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Energy-time uncertainty plays an important role in quantum foundations and technologies, and it was
even discussed by the founders of quantum mechanics. However, standard approaches (e.g., Robertson’s
uncertainty relation) do not apply to energy-time uncertainty because, in general, there is no Hermitian
operator associated with time. Following previous approaches, we quantify time uncertainty by how well
one can read off the time from a quantum clock. We then use entropy to quantify the information-theoretic
distinguishability of the various time states of the clock. Our main result is an entropic energy-time
uncertainty relation for general time-independent Hamiltonians, stated for both the discrete-time and
continuous-time cases. Our uncertainty relation is strong, in the sense that it allows for a quantum memory
to help reduce the uncertainty, and this formulation leads us to reinterpret it as a bound on the relative
entropy of asymmetry. Because of the operational relevance of entropy, we anticipate that our uncertainty
relation will have information-processing applications.
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Introduction.—The uncertainty principle is one of the
most iconic implications of quantum mechanics, stating that
there are pairs of observables that cannot be simultaneously
known. It was first proposed by Heisenberg [1] for the
position q̂ andmomentum p̂ observables and then rigorously
stated by Kennard [2] in the familiar form using standard
deviations: Δq̂Δp̂ ≥ ℏ=2. Robertson [3] later formulated a
similar relation for a different class of observables, namely,
for pairs of boundedHermitian observables X̂ and Ẑ (e.g., the
Pauli spin operators), as ΔX̂ΔẐ ≥ 1

2
jh½X̂; Ẑ�ij. Since then,

many alternative formulations have been proven for similar
Hermitian operator pairs (e.g., Refs. [4,5]).
Unfortunately, these relations do not apply to energy and

time since time does not, in general, correspond to a
Hermitian operator. In particular, Pauli’s theorem states
that the semiboundedness of a Hamiltonian precludes the
existence of a Hermitian time operator, or in other words, if
there was such an operator, then the Hamiltonian would be
unbounded from below and thus unphysical [6]. Hence,
formulating a general energy-time uncertainty relation is a
nontrivial task. We point to Ref. [7] for an overview on time
in quantum mechanics.
Nevertheless, the energy-time pair is of significant

importance both fundamentally and technologically.
Energy-time uncertainty was already discussed by the
founders of quantum mechanics: Bohr, Heisenberg,
Schrödinger, and Pauli (see Ref. [8] for a review). In the

special case of the harmonic oscillator, this pair corre-
sponds to number and phase, and number-phase uncer-
tainty is relevant to metrology [9], e.g., phase estimation in
interferometry. The energy-time pair is arguably the most
general observable pair in the sense that it applies to all
physical systems (i.e., all systems have a Hamiltonian).
Despite the lack of a Hermitian observable associated

with time, relations with the feel of energy-time uncertainty
relations have been formulated. Mandelstam and Tamm
[10] related the energy standard deviation ΔE to the time τ
that it takes for a state to move to an orthogonal state:
τΔE ≥ ðπℏ=2Þ. This relation can be thought of as a speed
limit—a bound on how fast a quantum state can move—
and other similar speed limits have been formulated [11].
Alternatively, it can be thought of as bounding how well a
quantum system acts as a clock, since the time resolution of
the clock is related to the time τ for the system to move to
an orthogonal state.
In this work, we take the clock perspective on time

uncertainty: one’s uncertainty about time corresponds to
how well one can “read off” the time from measuring a
quantum clock. A natural measure for this purpose is to
consider the information-theoretic distinguishability of the
various time states. As such, we propose using entropy to
quantify time uncertainty, and our main result is an entropic
energy-time uncertainty relation.
Entropy has been widely employed in uncertainty rela-

tions for position-momentum [12] and finite-dimensional
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observables [13,14]—see Ref. [15] for a recent detailed
review of entropic uncertainty relations. The key benefits
of entropy as an uncertainty measure are its clear opera-
tional meaning and its relevance to information-processing
applications. Indeed, entropic uncertainty relations form
the cornerstone of security proofs for quantum key dis-
tribution and other quantum cryptographic tasks [15]. They
furthermore allow one to recast the uncertainty principle in
terms of a guessing game, as we do below for energy
and time.
An entropic uncertainty relation for energy and time was

previously given in Ref. [16] by constructing an almost-
periodic time observable and using a so-called almost-
periodic entropy for time. This approach was extended in
Ref. [17], where the Holevo information bound was used to
derive an entropic energy-time uncertainty relation.
However, as indicated in Ref. [16], an almost-periodic
time observable serves as a poor quantum clock for
aperiodic systems. In Ref. [18], the entanglement between
a system and a clock was used to derive an entropic energy-
time uncertainty relation for a Hamiltonian with a uni-
formly spaced spectrum.
In this Letter, we derive entropic energy-time uncertainty

relations for general, time-independent Hamiltonians. We
first derive a relation for discrete and arbitrarily spaced time,
and then we extend this relation to infinitesimally closely
spaced (i.e., continuous) time. Our results apply to systems
with either finite- or infinite-dimensional Hamiltonians.
A novel aspect of our energy-time uncertainty relation is

that it allows the observer to reduce their uncertainty
through access to a quantum memory system, as was the
case in prior uncertainty relations [19]. The two main
benefits of allowing for quantum memory are that (1) it
dramatically tightens the relation when the clock is in a
mixed state, and (2) it makes the relation more relevant to
cryptographic applications in which the eavesdropper may
hold the memory system (e.g., see Ref. [19]). Furthermore,
by allowing for quantum memory, we can reinterpret our
uncertainty relation as a bound on the relative entropy of
asymmetry [20], and we discuss below the implications of
this reinterpretation.
The fact that our uncertainty relation is stated using

operationally relevant entropies implies that it should be
useful for information processing applications. For exam-
ple, if one can distinguish between the time states well, then
it is possible to extract randomness by performing an
energy measurement. True random bits are critical to the
execution of secure protocols and numerical computations.
In this case, the randomness of energy measurement
outcomes is certified by our bound. Entropic uncertainty
relations also find use in proving the security of quantum
key distribution (QKD) protocols [21]. If one party is able
to prepare states in both the phase and number bases of
photons, and if another party is able to perform measure-
ments in these two bases, then both parties can distill a

secret key whose security is guaranteed by our relation.
We provide more details regarding applications in the
Supplemental Material (Appendix A) [22].
Uncertainty relations can be understood in the frame-

work of a guessing game involving two players, Alice and
Bob [15,19], and Fig. 1 shows this game for the energy-
time pair. Bob prepares system A in an arbitrary state ρA
and sends it to Alice. Alice then flips a coin. If she gets
heads, she performs an energy measurement, and Bob then
must guess the outcome (possibly with the help of a
memory system R that is initially correlated to A). If she
gets tails, she applies a time evolution e−iHt in which t is
randomly chosen from some predefined set, and then sends
A back to Bob, who then tries to guess which time t Alice
applied. All of our uncertainty relations can be understood
in terms of this guessing game and can be viewed as
constraints on Bob’s probability of winning this game (i.e.,
guessing both the energy and time correctly). There are
other variations of this energy-time uncertainty guessing
game that are possible, one of which is discussed in the
Supplemental Material (Appendix B) [22].
In what follows, we give some necessary preliminaries

before stating our main result for the Rényi entropy family
in the discrete-time case, and then we extend to the
continuous-time case for the von Neumann entropy.
Finally, we apply our relation to an illustrative example
of a spin-1=2 particle.
Preliminaries.—We begin by considering a finite-dimen-

sional HamiltonianH that acts on a quantum system A, and
suppose that it has NE ∈ Zþ real energy eigenvalues taken
from a set E ⊂ R. We thus write the Hamiltonian as
HA ¼ P

ε∈EεΠε
A, where Πε

A denotes the projector onto
the subspace spanned by energy eigenstates with eigen-
value ε. The projectors obey ΠεΠε0 ¼ Πεδε;ε0, where δε;ε0 ¼
1 if ε ¼ ε0 and δε;ε0 ¼ 0 otherwise.
We now recall how to encode the classical state of a

clock into a quantum system. Inspired by the Feynman-
Kitaev history state formalism [33–35], as well as the

(1)

(2) Bob 
estimates

time t

Energy
measurement Bob guesses

measurement
outcome

(3)

Alice Bob

FIG. 1. Guessing game for energy-time uncertainty. (1) Bob
prepares a quantum clock in the state ρA and sends it to Alice.
(2) Alice flips a coin and (3) either measures the clock’s energy or
randomly sets the clock’s time (i.e., applies a time evolution e−iHt

with t randomly chosen from a predefined set). Bob’s goal is to,
depending on Alice’s coin flip, guess the clock’s energy or guess t
by reading the clock. Our uncertainty relations constrain Bob’s
ability to win this game.
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quantum time proposal of Ref. [36], we introduce a register
T for storing the time, which can be interpreted as a
background reference clock. A measurement on the time
register is treated in this framework as a time measurement.
Let T ¼ ft1;…; tKg denote a set of times, for integer
K ≥ 2, such that tk ∈ R for all k ∈ f1;…; Kg, and
t1 ≤ t2 ≤ … ≤ tK. We suppose that the register T has a
complete, discrete, and orthonormal basis fjtkigKk¼1. The
time values need not be evenly spaced, which means that
the basis for register T can include any combination of
jT j ¼ K distinct and orthonormal kets.
Now consider a clock system A that may initially be

correlated to a memory system R, together in a joint state
ρAR with ρA ¼ TrRðρARÞ. Let random variable E capture the
outcomes of an energy measurement on the system A. The
outcomes can be stored in a classical register, which we
also denote without ambiguity by E in what follows. To
quantify energy uncertainty, we employ the Rényi condi-
tional entropy SαðEjRÞ (defined below) of the classical-
quantum state

ωER ≡X
ε∈E

jεihεjE ⊗ TrAfΠε
AρARg; ð1Þ

where the kets fjεigε∈E are orthonormal, obeying hε0jεi ¼
δε0;ε, and thus serve as classical labels for the energies of the
Hamiltonian. To quantify the time uncertainty, we employ
the Rényi conditional entropy SαðTjAÞ of the following
classical-quantum state:

κTA ≡ 1

jT j
XK
k¼1

jtkihtkjT ⊗ e−iHtkρAeiHtk : ð2Þ

In the above and henceforth, we set ℏ ¼ 1. The state κTA
can be interpreted as the joint state of system A (the local
quantum clock) and the background reference clock T, at
an unknown time tk ∈ T chosen according to the uniform
distribution. Equivalently, this state can be understood as a
time-decohered version of the Feynman-Kitaev history
state [33–35], the latter of which has the entire history
of the state ρAðtÞ encoded and entangled with a time
register in superposition. The classical-quantum states in
Eqs. (1) and (2) are in one-to-one correspondence with the
following labeled ensembles, respectively:

fpðεÞ; jεihεjE ⊗ TrAfΠε
AρARg=pðεÞgε∈E ;

f1=jT j; jtkihtkjT ⊗ e−iHtkρAeiHtkgtk∈T ;
where pðεÞ ¼ TrfΠε

AρARg.
Rényi entropies.—For a probability distribution fpjg,

the Rényi entropies are defined for α ∈ ð0; 1Þ ∪ ð1;∞Þ by
SαðfpjgÞ ¼ ½1=ð1 − αÞ�log2

P
jp

α
j , and for α ∈ f0; 1;∞g

in the limit. This entropy family is generalized to quantum
states via the sandwiched Rényi conditional entropy [37],
defined for a bipartite state ρAB with α ∈ ð0;∞� as

SαðAjBÞρ ¼ −inf
σB
DαðρABkIA ⊗ σBÞ; ð3Þ

where the optimization is with respect to all density
operators σB on system B. The quantity SαðAjBÞρ is in
turn defined from the sandwiched Rényi relative entropy of
a density operator ξ and a positive semi-definite operator ζ,
which is defined for α ∈ ð0; 1Þ ∪ ð1;∞Þ as [37,38]

DαðξkζÞ ¼
1

α − 1
log2Tr½ðζð1−αÞ=2αξζð1−αÞ=2αÞα�: ð4Þ

If α > 1 and the support of ξ is not contained in the support
of ζ, then it is defined to be equal to þ∞. The quantity
DαðξkζÞ is defined for α ∈ f1;∞g in the limit.
Entropic energy-time uncertainty relation.—Let us now

state our uncertainty relation for energy and time. For a
pure state ρA ¼ jψihψ jA uncorrelated with a reference
system R, it is as follows:

SαðTjAÞκ þ SβðfpðεÞgÞ ≥ log2jT j; ð5Þ

holding for all α ∈ ½1=2;∞�, with β satisfying 1=αþ
1=β ¼ 2, where pðεÞ ¼ hψ jΠε

Ajψi. The above inequality
[Eq. (5)] is saturated, e.g., when jψi is an energy eigenstate.
Such states also maximize the time uncertainty, SαðTjAÞκ ¼
log2 jT j, since they are stationary states.
The concavity of entropy and concavity of conditional

entropy [39] then directly imply that the same inequality in
Eq. (5) holds for a mixed state uncorrelated with a reference
system R. However, if ρA is a maximally mixed state, the
inequality in Eq. (5) yields a trivial bound on the total
uncertainty. This is because the inequality does not capture
the inherent uncertainty of the initial state.
One of our main results remedies this deficiency,

capturing the inherent uncertainty mentioned above and
holding nontrivially for mixed states:

SαðTjAÞκ þ SβðEjRÞω ≥ log2jT j: ð6Þ

The entropic energy-time uncertainty relation in Eq. (6)
holds for all α ∈ ½1=2;∞�, where β satisfies 1=αþ
1=β ¼ 2, with the proof given in the Supplemental
Material [22] (Appendix C). The quantity SαðTjAÞκ rep-
resents the uncertainty about the time tk from the perspec-
tive of someone holding the A system of the state κTA in
Eq. (2). The quantity SβðEjRÞω, which is determined by the
state ρAR and the Hamiltonian HA, represents the uncer-
tainty about the outcome of an energy measurement from
the perspective of someone who possesses the R system of
the state ωER in Eq. (1). In the case that ρAR is pure, then the
quantity SβðEjRÞω is determined by the reduced state ρA
and the Hamiltonian HA. According to Eq. (6), a good
quantum clock state ρA, for which SαðTjAÞκ ≈ 0, neces-
sarily has a large uncertainty in the energy measurement, in
the sense that SβðEjRÞω ≳ log2 jT j. Conversely, a state with
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a small uncertainty in the energy measurement, i.e.,
SβðEjRÞω ≈ 0, is necessarily a poor quantum clock state,
i.e., SαðTjAÞκ ≈ log2 jT j.
Note that the uncertainties in Eq. (6) are entropic and

hence do not quantify the uncertainties of time and energy
in their units, but rather the amount of information (in bits)
that we do not know about the respective quantities. For
example, if a system can equally likely take on one of two
energies E1 and E2, then the entropic uncertainty in energy
constitutes only one bit, and it does not depend on the
magnitudes of E1 or E2. Each entropy in Eq. (6) is
analogous to a guessing probability, which quantifies
how well one can guess the time t given the state ρAðtÞ,
or the energy given the ability to measure a memory system
R. In fact, SαðAjBÞ converges to the negative logarithm of
the guessing probability as α → ∞ [37,40].
Considering the special case of jT j ¼ 2, one finds a

simple, yet interesting corollary of Eq. (6): under the
Hamiltonian HA, a quantum state ρA can evolve to a
perfectly distinguishable state, only if SβðEjRÞω ≥ 1 for
β ∈ ½1=2;∞�. In other words, for SβðEjRÞω < 1, the
orthogonalization time τ in the Mandelstam-Tamm bound
is infinite, which cannot be seen using Mandelstam-Tamm
or other standard quantum speed limits.
By means of a quantum memory, one can also reduce the

time uncertainty instead of only reducing the energy
uncertainty. This can be accomplished by considering the
memory system R to be a bipartite system R1R2. One can
then write the uncertainty relation in Eq. (6) as follows:

SαðTjAR1Þκ þ SβðEjR2Þω ≥ log2jT j; ð7Þ
with full details given in the Supplemental Material [22]
(Appendix D). This shows that the tightening of Eq. (5) to
give Eq. (6) using quantum memory can reduce the
uncertainties in both energy and time. We note that this
rewriting is achieved only by relabeling systems, and is thus
a consequence of our earlier result in Eq. (6).
An important special case of Eq. (6) is α ¼ β ¼ 1 where

both entropies are the von Neumann conditional entropy.
This results in the following entropic uncertainty relation:

SðTjAÞκ þ SðEjRÞω ≥ log2 jT j; ð8Þ
where the von Neumann conditional entropy of a bipartite
state τCD can be written as SðCjDÞτ ¼ −Tr½τCD log2 τCD�þ
Tr½τD log2 τD�. In fact, we show in Appendix E of the
Supplemental Material [22] that the following equality
holds for the von Neumann case when ρAR is pure:

SðTjAÞκ þ SðEjRÞω ¼ log2jT j þD

�
κAk

X
ε

ΠερAΠε

�
:

As discussed in the Supplemental Material (Appendix E)
[22], when ρAR is pure, equality in Eq. (8) is achieved
[equivalently, DðκAk

P
εΠερAΠεÞ ¼ 0] if and only if

1

jT j
XK
k¼1

e−iHtkρAeiHtk ¼
X
ε

ΠερAΠε: ð9Þ

One way to satisfy Eq. (9) is if ½ρA;H� ¼ 0, and hence
the relation is tight for states ρA that are diagonal in the
energy eigenbasis. Another way to satisfy Eq. (9) is if
ð1=jT jÞPK

k¼1 e
iðε−ε0Þtk ¼ δε;ε0 for all combinations of ε, ε0.

If the jT j times are equally spaced, this implies that
eiðε−ε0ÞtK ¼ 1 and ðε − ε0ÞtK ¼ 2π. This can be understood
as an exact inverse relationship between the conjugate
variables, which is a signature of a saturated uncertainty
relation.
Equation (8) can be generalized to nonuniform proba-

bilities for the various times. As shown in the Supplemental
Material (Appendix E) [22], the right-hand side of Eq. (8)
gets replaced by the entropy SðTÞκ of the time distribution
for this generalization.
Relative entropy of asymmetry formulation.—As shown

in the Supplemental Material (Appendix F) [22], an
alternative way of stating our main result in Eq. (6) is
by employing the sandwiched Rényi relative entropy of
asymmetry [41], which generalizes an asymmetry measure
put forward in Ref. [20]:

SαðTjAÞκ þ inf
σ∶½H;σ�¼0

DαðρkσÞ ≥ log2jT j; ð10Þ

and holds for all α ∈ ð0;∞�. The inequality in Eq. (10)
delineates a trade-off, given the Hamiltonian H, between
how well a state ρA can serve as a quantum clock and the
asymmetry of ρA with respect to time translations.
Moreover, this connection is exact for pure states.
In the limit α → 1, the quantity infσ∶½H;σ�¼0DαðρkσÞ

reduces to the relative entropy of asymmetry [20]

lim
α→1

inf
σ∶½H;σ�¼0

DαðρkσÞ ¼ inf
σ∶½H;σ�¼0

DðρkσÞ

≡ ΓHðρÞ ¼ SðΔðρÞÞ − SðρÞ; ð11Þ

where the quantum relative entropy is defined asDðρkσÞ≡
Tr½ρ½log2 ρ − log2 σ�� [42] and ΔðρÞ ¼ P

ε∈EΠερΠε (in the
context of asymmetry, the function SðΔðρÞÞ − SðρÞ was
first studied in Ref. [43]). Then the entropic uncertainty
relation in Eq. (10) reduces to SðTjAÞκ þ ΓHðρÞ ≥ log2jT j.
Extension to continuous time.—We now extend

the uncertainty relation in Eq. (6) so that it is applicable
to continuous, as opposed to discrete, time, and to
Hamiltonians with countable spectrum. From Eq. (6) and
Ref. [44], we derive an inequality applicable to the von
Neumann entropies. Full details are available in the
Supplemental Material (Appendix G) [22]. Consider time
to be continuous in the interval ½0; TF�. Given a state ρA and
a Hamiltonian HA ¼ P

ε∈EεΠε
A, with E countably infinite,

we then have that
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inf
σ∶½H;σ�¼0

DðρAkσÞ þ sðTjAÞ ≥ log2TF: ð12Þ

For a continuously parametrized ensemble of states fpðxÞ;
ρxBgx∈X , the differential conditional quantum entropy
sðXjBÞ is defined as sðXjBÞ ¼ −

R
X dxDðpðxÞρxBkρavgÞ,

where ρavg ¼
R
X dxpðxÞρxB [44]. For our case, this means

sðTjAÞ ¼ −
Z

TF

0

dtDðρðtÞ=TFkρ̄Þ;

ρ̄ ¼ 1

TF

Z
TF

0

dt e−iHtρAeiHt:

Example: Spin in a magnetic field.—Consider a spin-1=2
particle in a magnetic field B ¼ Bẑ. This is described by
the Hamiltonian Ĥ ¼ κσz, where κ is a constant propor-
tional to B, and σz is the z-Pauli operator. Consider a pure
state ρA ¼ jψð0Þihψð0Þj that makes an angle θ with the z
axis of the Bloch sphere, given by jψð0Þi ¼ cosðθ=2Þj0iþ
sinðθ=2Þj1i. After a time t, this state evolves to
jψðtÞi ¼ e−iHtjψð0Þi. Figure 2 plots the variation of the
uncertainty (time, energy, and total uncertainty) with θ for
both our discrete- and continuous-time relations. For
θ ¼ π=2, the energy uncertainty is maximal (one bit) while
the time uncertainty is minimal (although still nonzero in
this example). At the other extreme, for θ ¼ 0 or π, the
energy uncertainty is zero while the time uncertainty is
maximal (one bit), meaning that the clock’s time states
cannot be distinguished. One can see in Fig. 2 that our
uncertainty relation is tight in this extreme case.
Discussion.—We gave a conceptually clear and opera-

tional formulation of the energy-time uncertainty principle.

We stated an entropic energy-time uncertainty relation for
the Rényi entropies for discrete time sets. This relation was
strengthened for mixed states by allowing the observer to
possess a quantum memory, a feature that also allowed us
to reinterpret our relation as a bound on the relative entropy
of asymmetry. For the von Neumann entropy, we extended
our uncertainty relation to continuous time sets. Our
relation is saturated for all states ρA diagonal in the energy
eigenbasis.
Expressed in terms of entropies, which are operationally

important in information theory, our result should have uses
in various tasks. Entropic uncertainty relations have been
used previously to certify randomness and prove security of
quantum cryptography protocols, and we believe our result
will be an important tool used to develop such protocols
further.
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