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1 Introduction

Calabi-Yau manifolds play a central role in string theory; these geometric spaces can de-

scribe extra dimensions of space-time in supersymmetric “compactifications” of the theory.

The analysis of Calabi-Yau manifolds has been a major focus of the work of mathematicians

and physicists since this connection was first understood [1]. Nonetheless, it is still not

known whether the number of distinct topological types of Calabi-Yau threefolds is finite

or infinite. A large class of Calabi-Yau threefolds can be described as hypersurfaces in toric

varieties; these were systematically classified by Kreuzer and Skarke [2, 3] and represent

most of the explicitly known Calabi-Yau threefolds at large Hodge numbers.

A specific class of Calabi-Yau manifolds that are of particular mathematical and phys-

ical interest are those that admit a genus one or elliptic fibration (an elliptic fibration

is a genus one fibration with a global section). Elliptically fibered Calabi-Yau manifolds

have additional structure that makes them easier to understand mathematically, and they

play a central role in the approach to string theory known as “F-theory” [4–6]. Genus

one fibrations are also relevant in F-theory in the context of discrete gauge groups, as de-

scribed in e.g. [7–11]; see [12, 13] for further background and references on this and other

F-theory-related issues. Unlike the general class of Calabi-Yau threefolds, it is known that

the number of distinct topological types of elliptic and genus one Calabi-Yau threefolds is

finite [14] (See also [15] for earlier work that laid the foundation for this proof, and [16] for

a more constructive and explicit argument for finiteness). In recent years, an increasing

body of circumstantial evidence has suggested that in fact a large fraction of the known

Calabi-Yau manifolds admit an elliptic or genus one fibration. A direct analysis of the

related structure of K3 fibrations for many of the toric hypersurface constructions in the

Kreuzer-Skarke database was carried out in [17], demonstrating directly the prevalence of

fibrations by smaller-dimensional Calabi-Yau fibers among known Calabi-Yau threefolds.

The study of F-theory has led to a systematic methodology for constructing and classifying

elliptic Calabi-Yau threefolds [18–23]. Comparing the structure of geometries constructed

in this way to the Kreuzer-Skarke database shows that at large Hodge numbers, virtually

all Calabi-Yau threefolds that are known are in fact elliptic. In a companion paper to this

one [24], we use this approach to show that all Hodge numbers with h1,1 or h2,1 greater

or equal to 240 that arise in the Kreuzer-Skarke database are realized explicitly by ellip-

tic fibration constructions over toric or related base surfaces. Finally, from a somewhat

different point of view the analysis of complete intersection Calabi-Yau manifolds and gen-

eralizations thereof has shown that these classes of Calabi-Yau threefolds and fourfolds are

also overwhelmingly dominated by elliptic and genus one fibrations [25–30].

In this paper we carry out a direct analysis of the toric hypersurface Calabi-Yau man-

ifolds in the Kreuzer-Skarke database. There are 16 reflexive 2D polytopes that can act as

fibers of a 4D polytope describing a Calabi-Yau threefold; the presence of any of these fibers

in the 4D polytope indicates that the corresponding Calabi-Yau threefold hypersurface is

genus one or elliptically fibered. We systematically consider all polytopes in the Kreuzer-

Skarke database that are associated with Calabi-Yau threefolds with one or both Hodge

numbers at least 140. We show that with only four exceptions these Calabi-Yau threefolds
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all admit an explicit elliptic or more general genus one fibration that can be seen from the

toric structure of the polytope. We furthermore find that for toric hypersurface Calabi-Yau

threefolds with small h1,1, the fraction that lack a genus one or elliptic fibration decreases

roughly exponentially with h1,1. Together these results strongly support the notion that

genus one and elliptic fibrations are quite generic among Calabi-Yau threefolds.

The outline of this paper is as follows: in section 2 we describe the 16 types of toric

fibers of the polytope that can lead to a genus one or elliptic fibration of the hypersurface

Calabi-Yau and our methodology for analyzing the fibration structure of the polytopes. In

section 3, we give our results on those Calabi-Yau threefolds with the largest Hodge numbers

that do not admit an explicit elliptic or genus one fibration in the polytope description, as

well as some results on the distribution of fiber types and multiple fibrations. In section 4

we discuss some simple aspects of the likelihood of the existence of fibrations and compare

to the observed frequency of fibrations in the KS database at small h1,1. Section 5 contains

some concluding remarks.

Along with this paper, we are making the results of the fiber analysis of polytopes in

the Kreuzer-Skarke database associated with Calabi-Yau threefolds having Hodge numbers

h1,1 ≥ 140 or h2,1 ≥ 140 available in Mathematica form [31].

2 Identifying toric fibers

A fairly comprehensive introductory review of the toric hypersurface construction and how

elliptic fibrations are described in this context is given in the companion paper [24], in

which we describe in much more detail the structure of the elliptic fibrations for Calabi-

Yau threefolds X with very large Hodge numbers (h1,1(X) ≥ 240 or h2,1(X) ≥ 240). Here

we give only a very brief summary of the essential points.

2.1 Toric hypersurfaces and the 16 reflexive 2D fibers

The basic framework for understanding Calabi-Yau manifolds through hypersurfaces in

toric varieties was developed by Batyrev [32]. A lattice polytope ∇ is defined to be the

set of lattice points in N = Zn that are contained within the convex hull of a finite set of

vertices vi ∈ N . The dual of a polytope ∇ is defined to be

∇∗ = {u ∈MR = M ⊗ R : 〈u, v〉 ≥ −1, ∀v ∈ ∇}, (2.1)

where M = N∗ = Hom(N,Z) is the dual lattice. A lattice polytope ∇ ⊂ N containing

the origin is reflexive if its dual polytope is also a lattice polytope. When ∇ is reflexive,

we denote the dual polytope by ∆ = ∇∗. The elements of the dual polytope ∆ can

be associated with monomials in a section of the anti-canonical bundle of a toric variety

associated to ∇. A section of this bundle defines a hypersurface in ∇ that is a Calabi-Yau

manifold of dimension n− 1.

When the polytope ∇ has a 2D subpolytope ∇2 that is also reflexive, the associated

Calabi-Yau manifold has a genus one fibration. There are 16 distinct reflexive 2D polytopes,

listed in appendix A. These fibers are analyzed in the language of polytope “tops” [33]
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in [34]. The structure of the genus one and elliptic fibrations associated with each of these

16 fibers is studied in some detail in the F-theory context in [35–37].

Of the 16 reflexive 2D polytopes listed in appendix A, 13 are always associated with

elliptic fibrations. This can be seen, following [36], by observing that the anticanonical

class −K2 of the toric 2D variety associated with a given ∇2 is
∑
Ci where Ci are the

toric curves associated with rays in a toric fan for ∇2. The intersection of the curve Ci

with the genus one fiber associated with the vanishing locus of a section of −K2 is thus

Ci · (−K2) = 2 +Ci ·Ci, so Ci defines a section associated with a single point on a generic

fiber only for a curve of self-intersection Ci · Ci = −1. The three fibers F1, F2, F4 are

associated with the weak Fano surfaces P2,F0 = P1 × P1, and F2 = P2[1, 1, 2], which have

no −1 curves, while the other 13 fibers Fi all have −1 curves. Thus, polytopes ∇ with any

fiber ∇2 that is Fn, n /∈ {1, 2, 4} give CY3s with elliptic fibrations, while those ∇ with only

fibers of types F1, F2, F4 are genus one fibered but may not be elliptically fibered.

The basic goal of this paper is a systematic scan through the Kreuzer-Skarke database

to determine which reflexive polytopes associated with Calabi-Yau threefolds that have

large Hodge numbers or small h1,1 have toric reflexive 2D fibers that indicate the existence

of an elliptic or genus one fibration for the associated Calabi-Yau threefold. Note that this

analysis only identifies elliptic and genus one fibrations that are manifest in the polytope

structure. As discussed further in section 4, a more comprehensive analysis of the fibration

structure of a given Calabi-Yau threefold can be carried out using methods analogous to

those used in [30].

2.2 Algorithm for checking a polytope for fibrations

We use a similar algorithm to that we used in [24] to check for reflexive 2D fibers of a

4D reflexive polytope. Except for a small tweak to optimize efficiency, this is essentially

the approach outlined in [36]. The basic idea is to check a given polytope for each of the

possible 16 reflexive subpolytopes. For a given polytope ∇ and potential fiber polytope

∇2, we proceed in the following two steps:

1. To increase the efficiency of the analysis we start by determining the subset S of the

lattice points in ∇ that could possibly be contained in a fiber of the form ∇2, using

a simple criterion. For each fixed fiber type ∇2, there is a maximum possible value

Imax of the inner product v(F ) ·m for any v(F ) ∈ ∇2,m ∈ ∆2. For example, for the

2D P2,3,1 polytope (F10), Imax = 5. The values of Imax for each of the reflexive 2D

polytopes ∇2 are listed in appendix A. When ∇2 is a fiber of ∇, which implies that

there is a projection from ∆ to ∆2, Imax is also the maximum possible value of the

inner product v(F ) ·m for any m ∈ ∆. Thus, we define the set S to be the set of lattice

points v ∈ ∇ such that v ·m ≤ Imax for all vertices m of ∆. Particularly for polytopes

∇ that contain many lattice points, generally associated with Calabi-Yau threefolds

with large h1,1, this step significantly decreases the time needed for the algorithm.

2. We then consider each pair of vectors v, w in S and check if the intersection of ∇ with

the plane spanned by v, w consists of precisely a set of lattice points that define the 2D
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polytope ∇2. If such a pair of vectors exists then ∇ has a fiber ∇2 and the associated

Calabi-Yau threefold has an elliptic fibration structure defined by this fiber type.

In practice, we implement these steps directly only to check for the presence of the

minimal 2D subpolytopes F1, F2, F4 within a 2D plane; all the other 2D reflexive polytopes

contain the points of F1 as a subset (in some basis). These three cases use the values Imax =

2, 1, 3 respectively as shown in appendix A. The three minimal 2D polytopes do not contain

any other 2D reflexive polytopes, and it requires a minimal number of linear equivalence

relations among the toric divisors to check if these minimal polytopes are present as a

subset of the points in ∇ that are in a plane defined by a non-colinear pair v, w ∈ S:

• F1: −(v + w) ∈ S

• F2: −v,−w ∈ S

• F4: −(v + w)/2 ∈ S

We could in principle use this kind of direct check to determine the presence of the larger

subpolytopes as well, though this becomes more complicated for the other fibers and we

proceed slightly more indirectly. After identifying all the 2D planes that are spanned by

non-colinear pairs v, w and contain one of the three minimal 2D subpolytopes, we calculate

the intersection of the 4D polytope with the 2D plane to obtain the full subpolytope that

contains the minimal 2D subpolytope. This intersection can be determined by identifying

all lattice points x ∈ ∇ that give rise to a 4 × 4 matrix of rank two with another three

non-colinear vectors in the 2D plane. Note that this intersection must give a 2D reflexive

polytope, since there can only be one interior point in the 2D fiber polytope as any other

interior point besides the origin would also be an interior point of the full 4D polytope,

which is not possible if the 4D polytope is reflexive.

Let us call the sets of subpolytopes containing F1, F2, and F4 respectively S1,S2, and

S4. We can then efficiently determine which fiber type arises in each case by some simple

checks. Observing that all the 2D polytopes other than the three minimal ones contain the

F1 polytope, we immediately have

• {∇F2
2 } = S2 \ S1,

• {∇F4
2 } = S4 \ S1.

Then we group the fibers associated with the rest of the 2D polytopes, which are all in S1,
by the number of lattice points:

• 5 points: F3

• 6 points: F5, F6

• 7 points: F7, F8, F9, F10

• 8 points: F11, F12

– 5 –
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C2 ord σn=1,2,3,4,(5),6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

−3 {1, 1, 1, 2, (2), 2} 3 4 4 3 5 4 6 4 5 3 4 5 3 4 4 3

−4 {1, 1, 2, 2, (3), 3} 3 4 4 3 5 4 6 4 5 3 4 5 3 4 4 3

−5 {1, 2, 2, 3, (3), 4} 3 2 2 1 3 1 2 2 2 1 2 2 3

−6 {1, 2, 2, 3, (4), 4} 3 2 2 1 3 1 2 2 2 1 2 2 3

−7 {1, 2, 3, 3, (4), 5} 2 1 1 1 1 2

−8 {1, 2, 3, 3, (4), 5} 2 1 1 1 1 2

−9 {1, 2, 3, 4, (4), 5} 1

−10 {1, 2, 3, 4, (4), 5} 1

−11 {1, 2, 3, 4, (5), 5} 1

−12 {1, 2, 3, 4, (5), 5} 1

−13 {1, 2, 3, 4, (5), 6}

Table 1. Curves C with self-intersection C · C that are allowed in the base of a stacked F -fibered

polytope for the 16 fiber types F . The numbers below the labels of the 16 fiber types count the

numbers of the vertices of F that give vertex stacked-form fibrations where the corresponding curve

can appear in the base. (Note that −3 and −4 curves are allowed in all cases, so the first and

second rows give the total number of the vertices of a given fiber, and the most negative curve that

can occur for a given fiber corresponds to the position of the last non-empty entry in the column.)

The second column gives the orders of vanishing of σn ∈ O(−nK) along C, n = 1, 2, 3, 4, (5), 6

(none of the fibered polytopes has O(−nK) for either n ≥ 7 or n = 5). A (4, 6) singularity arises

along the whole curve unless there exists a section σn ∈ O(−nK) such that ordC(σn) < n. The

existence of such a section depends on the fiber type and the specified vertex of the base used for

the stacking. Curves with −13 ≤ C · C ≤ −3 are considered (while curves C2 ≥ −2 are always

allowed since {ordC(σn)|n = 1, 2, 3, 4, (5), 6} = {0, 0, 0, 0, (0), 0}, there is always a (4,6) singularity

along the whole curve when C2 ≤ −13 since ordC(σn) = n for all n = 1, 2, 3, 4, 5, 6).

• 9 points: F13, F14, F15

• 10 points: F16

This immediately fixes the fibers F3 and F16. To distinguish the specific fiber types for

the remaining four groups a number of approaches could be used. We have simply used a

projection to compute the self-intersections of each curve in a given fiber and the sequence

of these self-intersections. (Note that in a toric surface, the self intersection of the curve

associated with the vector vi is m, where vi−1 + vi+1 = −mvi.) By simply counting the

numbers of −2 curves we can identify F5−13. Finally, F14, F15 have the same numbers of

curves of each self-intersection, so we use the order of the self-intersections of the curves in

the projection to distinguish these two subpolytopes.

2.3 Stacked fibrations and negative self-intersection curves in the base

In the companion paper [24], we have found that at large Hodge numbers many of the poly-

topes in the KS database belong to a particular “standard stacking” class of P2,3,1 fiber type

– 6 –



J
H
E
P
0
3
(
2
0
1
9
)
0
1
4

m −3 −4 −5 −6 −7 −8 −9 −10 −11 −12 −13

min(n) 2 2 3 3 4 4 6 6 6 6 -

Table 2. For each m, the minimal value of n such that a section σn ∈ O(−nKB) exists preventing

(4, 6) points over a curve of self-intersection m. Note that since there are no σ5s in any cases (see

the third column in table 8), min(n) jumps from 4 to 6 between m = −8 and m = −9.

(F10) fibrations over toric base surfaces, which are F10 fibrations where all rays in the base

are stacked over a specific vertex vs of F10. This simple class of fibrations corresponds natu-

rally to Tate-form Weierstrass models over the given base, which take the form y2 +a1yx+

a3y = x3 +a2x
2 +a4x+a6. In this paper we systematically consider the distribution of dif-

ferent fiber types, and also analyze which of the P2,3,1 fibrations are of the “standard stack-

ing” type. As background for these analyses, we describe in this section the more general

“stacked” form of polytope fibrations and perform some further analysis of which stacked fi-

bration types can occur over bases with curves of given-intersection; since certain fibers can-

not arise in fibrations over bases with extremely negative self-intersection curves (at least in

simple stacking fibrations), this helps to explain the dominance of P2,3,1 fibers at large h1,1.

2.3.1 Stacked fibrations

As discussed in more detail in [24, 38], the presence of a reflexive fiber F = ∇2 ⊂ ∇ gives

rise to a projection map π : ∇ → Z2, where π(F ) = 0, associated with a genus one or

elliptic fibration of the Calabi-Yau hypersurface X over a toric complex surface base B.

The “stacked” form of a fibration refers to a polytope in which the rays of the base all have

pre-images under π that lie in a plane in ∇ passing through one of the points in the fiber

polytope ∇2. Specifically, a polytope ∇ that is in the stacked form can always be put into

coordinates so that the lattice points in ∇ contain a subset

{(v(B)
i )1,2; (v

(F )
s )1,2)|v(B)

i ∈{vertex rays in ΣB}}∪{(0,0,(v(F )
i )1,2)|v(F )

i ∈{vertices of ∇2}},
(2.2)

where ΣB is the toric fan of the base B and v
(F )
s is a specified point of the fiber subpolytope

∇2. We refer to such polytopes as v
(F )
s stacked F -fibered polytopes.

In some contexts it may be useful to focus attention on the stacked fibrations where

the point v
(F )
s is a vertex of ∇2, as these represent the extreme cases of stacked fibrations,

and have some particularly simple properties.1 We can refer to these as “vertex stacked”

fibrations. The standard P2,3,1 fibrations discussed in [24] (sometimes there called “stan-

dard stacking” fibrations) refer to the cases of stacked fibrations where the fiber is F10 and

the specified stacking point is the vertex v
(F )
s = (−3,−2).2 These are based on a standard

type of construction in the toric hypersurface literature (see e.g. [39]). As described in

detail in [24], in the case of a standard stacking, the monomials in ∆ match naturally with

1In particular, the analysis of section 6.2 of [24] can be easily generalized to show that a fibration has

a vertex stacking on v
(F )
s ∈ ∇2 iff there is a single monomial over every point in the dual face of ∆2 and

these monomials all lie in a linear subspace of ∆.
2Note that in [24], we have a different convention for P2,3,1 which uses slightly different coordinates from

those one we use here, so that the vertex in the notation of that paper is v
(F )
s = (2, 3).
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the set of monomials in the Tate-form Weierstrass model. Generalizing this analysis gives

bounds on what kinds of curves can be present in the base supporting a stacked fibration

with different fiber types.

2.3.2 Negative curve bounds

For any stacked fibration with a given fiber type F and specified point v
(F )
s for the stack-

ing, the monomials in the dual polytope ∆ are sections of various line bundles O(−nKB).

By systematically analyzing the possibilities we see that many fibers cannot be realized in

stacked fibrations over bases with curves of very negative self-intersection without giving

rise to singularities in the fibration over these curves that go outside the Kodaira classifi-

cation and have no Calabi-Yau resolution.

We analyze this explicitly as follows. To begin with, the lattice points of the dual

polytope ∆ of an F -fibered polytope ∇ are of the form

{((m(2))1,2; (m
(F )
j )1,2)|m(F )

j ∈ ∆
(F )
2 ; (m(2))1, (m

(2))2 ∈ Z} , (2.3)

where ∆
(F )
2 is one of the 16 dual subpolytopes that are given in detail in appendix B. For

a given base B, we have the condition

m(2) · v(B)
i ≥ −n, ∀i⇔ m(2) gives a section in O(−nKB) . (2.4)

Given that ((v
(B)
i )1,2, (v

(F )
s )1,2) ∈ ∇ for all i in a fibration that has the “stacked” form (2.2),

the reflexive condition m · v ≥ −1,m ∈ ∆, v ∈ ∇ implies that a lattice point m =

((m(2))1,2, (m
(F )
j )1,2) ∈ ∆ gives a section in O(−(v

(F )
s · m(F )

j + 1)KB). (See figure 1 for

examples with the F10 fiber type, using the three different vertices v
(F )
s of ∇2 as the spec-

ified points for three different stackings, including the “standard stacking” in which the

monomials over the different lattice points in ∆2 correspond to sections an of different line

bundles in the Tate-form Weierstrass model.) Note that the lattice points in ∆ that project

to the same lattice point in ∆2 always give sections that belong to the same line bundle,

since the line bundle depends only on m
(F )
j .

This shows that the allowed monomials in any polytope dual to a stacked fibration con-

struction over a base B take values as sections of various line bundles O(−nKB). For each

vertex v
(F )
s of the 2D polytope ∇2, and for each fiber type F , the number of lattice points

in ∆2 corresponding to the resulting line bundle O(−nK) is listed in the third column in

table 8. For points v
(F )
s in ∇2 that are not vertices, the numbers of such points will inter-

polate between the vertex values; the largest values of n are found from vertex stackings.

The line bundles in which the monomials take sections place constraints on the struc-

ture of the base. The order of vanishing of a section σn ∈ O(−nKB) over a generic point

in a rational curve C with self-intersection m = C · C ≤ −3 is3

ordC(σn) =

⌈
n(m+ 2)

m

⌉
. (2.5)

3This calculation can be simply done by using the Zariski decomposition, along the lines of [18].
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The orders of vanishing {ordC(σn)|n = 1, 2, 3, 4, (5), 6} for each m, −3 ≥ m ≥ −13, are

listed in the second column in table 1. Note that none of the 16 fiber types gives a section

of O(−5KB) (see the third column in table 8).

For a Weierstrass model, where the coefficients f, g are sections of the line bundles

O(−4KB) and O(−6KB), the Kodaira condition that a singularity have a Calabi-Yau

resolution is that f, g cannot vanish to orders 4 and 6. For the more general class of

fibrations we are considering here, the necessary condition is that at least one section

σn=1,2,3,4,(5),6 exists with ordC(σn) < n. This condition is necessary so that when the

sections are combined to make a Weierstrass form, the resulting f, g give either a section

in O(−4KB) or a section in O(−6KB), respectively, whose order of vanishing does not

exceed 4 or 6. Note that as the absolute value |m| of the self-intersection of the curve C

increases, the minimal n that satisfies ordC(σn) < n is non-decreasing. The minimum value

min(n) so that this condition is satisfied is listed for each m in table 2. Therefore, given

a fiber type F with a specified point v
(F )
s , the allowed negative curves in the base that are

allowed for a stacking construction using the point v
(F )
s that gives a resolvable Calabi-Yau

construction are such that the following two conditions are satisfied: the existence of a

section σn=1,2,3,4, or 6 such that (1) σn ∈ O(−(v
(F )
s ·m(F )

j + 1)KB) and (2) ordC(σn) < n.

For each fiber type ∇2, we have considered the stacking constructions over each vertex.

The most negative self-intersection curve that is allowed in the base for each fiber type is

tabulated in the last non-empty entry in the corresponding column in table 1, and a v
(F )
s

that gives rise to stacked fibrations in which the most negative curve is allowed, and the

corresponding line bundles associated with lattice points in ∆2 are given in appendix B.

Note that since for any lattice point in ∆2, the largest value of n such that for any choice of

stacking point v
(F )
s the corresponding points in ∆ are sections of O(−nKB) arises from a

vertex, it is sufficient to consider the maximum n across the possible choices of vertices v
(F )
s .

This analysis shows that any polytope that has the stacked form with a given fiber

type F gives a genus one fibration over a base B in which the self-intersection of the curves

has a lower bound given by the last nonempty entry in the corresponding column of table 1.

For the fiber F10, this bound is more general. It is not possible to find any elliptic fibration

with a smooth Calabi-Yau resolution over a base that contains curves of self-intersection

C · C < −12. While we have not proven it for polytopes that do not have the stacking

form described here, it seems plausible to conjecture that the bounds on curves in the base

for each fiber type given in table 1 will also hold for arbitrary fibrations (i.e. for general

“twists” of the fibration that do not have the stacking type). We have not encountered

any cases in our analysis that would violate this conjecture. And it is straightforward

to see using the analysis done here already that these curve bounds will still hold when

there is a coordinate system where each ray of the base has a pre-image living over some

ray vF ∈ ∇2, even when these rays are not all the same v
(F )
s as in the stacking case,

since the bound applying for each curve will match that of some choice of v
(F )
s . If the more

general conjecture is correct, then, for example, it would follow in general that any reflexive

polytope with a fiber F4 can only have curves in the base of self-intersection ≥ −8, those

with a fiber F1 can only have curves in the base of self-intersection ≥ −6, etc. We leave,

however, a general proof of this assertion to further work.
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2.4 Explicit construction of reflexive polytopes from stackings

In [24], we showed that the standard stacking construction with the fiber P2,3,1, combined

with a large class of Tate-form Weierstrass tunings, can be used to explicitly construct

a large fraction of the reflexive polytopes in the Kreuzer-Skarke database at large Hodge

numbers. The stacking construction with other fibers can be used similarly to construct

other reflexive polytopes in the KS database.

Explicitly, given the negative curve bounds on the base determined above, we can

construct a stacked F -fibered polytope over B as follows, following a parallel procedure

to that described in [24] for the P2,3,1-fibered standard stackings: given a fiber F with

a specified ray v
(F )
s , and a smooth 2D toric base B in which the self-intersections of all

curves are not lower than the negative curve bound associated with v
(F )
s , we start with the

minimal fibered polytope ∇̃ ⊂ N (which may not be reflexive) that is the convex hull of

the set in equation (2.2). If ∇̃ is reflexive, then we are done; otherwise we adopt the “dual

of the dual” procedure used in [24] to resolve ∇̃: define ∆◦ = convex hull((∇̃)∗ ∩M). As

long as the negative curve bound is satisfied (no (4, 6) curves), ∆◦ is a reflexive polytope,

and the resolved polytope in N is ∇ ≡ (∆◦)∗.

Explicit examples of F -fibered polytopes over Hirzebruch surfaces Fm are given in

table 8, for each fiber type F . The base Fm is in each case chosen such that −m saturates

the negative curve bound associated with the specific vertex v
(F )
s for a given fiber type

(see appendix B for the possible choices of v
(F )
s for each fiber type that allow the most

negative self-intersection curves in the base). For example, the standard stacked P2,3,1-

fibered polytopes considered in [24] have bases stacked over the vertex (−3,−2) of the

fiber F10 in appendix A, and there exist sections in O(−nKB) for n = 1, 2, 3, 4, 6 (see figure

(c) in table 1), so models in this class correspond naturally to the Tate-form Weierstrass

models where an = σn, and the negative curve bound is −12. The model listed in table 8

is the generic elliptically fibered CY over F12.

The construction just described above gives the minimal reflexive F -fibered polytope

over B that contains the set in equation (2.2). While the F10 fiber type with v
(F )
s = (−3,−2)

gives the most generic elliptic Calabi-Yau over any given toric base B through this con-

struction, using the other fiber types or the other specified points of F10 for stacked stacking

polytopes give models with enhanced symmetries (these can include discrete, abelian, and

non-abelian symmetries). Further tunings of the polytope analogous to Tate-tunings for

the standard P2,3,1 polytope can reduce ∆ and enlarge ∇, giving a much larger class of

reflexive polytopes for Calabi-Yau threefolds. The explicit construction of the polytopes

corresponding to Tate tuned models via polytope tunings of the standard F10-fibered poly-

tope with v
(F )
s = (−3,−2) were discussed in section 4.3.3 and appendix A in [24]. We have

not attempted systematic polytope tunings for the other fiber types, but in principle one

can work out tuning tables analogous to the Tate table for the other fiber types.

3 Results at large Hodge numbers

We have systematically run the algorithm described in section 2.2 to check for a manifest

elliptic or genus one fibration realized through a reflexive 2D fiber for each polytope in
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v
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s = (1, 0) v

(F )
s = (0, 1) v
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(-0KB)
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(-1KB)

(-1KB)
-1 1

-1

1
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(-0KB)(-0KB)

(-3KB)

(-1KB)

(-2KB)

(-0KB)

(-1KB)
-1 1

-1

1

2

(-0KB)(-6KB)

(-0KB)

(-4KB)

(-2KB)

(-3KB)

(-1KB)
-1 1

-1

1

2

(a) (b) (c)

Figure 1. Different choices of the point v
(F )
s used to specify a stacking construction are associated

with different “twists” of the F -fiber bundle over the base B. The different choices of v
(F )
s for

a given fiber type give rise to monomials in the dual polytope that are sections of different line

bundles over the base, illustrated here for three different choices of v
(F )
s as vertices of the fiber

F10 = P2,3,1. In the stacking construction, each lattice point in ∆2 is associated with a line bundle

O(−(v
(F )
s ·m(F )

j + 1)KB),m
(F )
j ∈ ∆2. The dashed lines are normal to the corresponding v

(F )
s . The

lattice points in ∆2 on the same dashed line are associated with sections of the same line bundle

over the base. (cf. the F10 data in table 1 and table 8.)

the Kreuzer-Skarke database that gives a Calabi-Yau threefold X with h1,1(X) or h2,1(X)

greater or equal to 140. The number of polytopes that give rise to Calabi-Yau threefolds

with h1,1 ≥ 140 is 248305. Since the set of reflexive polytopes is mirror symmetric (Hodge

numbers h1,1, h2,1 are exchanged in going from∇ ↔ ∆), this is also the number of polytopes

with h2,1 ≥ 140. (Note, however, that the mirror of an elliptic Calabi-Yau threefold is not

necessarily elliptic.) There are 495515 polytopes with at least one of the Hodge numbers at

least 140, and from these numbers it follows that the number of polytopes with both Hodge

numbers at least 140 is 1095. While as described in section 2.2, we have made the algorithm

reasonably efficient for larger values of h1,1, our implementation in this initial investigation

was in Mathematica, so a complete analysis of the database using this code was impractical.

We anticipate that in the future a complete analysis of the rest of the database can be

carried out with a more efficient code, but our focus here is on identifying the largest

values of h1,1, h2,1 that are associated with polytopes that give Calabi-Yau threefolds with

no manifest elliptic fiber. In section 4 we analyze the distribution of fibrations at small h1,1.

3.1 Calabi-Yau threefolds without manifest genus one fibers

Of the 495515 polytopes analyzed at large Hodge numbers, we found that only four lacked

a 2D reflexive polytope fiber, and thus the other 495511 polytopes all lead to Calabi-Yau

threefolds with a manifest genus one fiber. The Hodge numbers of the four Calabi-Yau
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Figure 2. The four Hodge pairs in the region h1,1 ≥ 240 or h2,1 ≥ 240 associated with polytopes

without reflexive 2D subpolytopes associated with genus one (including elliptic) fibers.

threefolds without a manifest genus one fiber are

(h1,1, h2,1) = (1, 149), (1, 145), (7, 143), (140, 62) . (3.1)

(See figure 2.) It is of course natural that any Calabi-Yau threefold with h1,1 = 1 cannot be

elliptically fibered; by the Shioda-Tate-Wazir formula [40], any elliptically fibered Calabi-

Yau threefold must have at least h1,1 = 2, with one contribution from the fiber and at least

one more from h1,1 of the base, which must satisfy h1,1(B) ≥ 1. We also expect that any

genus one fibered CY3 will have at least a multi-section [7, 8], so h1,1 ≥ 2 in these cases

for similar reasons.

The examples (1, 145) and (1, 149) are the only Hodge numbers from polytopes in

the Kreuzer-Skarke database with h1,1 = 1, h2,1 ≥ 140. Note that the quintic, with Hodge

numbers (1, 101), is another example of a Calabi-Yau threefold with h1,1 = 1 that has no

elliptic or genus one fibration.

We list here the polytope structure of the two examples from (3.1) that have h1,1 > 1,

in the form given in the Kreuzer-Skarke database. M refers to the numbers of lattice points

and vertices of the dual polytope ∆, while N refers to the numbers of lattice points and

vertices of the polytope ∇, and H refers to the Hodge numbers h1,1 and h2,1. The vectors

listed are the vertices of the polytope in the N lattice. The numbers in parentheses for

each polytope refer to the position in the list of polytopes in the Kreuzer-Skarke database

that give CY3s with those specific Hodge numbers.

• M:196 5 N:10 5 H:7,143 (1st/54)

Vertices of ∇: {(−1,4,−1,−2),(−1,−1,1,1),(1,−1,0,0),(−1,−1,0,1),(−1,−1,0,3)}
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• M:88 8 N:193 9 H:140,62 (6th/255)

Vertices of ∇: {(−1,2,−1,4),(−1,0,4,−1),(1,−1,−1,−1),(−1,−1,−1,19),

(−1,−1,5,1),(−1,1,0,−1),(−1,1,−1,−1),(−1,−1,−1,−1),(−1,−1,5,−1)}

Note that we have not proven that these Calabi-Yau threefolds do not have elliptic

or genus one fibers, we have just found that such fibers do not appear in a manifest form

from the structure of the polytope. We leave for further work the question of analyzing

non-toric elliptic or genus one fibration structure of these examples, or others with smaller

Hodge numbers that also lack a manifest genus one fiber; such an analysis might be carried

out using methods similar to those of [30].

3.2 Calabi-Yau threefolds without manifest elliptic fibers

Of the 495515 polytopes analyzed, only 384 had fibers of only types F1, F2, F4. These

cases are associated with genus one fibered Calabi-Yau threefolds that have no manifest

toric section, and therefore are not necessarily elliptically fibered. Note that we have not

proven that these Calabi-Yau threefolds do not have elliptic fibers; in fact, many toric

hypersurface Calabi-Yau threefolds have been found to have non-toric fibrations [36]. It

would be interesting to study these examples further for the presence of non-toric sections.

The largest values of h2,1 and h1,1 for these genus one fibered Calabi-Yau threefolds

without a manifest toric section are realized by the examples:

• M:311 5 N:15 5 H:11, 227 (1st/19)

Vertices of ∇: {(−1,0,4,−3),(−1,2,−1,0),(1,−1,−1,1),(−1,0,−1,1),(−1,0,−1,3)}

• M:(80; 81; 81; 82) 8 N:(263; 262; 261; 260) 9 H:194, 56 ((7th; 8th; 9th; 10th)/52)

Vertices of ∇:

– 7th {(−1,0,4,−1),(−1,2,−1,−1),(1,−1,−1,−1),(−1,−1,−1,−1),(−1,−1,6,−1),

(−1,1,0,6),(−1,−1,−1,28),(−1,1,−1,10),(−1,−1,6,0)},

– 8th {(−1,0,4,−1),(−1,2,−1,−1),(1,−1,−1,−1),(−1,−1,−1,−1),(−1,−1,6,−1),

(−1,1,0,6),(−1,−1,−1,28),(−1,0,−1,19),(−1,−1,6,0)},

– 9th {(−1,0,4,−1),(−1,2,−1,−1),(1,−1,−1,−1),(−1,−1,−1,−1),(−1,−1,5,−1),

(−1,1,0,6),(−1,−1,−1,28),(−1,1,−1,10),(−1,−1,5,4)},

– 10th {(−1,0,4,−1),(−1,2,−1,−1),(1,−1,−1,−1),(−1,−1,−1,−1),(−1,−1,5,−1),

(−1,1,0,6),(−1,−1,−1,28),(−1,0,−1,19),(−1,−1,5,4)}

The fiber type F4 is the only fiber that arises in these five polytopes. In the first case,

with Hodge numbers (11, 227), the base of the elliptic fibration is the Hirzebruch surface F8.

Analysis of the F-theory physics of the genus one fibration associated with this polytope
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suggests that there should in fact be an elliptic fiber with a non-toric global section.4 For

further work, it would be nice to prove this and find the non-toric section explicitly. Further

analysis of the F-theory physics of the other cases may also be interesting, as well as the

question of whether these threefolds admit elliptic fibrations that are not manifest in the

toric description.

3.3 Fiber types

The numbers of distinct polytopes in the regions h1,1, h2,1 ≥ 140 that have each fiber type

(not counting multiplicities) are

F1 F2 F3 F4 F5 F6 F7 F8

612 1 1279 40218 32 19907 20 8579

F9 F10 F11 F12 F13 F14 F15 F16

2067 487387 24811 850 27631 2438 273 58

In appendix C, we have included a set of figures that show the distribution of polytopes

containing each fiber type, according to the Hodge numbers of the associated Calabi-Yau

threefolds. We have shaded the data points of Hodge pairs varying from light to dark with

increasing multiplicities; two factors contribute to the multiplicity in these figures: the

multiplicity of the polytopes associated with the same Hodge pair and the multiplicity of

fibers of the same type for a given polytope (note that the latter multiplicity is not included

in the numbers in the table above). We discuss multiple fibrations in the next subsection.

We can see some interesting patterns in the distribution of polytopes with different fiber

types. As discussed in section 2.3, at least for polytopes with the stacked fibration form,

the only fiber type that can arise over a base with a curve of self-intersection less than −8 is

the P2,3,1 (F10) fiber (see table 1). From the graphs in appendix C, it is clear that this fiber

dominates at large Hodge numbers. The other fiber types that can arise over a base with a

curve of self-intersection less than −6 are F4, F13 (with two possible specified vertices) and

F6, F8, F11 (with only one specified vertex). The Hodge numbers of Calabi-Yau threefolds

coming from polytopes with fiber types F4, F6, F8 extend to h1,1 = 263, and F11 extends

to h1,1 = 377; in fact, the right most data point of the fiber types F4, F6, F8, F9, F12, F15 is

the same: {263, 23}, and the right most data point of the fiber types F11 and F14 is the

same: {377, 11}. The fiber F13 also continues out to the largest values of h1,1 as F10 does.

Since the largest value of h1,1 for a generic elliptic fibration over a toric base B containing

4In the F-theory analysis, we consider the Jacobian fibration associated with the F4 fibration. This is an

elliptic fibration with a section, for which a detailed analysis shows that there are no further enhanced non-

abelian gauge symmetries. There are, however, 150 nodes in the I1 component of the discriminant locus in

the base. Since the generic elliptic fibration model over F8 has Hodge numbers (10, 376), this analysis sug-

gests that there should be an additional section in this case, which should correspond to a non-toric section

in the original polytope and in the Jacobian model would give rise to a U(1) abelian factor where the 150

nodes correspond to matter fields charged under the U(1); the anomaly cancellation condition is satisfied for

the resulting Jacobian model, matching with the shift in Hodge numbers (10, 376)+(1, 1−150) = (11, 227).
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no curves of self-intersection < −8 is 224 [19, 20, 24], these large values of h1,1 for fibers

other than F10 must involve tuning of relatively large gauge groups.

For h1,1 > 377 the only fibers that arise are F10 and F13. In fact, the Calabi-Yau three-

fold with the largest h1,1, which has Hodge numbers (491, 11), has two distinct fibrations:

one has the standard P2,3,1 fiber over the 2D toric base {−12// − 11// − 12// − 12// −
12//−12//−12//−12//−12//−12//−12//−12//−12//−12//−12//−11//−12, 0},
represented by the self-intersection numbers of the toric curves, where // stands for the

sequence −1,−2,−2,−3,−1,−5,−1,−3,−2,−2,−1; the other fibration has the fiber F13

over the base {−4,−1,−3,−1,−4,−1,−4,−1,−4, 0, 2}. We leave a more detailed analysis

of the alternative fibration of this Calabi-Yau threefold for future work.

On the other hand, the fiber F2, which is most restricted, arises from only one ∇
polytope, with multiplicity one: M:40 6 N:186 6 H:149,29, which also has two different F10

subpolytopes.

These observations tell us that, as we might expect, h1,1 extends further for the fiber

subpolytopes that admit more negative curves in the base. Almost half of the fiber types

do not arise for any polytopes at all in the region h2,1 ≥ 140: F2, F5, F7, F12, F14, F15, and

F16. None of these is allowed over any base with a curve of self-intersection less than −6

(at least in the stacking construction of section 2.3).

3.4 Multiple fibrations

Another interesting question is the prevalence of multiple fibrations. This question was

investigated for complete intersection Calabi-Yau threefolds in [29, 30], where it was shown

that many CICY threefolds have a large number of fibrations. In the toric hypersurface

context we consider here, a polytope can have both multiple fibrations by different fiber

types and by the same fiber type. In this analysis, as in the rest of this paper, we consider

only fibrations that are manifest in the toric description. We have found that the total

number of (manifest) fibrations in a polytope in the two large Hodge number regions ranges

from zero to 58. The total numbers of fibrations and the number of polytopes that have

each number of total fibrations are listed in table 3.

In some cases the number of fibrations is enhanced by the existence of automorphism

symmetries of the polytope. While a generic polytope has no symmetries, some polytopes

with large numbers of fibrations also have many symmetries. In such cases the number of

inequivalent fibrations can be smaller than the total number of fibrations. This issue is

also addressed in [30, 35]. There are 16 polytopes in the region h1,1 ≥ 140 or h2,1 ≥ 140

with a non-trivial action of the automorphism symmetry on the fibers. We list these 16

polytopes in appendix D.1. For example, the polytope giving a Calabi-Yau with Hodge

numbers (149, 1) has an automorphism symmetry of order 24, associated with an arbitrary

permutation on 4 of the 5 vertices of the polytope. This automorphism symmetry group

is described in detail in appendix D.2; the number of distinct classes of fibrations modulo

automorphisms in this case is reduced to only 8 instead of 58.

The polytopes that we have found with a large total number of (manifest) fibrations

are generally in the large h1,1 region; in fact, polytopes in the large h2,1 region have at

most three fibrations:
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# fibrations 0 1 2 3 4 5 6

# polytopes 4 327058 113829 34657 11414 4466 1955

(4) (327058) (113829) (34659) (11418) (4465) (1952)

# fibrations 7 8 9 10 11 12 13

# polytopes 1003 501 251 150 70 42 32

(1003) (503) (251) (149) (71) (42) (32)

# fibrations 14 15 16 17 18 20 22

# polytopes 31 4 14 6 9 2 6

(31) (4) (14) (6) (8) (2) (6)

# fibrations 23 25 26 31 34 37 58

# polytopes 2 1 2 1 1 3 1

(1) (1) (2) (1) (1) (2) (0)

Table 3. Table of the number of polytopes in the large Hodge number regions h1,1, h2,1 ≥ 140 that

have a given number of distinct (manifest) fibrations. Numbers in parentheses are after modding

out by automorphism symmetries (see text, appendix D).

# total fibrations 0 1 2 3

# polytopes with large h2,1 3 240501 7775 26

The four polytopes with the two largest numbers of total fibrations (58, 37 without modding

out by automorphisms) are respectively

{{7, 5, 201, 5, 149, 1, 296}, {0, 0, 12, 12, 0, 0, 0, 0, 0, 12, 0, 0, 15, 0, 3, 4}}

and

{{7, 5, 196, 5, 145, 1, 288}, {0, 0, 0, 6, 0, 6, 0, 0, 0, 12, 0, 0, 9, 3, 0, 1}}
{{8, 6, 195, 7, 144, 2, 284}, {0, 0, 0, 6, 0, 6, 0, 0, 0, 12, 0, 0, 9, 3, 0, 1}},
{{9, 7, 192, 10, 144, 4, 280}, {0, 0, 0, 0, 0, 9, 0, 0, 0, 15, 3, 0, 6, 3, 0, 1}},

where the numbers are in the format

{{# lattice points of ∆, # vertices of ∆, # lattice points of ∇, # vertices of ∇,

h1,1, h2,1, Euler Number},{#F1,#F2,. . .,#F16}}.

Note that the first two polytopes are, respectively, the mirrors of the first two polytopes

(with h1,1 = 1) without any fibrations in equation (3.1).

We also note that in general, the polytopes with larger numbers of total manifest fi-

brations fall within a specific range of values of h1,1 and h2,1 (at least in the ranges we
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# total fibrations ≥ 8 9 10 11 12

h1,1 range [140,272] [140,243] [140,243] [140,214] [140,208]

h2,1 range [1, 19] [1, 19] [1, 16] [1, 16] [1, 12]

13 14 15 16 17

[140, 208] [140, 208] [140, 208] [140, 208] [141, 173]

[1, 11] [1, 9] [1, 8] [1, 8] [1, 7]

18 20 22 23 25

[141, 173] [141, 173] [141, 173] [141, 165] [141, 154]

[1, 7] [1, 6] [1, 6] [1, 5] [1, 5]

26 31 34 37 58

[141, 149] [141, 149] [141, 149] [144, 149] [149, 149]

[1, 5] [1, 5] [1, 4] [1, 4] [1, 1]

Table 4. Ranges of Hodge numbers in which the polytopes with the largest numbers of fibrations

(not including automorphisms) are localized.

have studied here). The ranges of h1,1 and h2,1 of the polytopes that have 8 or more fi-

brations (without considering automorphisms) are listed in table 4. It may be interesting

to note that in a somewhat different context, it was found in [41] that a large multiplicity

of elliptically fibered fourfolds arises at a similar locus in the space of Hodge numbers,

at intermediate values of h1,1 and small values of h3,1 (which counts the number of com-

plex structure moduli, as does h2,1 for Calabi-Yau threefolds). It would be interesting to

understand whether these observations stem from a common origin.

It is also interesting to note that while every Calabi-Yau threefold with h1,1 > 335 or

h2,1 > 256 has more than one fibration, the polytopes associated with the largest values of

h1,1 have precisely two manifest fibrations, and the average number of fibrations at large

h1,1 is close to 2. In figure 3, we show the average number of fibrations for the polytopes

associated with Calabi-Yau threefolds of Hodge numbers h1,1 ≥ 140.

The maximal number of fibrations for each specific fiber type in a polytope is

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16

4 1 12 12 2 9 1 4 4 15 4 2 15 6 3 4

(4) (1) (6) (8) (2) (9) (1) (4) (4) (15) (4) (2) (9) (6) (3) (1)

Numbers in parentheses are after modding out by automorphism symmetries; for example,

the maximal number of F16 fibers, which comes from the polytope associated with the

Hodge pair (149,1), reduces from four to one (see the last row of the table in appendix D.1).
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Figure 3. Average number of fibrations for polytopes associated with Calabi-Yau threefolds with

h1,1 ≥ 140.

If we count the distinct fiber types in a polytope, we find that the maximum number

of fiber types that a polytope in the large Hodge number regions can have is eight. The

eight polytopes that have the maximum number of eight distinct fiber types are

{{11, 6, 199, 6, 151, 7, 288}, {0, 0, 2, 1, 0, 0, 0, 2, 0, 3, 2, 0, 2, 1, 1, 0}},
{{12, 7, 193, 8, 146, 8, 276}, {0, 0, 2, 1, 0, 0, 0, 2, 0, 3, 2, 0, 2, 1, 1, 0}},
{{12, 8, 201, 11, 153, 6, 294}, {0, 0, 2, 0, 0, 2, 0, 0, 0, 3, 2, 2, 1, 1, 0, 1}},
{{13, 8, 198, 10, 151, 7, 288}, {0, 0, 1, 1, 0, 0, 0, 1, 0, 2, 2, 1, 1, 1, 0, 0}},
{{15, 8, 192, 12, 143, 11, 264}, {0, 0, 2, 2, 0, 1, 0, 2, 0, 3, 1, 0, 1, 0, 1, 0}},
{{14, 9, 184, 12, 140, 8, 264}, {0, 0, 0, 1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 0, 0, 0}},
{{14, 9, 192, 12, 146, 8, 276}, {0, 0, 1, 1, 0, 0, 0, 1, 0, 2, 2, 1, 1, 1, 0, 0}},
{{16, 9, 191, 13, 143, 11, 264}, {0, 0, 1, 1, 0, 1, 0, 1, 0, 2, 1, 1, 1, 0, 0, 0}}.

In table 5, we show the distribution of all polytopes, polytopes with large h1,1, and

polytopes with large h2,1 according to the number of distinct fiber types. There are at

most three distinct fiber types in the polytopes in h2,1 ≥ 140. While all fiber types oc-

cur in the large h1,1 region, the only fiber types that occur in the large h2,1 region are

F1, F3, F4, F6, F8, F10, F11, and F13.

Finally, it is interesting to note that only the plot of F10 in appendix C seems to exhibit

mirror symmetry to any noticeable extent. We do not expect elliptic fibrations to respect

mirror symmetry, so this may simply arise from a combination of the observation that

the total set of hypersurface Calabi-Yau Hodge numbers in the Kreuzer-Skarke database

is mirror symmetric and the observation that in the large Hodge number regions that we

have considered most of the Calabi-Yau threefolds admit elliptic fibrations described by a

F10 fibration of the associated polytope.

– 18 –



J
H
E
P
0
3
(
2
0
1
9
)
0
1
4

# distinct

fiber types
# polytopes

# polytopes with

h1,1 ≥ 140

# polytopes with

h2,1 ≥ 140

0 4 1 3

1 393788 153601 229443

2 86008 78995 6460

3 13354 13347 7

4 1755 1755 -

5 469 469 -

6 112 112 -

7 17 17 -

8 8 8 -

Table 5. Distribution of polytopes by number of distinct fiber types

100 200 300 400 500

100

200

300

400
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Figure 4. Hodge pairs with only non-standard F10-fibered polytopes. The grey dots correspond

to all Hodge pairs with F10 fibers. The black dots correspond to Hodge pairs with only non-

standard F10-fibered polytopes. The vertical and horizontal dashed line correspond to h1,1 = 240

and h2,1 = 240, respectively.

3.5 Standard vs. non-standard P2,3,1-fibered polytopes

In [24], we compared elliptic and toric hypersurface Calabi-Yau threefolds with Hodge

numbers h1,1 ≥ 240 or h2,1 ≥ 240. We found that in the large h1,1 region, there were eight

Hodge pairs in the KS database that were not realized by a simple Tate-tuned model, and

do not correspond to a “standard stacking” P2,3,1-fibered polytope. We found, however,

that these eight outlying polytopes have a description in terms of a P2,3,1 fiber structure

that is not of the standard (v
(F )
s = (−3,−2)) stacking form, and furthermore it can be

seen do not respect the stacking framework of section 2.3. The Weierstrass models of these
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total # fibrations
# fibrations in polytopes

with h1,1 ≥ 140

# fibrations in polytopes

with h2,1 ≥ 140

standard 433827 242562 192218

non-standard 183818 130255 53705

non-standard

fraction
0.297611 0.349381 0.218381

Table 6. Fractions of fibrations by the fiber F10 that take the “standard stacking” form versus

other fibrations.

Calabi-Yau threefolds all have the novel feature that they can have gauge groups tuned

over non-toric curves, which can be of higher genus, in the base. As discussed in [24], the

definition of a standard P2,3,1-fibered polytope ∇ (where the base is stacked over the vertex

(−3,−2) of the F10 fiber) turns out to be equivalent to the condition that the corresponding

∆ has a single lattice point for each of the choices m
(F )
2 = (1,−1) and m

(F )
3 = (−1, 2) in

equation (2.3) (where we have numbered the vertex with the largest multiple of −KB as

m
(F )
1 = (−1,−1)), and there is furthermore a coordinate system in which this lattice point

has coordinates m(2) = (0, 0) in both cases. We have scanned through the F10-fibered

polytopes and used this feature to compute the fraction of F10-fibered polytopes that have

the standard versus non-standard form; the results of this analysis are shown in table 6.

Of the 488119 F10-fibered polytopes, 98758 have more than one F10 fiber. Most of these

polytopes have both standard and non-standard types of fibrations. There are 103 Hodge

pairs that have only the non-standard fibered polytopes. These may give rise to more

interesting Weierstrass models, like those we have studied with h1,1 ≥ 240 in section 6.2

of [24]. As a crosscheck to the “sieving” results there, we have confirmed that none of these

103 Hodge pairs are in the region h2,1 ≥ 240, and the 12 Hodge pairs of these 103 pairs that

have h1,1 ≥ 240 are exactly the Hodge pairs associated with non-standard P2,3,1-fibered

polytopes in table 17 of [24], together with the four Hodge pairs of Bl[0,0,1]P2,3,1-fibered

polytopes; the latter four polytopes, in other words, happen to also be F11-fibered, and

can be analyzed as blowups of standard P2,3,1 model (U(1) models). We list the remaining

91 Hodge pairs that only have non-standard P2,3,1 fiber types below (see also figure 4):

• 140≤h1,1< 240

{{149,1},{154,7},{179,8},{177,16},{179,22},{207,22},{235,22},{184,23},{228,24},
{178,27},{206,27},{177,28},{205,28},{211,38},{232,38},{233,38},{182,39},{217,39},
{223,40},{194,41},{221,41},{210,43},{203,44},{174,45},{207,45},{145,46},{193,46},
{205,46},{159,48},{180,49},{187,53},{239,53},{150,55},{231,55},{225,57},{231,57},
{204,63},{231,63},{175,64},{237,65},{141,66},{208,66},{228,66},{199,67},{211,67},
{193,69},{201,69},{190,70},{200,70},{161,71},{160,73},{190,76},{214,82},{185,83},
{198,84},{181,85},{193,85},{229,85},{164,86},{200,86},{160,88},{185,93},{177,101},
{197,101},{148,102},{171,105},{147,119},{141,123},{140,126}}
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• 140≤h2,1< 240

{{3,141},{3,165},{3,195},{4,142},{4,148},{4,154},{4,162},{4,166},{4,178},{5,141},
{5,143},{5,149},{5,153},{11,176},{22,217},{23,182},{23,200},{24,183},{31,170},
{95,155},{110,144},{111,141}}.

4 Fibration prevalence as a function of h1,1(X)

In this section we consider the fraction of Calabi-Yau threefolds at a given value of the

Picard number h1,1(X) that admit a genus one or elliptic fibration. We begin in section 4.1

with a summary of some analytic arguments for why we expect that an increasingly small

fraction of Calabi-Yau threefolds will fail to have such a fibration as h1,1 increases; we then

present some preliminary numerical results in section 4.2.

4.1 Cubic intersection forms and genus one fibrations

For some years, mathematicians have speculated that the structure of the triple intersection

form on a Calabi-Yau threefold may make the existence of a genus one or elliptic fibration

increasingly likely as the Picard number ρ(X) = h1,1(X) increases. The rationale for this

argument basically boils down to the fact that a cubic in k variables is increasingly likely

to have a rational solution as k increases. In this section we give some simple arguments

that explain why in the absence of unexpected conspiracies this conclusion is true. If this

result could be made rigorous it would be a significant step forwards towards proving the

finiteness of the number of distinct topological types of Calabi-Yau threefolds.

As summarized in [29], the following conjecture is due to Kollár [42]:

Conjecture 1 Given a Calabi-Yau n-fold X, X is genus one (or elliptically) fibered iff

there exists a divisor D ∈ H2(X,Q) that satisfies Dn = 0, Dn−1 6= 0, and D ·C ≥ 0 for all

algebraic curves C ⊂ X.

Basically the idea is that D corresponds to the lift D = π−1(D(B)) of a divisor D(B) on the

base of the fibration, where the (n− 1)-fold self-intersection of D gives a positive multiple

of the fiber F = π−1(p), with p a point on the base. This conjecture was proven already

for n = 3 by Oguiso and Wilson [43, 44] under the additional assumption that either D is

effective or D · c2(X) 6= 0. In the remainder of this section, as elsewhere in the paper, we

often simply refer to a Calabi-Yau as genus one fibered as a condition that includes both

elliptically fibered Calabi-Yau threefolds and more general genus one fibered threefolds.

In the case n = 3, to show that a Calabi-Yau threefold is genus one fibered, we thus

wish to identify an effective divisor D whose triple intersection with itself vanishes. The

triple intersection form can be written in a particular basis Di for H2(X,Z) as

〈A,B,C〉 =
∑
i,j,k

κijkaibjck , (4.1)

where A =
∑

i aiDi, etc., and Di ∩ Dj ∩ Dk = κijk The condition that there is a divisor

D =
∑

i diDi satisfying D3 = 0 is then the condition that the cubic intersection form on
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D vanishes

D3 = 〈D,D,D〉 =
∑
i,j,k

κijkdidjdk = 0 . (4.2)

We are thus interested in finding a solution over the rational numbers of a cubic equation

in k = ρ(X) variables. The curve condition provides a further constraint that D lies in the

positive cone defined by D · C ≥ 0 for all algebraic curves C ⊂ X. Note that identifying

a rational solution D to (4.2) immediately leads to a solution over the integers d̂i ∈ Z ∀i,
simply by multiplying by the LCM of all the denominators of the rational solution di.

There are basically two distinct ways in which the conditions for the existence of a

divisor in the positive cone satisfying D3 = 0 can fail. We consider each in turn. Note that

even when the condition D3 = 0 is satisfied, the condition for an elliptic fibration can fail

if D2 = 0, in which case D itself corresponds to a K3 fiber; this class of fibrations is also

interesting to consider but seems statistically likely to become rarer as ρ increases.

4.1.1 Number theoretic obstructions

There can be a number theoretic obstruction to the existence of a solution to a degree n

homogeneous equation over the rationals such as (4.2).5 For example, there cannot be an

integer solution in the variables x, y, z, w of the equation

x3 + x2y + y3 + 2z3 + 4w3 = 0 . (4.3)

This can be seen as follows: if all the variables x, y, z, w are even, we divide by the largest

possible power of 2 that leaves them all as integers. Then there must be a solution with

at least one variable odd. The variable x cannot be odd, since if y is odd or even the l.h.s.

is odd. Similarly, y cannot be odd. So x, y must be even in the minimal solution. But z

cannot be odd or the l.h.s. would be congruent to 2 mod 4. And w cannot be odd if the

others are even since then the l.h.s. would be congruent to 4 mod 8.

Such number-theoretic obstructions can only arise for small numbers of variables k.

It was conjectured long ago that for a homogeneous degree n polynomial the maximum

number of variables for which such a number-theoretic obstruction can arise is n2 [45].

While there is a counterexample known for n = 4, where there is an obstruction for a

quartic with 17 variables, it was proven in [46] that every non-singular cubic form in 10

variables with rational coefficients has a non-trivial rational zero. And the existence of

a rational solution has been proven for general (singular or non-singular) cubics in 16 or

more variables [47]. Thus, no number-theoretic obstruction to the existence of a solution to

D3 = 0 can arise when ρ(X) = h1,1(X) > 15, and there are also quite likely no obstructions

for ρ(X) > 9 though this stronger bound is not proven as far as the authors are aware.

4.1.2 Cone obstructions

If the coefficients in the cubic conspire in an appropriate way, the cubic can fail to have

any solutions in the Kähler cone. We now consider this type of obstruction to the existence

5Thanks to Noam Elkies for explaining to us various aspects of the mathematics in this section.

– 22 –



J
H
E
P
0
3
(
2
0
1
9
)
0
1
4

of a solution. For example, the cubic∑
i

d3i +
∑
i,j

d2i dj +
∑
i,j,k

didjdk = 0 (4.4)

has no nontrivial solutions in the cone di ≥ 0 since all coefficients are positive. The absence

of solutions in a given cone becomes increasingly unlikely, however, as the number of vari-

ables increases (again, in the absence of highly structured cubic coefficients). A somewhat

rough and naive approach to understanding this is to consider adding the variables one at a

time, assuming that the coefficients are random and independently distributed numbers. In

this analysis we do not worry about the existence of rational solutions; in any given region,

the existence of a rational solution should depend upon the kind of argument described in

the previous subsection. We assume for simplicity that the cone condition states simply

that di ≥ 0 ∀i; a more careful analysis would consider cones of different sizes and angles.

For two variables x = d1, y = d2 we have a cubic equation

κ111x
3 + 3κ112x

2y + 3κ122xy
2 + κ222y

3 . (4.5)

Now assume that x is some fixed value x ≥ 0. This cubic always has at least one real

solution (x, y). If the coefficients in the cubic are randomly distributed, we expect roughly

a 1/2 chance that y ≥ 0 for this real solution. Now add a third variable. If the above

procedure gives a solution (x, y, z = d3 = 0) in the positive cone, we are done. If not, we

plug in some fixed positive values x, y ≥ 0 and the condition becomes a cubic in z. Again,

there is statistically roughly a 1/2 chance that a given real solution for z is positive. So for

3 variables we expect at most a probability of roughly 1/4 that there is no solution in the

desired cone. Similarly, for k variables, this simple argument suggests that most a fraction

of 1/2k−1 of random cubics will lack a solution in the desired cone.

This is an extremely rough argument, and should not be taken particularly seriously,

but hopefully it illustrates the general sense of how it becomes increasingly difficult to

construct a cubic that has no solutions in k variables within a desired cone. Interestingly,

the rate of decrease found by this simple analysis matches quite closely with what we find

in a numerical analysis of the Kreuzer-Skarke data at small k = ρ(X) = h1,1(X).

4.2 Numerical results for Calabi-Yau threefolds at small h1,1(X)

We have done some preliminary analysis of the distribution of polytopes without a manifest

reflexive 2D fiber for cases giving Calabi-Yau threefolds with small h1,1. The results of this

are shown in table 7.

It is interesting to note that the fraction of polytopes without a genus one (or elliptic)

fiber that is manifest in the toric geometry decreases roughly exponentially, approximately

as p(no fiber) ∼ 0.1 × 25−h1,1
in the range h1,1 ∼ 4–7. Comparing to the total numbers

of polytopes in the KS database that lack a manifested genus one fiber, if this fraction

continues to exhibit this pattern, the total number of polytopes out of the 400 million in

the full KS database would be something like 14,000. (Note, however, that the polytope

identified in the database that has no manifest fibration and corresponds to a Calabi-Yau

with h1,1 = 140 would be extremely unlikely if this exponential rate of decrease in manifest
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h1,1 2 3 4 5 6 7

Total # polytopes 36 244 1197 4990 17101 50376

# without reflexive fiber ∇2 23 91 256 562 872 1202

% without reflexive fiber 0.639 0.373 0.214 0.113 0.051 0.024

Table 7. The numbers of polytopes without a 2D reflexive fiber, corresponding to Calabi-Yau

threefolds without a manifest genus one fibration, for small values of h1,1

0 5 10 15 20 25 30
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

3.5×107

1787.06

3.06857

h1,1	23 91
256

562

872

1202

5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

No fiber polytope fraction

0.1 ·25-h1,1

Polytope Number

Estimated no fiber polytope number

Figure 5. The fraction of polytopes without a manifest reflexive fiber goes roughly as 0.1×25−h1,1

for small values of h1,1. Continuing this estimate to higher values of h1,1, the estimated number

of polytopes with no fiber has a peak value around 1800 at h1,1 ∼ 9 and drops below five around

h1,1 ∼ 24. The estimated number of total polytopes with no manifest fiber is around 14, 000.

fibrations continues; this suggests that the tail of the distribution of polytopes lacking a

manifest fibration does not decrease quite so quickly at large values of h1,1. Because the

analytic argument of the previous section involves all fibrations, not just manifest ones,

it may be that this asymptotic is still a good estimate of actual fibrations if most of the

polytopes at large h1,1 that lack manifest fibrations actually have other fibrations that

cannot be seen from toric fibers.)

The naive distribution of the estimated number of polytopes from the simple exponen-

tially decreasing estimate is shown in the black dots in figure 5. Even with some uncertainty

about the exact structure of the tail of this distribution, this seems to give good circum-

stantial evidence that at least among this family of Calabi-Yau threefolds, the vast majority

are genus one or elliptically fibered, and that the Calabi-Yau threefolds like the quintic that

lack genus one fibration structure are exceptional rare cases, rather than the general rule.

5 Conclusions

The results reported in this paper indicate that most Calabi-Yau threefolds that are re-

alized as hypersurfaces in toric varieties have the form of a genus one fibration. At large
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Hodge numbers almost all Calabi-Yau threefolds in the Kreuzer Skarke database satisfy

the stronger condition that they are elliptically fibered. This contributes to the growing

body of evidence that most Calabi-Yau threefolds lie in the finite class of elliptic fibrations.

We have shown that all known Calabi-Yau threefolds where at least one of the Hodge num-

bers is greater than 150 must have a genus one fibration, and all CY3’s with h1,1 ≥ 195

or h2,1 ≥ 228 have an elliptic fibration. We have also shown that the fraction of toric

hypersurface Calabi-Yau threefolds that are not manifestly genus one fibered decreases ex-

ponentially roughly as 0.1× 25−h1,1
for small values of h1,1. These results correspond well

with the recent investigations in [29, 30, 48], which showed that over 99% of all complete

intersection Calabi-Yau (CICY) threefolds have a genus one fibration (and generally many

distinct fibrations), including all CICY threefolds with h1,1 > 4, and that similar results

hold for the only substantial known class of non-simply connected Calabi-Yau threefolds.

Taken together, these empirical results, along with the analytic arguments described

in section 4.1, suggest that it becomes increasingly difficult to form a Calabi-Yau geometry

that is not genus one or elliptically fibered as the Hodge number h1,1 increases. Proving

that any Calabi-Yau with Hodge numbers beyond a certain value must admit an elliptic

fibration is a significant challenge for mathematicians; progress in this direction might

help begin to place some explicit bounds that would help in proving the finiteness of the

complete set of Calabi-Yau threefolds.

There are a number of ways in which the analysis of this paper could be extended.

Clearly, it would be desirable to analyze the fibration structure of the full set of polytopes

in the Kreuzer-Skarke database, which could be done by implementing the algorithm used

in this paper using faster and more powerful computational tools. It is also important to

note that while the simple criteria we used here showed already that most known Calabi-

Yau threefolds at large Hodge numbers are elliptic or more generally genus one fibered, the

cases that are not recognized as fibered by these simple criteria may still have genus one

or elliptic fibers. In particular, while we have identified a couple of Calabi-Yau threefolds

with h1,1 > 1 and either h1,1 or h2,1 greater than 140 that do not admit an explicit toric

genus one fibration that can be identified by a 2D reflexive fiber in the 4D polytope, it

seems quite likely that the Calabi-Yau threefolds associated with these polytopes may have

a non-toric genus one or elliptic fibration structure. Such fibrations could be identified by

a more extensive analysis along the lines of [30].

For Calabi-Yau threefolds that do not admit any genus one or elliptic fibration, it

would be interesting to understand whether there is some underlying structure to the triple

intersection numbers that is related to those of elliptically fibered Calabi-Yau manifolds,

and whether there are simple general classes of transitions that connect the non-elliptically

fibered threefolds to the elliptically fibered CY3’s, which themselves all form a connected

set through transitions associated with blow-ups of the base and Higgsing/unHiggsing

processes in the corresponding F-theory models. We leave further investigation of these

questions for future work.

Finally, it of course would be interesting to extend this kind of analysis to Calabi-Yau

fourfolds. An early analysis of the fibration structure of some known toric hypersurface

Calabi-Yau fourfolds was carried out in [49]. The analysis of fibration structures of com-

plete intersection Calabi-Yau fourfolds in [26] suggests that again most known construc-
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tions should lead predominantly to Calabi-Yau fourfolds that are genus one or elliptically

fibered. The classification of hypersurfaces in reflexive 5D polytopes has not been com-

pleted, although the complete set of 3.2×1011 associated weight systems has recently been

constructed [50]. In fact, recent work on classifying toric threefold bases that can support

elliptic Calabi-Yau fourfolds suggests that the number of such distinct bases already reaches

enormous cardinality on the order of 103000 [41, 51]. Thus, at this point the known set of

elliptic Calabi-Yau fourfolds is much larger than any known class of Calabi-Yau fourfolds

from any other construction.
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A The 16 reflexive 2D fiber polytopes ∇2

We list here the 16 reflexive 2D polytopes ∇2. The dual polytopes ∆2 are listed in ap-

pendix B. With each polytope we also provide the value Imax associated with the maximum

possible value of v ·m where v ∈ ∇2,m ∈ ∆2. As discussed in the main text, the three

fibers F1 = P2, F2 = P1 × P1 = F0, F4 = F2 have no −1 curves, associated with divisors

that give global sections; all other fibers have −1 curves and correspond to elliptic fibers

of the Calabi-Yau threefold.

-1 1

-1

1

F1: Imax=2

-1 1

-1

1

F2: Imax=1

-1 1

-1

1

F3: Imax=2

-1 1

-1

1

F4: Imax=3

-1 1

-1

1

F5: Imax=2

-1 1

-1

1

F6: Imax=3

-1 1

-1

1

F7: Imax=1

-1 1

-1

1

F8: Imax=3
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-1 1

-1

1

F9: Imax=2

-3 -2 -1 1

-2

-1

1

F10: Imax=5

-1 1

-1

1

2

F11: Imax=3

-1 1

-1

1

F12: Imax=2

-1 1

-2

-1

1

2

F13: Imax=3

-1 1 2

-1

1

2

F14: Imax=2

-1 1

-1

1

F15: Imax=1

-1 1 2

-1

1

2

F16: Imax=2

B The 16 dual polytopes ∆2

The dual polytopes ∆2 for the 16 reflexive 2D fiber polytopes listed in the previous ap-

pendix. For each fiber type ∇2 in appendix A, a lattice point v(F ) ∈ ∇2 is given such that

a fibration built from the stacking construction (section 2.3.1) over the point v(F ) allows

the most negative curve self-intersection in the base among all stackings with that fiber.

(-3KB)
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(-0KB)

(-0KB)
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(-1KB)

(-2KB)

(-2KB)
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1

2

ΔF1: vs
(F)= (1,0)
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-1 1

-1

1

ΔF2: vs
(F)= (1,0)
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ΔF16: vs
(F)= (-1,2)

C Distribution of polytopes with each fiber type

The figures in this appendix depict the distribution of Hodge numbers for the Calabi-Yau

threefolds associated with the polytopes that have each type of reflexive 2D fiber. The

largest values of h1,1 and h2,1 for Calabi-Yau threefolds associated with polytopes having

each fiber type are shown in the figure. In each figure, the density scale at the right indicates

the color coding according to the total number of fibrations at each Hodge number pair,

which results both from the multiplicity of the fibers of a given polytope and from the

multiplicity of the polytopes at each Hodge number pair.
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F v
(F )
s

{#pts∆2(O(−nKB))|
n = 0, 1, 2, 3, 4, (5), 6}

fibered-polytope B

F1 (1, 0), (0, 1), (−1,−1) {4, 3, 2, 1, 0, (0), 0} M:171 5 N:11 5 H:11,131 F6

F2 (1, 0), (0, 1), (0,−1), (−1, 0) {3, 3, 3, 0, 0, (0), 0} M:117 8 N:11 6 H:9,93 F4

F3

(1, 1) {2, 3, 4, 0, 0, (0), 0} M:144 8 N:11 6 H:8,110 F4

(1, 0), (0, 1) {3, 3, 2, 1, 0, (0), 0} M:170 9 N:14 7 H:11,131 F6

(−1,−1) {4, 3, 2, 0, 0, (0), 0} M:90 8 N:11 6 H:10,76 F4

F4
(1, 0) {5, 3, 1, 0, 0, (0), 0} M:63 5 N:11 5 H:11,59 F4

(−1, 1), (−1,−1) {3, 2, 2, 1, 1, (0), 0} M:311 5 N:15 5 H:11,227 F8

F5

(1, 0), (0, 1) {3, 3, 2, 0, 0, (0), 0} M:89 12 N:13 8 H:10,76 F4

(0,−1), (−1, 0) {2, 3, 3, 0, 0, (0), 0} M:116 12 N:13 8 H:9,93 F4

(−1,−1) {2, 3, 2, 1, 0, (0), 0} M:169 13 N:17 9 H:11,131 F6

F6

(1, 0) {4, 3, 1, 0, 0, (0), 0} M:62 9 N:13 7 H:11,59 F4

(0, 1) {2, 3, 2, 1, 0, (0), 0} M:169 9 N:19 7 H:14,130 F6

(−1, 1) {2, 2, 2, 1, 1, (0), 0} M:310 9 N:19 7 H:11,227 F8

(−1,−1) {3, 2, 2, 1, 0, (0), 0} M:158 9 N:16 7 H:11,131 F6

F7
(1, 1), (1, 0), (0, 1),

(0,−1), (−1, 0), (−1,−1)
{2, 3, 2, 0, 0, (0), 0} M:88 16 N:15 10 H:10,76[3] F4

F8

(1, 1) {2, 2, 3, 0, 0, (0), 0} M:106 8 N:14 6 H:9,93 F8

(1, 0) {3, 3, 1, 0, 0, (0), 0} M:61 9 N:16 7 H:12,58 F4

(−1, 1) {2, 1, 2, 1, 1, (0), 0} M:296 9 N:22 7 H:11,227 F8

(−1,−1) {3, 2, 2, 0, 0, (0), 0} M:79 8 N:14 6 H:10,76 F4

F9

(1, 0) {3, 3, 1, 0, 0, (0), 0} M:61 13 N:15 9 H:11,59 F4

(0, 1), (0,−1) {2, 3, 2, 0, 0, (0), 0} M:88 12 N:16 8 H:11,75[2] F4

(−1, 1), (−1,−1) {2, 2, 2, 1, 0, (0), 0} M:144 14 N:19 10 H:12,120 F6

F10

(1, 0) {4, 2, 1, 0, 0, (0), 0} M:63 5 N:11 5 H:11,59 F4

(0, 1) {3, 2, 1, 1, 0, (0), 0} M:125 5 N:17 5 H:11,131 F6

(−3,−2) {2, 1, 1, 1, 1, (0), 1} M:680 5 N:26 5 H:11,491 F12

F11

(1, 0) {3, 2, 1, 0, 0, (0), 0} M:51 9 N:16 7 H:11,59 F4

(−1, 2) {2, 1, 1, 1, 1, (0), 0} M:257 9 N:24 7 H:11,227 F8

(0,−1) {2, 3, 1, 0, 0, (0), 0} M:60 9 N:20 7 H:15,57[2] F4

(−1,−1) {2, 2, 1, 1, 0, (0), 0} M:124 9 N:20 7 H:11,131 F6

F12

(1, 0), (0, 1) {2, 3, 1, 0, 0, (0), 0} M:60 13 N:18 9 H:12,58 F4

(1,−1), (−1, 1) {2, 2, 2, 0, 0, (0), 0} M:78 12 N:16 8 H:10,76 F4

(−1,−1) {2, 1, 2, 1, 0, (0), 0} M:145 13 N:21 9 H:11,131 F6

F13
(1, 0) {3, 1, 1, 0, 0, (0), 0} M:60 13 N:18 9 H:12,58 F4

(−1, 2), (−1,−2) {2, 1, 1, 0, 1, (0), 0} M:181 5 N:25 5 H:11,227 F8

F14
(2,−1), (−1, 2) {2, 1, 1, 1, 0, (0), 0} M:112 9 N:22 7 H:11,131 F6

(0,−1), (−1, 0) {2, 2, 1, 0, 0, (0), 0} M:50 9 N:19 7 H:12,58 F4

F15 (−1, 1), (1, 1), (−1,−1), (1,−1) {2, 1, 2, 0, 0, (0), 0} M:68 8 N:17 6 H:10,76 F4

F16 (2,−1), (−1, 2), (−1,−1) {2, 1, 0, 1, 0, (0), 0} M:79 5 N:23 5 H:11,131 F6

Table 8. Line bundles in the vs stacking F -fibered construction, with examples over Hirzebruch

surfaces Fm, where −m saturates the negative curve bound in each case.
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D Automorphism symmetries and fibrations

D.1 Polytopes with non-trivial fibration orbits in the regions h1,1, h2,1 ≥ 140

The following table indicates the difference between the total number of fibrations and the

number of inequivalent fibration classes under automorphisms in the relevant 16 cases.

polytope data (in the format

of the KS database)

# fibrations for each of the 16 fibers

# fibrations modulo the automorphism symmetry group

M:12 5 N:348 5 H:251,5 [[492]]
0 0 0 0 0 0 0 0 0 3 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0

M:15 5 N:179 5 H:151,7 [[288]]
0 0 0 2 0 0 0 0 0 1 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0

M:14 5 N:196 5 H:161,5 [[312]]
0 0 0 2 0 0 0 0 0 2 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 2 0 0 1 0 0 0

M:15 5 N:311 5 H:227,11 [[432]]
0 0 0 0 0 0 0 0 0 2 0 0 3 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 3 0 0 0

M:17 5 N:177 5 H:151,7 [[288]]
0 0 0 2 0 0 0 0 0 3 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0

M:11 5 N:335 5 H:243,3 [[480]]
0 0 0 0 0 0 0 0 0 3 0 0 3 0 0 0

0 0 0 0 0 0 0 0 0 2 0 0 3 0 0 0

M:13 5 N:117 5 H:148,4 [[288]]
0 0 0 1 0 0 0 0 0 2 0 0 3 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0 3 0 0 0

M:13 5 N:267 5 H:208,4 [[408]]
0 0 0 2 0 0 0 0 0 3 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 2 0 0 1 0 0 0

M:10 5 N:376 5 H:272,2 [[540]]
0 0 0 0 0 0 0 0 0 4 0 0 3 0 0 1

0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 1

M:12 5 N:131 5 H:165,3 [[324]]
0 0 0 1 0 0 0 0 0 3 0 0 3 0 0 1

0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1

M:11 5 N:225 5 H:164,8 [[312]]
0 0 0 2 0 0 0 0 0 5 0 0 3 0 0 0

0 0 0 1 0 0 0 0 0 4 0 0 3 0 0 0

M:10 5 N:196 5 H:143,7 [[272]]
0 0 0 6 0 0 0 0 0 2 0 0 4 0 1 0

0 0 0 3 0 0 0 0 0 1 0 0 3 0 1 0

M:9 5 N:201 5 H:148,4 [[288]]
0 0 0 2 0 0 0 0 0 10 0 0 6 0 0 0

0 0 0 1 0 0 0 0 0 6 0 0 6 0 0 0

M:8 5 N:225 5 H:165,3 [[324]]
0 0 0 0 0 0 0 0 0 15 0 0 7 0 0 1

0 0 0 0 0 0 0 0 0 4 0 0 3 0 0 1

M:7 5 N:196 5 H:145,1 [[288]]
0 0 0 6 0 6 0 0 0 12 0 0 9 3 0 1

0 0 0 2 0 1 0 0 0 3 0 0 3 1 0 1

M:7 5 N:201 5 H:149,1 [[296]]
0 0 12 12 0 0 0 0 0 12 0 0 15 0 3 4

0 0 1 1 0 0 0 0 0 1 0 0 3 0 1 1
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D.2 An example: the automorphism group of M:7 5 N:201 5 H:149,1 [[296]]

We give the details of the symmetry and fibration structure for the polytope associated

with the Calabi-Yau having Hodge numbers (149, 1). This is the polytope with the largest

number of fibrations (including multiplicities in orbits of automorphism symmetries).

The polytope ∇ in question has five vertices:

A = (1,−1,−1,−1) (D.1)

B = (−1,−1,−1,−1) (D.2)

C = (−1,−1,−1, 7) (D.3)

D = (−1,−1, 7,−1) (D.4)

E = (−1, 7,−1,−1) . (D.5)

These vertices satisfy the linear condition

4A+B + C +D + E = 0 . (D.6)

The possible symmetries allowed by this equation include all permutations on the vertices

B,C,D,E. The polytope is clearly symmetric under all permutations on C,D,E, as these

can be realized by permutations on the axes 2, 3 and 4. One can also check that the

polytope is symmetric under the linear transformation that swaps B and C while leaving

D and E fixed,

T =


1 0 0 −4

0 1 0 −1

0 0 1 −1

0 0 0 −1

 . (D.7)

This matrix in SL(2,Z) satisfies (acting on the right on row vectors)

B · T = C,C · T = B,A · T = A,D · T = D,E · T = E , (D.8)

and is thus a symmetry of the polytope. This shows that all 24 permutations on B,C,D,E

are symmetries.

Explicitly, let the column vectors a, b, c, d, e be defined as

a = (1, 0, 0, 0)T (D.9)

b = (0, 1, 0, 0)T (D.10)

c = (0, 0, 1, 0)T (D.11)

d = (0, 0, 0, 1)T (D.12)

e = (−4,−1,−1,−1)T , (D.13)

which are the five vertices of the ∆ polytope. The 24 linear transformation matrices that

leave the ∇ polytope invariant are

{(a, b, c, d), (a, b, c, e), (a, b, e, d), (a, b, d, e), (a, b, e, c), (a, b, d, c), (a, c, b, d), (a, c, b, e),

(a, e, b, d), (a, d, b, e), (a, e, b, c), (a, d, b, c), (a, c, e, d), (a, c, d, e), (a, e, c, d), (a, d, c, e),

(a, e, d, c), (a, d, e, c), (a, c, e, b), (a, c, d, b), (a, e, c, b), (a, d, c, b), (a, e, d, b), (a, d, e, b)}.
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The different fibrations go into orbits of this 24-element symmetry group. For example,

there are 12 F3 fibers; one of them is {(0,−1,−1, 0), (0,−1, 1,−1), (0, 0, 2,−1), (0, 1,−1, 1)},
and all the 12 fibers are generated by

{(a, b, c, d), (a, b, c, e), (a, c, b, d), (a, c, b, e), (a, d, b, c), (a, e, b, c), (a, b, d, c), (a, b, e, c),

(a, b, e, d), (a, b, d, e), (a, d, b, e), (a, e, b, d)}.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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