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Abstract

Neutrino oscillation models involving extra mass eigenstates beyond the standard three (3 + N ) are fit 
to global short baseline experimental data. We find that 3 + 1 has a best fit of �m2

41 = 1.75 eV2 with a 
�χ2

null-min (dof) of 52.34 (3). The 3 + 2 fit has a �χ2
null-min (dof) of 56.99 (7). For the first time, we show 

Bayesian credible intervals for a 3 + 1 model. These are found to be in agreement with frequentist intervals. 
The results of these new fits favor a higher �m2 value than previous studies, which may have an impact on 
future sterile neutrino searches such as the Fermilab SBN program.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The well-established discoveries of neutrino mass and three-active-flavor mixing can be phe-
nomenologically incorporated into the Standard Model [1], resulting in a model that we can call 
the “νSM”. This model successfully predicts neutrino oscillations in many experiments. How-
ever, the masses and mixings must be incorporated in an ad hoc manner. This leads one to ask if 
there is more “new physics” in the neutrino sector that is yet to be discovered that can give us a 
clearer picture of the underlying theory.
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A set of 2σ to 4σ anomalies have been observed in short baseline (SBL) oscillation experi-
ments that may indicate new physics. SBL experiments have L/E ∼ 1 m/MeV, where L is the 
distance from the source to the detector and E is the neutrino energy. Anomalies are observed 
from the Liquid Scintillator Neutrino Detector (LSND) experiment [2], the Mini Booster Neu-
trino Experiment (MiniBooNE) [3,4], the collection of SBL reactor experiments (often called the 
“reactor anomaly”) [5,6], and the source calibration data from the gallium-based experiments, 
SAGE and GALLEX [7,8]. Any interpretation must also consider similar SBL experiments that 
have seen no anomalous oscillations (called “null experiments”) [9–18].

Oscillations between active and light sterile neutrinos represent a possible explanation for 
the combination of anomalous and null SBL data sets. Sterile neutrinos are beyond-Standard 
Model, non-weakly-interacting additions to the neutrino family. Introducing these new particles 
extends the number of mass states and expands the mixing matrix [19] in the νSM. This allows 
oscillations with squared mass splittings, �m2, that are large compared to those in the νSM. 
Experimental anomalies suggest a mass scale ∼1 eV2. Models with one (3 + 1), two (3 + 2), and 
three (3 + 3) additional sterile neutrino states are generically called “3 + N” models.

This paper explores the viable parameter space for oscillation models involving sterile neutri-
nos. The most obvious signature of oscillation to sterile neutrinos is disappearance of an active 
flavor. Potential νe → νs signals have been observed in neutrino and antineutrino mode by the 
reactor and gallium-based experiments. A νμ → νs at a compatible �m2 is yet to be observed, 
and we will show that this places strong constraints on the phenomenology. If disappearance 
occurs, then the model also predicts appearance, νμ → νe at the same �m2 value(s). This could 
be consistent with the LSND and MiniBooNE results, which are seen for both neutrinos and 
antineutrinos.

This global fit does not make use of the limits from cosmology. This is because reasonable 
mechanisms can be put forward within cosmology reduce or remove the constraint, as discussed 
in Ref. [20]. Other fitting efforts, such as Refs. [21,22], incorporate cosmological data into a 
Bayesian analysis.

2. 3 + N fits to short baseline data

The νSM model has three massive neutrinos leading to two distinct differences between the 
squared masses, �m2

21 and �m2
32. The 3 × 3 lepton mixing matrix, called the Pontecorvo–

Maki–Nakagawa–Sakata (PMNS) matrix, connects the mass eigenstates to the weak interaction 
eigenstates.

For vacuum oscillations in a 3 +N model, the probability for finding a neutrino in flavor state 
β after propagating a distance L and being produced as a flavor state α is given by [23]

Pαβ = δαβ − 4
∑
j>i

Re[U∗
αiUβiUαjU

∗
βj ] sin2

([
1.27 GeV

eV2 km

]
�m2

jiL

E

)

+ 2
∑
j>i

Im[U∗
αiUβiUαjU

∗
βj ] sin

([
2.54 GeV

eV2 km

]
�m2

jiL

E

)
, (1)

where E is the neutrino energy and �m2
ji = m2

j − m2
i . Furthermore, the corresponding antineu-

trino oscillation probability can be obtained by replacing U → U†.
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2.1. Incorporating sterile neutrinos into the model

The incorporation of one additional neutrino mass state, in order to extend to a 3 + 1 model, 
introduces a third squared mass splitting. This also requires an extension of the PMNS matrix to 
a unitary 4 × 4 matrix:

U3+1 =

⎡
⎢⎢⎢⎢⎣

Ue1 Ue2 Ue3 Ue4
...

... Uμ4
...

... Uτ4
Us1 Us2 Us3 Us4

⎤
⎥⎥⎥⎥⎦ . (2)

This introduces seven new matrix elements, four of which (Us1, . . . , Us4) cannot be directly 
constrained by experiment due to the non-interacting nature of the fourth ‘sterile’ flavor state. 
The matrix is assumed to be unitary, and the magnitude of the new elements can be constrained 
by the current measurements of unitarity of the PMNS matrix [24]. The new degrees of freedom 
can be parameterized by introducing three new neutrino mixing angles θi4 and two new CP

violating phases. Eq. (1) still holds in describing oscillations, but now the indices i, j run up to 4.
Although the 3 + 1 model has three independent squared mass splittings, data indicates that 

two are small compared to the third. The anomalies described in the introduction are all con-
sistent with oscillations corresponding with a squared mass splitting on the order of 1 eV2. The 
two splittings associated with the νSM are on the order of 10−5 eV2 and 10−3 eV2. The effect 
of the two small splittings on an experiment designed to look for O(1 eV2) scale oscillations 
will be negligible. Therefore, we use the short baseline (SBL) approximation, where we as-
sume that the mass eigenstates that participate in the standard oscillations are degenerate (i.e. 
�m2

21 = �m2
32 = 0).

The oscillation probability formula for να → νβ in the 3 + 1 model then reduces to:

Pαβ = δαβ − 4(δαβ − Uα4U
∗
β4)U

∗
α4Uβ4 sin2

([
1.27 GeV

eV2 km

]
�m2

41L

E

)
. (3)

With any particular selection of α and β this can be seen to be equivalent to a simple two neutrino 
model with a mixing amplitude of sin2 2θαβ = |4(δαβ − Uα4U

∗
β4)U

∗
α4Uβ4|.

More generally, for a 3 + N model incorporating N sterile neutrinos, the complex phases of 
U must be taken into account. Let

�αβij = arg(UαiU
∗
βiU

∗
αjUβj ). (4)

A transformation of ν → ν̄ causes � → −� allowing a difference between neutrino and anti-
neutrino oscillations. These are the CP -violating phases. The probability of oscillation for a 
3 + N model can then be written as

P(να → νβ) = δαβ

− 4
∑
j>3

⎛
⎝δαβ −

∑
i≥j

|Uαi ||Uβi | cos�αβij

⎞
⎠ |Uαj ||Uβj | sin2

([
1.27 GeV

eV2 km

]
�m2

ijL

E

)

+ 2
∑
j>3

⎛
⎝δαβ −

∑
i≥j

|Uαi ||Uβi | sin�αβij

⎞
⎠ |Uαj ||Uβj | sin

([
2.54 GeV

eV2 km

]
�m2

ijL

E

)
. (5)
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For N > 1 sterile neutrinos, the SBL experiments are sensitive to the mass hierarchy through 
the non-squared sine term. In the global fit, we assume that the degenerate mass states have the 
lightest mass, i.e. they follow a normal mass hierarchy.

2.2. Improved 3 + N global fitting algorithm

For this analysis, we have rewritten our previous fitting software [19]. Along with converting 
from Fortran to C++, this package has been designed to make the addition of new data sets 
easier, as well as to allow the testing of models beyond the 3 + N presented in this article. Also 
and importantly, we have improved the method of searching the parameter space, which, in our 
previous fits, did not use a standard Markov chain Monte Carlo (MCMC) algorithm. The new 
algorithm for searching the parameter space is based on the affine invariant parallel tempering 
MCMC method used in the Emcee Fitting Package [25]. An MCMC efficiently samples the 
most likely regions of parameter space, whereas a comprehensive scan would be cost-prohibitive. 
Technical details of the new approach appear in the appendix to this paper.

The MCMC explores the parameter space by incremental movements governed by the 
specifics of the algorithm. At each step, a χ2 value is calculated using the standard definition 
for normally distributed data:

χ2 =
(

�p(�θ) − �d
)T

�
(

�p(�θ) − �d
)

, (6)

and a likelihood for Poisson distributed data [26]:

χ2 = 2
n∑
i

[
pi(�θ) − di + di ln

(
di

pi(�θ)

)]
, (7)

where n is the number of bins, �d the observed data, �p(�θ) the model prediction for parameters �θ , 
and � is the covariance.

These χ2 values are saved along with their respective �θ . The algorithm continues until a 
predetermined number of steps have been executed. From this list, the minimum χ2 is found. 
The quantity

�χ2(�θ) = χ2(�θ) − χ2
min, (8)

is found for each saved χ2. These �χ2 values are used to draw the confidence intervals in plots. 
All points that satisfy

�χ2 < CDF−1
χ2 (k,p), (9)

are drawn inside the interval with probability p. Where CDF−1
χ2 is the inverse χ2 distribution 

CDF and k is the number of degrees of freedom. Where there are multiple intervals, they are 
drawn on the plot in descending order of probability. The plot is effectively a marginalization via 
minimization. For a 2D plot, the number of degrees of freedom is thus k = 2.

2.3. 3 + 1 frequentist vs. Bayesian results

In the frequentist treatment (Sec. 2.2), confidence intervals are drawn from the value of the 
�χ2 statistic. For the intervals to be meaningful, the statistic must be correctly χ2 distributed. 
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This may not necessarily be true, especially in the case of neutrino oscillations where the model 
predictions use sinusoidal functions.

Feldman–Cousins [27] provides a technique for drawing meaningful confidence intervals in 
these conditions. However, the method is far too computationally expensive to be used in a global 
fit. Thus, the frequentist intervals in this paper assume that the χ2 statistic is correctly distributed.

It would be advantageous to side-step the issue entirely by avoiding the use of a χ2 statistic. 
This can be done using Bayesian credible intervals.

For experiments with normally distributed data the log-likelihood is defined using the normal 
distribution

lnL(�θ) = −1

2

[
( �p(�θ) − �d)T �( �p(�θ) − �d) + ln |�| + n ln 2π

]
, (10)

and experiments with Poisson distributed data we use,

lnL(�θ) = −
n∑
i

[
pi(�θ) − di ln

(
pi(�θ)

)
+ ln�(1 + di)

]
. (11)

The density of the explored points in parameter space reflects the underlying posterior dis-
tribution π(�θ). An estimate of this posterior is generated from the distribution of walkers with 
temperature β = 1. Typically a certain number of steps at the beginning of each walker chain 
contains information about the walkers starting position. As the ensemble begins to equilibrate, 
this information is lost. The estimate of the posterior should not be polluted by the starting val-
ues, so a certain number of steps from the beginning of the chain is typically ignored. These 
ignored steps are called the “burn sample.”

The α probability credible interval C(α) must satisfy∫
C(α)

π(�θ)d �θ = α. (12)

While there are multiple definitions for C, the most useful when comparing best fits is the highest 
posterior density interval. Here, the interval is the (possibly disjoint) set of points whose posterior 
probability meets a threshold t :

C ∈ {�θ : π(�θ) > t} (13)

where t is constrained by Eq. (12). Intuitively this can be seen as an interval, which starting at 
the mode (i.e. the best fit point), grows to include an area whose integrated probability is exactly 
α and where all points inside the interval have higher probability density than all points outside 
the interval.

In order to present the Bayesian credible intervals, we plot the highest posterior density in-
terval for a probability α, by drawing the samples whose posterior is greater than a threshold 
value t . The value of t is chosen so that the number of samples meeting this criteria is a fraction 
α of the total number of samples [28].

In both the frequentist and Bayesian cases, the MCMC algorithm was run with a uniform prior 
on log10 |Uai |, log10 �m2

4i and log10 �. The positions of the walkers in parameter space was lim-
ited as follows: The matrix elements were required to lie within the space of unitary matrices and 
be larger than 10−6. The phases were required to be less than 2π . Large �m2 parameters require 
much more computing time to evaluate, which slows down the entire ensemble. Therefore, the 
�m2 parameters are required to be between 10−4 eV2 and 104 eV2 for 3 + 1. In the case of 
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Table 1
Data sets used in the fits, including the relevant oscillation process, neutrino vs. antineutrino analyses, appearance vs. dis-
appearance analysis, and the number of bins. See Ref. [19] for more details on each experiment, identified by the “tag.”

Tag Process ν vs. ν̄ Type Nbins

LSND [2] ν̄μ → ν̄e ν̄ App 5
KARMEN [9] ν̄μ → ν̄e ν̄ App 9
KARMEN/LSND(xsec) [11] νe → νe ν Dis 11
BNB-MiniBooNE-ν [3,30] νμ → νe ν App 19
BNB-MiniBooNE-ν̄ [4,31] ν̄μ → ν̄e ν̄ App 19
NuMI-MB(νapp) [10] νμ → νe ν App 10
Bugey [5,6] ν̄e → ν̄e ν̄ Dis 60
Gallium [7,8] νe → νe ν Dis 4
BNB-MiniBooNE/SciBooNE-ν [15] νμ → νμ ν Dis 48
BNB-MiniBooNE/SciBooNE-ν̄ [16] ν̄μ → ν̄μ ν̄ Dis 42
NOMAD [12] νμ → νe ν App 30
CCFR84 [13] νμ → νμ ν Dis 18
CDHS [14] νμ → νμ ν Dis 15
MINOS-CC [17,18] ν̄μ → ν̄μ ν̄ Dis 25

additional sterile neutrinos, this was narrowed to 10−3 eV2 and 103 eV2. Proposed steps outside 
these listed boundaries are penalized with a log-likelihood of −∞.

2.4. The experimental data sets

The full list of experiments included in this study is provided in Table 1. Most data sets used 
in our past analysis [19] have been incorporated into this analysis, however the atmospheric data 
set and a MiniBooNE disappearance data set that were used previously have been replaced by 
the MiniBooNE/SciBooNE joint disappearance analyses, which are more restrictive. A second 
reason to drop the atmospheric constraint was that it assumed no oscillations of electron neutrinos 
in order to obtain the limit, and this is inconsistent with a global fit. Also, the description of the 
LSND experimental result was improved in the code to better represent the published result [2].

The MiniBooNE/SciBooNE data sets in neutrino mode [15] and anti-neutrino mode [16] were 
taken from the public release for each analysis. However, for the neutrino data set, an updated 
covariance matrix was used, along with a cosmic background data set omitted from the data 
release [29].

2.5. Updated fits: 3 + 1

Confidence intervals for the frequentist fits to a 3 + 1 model are shown in Fig. 1, top, middle 
and bottom left. The top row shows fits for appearance (νμ → νe) and disappearance (muon and 
electron flavor) disappearance data sets separately, presented on the sin2 2θμe vs. �m2 plane. 
Note that there is no overlap between the 90% (red) or 99% (blue) confidence level (CL) regions 
when the data sets are divided in this manner. Thus, there is clearly tension between appearance 
and disappearance experiments. The middle row shows the neutrino (left) and antineutrino (right) 
data sets fit separately within a 3 + 1 model. Dividing the data in this manner, there is overlap 
between the two data sets, however the antineutrino data sets are highly restrictive. The global 
fit for all data sets is shown on the bottom left. The quality of the fits is described in Table 2 and 
parameters of the best fit points are provided in Table 3.
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Fig. 1. Frequentist confidence intervals for a 3 + 1 model using appearance only data (top left), disappearance data 
(top right), neutrino data (mid left), anti-neutrino data (mid right), and global data (bottom left). The Bayesian credible 
intervals for 3 + 1 global data are shown bottom right. In these plots, sin2 2θμe = 4|Ue4|2|Uμ4|2. Red indicates 90% CL 
and blue indicates 99% CL. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

The 3 + 1 global fit in Fig. 1 have two 90% allowed regions. This is in contrast to the single 
90% allowed region shown in Ref. [19]. Both share a region at ∼1 eV2, while the new result 
has a region at ∼1.7 eV2. This new region is a consequence of the improved description of 
LSND.
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Table 2
The χ2 values, degrees of freedom (dof) and probabilities associated with the best-fit and null hypothesis in each scenario.

Nbins χ2
min χ2

null �χ2
null-min (dof)

3 + 1
All 315 306.81 359.15 52.34 (3)
App 92 88.04 150.84 62.80 (2)
Dis 223 195.84 208.32 12.48 (3)
ν 155 153.18 164.57 11.39 (3)
ν 157 138.79 194.59 55.8 (3)

3 + 2
All 315 302.16 359.15 56.99 (7)

Table 3
The oscillation parameter best-fit points in each scenario considered. The values of �m2 shown are in units of eV2.

3 + 1 �m2
41 |Ue4| |Uμ4|

All 1.75 0.163 0.117
App 4.75 × 10−2 0.743 0.638
Dis 7.79 0.217 2.94 × 10−2

ν 7.71 0.248 5.67 × 10−2

ν 5.73 0.199 0.140

3 + 2 �m2
41 �m2

51 |Ue4| |Uμ4| |Ue5| |Uμ5| φ54

All 0.475 0.861 0.120 0.177 0.141 0.111 0.0662π

The best fit has moved to the ∼1.7 eV2 region in the new result. This was caused by the 
addition of the SciBooNE/MiniBooNE disappearance analyses. The changes made to the datasets 
is discussed in Sec 2.4. The new best fit agrees with the 3 + 1 short base-line fit presented in 
Ref. [32].

The credible intervals of the Bayesian fit are shown in the bottom right of Fig. 1. The 90% 
Bayesian credible intervals are compatible with the 90% frequentist confidence intervals shown 
in the bottom left plot. We note slightly worse agreement in the 99% credible and confidence 
intervals of these plots, where the �m2 ≈ 5 interval is substantially smaller in the Bayesian 
result.

2.6. Updated fits: 3 + 2

To relieve the tension in the 3 + 1 model, one can move to a 3 + 2 model. The frequentist 
global fit for this result is shown in Fig. 2. This model has 7 parameters, and so we select some 
examples to illustrate the allowed parameter space. Fig. 2, left, shows the space of the two mass 
splittings. The best fit is for the solution where both splittings are less than 1 eV2 (see Table 3). 
However, one can see that in the region of �m2

41 ∼ 1 eV2, there are multiple high �m2 solutions 
that have roughly the same χ2 value. Thus, while our new fit appears at first glance to be a 
dramatic change from Ref. [19], which found best fit values of 3 + 2 of �m2

41 = 0.92 eV2 and 
�m2

51 = 17 eV2, in fact this is actually a small shift of χ2. The previous best fit from Ref. [19]
remains within the allowed region. The �m2 and matrix elements of the best fit point agree with 
the 3 + 2 global short base-line fit shown in Ref. [33].
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Fig. 2. Frequentist confidence intervals for a 3 + 2 model using global data. Left: The parameter space projected into 
the plane of the two mass splittings. Right: �m2

51 vs. the CP violation parameter, �. Red indicates 90% CL and blue 
indicates 99% CL. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

Fig. 2, right, shows the value of �m2
51 as a function of the CP violating parameter. This 

shows that the CP violation parameter can shift over a wide range to accommodate many (�m2
41, 

�m2
51) pairs of solutions. Introducing the CP parameter does not greatly improve the fit, how-

ever. As can be seen from Table 2, the difference in �χ2
null-min for 3 + 1 versus 3 + 2 models is 

about four, while four degrees of freedom were added.

3. Summary and discussion

Using the improved software package, we have presented two new results. First, in a global 
analysis of the SBL data, we find that a 3 + 1 model has a best fit of �m2

41 = 1.75 eV2 with a 
�χ2 (dof) of 52.34 (3) with respect to the null hypothesis. Second, for the first time we have 
demonstrated that our fit results are consistent if one uses a frequentist or a Bayesian approach.

The fact that our new fits favor a ∼2 eV2 solution has interesting implications for the im-
mediate future of sterile neutrino studies. MicroBooNE [34], which has just begun to take data, 
is located on the Booster Neutrino Beamline (BNB) with a peak νμ energy of 700 MeV. The 
170 t detector is located at 470 m from the BNB target. MicroBooNE is directly upstream of the 
800 t MiniBooNE experiment, which is at 540 m from the BNB target. If the 2 eV2 solution of a 
3 + 1 model is correct, then MicroBooNE sits closer to oscillation maximum than MiniBooNE, 
thus predicting a higher signal in MicroBooNE than simple scaling for solid angle and tonnage 
assumes. On the other hand, the ICARUS T600 detector, planned for 600 m from the BNB tar-
get [34], may be poorly located to address this 2 eV2 solution. However, the combination of the 
three SBN detectors [34] including SBND, MicroBooNE, and ICARUS should be able to cover 
the full range of interest for a 3 + 1 sterile neutrino signal, given sufficient statistics.
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Appendix A. Implementation of MCMC

The fitting algorithm used in this study is based on the affine invariant parallel tempering 
Markov chain Monte Carlo (MCMC) method used in the Emcee fitting package [25]. An MCMC 
moves randomly in the parameter space. Each movement is called a step. Before a new step is 
entered into the history of the Markov chain, it must first pass a probabilistic test. The acceptance 
probability is based on a Boltzmann distribution:

e−E(�θ), (14)

where E is the energy of a position �θ in parameter space. This energy is a function of the log-
likelihood of the posterior π(�θ)

E(�θ) = f (lnL(�θ)). (15)

With suitable definitions, the log-likelihood can be related to the χ2 by

lnL(�θ) = −1

2
χ2(�θ). (16)

A set of N seed points are selected randomly in logarithmic parameter space according to 
a uniform distribution. Each seed is the beginning of an independent Markov chain called a 
‘walker’. Collections of these walkers are arranged in groups called ensembles.

The walkers are evolved in a step-wise fashion. At each step, the affine invariant movement 
algorithm is performed on each walker, followed by the parallel tempering swap. In traditional 
Metropolis–Hastings movement the new walker location is chosen based on a multi-variate nor-
mal distribution. The parameters of this distribution need to be chosen in advance. If the shape 
of the distribution does not resemble the underlying posterior then inefficient sampling will re-
sult. In comparison, the affine invariant method [35] only requires the affine scale a to be chosen 
in advance. The movement of the walkers is based on the current ensemble. Hence, any affine 
transformation of a normal distribution will be efficiently sampled.

For a given walker (i), the affine invariant movement randomly selects another walker (j ) in 
the ensemble and attempts to move toward it. The proposed new set of parameters at step n + 1
is

�θi(proposed) = �θj (n) + z [�θj (n) − �θi(n)] (17)

where �θi(n) is the parameters of walker i at step n and z is a step distance which is randomly 
selected according to the distribution

PDF(z) =
{

1√
z

1
a

< z < a

0 otherwise
(18)

Here a is called the affine scale and is set to 2. The new set of parameters are then accepted 
according to the probability

min

[
1, zk−1 e−Ei(�θi (proposed))

e−Ei(�θi (n))

]
, (19)

where k the number of parameters in the model.
The affine invariant method has problems sampling multi-modal distributions. Parallel tem-

pering is a well known MCMC method for sampling multi-modal posterior distributions [36]. 
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Multiple ensembles of walkers are evolved in parallel. Each of these ensembles has its own tem-
perature parameter T = 1/β . The energy function for the walker is then defined as

Ei(�θ) = βi lnL(�θ). (20)

This “flattens” the posterior distribution for ensembles with a large temperature parameter. Walk-
ers in these ensembles have an easier time moving out of a local maximum and exploring the 
space for other potential maxima.

The information from these high temperature ensembles needs to be communicated back to 
the low temperature ensembles so that they can be sampled. This is achieved by occasionally 
swapping the positions of walkers between ensembles. On each step, a swap is performed with 
probability θ = 0.1. Random pairs (i, j) of walkers are selected, with walkers in different en-
sembles. The walkers then swap position with probability

min

[
1,

e−Ei(�θj (n))

e−Ei(�θi (n))

e−Ej (�θi (n))

e−Ej (�θj (n))

]
. (21)
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