitudinal compression of the electron pulses: RF cavity

Unlike the transverse compression of electrons by time-invariant magnetic

fields, the electrons are compressed by a time-varying electric field of an RF cavity

that is precisely synchronized to the electrons. In this section, we first review the

compression mechanism, and then the synchronization.

2.6.1 RF compression of electron pulses

The electron pulses can be compressed using the time-varying longitudinal

electric field of a microwave cylindrical cavity in its TM010 mode, with the electric

field

#»

Ec(r, t) = E0J0(
x01

R
r) cos(ω0t)ẑ, (2.14a)

and magnetic field

#»

Bc(r, t) =
E0

c
J1(

x01

R
r) sin(ω0t)φ̂, (2.14b)

where E0 is the amplitude of oscillation, J0 and J1 are the zero and first order

Bessel functions of first type, respectively, x01 is the first zero of J0, R is the radius
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of the cavity and ω0 is the resonance angular frequency of the cavity [85]. If the

electron beam is transversely much smaller than the radius of the cavity such that

r/R→ 0, then

J0(
x01

R
r → 0)→ 1; J1(

x01

R
r → 0)→ 1

2

x01

R
r. (2.15)

Therefore, the cavity fields become

#»

Ec(r � R, t) ≈ E0 cos(ω0t)ẑ, (2.16a)

and

#»

Bc(r � R, t) ≈ E0

c

1

2

x01

R
r sin(ω0t)φ̂. (2.16b)

Suppose that the length of the cavity lcavity is such that

lcavity
vz
� 2π

ω0

, (2.17)

for vz the velocity of electrons, so the time the electron pulse spends inside the RF

cavity is much shorter than its field oscillation period. Around time t0 for which

ω0t0 = π/2, the field of the cavity can be approximated by

#»

Ec(r � R, t→ t0) ≈ −E0ω0(t− t0)ẑ, (2.18a)

and

#»

Bc(r � R, t→ t0) ≈ E0

c

1

2

x01

R
r(1− (ω0(t− t0))2

2
)φ̂. (2.18b)

For an electric field amplitude in the order of 1 MV/m, the amplitude of the

magnetic field will be around few mT for r = R/10, and will diverge an electron

beam whose transverse size is relatively large, since it applies an outward radial

force

#»

F B(r, t) ≈ evz
E0

c

1

2

x01

R
r(1− (ω0(t− t0))2

2
)r̂ (2.19)
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to an electron at r. Therefore, by making the electron beam big enough on the

cavity, we can set the phase of the RF cavity at a value for which the beam is

biggest on the detector. By this technique, we send the electrons to the cavity

around time t0 where the electric field in equation (2.18a) is crossing zero from

positive values to negative values. Then, making the beam transverse size smaller

on the cavity by use of the magnetic lenses will not change the arrival time of

electrons since magnetic fields cannot change the energy of the beam.

For an electron pulse moving along the +z direction, the electric field in equa-

tion (2.18a) applies a force that is in the −z direction while the pulse is entering

the cavity and linearly increases by time so that it is in the +z direction while the

pulse is exiting the cavity. This time-varying electric field compresses the electron

bunch in time, i.e. the electron pulse goes to a focus after the RF cavity. The RF

cavity was purchased from AccTec BV and its shape was optimized for highest

axial electric field and quality factor. Figure 2.12a shows a cylindrical RF cavity

and Figure 2.12b shows its geometrically optimized version. As a general rule, if

one modifies the shape of an RF cavity so that the ratio of its volume over its

boundary surface increases for a a given cutoff frequency, the quality factor in-

creases because the ratio of stored energy in the cavity over the dissipated energy

on the cavity walls increases. Figure 2.12c illustrates the timing between the RF

cavity electric field and the electron pulse for an optimum compression.

Suppose zc and vz represent the center of the electron beam and its velocity,

respectively. If the center of the electron pulse traverses the center of RF cavity at

time t0, no force would be applied to it, so it retains its longitudinal velocity. The

total longitudinal force on an electron at z, by including the space charge electric

field in equation (2.5) will be [79]

Fz(z) = −eE0ω0
z − zc
vz

+
3eQ

8πε0a3
Cz(z − zc) =

{
− eE0

ω0

vz
+

3eQ

8πε0a3
Cz

}
(z − zc).

(2.20)

As we see, for large enough values of E0ω0, not only the space charge effect can
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(a) (b)

(c)

Figure 2.12: (a) A cut of a cylindrical RF cavity; the electron pulses travel along
+z direction and go inside the cavity through a hole with a diameter much shorter
than the oscillation wavelength so it minimally disturbs the fields patterns (b)
The geometrically optimized RF cavity for higher quality factor and axial electric
field. (c) Timing between the cavity electric field and the electrons . Blue arrows
show the electric field. (Reproduced from [79].)

be compensated but the pulse can be longitudinally compressed and focused on a

target. Calculation of the temporal focal length of the cavity is not straightforward

because of the space charge effect; however, by ignoring the space charge, the focus

point can be obtained analytically in a closed form [86].

Unfortunately, the first mode of the RF cavity is TE110 and not TM010. There-

fore, the RF cavity feed antenna had to be designed so it coupled most of the input

power to TM010 [78].
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2.6.2 Electrons-RF field synchronization and timing

The bottleneck of aneffective electron pulse compression is a precise timing

between the arrival of the electrons and the phase of the compressing electric

field. In our setup, we use a commercial synchronizer (AccTec BV) that adjusts

the phase of the RF cavity electric field within 100 fs with respect to the arrival of

the electrons. The laser oscillator acts like a clock for the whole system, i.e., the

electrons and the pump laser are synchronized to the oscillator output. Therefore,

the idea was to synchronize the RF cavity fields to the laser oscillator too [87].

At the output of the laser oscillator, there is a 10% beam sampler that directs

the beam to a fast photo-diode, the output of which goes to the commercial

synchronizer where an RF signal with a frequency 40 times larger than the input is

generated. The phase of the output signal is locked to the phase of the input signal.

The resonance frequency of the RF cavity is 2.997 GHz at 45o, corresponding to

the laser repetition rate of 74.935 MHz. The quality factor of the RF cavity is

around 10,000, resulting in a bandwidth of 300 kHz. So the repetition rate of the

laser oscillator should be within the range of 74.931 to 74.939 MHz. We motorized

one of the laser oscillator end mirrors, so we can change the repetition rate and

monitor it. There is an active feedback loop that corrects the repetition rate in

case of any drift [83]. Furthermore, we replaced the pump laser of the oscillator

with another pump laser (Lighthouse Photonics, Sprout-H) with a significantly

better nominal optical noise. Amplitude noise in the laser output causes amplitude

noise in the electric field signal read by the fast photo-diode and translates into a

phase jitter at the synchronizer output. Figure 2.13 shows the laser oscillator and

the modifications we did. Any change in the RF cavity temprature changes its

dimensions and hence its resonance frequency. This can introduce a change in the

phase of its oscillating field. The duty cycle of the RF cavity field is reduced to

5% for a better temperature stabilization. So for a the setup repetition rate of 5

kHz, the RF cavity is on only for 10 µs. By a commercial temperature controller

(AccTec BV), the RF cavity temperature is stabilized within 1 mK.
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Figure 2.13: Laser oscillator setup.

The signal from the synchronizer goes to a custom-designed adjustable RF 0-10

dB attenuator (RLC electronics) and to a solid-state 53 dB amplifier (Microwave

amps, AM83-3S-50-53R). The amplified signal goes to a 30 dB directional coupler

(Meca Electronics, 722N-30-3.100) and then to the RF cavity. The directional

coupler takes samples from the RF cavity input and reflection signals and sends

them to RF power detectors (Mini-Circuits, ZX47-40LN) by which we monitor

the input power to and the reflection from the RF cavity. Figure 2.14 shows

all the described elements. Figure 2.15a shows the signal detected by the power

detectors on an oscilloscope. In the experiment, we moved the end mirror of the

laser oscillator so that the reflection from the cavity becomes minimum. According

to the data sheets of the power detectors, the conversion from the detected voltage

by the oscilloscope, v to the actual power P in dBm is

P = −40.54× v + 39.86; (2.21)

therefore, the reflection signal observed on the oscilloscope should be maximum.

Figure 2.15b represents the input power and the reflection power in Watts. We
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used phase stable coaxial cables (Times Microwave Systems, PT210) to connect

the RF devices for the lowest phase jitter. The details of determining the input

power and the phase value of the RF cavity for optimum longitudinal compression

are discussed in the next chapter, where we describe the electron pulse duration

measurement.

The noise peak in the input power is due to the Pockels cells switching in the

laser amplifier and is an approximate indicator of the time the electrons enter the

RF cavity. The rise time of the RF cavity is around 6µs. We made a pulse stretcher

and delayer device that enables the RF cavity fields such that the electrons enter

the cavity after its rise time. The details of the circuit is provided in Appendix

A.

Figure 2.14: RF cavity setup elements.
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(a)

(b)

Figure 2.15: (a) The signal detected by the oscilloscope. In the experiment, we
minimize the reflection from the RF cavity by adjusting the end mirror of the
laser oscillator and hence its repetition rate. An active feedback loop keeps the
repetition rate constant in time. Minimum reflection in power corresponds to
maximizing the reflection signal in the oscilloscope. (b) Conversion the volatges
read by the oscilloscope to the actual input and reflected powers.

2.7 General Particle Tracer simulation of the electron beam

The General Particle Tracer (GPT) is a numerical simulator developed by

Pulsar Physics that we used to analyze the setup and find an insight into different

beam line components and their functions. It helped to estimate quantities that

we do not measure directly like the energy spread of the beam, the emittance

and the transverse coherence length. Table 2.2 summarizes the parameters we

fed into the simulator. The values of the coil currents are the same as what used
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Table 2.2: GPT simulator input parameters.

Simulation Parameters Values
Laser spot size on cathode 50 µm
Laser pulse duration 40 fs
Accelerator DC voltage 90 kV
Number of electrons per pulse 100,000
1st coil current 8.115 A
1st coil position 43.9 mm
2nd coil current 1.232 A
2nd coil position 275 mm
3rd coil current 2.869 A
3rd coil position 650 mm
RF cavity amplitude 1.6 Mv/m
RF cavity phase 0.76 rad
RF cavity position 577 mm
Target position 800 mm
Phosphor screen distance form cathode 1360 mm

in the experiment (as described in table 2.2) to make the beam transverse size

small enough on the target and the detector. The phase of the RF cavity was

set so that the average kinetic energy and hence the average gamma factor of the

pulse be the same before and after the cavity. The amplitude was set such that

the pulse was temporally focused at the target position. As we will discuss it in

the next chapter, in the experiment, the phase and amplitude of the RF cavity

were determined in the exact same way. The results of the simulation is the most

sensitive to the position of the first coil.

Figures 2.16a and 2.16b show the standard deviations of the transverse size and

the pulse duration of the electron pulse as functions of distance from the cathode.

The minimum pulse duration is around 50 fs rms equivalent to 117 fs FWHM. If

we increase the number of electrons per pulse from 105 to 5 × 105, with the rest

of the parameters untouched, the duration increases to around 220 fs FWHM. As

we will discuss in the next chapter, the jitter in the RF cavity phase blurs that

difference in the the pulse duration due to the number of electrons. In other words,

we hardly measured any pulse duration less than 350 FWHM for both amounts

of charge per pulse, indicating there is a timing jitter with a value comparable to
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the pulse duration.

(a)

(b)

Figure 2.16: (a) The beam radius (std) and (b) the pulse duration (std) simulation
by GPT.

The percentage of the kinetic energy (KE) spread of the electron pulse can be

obtained from

δKE

KE
=

mec
2δγ

mec2(γ̄ − 1)
× 100, (2.22)

where δ and overbar indicate the standard deviation and average, respectively,

and γ is the relativistic gamma factor. Figure 2.17 depicts the energy spread of

the electron pulse. The energy spread has two jumps at the acceleration stage and

the RF cavity and goes to a minimum at the target place where it is compressed

in all directions with a value of 0.5%. If we increase the number of electrons to

5× 105, and keep the other parameters the same, the KE spread becomes 0.82%.

The transverse coherence of the electron beam is a major parameter to have
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Figure 2.17: Kinetic energy spread percentage of the electron pulse.

a high quality diffraction pattern. Its value should cover the size of one molecule

so there is a coherent interference by which we retrieve the molecule’s structure.

On the other hand, it should be smaller than the distance between two adja-

cent molecules in the gas so we get incoherent superposition of their individual

diffraction signals. The transverse coherence length can be calculated from [88]

L⊥ =
h̄

mec

σtarget
εx

, (2.23)

where σtarget is the transverse size of the electron at the target, and εx is the

transverse rms normalized emittance of the electron pulse defined by [88]

εx =
1

mec

√
〈x2〉〈p2

x〉 − 〈xpx〉
2, (2.24)

where x and px are the position and the momentum of a single electron with respect

to the center of the pulse and its average momentum and the angle brackets

indicates the average over the whole pulse. According to the GPT simulation

results, εx is around 11.7nm (equivalent to 0.0117 mm mrad) for a beam size

of around 100-120 µm, resulting in a coherence length of 3.5 to 4 nm, which is

consistent with a previous report [59].
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2.8 Pump laser setup

The atoms or molecules under study are excited by femtosecond laser pulses

and probed by the femtosecond electrons. However, 90 keV electrons propagate

with a velocity that is 0.526 times smaller than the pump velocity c. For a gas

jet with a hundreds of micrometer diameter, this discrepancy in velocities will

significantly reduce the temporal resolution of the setup because not all of the

molecules will be excited and probed with the same timing interval. This problem

is regarded as the pump-probe velocity mismatch problem. In our setup, we use

a technique called the laser front tilting to solve the velocity mismatch problem.

First, we will review the problem in more details and then we describe the solution.

2.8.1 Laser-electron mismatch velocity

The effect of velocity mismatch in ultrafast pump-probe experiments was first

highlighted by Zewail et al. [67]. Their analysis showed that the temporal blurring

due to the velocity mismatch has a major contribution and can be the main

limiting factor of the experimental resolution. Figure 2.18 shows the geometry of

a pump-probe experiment. The FWHMs of the gas jet, the laser pulse and the

electron pulse are wg, wl and we, respectively. The FWHM durations of electron

and laser pulses are τe and τl, respectively. The electrons propagate with the

velocity ve and the angle between the electrons and the laser is θ. The temporal

resolution of the setup can then be obtained from [67]

τtotal(FWHM) =
√
τ 2
e + τ 2

l + τ 2
vm, (2.25)

where τvm is the temporal broadening due to the velocity mismatch and is given

by [67]

τvm =
1

c

√
w2
ew

2
g(

c
ve

cos θ − 1)2 + w2
l w

2
g(

c
ve
− cos θ)2 + w2

ew
2
l ((

c
ve

)2 − 2 c
ve

cos θ + 1)

w2
g sin2 θ + w2

l + w2
e + w2

l w
2
e/w

2
g

.

(2.26)
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Figure 2.18: Laser, electrons and the gas jet geometry in a gas-phase pump-probe
experiment.

Figure 2.19 shows the calculated temporal resolution of the setup as a function

of the width of the laser and the electron beams for θ = 58.3o, and different widths

of the gas jet. For the laser and electron beams making the angle θ = 58.3o, the

longitudinal component of the laser pulse velocity will have the same velocity as

the electrons. In this figure, the electron and laser pulse durations are 350 fs

and 50 fs, respectively. The width of the gas jet plays an important role in the

temporal resolution, since the velocity mismatch problem will be less severe as

the target size shrinks. For solid samples with a thickness of several hundreds

of nanometer, the velocity mismatch would not be an issue. However, in gas

phase experiments, the width of the gas jet cannot be reduced because of both

practical barriers and also the fact that atoms and molecules may form clusters

by reducing the size. The electron and laser beam widths should be of the same

size of the gas jet to excite and observe as many particles as possible. The other

way to alleviate the velocity mismatch problem is to reduce the angle between the

pump and probe. Suppose we confine the width of gas jet, the laser beam and the

electron beam to 250 µm FWHM. Figure 2.20 shows the temporal resolution of

the setup as a function of the angle between the pump and probe. As we decrease

the angle, the temporal resolution increases, but the velocity mismatch broadening

never vanishes. In addition, making the angle very small will not be easily feasible

because of practical issues. The other solution is to keep the angle θ = 58.3o, so
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Figure 2.19: FWHM of the setup temporal resolution as a function of the laser
and electron beam widths that are kept the same, for different width of the gas
jet. The other parameters are τe = 350fs, τl = 50 fs, ve = 0.526c, and θ = 58.3o.

the two beams have the same longitudinal velocities but to tilt the intensity front

of the laser pulse so it coincides the electron pulse.

2.8.2 Theory of tilted front laser pulses

Laser intensity front is a technique developed to solve the pump-probe velocity

mismatch problem [68, 69, 89]. Figure 2.21 shows two configurations of the laser

and electron pulses. The angle θ is chosen so the longitudinal component of the

laser beam have the same value as the electron pulses, i.e.

θ = cos−1(
ve
c

). (2.27)

In the tilted laser pulse configuration, the intensity front of the laser intensity

is tilted to make an angle 90 − θ degrees with its direction of propagation. By

this technique, the timing between the laser and electron pulse remains the same

throughout the gas jet area.

The intensity front tilting is done by a reflective optical grating. As is shown

in Figure 2.22, the grating consists of a periodic vertical ridges with a period of

d equivalent to the grating constant of 1/d ridges per unit of length. Because of



60

Figure 2.20: FWHM of the setup temporal resolution as a function of the angle
between the laser and electron beams. The other parameters are τe = 350 fs,
τl = 50 fs, ve = 0.526c, and we = wl = wg = 250µm.

Figure 2.21: The pump-probe experiment in two configurations. The pump-probe
angle is selected such that the longitudinal component of the laser velocity vector
has the same value as the electron velocity. For 90 keV electrons, the angle is
θ = 58.3o. In the normal-front laser beam, the constant intensity planes are
normal to the direction of propagation. In the tilted-front laser beam, however,
the constant intensity fronts make an angle (90 − θ) degrees with the direction
of propagation. In this configuration, the timing between the laser and electron
pulses is constant, therefore, there is no velocity mismatch.
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Figure 2.22: Diffraction of light by an optical grating. Each red line shows an
optical paths to the point P on a far distance detector. Each path is slightly
different in length from the others; hence, the optical rays going to point P on
each path will have a different phase.

the ridges, the incident beam will be diffracted by the grating. Suppose a plane

wave incidents with an angle φi on the grating. The outgoing beam Eo will be

proportional to

Eo ∝
+N∑

n=−N

e−in2π d
λ
×(sinφo−sinφi) =

sin((2N + 1)π d
λ
(sinφo − sinφi)

sin(π d
λ
(sinφo − sinφi))

, (2.28)

where λ is the wavelength of the incident beam and 2N is the number of ridges.

The detected intensity Io will be proportional to

Io ∝ |Eo|2∝
sin2((2N + 1)π d

λ
(sinφo − sinφi)

sin(π d
λ
(sinφo − sinφi))

. (2.29)

According to equation (2.29), the maximums of intensity take place whenever

its denominator vanishes:

d(sinφo − sinφi) = mλ, (2.30)

where m is an integer and called the order of diffraction. If we take a derivative
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Figure 2.23: Intensity front tilting by the grating. Two parallel rays are diffracted
by the grating at the zero angle. Consequently the ray 1 will be ahead of ray 2 by
value ∆x. From this geometry we calculate the tilt angle θ.

from equation (2.30) with respect to φo and invert the result, we get

dφo
dλ

=
m

d cosφo
, (2.31)

which is known as the grating dispersion relation. Now, suppose the grating is

designed so the first order diffracted beam comes at the zero angle with respect to

the grating normal, so φo = 0, we want to find the tilt angle θ. Figure 2.23 shows

the front tilting by the grating. Consider two optical rays hitting the grating by

the angle φi and are diffracted to angle φo = 0. After the diffraction, ray 1 will be

ahead of ray 2 by the amount of ∆x = l sinφi − l sinφo. The tangent of the tilt

angle is

tan θ =
∆x

l cosφo
=

sinφi − sinφo
cosφo

. (2.32)

By use of equation (2.31), equation (2.32) becomes

tan θ = − mλ

d cosφo
= −dφo

dλ
λ. (2.33)

Suppose that the refracted beam is normal to the surface of the grating, and
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the laser beam has a bandwidth of ∆λ. By rearranging equation (2.31) and taking

integral of it, we get

sinφo2 − sinφo1 =
m

d
∆λ, (2.34)

where φo2 and φo1 are angles that represent the edge of the output beam. For a

small laser bandwidth, the two angles are small and we may write sinφo2 ≈ φo2

and sinφo1 ≈ φo1; hence, equation (2.34) becomes

∆φo = φo2 − φo1 =
m

d
∆λ. (2.35)

Therefore, the beam has a divergence angle that is proportional to its wavelength

bandwidth. The grating translates the bandwidth of the laser into a divergence

angle, and gives a spatial chirp to the refracted beam. Tilting the laser intensity

front will change the pulse duration too. A Fourier analysis of a Gaussian beam

with a temporal profile of exp(−(2
√

ln 2 t
τl0

)2), with τl0 being the FWHM duration

of the incident pulse, shows that the laser pulse duration increases as a function

of the distance from the grating z as [90]

τl(z) = τl0

√
1 +

(2 ln 2)2(dφo
dλ
|λ0)4λ6

0

π2c4τ 4
l0

z4, (2.36)

where λ0 is the central wavelength of the laser. Equation (2.36) assumes that

there is a negligible distortion because of the spectral lateral walk-off [90]. If we

image the surface of the grating, the pulse duration of the incident pulse can be

retrieved at the image plane. For this case, temporal distortions can be avoided

if the grating face coincides the object plane, i.e., φo = 0 [91]. Demagnification

of the imaging setup can change the tilt angle at the image plane. If M is the

demagnification of the imaging setup, and θ′ is the tilt angle at the image plane,

we have

tan θ′ = −M tan θ, (2.37)

where the minus sign comes from the fact that the image is spatially inverted with
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Figure 2.24: Tilted laser pulse duration as a function of deviation from the image
plane.

respect to the object.

In our setup, the grating period is d = 6.7µm corresponding to the grating

constant of 150 mm−1, and 80% of incident power diffracts to the first order.

For φo = 0, the tilt angle from equation (2.33) becomes θ = −6.85o and the

incident angle from equation (2.32) becomes φi = −6.9o. For the tilt angle of

θ′ = 58.3o, necessary for the laser-electrons velocity matching, the demagnification

from equation (2.37) becomes M = 13.36. To control the laser beam size on the

image plane which is the position of the gas jet, we adjust the size of the beam on

the grating by use of a telescope.

The pulse duration as a function of distance from the image plane can be

obtained by including the demagnification M in equation (2.36), i.e.

τl(z) = τl0

√
1 +

(2 ln 2)2(M(z)dφo
dλ
|λ0)4λ6

0

π2c4τ 4
l0

z4. (2.38)

Here, the demagnification is the size of the beam on the grating over the size of the

beam around the image plane. For f = 0.25m the focal length of the imaging lens,

M becomes equal to 1
4z+0.077

. Figure 2.24 shows the pulse duration as a function

of distance from the image plane.

The width of the tilted laser pulse should be chosen so that it covers all area
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Figure 2.25: Interaction area of the laser and the gas jet.

of the gas jet. Figure 2.25 shows the interaction area of the laser and the gas jet.

Because the front of the laser is tilted, its width should be larger in comparison

to the width of a normal front laser to cover the gas jet area. According to Figure

2.25, the width of laser beam wl whose front is tilted by angle θ, should be equal

to wg
cos θ

to cover the gas jet.

2.8.3 Tilted pulse setup and measurement

Figure 2.26 depicts the elements of the optical setup by which we generate the

tilted front laser pulses and measure the tilt angle and the pulse duration at the

image plane. In that figure, mirrors, pinholes and beam splitters are shown by M,

P, and BS respectively, and the numbers show the order by which the laser hits

the optics. The beam from the laser amplifier is directed to an optical telescope

for a desired size on the grating and hence at the target. The pinhole P1 can be

put on the mounts of either the convex or the concave lens to make the beam

centered on them. By use of P2 the beam is kept parallel to the motion of the

moving stage that is to delay the pump laser. Fine adjustments of that stage is

necessary to avoid any change in the beam pointing while the stage is moving. The

position of P3, P4, P5 and P6 are chosen so the beam goes at 6.9o to the grating

and comes out perpendicularly. Mirrors M6 and M7 are responsible for the beam

going through P3 and P4. The diffracted beam from the grating is adjusted by

the position of the grating and its angle so it goes through P5 and P6. By this, we
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make sure that the diffraction angle is zero. The diffracted beam goes to M8 and

M9 on another moving stage by which the accurate object distance is set. From

this point, the beam is directed by several other mirrors and a periscope to the

target chamber. There is a beam polarizer to set the polarization of the beam. If

we need to measure the tilt angle and the pulse duration, we can split the beam

before going to the grating by BS1 into the normal front beam and the tilted front

beam. The normal front beam goes to another set of mirrors and combines with

the tilted front pulse at BS2. The moving stage in the normal beam path is used to

make the optical distance from BS1 to BS2 the same for both beams such that the

two beams temporally overlap. The accurate timing was found by synchronizing

each beam individually to the electron beam in a way we will explain in Section

4.5. We used P7 and P8 to spatially overlap the two beams. For accurately setting

the beams on the pinholes, we partially close P1 (while the laser power is low) to

generate diffraction rings in the beam. Then, we adjust the two last mirrors before

P7 in each beam to center the diffraction rings onto the edge of the pinholes. The

beam is guided to a periscope to bring it to the height of the target chamber. The

beam after the periscope is directed to the target chamber. Figure 2.27 shows the

beam going to the chamber. In this figure, L1 is the lens that images the grating on

the target position. The beam then goes out of the chamber to a beam block. By

an optical wedge, we take a sample from the outgoing beam. We image the target

plane (nozzle) by another lens (L2) onto a CCD camera with a demagnification

of M ′ = 0.29. By use of this camera, we observe the interference between the two

overlapping beams from which we evaluate the tilt angle and the pulse duration.

Note that the the laser pulse duration, measured in the direction of propagation, is

the same at the second imaging plane (CCD camera) but the tilt angle is different

since the total demagnification is different. The total demagnification will be

MM ′ = 13.36× 0.29 = 3.88 and from equation (2.37), the tilt angle will be 25.1o

at the camera.

Figure 2.28 shows the normal and tilted front laser pulses overlapping on a
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Figure 2.26: Tilted front laser pulse generation and measurement setup. Here,
mirrors, pinholes and beam splitters are shown by M, P, and BS respectively, and
the numbers show the order by which the laser hits the optics

Figure 2.27: Tilted front laser pulse path to the target chamber.
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Figure 2.28: The tilted pulse and the normal front pulse overlap spatially and
temporally on the detector plane and interfere. From the the interference pattern
we extract the angle between the two beams ϕ, the tilt angle θ and the duration
of the tilted front pulse.

detector at z = 0 plane. In this figure, θ is the tilt angle and φ is the angle

between two beams in the x-z plane and we assume there is no angle in y-z plane.

The electric field of the tilted pulse, near the image plane, can be approximated

by

Et ≈E0 exp

{
− (−x sin θ + (z − c(t− t0)) cos θ)2

c2τ 2
t /(4 ln 2)

−

(x cos θ + (z − c(t− t0)) sin θ)2 + y2

w2
t /(4 ln 2)

}
× exp{i(kz − ω(t− t0))},

(2.39)

with E0, ω and k being the amplitude, angular frequency and wave number of the

field, respectively. The electric field of the normal pulse, by ignoring the curvature
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of the phase front, can also be approximated by

En ≈E0 exp

{
− ((z − ct cosϕ) cosϕ+ (x− ct sinϕ) sinϕ)2

c2τ 2
n/(4 ln 2)

−

(−(x− ct sinϕ) cosϕ+ (z − ct cosϕ) sinϕ)2 + y2

w2
n/(4 ln 2)

}
×

exp{i(k(z cosφ+ x sinφ)− ωt)}.

(2.40)

The total intensity will be proportional to I ∝ |Et + En|2 with an interference

term Iint, approximately proportional to

Iint ∝E2
0 exp

{
− (z − ct)2

c2τ 2
n/(4 ln 2)

− (−x sin θ + (z − c(t− t0)) cos θ)2

c2τ 2
t /(4 ln 2)

}
×

cos(ωt0 + kx sinϕ),

(2.41)

provided that wt, wn � cτt, cτn and ϕ → 0. Equation (2.41) shows fringes only

along the x-axis since we assumed there is no angle between the beams in the y

direction. The period of fringes is equal to 2π
k sinϕ

. The interference, however, is

limited to a small area where the two beams overlap. In the experiment, we try

to make the angle ϕ smallest to minimize the number of fringes over that area for

a more accurate measurement. Figures 2.29a and 2.29b show the simulation of

total intensities in y = 0 and z = 0 planes, respectively, where the angle between

the two beams is 1o and the tilt angle is 25o, for t0 = 0. The other parameters

are E0=1 V/m, τt = 100 fs, τn = 80 fs, wt = wn = 300µm. If we delay the tilted

front pulse by an amount of t0, the peak of interference envelope will move on the

z = 0 plane by the value of ∆x = ct0/tan(θ), from which we can measure the tilt

angle.

The last parameter we can measure from the width of interference envelope is

the duration of the tilted pulse. On a CCD camera that lies on z = 0 plane, the
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(a)

(b)

Figure 2.29: Interference of the tilted pulse and the normal pulse in (a) y = 0 and
(b) z = 0 planes. The intensities are in the unit of W/m2

detected signal will be the integral of Iint in equation (2.41) over all times, i.e.,

∫ ∞
−∞

Iintdt ∝E2
0 cos(kxϕ)×∫ ∞
−∞

exp

{
− (ct)2

c2τ 2
n/(4 ln 2)

− (x tan θ + ct)2

c2τ 2
t /(4 ln 2 cos2 θ)

}
,

(2.42)
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for t0 = 0 and sinϕ ≈ ϕ. Evaluation of the integral gives

∫ ∞
−∞

Iintdt ∝
√

π

4 cos 2

τnτtE
2
0√

cos2 θτ 2
n + τ 2

t

cos(kxϕ)×

exp

{
− tan2 θ

c2τ 2
n/(4 ln 2) + c2τ 2

t /(4 ln 2 cos2 θ)
x2

}
.

(2.43)

According to equation (2.43) the interference has a Gaussian envelope with a

FWHM of

L =

√
c2τ 2

n + c2τ2n
cos2 θ

tan2 θ
. (2.44)

Hence, the tilted front pulse duration will be equal to

τt =
1

c

√
L2 sin2 θ − c2τ 2

n cos2 θ. (2.45)

Figure 2.30a shows the interference between the normal and tilted front beams

as seen on the CCD camera that is shown in Figure 2.27. The interference part

is obtained by either subtracting the normal and tilted front beams separately

from the total intensity or by fitting a two-dimensional Gaussian function to the

total intensity and subtracting the result from the total intensity. Figure 2.30b

shows the projection of the interference pattern on the x-axis with a function

A exp(− (x−x0)2

L2/(4 ln(2)
) × cos(k(x − x0)ϕ + φ) similar to equation (2.43). By the fit,

we determined the value of L in equation (2.44) and the angle between the two

beam ϕ to be 123 µm and 0.12o, respectively. The resultant pulse duration from

equation (2.45) is 160 fs. As is shown in Figure 2.28, the pulse duration is defined

in the direction of the field gradient and not the direction of propagation. As a

result, the pulse duration will be 88 fs under the nozzle where the tilt angle is 60o.

The pulse duration in the direction of propagation is 177 fs both under the nozzle

and at the camera.



72

(a)

(b)

Figure 2.30: (a) Measured intensity of the interference between the normal and
tilted front intensities (b) the projection of the interference term onto the x-axis

and a function A exp(− (x−x0)2

L2/(4 ln(2)
)× cos(k(x− x0)ϕ+ φ) fitted to it.

2.9 Summary

In this chapter, we represented a setup that can generate electron pulses of

femtosecond duration with a close to Gaussian transverse profile. The electrons

are photo-emitted by UV ultrafast laser pulses and accelerated to 90 kV, and then

compressed transversely by magnetic lenses and longitudinally by the electric field

of an RF cavity on the position of the target. The setup is equipped with a tilted

front laser pump that is velocity matched to the electrons. By this setup, we are

able to observe ultrafast dynamics induced by the tilted front laser pump in atoms

and molecules in gas phase.
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Chapter 3

Electron Pulse Duration Measurement

3.1 Introduction

In this chapter, we will describe the streak camera by which the duration

of ultrafast electron pulses were measured at the position of the target. We first

present a brief review on the history of streak cameras, and then focus on the laser-

activated streak camera that we built. We will discuss the geometry and structure

of the streak camera, and review the physics of its operation. For that, we provide

a circuit analysis of the device, along with all the parameters necessary to describe

its streaking field. We develop a general mathematical model that describes the

streaking process and simulate the streaked patterns on the detector. Then, we

will review the whole measurement setup and describe the electron pulse duration

measurement process. We will also focus on how to achieve the shortest possible

pulse duration. Finally, we will show how to use the streak camera to monitor the

drift in the laser-electron timing.

3.2 A brief history of streak cameras

Streak cameras have a long history and were originally developed to measure

optical pulses or to monitor their temporal profile. The earliest streak cameras

were mechanical and took advantage of a rotating mirror that reflects the light to

a recording medium such as a film [92]. For a constant speed of rotation, the de-

tected streak length on the detector was proportional to the light pulse duration.

However, poor synchronization, stability, and a limited speed of rotation all to-

gether restricted the achievable temporal resolution to the microsecond regime [93].
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In the early 1970’s, ultrafast streak cameras were developed that used streaking

fields instead of rotating mirrors [94]. The idea of this type of streak camera was

as follows: first, by a photoemission process the light (x-ray) pulse was converted

to an electron pulse. Then, a time-varying electric field—e.g., the electric field

of a discharging tube—was applied to that electron pulse. The electric field was

perpendicular to the motion of the electrons and linearly varied with time. It thus

applied different forces on different parts of the electron pulse. The applied force

translated the temporal profile of the electron pulse into deflection angles, streak-

ing it across the detector with a steak length that was proportional to the original

optical pulse duration. The proportionality constant was determined mostly by

the streak velocity and was one of the parameters to determine the resolution of

the camera. The timing between the optical pulse and the streaking field was a

critical parameter for ensuring an optimum pulse duration measurement, and was

achieved by employing optoelectronics, by which the streak field timing could be

controlled with relatively low jitter. From that time on, there have been many

improvements in designing streak cameras both in their temporal resolution and

timing jitters [95–106]. A high voltage silicon photo-switch was first integrated

into a high voltage streaking tube to increase the temporal resolution and signal-

to-noise ratio (SNR) due to a stronger streaking field [96]. The strength of the

streaking field was further increased by employing GaAs photoswitches that of-

fered a higher breakdown voltage [97, 107]. These types of streak camera are more

suitable for pump-probe experiments, where the pump can be used to trigger the

streak camera.

In the past ten years, streak cameras have been developed further to help

characterize ultrafast electron pulses in the ultrafast electron diffraction (UED)

experiments. Measuring the duration of femtosecond pulses requires a very rapidly

changing streaking field to provide sufficient resolution. Streaking fields from a

microwave cavity [108], a laser standing wave [109–111], a discharging capacitor

[112–114], a split ring resonator [115], and a terahertz resonator [116] have been
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suggested or used. In our study, we employed a streak camera that used the electric

field of a discharging capacitor since it could generate a high enough streaking field

that was synchronized to our laser. We will review its geometry and structure, and

provide its equivalent circuit from which we derive the differential equation that

governs the device. We will review the physics behind the streaking process and

develop an accurate method to extract the pulse duration from the measurements.

3.3 Streak camera theory and characterization

3.3.1 The geometry and structure of the streak camera

Figure 3.1 depicts the components of the streak camera that we used in our

study. A parallel plate capacitor connected to a GaAs photo-switch constitute the

streaking device. The capacitor is initially charged before a laser pulse activates

the switch and the discharge process starts, i.e., the electric field across the ca-

pacitor starts a damped oscillation. Different parts of an electron pulse that go

through the capacitor will see different values of that oscillating field and will be

deflected to different angles. The transit time of the electron pulse through the

capacitor is much shorter than the period of the oscillating field. The electrons

enter the capacitor around the first zero crossing of its field, when the field has

its highest rate of change and is approximately linear in time. This process max-

imally streaks the electron pulse on the detector by symmetrically mapping its

longitudinal profile onto a transverse profile. The detector is a phosphor screen

imaged onto a CCD Camera.

3.3.2 Circuit analysis of the streaking device

A schmatic of the streaking device is depicted in Figure 3.2 and photographs

of it are shown in Figures 3.3a and 3.3b. As the electron first arrive at the streak

camera, they are truncated by a 25 µm pinhole before going to the streaking

field region. The primary role of the pinhole is to increase the resolution of the

measurement by making the size of the electron beam smaller on the detector.
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Figure 3.1: Components of the streak camera. A GaAs photo-switch is connected
to a parallel plate capacitor to form the streaking device. Once the switch is
activated by a laser pulse, the charged capacitor becomes short-circuited. Then
the oscillating field of the discharging capacitor will streak the electron pulse
going through its plates. The streaked electron pulse hits a phosphor screen that
is imaged onto a CCD camera by an optical lens. (Reproduced from [114], with
the permission of AIP Publishing.)

A smaller beam will observe a more uniform field across the capacitor and the

chance of charge accumulation on the non-conductive parts of the streak camera

is also reduced. The area of the the capacitor plates that face each other (as seen

in Figure 3.2)) is 3 mm × 3 mm. The distance between the two plates is 325

µm. This accurate separation is obtained by use of several layers of Kapton tape

with known thicknesses as a spacer. Kapton tapes are vacuum compatible and

can tolerate high voltages. According to the size of the plates and their separation

distance, the capacitance of the parallel conductors is approximately C = 0.245

pF. The frame that holds the structure is made of PEEK (polyether ether keton)

material. In front of the streaking device, there is grounded plate to prevent charge

accumulation on the frame. There is a small copper tube after the grounded plate

to guide the electrons to the pinhole. Two 2 kΩ resistors are used to decouple the

oscillating voltage across the capacitor from the high voltage pulse and the ground.

The capacitance of the high voltage coaxial cable that connects the capacitor to

the high voltage pulser is around 10 pF; hence, the time-constant of the charging

process will be in order of τ = 2×2kΩ×10 pF = 40 ns, which, as we will show, is

much longer than oscillation period of the capacitor, and so it will not be charged

again during the oscillation.
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Figure 3.2: Basic illustration of the streaking device. A paralle plate capacitor is
connected to a GaAs photo-switch which is activated by a laser pulse and short
circuits the capacitor. Electrons are first truncated by a 25 µm pinhole and then
go through the plates of the capacitor. The dimensions are not in scale in this
figure for the sake of a better representation. (Reproduced from [114], with the
permission of AIP Publishing.)

The homemade photo-switch is composed of a 5 mm wide, 0.6 mm thick un-

doped GaAs wafer with two Ohmic contacts on its sides, separated by 2.4 mm.

The Ohmic contacts are composed of a 100 nm layer of gold on top of a 10 nm layer

of chromium. The whole circuit has a time-independent resistance R0 that is due

to all conductors and the Ohmic contacts of the photo-switch, a time-dependent

resistance R(t) due to the photo-switch and a self inductance L. The equivalent

circuit of the streak camera after the laser excites the photo-switch is shown in

Figure 3.4. In order to figure out how the electron pulse interacts with the electric

field of the capacitor, we need to know the voltage of the capacitor as a function

of time. From the equivalent circuit in Figure 3.4, the differential equation that

governs the voltage VC(t) across the capacitor is

VC(t) + LC
d2VC(t)

dt2
+ C

dVC(t)

dt
(R0 +R(t)) = 0 (t ≥ 0), (3.1a)
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(a)

(b)

Figure 3.3: Pictures of the streaking device (a) in the top view and (b) in the front
view while the pinhole and the photo-switch were not assembled. (Reproduced
from [114], with the permission of AIP Publishing.)

with the initial conditions of

VC(0) = V0;
dVC(t)

dt

∣∣∣∣
t=0

= 0, (3.1b)

where V0 is the initial voltage across the capacitor. To solve equation (3.1a), we

need to know the mathematical form of R(t).

When the laser hits the GaAs wafer, the photon-created charge carrier density

n(t) can be estimated as [117]

n(t) = (
1− r
Vp

)
1

Eλ
e−

t
τ

∫ t

0

e
t′
τ P (t′)dt′, (3.2)

where r = 0.325 is the normal reflectance of the GaAs wafer for 800 nm tiggering
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Figure 3.4: The equivalent circuit of the streaking device after the laser activates
the photo-switch.

laser pulse [118], Eλ = 2.48 × 10−19J is the photon energy, P (t) is the laser

instantaneous power, Vp = wlδd is the photo-conductive volume of the GaAs wafer

with w = 5 mm, l = 2.4mm, and δd = 1 µm being the width of the photo-switch,

its length and its 800 nm laser penetration depth [119], respectively. The time

constant τ is a parameter that depends on the electron-hole recombination life

time Tr, the Ohmic contacts injection efficiency ηi, and the drift velocity vd [117]

and is determined by

1

τ
=

1

Tr
+ (1− ηi)

vd
l
. (3.3)

Since the Ohmic contacts are not ideal, τ is always smaller than the electron-

hole recombination life time. Equation (3.2) assumes the switch is illuminated

uniformly, the contact loss is equal for electrons and holes, and there is no carrier

trapping.

The laser pulse that excites the switch is about 40 fs long, which is much

shorter than τ . Consequently, we approximate P (t) in equation (3.2) by

P (t) = E0δ(t), (3.4)

where E0 = 80 µJ is the energy of the triggering laser pulse, and δ(t) is the Dirac

delta function. As we will explain later, the laser power is chosen to minimize the

jitter of the switch. By inserting equation (3.4) into equation (3.2), we find

n(t) = (
1− r
Vp

)
E0

Eλ
e−

t
τ = n0e

− t
τ . (3.5)
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The carrier density will determine the time-dependent photo-induced conductance

of the wafer as

σ(t) = (µe + µp)en(t), (3.6)

where µe = 0.85 m2V−2s−1 and µp = 0.04 m2V−2s−1 are the mobilities of elec-

trons and holes, respectively and e is the electron charge. By having the switch

conductance, we find its resistance as:

R(t) =
l

wδdσ(t)
=

l2Eλ
(µe + µp)e(1− r)E0

et/τ = R1e
t/τ . (3.7)

From this equation, we have R1 = 0.372 Ω. In the above calculations, we ignored

the dark current of the switch since its value is negligible and of no importance in

comparison to the laser-induced current.

We designed another experiment to obtain the time constant τ to fully deter-

mine the time-dependent resistance of the GaAs photo-switch. We found τ by

exciting the photo-switch by a continuous wave (CW) laser at the same central

wavelength of the pulsed laser. For a CW laser turned on at t = 0, the power will

be

P (t) = P0Γ(t), (3.8)

where P0 is the power of the laser and Γ(t) is the Heaviside step function

Γ(t) =


1, t ≥ 0

0, t < 0.

(3.9)

We insert equation (3.8) into equation (3.2) to get

n(t) = (
1− r
Vp

)
P0τ

Eλ
(1− e−

t
τ ); (t ≥ 0). (3.10)
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Hence, the steady-state photo-induced carrier density will be

nss = (
1− r
Vp

)
P0τ

Eλ
, (3.11)

and it results in the steady-state photo-switch resistance

Rss =
l

wδdσ(t)
=

l2Eλ
(µe + µp)e(1− r)E0

=
ζss

P0τ
, (3.12)

where ζss = 1.486× 10−5 ΩJ is a constant. For a low enough laser power P0 and

a nanosecond order τ , Rss will be much larger than the contact resistance of the

switch. We apply a constant voltage across the photo-switch, and measure its

current as a function of the CW laser power to determine τ . We used the circuit

in Figure 3.5a where the CW laser-excited switch is in series with a resistor and a

DC power supply. We measured the voltage across the 47 kΩ resistor for different

laser powers. From the measurement, we could determine how the resistance of

the switch varies as a function of the laser power. Figure 3.5b shows the resistance

of the switch and a curve from equation (3.12) fitted to it, where the fit parameter

was τ and we got τ = 0.36ns.

(a) (b)

Figure 3.5: (a) The circuit used to measure the resistance of the GaAS photo-
switch as a function of time. (b) The resistance of the switch as a function of the
laser power and a curve in equation (3.12) fitted to it. (Reproduced from [114],
with the permission of AIP Publishing.)

By knowing the time-dependent resistance of the GaAs photo-switch, we can
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Figure 3.6: The interaction of an electron with the electric field of the parallel
plate capacitor. (Reproduced from [114], with the permission of AIP Publishing.)

rewrite the differential equation in 3.1a as

VC(t) + LC
d2VC(t)

dt2
+ C

dVC(t)

dt
(R0 +R1e

t
τ ) = 0; (t ≥ 0). (3.13)

This equation can be solved both analytically and numerically; however, there is

no analytical closed form solution for it. The only parameters to be determined

in this equation are the circuit self-inductance and the resistance of the Ohmic

contacts of the photo-switch, which could only be obtained through an electron

deflection experiment. Before proceeding, we will review that experiment.

3.3.3 Electron deflection by the streak camera

Figure 3.6 depicts the interaction of an electron with the transverse electric field

across a parallel plate capacitor. We assume that the initial transverse velocity of

the electron is zero and the capacitor electric field is in the x direction. As the

electron traverses the capacitor plates it gains a transverse momentum which is

equal to

px =

∫ t+ts

t

eVC(t)

g
dt ≈ eVC(t)

g
ts, (3.14)

where s and g are the length of the capacitor and the separation between its

plates, respectively, and t is the time at which the electron enters the cavity and

ts is the amount of time it spends traversing the capacitor. The approximation is

due to the fact that ts is much smaller than the period of the capacitor electric

field oscillation, since the electrons are accelerated by a 105 kV source, they have
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a velocity of vz = 0.526c for c being the speed of light in vacuum and we have

ts = s/vz. The tangent of the deflection angle θd will be

tan(θd) =
vx
vz

=
px
pz

=
eVC(t)

gmeγvz
, (3.15)

where me is the mass of the electron, and the γ is the relativistic gamma factor

γ =
1√

1− v2z
c2

. (3.16)

For small angles of deflection θd corresponding to px << pz, the displacement of

the electrons x(t) on the detector, a distance D from the streaking device, will be

x(t) =
eDs

gmeγv2
z

VC(t). (3.17)

Hence, the displacement is linearly proportional to the capacitor voltage. The

result will be that the displacement x(t) will satisfy equation (3.13) and we have

x(t) + LC
d2x(t)

dt2
+ C

dx(t)

dt
(R0 +R1e

t
τ ) = 0 (t ≥ 0). (3.18a)

with the initial conditions of

x(0) =
eDs

gmeγv2
z

V0;
dx(t)

dt
|t=0= 0. (3.18b)

Figure 3.7 shows the displacement of the electron on the detector and a solution

to the differential equation (3.18a) fitted to it. We solved the differential equation

numerically by the method of finite difference and the fit parameters were the

circuit self-inductance, the photo-switch Ohmic contacts resistance and the initial

deflection point and we obtained R0 = 48 Ω and L = 8.35nH. Figure 3.8 shows the

time-invariant resistance of the circuit as well as the time-dependent resistance of

the photo-switch. Time zero is the moment that the laser pulse excites the photo-

switch. As a result, the time-independent resistance of the switch can be ignored
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Figure 3.7: Displacement of the electrons on the detector as a function of the
trigger laser pulse arrival time and the fitted function. In this Figure, t = 0 is the
moment when the laser pulse activates the switch, which was determined from the
fit. In this experiment, the initial voltage is 350 V so that the maximum displace-
ment during the oscillation could be captured on the detector. (Reproduced from
[114], with the permission of AIP Publishing.)

Figure 3.8: A comparison between the circuit time-independent resistance that
is dominated by the Ohmic contacts of the GaAs photoswitch and the circuit
time-dependent resistance that is due to the laser pulse exciting the switch. (Re-
produced from [114], with the permission of AIP Publishing.)



85

Table 3.1: Summary of the streaking device dimensions and parameters.

Parameter Description Value
l Photo-switch Ohmic contacts separation 2.4 mm
W Width of the photos-witch 5 mm
P0 Laser power 400 mW
E0 Laser pulse energy 80 µJ
R1 Resistance of the photo-switch at t = 0 0.372 Ω
τ Lifetime of the photo-switch 0.36 ns
R0 Ohmic contacts resistance of the photo-switch 48 Ω
s Sides of the capacitor plates 3 mm
g Separation between the capacitor plates 325 µm
C Capacitance of the streaking capacitor 0.245 pF
L Streaking device self-inductance 8.35 nH
D Distance between the streaking device and the detector 57 cm
ξ Radius of the electron beam truncating pinhole 12.5 µm

in the first few oscillations of the capacitor electric field in Figure 3.7. For those

times, a damped harmonic oscillation can model the device, since the laser pulse

energy is high enough to make the switch resistance small in comparison to the

other resistance. In this case (R(t) << R0), the displacement of the electrons

when the photo-switch is excited by the laser at t = t0 will be

x(t) =


eDs

gmeγv2z
V0, t ≤ t0

eDs
gmeγv2z

V0e
− R

2L
(t−t0) cos[

√
1
LC
− R2

4L2 (t− t0)], t > t0

, (3.19)

where the damping rate factor 2L/R and the oscillation frequency 1
2π

√
1
LC
− R2

4L2

are equal to 0.348 ns and 3.494 GHz, respectively. The quality factor of the device

is 1
R0

L
C

= 3.85. We have summarized all the parameters of the streaking device in

Table 3.1.

3.3.4 Electron pulse streaking process

In this section, we will provide the mathematical description that we developed

to model the streaking process, from which we can extract the electron pulse

duration. Suppose two electrons enter the capacitor of the streaking device at
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Figure 3.9: Two electrons entering the streaking device with the time interval of
∆t. The capacitor applies different electric field to the electrons and deflect them
differently.

times t and t + ∆t as shown in Figure3.9. According to equation (3.17), the

distance between the two electrons on the detector will be

∆x = x(t+ ∆x)− x(t) =
eDs

gmeγv2
z

Vc(t+ ∆x)− Vc(t)
∆

∆t

≈ eDs

gmeγv2
z

dVC(t)

dt
∆t.

(3.20)

The separation ∆x will be maximum when dVC(t)/dt is maximum for which

we write

∆x = κ∆t, (3.21)

where

κ =
eDs

gmeγv2
z

dVC(t)

dt
|max, (3.22)

is the streak velocity. In literature, the streak velocity is usually expressed in

the unit of deflection angle per time, and is regarded as the most important pa-

rameter to quantify the performance of a streaking device. However, κ can also

be expressed as in terms of pixels per time. In this case, it will determine the

performance of the streak camera which is a combination of the streaking device

performance, its distance from the phosphor screen and the optical setup that
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images the phosphor screen on the detector. We introduce a new quantity that

gives the sensitivity of the streak camera and can be measured directly

ς =
1

κ
. (3.23)

The value of ς is determined experimentally by measuring the electron beam dis-

placement on the screen as we delay the triggering laser that activates the photo-

switch around the time when dVC(t)/dt maximizes, i.e., around the first zero-

crossing of the capacitor electric field. Consider an electron pulse with a negligible

momentum spread whose center traverses the capacitor at the first zero-crossing of

its electric field. If the time zero is set at that moment, those electrons of the pulse

that enter the capacitor at time t will be transversely deflected to the distance

x = κt on the detector. Then we can rewrite equation (3.21) as

∆x = κ∆t =
κ

vz
z = κ′z, (3.24)

where we define the dimensionless parameter κ′ the streak coefficient. Equation

(3.24) means that an electron at point z, measured from the center of the electron

beam, will be deflected to the point x on the detector. This process is illustrated

in Figure 3.10, where a uniformly charged spheroid with the transverse semi-axis

b and longitudinal semi-axis a, is first truncated by a pinhole of diameter 2ξ and

then sent to a streaking device with a streak coefficient of κ′.

For an electron pulse with a constant duration, the length of the streak on

the detector increases as the streaking coefficient increases. This parameter is

determined by four factors that are:

1. The amplitude of the streaking field, i.e., the initial voltage across the ca-

pacitor, and the separation between the capacitor plates.

2. The maximum rate of the change in the streaking field that depends on its

oscillation frequency as well as the quality factor of the device.
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Figure 3.10: An electron pulse is composed of infinite number of differential disks.
The capacitor electric field deflects each of those disks to a different angle. By this
process the electrons will be streaked on the detector. (Reproduced from [114],
with the permission of AIP Publishing.)

3. The distance between the streaking device and the phosphor screen.

4. The magnification of the optical lens that images the phosphor screen on

the CCD camera.

For the first parameter, we are limited by the breakdown voltage of either

the GaAs photo-switch or the capacitor plates. As we will describe later in this

chapter, we charge the capacitor by 50 nanosecond high voltage pulses instead of

a constant high voltage to reduce the chance of breakdowns. Experimentally, we

saw no breakdowns for pulsed voltages of around 800 V and under in our switches.

For voltages around 1500 V and above, breakdowns in the photo-switch happened.

The shape of the Ohmic contacts plays a role on the voltage gradient (electric field)

across the photo-switch and hence can increase or decrease the breakdown limits.

To make the photo-switch, we simply covered the center part of the GaAs wafer

by a piece of Kapton tape and then deposited the Ohimc contacts on its sides by

the evaporation technique. As a result, very smooth edge contacts grew on the

sides of the wafer.

For the second parameter, we tried to make the circuit dimensions as small
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Figure 3.11: The position of electron pulses deflected by the capacitor electric field
at its first minimum as a function of the triggering laser energy.

as possible, to reduce its self-inductance, which according to equation (3.19), will

increase the oscillation frequency. Reducing the separation between the capacitor

plates linearly increases the amplitude of the streaking field, but will decrease

the oscillation frequency due to equation (3.19), yet we are limited in this by

the breakdown voltage limit. The other restricting parameter is that we want

to prevent the deflected electron pulses from hitting the walls of the capacitor.

An increase in the quality factor will increase the depth of the minimums and

consequently improve the performance of the device by increasing the rate of

the change in the streaking field. As long as the triggering laser fluence is strong

enough to make the Photo-switch resistance much smaller than the Ohmic contacts

resistance, the quality factor is limited only by the Ohmic contacts resistance.

Figure 3.11 shows the minimum deflection point on the detector as a function of

the trigger laser energy. The Figure indicates that above 60 µJ energy of the pulse,

corresponding to the fluence of 640 µJ/cm2, the depth of the first minimum in the

streak field is independent of the trigger energy. The uncertainty in the position of

the beam also increases by decreasing the the laser energy which implies a bigger

jitter in the device timing. We will discuss the device timing jitter later in this

chapter.
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The streaked electron pulses have a larger divergence than the unstreaked elec-

tron pulses and hence an increase in the distance between the streaking device and

the phosphor screen will increase the streak length and hence the temporal res-

olution. An increase in the magnification in the optical setup that images the

phosphor screen onto the CCD chip will increase the length of both streaked and

unstreaked electron pulses in pixels too. This provides a more accurate measure-

ment.

3.3.5 Mathematical modeling of the streaking process

Now we will try to provide a mathematical description of the streaking process.

The method is general and can be apply to any type of streaking device with a

streak coefficient κ′. We refer to Figure 3.10 where a uniformly charge spheroid is

first truncated and then streaked. The truncated pulse is composed of an infinite

number of differential disks, where each of which is deflected to a different angle.

The deflection angle depends on the distance of the differential disk from the center

of the pulse and the streak coefficient κ′. For now, let us ignore the divergence of

the electron beam from the streaking device to the detector. After the electron

pulse hits the phosphor screen, the intensity of the light emitted by the screen will

be proportional to

(3.25)
I (x, y;κ′)

=
ηQ

4
3
πab2

a

∫
−a
dzΓ

(
r (z)−

√
(x− κ′z)2 + y2

)
Γ

(
ξ −

√
(x− κ′z)2 + y2

)
,

where Q is the charge of the electron pulse, η is the quantum efficiency of the

screen, i.e., the number of photons created by one electron, (x, y) is the plane of

the screen, Γ(•) is the Heaviside function given by equation (3.9), and r(z) is the

transverse radius of the uniformly charged spheroid

r(z) = b

√
1− z2

a2
. (3.26)
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The method we are developing here, is general in a sense that equation (3.26) can

be replaced by any other charge distribution, e.g., the Gaussian distribution

r(z) = A exp(− z2

2B2
), (3.27)

for the amplitude A and standard deviation B. However, the electron pulses

that are generated in our system are uniformly charged spheroids and hence we

use equation (3.26). We evaluate the integral in equation (3.25) for two cases of

κ′ = 0 that corresponds to the unstreaked pulse and κ′ 6= 0, that corresponds to

the streaked pulses. For κ′ = 0, we have

(3.28)Iunstreaked (x, y) =
3ηQ

2πb2

√
1− x2 + y2

b2
Γ
(
ξ −

√
x2 + y2

)
,

and for κ′ 6= 0 we have

Istreaked(x, y; k′) =
ηQ

4
3
πab2

×

{[
(z −B−)Γ(z −B−)− (z −B+)Γ(z −B+)

]
]
−a

√
1− ξ2

b2

−a

+
[
(z − A−)Γ(z − A−)− (z − A+)Γ(z − A+)

]
]
a
√

1− ξ2
b2

−a
√

1− ξ2
b2

+
[
(z −B−)Γ(z −B−)− (z −B+)Γ(z −B+)

]
]a
a
√

1− ξ2
b2

}
,

(3.29a)

where

A± =
x

κ′
±
√
ξ2 − y2

κ′
;

B± =
κ′x

κ′2 + b2

a2

±

√√√√b2 − (x2 + y2)

κ′2 + b2

a2

+

(
κ′x

κ′2 + b2

a2

)2

.

(3.29b)

In equation (3.29a), let f(z) be any of the terms on the right hand side; then

[f(z)]ab = f(a)− f(b).

In practice, the divergence of the electron beam as well as the finite resolution

of the phosphor screen are not negligible. To take these parameters into account,

we Gaussian blur the intensities in equations (3.28) and (3.29a) by convoluting
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them with a Gaussian function, i.e.

Iblurredunstreaked (x, y;κ′) = N

∫∫
Iunstreaked (x′, y′;κ′) e−

(x−x′)2+(y−y′)2

2σ2 dx′dy′, (3.30a)

Iblurredstreaked (x, y;κ′) = N

∫∫
Istreaked (x′, y′;κ′) e−

(x−x′)2+(y−y′)2

2σ2 dx′dy′, (3.30b)

where σ determines the width of the Gaussian blur and N is a normalization

constant such that

(3.31)

∫∫
Iblurred (x, y;κ′) dxdy =

∫∫
I (x, y;κ′) dxdy.

where I is either of the intensities in equations (3.30a) or (3.30b). Equation (3.31)

comes from the fact that the total number of electrons and hence the photons

generated by the screen does not change by the blurring process. Figures 3.12a

and 3.12b depict the simulation of an unstreaked and a streaked electron pulse

by the method developed in this section. The simulation was performed based

on the parameters of an electron pulse we generated in our research as well as

the sensitivity of our streak camera. We will explain in Section 3.4.5 how this

mathematical model can be employed to extract the electron pulse duration.

3.4 Experimental setup

In this section, we will discuss the experimental setup by which we measured

the electron pulse duration diagram of which can be seen in Figure 3.13. Elec-

tron pulses are compressed by the longitudinal electric field of the RF cavity

and subsequently sent to the streaking device. The laser pulse that activates the

photo-switch can be delayed by a manual stage by which we can set the capacitor

discharge timing. The streaking device is held by a three-dimensional manipulator

that can move the device to the position of the target. A high voltage pulser is

connected to the device to initially charge the capacitor. The streaked and un-

streaked pulses are captured by the phosphor screen and are imaged onto a CCD
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(a)

(b)

Figure 3.12: (a) Simulation of a detected unstreaked electron pulse of original
diameter of 2 mm FWHM and 471 fs FWHM duration. The pulse is truncated
by a 25 µm diameter pinhole. The width of the Gaussian blur in equation (3.30)
is σ = 2.226 pixels and is chosen so that the simulated unstreaked beam matches
the measured unstreaked beam as best as possible.(b) Simulation of the electron
pulse in part (a) but streaked with a sensitivity of κ = 69.4 fs per pixel.

camera.

3.4.1 Triggering laser setup

We use a polarizing beam splitter in the path of the 800 nm pump laser, to pick

off 400 µJ pulses to trigger the GaAs photo-switch. We use a lens to make the

beam size 3mm× 4mm FWHM on the photo-switch. There is one beam sampler

that sends 5% of the beam to a fast photo-diode to look for any laser prepulse, as

a laser prepulse, depending on its amplitude, can partially discharge the capacitor



94

Figure 3.13: The electron pulse duration measurement setup. (Adapted from
[114], with the permission of AIP Publishing.)

before the arrival of the main pulse, degrading the performance of the device.

There are two optical stages to change the timing of the triggering laser. One

stage is longer with a less accurate reading and is used to observe the whole

oscillation of the capacitor electric field (for example, the range of data in Figure

3.7 was obtained using this stage). During the experiment, this stage was used to

locate the streak camera’s first zero crossing of the capacitor electric field. This

was achieved by first turning off the RF compressor to avoid the possible role of

the RF cavity phase in accelerating or decelerating the electrons. Then we move

the stage until the center of the streaked beam is at the position of the unstreaked

beam on the screen. At this point, we use the second stage that is shorter but has

a finer reading to accurately figure out the streak velocity and the sensitivity of

the streak camera.

3.4.2 High voltage nanosecond pulser

The capacitor of the streaking device is initially charged by a high voltage pulse

to minimize the risk of breakdowns in the GaAs photo-switch that is in parallel

with the capacitor. Figure 3.14a shows the homemade pulser and figure 3.14b
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depicts its block diagram. The streaking device is connected to a high voltage

switch, which in turn is connected to a high voltage DC supply through a buffering

capacitor and two impedance matching resistors. The buffering capacitor stabilizes

the amplitude of the high voltage pulse by suppressing the ripples caused by

switching. The two 75 Ω non-magnetic resistors match the coaxial cable impedance

and avoid high voltage reflections. A 6 µs TTL trigger signal comes from the laser

synchronization and delay generator unit and is split into two paths, one of which

is delayed by 50 ns and inverted, and in the other is kept the same. Then the

two signals go to a logic AND gate. At the output of the logic gate, a 50 ns TTL

signal is generated that triggers the high voltage switch. The 50 ns delay line is

composed of several logic gates with certain propagation delays that add up to 50

ns. The logic gates are chosen and combined so that the state of the TTL output

signal is the same as the input signal.

3.4.3 Evaluation of the GaAs photo-switch jitter

One important parameter that describes the performance of the streak camera

for measuring ultrafast electron pulses is the timing jitter τs in the photo-switch

due to the fluctuations in the triggering laser pulse energy. The timing jitter

refers to the uncertainty in conduction band creation time when the laser pulse

hits the switch. The timing jitter translates into a jitter in the deflection angle

and can degrade the measurement if it is large in comparison with the electron

pulse duration. To explain the effect of the jitter, let us consider the electric field

across the capacitor around its first zero crossing that happens at t = 0. We have

E(t) = E1ω(t− τs) = E1ωt− E0, (3.32)

where E1 is the amplitude of the field, ω0 the angular frequency of the streaking

field oscillation. The jitter acts like a constant, random electric field E0 that

is added to the streaking field. This constant field deflects the electron pulse

randomly. In a single shot measurement this deflection can be ignored if it is not
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(a)

(b)

Figure 3.14: (a) A photo of the homemade high voltage nanosecond pulser. (b)
block diagram of the device. (Reproduced from [114], with the permission of AIP
Publishing.)

too big. However, the effect of the photo-switch jitter is worse if the measurement

is not a single shot, as data collected over many pulses observe many random

deflections due to the jitter, which increases the width of the streaked beam. The

measured pulse duration τ is, therfore, a convolution of the actual pulse duration

τe with the photo-switch timing jitter, i.e.,

τ =
√
τ 2
e + τ 2

s . (3.33)

An experiment was conducted to evaluate the photo-switch jitter as a function

of the laser pulse energy. We recorded the electron pulse time of arrival relative to

the streaking field as a function of the trigger laser energy. Figure 3.15 shows the

change in the time of arrival of the electrons with respect to the first zero crossing
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Figure 3.15: Change in the arrival time of electron with respect to the first zero
crossing of the streaking field as a function of the triggering laser pulse energy.
The red line is fitted to the last three points and its slope shows the rate of change
in the arrival time vs the change in the laser pulse energy.

of the streaking field vs the trigger laser energy. The line that is fitted to the last

three points on the graph has a slope of 12.5 fs/µJ. The measured laser power

fluctuation is 0.5% RMS, so the expected timing jitter will be 5 fs RMS for 80 µJ

pulses (the fluence of 850 µJ/cm2), which is much lower than the electron pulse

duration.

3.4.4 Evaluation of the streak velocity and the streak camera sensitiv-

ity

The optical setup that images the phosphor screen onto the CCD camera chip

has a demagnification of 3.74 and the size of the camera pixels is 9.9 µm, so

each pixel corresponds to 37 µm of the phosphor screen. The gamma factor in

equation (3.16) is 1.176 for electrons accelerated to 90 kV kinetic energy; therefore,

κ in equation (3.22) will be equal to 32.5 µm/V equivalent to 0.88 pixel/V. The

position of the beam vs the corresponding delay in the trigger laser pulse for initial

voltages V0 = 600V, V0 = 800V, and V0 = 1000V around the first zero crossing of

the capacitor electric field are shown in Figure 3.16. We fitted a line to each data

set. The slope of each line gives the sensitivity defined by equation (3.23). By
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having the dimensions and the parameters of the imaging system, the sensitivities

are converted to streak velocities. We found the streak velocities of 1.89 mrad/ps,

1.4 mrad/ps, and 0.94 mrad/ps, for initial voltages of 1000 V, 800 V and 600 V,

respectively.

Figure 3.16: Deflection of the electron beam as a function of the delay in the
photo-switch trigger laser pulse. The red triangles, squares, and circles show
the measured deflection as a function of the trigger delay around the first zero
crossing of the capacitor electric field for initial voltages of V0 = 600 V, 800 V,
and 1000 V, respectively. The corresponding values of sensitivities in equation
(3.23) are obtained by fitting lines to the data points and are ς = 69.4 fs/pixel,
ς = 46.5 fs/pixel, and ς = 34.9 fs/pixel, respectively, equal to streak velocities
of 1.89 mrad/ps, 1.4 mrad/ps, and 0.94 mrad/ps, respectively. These graphs can
be considered the part of the oscillating graph shown in Figure3.7 around its first
zero crossing for the higher initial voltages. (Reproduced from [114], with the
permission of AIP Publishing.)

3.4.5 Electron pulse duration measurement

We measured the duration of pulses of 5× 105 electrons that were focused on

the screen for a better resolution. By focusing the electrons on the screen, the

size of the unstreaked beam will be smaller and it will decrease the uncertainty of

the measurement. However, focusing the beam on the screen will be at the price

of a large beam on the target (streaking device). The electron beam was 2.4 mm

FWHM on the streaking device and 192 µm (around 5.2 pixels) on the detector.
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The measurement was done in an accumulation mode over 10 images each with

500 ms of exposure time to increase the signal to noise, where the electron pulses

have a repetition rate of 5 kHz. For this case, the jitter in the arrival time of the

electrons with respect to the triggering laser τjitter will be convolved in the pulse

duration in the same way we discussed earlier (see Section 3.4.3) and similar to

equation (3.33) we have

τ =
√
τ 2
e + τ 2

jitter, (3.34)

since the jitter has a Gaussian distributed. The value of τjitter could be obtained

if we could measure the pulse duration in a single shot experiment. It is worth

mentioning that in gas phase experiments, the density of the target is by far

lower in comparison to solid targets and the diffraction experiment cannot be

done in a single shot mode since the number of scattering events and hence the

signal to noise is considerably low. Thus, the experiment should be done in an

accumulation mode, and consequently the temporal resolution will be determined

by τ in equation (3.34) instead of τe.

In Figures 3.17a-3.17d, images of streaked and unstreaked electron pulses are

shown. One can see (by comparing Figures 3.17a and 3.17b) that the streak length

of the RF compressed pulse is significantly reduced compared to the streaked-

uncompressed pulse. By projecting the images onto the x-axis, we can compare the

change in the width of the compressed streaked pulse to the compressed unstreaked

pulse in Figure 3.17c. The result is shown in Figure 3.17d. The pulse duration

are extracted from theses one dimensional graphs.

The conventional method to extract the pulse duration is to fit Gaussian func-

tions to both the unstreaked and streaked graphs in Figure 3.17d. If σst and σus

are the standard deviations (STD) of the fitted Guassians to the streaked and

unstreaked pulses, respectively, then the pulse duration can be determined by the

deconvolution

∆tSTD = ς
√
σ2
st − σ2

us, (3.35)
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(a) (b)

(c) (d)

Figure 3.17: (a) Image of the streaked uncompressed electron pulse; (b) image
of the streaked compressed pulse; (c) image of the compressed unstreaked beam;
(d) the streaked and unstreaked compressed pulses integrated over the y axis.
(Reproduced from [114], with the permission of AIP Publishing.)

where ς = 69.4fs/pixel = 0.94 mrad/ps. The resultant pulse duration is ∆tSTD =

206 fs, which—when converted to a full width half maximum—gives ∆tFWHM =

486 fs, with an uncertainty of 4 fs over the ten measurements. Similar calculations

for the uncompressed pulse results in ∆tSTD = 8.8 ps equivalent to ∆tFWHM =

20.7 ps.

The other method to calculate the pulse duration is based on the mathemat-

ical model we developed in Section 3.3.5. We can project the blurred intensities

obtained from equation (3.30) onto the x-axis. For the unstreaked beam we fit

the function:

P blured
unstreaked (x) =

∞
∫
−∞

Ibluredunstreaked (x, y) dy (3.36)

to the measured unstreaked beam to find the width of the Gaussian blur in equa-
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tion (3.30). Similarly, we fit the function:

P blured
streaked (x;κ′) =

∞
∫
−∞

Ibluredstreaked (x, y;κ′) dy (3.37)

to the measure streaked pulse under the constraint:

∞
∫
−∞

P blured
unstreaked (x) dx =

∞
∫
−∞

P blured
streaked (x;κ′) dx (3.38)

to determine the value of a the longitudinal semi-axis of the electron pulse that

is a uniformly charged spheroid. Under the condition in equation (3.38), a is the

only degree of freedom in the fit. The FWHM in this method is the FWHM of

the function A(z) = πr2(z) for r(z) given by equation (3.26) and is equal
√

2a.

The longitudinal standard deviation for this distribution is equal to a/
√

5. The

duration of the streaked compressed pulse shown in Figure 3.17b is ∆tSTD =

149 fs equivalent to ∆tFWHM = 471 fs with an uncertainty of 4 fs over the ten

measurements. For the uncompressed pulse in Figure 3.17a, the pulse duration is

∆tSTD = 4.6 ps equivalent to ∆tFWHM = 14.7 ps.

Figures 3.18a and 3.18b demonstrate the comparision between the two methods

to evaluate the pulse duration for compressed and uncompresse pulses. For shorter

pulse durations, the results of the two methods are similar. This is because the

blurring due to the finite resolution of the detector and the divergence of the

electron beam make the streaking trace approximately Gaussian when the initial

beam width is comparable to the width after streaking. For longer pulse durations,

the Gaussian method does not fit the data very well and will give inaccurate values

for the pulse duration. The measured distribution in Figure 3.18b also shows

maxima near the edges of the distribution, which is most likely caused by the fact

that the electrons deflected at the larger angles will start to experience the fringe

fields of the capacitor and be deflected less than they would if the field remained

uniform.

As we discussed earlier, the jitter in the arrival time of the electrons can blur
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(a)

(b)

Figure 3.18: (a) The compressed streaked pulse and (b) the uncompressed streaked
pulse, both integrated over the y-axis together with the Gaussian function and the
developed model fitted to them. (Reproduced from [114], with the permission of
AIP Publishing.)

the streaked beam on the detector. If we knew the value of the jitters, we could

replace equation (3.30b) by

Ibluredstreaked (x, y) = N

∫∫ Istreaked

(x′, y′) e
− (x−x′)2

2(σ2+σ2jitter)
− (y−y′)2

2σ2

dx′dy′, (3.39)

and keep equation (3.30a) unchanged to account for that blurring effect.

3.4.6 The streak camera resolution

The resolution of the streak camera depends on two parameters. The first

one is the streak camera sensitivity that is measured by observing how much the

beam center moves on the detector as we delay the trigger laser pulse. The other
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parameter is the size of the unstreaked beam on the detector. The larger the

unstreaked beam, the less resolution of the device. The unstreaked beam for the

experiment in Section 3.4.5 was 5.2 pixel wide FWHM. For a maximum sensitivity

of ς=34.9 fs/pixels and a streaked pulse, which is only one pixel wider than the

unstreaked beam, the electron pulse duration will be 118 fs. This value determines

the resolution of the streak camera. However, it is possible to measure streaked

pulses that are less than a pixel wider than the unstreaked pulses, provided the

signal to noise is sufficiently high.

3.4.7 Minimization of the electron pulse duration

The electron pulse duration, at the position of the target, depends on the

following parameters:

1. the number of electrons per pulse;

2. the traverse divergence of the beam;

3. the phase and amplitude of the RF cavity longitudinal electric field; and

4. the timing jitter between the electrons and laser.

Experimentally, the shortest pulse duration is obtained with lower currents in

the first coil and higher currents in the second coil in the setup (see figure 2.1

for the position of the coils). In this way, the electron pulse will have a smaller

diameter on the axis of the RF cavity that is essential for optimum compression. In

this case, the beam will have a larger divergence and we should keep the number

of electrons lower to make the size of the beam small on the detector. As we

discussed before, the fast jitter in the RF cavity field will increase the measured

pulse duration too. However, here, we will focus on experimentally obtaining the

optimum values for the amplitude and the phase of the RF cavity for the shortest

pulse duration.

The pulse compression will be the best when the center of the electron pulse

coincides with the zero crossing of the RF cavity longitudinal electric field. In this
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case, a symmetric force will be applied to the front and back sides of the pulse

and it will self-compress at some distance from the cavity. We call the phase of

the RF cavity for which this symmetric force is applied to the electron pulse, the

phase zero. At phase zero, the total kinetic energy of the pulse will not be affected

by the RF cavity compression, and the amplitude of the compressing field only

affects the temporal focal length of the cavity, i.e., higher amplitudes causes the

electron pulse to temporally focus closer to the RF cavity and vice versa.

In the experiment, we first determine the phase zero and the key to find it is

to use the fact that the energy of the electron pulse is the same after and before

the RF cavity. This means that if we ignore the delay caused by the RF cavity,

the streaked and unstreaked pulse centers should coincide on the detector. We,

therefore, adjust the phase of the RF cavity so that the center of the streaked

beam falls onto the center of the unstreaked beam. There are two phases for

which this coincidence happens, and for one of them, the streak length is by far

larger than the other because we are maximally increasing the pulse duration

at the incorrect phase. In reality, the delay caused by the RF cavity might be

considerable; therefore, this method will not give the right phase zero. Here, we

analytically calculated the delay caused by the RF cavity.

Let us consider a single electron entering the RF cavity at its phase zero. At

that time, the the electric field of the RF cavity changes linearly by time, and the

equation of motion in the longitudinal direction will be

dpz
dt

= m
dγvz
dt

= eE0ω0 (t− t0) . (3.40)

By integrating equation (3.40) over time, we have

γvz (t) = γ0vz0 +
e

m
E0ω0 (t− tin)

[
1

2
(t+ tin)− t0

]
, (3.41)

where vz0 = v(tin) is the initial velocity of the electron at the cavity entrance at

time t = tin. At the phase zero, the electron leaves the cavity at time tout with
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the same velocity vz0 and momentum; therefore, from equation (3.41) we should

have

t0 =
1

2
(texit + tin) . (3.42)

We define Y (t) being the right-hand-side of equation (3.41) for t0 replaced by

equation (3.42):

Y (t) = γ0vz0 +
e

m
E0ω0(t− tin)(t− tout). (3.43)

Then from equation (3.41), the velocity of the electron at time t will be

vz(t) =
Y (t)√

1 + Y (t)2

c2

. (3.44)

For lcav being the length of the RF cavity, we know that

lcav =

∫ texit

tin

vz (t) dt =

∫ texit

tin

Y (t) dt√
1 + Y 2(t)

c2

. (3.45)

This equation determines the moment the electron exits the cavity texit. If the RF

cavity is off, the exit time t
′
exit will be

t
′

exit =
lcav
vv0

+ tin. (3.46)

The difference between texit determined by equation (3.45) and t
′
exit in equation

(3.46) is the delay caused by the RF cavity at the zero phase. The maximum

energy that an electron can gain or lose by the field of the RF cavity is in the

order of ω0∆teE0lcav where ∆t is the amount of time that the electron spends inside

the cavity and we approximate it by lcav
vz

. If an electron pulse with 105 eV kinetic

energy, has a one percent energy spread, then the electric field of the cavity should

be in order of 2× 105 V/m, for ω0 = 6π× 109 rad/s and ∆t ≈ 4× 10−12 s. Figure

3.19 shows the delay caused by the RF cavity as a function of its longitudinal

electric field amplitude. The delay at the phase zero is under 60 fs. Therefore,
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Figure 3.19: The single electron delay (texit − t
′
exit) caused by the RF cavity lon-

gitudinal electric field at its phase zero.

the corresponding deflection caused by the streaking device with a sensitivity of

69.4 fs/pixel will be under one pixel. We solved the equation (3.45) numerically

to obtain texit.

Once we determine the phase zero, we change the amplitude for the shortest

streak length on the detector. This procedure will give the shortest pulse duration

at the position of the streaking device. Figure 3.20 shows the electron pulse

duration as a function of the RF cavity input power for different phases. The

shortest pulse duration happens at the phase zero.

3.4.8 Evaluation of fast and slow jitters

As we mentioned before, we cannot measure the fast jitters in the arrival of

the electrons caused by the jitter in the RF cavity electric field, since we cannot

do a single shot measurement. However, based on numerical simulations using the

General Particle Tracer code, the electron pulse duration on the target should be

around 250 fs for electrons and 100 fs for 5× 105 electrons. Nevertheless, we have

observed that the temporal resolution does not improve from 350 fs when reducing



107

Figure 3.20: Electron pulse duration as a function of the phase and input power of
the RF cavity. The shortest pulse duration happens at the phase zero. (Structural
Dynamics, Vol. 4, 044022, (2017); used in accordance with the Creative Commons
Attribution (CC BY) license.)

the pulse charge from 5×105 to 105 electrons, which suggests a large contribution

from the timing jitter. To improve the resolution of the setup, attempts should be

made to reduce the fast jitters. On the other hand, the slow jitters or drifts can

be measured by the streak camera. Figure 3.21 shows the center of the electron

beam on the detector as we delay the triggering laser in steps of 85 fs around the

first zero crossing of the capacitor electric field with the initial voltage of 600 V.

We fitted a line to the data points with the root-mean-square (RMS) fitting error

of 70.3 fs. The slope of the fitted line is 65.3 fs/pixels, which is close to what we

got from Figure 3.16 for V0 = 600 V. The measured fluctuations in the deflection

can be attributed to the slow component of the timing jitter in the experiment. In

this measurement, each data point is an average over ten consecutive frames each

with an integration time of 500 ms. Accordingly, we can monitor the changes in

the arrival time of the electron pulses with respect to the trigger laser pulse down

to around 70 fs RMS with a measurement time of a few seconds.
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Figure 3.21: Position of the electron beam center as a function of the trigger laser
delay. The initial voltage of the capacitor was 600 V. The trigger laser pulse was
delayed in steps of 85 fs. This graph is the central part of the graph shown in
Figure 3.16 for V0 = 600 V and it shows the fluctuations in the arrival time of
the electron pulses relative to the laser pulses. (Reproduced from [114], with the
permission of AIP Publishing.)
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3.5 Summary

We constructed and characterized a laser-activated femtosecond streak camera

with a streak velocity of 1.89 mrad/ps for electrons 90 keV kinetic energy. A full

circuit analysis of the streaking device was provided and all the equivalent circuit

parameters were extracted to describe the oscillating field. The device produces a

streaking field of 3 MV/m with an oscillation frequency of 3.49 GHz and a quality

factor of 3.85. The quality factor was limited mostly by the resistance of the GaAs

Ohmic contacts. We developed a general mathematical model that provides an

accurate method to evaluate the pulse duration. We measured pulse duration as

low as 350 fs FWHM and showed that we can measure timing drifts that are as low

as 70 fs RMS. Based on the setup parameters, we expect that the streak camera

can measure a pulse duration around 100 fs. The resolution of the device could be

further improved by increasing the voltage across the capacitor, reducing the size

of the device to increase the discharge frequency and by improving the detection

system to reduce the integration time. Using an image intensifier and a low noise

detector can allow for single shot measurements.



110

Chapter 4

Diffraction Experiment and Setup Calibration

4.1 Introduction

In this chapter, we will focus on the gas injection and pumping system, the

diffraction experiments we did to calibrate the setup, and the temporal overlapping

of the pump and probe. The gas stream, the electron beam, and the laser beam

should all intersect at one point in space, which we call the center of scattering.

The gas stream should be localized at the scattering center, meaning that the

density should be highest there and drop off quickly for any deviations from the

center. Here, we consider two types of gas nozzles that can provide such a gas

stream commonly referred to as the gas jet. The gas needs to be quickly removed

from the chamber for two main reasons. First, both the acceleration stage and RF

cavity need ultra-high vacuum (UHV) to function properly. Second, we want to

minimize the probability of electron scattering from the gas molecules everywhere

else. The background gas is minimized by directing the gas jet into a high-speed

diffusion pump. We separate the chambers by small apertures and differentially

pump each one to ensure UHV outside the sample chamber. The electron detection

setup including a phosphor screen, a lens, and a low-noise high-gain charge coupled

device (CCD) camera is also explained in this chapter. Two static diffraction

experiments were done to calibrate the detector. And last, we determined the

timing between the laser pulses and the electron pulses by two techniques for

normal and tilted intensity front laser pulses. For the former, we generated plasma

by focusing the laser beam on the gas thus creating an electric field gradient within

the gas itself, effects of which can be seen in the detected electron beam. For the
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latter, we generated a transient space charge field and a surface polarization on the

edge of a copper pinhole under the nozzle by the laser which deflects the electron

beam.

4.2 Nozzle, gas injection and differential pumping systems

The setup block diagram is reviewed in Figure 4.1. This setup is equipped

with one diffusion pump and four turbo pumps with locations indicated in that

figure. A photo of the scattering (target) and the detection chambers, which

are connected to each other by a flexible tube (bellows) is shown in Figure 4.2.

The gas is injected into the target chamber from the top through a nozzle whose

position can be adjusted by a three-dimensional moving stage. This chamber also

hosts the streak camera and the electron beam collimator, which are not shown

in the figure for clarity. The chamber is pumped by a diffusion pump (Edwards,

Diffstak 250/2000P) from the bottom that is backed by a two-stage rotary pump

(Edwards, E2M40). The diffusion pump is connected to the chamber through a

pneumatically actuated isolation valve, that can separate it from the rest of the

setup. The detector chamber is pumped by a turbo pump (Pfeiffer, HiPace80).

We measure the pressure in the target chamber by a hot-filament ionization gauge

(Kurt J. Lesker, KJLC354401YF). While there is no gas injection and the diffusion

pump valve is open, the target pressure goes down to 10−8−10−9 Torr. The gas is

controlled by a mass flow controller and the pressure is monitored both behind the

nozzle and in the target chamber. Pressure in the target chamber is kept below

2× 10−4 Torr to prevent pump oil from defusing into the chamber.

The RF cavity sits right before the target chamber and is connected to it by a

flexible tube and a 3 mm aperture (see Figure 4.1). A turbo pump (Leybold, TW

70 H) is put before the RF cavity and a 5 mm aperture separates them from the

acceleration and beam focusing stage of the setup (see Figure 4.1). We measure the

pressure of the RF cavity by another ionization pressure gauge to be around 10−9

Torr without gas injection. The maximum target chamber pressure of 2 × 10−4
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Figure 4.1: A block diagram of the UED setup that shows the the five pumps
connected to the setup.

Torr corresponds to pressure in the RF cavity of up to 10−6 Torr. There is another

turbo pump on a cross junction for the front side of the high voltage chamber,

where the the anode and cathode are hosted. We measure the pressure over that

area by another ionization gauge. The pressure is around 10−7 Torr and does not

change appreciably when we inject the gas. The pressure gauge is connected to a

safety interlock system that works such that if the pressure goes above 10−6 Torr

around the cathode, it shuts down the high voltage and the RF cavity. The high

voltage chamber is pumped from the backside by the fourth turbo pump to ensure

an even pressure throughout the acceleration chamber.

4.2.1 Gas nozzles

The nozzle should be able to deliver a collimated beam of cold gas namely a gas

jet with a sufficiently low width. There are two types of nozzles for this purpose:

capillary nozzles and converging-diverging (CD) nozzles. The former is simpler to

construct and hence less expensive but its performance is not generally as good as
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Figure 4.2: A photograph of the target and detector chambers.

a CD nozzle in terms of the the gas temperature and collimation. Figure 4.3 shows

the schematic of a homemade capillary nozzle. A stainless tube with an outer and

inner diameters of 200 and 100 µm, respectively, and a length of 2 cm crosses a very

small needle-pierced hole in a cylindrical piece of rubber. By use of a set screw and

an aluminum disk with holes at their centers, the rubber is squeezed tightly around

the capillary and a vacuum seal is obtained. The flow of a compressible gas in a

constant area tube, where the friction due to the tube wall cannot be neglected,

is modeled by the Fanno flow, named after the Italian mechanical engineer Gino

Girolamo Fanno [120]. This type of nozzle, for their particular application in gas

phase electron diffraction experiments, has been analyzed [121, 122]. The result

indicates that a nozzle whose length is much longer than its diameter provides a

low temperature sonic or subsonic gas jet.
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Figure 4.3: Schematic of homemade capillary nozzle.

Figure 4.4: Schematic of a CD nozzle.

The other type of nozzle that we use for diffraction experiments is the CD or

de Laval nozzle shown in Figure 4.4. This nozzle is employed when a supersonic

gas stream with a lower temperature is required. Briefly, the convergence of the

tube will increase the flow speed since the mass flow rate remains constant. The

design is such that the flow speed reaches the speed of sound at the throat that

is shown in the figure. The gas pressure, after the throat, decreases resulting in

an increase in the flow speed. For injection of gas by a CD nozzle into vacuum,

formation of a sonic flow at the throat is a sufficient condition for a supersonic

flow at the exit. The design and the physics of this nozzle is well documented

[123–125].

In Section 4.4.2, we will explain how to determine the gas jet diameter and

density by use of the diffraction pattern.
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4.3 Phosphor screen and optical imaging system

In our setup, we used Gd2O2S:Tb phosphor commercially known as P43 or

GADOX to detect 90 keV electrons, as P43 has proved to be an efficient electron

detector [126, 127]. This phosphor emits green light, peaked at 545 nm, with

about 12 − 20% conversion efficiency and has a 10% decay time of 1.5 ms and

1% decay time of around 3 ms which is almost intensity independent [128–132].

The mentioned efficiency leads to creation of 4700 to 7800 photons per electron.

However, to get a highest number of photons per electron, the thickness of the

phosphor screen should be optimized for a given energy of the incident electron

[133]. Generally, we prefer to increase the thickness to maximally absorb all the

electrons and generate as much light as possible. But the light can be absorbed by

the phosphor screen itself if the screen is too thick. The other problem is that the

light generated at any point inside the phosphor propagates isotropically and there

is a finite chance of multiple scattering [129], leading to a poor spatial resolution

if the screen is too thick. Calculations, by an experimentally derived transfer

function (point spread function) of the screen, have shown that the resolution of a

10 µm thick phosphor screen (P43) is around 63 µm FWHM for a 120 keV electron

hitting the screen [129].

The density of P43 is 7.3 g/cm3 [134] but cautious is warranted to use this

number to determine the optimum thickness of the screen from the literature.

That is because P43 exists in a powder and is deposited on a surface by use

of a binding medium. Therefore, the packing factor of the phosphor is smaller

in the binding medium than in its crystalline form. So the actual density of

the phosphor screen can be significantly lower that 7.3 g/cm3 [135, 136]. The

convention is to express the the desired thickness of the phosphor screen as a

coating weight in the unit of mg/cm2 and not the actual coating thickness since

the binding medium might be different from one manufacturer to the other. We

used 3 mg/cm2 layer of P43 with a grain size of 3µm deposited on a Pyrex glass
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disk with a thickness of 4.8 mm as was recommended by the manufacturer (Beam

Imaging Solutions) for highest light intensity and a resolution not much larger

than 100 µm. The substrate glass diameter was 63.5 mm with the 40 mm diameter

deposited phosphor at its center. There is an aluminum coating layer on top of

the phosphor screen for three reasons: 1) preventing light (from laser or other

sources) to pass through the phosphor screen; 2) reflecting the back propagating

light from the phosphor screen into the forward direction; and 3) preventing charge

accumulation on the phosphor. In calculating the aluminum coating thickness, we

deal with two concepts: the stopping power and the skin depth. Stopping power is

due to the retarding force applied to a moving electron by the ambient atoms and

molecules, and is defined as the amount of kinetic energy Ek that an electron loses

per unit of length as it travels inside a matter [137]. For 90 keV electrons traveling

inside pure aluminum, the stopping power is equal to 8910 keV/cm [138, 139];

hence, a 90 keV electron will lose 0.1% of its energy by traversing a 1000 Å thick

aluminum layer. The skin depth is the distance over which a beam of light loses

its energy by a factor of 1/e while penetrating into a material and depends on

the constitutive parameters of the material and the light wavelength. From the

date given in [140], we calculated the penetration depth to be 54.5 Å for 99.99%

pure aluminum and a light wavelength of 546 nm. Therefore, only around 0.1%

of light transverse a 500 Å thick aluminum foil, and it becomes negligible for a

1000 Å thick aluminum foil. On top of our phosphor screen, there is a around

1000 Å thick aluminum. The aluminum coating is thicker on the edge of the glass

substrate for a better and more reliable connection to ground. Figure 4.5a and

4.5b show the schematics of the phosphor screen holder from the side and vacuum

points of view. Figure 4.5c is a photograph of the screen holder from the room

side. The electrons that are stopped in the phosphor screen or even in the glass

substrate will radiate x-rays known as the bremsstrahlung radiation, which were

detected in our setup. The whole phosphor screen and the light blocking tube are

covered by a 2 mm thick lead shield to stop the x-rays (see Figure 4.2).
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(a) (b)

(c)

Figure 4.5: (a-b) schematic of the phosphor screen holder from two views. The
O-ring seals the vacuum. The aluminum coating on the edge is connected to the
flange. There is tube that goes all the way to the camera blocking the ambient
light. (c) A photograph of the screen holder from the room side. The aluminum
coating on the edge is observable on this side too. The ambient light block is not
mounted.

The phosphor screen is imaged onto a high-gain low-noise 16 bit CCD camera

(Andor, iXon Ultra 888) by an aberration-free optical lens (Nikon, NIKKOR 50

mm f1/2). The camera chip has 1024×1024 pixels with a pixel size of 13µm. The

camera uses a four-stage Peltier cooling assembly to reduce the temperature of

the CCD chip. The heat from that cooling assembly is removed by a water chiller

(ThermoTek, T255P).

4.4 Static diffraction pattern, and setup calibration

We performed static diffraction experiments on molecular nitrogen (N2) and

Trifluoroiodomethane (CF3I) to calibrate the detector. Calibration of the detector
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means to determine that one pixel of the detector corresponds to how much of

momentum transfer, s or the deflection angle. We used the data from CF3I to

calibrate the detector and then verified the calibration by measuring the bond

length from the diffraction pattern of N2.

Let us return to equation (1.58) for the diffraction pattern from an ensemble

of randomly oriented molecules, which is repeated here for convenience:

I = M

N∑
i=1

|fi|2+M
N∑
i=1

N∑
j 6=i

|fi||fj|cos(ηi − ηj)
sin srij
srij

. (4.1)

In general, if we have an N-atom molecule, the first term on the right-hand side of

this equation, Iatomic, will have N terms, while the second term Imolecule will have

1
2
N(N − 1) terms. For CF3I, we have

Iatomic = |fC |2+|fI |2+3|fF |2, (4.2a)

and

Imolecule = |fC ||fI |
sin srCI
srCI

+3|fC ||fF |
sin srCI
srCI

+3|fI ||fF |
sin srFI
srFI

+3|fF ||fF |
sin srFF
srFF

,

(4.2b)

where we are interested only in Imolecule. As we saw in equation (1.47), the scatter-

ing amplitude of each atom decreases proportionally to 1
s2+µ2

as s increases. Hence,

for larger values of s, the detected signal will be proportional to 1/s5. Since Iatomic

is known, the convention is to define the modified molecular scattering as

sM(s) = s
Imolecule
Iatomic

= s
I − Iatomic
Iatomic

. (4.3)

In fact, equation (4.3) can be seen as a weighted summation of sine functions,

each with a period of 2π
rij

where rij is any of the inter-atomic distances. In the

experiment, however, in addition to Iatomic, we have to subtract the background

signal too. That background can be the inelastic scattering or any light leakage
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to the detector. It also can be x-rays generated by the electrons hitting the beam

collimator, the beam block or even the phosphor screen. The P43 phosphor screen

can generate light from x-rays too [141]. We rewrite equation (4.3) as

sM(s) = s
Imolecule
Iatomic

= s
I − Iatomic − IB

Iatomic
, (4.4)

where IB being the background signal to account for the mentioned background.

4.4.1 Center of diffraction and azimuthal averaging of diffraction pat-

tern

Figure 4.6a shows the static electron diffraction pattern of CF3I detected by

the CCD camera after subtracting the background noise. The background noise

is any signal we receive while the gas is not injected in the path of the electrons.

The data was recorded over an exposure time of 20 s. Since the image has a

large dynamic range (216) and the signal decreases proportionally to 1/s5 from

the center of the diffraction, we can take the logarithm of the image for a better

illustration. Care should be taken for the logarithm transformation, since after

the background subtraction some of the pixels might have a negative value. In

that case, we add a constant to all of the pixels such that the minimum pixel value

is equal to one. Suppose the dynamic range of the pixel values in which we are

interested is [P1, P2]. Then, the logarithm transformation of

Ilog = A
ln I − lnP1

lnP2 − lnP1

(4.5)

will map pixel values in the range of [P1, P2] onto the range of [0, A], where A is

an arbitrary constant. One example for dynamic range assignment is when there

are dead or hot pixels. In that case, P1 can be the second minimum in the image,

and P2, the second maximum. In Figure 4.6b, the diffraction pattern of CF3I is

sketched in a logarithmic scale.

The diffraction patterns of randomly oriented molecules (or any other cylin-
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(a)

(b)

Figure 4.6: (a) Diffraction scattering from CF3I after background subtraction (b)
the same diffraction pattern in logarithmic scale. In this figure, we chose P1 = 3000
which is around the signal level at the aluminum ring, and P2 = 58, 988 which is
the maximum pixel value in the image. We also chose A = 1 (see equation (4.5).)
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drically symmetric potential) have an azimuthal symmetry over which we may

average to get a one-dimensional diffraction signal. But before doing that, we

need to know the center of symmetry on the detector to which we refer as the

diffraction center. That center is behind the beam block; hence, we need to deter-

mine it indirectly. We use the gradient of a diffraction pattern to determine the

diffraction center.

Let us show the gradient of a diffraction image I by vector
#»

G(m,n), i.e.,

#»

G(m,n) = ∇I = Gx(m,n)x̂+Gy(m,n)ŷ, (4.6)

where the indices m and n refer to a pixel location on the CCD chip, and x̂ and ŷ

are unit vectors in the directions of rows and columns, respectively. The gradient

shows the direction of maximum change in the detected light. In other words, a

line on the CCD chip, with the equation

y − n =
Gy(m,n)

Gx(m,n)
(x−m) (4.7)

will cross the diffraction center. As a result, a second line

y − n′ = Gy(m
′, n′)

Gx(m′, n′)
(x−m′), (4.8)

for m′ 6= m and n′ 6= n, will intersect the first line at the center of diffraction. We

solve the two line equations for the diffraction center (xc, yc):

xc =
m′ −m+ Gy(m,n)

Gx(m,n)
m− Gy(m′,n′)

Gx(m′,n′)
m′

Gy(m,n)

Gx(m,n)
− Gy(m′,n′)

Gx(m′,n′)

, (4.9a)

yc = n+
Gy(m,n)

Gx(m,n)

(
m′ −m+ Gy(m,n)

Gx(m,n)
m− Gy(m′,n′)

Gx(m′,n′)
m′

Gy(m,n)

Gx(m,n)
− Gy(m′,n′)

Gx(m′,n′)

−m

)
. (4.9b)

In practice, we find a large set of intersection points {(xc, yc)} on the detector plane

from a large set of mutually orthogonal lines. However, the set {(xc, yc)} may have
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Figure 4.7: The center of diffraction pattern, calculated by the method explained
in this section, is shown by a black square.

more than one mode, which means the obtained values for the diffraction pattern

are concentrated around more than one point. This happens if, for example, we

have a laser leakage point on the detector. For these cases, taking the average of

the set will result in an incorrect diffraction center. We rather need to perform a

statistical analysis to pick the right center. Low-pass filtering the image also helps

to determine the center more precisely, since it reduces the fluctuations in the pixel

values due to noise, non-uniformity of the phosphor screen or even the molecular

part of the diffraction pattern. The center of diffraction in Figure 4.6a is calculated

to be at (726± 0.3, 430± 0.2). Figure 4.7 depicts the center of diffraction.

Once we find the center of diffraction, we can perform the azimuthal averaging.

To do so, we define a distance function

d(m,n) =
√

(m− xc)2 + (n− yc)2, (4.10)

which gives the distance between the diffraction center and the the pixel (m,n).

Suppose, we have an N ×N pixel image I(m,n). We first flatten the two dimen-

sional matrices d and I into one dimensional arrays:

I ′((m− 1)N + n) = I(n,m); d′((m− 1)N + n) = bd(n,m)e, (4.11)
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where b•e indicates rounding to the nearest integer. Ideally, all values in I ′ that

correspond to one specific element value of d′ should be the same because they

represent all pixels with the same distance from the diffraction center. However,

in practice those pixels do not have the same value but have a distribution and

we again need to perform a statistical analysis to assign one value to all of those

pixels. In appendix B, we have provided a piece of Matlab code that finds the

center of diffraction and returns the azimuthal average as well.

After finding the azimuthal average, we use equation (4.4) to find sM(s). The

Iatomic in the denominator of that equation can be easily obtained from either

the tabulated elastic and inelastic scattering amplitudes, or scattering from the

Yukawa potential plus the analytic form of the inelastic scattering fit to the mea-

sured diffraction pattern. However, Iatomic + IB in the numerator of equation

(4.3) should be determined in a much more precise way. Note that the molecular

scatting part of the detected signal has a sinusoidal nature and may become zero

several times depending on the maximum scattering angle caught by the detector,

i.e., the s range.

At zeros of Imolecular, shown by {sn}, the detected signal is equal to Iatomic+IB.

Therefore, we can fit a curve to the set {sn, I(sn)} to represent Iatomic + IB in

equation (4.4). The zeros of Imolecular are obtained from the theory. The other

method is to fit a polynomial with variable coefficients to Iatomic + IB such that

the difference between sM(s) in the measurement and theory becomes minimum.

These methods are the standard techniques in gas phase electron diffraction data

analysis [51, 142]. The curve that we fit to the set {sn, I(sn)} can be either a

polynomial of the lowest possible degree [142], or a set of exponential functions.

Finally, we low-pass filter the results to cut high frequency noises, which are

more prevalent at larger values of s. Figure 4.8 shows the results for azimuthally

averaged sM(s). The theoretical results, to which we fit the measurement the

best, is given for comparison as well. This procedure revealed that each pixel

corresponded to ∆s = 0.0125Å. The two-dimensional diffraction signal in Figure



124

Figure 4.8: Azimuthal average of sM in equation (4.4) from the detected intensity
shown in Figure 4.6a. (Structural Dynamics, Vol. 4, 044022, (2017); used in
accordance with the Creative Commons Attribution (CC BY) license.)

4.6b is resketched in Figure 4.9 by converting pixels into s . We can take a sine

transform of sM(s), to evaluate the inter-atomic distances in CF3I in real space.

As we explained above, we can write sM(s) as a weighted sum of sine functions:

sM(s) =
∑
α 6=β

Aαβ sin(rαβs) (4.12)

for α and β representing atoms and Aαβ being a constant. Taking a sine transform

of sM(s) gives

fr(r) =

∫ ∞
0

ds sM(s) sin(sr) =

=

∫ ∞
0

ds
∑
α6=β

Aαβ sin(rαβs) sin(sr)

=
∑
α 6=β

Aαβ

∫ ∞
0

ds sin(rαβs) sin(sr)

=
π

2

∑
α 6=β

Aαβ[δ(r − rαβ)− δ(r + rαβ)],

(4.13)

where fr(r) represents the radial distribution of atoms. The detector, however,
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Figure 4.9: Two dimensional diffraction pattern of CF3I in the momentum space.

has a finite extent smax and equation (4.13) should be revised as

fr(r) =
smax

2

∑
α 6=β

Aαβ{sinc[smax(r − rαβ)]− sinc[smax(r + rαβ)]}. (4.14)

Therefore, there are extra peaks in fr(r) that are not due to the inter-atomic

distances but because of the finite size of the detector. One way of minimizing

these artifacts is to use a damping function in the sine transform as

fr(r) =

∫ ∞
0

dssM(s) sin(sr)e−γs
2

, (4.15)

where γ is a real positive number showing the amount of damping. Figure 4.10

shows the real space reconstruction of the inter-atomic distances of CF3I by use

of the damped sine transform. In this figure, each peak corresponds to one inter-

atomic distance where we found rFI = 2.89Å, rFF = 2.15Å, rCI = 2.14Å and

rCF = 1.33Å. As we mentioned before, the diffraction pattern in this experiment

was recorded over 20 s of integration time and the beam current of 70 pA. The

results, however, compared favorably with previous UED experiments on CF3I

where the integration time was on the order of one hour due to a much lower
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Figure 4.10: Real space reconstruction of CF3I. (Structural Dynamics, Vol. 4,
044022, (2017); used in accordance with the Creative Commons Attribution (CC
BY) license.)

beam current [53]. We repeated the experiment on nitrogen to determine the

bond length. Figure 4.11a shows the azimuthally averaged sM(s) for N2, with a

reconstruction in real space shown in figure 4.11b. We retrieved a bond length of

1.093 ± 0.013 Å in agreement with the known value of 1.098 Å. The bond length

was retrieved by simulating the sM for different values of the bond length and

finding the value that best matched the experimental data. The uncertainty in

the bond length is the standard deviation in a set of repeated experiments under

the same conditions. The FWHM of the peak in Figure 4.11b is about 0.4 Å. For

a molecule with inter-atomic distances which are close, this number determines

the resolution by which we can distinguish closely spaced distances. Note that one

of the bottlenecks in the gas phase UED experiments was long integration time,

on the order of one hour, for a sufficient SNR to retrieve the molecular structure.

Previous gas phase UED experiments with keV electrons reached a resolution of

850 fs, with an average beam current of 3 pA [53]. For MeV electrons a resolution of

200 fs have been achieved with a beam current of 0.7 pA. In our setup, we reached

a time resolution of 350 fs but with a two orders of magnitude improvement in

beam current.
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(a)

(b)

Figure 4.11: (a) Experimental and theoretical azimuthaly averaged sM(s) for
nitrogen. (b) Real space reconstruction of the bond length. (Structural Dynamics,
Vol. 4, 044022, (2017); used in accordance with the Creative Commons Attribution
(CC BY) license.)

4.4.2 Gas jet diameter and density measurement

By use of the diffraction signal, we can measure the width and the density of

the gas jet. The width of the gas jet was obtained by by moving the nozzle in a

perpendicular direction to the electron beam and recording the total pixel counts

in the diffraction pattern at each nozzle position. For a more accurate evaluation,

we divided the total pixel counts by the average beam current at each point. Table

4.1 shows the recorded data for CF3I. Figure 4.12 shows a fit Gaussian function to

the data points which are proportional to the amplitude of the diffraction signal.

The FWHM of the fitted Gaussian is 360 µm. Deconvolving the width of the
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Table 4.1: Diffraction signal level with respect to the nozzle position and the beam
current.

Total pixel count×107 nozzle position (mm) Beam current (pA)
1.01 0 55
1.02 0.127 52
1.04 0.254 55
1.08 0.381 56
1.17 0.508 55
1.36 0.635 55
1.59 0.762 55
2.06 0.889 54
2.12 1.016 55
1.50 1.143 57
1.20 1.270 55
1.08 1.397 55
1.04 1.524 55
0.02 1.651 56

electron beam in this experiment (∼300 µm) from this measured width gives a

gas jet width of around 220 µm. The backing pressure for CF3I was 140 Torr in

this experiment. We repeated this measurement for nitrogen and found the width

of the gas jet to be around 200 µm.

Having the width of the gas jet, we can calculate the density of the gas as well.

In the following, we review the steps taken in measuring the gas density:

� We removed the beam block to measure the main electron beam total pixel

count. With a gain of 2 and integration time of 0.1 s the total pixel counts

was 1.056× 108 inside a circle with the radius of 81 pixels around the beam

center.

� We blocked the main beam and increased the linear gain and the integration

time to 10 and 20 s respectively. The diffraction pattern had a total count

of 3.251×108 between two circles of radii 81 and 430 pixels around the main

beam, after subtracting the background signal. Therefore, 0.1×2
20s×10

3.251×108

1.056×108
×

100 = 0.31% of the incoming flux was deflected to that area. The mentioned

area corresponds to the diffraction angles from 0.0063 to 0.0335 radians.
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Figure 4.12: Diffraction signal amplitude of CF3I as a function of the transverse
nozzle position.

� If the gas has a width of dz, the incoming flux Φ will decrease according to

dΦ

Φ
= −nσdz, (4.16)

where dΦ
Φ

= 0.0031, n is the density of the gas, and σ is the cross section:

σ(0.0063 < θ < 0.0335) =

∫ 0.0335

0.0063

dσ

dΩ
dΩ. (4.17)

The function dσ
dΩ

=

(
0.00233

0.02182+θ2

)2

fits the scattering cross section of atomic

nitrogen in units of square of the Bohr radius a0 best (see Section 1.3.3).

Therefore, we get σ = 0.0224a2
0, where a0 = 5.29× 10−11m.

� By plugging all the values into equation (4.16), we got n = 2.2× 1017cm−3.

This density should be divided by two since there are two atoms per molecules.

It also should be multiplied by the width of the electrons divided by the width

of the gas jet. Hence, the gas density is around 1.7× 1017 molecules/cm−3.

Note that in these calculations, we ignored the molecular part of the diffrac-

tion signal. The same experiment with CF3I gave a density of 1.6 × 1016
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molecules/cm3.

4.5 Temporal and spatial overlapping of pump and probe: time zero

By use of a pinhole in a copper foil mounted under the nozzle, we spatially

overlap the electrons, the laser and the gas jet. The foil is adjusted such that

the pinhole is accurately under the nozzle. Figure 4.13 illustrates the setup. The

copper foil is perpendicular to the laser beam and makes an angle of around

60 degrees with the electron beam. Both the laser and electron beams make it

through the pinhole and can be observed by the cameras shown in Figures 2.27

and 4.1, respectively. After centering the two beams on the pinhole, we bring the

nozzle down in the path of the both beams. The spatial overlapping can also be

done without the pinhole and by use of the nozzle itself, but the pinhole makes

it easier and more precise especially for vertical overlapping of the two beams.

Furthermore, as we will explain later, the pinhole is used for temporal overlapping

of the laser and the electrons.

A coarse temporal overlapping between the electrons and the laser can be

achieved by use of the streak camera. As we saw in Figure 3.7, a temporal overlap

on the order of 100 ps is attainable. However, we need a temporal overlap within

at most few picoseconds. In our setup, we used two techniques to gain an accurate

temporal overlapping between the laser and the electron pulses. For the normal

intensity front laser beam, we can focus the beam on the gas jet and photo-ionize

the gas molecules by which the electron pulses will be affected [50]. For the tilted

front laser beam, the laser at its focus has a long pulse duration (see Figure 2.24)

and therefore not powerful enough to generate plasma. In this case, we use the

copper pinhole. The laser hitting the edge of the pinhole creates a transient space

charge field as well as a surface polarization that affect the electron beam [143].

Here, we will discuss these two techniques individually.
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Figure 4.13: Copper foil with a pinhole under the nozzle.

4.5.1 Photo-ionization induced lensing

Figure 4.14 is an image of the target chamber interior taken by a camera at

the view port shown in Figure 4.2. The laser with a FWHM diameter of around

10µm was focused onto the gas jet coming out of the nozzle. The laser intensity

was around 3×1015 W/cm2 equivalent to the fluence of 240 J/cm2. The white

light created across the laser-gas interaction region can be seen in the figure. At

this region, due to the multiphoton ionization a plasma was formed; however,

the electrons gained much more kinetic energy than the ions, and were mostly

diffused out of the interaction region. Consequently, a cylindrically symmetric

charge distribution along the laser path was formed [50]. The resultant electric

field was strong enough to disturb the charge distribution in the electron pulse as

is demonstrated in Figure 4.15. In this figure, we first delayed the laser pulse with

respect to the electrons such that the laser pulse arrived at the target well after

the electrons. At this point, we recorded the electron beam on the detector as

a reference. We then decreased the delay in constant time steps, and subtracted

the reference from any newly recorded image till the disturbance was observed.

The temporal evolution can be best seen if we monitor the changes in the pixel

counts inside a small portion of the electron beam on the detector as is illustrated
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Figure 4.14: The interior of the target chamber. The laser beam is focused onto
the gas jet coming out of the nozzle which generates white light.

in Figure 4.16.

We determine the rise time of ionization-induced lensing by fitting the logistic

function

f(t) =
A

1 + e−
t−t0
T

(4.18)

to the data in Figure 4.16, where A = 1, t0 = −20.81 ps, and T = 0.653 ps were

the fit parameters. The 10% to 90% rise time is equal to 2T ln(9) = 2.9 ps.

4.5.2 Transient space charge/polarization field creation

For tilted front laser pulse, the laser passes through the copper pinhole shown

in Figure 4.13, with its center slightly lower with respect to the center of the

pinhole. By a multiphoton ionization process, some electrons of the metal will

be ejected out of the foil [144, 145] and will form a space charge that evolves

with time. Also, a temporary surface polarization can be formed as well [146].

Either of these phenomena can affect the electrons with a result shown in Figure

4.17; however, we cannot determine which one has a dominant effect. Similar to

the ionization-induced lensing technique, we monitored the change in pixel counts

inside a small portion of the detected signal as a function of time with a result
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Figure 4.15: The change in the observed electron beam at four different moments
caused by the laser multiphoton ionization-induced lensing.

Figure 4.16: The change in the pixel counts in a small circle shown in the electron
beam as a function of time. By this figure, the rise time of ionization-induced
lensing is determined
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Figure 4.17: The laser hitting the lower edge of the pinhole generates space charge
and surface polarization with a time-dependent effect on the electron beam.

shown in Figure 4.18. We determined the 10% to 90% rise time of laser-copper

Figure 4.18: The change in the pixel counts in a small circle shown in the electron
beam as a function of time. By this figure, the rise time of the laser-copper
interaction is obtained.

interaction effect on the electrons by fitting the logistic function in equation (4.18)
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into the data in Figure 4.18 to be equal to 10.7 ps.

Both of the techniques described here can be used to determine the temporal

overlapping of the two beams within at least 2 ps. The lensing technique is,

however, more precise since it is possible to employ high intensity laser pulses

whilst the same intensity will damage the copper foil. We estimated that the laser

intensity is on the order of 1010 W/cm2 on the copper edge.

4.6 Summary

In this chapter, we reviewed the gas injection system and the static diffraction

pattern analysis to calibrate the detector. We also provided two methods to syn-

chronize the electron and the laser pulses for both normal and tilted laser intensity

fronts.



136

Chapter 5

Conclusion

This chapter summarizes the structure and the parameters of the apparatus

developed in this dissertation. This device delivers electron pulses of femtosecond

duration by which ultrafast dynamics induced by femtosecond laser pulses can be

observed.

In Chapter 1, we reviewed the quantum theory of high energy electron diffrac-

tion from atoms and molecules. We discussed the first Born approximation and

its validity in determining the scattering amplitudes from atoms and molecules.

Further, a brief history behind the gas phase electron diffraction apparatuses in

general, and the time-resolved setups, in particular, mostly from the technology

point of view, was included as well.

The elements and the structure of the apparatus was discussed in Chapter 2. In

our setup, femtosecond infrared (IR) laser pulses with a maximum power of 10 W

and a repetition rate of 5 kHz are used both to generate the electrons and to excite

the sample. Around ten percent of the laser output is frequency tripled and used

to generate the electron pulses in a one-photon photo-emission process while the

rest of the laser power is used to excite the sample. A set of four optical crystals is

employed to convert the IR pulses to UV pulses: 1) a BBO crystal generates the

second harmonic; 2) a delay plate temporally overlaps the fundamental and the

second harmonics; 3) a wave plate matches the polarization of the two harmonics;

and 4) a BBO crystal combines the two harmonics to generate an ultraviolet

pulse with a wavelength of 267 nm and a photon energy of 4.65 eV. The copper

photo-cathode with a work function of 4.7 eV is held at -90 kV with respect to a
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grounded anode plate in front of it. The electron pulses are accelerated between

the cathode and the anode and leave the acceleration stage via a hole in the anode

plate. To achieve a stable electron beam, we do not send the UV laser directly to

the photo-cathode. We rather truncate the UV beam by a pinhole whose diameter

is appreciably smaller than the laser beam diameter and then image the pinhole

onto the surface of the cathode. By this technique, at the expense of losing the

laser power, fluctuations in the laser beam pointing is compensated, resulting in

a stable electron beam. We made a Faraday cup connected to a picoameter to

measure the number of electrons per pulse, and showed that electron pulses with

millions of electrons were achievable.

Because of the space charge effect, the electron pulses expand in space while

traveling from the photo-cathode to the target. As a result, the temporal res-

olution of the setup decreases. In our setup, we use three magnetic lenses and

one radio-frequency (RF) cavity to compress the electron pulses transversely and

longitudinally (in time), respectively. It is worth noting that the photo-emission

method, by which we generate the electron pulses, results in pulses that are uni-

formly charged spheroids. An important property of such pulses is that they

maintain their profile, i.e. they stay uniformly charged spheroids, although their

dimension increases and their charge density decreases because of the space charge

effect. The reason is that the Coulomb force inside such a pulse is linear in space

at each time. We take advantage of this property to apply a linear force to reverse

the electron pulse expansion and compress it at the position of the target. In the

longitudinal direction, the electrons move with velocity close to the half of the light

speed in vacuum. The time-varying longitudinal electric field of the RF cavity is

responsible to apply the linear force to temporally compress the electron pulses.

Once the electron pulse enters the RF cavity region, there is force pushing the

electrons in its front to its center and the force decreases as the electrons enter the

RF cavity further and becomes zero once the center of the pulse enters the field

region. Then, the force switches its direction to push the electrons in the back side
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of the pulse toward its center. Obviously, a proper timing between the RF field

and arrival time of the electrons is essential to obtain shortest pulse duration. We

achieve an accurate timing by synchronizing the RF field to the laser oscillator by

use of a commercial synchronizer.

We built a streak camera that evaluates the performance of the RF compression

by measuring the electron pulse duration at the position of the target and it was

the topic of Chapter 3. The streak camera is composed of a charged parallel plate

capacitor connected in parallel to a GaAs photo-switch. A laser pulse activates

the switch and causes a damped harmonic oscillation in the electric field across

the capacitor. The electron pulse going through the plates of the capacitor is

affected by the time-varying electric field. We send the laser to the photo-switch

such that the electrons traverse the capacitor when its electric field is changing

sign (crossing zero) for the first time, where the rate of the change in the electric

field is maximum. This field deflects the electrons in the back and front parts of

the pulse oppositely streaking the electron pulse on the detector. We developed

a mathematical method to extract the pulse duration from the streaked patterns

of the electrons. With a resolution better than 100 fs, we measured an electron

pulse duration as low as 350 fs. The streak camera can also monitor the slow

jitters (drifts) in the arrival time of electrons within 70 fs. The major obstacle in

achieving a shorter electron pulse duration is the jitter in the timing between the

arrival of the electrons and the radio-frequency field. This problem is more severe

in gas phase experiments since the data is gathered over many shots, in contrast

to the condensed samples, where single shot experiments are feasible.

One other parameter that can severely deteriorates the setup temporal resolu-

tion, and was discussed in detail in Chapter 2, is the velocity mismatch between

the exciting laser (the pump) and the electrons (the probe). The laser and the

electron pulses do not travel with the same velocities; therefore, the target will not

be excited and probed at the same time. This will blur the observed signal. We

solved this problem by using the laser front tilting technique. The laser was sent
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to the target with an angle around 60 degrees with respect to the electrons such

that its velocity components in the direction of electrons matches the velocity of

electrons. We tilted the intensity front of laser pulses by use of an optical grating

to match the velocity of the laser pulse to that of the electrons.

As we have explained in Chapter 4, we conducted a diffraction experiment on

CF3I to calibrate the setup detector in the momentum space. We verified the

calibration by a diffraction experiment on N2 that determined its bond length.

The beam current was around 70 pA and the experiments were done over 20 s of

integration time which is appreciably shorter in comparison with similar setups

that do not use electron compression and hence have much lower beam current. We

also performed two experiments to determine the temporal overlapping between

the laser and the electron pulses. For a laser beam with a normal intensity front,

we focused the beam on the gas jet to increase the light intensity and ionize the gas

molecules. This process forms a plasma under the nozzle; however, the electrons

gain more kinetic energy and leave the area resulting in a cylindrical channel of

positive ions that affects the electron beam. For the tilted intensity front laser

beam, we cannot focus the beam on the gas jet for the same purpose since the

laser pulse duration would be too long at the focus and the laser is not powerful

enough to create a plasma. We rather mounted a copper pinhole under the nozzle

through which the laser and the electron pulses go. The laser, either by a multi-

photon ionization and space charge creation or by a surface induced polarization

in the copper, will affect the electrons. Both of these effects have a short rise time

which help to determine the temporal overlap within at most two picoseconds.
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APPENDIX A

Pulse delayer and stretcher circuit

In this appendix, we review the pulse delayer and extender device we con-

structed and introduced in section . Figure A.1 shows the block diagram of the

device. The input signal is a 6µs TTL pulse coming from the laser Delay an Syn-

chronization Unit. The output signal is a TTL pulse with a delay and duration

adjusted by resistors R1 and R2, respectively. The signal flow in the circuit is

shown in figure A.2.
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APPENDIX B

Diffraction center and azimuthal average

The following Matlab code finds the center of diffraction pattern and then

takes azimuthal average of the pattern by the method explained in section 4.4.1.

The code divides the area around the beam block in four non-overlapping sectors

as are shown by the numbers in Figure B.1. Then, it finds the intersection point

(e.g. point C) for two lines drawn from two points (e.g. pixels A and B) in

adjacent sectors, whose slopes are determined by the gradient of the image. This

process is repeated for all of the points in the adjacent sectors. We obtain a set

of intersection points and do a statistical analysis to pick up a point that is most

likely the center of diffraction.

Figure B.1: Finding the center of the diffraction pattern by use of the image
gradient. Two lines passing through points A and B, in two adjacent sectors,
intersect at point C. The slopes of the lines are determined by the gradient of the
image; therefore, point C should represent the center of diffraction.



% This function takes a diffraction pattern (Image) 
% and the center of the beamblock (bBlock_cent) as an array and the  
% beam block radius. None of these values need to be accurate.  
% It returns the center of the diffractio pattern (where the center 
% of the electron beam would be on the detector). It also returns 
% the azimuthal average of the beam. 
  
function  [Cxx, Cyy, AzAve] = BeamCenter(Image,bBlock_cent,bBlock_r) 
J = Image; 
  
% Apply one or more of the following filters to smooth 
% the diffraction pattern: 
h = ones(5,5) / 25; 
J = imfilter(J,h); 
J = medfilt2(J, [5 5]); 
J = wiener2(J,[5 5]); 
  
% Calculate the image gradient 
[Gx,Gy] = imgradientxy(J,'prewitt'); 
  
  
Cx=round(bBlock_cent(2)); 
Cy=round(bBlock_cent(1)); 
r = round(bBlock_r)+1; 
  
clear n1 m1 n2 m2 
  
saveXBeam = []; 
saveYBeam = []; 
  
% Divide the diffraction pattern into four areas around the 
% beam block. Find the the center from the intersection of  
% mutually orthogonal lines. 
% Below, delta is the radius range around the beam block where  
% the calculations take place. The user may change this range. 
for delta = 20:40   
    % #1 right bottom and top 
    for n1 = Cx:1:Cx+r+delta 
        m1 = Cy+round(sqrt((r+delta)^2-(n1-Cx).^2)); 
        %         J(n1,m1) = 10; 
        n2 = n1-(r+delta); 
        m2 = Cy+round(sqrt((r+delta)^2-(n2-Cx).^2)); 
        %         J(n2,m2) = -10; 
         
        x_beam1(n1-Cx+1) = (m2-m1+Gx(n1,m1)/Gy(n1,m1)*... 
            n1-Gx(n2,m2)/Gy(n2,m2)*n2)/(Gx(n1,m1)/... 
            Gy(n1,m1)-Gx(n2,m2)/Gy(n2,m2)); 
        y_beam1(n1-Cx+1) = m1+Gx(n1,m1)/Gy(n1,m1)*... 
            (x_beam1(n1-Cx+1)-n1); 
         
    end 
    x_beam1(isnan(x_beam1)) = []; 
    y_beam1(isnan(y_beam1)) = []; 
     
     
    clear n1 m1 n2 m2 
    % #2 Left Bottom and top 



    for n1 = Cx:1:Cx+r+delta 
        m1 = Cy-round(sqrt((r+delta)^2-(n1-Cx).^2)); 
        %             J(n1,m1) = 1; 
        n2 = n1-(r+delta); 
        m2 = Cy-round(sqrt((r+delta)^2-(n2-Cx).^2)); 
        %             J(n2,m2) = -1; 
        x_beam2(n1-Cx+1) = (m2-m1+Gx(n1,m1)/Gy(n1,m1)*... 
            n1-Gx(n2,m2)/Gy(n2,m2)*n2)/(Gx(n1,m1)... 
            /Gy(n1,m1)-Gx(n2,m2)/Gy(n2,m2)); 
        y_beam2(n1-Cx+1) = m1+Gx(n1,m1)/Gy(n1,m1)*... 
            (x_beam2(n1-Cx+1)-n1); 
         
         
    end 
    x_beam2(isnan(x_beam2)) = []; 
    y_beam2(isnan(y_beam2)) = []; 
     
    clear n1 m1 n2 m2 
    % #3 Top right and left 
    for n1 = Cx-r-delta:1:Cx 
        m1 = Cy+round(sqrt((r+delta)^2-(n1-Cx).^2)); 
        %         J(n1,m1) = 3; 
        n2 = -n1+2*Cx-(r+delta); 
        m2 = Cy-round(sqrt((r+delta)^2-(n2-Cx).^2)); 
        %         J(n2,m2) = -3; 
        x_beam3(n1-(Cx-r-delta)+1) = (m2-m1+Gx(n1,m1)/... 
            Gy(n1,m1)*n1-Gx(n2,m2)/Gy(n2,m2)*n2)/... 
            (Gx(n1,m1)/Gy(n1,m1)-Gx(n2,m2)/Gy(n2,m2)); 
        y_beam3(n1-(Cx-r-delta)+1) = m1+Gx(n1,m1)/Gy(n1,m1)*... 
            (x_beam3(n1-(Cx-r-delta)+1)-n1); 
         
    end 
    x_beam3(isnan(x_beam3)) = []; 
    y_beam3(isnan(y_beam3)) = []; 
     
    clear n1 m1 n2 m2 
    % 
    % #4 Bottom right and top left 
    for n1 = Cx:1:Cx+r+delta 
        m1 = Cy+round(sqrt((r+delta)^2-(n1-Cx).^2)); 
        %         I(n1,m1) = 10; 
        n2 = n1-(r+delta); 
        m2 = Cy-round(sqrt((r+delta)^2-(n2-Cx).^2)); 
        %         I(n2,m2) = -10; 
        x_beam4(n1-Cx+1) = (m2-m1+Gx(n1,m1)/Gy(n1,m1)*n1-... 
            Gx(n2,m2)/Gy(n2,m2)*n2)/(Gx(n1,m1)/Gy(n1,m1)-... 
            Gx(n2,m2)/Gy(n2,m2)); 
        y_beam4(n1-Cx+1) = m1+Gx(n1,m1)/Gy(n1,m1)*... 
            (x_beam4(n1-Cx+1)-n1); 
         
    end 
    x_beam4(isnan(x_beam4)) = []; 
    y_beam4(isnan(y_beam4)) = []; 
    clear n1 m1 n2 m2 
    % #5 Bottom left and top right 
    for n1 = Cx:1:Cx+r+delta 
        m1 = Cy-round(sqrt((r+delta)^2-(n1-Cx).^2)); 



        %         I(n1,m1) = 10; 
        n2 = n1-(r+delta); 
        m2 = Cy+round(sqrt((r+delta)^2-(n2-Cx).^2)); 
        %         I(n2,m2) = -10; 
        x_beam5(n1-Cx+1) = (m2-m1+Gx(n1,m1)/Gy(n1,m1)*... 
            n1-Gx(n2,m2)/Gy(n2,m2)*n2)/(Gx(n1,m1)/... 
            Gy(n1,m1)-Gx(n2,m2)/Gy(n2,m2)); 
        y_beam5(n1-Cx+1) = m1+Gx(n1,m1)/Gy(n1,m1)*... 
            (x_beam5(n1-Cx+1)-n1); 
         
    end 
    x_beam5(isnan(x_beam5)) = []; 
    y_beam5(isnan(y_beam5)) = []; 
    % 
    clear n1 m1 n2 m2 
    % #6 Bottom right and left 
    for n1 = Cx:1:Cx+r+delta 
        m1 = Cy+round(sqrt((r+delta)^2-(n1-Cx).^2)); 
        %     I(n1,m1) = 10; 
        n2 = 2*Cx-(n1-(r+delta)); 
        m2 = Cy-round(sqrt((r+delta)^2-(Cx-n2).^2)); 
        %     I(n2,m2) = -10; 
         
        x_beam6(n1-Cx+1) = (m2-m1+Gx(n1,m1)/Gy(n1,m1)*... 
            n1-Gx(n2,m2)/Gy(n2,m2)*n2)/(Gx(n1,m1)/... 
            Gy(n1,m1)-Gx(n2,m2)/Gy(n2,m2)); 
        y_beam6(n1-Cx+1) = m1+Gx(n1,m1)/Gy(n1,m1)*... 
            (x_beam6(n1-Cx+1)-n1); 
         
    end 
    x_beam6(isnan(x_beam6)) = []; 
    y_beam6(isnan(y_beam6)) = []; 
     
    % 
    x_beam = [x_beam1 x_beam2 x_beam3 x_beam4 x_beam5 x_beam6]; 
    y_beam = [y_beam1 y_beam2 y_beam3 y_beam4 y_beam5 y_beam6]; 
    %% Remove Outliers 
    x1 = quantile(x_beam,0.25); 
    x3 = quantile(x_beam,0.75); 
    range_x = x3-x1; 
    lower_limit_x = x1-1.5*range_x; 
    upper_limit_x = x3+1.5*range_x; 
    x_beam(x_beam > upper_limit_x) = []; 
    x_beam(x_beam < lower_limit_x) = []; 
     
    y1 = quantile(y_beam,0.25); 
    y3 = quantile(y_beam,0.75); 
    range_y = y3-y1; 
    lower_limit_y = y1-1.5*range_y; 
    upper_limit_y = y3+1.5*range_y; 
    y_beam(y_beam > upper_limit_y) = []; 
    y_beam(y_beam < lower_limit_y) = []; 
    %% 
     
    saveXBeam = [saveXBeam, x_beam]; 
    saveYBeam = [saveYBeam, y_beam]; 
end 



  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% The diffraction center is at   
Cx=round(mean(saveXBeam)); 
Cy=round(mean(saveYBeam)); 
% We use these values to repeat the diffraction center  
% finding as a new initial point. 
clear n1 m1 n2 m2 delta 
  
saveXBeam = []; 
saveYBeam = []; 
  
% Divide the diffraction pattern into four areas around 
% the beam block. Find the the center from the intersection  
% of mutually orthogonal lines. 
for delta = 1:20 
    % #1 right bottom and top 
    for n1 = Cx:1:Cx+r+delta 
        m1 = Cy+round(sqrt((r+delta)^2-(n1-Cx).^2)); 
        %         J(n1,m1) = 10; 
        n2 = n1-(r+delta); 
        m2 = Cy+round(sqrt((r+delta)^2-(n2-Cx).^2)); 
        %         J(n2,m2) = -10; 
         
        x_beam1(n1-Cx+1) = (m2-m1+Gx(n1,m1)/Gy(n1,m1)... 
            *n1-Gx(n2,m2)/Gy(n2,m2)*n2)/(Gx(n1,m1)... 
            /Gy(n1,m1)-Gx(n2,m2)/Gy(n2,m2)); 
        y_beam1(n1-Cx+1) = m1+Gx(n1,m1)/Gy(n1,m1)*... 
            (x_beam1(n1-Cx+1)-n1); 
         
    end 
    x_beam1(isnan(x_beam1)) = []; 
    y_beam1(isnan(y_beam1)) = []; 
     
     
    clear n1 m1 n2 m2 
    % #2 Left Bottom and top 
    for n1 = Cx:1:Cx+r+delta 
        m1 = Cy-round(sqrt((r+delta)^2-(n1-Cx).^2)); 
        %             J(n1,m1) = 1; 
        n2 = n1-(r+delta); 
        m2 = Cy-round(sqrt((r+delta)^2-(n2-Cx).^2)); 
        %             J(n2,m2) = -1; 
        x_beam2(n1-Cx+1) = (m2-m1+Gx(n1,m1)/Gy(n1,m1)*... 
            n1-Gx(n2,m2)/Gy(n2,m2)*n2)/(Gx(n1,m1)/... 
            Gy(n1,m1)-Gx(n2,m2)/Gy(n2,m2)); 
        y_beam2(n1-Cx+1) = m1+Gx(n1,m1)/Gy(n1,m1)*... 
            (x_beam2(n1-Cx+1)-n1); 
         
         
    end 
    x_beam2(isnan(x_beam2)) = []; 
    y_beam2(isnan(y_beam2)) = []; 
     
    clear n1 m1 n2 m2 
    % #3 Top right and left 



    for n1 = Cx-r-delta:1:Cx 
        m1 = Cy+round(sqrt((r+delta)^2-(n1-Cx).^2)); 
        %         J(n1,m1) = 3; 
        n2 = -n1+2*Cx-(r+delta); 
        m2 = Cy-round(sqrt((r+delta)^2-(n2-Cx).^2)); 
        %         J(n2,m2) = -3; 
        x_beam3(n1-(Cx-r-delta)+1) = (m2-m1+Gx(n1,m1)/Gy(n1,m1)... 
            *n1-Gx(n2,m2)/Gy(n2,m2)*n2)/(Gx(n1,m1)/Gy(n1,m1)... 
            -Gx(n2,m2)/Gy(n2,m2)); 
        y_beam3(n1-(Cx-r-delta)+1) = m1+Gx(n1,m1)/Gy(n1,m1)... 
            *(x_beam3(n1-(Cx-r-delta)+1)-n1); 
         
    end 
    x_beam3(isnan(x_beam3)) = []; 
    y_beam3(isnan(y_beam3)) = []; 
     
    clear n1 m1 n2 m2 
    % 
    % #4 Bottom right and top left 
    for n1 = Cx:1:Cx+r+delta 
        m1 = Cy+round(sqrt((r+delta)^2-(n1-Cx).^2)); 
        %         I(n1,m1) = 10; 
        n2 = n1-(r+delta); 
        m2 = Cy-round(sqrt((r+delta)^2-(n2-Cx).^2)); 
        %         I(n2,m2) = -10; 
        x_beam4(n1-Cx+1) = (m2-m1+Gx(n1,m1)/Gy(n1,m1)... 
            *n1-Gx(n2,m2)/Gy(n2,m2)*n2)/(Gx(n1,m1)... 
            /Gy(n1,m1)-Gx(n2,m2)/Gy(n2,m2)); 
        y_beam4(n1-Cx+1) = m1+Gx(n1,m1)/Gy(n1,m1)*... 
            (x_beam4(n1-Cx+1)-n1); 
         
    end 
    x_beam4(isnan(x_beam4)) = []; 
    y_beam4(isnan(y_beam4)) = []; 
    clear n1 m1 n2 m2 
    % #5 Bottom left and top right 
    for n1 = Cx:1:Cx+r+delta 
        m1 = Cy-round(sqrt((r+delta)^2-(n1-Cx).^2)); 
        %         I(n1,m1) = 10; 
        n2 = n1-(r+delta); 
        m2 = Cy+round(sqrt((r+delta)^2-(n2-Cx).^2)); 
        %         I(n2,m2) = -10; 
        x_beam5(n1-Cx+1) = (m2-m1+Gx(n1,m1)/Gy(n1,m1)... 
            *n1-Gx(n2,m2)/Gy(n2,m2)*n2)/(Gx(n1,m1)/... 
            Gy(n1,m1)-Gx(n2,m2)/Gy(n2,m2)); 
        y_beam5(n1-Cx+1) = m1+Gx(n1,m1)/Gy(n1,m1)... 
            *(x_beam5(n1-Cx+1)-n1); 
         
    end 
    x_beam5(isnan(x_beam5)) = []; 
    y_beam5(isnan(y_beam5)) = []; 
    % 
    clear n1 m1 n2 m2 
    % #6 Bottom right and left 
    for n1 = Cx:1:Cx+r+delta 
        m1 = Cy+round(sqrt((r+delta)^2-(n1-Cx).^2)); 
        %     I(n1,m1) = 10; 



        n2 = 2*Cx-(n1-(r+delta)); 
        m2 = Cy-round(sqrt((r+delta)^2-(Cx-n2).^2)); 
        %     I(n2,m2) = -10; 
         
        x_beam6(n1-Cx+1) = (m2-m1+Gx(n1,m1)/Gy(n1,m1)*... 
            n1-Gx(n2,m2)/Gy(n2,m2)*n2)/(Gx(n1,m1)/... 
            Gy(n1,m1)-Gx(n2,m2)/Gy(n2,m2)); 
        y_beam6(n1-Cx+1) = m1+Gx(n1,m1)/Gy(n1,m1)*... 
            (x_beam6(n1-Cx+1)-n1); 
         
    end 
    x_beam6(isnan(x_beam6)) = []; 
    y_beam6(isnan(y_beam6)) = []; 
     
    % 
    x_beam = [x_beam1 x_beam2 x_beam3 x_beam4 x_beam5 x_beam6]; 
    y_beam = [y_beam1 y_beam2 y_beam3 y_beam4 y_beam5 y_beam6]; 
    %% Remove Outliers 
    x1 = quantile(x_beam,0.25); 
    x3 = quantile(x_beam,0.75); 
    range_x = x3-x1; 
    lower_limit_x = x1-1.5*range_x; 
    upper_limit_x = x3+1.5*range_x; 
    x_beam(x_beam > upper_limit_x) = []; 
    x_beam(x_beam < lower_limit_x) = []; 
     
    y1 = quantile(y_beam,0.25); 
    y3 = quantile(y_beam,0.75); 
    range_y = y3-y1; 
    lower_limit_y = y1-1.5*range_y; 
    upper_limit_y = y3+1.5*range_y; 
    y_beam(y_beam > upper_limit_y) = []; 
    y_beam(y_beam < lower_limit_y) = []; 
    %% 
     
    saveXBeam = [saveXBeam, x_beam]; 
    saveYBeam = [saveYBeam, y_beam]; 
end 
% Display the output 
disp(['The beam center is at (',num2str(round(mean(saveXBeam))),... 
    setstr(177),num2str(std(saveXBeam)/sqrt(length(saveXBeam)))... 
    ,',',num2str(round(mean(saveYBeam))),setstr(177)... 
    ,num2str(std(saveYBeam)/sqrt(length(saveYBeam))),')']) 
  
 Cxx = mean(saveXBeam); 
 Cyy = mean(saveYBeam); 
figure 
imagesc(J) 
figure 
subplot(2,1,1) 
histogram(saveXBeam); 
histfit(saveXBeam,50,'Normal'); 
xlabel('pixels') 
ylabel('Distribution of found peaks in x') 
  
subplot(2,1,2) 
histogram(saveYBeam); 



histfit(saveYBeam,50,'Normal'); 
xlabel('pixels') 
ylabel('Distribution of found peaks in y') 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%Azimuthal average 
Dim = size(Image); 
  
x = 1:Dim(1); 
y = 1:Dim(2); 
[X,Y] = meshgrid (x,y); 
  
% Distance function: 
d = sqrt((X'-Cxx).^2+(Y'-Cyy).^2); 
% Flatten the distance function and the image: 
d_Linear = round(d(:)); 
Im_Linear = Image(:); 
for n = min(d_Linear)+1:max(d_Linear)+1 
    R = Im_Linear(d_Linear == n-1); 
    %% Remove Outliers 
    x1 = quantile(R,0.4); 
    x3 = quantile(R,0.6); 
    range_x = x3-x1; 
    lower_limit_x = x1-1.5*range_x; 
    upper_limit_x = x3+1.5*range_x; 
    R(R > upper_limit_x) = []; 
    R(R < lower_limit_x) = []; 
    AzAve(n) = mean(R); 
end 
figure;plot(AzAve) 
end 
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