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Definition of a scoring parameter to identify low-dimensional materials components
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The last decade has seen intense research in materials with reduced dimensionality. The low dimensionality
leads to interesting electronic behavior due to electronic confinement and reduced screening. The investigations
have to a large extent focused on 2D materials both in their bulk form, as individual layers a few atoms thick,
and through stacking of 2D layers into heterostructures. The identification of low-dimensional compounds is
therefore of key interest. Here, we perform a geometric analysis of material structures, demonstrating a strong
clustering of materials depending on their dimensionalities. Based on the geometric analysis, we propose a
simple scoring parameter to identify materials of a particular dimension or of mixed dimensionality. The method
identifies spatially connected components of the materials and gives a measure of the degree of “1D-ness,” “2D-
ness,” etc., for each component. The scoring parameter is applied to the Inorganic Crystal Structure Database
and the Crystallography Open Database, ranking the materials according to their degree of dimensionality. In
the case of 2D materials the scoring parameter is seen to clearly separate 2D from non-2D materials and the
parameter correlates well with the bonding strength in the layered materials. About 3000 materials are identified
as one-dimensional, while more than 9000 are mixed-dimensionality materials containing a molecular (0D)
component. The charge states of the components in selected highly ranked materials are investigated using
density functional theory and Bader analysis showing that the spatially separated components have either zero

charge, corresponding to weak interactions, or integer charge, indicating ionic bonding.
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I. INTRODUCTION

Low-dimensional materials with one or more characteristic
lengths of the materials limited to the atomic scale have
received significant attention recently. Since the discovery
of graphene the world has seen intense research in 2D ma-
terials involving synthesis and investigation of mechanical,
electronic, magnetic, and catalytic properties of new materials
[1-4]. Also a number of computational efforts have been
dedicated to the identification of new 2D materials and to
the construction of computational databases with information
about their stability and (photo)electronic properties [5—7].
One of the driving forces behind this research has been
an interest in ultrasmall electronic components and this has
also led to studies of 1D or quasi-1D materials as possible
interconnects [8,9]. Furthermore, the possibility of combining
materials of different dimensionality into new van der Waals
bonded mixed-dimensional heterostructures has recently been
discussed [10]. The realization of such structures relies on
the identification of appropriate weakly interacting material
components of different dimensionalities.

In the following we shall define a simple geometrical
scoring parameter to identify low-dimensional components in
existing materials. The scoring parameter is easy to compute
and can be applied to large materials databases. We illustrate
this by mining the Inorganic Crystal Structure Database [11]
(ICSD) and the Crystallography Open Database [12] (COD)
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to find materials with clearly identifiable low-dimensional
atomic structures. The identified materials consist of weakly
interacting components as we demonstrate for 2D materials by
comparison with previously calculated exfoliation energies.
Apart from being interesting in their own right, the materi-
als components may also form templates for substitution of
similar chemical elements to form new materials of different
dimensions [5,7].

II. RESULTS AND DISCUSSION

A. Bond-length interval analysis

The definition of the scoring parameter requires, first, that
we can identify the dimension(s) of a periodic solid. Given an
atom in a bonded cluster, the cluster dimension is given by the
rank of the subspace spanned by the atom and its periodically
connected neighbors. We refer to this method as the rank
determination algorithm (RDA), which is described in detail
in the Methods section.

An accurate identification of bonded clusters requires a full
electronic structure calculation, where the bond strength and
character can be addressed. However, for purposes of screen-
ing large materials databases this approach is computationally
infeasible. Instead, we use a simple geometric criterion for
bonding. We describe two atoms, i and j, as bonded if the
distance between them is less than a specified multiple of their
covalent radius sum:

dij < k(riCOV + r;"v). ()
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FIG. 1. (a) Boron nitride (BN) in a layered structure. Edges are colored according to their effect on the dimensionality classification. Black
edges are the strong covalent bonds, which result in a 2D classification. Green edges are longer bonds, which do not change the classification
from 2D. Red edges are weak bonds which result in a 3D classification. (b) Illustration of the change in dimensionality classification with
increasing k, for boron nitride and a layered aluminophosphate structure with intercalated organic molecules. Larger values of k increase
the dimensionality. Multiple intervals with the same dimensionality can exist, though these have different numbers of components. The best

classification corresponds to a wide interval starting at k = 1.

Here, d;; is the distance between atoms i and j, r{°' and rjcf’v
are the corresponding covalent radii [13], and k is a variable
to be investigated. The latter choice is motivated by the strong
dependence of the classification of the dimensionality of a
material upon the k value; as illustrated for the boron-nitride
structure in Fig. 1(a), too small a k value will underestimate
the dimensionality, whereas too large a k value will overes-
timate it. Rather than attempt to identify a good value of k,
we observe that, for any given structure, there exists a finite
number of relevant k intervals to investigate.

We start by considering the set of interatomic distances in
a material, sorted by increasing k value [where k = (r{°" 4
ri®")/d;;]. Each interatomic distance corresponds to a possible
bond; as shown in Fig. 1(a), bonds can be physical or not.
Bonds are inserted one at a time, and at each step the RDA
is used to determine the number of components and their
dimensionality. Initially, every atom is a separate 0D compo-
nent; as more bonds are inserted, the number of components
decreases and the component dimensionalities increase. The
process terminates when a single 3D component is left; i.e.,
all atoms are contained in the same bonded cluster. This
process finds all k-value intervals in which the dimensionality
classification is constant, of which there are a finite number.
The interval identification method is described in more detail
in the Methods section.

Figure 1(b) shows the application of this method to two
different layered structures. It can be seen that different di-
mensionality classifications exist at different k values. Fur-
thermore, the intervals have very different widths; the first
interval is of the form [0, k), whereas the last interval is of
the form [k, c0).

B. Defining the scoring parameter

Figures 2(a) and 2(b) show the k intervals for all structures
in the ICSD and COD with, respectively, a 2D interval and
a 1D interval. In both cases there is a visible cluster of

structures in the approximate region k; =~ 1 and 0.1 < kp —
ki < 1.5. The position of the cluster is intuitive from a bond-
ing perspective. First, if the bonding model and covalent radii
exactly described the actual bond lengths, the cluster would
lie on the line k; = 1; the variability in the interval starting
points results from the simplicity of the ball-and-stick bond-
ing model. Second, since low-dimensional components are
geometrically separated, we should expect a correspondingly
wide k interval; it can be seen that easily exfoliable structures
such as graphite, boron nitride, and molybdenum disulfide
have wide k intervals.

We propose a scoring parameter which distills the above
observations of the k-interval plots into a single number:

s(ki, ko) = f(ka) — f(k1), (2
where

X max(0, x — 1)?
" 14 ¢ x max(0,x — 1)

f)

3

Here, c is a constant which determines the scale at which a
bond is broken. We use ¢ = 1/0.15%, which is chosen so that
s(1, 1.15) = s(1.15, oo) = 0.5; slightly different values of the
parameter will give similar results. Figure 3 illustrates how a
k interval is transformed into a score.

The interval width increases the score, but with diminish-
ing returns as k; increases above 1. This avoids the [k, c0)
interval dominating unless &; is close to 1, in which case the
structure is indeed 3D. Furthermore, k values below 1 are
effectively set to 1; this avoids erroneous low-dimensional
classifications when [k, k2] ~ [0, 1]. In structures with low-
dimensional components, the scoring parameter rewards large
intercomponent distances. A further convenient property of
the scoring scheme is that the interval scores sum to 1. We
have found that the best results are achieved by merging
k intervals with the same types of dimensionalities [e.g.,
intervals of the same color in Fig. 1(b)].
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FIG. 2. (a) Interval plot of all structures in the ICSD and COD with a 2D interval, with some well-known structures marked. (b) Same as
(a) but for 1D intervals. (c), (d) Same as (a), (b) but with intervals colored according to dimensionality using the scoring parameter. For clarity,
mixed-dimensionality structures are not shown. The line shows the contour s(ky, k;) = 0.5.

The principal motivation of the scoring scheme is to
identify the intuitively correct dimensionality classification,
by determining whether a k interval lies within a cluster of
the type shown in Figs. 2(a) and 2(b). Using the scoring
parameter, the structures are colored in Figs. 2(c) and 2(d)
according to their dimensionality classification.

The scoring scheme is demonstrated for three structures in
Fig. 4. The first material, Al,Os3, is clearly a bulk crystalline
structure. If a single k-value threshold at k ~ 1 were used,
however, it would result in a misclassification as a layered
structure. Similarly, the scoring scheme also ensures that the

1.0 1

s(k1, k2)

K1 k>
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k

FIG. 3. Variation of f(k) versus k and the dependence of the
scoring parameter on the & interval.

Tip,CI,N, structure is correctly identified as a layered struc-
ture. The AuTe, has an ambiguous classification, lying close
to the contour s, (kq, k2) = 0.5. In this case the dimensionality
classification is sensitive to small changes in the functional
form or the parameters of the scoring function. Then, the
useful information contained in the scores is not in their exact
values, but rather that s, and s3 are approximately equal in
value; this can be interpreted as a layered structure with a very
small interlayer spacing.

It should be emphasized that the scoring is exclusively
based on interatomic distances and atomic sizes, and that
it simply assumes that longer bonds tend to be weaker
than shorter ones. The physical characters of the bonds,
i.e., whether they can be considered covalent, ionic, or of
dispersion type, are not revealed. Nonetheless, the coarse
treatment of bond lengths is justified by the cluster separation
in Fig. 2(b). We will show that the scoring scheme allows
for identification of interesting materials, whose properties
can then be investigated experimentally or using electronic
structure methods.

The scaled bonding criterion described in Eq. (1) is the
same one employed by Ashton et al. [6] in their study of
layered materials. An additive bonding criterion of the form
dij < ri+r;+ A is used by Mounet et al. [5] and Cheon
et al. [14], using van der Waals radii and elemental radii,
respectively. In these works, the material dimension is de-
termined by sampling a range of parameter values (either k
or A) in a fixed interval, which does not easily permit the
construction of a scoring parameter. Cluster dimensionalities
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FIG. 4. Structures with successively larger interlayer spacings. All three structures contain intervals for both 2D and 3D classifications.
The scoring scheme suggests the most likely dimensionality classification. In cases where multiple reasonable classifications are possible, as

in the AuTe, structure, the ambiguity is reflected in the scoring scheme.

are determined using a topology-scaling algorithm (TSA) [6]
(also proposed in [14]), which relates the dimension to the
number of bonded clusters as a function of the size of a
periodic supercell, or using the RDA [5]. Due to the use of
a fixed-size supercell, the TSA and RDA can respectively
underestimate and overestimate the number of bonded clusters
in certain materials with complex geometries. In the methods
section we describe a variant of the RDA which correctly as-
signs all atoms to bonded clusters without the need to specify
a supercell. Except for such complicated cases, however, our
definition agrees with the TSA and the supercell RDA.

Other methods for identification of layered materials in-
clude the analysis of the packing fraction [15,16], identifi-
cation of layered slab structures [17], and the use of dis-
crepancies between experimental lattice constants and those
predicted by density function theory (DFT) [18]. By identi-
fying structures with interlayer sodium atoms, Zhang et al.
[19] have investigated promising layered cathode materials for
sodium-ion batteries. McKinney et al. [20] have extended this
search to general “ionic layered” structures.

C. Mining the ICSD and COD

We have analyzed all materials in the ICSD and COD using
the proposed scoring parameter. Figure 5 shows examples of
materials with different dimensionalities and high values of
the scoring parameter.

The database has been filtered in standard ways [5,21]
by removing incomplete and/or defective entries, structures
with more than 200 atoms, structures with partial occupancies,
theoretically calculated structures, and structures with missing
hydrogen atoms. Duplicate structures are removed using the
structure matcher function of PYMATGEN [22]. The filtering
process reduces the initial set of 585 485 CIF files to 167 767
structures. The filtering statistics are shown in Table 1.

An overview of the database is shown in Table II. In this ta-
ble the materials have all been categorized by the dimension(s)
with the largest value of the scoring parameter s. In some cases
all s values may be fairly small and the classification is then
rather uncertain. A large number of materials (105 199) are
classified as OD. These are mostly molecular crystals, which
we shall not consider any further here.

The second largest category is the 3D materials. Most
of these have a single 3D component, but some of them
have two components still with large s values. Two examples
[Ag(B(CN)4) and Ca(C(CN);3),] are shown in Fig. 5. As can
be seen from the figure, both materials consist of two identi-
cal interpenetrating networks which cannot be disentangled
without breaking bonds. The two networks are sufficiently
spatially separated to give scoring values above 0.7. (In the
figure the two networks are colored red and blue.)

4623 materials are identified as two-dimensional, which
is about 2.8% of all materials. This can be compared to
for example the study by Mounet et al. [5] where they find
1825 out of 108 423 materials (or also about 1.7%) of the
materials to be easily or potentially exfoliable. About 2% of
the materials are classified as 1D.

There are also some materials with several components of
different dimensionality. In particular there are 9459 materials
which have one or more 0D components in combination
with components of higher dimensionality. These correspond
to molecules or molecular ions embedded in the higher-
dimensional network. Only a few materials combine 1D, 2D,
and 3D components. We find 15 materials combining 1D
and 2D. There are 22 materials which combine 1D and 3D
components. Three of them are shown in Fig. 5.

While we have made every effort to remove inconsistent
structures from the database, an automated filtering is not
sufficient given the many different types of errors and partial
structures present in the ICSD and COD. The numbers pre-
sented here should therefore be taken as only approximate.

A database containing the calculated scoring parameters
for all dimensionalities for all compounds in the ICSD and
COD is available at the Computational Materials Repository
[23].

D. Physical significance of the scoring parameter

Due to the well-defined identification of the 2D materials,
the scoring scheme also serves as a simple predictor of exfoli-
ability. Mounet et al. [5] have calculated the exfoliation energy
(i.e., the binding energy between layers) of 1535 layered

materials, and they suggest an energy of 35 meV/[QX2 as the
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FIG. 5. Smorgasbord of low-dimensional and mixed-dimensional materials, identified by applying the automatic dimensionality classifi-

cation method to materials in the ICSD.

threshold for “easily exfoliable” materials. They furthermore
highlight 11 materials, which they denote as “well-known” 2D
materials.

In Fig. 6 we show the calculated exfoliation energies versus
the scoring parameter s,. There is a clear correlation between
the scoring parameter and the exfoliation energy with essen-
tially all of the high-scoring materials (say s, > 0.7) having
an exfoliation energy below the threshold. The separation of
materials of different dimensionality is also clearly seen here
by the low density of points in the region s, & 0.3-0.5. The 11
well-known 2D materials are also shown in the figure. All of
them, except Bi, Tes, have high-scoring values with s, > 0.7.
Despite its small interlayer distance, Bi,Tes is nonetheless
classified as a 2D material, since s, is larger than its other
scores.

It should be noted that although the exfoliation energy
is a highly relevant quantity for the exfoliation process, it
is not clear whether an absolute threshold in energy is the

best indicator of exfoliability. The exfoliation process involves
breaking the bonds between the layers keeping the bonds
within the layers intact, so the exfoliation energy should be
seen relative to the intralayer bond strengths. While the scor-
ing parameter proposed here does not explicitly involve the
energetics, the high-scoring materials have a clear separation
between the intra- and intercomponent bond lengths, which
can be expected to be a characteristic of easily exfoliable
materials.

E. Ranking of low-dimensional materials

In addition to dimensionality classification, the scoring
parameter defines an order on materials. We have identified
the ten materials in the ICSD and COD with the highest 2D
scores, shown in Table III. Widely studied layered structures
such as graphene, boron nitride, and magnesium chloride are
highly ranked. Some of the remaining structures have much
larger unit cells, but are nonetheless clearly van der Waals

034003-5



LARSEN, PANDEY, STRANGE, AND JACOBSEN

PHYSICAL REVIEW MATERIALS 3, 034003 (2019)

TABLE I. Number of structures remaining after each stage of
filtering, performed in the order shown. “Defective” structures en-
compass incorrect CIF files and theoretical structures, and manually
identified entries such as misfit compounds, surface structures, and
superstructures. Where duplicate structures are found across the two
databases, the COD structure is kept.

COD ICSD

Removed Remaining Removed Remaining

Initial 400731 184754
>200 atoms 185329 215402 7474 177280
Partial occupancy 49015 166387 75659 101621
Missing hydrogen 1470 164917 7184 94437

Defective 10219 154698 5703 88734

Duplicates 15646 139052 60019 28715

Total remaining 167767

bonded layered structures. It should be noted that the detailed
ordering of the top materials is sensitive to the detailed
choice of the function f(x) in Eq. (3), whereas the overall
classification of the materials is more robust.

Similarly a list of the highest-scoring 1D materials is
provided in Table IV. We shall not discuss these materials in
depth here, but briefly characterize the top five entries with
two or three different chemical elements. For all of these the
one-dimensional or chainlike character has already been rec-
ognized. NPF, consists of chains of alternating nitrogen and
phosphorous atoms with the fluorine atoms bound to the phos-
phorous. The chains can also close on themselves forming
ring-shaped molecules. SOj; is an asbestos-like structure made
up of corner-linked SO, tetrahedra forming spiraling chains,
while the chains in the SiS; structure consists of edge-sharing
tetrahedra. The two ruthenium compounds form chains of
ruthenium atoms. Ru(CO);, is constructed from planar units
with ruthenium in the middle and CO molecules attached with
a fourfold rotation symmetry. These units are then stacked
forming chains of ruthenium. RuCl; is in the B8 phase also
called the ZrCly structure. Here again the ruthenium atoms
form linear chains, but with the chlorine atoms connecting
two adjacent ruthenium atoms. It can be noted that RuCls also
appears as a strongly layered material (s, = 0.933) in the «
phase with prototype RhBr;. We have performed density func-
tional calculations for these highly 1D compounds using the

TABLE II. Number of entries of each dimensionality type found
in the ICSD and COD. In the diagonal the number of materials
with a single dimension are shown while the off-diagonal entries
indicate materials with components of two different dimensionalities.
In addition to the single- and bidimensional materials counted here,
we have found 16 tridimensional structures with 0D, 1D, and 2D
components.

Dimensions 0 1 2 3

0 105199

1 3503 3285

2 2946 15 4623

3 3010 22 0 45148

GPAW code [24,25] and the Atomic Simulation Environment
(ASE) [26,27]. The three compounds NPF,, SO3, and SiS; are
found to be nonmagnetic large band gap semiconductors.

In the two compounds with ruthenium chains the distance
between the ruthenium atoms are in fact comparable to the
bond distance in ruthenium bulk metal. However, the strong
couplings to the attached atoms and molecules lead to opening
of band gaps. According to the DFT calculations Ru(CO); is
nonmagnetic while RuCl; is found to be antiferromagnetic.
Details of the calculations can be found in the Supplemental
Material [28].

The scoring approach also allows for identification of
materials with several components of different dimensionality.
Five of these are shown in Fig. 5. The two 1D+2D materials
and the last two 1D+3D materials all involve alkali atoms
(Na or Li) decorated with water molecules as the 1D com-
ponent. Note that in the case of Na(H,0);(Mn(NCS)3) the
chains penetrate the 2D layers in the framework, while in the
case of NazHP,0O;(H,0)9 the chains run parallel to the 2D
components.

In these materials charge transfer takes place with approx-
imately one electron per alkali atom donated to the 2D or 3D
framework. We have investigated this by performing DFT cal-
culations followed by a Bader analysis, [29,30] where an elec-
tronic charge is associated with each atom based on a natural
per-atom division of the electronic density. For the compounds
Na(H,0)3;(Mn(NCS)3) and Nay(H,0)6Nig(CO3)s(OH)g the
chains consist of Na(H,O);3 units with an electron transfer of
0.85 and 0.90 electrons per unit, respectively. Similarly in the
case of Li(N3)(H,0), the charge transfer is 0.85 per Li(H,0)3
unit. Na;HP,0O7(H,O)y contains chains of Na(H,0O), molec-
ular ions with a charge transfer of 0.80 electrons per unit.

The charge transfer in these systems illustrates that the ge-
ometrically defined scoring parameter does not only identify
components which are exclusively van der Waals bonded to
each other. Charge transfer may take place between spatially
separated components giving rise to bonding of a more ionic
character.

The last compound in Fig. 5 of mixed dimensionality is
Sy9TasP4. It has a very intriguing structure. It consists of
spiraling sulfur chains penetrating a 3D network constructed
of TaPS¢ building blocks. The 3D network itself consists of
two identical interpenetrating components. The ability of Ta-
P-S compounds to form tunnels has previously been reported
[31] and sulfur spirals appear in several compounds. The
present compound does not exhibit any charge transfer be-
tween the components. Figure 7 shows the calculated density
of states for the S,9TasP4 compound projected onto the 1D
and 3D components. The two components are seen to exhibit
different band gaps. This opens the possibility for selectively
exciting electrons in one of the components using light with
an appropriate wavelength.

III. CONCLUSION

We have defined a simple geometric scoring parameter to
identify materials of particular dimensionality. The parameter
provides an estimate of the degree to which a given dimen-
sionality is present in the compound. The parameter is easy
to calculate and can be applied to large materials databases.
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FIG. 6. Binding energies (E}) vs 2D scores for 1535 layered materials identified by Mounet et al. [5], colored according to dimensionality
classification. Structures with E, < 35 rneV/;\2 are classified by Mounet et al. as easily exfoliable. For clarity, 44 01D, five 03D, and four

012D structures are not shown here.

As mentioned in the introduction several computational 2D
materials databases are presently under construction while 1D
materials and materials of mixed dimensionality have received
much less attention. The present approach allows for simple
identification of existing 1D or mixed-dimensional materials,
which can form templates that can be used to construct larger
computational databases for materials of a given dimension-
ality.

IV. METHODS

A. Component dimensionality

A material will in general consist of several clusters of
bonded atoms. Such clusters we term the components of the
material. The components may have different dimensionali-
ties and they should therefore be investigated separately.

Our definition of material dimensionality of a component
is as follows: select an atom in the component, with atomic
coordinates x;. Let X = {xj, X, X3, ..., X;} denote the set of
atoms to which the first atom is bonded, and which have the

TABLE III. Top ten “most 2D” materials in the ICSD and
COD, as ordered by the interval scoring method in Eq. (2). Since
the databases contain many layered polymers with large interlayer
spacings, we have not included structures containing hydrogen in this
list.

same fractional coordinates but in different unit cells, i.e., X; =
x; + CTh;, where C is the unit cell description and h; is an
integer vector. Then, the component dimensionality is the rank
of the subspace spanned by X:

dim(X) = rank({x, — X1, X3 — X1, ..., X, — X1}). &)

This definition (illustrated in Fig. 8) accommodates both
corrugation and thickness. While X is an infinite set for all but
0D components, dim(X) can be determined in a finite number
of steps by exploiting the periodicity of a material.

As described above, determination of the dimension of a
material requires an analysis of its constituent bonded clus-
ters, or components. To find the dimension of a component,
the rank determination algorithm (RDA) of Mounet et al. [5]
uses a supercell of fixed size with open boundary conditions.
If the supercell is too small, the number of components might
be overestimated.

Conversely, the topological scaling algorithm (TSA) of
Ashton et al. [6] uses periodic unit cells, which can underes-
timate the number of components by forming improper con-
nections between them. By improper connections, we mean
components which are disconnected in the infinite crystal but
are connected due to the periodic cell chosen.

TABLE IV. Top ten “most 1D” hydrogen-free materials in the
ICSD and COD, as ordered by the interval scoring method in Eq. (2).

Source ID Compound s ky ky Source 1D Compound K ky k>

COD 1000410 TIAIF, 0987 0.992 2.330 COD 4344111 NPF, 0.984 0.889 2.184
COD 9000046 C 0986 0.933 2251 COD 9010982 SO; 0.983 0.954 2.133
ICSD 27987 BN 0984 0935 2.170 ICSD 72577 Ru(CO), 0.982 0.979 2.095
ICSD 248325 C3Ny 0983 0910 2.155 ICSD 47183 CuCo(CO), 0.980 0.926 2.044
ICSD 187384  Rb(Au(CF3;S03),) 0982 1.010 2.313 ICSD 291211 SiS, 0.967 0.986 1.815
ICSD 163023 Sr((CF3S0,);N), 0.981 1.014 2516 ICSD 22090 RuCl; 0.967 0.940 1.812
COD 1525422 K;5Mn(CN)g 0.980 0.935 2.039 ICSD 415951 V(AICly), 0.965 0.990 1.784
COD 1534338 MgCl, 0.977 0959 1976 ICSD 78778 CrF, 0.964 0.985 1.780
ICSD 161278 B3CoN3 0977 0.965 1.968 ICSD 428185 AIPS, 0.964 0.995 1.771
COD 2242431 Cs(N(SO,CF3),) 0977 0.965 1.968 ICSD 419661 CrFs 0.962 0.996 1.751
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FIG. 7. Density of states projected onto the 1D and 3D com-
ponents of the S,gTasP; compound. The energy is relative to the
valence band maximum (VBM) and the vertical dashed lines indicate
the band edges of the smallest band gap. The electronic spectrum is
calculated using the GLLB-SC exchange-correlation functional.

The problem of improper connections is illustrated with a
contrived example in Fig. 9, which shows the side view of a
selection of periodic helical structures. We define an n-helix
as a structure which has n components, whose jth component
has coordinates given by

C2(t+ )
n——,

27 (t + J)
Xj:Sl S —M88.

yj=co 5)
The number of components is dependent on the size (along the
t axis) of the periodic cell. In the formulation given in Eq. (5)
any integer is a valid cell length.

Figure 9 shows how the number of components changes
with varying cell periodicity. In general, the number of
components for an n-helix with periodicity m is given by
gcd (n,m mod n). In order to avoid improper connections
between components, a periodic cell of size n is needed. This
is further complicated for cells containing multiple n-helices
of different sizes. In this case, the correct size of the periodic
cell is given by lcm (ny, ny, n3, ...), where n; denotes the

FIG. 8. Cut-out of a periodic corrugated 2D component. The
component dimensionality can be found by selecting any atom in
the component, and identifying all other atoms in the bonded cluster
with the same fractional coordinates, shown here in red. The rank of
the subspace spanned by these atoms (here, a plane) determines the
dimensionality.

number of components in the ith n-helix. For example, a
structure containing a 5-helix, a 6-helix, and a 7-helix requires
a periodic cell of length 210. This cell is so large that it is
unlikely that it would be tested using the existing methods.

While the example described here is contrived, self-
penetrating helical networks have been assembled experi-
mentally [32,33]. Furthermore, the problem illustrated has
practical consequences: an incorrect periodic cell (such as
the use of a primitive unit cell) causes the interpenetrating
polymer networks shown in Fig. 5 to be misclassified as 2D
materials.

B. Algorithm

Component dimensionalities can be identified using a mod-
ified breadth-first-search (BFS) algorithm, shown in Algo-
rithm 1. In standard BFS, the search terminates when all
nodes have been visited. Here, we terminate the search when
the rank of the subspace spanned by a component (i.e., the
dimensionality) can no longer increase. The rank of a set of
points is defined as

-1, ifv=40,
ranky, (v — ¥7),

rank(v) = { (6)

otherwise,

where rank,, denotes the standard matrix rank.

In this algorithm, components in the aperiodic primitive
unit cell are the graph vertices, and connections between
components (across unit cell boundaries) are graph edges. We
note that, by definition, no edges exist between components
within the same cell.

The input to the algorithm (line 1) is a set of graph
edges (E) and a component (c) whose dimension we wish to
determine. We maintain a set of visited or seen vertices (line
2) and a set of visited vertices for each of the n components
in the aperiodic primitive unit cell (line 3). A vertex queue is
maintained whose elements consist of a component index and
cell coordinates. The queue is initialized with the component
c in the cell with coordinates O = [0, 0, 0] (line 4). The
algorithm runs until the queue is empty (line 5). The first
element in the queue is extracted and removed (lines 6 and
7). If the element has already been visited it is skipped (line
8); otherwise it is added to the set of visited elements (line 11).
If the addition of the vertex serves to increase the rank of the
set of visited vertices (line 12), it is added to the set (line 13).

New vertices in adjacent cells are generated from the edge
list. For a component i, the edge list E; (line 15) specifies
the neighboring components (j) and the cell offset (&), from
which the coordinates of the neighboring cell can be cal-
culated (line 16). If the neighbor element has already been
visited it is either skipped (line 17), or added to the queue
(line 21) if it serves to increase the rank of the set of visited
vertices (line 20). When the queue is empty, the rank of the
component is returned (line 25).

C. Interval identification

The purpose of the modified method (described in Algo-
rithm 2) is to identify intervals in k in which the dimensional-
ity classification is constant.
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FIG. 9. Improper connections between components in n-helix structures, here for n = 8. The number of components is denoted by n..
The infinite structure contains 8 components. Any number of repetitions, m > 1, of the cell for which m mod 8 # O results in improper

connections between components.

The input to the algorithm (line 1) is the set of all possible
edges, sorted according to their k values, from lowest to
highest. Each element in this set, (k, i, j) € E, contains the
k value of the edge and the indices, i and j, of the vertices
it connects. Periodic boundary conditions must be taken into
account when generating this set. Due to the periodicity this
set is infinitely large; the relevant (finite) subset, however, can
be generated incrementally.

The algorithm proceeds by inserting edges from E into the
graph, one by one (line 5). For every edge in the primitive

Algorithm 1. Pseudocode for calculating component
dimensionality.
1: procedure CALCULATEDIMENSIONALITY(E, ¢)
2 s:=0
3 v:={0J Viel...n}
4 Q:={{c, 0l
5: while Q # ¢ do
6: i, P} :=Q
7 Q:=Q\Q
8: if {i, p} € s then
9: Continue
10: end if
11: s:=sU{i, p}
12: if rank (v; U {p}) > rank (v;) then
13: Vi = V,U{[_j}
14: end if
15: for {j, A} € E; do
16: G=p+A
17: if {j, g} € s then
18: Continue
19: end if
20: if rank (v; U {g}) > rank (v;) then
21: Q:=QU{jq
22: end if
23: end for

24:  end while
25:  return rank (v,)
26: end procedure

cell, the corresponding number of edges are inserted into the
supercell. Connected components in both the primitive cell
and the supercell are identified after each edge insertion (line
6), from which a component histogram is calculated (line 8).
The histogram, h, contains the number of 0D, 1D, 2D, and
3D components present. Prior to any edge insertion, only 0D
components are present, which is reflected in the initial state
of the histogram (line 3). If an edge insertion produces a
change in the component histogram (line 9), the k-interval is
added (line 10) to the set of results (line 4). The algorithm
terminates when the histogram consists only a single 3D
component (line 12). A 3D interval is added to the results (line
13), which implicity contains all uninserted edges in E: once
the dimensionality is fully 3D, no further edge insertions can
change the classification.

The algorithms developed here are included in the ASE
[27] library.

Algorithm 2. Pseudocode for finding all dimensionality
intervals.

1: procedure FINDINTERVALS (E)
2 kprey :=0

3 hprev = [natois 07 0, 0]
4: R=9¢

5: for (k,i, j) € Edo
6 Add edge between vertices i and j
7 Identify connected components

8

: Update h
9: if h # h,,, then
10: R:=RU {(kprev; k, hprev)}
11: end if
12: if h =1[0,0,0, 1] then
13: return R U {(k, co, h)}
14: end if
15: kprey ==k
16: hy., :==h
17: end for

18: end procedure
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