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Abstract— Time-scale separation is a powerful property that
can be used to simplify control systems design. In this work,
we consider the problem of designing biomolecular feedback
controllers that provide tracking of slowly varying references
and rejection of slowly varying disturbances for nonlinear
systems. We propose a design methodology that uses time-
scale separation to accommodate physical constraints on the
implementation of integral control in cellular systems. The
main result of this paper gives sufficient conditions under
which controllers designed using our time-scale separation
methodology have desired asymptotic performance when the
reference and disturbance are constant or slowly varying. Our
analysis is based on construction of Lyapunov functions for a
class of singularly perturbed systems that are dependent on
an additional parameter that perturbs the system regularly.
When the exogenous inputs are slowly varying, this approach
allows us to bound the system trajectories by a function of
the regularly perturbing parameter. This bound decays to zero
as the parameter’s value increases, while an inner-estimate of
the region of attraction stays unchanged as this parameter is
varied. These results cannot be derived using standard singular
perturbation results. We apply our results to an application
demonstrating a physically realizable parameter tuning that
controls performance.

I. INTRODUCTION

Modular composition of genetic circuits, wherein a cir-
cuit’s functionality is unaltered by the presence of surround-
ing circuits, is critical to design increasingly sophisticated
systems [1]–[3]. However, modular composition is chal-
lenged by a number of factors, including loading effects
due to direct connectivity and indirect connectivity due to
resource sharing [4], the fact that different modules use the
same pool of cellular resources, which causes unintended
interactions between modules [5], [6]. One approach to
making biomolecular modules robust to the context in which
they are placed is to utilize feedback control within a module
such that the output of the module rejects disturbances
such as fluctuations in available resources [7]. While this
is a promising approach, it requires designing biomolecular
controllers capable of reference tracking and disturbance
rejection, i.e. making the behavior of a module depend only
on its intended input, not on any disturbances arising from
changing context.

Several control architectures have been proposed in the
design of genetic circuits, such as those based on tran-
scriptional autorepression [8], covalent modification [9], and
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sequestration [7], [10]–[12]. Thus far the design of biomolec-
ular feedback controllers has focused on two properties:
making the location of an equilibrium point of the closed
loop system insensitive to disturbances and track constant
inputs, and ensuring that this equilibrium point is locally
asymptotically stable, with many studies including both
criteria [10], [13]–[15]. For a large class of systems, integral
control is necessary for zero steady state error when constant
disturbances are applied [16]. In the theoretical scenario
where molecules do not dilute due to cell growth, exact
implementations of integral action are possible [10], [17].
However, in growing and dividing cells, the volume in which
the reactions occur increases with time, and therefore all
species except those such as DNA, which is specifically
regulated by the cell’s replication mechanism, are affected by
dilution. Despite this, there are circuit architectures that, due
to high gain feeback based on time-scale separation between
fast and slow chemical reactions, can recover almost perfect
adaptation even in the presence of molecular dilution [13].
However, in this case it is not generally possible to con-
clude that the equilibrium point is locally asymptotically
stable uniformly in the gain parameters which control the
location of the equilibrium point. Therefore, in this work we
introduce a framework based on Lyapunov analysis which
can guarantee asymptotic tracking and disturbance rejection
for slowly varying reference and disturbance signals, in the
limit as a regular perturbation parameter goes to infinity.
We demonstrate how for important biomolecular controller
motifs, our results can be used to show that asymptotic
tracking and disturbance rejection can be guaranteed by
simple-to-check conditions on the system. We apply these
results to a feedback control system implemented in bacterial
cells with mRNA-sRNA interference [7].

Related work: Reference tracking problems similar to the
one we consider in this work have been studied previously
in many contexts. In a large class of reference tracking prob-
lems involving high gain feedback, there is a transformation
of the system into standard singular perturbation form [18]–
[20]. However, in biologically relevant systems including
those which are known to asymptotically perfectly adapt
to disturbances, the system cannot be written in standard
singular perturbation form with respect to the parameters
controlling the feedback gain [21]. Therefore, the previously
derived results are not applicable. Additionally, the synthesis
of controllers for reference tracking in nonlinear systems
has been studied extensively, e.g. [22]–[24]. However, in
biomolecular systems it is impossible to precisely implement
arbitrary controllers, and therefore techniques which certify
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tracking performance only when the controller synthesized
by the given procedure is used cannot be applied. Instead, we
seek analysis techniques which can aid the design process by
certifying performance for given human designed controllers.

The rest of this paper proceeds as follows. In Section II we
introduce the system model that we study and give a formal
definition of the behavior that we desire from the closed loop
system, which we call asymptotic robust reference tracking.
In Section III we give results that show how Lyapunov
functions for the boundary and reduced systems can be
composed to ensure asymptotic robust reference tracking
of the closed loop system. In Section IV we then give
a biologically relevant class of systems where asymptotic
robust reference tracking can be certified. In Section V we
apply these results to a protein production process with a
mRNA-sRNA interference based controller. Conclusions and
directions for future work are discussed in Section VI.

II. PROBLEM SETTING
Our approach is to first design controllers that have

desirable equilibrium input-output characteristics, and then
create time-scale separation between the plant and controller
to guarantee reference tracking and disturbance rejection of
slowly varying exogenous inputs. This two-step approach
allows us to obtain formal guarantees on the robust per-
formance of the closed loop system. Additionally, it allows
us to make use of previously known robustness properties
of the equilibrium point of certain closed loop systems that
have been previously analyzed, see e.g. [13]. We consider
a system composed of two blocks, the plant, P , which is
assumed to be specified a priori, and the controller, C,
which is to be designed to give the closed loop system the
desired properties. A key assumption of our work is that the
controller has two design parameters, ε and λ. Parameter ε
singularly perturbs the closed loop dynamics by making the
controller dynamics become faster as ε→ 0, and thus under
stability conditions the closed loop dynamics approach those
of the reduced system obtained by setting ε = 0. Parameter
λ, in turn, is such that as λ goes to infinity, the steady state
output of the system becomes closer to the reference, r,
and becomes insensitive to a disturbance, d. Additionally,
as λ goes to infinity, the trajectories of the reduced system
when r(t) and d(t) vary slowly stay increasingly close to
the locally unique equilibrium output computed assuming r
and d constant. Our main result relies on finding conditions
under which the above properties are sufficient to ensure
that as ε → 0 and λ → ∞, the output y(t) is close to the
reference, r(t), no matter what the disturbance, d(t), does.

The plant subsystem, P , takes as its inputs ū and d. It has
two outputs, y and x̄.

P =

{
˙̄x = f̄(x̄, ū, d),
y = h(x̄).

(1)

The controller subsystem, C(ε, λ), takes as its inputs x̄ and
r, and has as its output ū.

C(ε, λ) =

{
ε ˙̄z = ḡ(x̄, z̄, r, λ),
ū = hc(z̄).

(2)

Together, (1) and (2) result in the closed loop system

˙̄x = f̄(x̄, hc(z̄), u),

ε ˙̄z = ḡ(x̄, z̄, u, λ),

y = h(x̄).

Where u = (r, d). Let q(u, λ) = (q1(u, λ), q2(u, λ)) be a
locally isolated solution of 0 = f̄(q1(u, λ), hc(q2(u, λ)), d),
0 = ḡ(q1(u, λ), q2(u, λ), r, λ), i.e. the equilibrium value of
(x̄, z̄) for constant u. We assume that u(t) takes values in a
compact set, U , and that the domain of (3) is D̄.

We consider a design approach that guarantees y(t) is
close to r(t) independent of d(t) for a set of slowly varying
references and disturbances, as well as initial conditions that
do not depend on the parameter λ, in the limit as λ → ∞
and ε → 0. We formalize this specification, which we call
asymptotic robust reference tracking.

Definition 2.1: A system of the form (3) has the asymp-
totic robust reference tracking property if there exists func-
tions, ε∗(λ) and α(λ), p > 0, and set U ⊂ Rp+q independent
of λ , λ∗ ∈ R, and an η > 0 such that ∀λ ≥ λ∗, if ε < ε∗(λ),
we have that for all u = (r, d) ∈ U , ‖(ṙ, ḋ)‖ < η, and
(x̄(0), z̄(0)) ∈ Bp((q1(u(0), λ), q2(u(0), λ))) ⊂ D̄1,

lim
t→∞
‖y(t)− r(t)‖ ≤ α(λ), and lim

λ→∞
α(λ) = 0.

Remark 2.1: For convenience we will consider the set
P = Bp((0, 0)), so that the condition (x̄(0), z̄(0)) ∈
Bp((q1(u(0), λ), q2(u(0), λ))) in Definition 2.1 can be re-
placed with (x̄(0)− q1(u(0), λ), z̄(0)− q2(u(0), λ)) ∈ P .

Remark 2.2: Definition 2.1 implies that for constant
reference, r, and disturbance, d, we have ∀u ∈
U , limλ→∞ h(q1(u, λ)) = r. This means that the equilib-
rium value of the output is asymptotically insensitive to the
disturbance, and asymptotically approaching the reference.

Remark 2.3: Definition 2.1 essentially requires that for
all λ > λ∗ we can apply singular perturbation to system
(3) in ε, in such a way that a) the reduced system has
the asymptotic reference robust tracking property and b) the
singular perturbation analysis holds on t ∈ [0,∞).
Based on Remark 2.2 we can search for systems of the
form (3) that have the asymptotic reference tracking property
in two steps. First, we require that the system has the
property described in Remark 2.2. We then ensure that
limt→∞‖x̄(t)− q1(u(t), λ), λ)‖ approaches zero as λ→∞
for all r(t), d(t) changing sufficiently slowly, and all initial
conditions in a set that does not shrink to zero volume as
λ→∞.

The problem studied in this work is determining classes of
systems of the form (3) which satisfy Definition 2.1. Before
proceeding we note that asymptotic robust tracking cannot
be guaranteed by analysis based solely on linearization.

Example 2.1: Consider the following system which fits
into the form of (3).

˙̄x = z̄ − x̄, (4a)

ε ˙̄z = −λx̄− z̄ + λ2z̄3. (4b)

1Bp((x, z)) denotes the open ball of radius p centered at (x, z).



Note that while no r or d appears in our dynamics, i.e.
q(r, d, λ) = 0, we let U = {(0, 0)} and investigate whether
(4) has the asymptotic robust reference tracking property.
We show that this is not the case by showing that tra-
jectories starting at x̄(0) =

√
(λ+ 1)/λ2 =: x̄0, z̄(0) =√

(λ+ 1)/λ2 + η) =: z̄0, η > 0, diverge to infinity. First,
we show that S =

{
(x̄, z̄)

∣∣∣x̄ ≥√(λ+ 1)/λ2, z̄ ≥ x̄
}

is
positively invariant. To do this, observe that in S ˙̄x ≥ 0, and
hence x̄ cannot decrease below

√
(λ+ 1)/λ2. Observe also

that ∀(x̄, z̄) ∈ S, x̄ ≤ −z̄/λ+λz̄3, and so by (4b), ˙̄z ≥ 0 in
S. This combined with (4a) means that trajectories cannot
cross the boundary of S defined by x̄ = z̄. Therefore, along
the trajectory starting at (x̄0, z̄0), ˙̄z > λ2η3/ε, and hence
limt→∞ z̄(t) = ∞. Therefore, there does not exist an open
ball, Br, about (0, 0) such that Br is contained for all λ
within the region of attraction of (0, 0). Hence Definition
2.1 cannot be satisfied. This cannot be deduced from the
the linearization of (4) about (0, 0), which is ˙̄x = z̄ − x̄,
ε ˙̄z = −λx̄ − z̄. If we set ε(λ) = 1/λ2, the eigenvalues of
the linearization all have negative real part and are bounded
away from the imaginary axis uniformly in λ. Therefore,
the linearized system does not indicates that the region of
attraction shrinks as λ→∞.
To deal with the issue shown by Example 2.1, in the next
section we present sufficient conditions for asymptotic robust
reference tracking.

III. MAIN RESULT

In this section, we present the main result of this work,
conditions under which asymptotic robust reference tracking
is achieved. To do this, we use Lyapunov analysis, which
necessitates construction of a Lyapunov function for system
(3). For sufficiently small ε, this is possible by taking a
convex combination of Lyapunov functions for the boundary
layer and reduced systems [25]. This procedure, which
under additional technical conditions results in a Lyapunov
function for (3) that proves a bound on trajectories when the
exogenous inputs are slowly varying, is detailed in Lemma
3.1. The bound that is shown goes to zero as λ goes to infinity
under additional assumptions as detailed in Lemma 3.2. We
then specialize Lemma 3.1 to cases where the slow dynamics
are one dimensional, we have a Lyapunov function for the
boundary layer, and asymptotic robust tracking is assured by
the reduced system’s behavior.

Considering (3), we now prove a bound on system trajec-
tories relative to the equilibrium point that holds when we
have Lyapunov functions for the reduced and boundary layer
systems. Let u = (r, d) be the exogenous inputs consisting
of the reference, r, and the disturbance, d. Here r ∈ Rp,
d ∈ Rq are time varying. Additionally, ε > 0, and λ ∈ R+.
We now develop some basic notions of singular perturbation
analysis that we will need to state and prove Lemma 3.1.
Let (q1(u, λ), q2(u, λ)) be a locally isolated solution to

0 = f̄(q1(u, λ), hc(q2(u, λ)), d),

0 = ḡ(q1(u, λ), q2(u, λ), r, λ),

We assume that (q1(u, λ), q2(u, λ)) is differentiable. Letting
x = x̄− q1(u, λ) and z = z̄ − q2(u, λ) the dynamics of (3)
in (x, z) coordinates are

ẋ = f(x, z, u)− ∂q1

∂u
u̇,

εż = g(x, z, u, λ)− ε∂q2

∂u
u̇,

where f(x, z, u) = f̄(x + q1(u, λ), hc(z + q2(u, λ)), u)
and g(x, z, u, λ) = ḡ(x + q1(u, λ), z + q2(u, λ), u, λ).
Let H(x, u, λ) be an isolated solution to 0 =
g(x,H(x, u, λ), u, λ) and define yb = z − H(x, u, λ).
Let

D(u, λ) =
{

(x, z)
∣∣(x+ q1(u, λ), z + q2(u, λ)) ∈ D̄

}
,

which is the domain of (6). The reduced system is

ẋr = f(xr, yb +H(xr, u, λ), u). (7)

Let τ = t/ε. The boundary layer equation is

dyb
dτ

= g(x, yb +H(x, u, λ), u, λ) (8)

Assumption 3.1: There exists B > 0, λ∗ ∈ R such that

∀x̄ ∈ D̄,∀u ∈ U ,∀λ ≥ λ∗,
∥∥∥∥∂q1

∂u

∥∥∥∥,∥∥∥∥∂q2

∂u

∥∥∥∥ ≤ B.
Assumption 3.2: There exists λ∗ ∈ R such that for all

λ ≥ λ∗ there exists L(λ) > 0 which satisfies

∀u ∈ U ,∀λ ≥ λ∗,∀x ∈ D(u, λ),

∥∥∥∥∂H∂x
∥∥∥∥ ≤ L(λ),

where L(λ) is bounded away from zero, and furthermore,
there exists L′ > 0 independent of λ and u such that

∀u ∈ U ,∀λ ≥ λ∗,∀x ∈ D(u, λ),

∥∥∥∥∂H∂u
∥∥∥∥ ≤ L′.

Assumption 3.3: Assume ∃V : Rm → R, and v0 > 0,
both independent of λ ≥ λ∗, and R : R → R such that
∀λ > λ∗, R(λ) > 0 which satisfy for all constant u ∈ U ,

∀x ∈ {x ∈ projx(D(u, λ))|V (x) ≤ v0} ,
b1‖x‖2av2 ≤ V (x) ≤ b2‖x‖2av2 , (9)

where projx(T ) is the projection of set T onto the x
coordinates, and for all constant u ∈ U ,

∀x ∈ {x ∈ projx(D(u, λ))|R(λ) < ‖x‖av2 , V (x) ≤ v0} ,
∂V

∂x
f(x,H(x, u, λ), u) ≤ −b′3‖x‖

av
2 , (10)

with b1, b2, b′3, and furthermore, ∃k1(λ) > 0 such that

∀u ∈ U ,
∥∥∥∥∂V∂x

∥∥∥∥ ≤ k1(λ)‖x‖av2 . (11)

Assumption 3.4: Assume there exists a Lyapunov func-
tion, W (yb), for system (8), and constants c1, c2, c3, all
independent of λ, which satisfy for constant u ∈ U , ∀yb ∈
{y′b|∃x s.t. y′b +H(x, u, λ) ∈ projzD},

c1‖yb‖2aw2 ≤W (yb) ≤ c2‖yb‖2aw2 (12)



∀u ∈ U ,∀V (x) ≤ v0,

∂W

∂yb
g(x, yb +H(x, u, λ), u, λ) ≤ −c3‖yb‖2aw2 , (13)

with c1, c2, c3 > 0, and additionally, ∃k4(λ) > 0 such that

∀u ∈ U ,
∥∥∥∥∂W∂yb

∥∥∥∥ ≤ k4(λ)‖yb‖aw2 . (14)

Assumption 3.5: Assume that on the set S∗ ={
(x, yb)

∣∣∣V (x)
v0

+ W (yb)
w0(λ) ≤ 1

}
, where V , v0, W and w0

are as in Assumptions 3.3 and 3.4, we have with u(t)
constant the following conditions ∀u ∈ U :

‖f(x,H(x, u, λ), u)‖ ≤ k2‖x‖av2 , (15)

‖f(x, yb+H(x, u, λ), u)−f(x,H(x, u, λ), u)‖ ≤ k3‖yb‖aw2 ,
(16)

where k2(λ), k3(λ) are positive functions of λ.
We are now ready to state our first lemma.
Lemma 3.1: Consider the system (6). Suppose that As-

sumptions 3.1, 3.2, 3.3, 3.4, and 3.5 are satisfied. Define

P̂ =
{

(x, z)
∣∣∣ b2v0 ‖x‖2av2 + c2

w0(λ)‖z‖
2aw
2

+ 2c2L(λ)aw

w0(λ) ‖z‖
aw‖x‖aw + c2L(λ)2aw

w0(λ) ‖x‖
2aw ≤ 1

}
. (17)

Under these conditions we have that if ∀t ≥ 0, u(t) ∈ U and
‖u̇(t)‖ < b′3

2k1B
, then ∀λ > 0, K̄(λ) > 0, ∃ε∗∗∗ > 0 such

that ∀(x(0), z(0)) ∈ P̂, 0 < ε < ε∗∗∗,

lim sup
t→∞

‖x(t)‖2 ≤
(
b1(1−D)R2(λ) + c1DK̄

2(λ)

b1(1−D)

) 1
2av

,

(18)
and

lim sup
t→∞

‖z(t)−H(t, x(t))‖2

≤
(
b1(1−D)R2(λ) + c1DK̄

2(λ)

c1D

) 1
2aw

, (19)

where D = v0/(v0 + w0).
Proof: See Appendix A.

Remark 3.1: The right-hand sides of (18) and (19) do not
depend on u̇. In fact, the conditions of Lemma 3.1 do not
guarantee that ‖x(t)‖2 or ‖z(t)−H(t, x(t))‖2 tend to zero
as u̇ goes to zero. This is due to us only knowing about the
behavior of the reduced system for ‖x‖ > R(λ).

Remark 3.2: To use Lemma 3.1 to show that a sys-
tem of the form (3) has the asymptotic robust refer-
ence tracking property of Definition 2.1, we must have
that limλ→∞R(λ) = 0. We then pick K̄(λ) such that
limλ→∞ K̄(λ) = 0, e.g. K̄(λ) = 1/λ, and pick w0(λ) =
Ω(L2(λ)) 2, e.g. w0(λ) = k̄L2(λ) for some k̄ > 0. These
conditions ensure that ∃P ⊆ P̂ with nonzero volume that
is independent of λ, and that the bound on the right-hand
side of (18) go to zero as λ goes to infinity. The bound on
the right-hand side of (19) may or may not go to zero as λ
goes to infinity, depending on how fast R2(λ) goes to zero

2i.e. ∃k > 0, λ∗ ∈ R such that ∀λ > λ∗, w0(λ) ≥ kL2(λ).

compared to 1/w0(λ), however it is not necessary that the
right-hand side of (19) go to zero as λ goes to infinity for
Definition 2.1 to hold.
The following assumption will be needed in order to use
Lemma 3.1 to prove asymptotic robust reference tracking.

Assumption 3.6: Consider system (3). Assume also that
for the output y = h(x̄), where h is assumed to be Lipschitz
continuous on D̄, we have for constant u = (r, d),

∀u ∈ U , lim
λ→∞

h(q1(u, λ)) = r. (20)

We now give a lemma that shows that under suitable ad-
ditional conditions, Lemma 3.1 can be used to guarantee
that system (3) has the asymptotic robust reference tracking
property of Definition (2.1).

Lemma 3.2: Consider system (3). Suppose that Assump-
tions 3.1, 3.2, 3.3, 3.4, and 3.5 are satisfied, where Assump-
tion 3.3 is satisfied with an R(λ) such that limλ→∞R(λ) =
0, and Assumption 3.4 is satisfied for all w0 > 0 with some
c1, c2, c3 that are independent of w0. Assume also that (3)
satisfies Assumption 3.6. Then, system (3) has the asymptotic
robust reference tracking property of Definition 2.1.

Remark 3.3: The assumption that limλ→∞R(λ) = 0 re-
quires that we find a V (x) with particular properties stronger
than Assumption 3.3.

Proof: Since Assumptions 3.1, 3.2, 3.3, 3.4, and 3.5
are satisfied, we can apply Lemma 3.1. Due to our additional
assumptions, we are allowed to choose w0(λ) = L(λ)2aw .
Then, P̂ in the conclusion of Lemma 3.1 is

P̂ =

{
(x, z)

∣∣∣∣ b2v0
‖x‖2av2 +

c2
L(λ)2aw

‖z‖2aw2

+
2c2

L(λ)aw
‖z‖aw‖x‖aw + c2‖x‖2aw ≤ 1

}
.

Due to Assumption 3.2 requiring that L(λ) be bounded
away from zero, we have that Lmin = infλ≥λ∗ L(λ) > 0.
Therefore, we have that ∀λ ≥ λ∗, P ⊆ P̂ , where

P =

{
(x, z)

∣∣∣∣ b2v0
‖x‖2av2 +

c2

L2aw
min

‖z‖2aw2

+
2c2
Lawmin

‖z‖aw‖x‖aw + c2‖x‖2aw ≤ 1

}
.

Observe that P is independent of λ. We then pick K̄ =
1/λ, which ∀(x(0), z(0)) ∈ P, 0 < ε < ε∗∗∗ results in the
following bound in (x, z) coordinates:

lim sup
t→∞

‖x(t)‖2 ≤
(
b1(1−D)R2(λ) + c1D/λ

2

b1(1−D)

) 1
2av

,

(21)
where D = v0/(v0 +L(λ)2). From (20) and compactness of
U , we have that ∃Kc(λ) > 0 and λ∗ such that

∀(r, d) ∈ U ,∀λ > λ∗, ‖h(q1(u, λ))− r‖2 ≤ Kc(λ), (22)

where limλ→∞Kc(λ) = 0. Now consider y(t). We have that
y(t) = h(x(t) + q1(u(t), λ)). From (22) and because h is



Lipschitz we have ∀(x(0), z(0)) ∈ P, 0 < ε < ε∗∗∗,∀t ≥
0, u(t) ∈ U , λ > λ∗,

‖h(x(t) + q1(u(t), λ))− r(t)‖2
≤ ‖h(x(t) + q1(u(t), λ))− h(q1(u(t), λ))‖2

+ ‖h(q1(u(t), λ))− r(t)‖2
≤ Kh‖x(t)‖2 +Kc(λ),

where Kh is the Lipschitz constant of h. Taking limit
superior of both sides of this expression we obtain, via (21),
∀(x̄(0)− q1(u, λ), z̄(0)− q2(u, λ)) ∈ P, 0 < ε < ε∗∗∗,∀t ≥
0, u(t) ∈ U , λ > λ∗,

lim sup
t→∞

‖h(x(t) + q1(u(t), λ))− r(t)‖2

≤ Kh

(
b1(1−D)R2(λ) + c1D/λ

2

b1(1−D)

) 1
2av

+Kc(λ).

Since the right-hand side of the above expression tends to
zero as λ → ∞, we have shown that system (3) has the
asymptotic disturbance rejection property.

We next present a lemma which uses Lemma 3.1 to
find simple conditions that guarantee asymptotically tracking
performance for systems where the slow dynamics are one
dimensional. We first state and prove the following Lemma,
which we will use to analyze the reduced system.

Lemma 3.3: Consider a continuous function, f̂(x, u, λ) :
R×R×R→ R, and suppose that on some domain |x| ≤ v0,
λ ≥ λ0 we have some β > 0 such that ∀u ∈ U , f̂(0, u, λ) =
0 and

1) f̂(x, u, λ) is strict monotonic decreasing,
2) |f̂(x, u, λ)| is strict monotonic increasing with respect

to λ,

3) limλ→∞ f̂(x, u, λ)

{
≥ β, ∀x < 0,
≤ −β, ∀x > 0,

Then, there are λ∗ ∈ R, β > ε > 0 such that ∀λ > λ∗,
∃R(λ) > 0 such that ∀|x| > R(λ),

|f̂(x, u, λ)| > β − ε = β′ and lim
λ→∞

R(λ) = 0 (23)
Proof: See Appendix B.

Using Lemma 3.3 we are now ready to study systems of
the form (3) when the slow dynamics are one dimensional,
i.e., x̄ ∈ R. The following theorem is the main result of this
paper, which gives conditions under which systems of the
form (3) with x̄ ∈ R have the asymptotic robust reference
tracking property.

Theorem 3.1: Consider system (3) and suppose that x̄ ∈
R. Suppose that Assumptions 3.1, 3.2, and 3.4, are satisfied.
Assume that the conditions of Lemma 3.3 are satisfied
by f̂(x, u, λ) = f(x,H(x), u, λ), i.e., (7), and that with
y = h(x̄), system (3) satisfies Assumption 3.6. Then, system
(3) has the robust reference tracking property according to
Definition 2.1.

Proof: We will apply Lemma 3.2 by using Lemma 3.3
to show the existence of a Lyapunov function for the reduced
system that satisfies the conditions of Assumption 3.3.

Let V (x) = x2. Then along trajectories of the reduced
system, we have from Lemma 3.3 that for sufficiently large
λ, ∀u ∈ U ,∀R(λ) < |x| ≤ v0,

∂V

∂x
f(x,H(x), u, λ) = 2xf(x,H(x), u, λ) ≤ −2β′|x|,

where β′ is as in (23). Thus, with av = aw = 1 and b1 =
b2 = 1, and b′3 = 2β′, equations eqs. (9) and (10) are satisfied
with our choice of V (x), and therefore Assumption 3.3 is
satisfied for system (3) with limλ→∞R(λ) = 0.

We now need to ensure that Assumption 3.5 is satisfied
by system (3) and our choice of V (x). Observe that (11) is
satisfied with k1 = 2. Since f and H are Lipschitz, we have
that ∃k2 such that (15) is satisfied, and ∃k3 such that (16)
is satisfied, and hence Assumption 3.5 is satisfied by system
(3) with V (x) = x2. Therefore we can apply Lemma 3.2 to
obtain the desired result.

IV. STRUCTURAL RESULTS

To identify systems of the form (3) that satisfy Definition
2.1, we now introduce a class of systems where the plant,
P , and controller, C, each have a special structure. We give
conditions under which systems of this class have the asymp-
totic robust reference tracking property of Definition 2.1. We
consider the case where P is given by ˙̄x = γ(ū, d) − δx̄,
where x̄ ∈ R, and δ > 0, and γ : R × R → R. This results
in f in (3) being given by f(x̄, ū, d) = γ(ū, d) − δx̄. We
consider the following dynamics for C, which are inspired
by antithetic feedback control [7], [10], [13]:

ε ˙̄z1 = λ(g1(r) + g2(z̄1, z̄2))− z̄1,

ε ˙̄z2 = λ(g3(x̄) + g2(z̄1, z̄2))− z̄2,

where z̄1, z̄2 ∈ R. i.e. g in (3) is given by

g(x̄, z̄, r, λ) =

[
λ(g1(r) + g2(z̄1, z̄2))− z̄1

λ(g3(x̄) + g2(z̄1, z̄2))− z̄2,

]
and ū = hc(z̄) = z̄1. This leads to the following closed loop
system:

˙̄x = γ(z̄1, d)− δx̄,
ε ˙̄z1 = λ(g1(r) + g2(z̄1, z̄2))− z̄1,

ε ˙̄z2 = λ(g3(x̄) + g2(z̄1, z̄2))− z̄2.

(25)

We will show that under mild technical conditions, (25) has
the asymptotic robust reference tracking property. Specifi-
cally, we give conditions on g1, g2, g3, γ such that (25) has
the asymptotic robust reference tracking property. We make
the following assumptions:

Assumption 4.1: For (25) we assume that z̄1, z̄2 ∈ R, and
on the positive orthant g1, g2, g3 are continuously differen-
tiable, g2 < 0, g1, g3 > 0, ∂g2/∂z̄1 < 0, ∂g2/∂z̄2 < 0,
∂g3/∂x̄ > 0, and r, ε, λ > 0. We assume that for each value
of x̄ > 0, there is a unique solution to (24), (z∗1 , z

∗
2) in the

non-negative quadrant and that g1 is invertible on R≥0. We
also assume that x̄ ∈ R, δ > 0, and on the positive orthant
γ > 0 and ∂γ/∂z̄1 > 0 exists and is continuous, and that
g2(0, z̄2) = g2(z̄1, 0) = 0.



Here the last condition serves to enforce positive invariance
of the positive quadrant.

Corollary 4.1: Consider (25) under Assumption 4.1. Then
we have that (25) satisfies Definition 2.1 with some output
y = h(x̄).

Proof: Our proof proceeds by applying Lemma 3.1 to
(25). We first examine the behavior of the equilibrium point
as λ goes to infinity. The solution to

0 = λ(g1(r) + g2(z̄1, z̄2))− z̄1,

0 = λ(g3(x̄) + g2(z̄1, z̄2))− z̄2,

approaches that of

0 = g1(r) + g2(z̄1, z̄2), 0 = g3(x̄) + g2(z̄1, z̄2), (27)

as λ → ∞. Equation (27) has a solution if and only if
g1(r) = g3(x̄). Therefore, limλ→∞ g−1

1 (g3(x∗(u, d, λ)) = r.
This establishes that assumption 3.6 is satisfied. Now observe
that using the implicit function theorem on (26) we have
∂z∗

∂x̄ = −M−1
[
0 λ∂g3x̄

]T
, where m11 = λ∂g2∂z̄1

− 1, m12 =

λ∂g2∂z̄2
, m21 = λ∂g2∂z̄1

, and m22 = λ∂g2∂z̄2
−1. By the Gershgorin

Circle Theorem [26], detM > 0, and so ∂z∗1/∂x̄ < 0. This
ensures that the reduced system, where ε = 0 is globally
asymptotically stable on R≥0. We now consider a Lyapunov
function for the boundary layer system. Consider fixed values
of r and x̄. Let W = ‖z̄ − z∗‖21 [27]. Note that although W
is not differentiable, its forward derivative along ˙̄z is always
defined. We consider the derivative of W in four different
regions that form a partition of z̄1, z̄2 ≥ 0.

1) z̄1 > z∗1 , z̄2 > z∗2 : In this region, we have that ˙̄z1 <
−(z̄1 − z∗1) and ˙̄z2 < −(z̄2 − z∗2) and hence, Ẇ =
2‖z̄ − z∗‖( ˙̄z1 + ˙̄z2) < 2‖z̄ − z∗‖2 = 2W .

2) z̄1 < z∗1 , z̄2 > z∗2 : In this region, we have that Ẇ =
2‖z̄ − z∗‖(− ˙̄z1 + ˙̄z2) < 2‖z̄ − z∗‖2 = 2W .

3) z̄1 < z∗1 , z̄2 < z∗2 : First, consider the fact that
since z̄1, z̄2 ≥ 0 is positively invariant, we only
need Ẇ < 0 on that set. Now, observe that because
∂g2/∂z̄1 < 0 and ∂g2/∂z̄2 < 0, we have that ∀z̄1 <
z∗1 , z̄2 < z∗2 , ˙̄z1, ˙̄z2 > 0. Since in this quadrant,
Ẇ = 2‖z̄ − z∗‖(− ˙̄z1 − ˙̄z2) < 0.

4) z̄1 > z∗1 , z̄2 < z∗2 : In this region, we have that Ẇ =
2‖z̄ − z∗‖( ˙̄z1 − ˙̄z2) < 2‖z̄ − z∗‖2 = 2W .

Therefore, ∀w0 > 0, we have (12)–(14). It is true that
eqs. (15) and (16) follow from the form of ˙̄x. We can apply
Lemma 3.3 to obtain the desired result.

V. APPLICATION

We now apply the results of this work to study feedback
control of protein production, where the feedback controller
is implemented through sRNA-mRNA interference. This
provides a scalable and experimentally easily tunable control
system for several applications [5], [7], [13]. This controller
is designed to make the concentration of a protein track a
given reference signal while rejecting a perturbation on the
translation rate [7]. The disturbance is due to the unavoidable
time varying perturbation on ribosome concentration applied
by by other processes in the cell. The sRNA controller is

sRNAmRNA

r

protein
p

d

Fig. 1: A protein production process with a closed loop
controller based on sRNA interference. Here d represents
that perturbation to ribosome concentration and r represents
a reference protein concentration.

based on the use of sRNA to degrade mRNA [13], [28],
[29]. In order to regulate the expression of a protein, p, p
is used to induce the production of s, the sRNA molecule.
s and m bind together and mutually degrade. By assuming
that the molecular counts of all species are sufficiently large,
we obtain the following nondimensionalized ODE model of
the system [13]:

ṁ =Gr −Gms− δ′m,
ṡ =Gp−Gms− δ′s,
ṗ =γ(m, d)− δp.

(28)

where γ(m, d) = m
m+1+d . By tuning the biochemical pa-

rameters of the system G and δ′ can be made very large.
Specifically, G can be made large by increasing the binding
affinity of m and s by engineering the sRNA sequence [28].
δ′ can be made large by introducing auxiliary species, m′ and
s′, which are engineered to bind to and mutually degrade s
and m respectively. Here we assume that the concentrations
of m′ and s′ are large. We assume that δ > 0, 0 ≤ d ≤ dmax,
and rmin ≤ r < 1/δ. To analyze (28) with the framework
introduced in this paper, we let ε = 1/δ′ and λ = G/δ′.
System (28) then becomes

εṁ =λr − λms−m,
εṡ =λp− λms− s,
ṗ =γ(m, d)− δp.

(29)

(29) is of the form (25), allowing us to apply the theory of
Section IV. In fact, system (29) has the asymptotic robust
reference tracking property in the sense of Definition 2.1 with
output y = p. To see this, observe that (29) is of the form
(25) and satisfies Assumption 4.1. Hence, by Corollary 4.1
we have that (29) satisfies Definition 2.1 with output y = p.

To investigate how the results of this paper may inform
design choices, we compute ε∗(λ) from Definition 2.1 for
system (29). Figure 2 shows ε∗(λ). For three different points
in the (λ, ε) parameter space we simulate tracking of a time
varying signal r(t), with d(t) = 0.5 + 0.1 cos(0.5t). By
contrasting A and B, we see that increasing λ while keeping
ε < ε∗(λ) improves tracking performance, which is expected
based on steady state analysis [13]. From C we can see that
for ε > ε∗(λ) overshoot may emerge in p(t), highlighting
the practical importance of being able to pick ε sufficiently
small when λ is increased, as stated in Corollary 4.1.

VI. CONCLUSIONS
In this work we investigate principles for designing

biomolecular feedback controllers that track slowly varying
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Fig. 2: Parameter space and simulations of the sRNA system.
The gray region shows where we can certify tracking of
slowly varying reference signals and rejection of slowly
varying disturbances, i.e. the black line is ε∗(λ). To calculate
ε∗ we compute the following constants for system (29) with
δ = 1, see Appendix C: c1 = 1, c2 = 2, c3 = 2,
b1 = 1, b2 = 1, b′3 = 2δ, v0 = 1, L =

√
2λ, k1 = 2,

k2 = λ(1 + dmax) + δ, k3 = 1 + dmax, and k4 = 4. We use
dmax = 2, w0 = L(λ)2, and rmin = 0.25. We then compute
ε∗(λ) as defined in the proof of Lemma 3.1. A, B, and C
show simulated trajectories of p(t) for the system with the
given parameters.

reference signals while rejecting slowly varying disturbance
signals, with performance that becomes better as a “gain”
parameter is made large. Due to linearized analysis being
uninformative for the asymptotic problem, we resort to
Lyapunov analysis and construct Lyapunov functions by
exploiting timescale separation between the plant and con-
troller. We provide explicit Lyapunov functions for a class of
systems which are biologically relevant. We apply our theory
to a controller based on mRNA-sRNA interference.

APPENDIX
A. Proof of Lemma 3.1

Our proof is inspired by those in [25], [30], but our
assumptions yield conclusions that are uniform in λ.

Proof: Let ν(x, yb) = (1 − D)V (x) + DW (yb) for
D ∈ (0, 1). Observe that ∀(x, yb) ∈ S∗, ν satisfies

b1(1−D)‖x‖2av2 + c1D‖yb‖2aw2 ≤ ν(x, yb)

≤ b2(1−D)‖x‖2av2 + c2D‖yb‖2aw2 , (30)

and so,

min{b1(1−D), c1D}
(
‖x‖2av2 + ‖yb‖2aw2

)
≤ ν(x, yb)

≤ max{b2(1−D), c2D}
(
‖x‖2av2 + ‖yb‖2aw2

)
.

Let us choose (see [25] for motivation) D = v0
v0+w0

. Observe
that with this choice of D S∗ is the sublevel set ν(x, yb) ≤
v0w0/(v0 + w0). For each constant u ∈ U , the dynamics of
(6) in (x, yb) coordinates are

ẋ = f(x, yb +H(x), u),

εẏb = g(x, yb +H(x), u, λ)− ε∂H∂x f(x, yb +H(x), u).

Consider the derivative of ν on S∗\{(x, yb)|‖x‖av2 ≤ R(λ)}.
Using (10) we have

ν̇(x, yb) ≤ −(1−D)b′3‖x‖
av
2

− Dc3
ε ‖yb‖

2aw
2 + (1−D)k1k3‖x‖av2 ‖yb‖

aw
2

+Dk2k4L‖yb‖aw2 ‖x‖
av
2 +Dk3k4L‖yb‖2aw2 .

Since S∗ is compact we can write

ν̇(x, yb) ≤ − (1−D)b′3‖x‖
av
2

2 − Dc3‖yb‖2aw
2

2ε − (1−D)b′3‖x‖
2av
2

2 maxx∈S∗‖x‖av

− Dc3‖yb‖2aw
2

2ε + (1−D)k1k3‖x‖av2 ‖yb‖
aw
2

+Dk2k4L‖yb‖aw2 ‖x‖
av
2 +Dk3k4L‖yb‖2aw2 .

Where we have used that ∀x ∈ S∗, (1−D)b′3
2 maxx∈S∗‖x‖

av
2
‖x‖2av2 ≤

1
2 (1 − D)b′3‖x‖

av
2 . We therefore have that ∀(x, yb) ∈ S∗ \

{(x, yb)|‖x‖av2 ≤ R(λ)},

ν̇(x, yb) ≤ − (1−D)b′3
2 ‖x‖av2 −

Dc3
2ε ‖yb‖

2aw
2 −NTMN

≤ − (1−D)b′3‖x‖
av
2

2 − Dc3‖yb‖2aw
2

2ε − λmin(M)‖N‖22, (32)

where

M =

[
(1−D)b′3

2 maxx∈S∗‖x‖av − (1−D)k1k3+Dk2k4L
2

− (1−D)k1k3+Dk2k4L
2

c3D
2ε −Dk3k4L

]
,

and N =
[
‖x‖av2 ‖yb‖aw2

]T
. We need to find and ε∗∗ such

that ∀0 < ε < ε∗∗, M ≥ 0. Noting that since M11 > 0, by
Sylvester’s Criterion [26], M > 0 if detM > 0, we find
following condition

ε <

D(1−D)c3b
′
3

4 maxx∈S∗‖x‖av

(1−D)b′3Dk3k4L
2 maxx∈S∗‖x‖av + [(1−D)k1k3+Dk2k4L]2

4

=: ε∗,

which guarantees that M > 0. We now consider the full case
of u(t) time varying. In (x, yb) coordinates, (6) becomes

ẋ = f(x, yb +H(x), u)− ∂q1
∂u u̇,

εẏb = g(x, yb +H(x), u, λ)− ε∂q2∂u u̇− ε
∂H
∂q

∂q
∂u u̇

− ε∂H∂x
(
f(x, yb +H(x), u)− ∂q1

∂u u̇
)
.

From (32) and (33) and we have that

ν̇(x, yb) ≤ − (1−D)b′3‖x‖
av
2

2 − Dc3‖yb‖2aw
2

2ε − ∂ν
∂x

∂q1
∂u u̇

− ∂ν
∂yb

∂q2
∂u u̇+ ∂ν

∂yb
∂H
∂x

∂q1
∂u u̇−

∂ν
∂yb

∂H
∂u u̇.

Therefore,

ν̇(x, yb) ≤ − (1−D)b′3‖x‖
av
2

2 −Dc32ε ‖yb‖
2aw
2 +

∥∥∂ν
∂x

∥∥∥∥∥∂q1∂u ∥∥∥‖u̇‖
+
∥∥∥ ∂ν∂yb ∥∥∥(∥∥∥∂q2∂u ∥∥∥+

∥∥∂H
∂x

∥∥∥∥∥∂q1∂u ∥∥∥+
∥∥∂H
∂u

∥∥) ‖u̇‖.
By applying our bounds from (11), (14), as well as our
bounds on ‖ ∂q∂u‖ and ‖∂H∂x ‖, we obtain

ν̇(x, yb) ≤ (1−D)
(
k1B‖u̇‖ − b′3

2

)
‖x‖av2

+D
(
k4L̃‖u̇‖ − c3

2ε‖yb‖
aw
2

)
‖yb‖aw2 ,



where we have defined L̃ = B + LB + L′. Let K̄(λ) >

0 and define ε∗∗ := k1c3BK̄(λ)

k4b′3L̃
and ε∗∗∗ = min{ε∗, ε∗∗}.

Let S′ =
{

(x, yb)
∣∣‖x‖av2 ≤ R(λ), ‖yb‖aw2 ≤ K̄(λ)

}
. If ε <

ε∗∗∗ and ∀t ≥ 0, ‖u̇(t)‖ < b′3
2k1B

, then ∀(x, yb) ∈ S∗ \
S′, ν̇(x, yb) < 0. Therefore, ν is decreasing on S∗ \S′, and
if (x(0), yb(0)) ∈ S∗, eventually ν will be bounded by

ν′ := min
a
a, s.t. S′ ⊆ {(x, yb)|ν(x, yb) ≤ a} ,

i.e. ∀(x, yb) ∈ S∗, lim supt→∞ ν(t) ≤ ν′. Using
equation (30) We can find an upper bound on ν′ by
solving ν′′ := mina a, s.t. S′ ⊆ S′′(a), where
S′′ =

{
(x, yb)

∣∣∣b1(1−D)‖x‖2av2 + c1D‖yb‖2aw2 ≤ a
}

. By
convexity of S′′, the solution to this optimization problem is
ν′′ = b1(1−D)R2(λ)+c1DK̄

2. Hence, ∀(x(0), yb(0)) ∈ S∗,

lim sup
t→∞

(
b1(1−D)‖x‖2av2 + c1D‖yb‖2aw2

)
≤ b1(1−D)r2 + c1DK̄

2.

Now consider the above result in (x, z) coordinates. Let us
denote the transformation from (x, z) to (x, yb) by φ, i.e.
φ : (x, z)→ (x, yb). Consider P̂ as defined in (17). It is true
that P̂ ⊆ φ−1(S∗). Therefore we have the desired result.

B. Proof of Lemma 3.3

Proof: For all β > ε > 0 and sufficiently large λ, con-
ditions 1 and 3 guarantee that ∃R(λ) > 0 such that ∀|x| >
R(λ), |f̂(x, u, λ)| > β − ε. Let R(λ) denote the set of such
r values for each λ. Now, let r∗(λ) = supr∈R(λ) r + 1/λ.
Observe that by condition 2 r∗(λ) is monotone decreasing.
Since it is also bounded from below it has a limit. Suppose by
way of contradiction that limλ→∞R(λ) > 0. Then, ∃r̄ > 0
such that ∀λ > λ∗, r∗(λ) > r̄. However, such an r̄ cannot
exist since that would mean that ∀x > r̄, f̂(x, u, λ) < β− ε
which violates condition 3. Hence, limλ→∞R(λ) = 0.

C. Constants for Application

Here we calculate the constants necessary to compute
ε∗(λ) for the sRNA system.

TABLE I: Summary of constants used when applying
Lemma 3.1 to the sRNA system

Constant Value
c1 1
c2 2
c3 2
b1 1
b2 1
b′3 2δ
v0 1
L

√
2λ

k1 2
k2 λ(1 + dmax) + δ
k3 1 + dmax

k4 4

1) Equilibrium Point: Following the methods described
in this work, we first consider computing the equilib-
rium point of (28), (m∗, s∗, p∗). In particular we calculate
limλ→∞(m∗, s∗, p∗). By solving (29) with ṁ = 0 and ṡ = 0
we obtain

0 = λm∗2 + [λ2(p∗ − r) + 1]m∗ − λr.

The positive root of this quadratic is

lim
λ→∞

m∗(p∗) =

 +∞, p < r√
r, p = r

0, p > r
(34)

more specifically, when p < r, m∗ asymptotes to λ(r − p).
From setting ṗ = 0 in (29) we have

p∗ =
1

δ
γ(m∗, d). (35)

Assuming that ∀r > 0, d ≥ 0, γ > 0 we have that
limλ→∞ p∗ = r by solving (34) and (35). Using our specific
form of γ we have

lim
λ→∞

m∗ =
δr(1 + d)

1− δr
.

From (28) we also have

s∗ =
λp∗

λm∗ + 1
.

Therefore

lim
λ→∞

s∗ =
1− δr
δ(1 + d)

.

To summarize:

lim
λ→∞

(m∗, s∗, p∗) =

(
δr(1 + d)

1− δr
,

1− δr
δ(1 + d)

, r

)
We now perform a change of coordinates to system (28)

so that the equilibrium point is at the origin. Denote by
(m∗, s∗, p∗) the equilibrium point of (29). Let z1 = m−m∗,
z2 = s− s∗ and x = p− p∗. We have from (28) that

ẋ = γ(z1 +m∗, d)− δp∗ − δx
εż1 = −λ [z1z2 + s∗z1 +m∗z2]− z1

εż1 = λx− λ [z1z2 + s∗z1 +m∗z2]− z2

(36)

denote by z = H(x) the solution to

0 =− λ [z1z2 + s∗z1 +m∗z2]− z1

0 =λx− λ [z1z2 + s∗z1 +m∗z2]− z2

Let y = z − H(x). Let τ = t/ε, we have the boundary
layer equations.

dy1

dτ
= −λ [y1y2 + (H2(x) + s∗)y1 + (h1 +m∗)y2]− y1

dy1

dτ
= −λ [y1y2 + (H2(x) + s∗)y1 + (h1 +m∗)y2]− y2



2) Slow Manifold: The stable slow manifold of (36) is
given by the stable solution, z = H(x) to (37). From (37)
we have that

z1 = z2 − λx,

and that z2 is given by the stable solution to

0 = λz2
2 + [−λ2x+ λ(m∗ + s∗) + 1]z2 − λx(λs∗ + 1).

The discriminant is non-negative for sufficiently large λ. The
two solutions are

z2 =
λ2x− λ(m∗ + s∗)− 1

2λ

±
√

[λ2x− λ(m∗ + s∗)− 1]2 + 4λ2x(λs∗ + 1)

2λ

The Jacobian of (38) about y = 0 is

J =

[
−λ(H2(x) + s∗)− 1 −λ(h1(x) +m∗)
−λ(H2(x) + s∗) −λ(h1(x) +m∗)− 1

]
.

Based on this, the stable branch is

z2 =
λ2x− λ(m∗ + s∗)− 1

2λ

+

√
[−λ2x+ λ(m∗ + s∗) + 1]2 + 4λ2x(λs∗ + 1)

2λ

with the corresponding z1

z1 =
−λ2x− λ(m∗ + s∗)− 1

2λ

+

√
[−λ2x+ λ(m∗ + s∗) + 1]2 + 4λ2x(λs∗ + 1)

2λ

We can show by multiplying by the conjugate in the numer-
ator and denominator that

lim
x→+∞

h1(x) = −m∗

lim
x→−∞

h1(x) = +∞

and

lim
x→+∞

H2(x) = +∞

lim
x→−∞

H2(x) = −s∗

And similarly,
∀x > 0, lim

λ→∞
−m∗.

3) Boundary Layer Lyapunov Function: Consider the
following Lyapunov function

W (y) =

(
[sgn(y1), sgn(y2)]

(
y1

y2

))2

,

where sgn is the signum function. Now we consider the
derivative of W along trajectories of the boundary layer
system.

Ẇ (y) =
∂

∂y
W (y)

(
ẏ1

ẏ2

)
We consider the four quadrants separately.

1) y1 > 0, y2 > 0

Ẇ (y) = 2(y1 + y2) (ẏ1 + ẏ2)

≤ −2(y1 + y2)2 = −W (y)

2) y1 < 0, y2 > 0

Ẇ (y) = 2(−y1 + y2)(−ẏ1 + ẏ2)

= −2(y1 − y2)2 = −2W (y)

3) y1 < 0, y2 < 0

Ẇ (y) = −ẏ1 − ẏ2

= 2λ [y1y2 + (H2(x) + s∗)y1 + (H1 +m∗)y2]

+ y1 + y2

Since ∀x, ∀u > 0, H1 + m∗, H2(x) + s∗, if
−max{H1 +m∗, H2(x) + s∗} ≤ y1, y2 ≤ 0, we have
that y1y2 + (H2(x) + s∗)y1 + (H1 +m∗)y2 ≤ 0, and
therefore

∀ −max{H1 +m∗, H2(x) + s∗} ≤ y1, y2 ≤ 0,

Ẇ (y) ≤ −2W (y)

4) y1 > 0, y2 < 0

Ẇ (y) = ẏ1 − ẏ2 = −y1 + y2 = −2W (y)

We therefore have that

∀ −max{H1 +m∗, H2(x) + s∗} ≤ y1, y2,

Ẇ (y) ≤ −2W (y). (39)

We need to show that ∃c1, c2 > 0 such that

c1‖y‖22 ≤W (y) ≤ c2‖y‖22.

Observing that W (y) = ‖y‖21 and recalling that

‖y‖2 ≤ ‖y‖1 ≤
√

2‖y‖2, (40)

we have that
‖y‖22 ≤W (y) ≤ 2‖y‖22,

and hence we can pick c1 = 1 and c2 = 2. Similarly, from
(39) and (40) we have

Ẇ (y) ≤ −2‖y‖21 ≤ −2‖y‖22,

and hence we can pick c3 = 2.
4) Determination of Constants: We now verify that we

can apply Lemma 3.1 by explicitly calculating all the nec-
essary constants relating to V (x) and the interconnection
requirements. These constants are summarized in Table I,
along with those previously calculated. As our Lyapunov
function for the reduced system we use V (x) = x2. We
need to check that ‖∂H∂x ‖ is bounded. To do this, observe
that

∂H1

∂x
= −λ

2

+
−2λ2[−λ2x+ λ(m∗ + s∗) + 1] + 4λ2(λs∗ + 1)

4λ
√

[−λ2x+ λ(m∗ + s∗) + 1]2 + 4λ2x(λs∗ + 1)
.



We have that limx→−∞
∂H1

∂x = −λ and limx→+∞
∂H1

∂x = 0.
Calculating ∂2H1

∂x2 we find

∂2H1

∂x2
=
α

β
,

where

α = 8λ5
√

[−λ2x+ λ(m∗ + s∗) + 1]2 + 4λ2x(λs∗ + 1)

− 2λ(−2λ2[−λ2x+ λ(m∗ + s∗) + 1]

+
4λ2(λs∗ + 1))2√

[−λ2x+ λ(m∗ + s∗) + 1]2 + 4λ2x(λs∗ + 1)
,

and

β = 16λ2|[−λ2x+λ(m∗+ s∗) + 1]2 + 4λ2x(λs∗+ 1)|

We can show that
∂2H1

∂x2
≥ 2λ4m∗(λs∗ + 1)

κ
,

where

κ =
|[−λ2x+ λ(m∗ + s∗) + 1]2 + 4λ2x(λs∗ + 1)|√
[−λ2x+ λ(m∗ + s∗) + 1]2 + 4λ2x(λs∗ + 1)

−1

We can therefore conclude that ∂H1

∂x is non-decreasing and
hence is bounded between −λ and 0. Now we consider ∂H2

∂x .

∂H2

∂x
=
∂H1

∂x
+ λ

Therefore ∂H2

∂x is bounded between 0 and λ. Therefore we
have ∥∥∥∥∂H∂x

∥∥∥∥
2

=
√

2λ

We now examine ‖f(x, y+H(x))− f(x,H(x))‖ for the
sRNA system, (36). We have that

f(x, y+H(x))−f(x,H(x)) =
y1 +H1(x) +m∗

y1 +H1(x) +m∗ + 1 + d

− H1(x) +m∗

H1(x) +m∗ + 1 + d
.

Additionally, f(x, 0 +H(x))− f(x,H(x)) = 0 and

∂(f(x,y+H(x))−f(x,H(x)))
∂y1

= 1+d
(y1+H1(x)+m∗+1+d)2 .

Therefore,
∂(f(x,y+H(x))−f(x,H(x)))

∂y1
|y1=0= 1+d

(H1(x)+m∗+1+d)2 ,

and we have that

∀y1 ≥ 0, ∂(f(x,y+H(x))−f(x,H(x)))
∂y1

≤ 1+d
(H1(x)+m∗+1+d)2 ,

and

∀y1 ≤ 0, ∂(f(x,y+H(x))−f(x,H(x)))
∂y1

≥ 1+d
(H1(x)+m∗+1+d)2 .

Therefore,

‖f(x, y +H(x))− f(x,H(x))‖
≤ 1+d

(H1(x)+m∗+1+d)2 |y1|
≤ (1 + dmax)‖y‖2,

where the second inequality is true because H1(x) +m∗ +
1 + d > 1. Now,

∂
∂xf(x,H(x)) = 1+d

(H1(x)+m∗+1+d)2
∂H1(x)
∂x − δ,

and therefore

|f(x,H(x))| ≤ [(1 + dmax)λ+ δ] ‖x‖2,

so we can pick k2 = (1 + dmax)λ+ δ. We have used that

∂H1(x)

∂x

∣∣∣∣
x=0

=
−λ2m∗

λ(m∗ + s∗) + 1
≤ 0.

5) Reduced System: We now analyze the reduced system,

ẋr = f(xr, H(xr)),

which in our case is

ẋr = γ(H1(xr) +m∗, d)− δp∗ − δxr.

We have that

lim
λ→∞

f(xr, (H(xr)) =

{
−δp∗ − δxr, xr > 0
1− δp∗ − δxr, xr < 0
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