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Abstract This paper presents a stabilized finite element formulation for the incompressible Navier-
Stokes equations, written in an arbitrary Lagrangian-Eulerian frame to model flow problems that involve 
moving and deforming meshes. The stabilized formulation is derived based on the varriational multiscale 
method proposed by Hughes [1], and employed in [2,3] to study advection dominated diffusion 
phenomena. A significant feature of the present method is that the definition of the stabilization terms 
appear naturally, and therefore the formulation is free of any user-defined parameters. A mesh moving 
technique is integrated in this formulation to accommodate the motion of the computational domain and 
to map the moving boundaries in a rational way. The method is tested on a periodic oscillating elastic 
beam in a fluid domain. 
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INTRODUCTION 
 

As CFD tools are becoming more popular and widespread in engineering analysis and design, there is a 
growing trend towards applying these methods to analyze and understand more complex problems. Fluid 
structure interaction (FSI) problems are classical examples of such involved multi-physics applications. 
FSI problems require stabilized mathematical formulations for the Navier-Stokes equations that are then 
written in an arbitrary Lagrangian-Eulerian (ALE) frame. The ALE descriptions are based on the notion 
of an arbitrary movement of the reference frame, which is continuously rezoned in order to allow a 
precise description of the moving interfaces. As such, ALE methods require mesh update techniques for 
the fluid mesh so that the same computational mesh with adaptive rezoning can be used for successive 
transient calculations. This rezoning is typically continued until the condition number of the elements in 
the deforming meshes starts deteriorating. At this point, a new mesh is usually constructed by freezing 
the calculations in time, and the information is transferred from the old mesh on to the new mesh using a 
projection algorithm. 
It is well documented that the standard Galerkin formulations for the incompressible Navier-Stokes 
equations suffer from several numerical deficiencies. First, the convection term needs special attention, 
and second, the practically convenient combinations of various interpolation functions for the velocity 
and the pressure fields often do not work. The last two decades have seen great progress in the 
development of stabilized methods for the Navier-Stokes equations. The two most celebrated approaches 
are the Streamline Upwind/Petrov-Galerkin (SUPG) method [4], and the Galerkin/Least-Squares (GLS) 
method [5] (and references therein). In this paper we present a stabilized formulation for the 
incompressible Navier-Stokes equations that is derived based on the Variational Multiscale framework 
proposed by Hughes [1]. The present formulation inherits the stability properties of the celebrated 
stabilized methods, i.e., the SUPG and the GLS methods. The most notable feature of the present method 
is that the stabilization terms appear naturally in the derivation. The formulation is written in an ALE 
frame for application to FSI problems, and is integrated with an automatic mesh moving scheme that 
accounts for the moving and deforming fluid meshes.  
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An outline of the paper is as follow. We first present the strong and weak forms of the incompressible 
Navier-Stokes equations, expressed in the ALE form. Then we present the multiscale method. The mesh 
motion scheme which is an integral part of FSI solution strategy is presented next.  Lastly, the numerical 
results for large amplitude oscillation of an elastic beam in the surrounding fluid domain are presented to 
show the superior properties of the method. 
 
THE STRONG FROM 
 

Let sdnℜ⊂Ω be an open bounded region with piecewise smooth boundary Γ . We assume 2n sd ≥ . The 
incompressible Navier-Stokes equations in arbitrary Eulerian-Lagrangian framework can be written as  
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where the functions sdnℜ→Ω:f , sdn
g ℜ→Γ:g and sdn

h ℜ→Γ:h  as well as the initial solenoidal 

velocity sdn
0 ℜ→Ω:v are assumed given. The strain rate tensor is defined as 
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and I is the identity tensor. v is the unknown flow velocity, vm is the mesh velocity and p is the kinematic 
pressure i.e., pressure divided by density. h g  and ΓΓ indicate the Dirichlet and Neumann parts of the 
boundary, respectively, with the usual conditions h g  Γ∪Γ=Γ and =Γ∩Γ h g  Ø. The unit normal vector 
pointing outward is indicated as n. The kinematic viscosity ν  is assumed to be positive and constant 
throughout the domain.  
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THE VARIATIONAL MULTISCALE METHOD 
 

1. Multiscale decomposition 
In this section we present the Hughes’ Variational Multiscale (HVM) approach [1]. We consider the 
bounded domain Ω  discretized into non-overlapping regions eΩ  (element domains) with boundaries eΓ , 
e =1, 2…….numel such that 
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We denote the union of element interiors and element boundaries by 'Ω  and ,'Γ  respectively. 
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We assume an overlapping sum decomposition of the velocity field into coarse scales or resolvable 
scales and fine scales or the subgrid scales. Fine scales can be viewed as components associated with the 
regions of high velocity gradients. 
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We further make an assumption that the subgrid scales although non-zero within the elements, vanish 
identically over the element boundaries. 
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We now introduce the appropriate spaces of functions for the coarse and fine scale fields and specify 
direct sum decomposition on these spaces. 
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where � in (14) is the space of trial solutions and weighting functions for the coarse scale velocity field 
and is identified with the standard finite element space. On the other hand, various characterizations of 

'� are possible, subject to the restriction imposed by the stability of the formulation that requires � and 
'�  to be linearly independent. Consequently, in the discrete case '�  can contain various finite 

dimensional approximations, e.g., bubble functions or p-refinements, which satisfy (13). Likewise the 
pressure field can be assumed to be decomposed into coarse and fine scales. Without loss of generality 
we assume that fine scale pressure field is zero. 
 

2. The variational multiscale problem 
The linearized convection term can be written as 
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where vc is the converged velocity from previous step. Employing (15) in (7), and then substituting the 
trial solutions (11) and the weighting functions (12) in (7) we get the following form 
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With suitable assumptions on the fine scale field, as stipulated in (13), and employing the linearity of the 
weighting function slot, we can split the problem into the coarse and the fine scale parts, indicated as 
W and W ′  , respectively. 
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W ′ problem scale fine The  
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3. Solution of the fine scale problem (W ′ )  
Exploiting linearity of the solution slot in (18) we have 
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Applying integration-by-parts to third and fifth terms on the left hand side of (19), we get 
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To crystallize the ideas, and without loss of generality, we assume that the fine scales are represented via 
bubbles over element domains, i.e., 
 

e'v|'v '
e
1b=

Ω                   (21) 
 

e'w|'w '
e
2b=

Ω                   (22) 
 

where e
1b and e

2b  represent the bubble shape functions for the fine scale trial solutions and the fine scale 
weighting functions, respectively. For details, consult [3]. Furthermore, e'v and e'w  represent the 
coefficients for the fine scale trial solutions and the weighting functions, respectively. Substituting (21) 
and (22) in the fine scale problem (20) we get 
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4. The coarse scale problem (W ) Exploiting linearity of the solution slot in (17) we have 
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After integration-by-parts of third, fifth and ninth terms on left hand side of (25) and substituting fine 
scale solution from (23) into (25) we get  
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5. The variational multiscale form The stabilized form (26) is completely expressed in terms of the coarse/resolvable scales in the problem. 
Therefore, in order to keep the notation simple we drop the superposed bars and write the resulting form 
as 
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MESH MOVING SCHEME  

A major challenge in the fluid-structure interaction problems lies in the development of a mesh rezoning 
technique to adapt the fluid mesh to the changing spatial domain. In this section we have implemented a 
mesh motion technique (proposed in [6]) which is appropriate for arbitrarily shaped domains. The formal 
statement of the boundary-value problem can be written as:  
Given g, the prescribed displacements at the moving boundary, find the mesh displacement 
field sdnℜ→Ω:u , such that 
 

Ω=∇τ+∇ • in                   01 m u)(                (28) 
 

mon                                      Γ= gu                (29) 
 

fon                                      Γ= 0u                (30) 
 

where fm  and ΓΓ indicate the moving and fixed parts of the boundary, respectively. mτ is a bounded, non-
dimensional function which is designed to prevent the inversion of small elements in the high resolution 
regions of the fluid mesh. A simple definition of mτ   is given in [6].             

This mesh moving scheme is then applied to an oscillating beam. Figure 1 shows the initial mesh, 
consisting of 24,068 3-node elements. The mesh has high resolution around the beam to capture the 
physics in the boundary layer region. Figure. 2 shows the zoomed view of the deformed mesh. The 
smaller elements close to the moving interfaces translate with the least amount of distortion, and the 
larger elements in the far field deform more to absorb the motion. Consequently, the shape of the 
elements is maintained in the boundary layer regions, resulting in a well-defined mesh. 
 

  
Fig. 1 Initial zoomed mesh 

  
Fig. 2 Deformed zoomed mesh 
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NUMERICAL RESULTS 
 

1. Oscillating elastic beam in fluid domain  
Figure 3 shows the schematics of the problem. Inflow conditions are imposed at the left boundary, while 
free stream conditions are assumed at the top and bottom boundary. Exit (zero stress) condition is 
assumed at the right boundary. Reynolds number is 100.  
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0.11 =v

0.02 =v
0.11 =v

0.02 =v
0.11 =v

 
Fig. 3 Schematics of the elastic beam vibrating in fluid domain  

 
The beam is given a prescribed periodic oscillation. The beam is kept stationary for the first 100 time 
steps. In the next 50 time steps, the beam moves upwards in a prescribed motion and attains maximum 
amplitude. In the next 50 time steps the beam comes back to the mean position and then it follows 
downward. The complete cycle is done in 200 time steps. In order to get the idea of the magnitudes of 
mesh velocity as compared with the free stream velocity, the velocity of the node at the tip of the beam is 
plotted in Fig. 4. Also shown is the mean velocity of the flow field.  
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Fig. 4 Comparison of the free stream velocity with the mesh velocity (at the tip of the beam) 
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The mesh velocity dominates the flow field at various instants. Figure 5 shows the dimensionless 
pressure coefficient Cp in the upward motion, i.e., from 100 – 150 time steps. High pressure region can 
be seen on the top surface of the beam and the suction effects can be seen at the bottom surface. This 
situation reverses in Fig. 6 which shows the Cp in the downward motion i.e. 150 – 200 time steps. Fig. 7 
shows the Cp line plots on the upper surface of the beam, at various time steps. Although the separation 
effect in the wake of the round body and at the edge of beam is visible, at the 100th time step the Cp is 
almost zero throughout length of the beam. At the 110th time step, as the beam starts moving up, the 
pressure increases instantaneously. The high pressure at the upper surface is maintained until the beam 
reaches its highest amplitude. Then the suction effects are visible from time steps 150 – 200. The 
pressure profile shows the wake effect of the cylindrical body and the edge effects of the beam. 
 
 

 
 

100 time steps 
 

 
 

130 time steps 
 

 
 

110 time steps 
 

 
 

140 time steps 
 

Fig. 5  Cp contours at various instances during the upward motion of the beam 
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150 time steps 

 

 
170 time steps 

 

 
160 time steps 

 

 
190 time steps 

Fig. 6  Cp contours at various instances during the downward motion of the beam 
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Fig. 7 Line plots of Cp at the upper surface of the beam at various time steps 
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CONCLUSIONS 
 

We have presented a stabilized formulation for the incompressible Navier-Stokes equations on moving 
grids. In this formulation the stabilization terms appear naturally as a result of the decomposition of the 
velocity field into the coarse and the fine scales. The proposed method exhibits the superior stability 
properties of the SUPG and the GLS methods. An important feature of the formulation is that, unlike the 
SUPG and the GLS methods, a definition of the stability parameter “τ” appears naturally in the 
derivation. The method is applied to FSI problems that require mesh rezoning techniques to update the 
fluid mesh. In the mesh moving technique employed herein, the smaller elements translate together with 
the moving fluid-solid interfaces with the least amount of distortion while the larger elements that are 
away from the moving boundaries absorb most of the deformation. The stabilized/multiscale method 
integrated with mesh motion scheme is tested on a FSI problem involving large amplitude oscillation of 
an elastic beam in the fluid domain. Transient pressure contours are presented and line plots of the 
pressure profile on the surface of the beam are plotted. Numerical results show the good stability 
properties of the proposed method for this class of problems 
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