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The single-particle spectral function measures the density of electronic states (DOS) in a material as               
a function of both momentum and energy, providing central insights into phenomena such as              
superconductivity and Mott insulators. While scanning tunneling microscopy (STM) and other           
tunneling methods have provided partial spectral information, until now only angle-resolved           
photoemission spectroscopy (ARPES) has permitted a comprehensive determination of the spectral           
function of materials in both momentum and energy. However, ARPES operates only on electronic              
systems at the material surface and cannot work in the presence of applied magnetic fields. Here,                
we demonstrate a new method for determining the full momentum and energy resolved electronic              
spectral function of a two-dimensional (2D) electronic system embedded in a semiconductor. In             
contrast with ARPES, the technique remains operational in the presence of large externally applied              
magnetic fields and functions for electronic systems with zero electrical conductivity or with zero              
electron density. It provides a direct high-resolution and high-fidelity probe of the dispersion and              
dynamics of the interacting 2D electron system. By ensuring the system of interest remains under               
equilibrium conditions, we uncover delicate signatures of many-body effects involving          
electron-phonon interactions, plasmons, polarons, and a novel phonon analog of the vacuum Rabi             
splitting in atomic systems. 
  

Inside of semiconductors and metals, negatively-charged electrons interact with each other and            

with positively-charged ions and impurities, creating complex many-particle systems (1). Remarkably,           

despite the strong electron-electron Coulomb repulsions inside of solids, Landau-Fermi liquid theory            

predicts that in a degenerate Fermi system, electrons near Fermi level behave as weakly interacting           EF     

quasiparticles (1, 2). These quasiparticles have a modified energy and mass compared with             

non-interacting electrons and have finite lifetimes for losing their identities as a well-defined particles.              

The success of the theory stems from the fact that the degenerate electrons below the Fermi level screen                  

the Coulomb potential between particles and restrict the phase space available for excited electrons to               

scatter. In cases for which the interactions of electrons become dominant, such as for systems of low                 

electron density and/or under strong magnetic fields, the description in terms of weakly interacting              
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quasiparticles of the Fermi liquid theory no longer accurately describes the system; electrons start to show                

strongly correlated behaviors, accompanied by unscreened, effectively enhanced electron-phonon (e-ph)          

and electron-electron (e-e) interactions. This phenomenon has a significant influence on many            

experimentally important quantities, e.g. transport, thermodynamic, and optical properties, in metals and            

insulators, and may lead to exotic phases such as superconductivity and Fractional Quantum Hall effect               

(3, 4). 

The spectral function, the distribution of single-particle electronic states in energy and momentum             

space, is a fundamental physical quantity that directly reflects underlying many-body interactions.            

Physicists have extensively developed the theory of the spectral function of electron liquid and strongly               

correlated electron systems (1, 2, 5, 6). Established tools such as STM and ARPES have contributed                

greatly to understanding of electronic structure of solids by measuring the spectral function or quantities               

related to it (7, 8). However, these methods only probe the electronic systems at the sample surface and do                   

not work if the sample is electrically insulating. There has thus been no means for accurate determination                 

of the spectral function of high-mobility systems created by molecular beam epitaxy, a long-time testbed               

for understanding fundamental physics and device applications due to their high quality and             

controllability. Most of the experimental studies in these systems utilize transport or thermodynamic             

probes that generally only have sensitivity to the average thermodynamic behavior of electrons near the               

Fermi energy.  

In this work, we demonstrate a unique method of tunneling spectroscopy, momentum and energy              

resolved tunneling spectroscopy (MERTS), that utilizes a fine-control of the momentum and energy of              

tunnel-injected electrons and directly measures the spectral functions of 2D electron system (2DES) in a               

quantum well (QW) at various densities including near-depleted and fully-depleted (insulating) regimes.            

This technique dramatically visualizes the pronounced e-ph and e-e interaction effects deep inside solids.              

MERTS has comparable energy and momentum resolution to ARPES systems (7, 9), a capability that is                

critical for investigation of the subtle e-e interaction effects near the Fermi level. Importantly, MERTS is                

capable of measuring E-k spectra in extreme conditions, where the deviation from the simple Fermi-liquid               

picture becomes important: (i) in insulating regimes near depletion or even in full depletion (Fig. 2C),                

and/or (ii) under strong perpendicular magnetic fields (Fig. 3).  
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Figure 1 | Schematics of tunneling device and principles of energy-momentum selection            
process. (A) The vertical tunneling device used in the experiment. Two GaAs QWs (width of 20 nm each) are                   
separated by a Al0.8Ga0.2As potential barrier (6 nm). Electrons in the top (probe) QW with nearly zero planar                  
momentum probe electronic states in the bottom (target) QW. (B) The injection of an electron packet probes only                  
empty available states in the target layer. (C) Diagram for explaining the momentum selection mechanism. The                
in-plane field generates a momentum boost in the tunneling process to displace the zero planar momentum into                 

in the bottom QW. (D) E-k dispersions in the presence of the in-plane field. In (B-D), the occupiedB d /  kf inal = e || t h̄                    
states are shown in blue and red colors for probe and target layers, respectively. (E) Measured spectra with                  B ||  
along the crystallographic axis of [100] and [010] of GaAs. Multiple unoccupied QW subbands are visible. 

 
In MERTS, we controllably generate a collimated packet of electrons with precisely-defined            

energy and momentum from an adjacent probe layer (a 2D QW) and, by means of tunneling, inject the                  

electrons into the unoccupied quantum states of the target 2D system to measure the target 2D system’s                 

spectral function. Electrons from this collimated beam can tunnel into the target 2D electron system only                

when unoccupied states are available with the same energy and momentum, resulting in E-k selectivity of                

the tunneling process (see Fig. 1). The tunneling probability therefore represents the spectral function for               

adding a particle into the 2D system (1, 2). For high E-k resolution, we prepare electrons with a very                   
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small Fermi surface in the probe layer (containing a very low density of electrons with              0 cmn ~ 3 × 1 10 −2   

and ; these numbers set the resolution of the technique) at E=0 and k=0 (.0 meV  EF ~ 1   .004 A  kF ~ 0 −1              

-point in the GaAs conduction band minimum), and translate the momentum of the packet using aΓ                 

magnetic field applied perpendicular to the tunneling direction giving electrons a momentum shift of    B ||             

in the tunneling process (10, 11). Here, is the momentum translation of thek B d /  Δ x,y = e || y,x t h̄         k  Δ x,y        

tunneling electrons and is the tunneling distance (Fig. 1B-C). This effect can be understood    dt             

semi-classically as the momentum gain of an electron in traversing the tunnel barrier due to the magnetic                 

field induced Lorentz force. In previous studies (11, 12) involving large Fermi surfaces in both the probe                 

and target wells, the tunneling measurements involved complicated convolutions of two systems and             

electrical conductivity through both layers, making it unfeasible to obtain direct spectral information. In              

contrast, in MERTS we achieve full momentum and energy resolution by adapting a pulsed tunneling               

method (13) that requires no direct electrical contact to the system of 2 quantum wells and does not rely                   

on conductivity of the 2D systems; the method functions even if either or both of the 2D systems are                   

electrically insulating. The method has important elements that contributed to the success of MERTS by               

allowing us to (i) maintain the small Fermi surface of source electrons (probe layer) into nearly a single                  

point and (ii) to eliminate lateral transport in either layer to ensure uniform tunneling at all points in the                   

plane. 

An example of tunneling spectra of a 2D electron system in a GaAs/AlGaAs QW (Fig. 1A)                

measured with applied along [100] (x-axis) and [010] (y-axis) is plotted in Fig. 1E. We have verified   B ||                 

the high fidelity of the momentum and energy conservation in the tunneling process by comparing to a                 

numerical simulation in same experimental parameters (see Fig. S3). The MBE grown wafer is              

specifically designed so that the probe well has the low density described above. We vary the density of                  

the target 2D system by applying a DC voltage across the top and bottom electrodes. An additional         V b          

voltage pulse with a precisely controlled amplitude induces the tunneling voltage           /e E )/e  V t = Et = ( − EF  

between the source and target layer (13), followed by a pulse with opposite polarity that retrieves the                 

tunneled electrons to bring the entire system back to equilibrium for next tunneling pulses (see Materials                

and Methods). The tunneling current is determined by measuring the displacement charge induced by the               

voltage pulses using capacitively coupled HEMT amplifiers. In MERTS, the electronic DOS is directly              

proportional to the tunneling current I, in contrast to conventional tunneling measurements using a 3D               

electrode in which the DOS is proportional to I/dV .  d  

In Fig. 2A-C, we display the E-k distributions (dispersions) of electronic states at various carrier               

densities . We calibrate the momentum axis, proportional to , based on knowledge of the tunnelingn  B ||   
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Figure 2 | Measured MERTS Spectra at various densities and extraction of self-energy. (A-C)          n       
Tunneling spectra measured at 1.5 K for various target QW densities (see Fig. S7 for a full data set). In (A) three                      
subbands are visible due to finite width of the target well. Frame (C) shows data for a gate voltage at which the                      
target well first fully depletes. (D) A tunneling spectrum simulation with a self-energy term that accounts for                 
impurity broadening and electron-phonon interactions. The red arrows are placed a LO phonon energy (36 meV)                
above the Fermi energy in (A), (B) and (D), and 36 meV above the bottom of the 1st subband in (C). The blue                       
arrows in each figure are 36 meV above the 2nd subband. (E) A measured E-k spectrum at .                 .3 0  cmn = 2 × 1 11 −2  
The blue curves displays the bare band dispersion expected from detailed band structure calculations        εk − EF        
(14). We extract the self-energy by measuring the peak locations and half-widths of MDCs (curves cut          kpeak    kΔ      
along the momentum axis at energy ). The red bars are centered at and have widths of . We extract the      E        kpeak      kΔ     
self-energy using and (15–17), where the subtraction of 0.0032  e Σ (k )  R = E − ε peak   Im Σ| Δk .0032 A )| ≈ ( − 0 −1 × vh̄ g0        
is to take account of the finite size of FS of the probe QW, and is the bare group-velocity (see section 5 of               vg0          
Supplementary Materials). The yellow box marks an area of the spectrum considered in Fig. 4. (F) Extracted                  m Σ  I
s at various densities. The solid curves are for data from the 1st subband, and the dashed curves are for 2nd                     
subband. The red and blue dashed (nearly vertical) lines are guides-to-the-eyes for the abrupt increases of                Im Σ|  |  
due to e-phonon interactions. These are the same with energy locations pointed by the red and blue arrows in (A),                    
(D) and (E), respectively. Curves are offset for clarity, and the thin horizontal dotted line indicates zero for each                   
curve. 
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distance determined from numerical simulations of the wavefunctions in each quantum well (designed  dt              

to be , but changing slightly with ). Adjusting to more negative values decreases the  6 nm  dt = 2      V b   V b        

electron density of the target QW and eventually fully depletes it. The spectrum labeled as an empty well                  

in Fig. 2C clearly shows the depletion of electrons from the conduction band, visualized by the bottom of                  

the conduction band edge rising above the Fermi level. The absence of occupied extended electron states                

in the QW is a clear signature of a system entering an insulating phase, consistent with our capacitance                  

measurements of the structure.  

The spectra also display quantized subbands due to the confinement potential in the growth              

direction (z-axis). We identify the three lowest subbands in the spectrum; noticeably, the intensity of the                

spectrum grows stronger for subbands lying higher in energy because the higher subband wave functions               

penetrate deeper into the barrier and thus have stronger tunnel coupling to the probe well. In a model of                   

the bands that excludes e-e and e-ph interactions, the single particle energies follow             εn,k   

, shown by the blue curves drawn in Fig. 2E. Here, is/2m k ) 1 |k| )εn,k = εn,0 +h̄2
ef f × ( x

2 + ky
2 × ( + η 2             εn,0   

the confinement energy of n-th subband, and are planar momenta, and is the band mass, and       kx    ky      mef f       

(~ -43.7 ) is a dimensionless parameter that accounts for band non-parabolicity (14). However, aη   Ȧ
2              

more comprehensive picture beyond this effective mass approximation comes from the description of             

interacting electrons with the spectral function (1, 2, 7, 18): 

 

(E, )A k = π
1 |Im Σ|

(E−ε −Re Σ) +(Im Σ)n,k
2 2   (1) 

 

, where E is the energy of injected electrons in the measurement. All of the interparticle interactions that                  

influence the electronic dispersion are summed up to yield the modified complex-valued self-energy of              Σ   

the (quasi)particles. In the quasiparticle approximation, the real part of the self-energy represents the              

change of the particle energy, and the imaginary part is proportional to the inverse of the particle lifetime                  

(1, 19). The controlled observation of this modification in the electronic dispersion would be one of the                 

most direct ways for quantifying and understanding the dynamics of an interacting many-particle system. 

We extract the real and imaginary components of the self-energy ( and ) by           Σ  e Σ  R   m Σ  I   

determining the peak locations and widths of momentum distribution curves (MDCs) of the spectra (see               

the description in Fig. 2E-F). In Fig. 2F, the extracted s at various densities show step-like features          m Σ  I        

at in the 1st subband and at in the 2nd subband (see red ω 6 meV  h̄ LO ~ 3        0 0 meV  E = ε2,0 + ωh̄ LO ~ 7 − 8       

and blue dashed lines). A step-like feature in the imaginary part of self-energy generally arises as a                 
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consequence of electrons interacting with a nearly dispersionless bosonic mode (1, 18). This strongly              

suggests that these features in the self-energy are due to an electron-phonon interaction in GaAs.  

To further corroborate the phonon effects, we have modeled a self-energy that includes            Σ    

impurity broadening and e-ph interactions in a weak-coupling limit (i.e. a perturbation theory) to calculate               

the simulated tunneling spectrum in Fig. 2D (see also Fig. S4). The simulation involves dispersionless               

longitudinal-optical (LO) phonons interacting with electrons via the Frohlich Hamiltonian (20),           

appropriate for a polar semiconductor such as GaAs (1). The simulated spectrum displays key aspects of                

the measured spectrum, and we can identify kinks and modifications (indicated by red and blue arrows) of                 

the spectrum generated by the e-phonon coupling; the comparison indicates that the features located near               

36 meV and 70~80 meV (depending on the density of the target QW) in the spectrum originate from the                   

electron-phonon interaction combined with a specific subband structure.  

Our data display the effects of LO phonons mixing different 2D subbands, which are otherwise               

independent in the single particle picture. The data also show these features appearing at various fixed                

energies, i.e. LO phonon energy (~36 meV) above subband bottoms as well as above the Fermi energy                 

(see diagrams in Fig. S4). This is in contrast to prior ARPES measurements that have only detected                 

effects from phonons referenced to the Fermi energy (7).  

When the electron density of the target QW is further decreased to near depletion, electrons               

localize in minima of a disordered potential and can no longer screen interparticle interactions. Then, the                

validity of the perturbative calculations of self-energy due to the e-ph interaction also becomes              

questionable (see section 4 of Supplementary Materials). In this regime, the spectrum undergoes a              

qualitative change with the quasiparticle dispersion developing an unexpectedly sharp kink (circle in             

Fig.2C). The kink structure only exists at very low density near the depletion regime and low                

temperature, unlike other structures mentioned previously. From the shape of the kink we conjecture there               

exists a strong electron-boson coupling emergent near electron depletion (21). The energy of the kink is                

located at above the first subband minimum, where is the energy of the conjectured  8 meV  hΩ ~ 4        Ω  h̄        

bosonic mode. We note that AlAs-like phonons exist at ~49 meV in Al0.8Ga0.2As with an e-ph coupling                 

constant larger than that of GaAs (22). We also find this emergence of the kink coincides with an abrupt                   

decrease in compressibility in a separate measurement (see Fig. S2). As localization arises in this regime,                

the onset of this feature may indicate the development of strongly-bound states composed of a localized                

electron and a phonon, i.e. polarons (23). This idea is supported by the observation that the kink structure                  

disappears above (see Fig. S8), suggesting that the confinement from the disorder potential  6 KT ~ 1            

disappears by thermally activated electron hoppings. Note that study of the spectral function in this               

7 

https://paperpile.com/c/HAzkaa/BJ2Da
https://paperpile.com/c/HAzkaa/BJ2Da
https://paperpile.com/c/HAzkaa/j4amx
https://paperpile.com/c/HAzkaa/j4amx
https://paperpile.com/c/HAzkaa/HGvxz
https://paperpile.com/c/HAzkaa/HGvxz
https://paperpile.com/c/HAzkaa/rvbgH
https://paperpile.com/c/HAzkaa/j4amx
https://paperpile.com/c/HAzkaa/mNihM+oAzIQ
https://paperpile.com/c/HAzkaa/oAzIQ
https://paperpile.com/c/HAzkaa/mNihM+oAzIQ
https://paperpile.com/c/HAzkaa/mNihM+oAzIQ
https://paperpile.com/c/HAzkaa/BJ2Da
https://paperpile.com/c/HAzkaa/oAzIQ
https://paperpile.com/c/HAzkaa/VhDbr
https://paperpile.com/c/HAzkaa/oAzIQ
https://paperpile.com/c/HAzkaa/VhDbr
https://paperpile.com/c/HAzkaa/rvbgH
https://paperpile.com/c/HAzkaa/HGvxz
https://paperpile.com/c/HAzkaa/mNihM+oAzIQ
https://paperpile.com/c/HAzkaa/rvbgH
https://paperpile.com/c/HAzkaa/mNihM+oAzIQ
https://paperpile.com/c/HAzkaa/VhDbr


insulating regime is possible only with the capability of MERTS to measure unoccupied states in               

insulating systems. 

Figure 3 | Evolution of E-k spectra under perpendicular magnetic fields. (A) Spectra of the 2D                 
electron system at a density of for various perpendicularly applied magnetic fields. With      .5 0  cmn ~ 2 × 1 10 −2        
increasing field, Landau quantizations with the cyclotron energy spacing become clearly apparent. At         ωh̄ c      E − EF  
~ 40 meV, the spectrum displays a level splitting in the 5, 8, and 10T data. Tunneling into Landau levels produces                     
features resembling line segments. The features resulting from tunneling into Landau index greater than zero               
appear as line segments at nonzero k that are slanted away from horizontal in the 5, 8, and 10T data. The slants                      
arise from the non-zero width of our square well QWs (to be published). (B) A simple model that explains the level                     
splitting. When the LO phonon energy matches the energy difference of 1st (blue lines) and 2nd subband (orange                  
line), a resonance occurs (purple lines) to produce the strongly-coupled limit of an electron and a phonon, i.e. a                   
polaron. The splitting arises because a long-lived composite state of the zeroth LL in the lowest (1st) subband                  
together with a LO phonon (i.e. ) forms and resonantly interacts with the zeroth LL of the 2nd subband (      g,| 1 >              

). (C) The splitting energies (blue circles) and errorbars (vertical orange lines) are plotted as a function ofe,| 0 >                   
magnetic field. The dashed line is a curve-fit of the data points at non-zero (from 2 T to 10 T) to              B         

with fixed (see main text). (D) The splitting diminishes greatly for a spectrum gc = a × √B − B0    .52 T  B0 = 0            
measured at higher density at 8T. Color scales in images in (A) and (D) are calibrated so that    .3 0  cmn ~ 1 × 1 11 −2                
the same currents give rise to the same colors and intensities (see also Fig. S9). 

 
To further investigate the effect of confinements that could lead many-particle interactions into             

the non-perturbative limit, we generated another means of confinement of electrons by applying             
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perpendicular magnetic fields. As the magnetic field strength increases, the Landau quantization strongly             

modifies the dispersion into discrete Landau levels (LL) (Fig. 3A). Because electrons are confined in a                

length scale of the magnetic length , the dispersion spreads over a finite extent in the momentum      lb            

direction whose magnitude is proportional to ./l  1 b   

At , all the electrons in the target QW fall into the lowest Landau level ( . .52T  B⊥ > 0               )  ν < 2  

Near 36 meV ( ) above the bottom of the unoccupied bands, the spectrum shows a surprisingly   ω  ~ h̄ LO              

clear level splitting (see yellow arrow). We explain this as the polaronic effect dramatically enhanced to                

the point where the LL of the 2nd subband resonantly interacts with the LL of the 1st subband via a LO                     

phonon. This is the signature behavior of the vacuum Rabi splitting - in this case, a “strong coupling”                  

state between the zero-phonon and one-phonon states (24, 25) (see Fig. 3B) - and cannot be explained by                  

any inelastic process involving simple phonon scatterings. Upon increasing the density of the 2D system               

so that only few empty states remain available in the ground LL, the splitting disappears (Fig. 3D; see                  

also Fig. S9), consistent with the Rabi splitting picture. We realize an interesting analogy between the role                 

of the electron density in polariton-cyclotron resonance experiments (25, 26) and that of the density of                

empty states in the lowest LL in our measurement. This claim is quantitatively supported by the  N empty                

observation (Fig. 3C) of the splitting magnitude . Here,        gc ∝ √N empty ∝ √B − B0   .52 T  B0 = 0  

corresponds to the field value at which electrons fully occupy the lowest LL, and roughly consistent with                 

the density determined by capacitance measurements. In this picture, the massive  .5 0  cm  n ~ 2 × 1 10 −2           

degeneracy created by the flattening of the electron energy dispersion and the spatial confinement due to a                 

perpendicular magnetic field contribute to the formation of the strong coupling state. We find it               

remarkable that, as we tune perpendicular magnetic fields, the electronic spectral function shows the              

transition from the weak limit (the self-energy treatment at ) to the strong limit of e-ph interaction.          B = 0         

This observation constitutes the first direct measurement of the alteration of the electron energy spectrum               

in an equilibrium state due to the presence of ions in strong coupling. Such a measurement has been                  

impossible in ARPES due to the requirement of application of high magnetic field. We anticipate even                

stronger polaronic effects in other semiconductor systems, such as hole-doped GaAs, CdTe, and SrTiO3              

that have stronger electron-phonon interactions.  

Theory predicts that e-e interactions lead to changes in thermodynamic quantities (1, 27), but              

these effects are subtle and the measurements are difficult to interpret (28). MERTS provides a direct                

means for observing these interactions in high resolution spectra at near the Fermi energy, where LO                

phonons have small impact and the dominant modifications to the spectra arise from e-e interactions. In                

Fig. 4, we examine closely the spectra near the Fermi level. In Fig. 4B, at all densities, the measured 
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Figure 4 | Electron-electron interaction and plasmon scattering. (A) A zoom-in of the MERTS              
spectrum of the yellow rectangle of Fig.2E measured at 3K. The yellow curve shows the expected bare band                  
dispersion, and red dots are measured peaks from fits to the data. There is a subtle, but statistically significant,                   
kink in the red data points indicated by the arrow. (B-C) and from the spectra at various densities. In           m Σ  I   e Σ  R         
(C) the red curve represents a slowly varying background signal obtained by curve-fitting the data away from the                  
kink structure to a 3rd order polynomial, and the blue curve is a curve-fit to the data with additional Lorentzian term                     
in the curve-fit. The arrows in (C) point to the center of this Lorentzian. The same arrow locations are produced in                     
(B), denoting a corresponding broad step feature in . (D) Electron-plasmon interaction. The orange curves        m Σ  I        
represent electron dispersion, and dash dotted curves visualize final electron states in event of emitting a plasmon.                 
There exists a threshold energy above which an injected electron (blue dots) can lose energy by scattering a     Ep               
plasmon, and decay to lower energy states that exist above (red stars). (E) The locations of the features in          EF           
(B-C) and how they change as a function of density. The red circles and error bars indicate peaks and widths of                     
the Lorentzian function used to fit the data in (C). Also, plotted are theoretically expected curves following ref. (29).                   
The blue dashed curve is from a semiclassical calculation, the red dot-dashed curve is from a                
random-phase-approximation (RPA), and the black solid curve is for a RPA that accounts for the non-zero                
well-width. 
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reaches the minimum value near the Fermi level in accord with the phase space restrictionIm Σ|  |                 

argument of Fermi liquid theory: the inverse of the quasiparticle lifetime (or ) due to e-e           /τ  1 q   |Im Σ|  2     

interaction decreases to zero quadratically in energy near the Fermi level (30). Due to disorder, however,                

the inverse lifetime has a non-zero value even at  (31).EF   

A closer inspection of the extracted self-energy at low energies, in Fig. 4B-C, shows additional               

structures that strongly depend on density (see vertical arrows) whose qualitative evolution as a function               

of density suggests an origin from e-e interactions. The step-like features in and dips in can            m Σ  I     e Σ  R   

be explained as electrons being scattered by plasmons. The strength and locations of such features that                

vary as a function of electron density is in quantitative agreement with the theory of plasmons in 2D (5,       n              

6, 29). In this picture, the density dependence comes from a combination of a varying strength of the                  

Coulomb screening by neighboring mobile electrons and a change of plasmon dispersion itself (see also               

Fig. S6). There has been no previous report of measuring the plasmonic effect in the spectral function in a                   

system of massive 2D electrons. The plasmons modify the electron dispersion near the Fermi level and                

show the square-root density dependence intrinsic to 2D plasmons (Fig. 4E). Our data thus present a                

direct measurement of quantities that were only theoretically investigated previously (5, 6), demonstrating             

that the e-e scattering is suppressed near the Fermi level until plasmons significantly contribute scattering               

processes. We note that the effect of plasmon scatterings have been observed in the electron spectral                

function of massless electrons in graphene using ARPES (32), but the structure did not directly reflect the                 

plasmon dispersion relation. Our ability to determine the plasmon dispersion in the low density regime               

can impact the understanding of topics of significant recent interest. For instance, Ruhman and Lee               

proposed (33) that the electron-plasmon coupling in a low density regime in SrTiO3 could act as the                 

pairing glue of the superconductivity.  

We have developed a new method (MERTS) that for the first time allows a high resolution and                 

full determination of spectral function of a high-quality semiconductor 2D electronic system. The results              

display the effects of interparticle interactions that dramatically modify the electronic E-k dispersion             

spectrum as a function of density and magnetic fields. Under high magnetic fields, the technique can                

allow visualization of anisotropic wave functions of strongly correlated phases in the quantum Hall              

regime and providing crystallography of stripe, bubble phases and Wigner crystals (34). Importantly,             

MERTS is compatible with many embedded structures including electronic devices and circuits, and             

highest quality heterostructures for fundamental research, thus opening a new way of investigating             

physics of interacting particles in previously challenging geometries (35).  
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Supplementary Materials 
 
1. Materials and Methods 
 

 

Figure S1 | Experimental details. (A) The wafer growth sheet. (B) A schematic of the experimental setup                 
(36). (C) A numerical simulation of the electron density and electric field distribution of a 2D-2D QW structure                  
based on a self-consistent solution of the Poisson-Schrodinger equation under external DC voltage.  
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We use photolithography and etching to define our sample a mesa (~ diameter) froma wafer of an           50 μm  1      
MBE grown GaAs/AlGaAs heterostructure with profile shown in Fig. S1A. The top and bottom thick               
layers (>500 nm) form 3D electrodes and are doped with Si with the density of approximately                

. We perform numerical simulations of the electron density distribution along z-axis (the0  cm  2 × 1 18 −3              
growth direction) of the structure by self-consistently solving the 1D Poisson-Schrodinger equation,            
leading to results such as those shown in Fig. S1C. The thickness of the GaAs spacer layer sets the                   
density of the probe QW. In the present measurements, the thickness of the spacer is 10 nm, and the                   
electron density induced into the probe QW is . The simulation shows that, in applying        0  cmn ~ 3 × 1 10 −2        
a DC bias voltage across the electrodes the density of the target QW changes, but the density of the    V b                 
probe QW effectively remains same until the target QW nearly fully depletes. We determine the density                
of target QW vs. bias voltage by integrating the measured compressibility (i.e. capacitance) of the QW                
(Fig. S2A). 

We perform cryogenic broadband time-resolved measurements with a sample mounted in a            
rotational stage at the mixing chamber of a 3He-4He dilution refrigerator, and apply magnetic fields using                
a 16T superconducting magnet. To thermally protect the sample from the warm outside environment and               
preserve the low electron temperature, we use a combination of stainless steel, copper and NbTi               
superconducting coaxes with in-line attenuators (see Fig. S1B). For measurements of tunneling spectra,             
we apply repetitive square pulses to induce the tunneling voltage between two QWs. An initial voltage                
pulse whose amplitude is defines the actual energy of tunneling electrons. The energy is determined    V p             
by accounting for the geometric lever-arm of the heterostructure - well-to-well distance divided by the               
distance between electrodes - e.g. . The initial pulse has a short     V 26 nm/113 nm)  Et = e t ~ ( × eV p        
duration of to ensure that the tunneling current is measured before the QW densities  00 nsec  ~ 1              
significantly change. The initial pulse is followed by a voltage pulse with an opposite polarity, which                
retrieves the tunneled electrons back to the probe QW. After these pulses, we wait for ~ to               00 μsec  3   
further ensure that the whole system is back to equilibrium. As shown in Fig. S1B, we use HEMT                  
amplifiers to detect the tunneling charges capacitively. The signal from the HEMTs is amplified by a                
SiGe cryogenic low-noise amplifier (Weinreb amplifier) at the 1K pot, and finally recorded by a high                
speed signal averaging oscilloscope (SignalRecovery FastFlight2). We average an order of ~10,000 pulse             
sequences to obtain individual pixels in a 2D E-k spectrum. We scan the energy axis of the spectrum by                   
sweeping the pulse amplitudes using a DC voltage source multiplexed with a digital timing generator               
(Tektronix DTG-5274). The scan along the momentum axis is controlled by stepping the predetermined              
combination of magnetic fields and a rotation angle of the sample stage. A complete spectrum of a single                  
bias, such as shown in the main text, usually takes ~15 hours to acquire with a computer automated                  
system. 
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Figure S2 | Density determination using capacitance measurement. The red arrows point to the bias               
voltage value ( ) below which the electron system transitions to the incompressible state,  .11 V  V b ~  − 0            
signaling particle localization. (A) The density of target QW vs. bias voltage estimated by integrating the                
measured compressibility (i.e. capacitance) of the QW, with calibration determined through measurements            
showing Landau levels in magnetic field. The density designated by the red arrow corresponds to ~               

. (B) A representative total capacitance plot (blue circles) of two QW structure measured for.5 0  cm  2 × 1 10 −2                
density calibration. The black line is the estimated capacitance of the target QW, based on the total capacitance                  
data. The difference between the blue and black lines is due to the screening effect of the probe QW in the                     
capacitance measurement. 

 
2. Tunneling conductance and momentum conservation 
 
When two electronic systems are separated by a planar tunneling junction, the tunneling current is given                
by the following form, 

(V ) |T | E E  A (E, ) A (E , ) I t t = Σkk′ kk′
2 ∫

∞

−∞
d ∫

∞

−∞
d ′ L k R ′ k′ ×  

,     (S1)f (E, T ){1 (E , T )} {1 (E, T )}f (E , T )] δ(E V )  [ L kB − f R ′ kB −  − f L kB R ′ kB − E′ − e t  
where and are the spectral functions of left and right systems, respectively, with the following AL   AR               
formula 

(E, ) .A k = 1
π

|Im Σ|
(E−ε −Re Σ) +(Im Σ)k

2 2 (S2)  

And is the Fermi distribution functions of the left (right) system, is the bare electron band energy, f L(R)             εk       
and is the electronic self-energy. The represents planar momentum in the 2D plane perpendicular to  Σ       k           
the tunneling direction. With translational symmetry in the plane, the planar momenta are conserved in               
the tunneling process. 

Under in-plane magnetic fields, the planar momenta are still conserved but with an offset given               
by , as shown in Fig. S3. The measured tunneling spectrum resembles very closely the k B d /  Δ x,y = e || t h̄               
simulation using this simple picture, demonstrating the energy and momentum conservation in this             
experiment. 
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Figure S3 | Energy and momentum selective tunneling processes confirmed by comparing            
measurement with simulation results.  

 
 
3. Many-particle interactions and self-energy  
  
When particles in a system interact with each other, simple product states of individual particles are                
typically no longer eigenstates of the system. Instead, the interacting many-body system describes the              
particle-like excitations (quasiparticles) with finite lifetime and modified energy different from those of             
bare electrons (1, 2). This picture is formally expressed in the spectral function of Eq. (S2), and the                  
self-energy function has the essential information of the inter-particle interactions. Thus, measurements   Σ            
of the spectral function and the self-energy is of prime interest both experimentally and theoretically. 

In the quasiparticle approximation (7, 17), the essential information of the spectral function can              
be represented by two quantities: a quasiparticle lifetime and a modified energy. The lifetime of an                
electronic quasiparticle can be obtained from the inverse of the energy broadening of the energy            EΔ     
distribution curves (EDC; curves cut at along the energy axis) of the dispersion, approximately an      K           
inverse of the imaginary part of the electronic self-energy. On the other hand, the renormalized energy of                 
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the quasiparticle comes from the locations of the peaks of the quasiparticle distribution. If the         Epeak        
self-energy does not change very rapidly in energy, the self-energy is obtained by solving these equations, 
 

   and  .Im Σ E  − 2 = Δ e Σ  Epeak − εK − R = 0 (S3) 
 
 

4. Numerical simulation of tunneling spectrum 
 

Before starting the procedure of extracting the self-energy, we can compare the measured spectral              
function to a simple theoretical model for a basic sanity check. With a simple model of the electron-boson                  
coupling with no momentum dependence, an isotropic matrix element, and a small electron-boson             
coupling constant , the self-energy can be written in the limit of zero temperature as (1, 16, 17, 37, 38)α  

(E ) /π E  α F (E ) E  N (E )/N [ ],Σ t = 1 ∫
∞

0
d ′ 2 ′ ∫

∞

0
d ′′ ′′ 0 

θ(E )′′
E +E −E +i0t ′ ′′ + + θ(−E )′′

E −E −E +i0  t ′ ′′ +      (S4) 

where is the Eliashberg function (17), is the electron density of states, and is a the F (E)α2       (E)N         N 0     
electron density of states of the non-interacting system at the Fermi level. Further assuming a single                
Einstein bosonic mode at , the self-energy can be easily calculated. The perturbation theory    ω  h̄ ph           
arguments leading to Eq. (S4) are generally considered valid when (38) where is the          ω /E  λ ×h̄ ph F < 1    λ    
Frölich dimensionless e-ph coupling constant (20). The value of is ~0.07 in GaAs (39), and the above         λ          
condition satisfies when electron density is not too low (i.e. ). Qualitatively speaking, these          ~  meV  EF > 3     
e-ph processes effectively change the electron dispersion to result in a lower group velocity near the                
Fermi level and thus make the effective mass of electrons heavier by the mass enhancement factor                

 (1), which, in principle, one can calculate when the  is accurately measured.− ∂Re Σ/∂ε )  λ = (  
−1 e Σ  R   

 
We combine equations S1, S2, and S4 to numerically simulate tunneling spectra as in Fig. S4A-B.                

We assume the 2D density of states of electrons with three subbands, and an Eliashberg function of                Fα2   
LO phonon. To produce a simulation that resembles our data, we take the optic phonon density of states                  
to be centered at and to be a Lorentzian with height and width    ω 6 meV  h̄ ph = 3  Fα2        .5 meV  A = 3    

. We, then, calculate from Eq. (S4) using the identity.5 meV  W = 2     m Σ  I        ( ) πδ(E )1
E−E +i0′ = P̂ 1

E−E′ − i − E′

, where denotes the principal part. This results in the curve for shown in Fig. S4B. The causality  P̂            m Σ  I        
of the self-energy function in Eq. (S4) implies that and are related through the         m Σ  I   e Σ  R      
Kramers-Kronig relationship (KKR), thus we can evaluate from the as also shown in Fig.       e Σ  R    m Σ  I       
S4B. 
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Figure S4 | An example of tunneling current simulation with a simplified self-energy model              
included. (A) Simulated tunneling spectrum. (B) The real and imaginary parts of a simulated self-energy used to                 
simulate the spectrum in A. The real part is obtained from the imaginary part by the Kramers-Kronig                 
relationship. Here, is the 2nd subband minimum energies. (C-E) Schematics of various conditions of  ε2,0              
(virtual) phonon emissions that can occur and affect the electron spectrum and the self-energy. We can                
understand the outstanding features of electron-phonon interaction in the self-energy with the simplified             
mechanisms.  

 
 
5. Extraction of self-energy from momentum distribution curves (MDCs) 
 
In the current study, we use MDCs to extract the self-energy. There are a number of benefits from                  
extracting the self-energy from MDC instead of EDC (15): (i) When the self-energy is mostly a function                 
of energy, a subtle change of the self-energy is better resolved in MDC because each curve has a single                   
energy value; (ii) near the Fermi level, EDC is strongly distorted due to the Fermi distribution, making an                  
interpretation very complicated; and (iii) a potential energy dependent tunneling matrix term can heavily              
affect EDCs.  

We assign to be the half-width of the MDC, and to be the peak location of the MDC.  k  Δ           kpeak          
Note that the MDC is measured at a certain energy value . From Eq. (S3), we can easily show thatE  

 
 , and .ImΣ| k  | ≈ Δ × vh̄ g0 e Σ  R = E − εkpeak
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Thus, we can extract the self-energy by determining the peak locations and widths of the            kpeak      
quasiparticle peaks  of the MDCs from the measured spectrum.k  Δ   

In experimentally determining the and , the small FS of the probe layer is the key factor     kpeak   k  Δ             
that makes the entire procedure simple and transparent. We can find the locations of from measured               kpeak    
MDCs very accurately over the entire range of experimental parameter space. In contrast, obtaining              k  Δ  
from the measured MDC widths requires more attention. The small but finite extent of FS of the probe                  
layer still can generate a convolution effect. For example, in the limit where the intrinsic width of the                  
MDC is much smaller than the momentum width of the FS of the probe layer, the convolution effect can                   
be significant, and we need a method for deconvolution for a meaningful quantitative analysis. While the                
fully deconvolving the Eq. (1) is difficult and mathematically unstable, due to the small size of the FS of                   
the probe QW we can use a good approximation to find a simplified version of the deconvolution, of                  
which we later confirm the validity by checking with the KKR. 

 
We expect the measured MDC width (the value determined by curve-fitting the measured             

tunneling spectrum in the horizontal direction in our plots) is always larger that intrinsic MDC width (the                 
value solely given by the spectral function of quasiparticles) due to the finite extent in momentum of the                  
FS of the probe layer. Note that the finite extent of the FS in energy (~0.5 meV) has negligible effect                    
compared to the finite extent in momentum. As such, 

 
.k k  δ  Δ measured = Δ intrinsic +   

 
By using the simulation described in the earlier section, we confirmed that is nearly constant throughout            δ     
the energy range of the measurement, and the value is determined by the finite extent of the probe QW’s                   
FS. Then, the extraction of from the measured MDC width (HWHM) is a straightforward procedure     m Σ  I            
as following  

 
Im Σ| 1/Z Δk  ) v  | =  k × ( measured − δ ×h̄ g  

Δk  ) v  ≈ ( measured − δ ×h̄ g0  
 

, where is the group-velocity of the quasiparticle dispersion, is the group-velocity of the bare   vg          vg0        
electron dispersion, and is the quasiparticle strength (7, 17). Note that the formula has the   Zk              
quasiparticle strength explicitly written as we intend to demonstrate that the use of the bare group  Zk                
velocity is a better approximation in the formal treatment of the quasiparticle picture. We use               

estimated from the simulation based on the size of FS of the probe QW. In extracting.0032A  δ ≈ 0 −1                  
, we expect that these approximation procedures to give quantitatively good values within 10~20 %m Σ  I                

based on the simulation. On the other hand, the extraction of , measured by locating peaks of the           e Σ  R        
measured MDCs, is good within a few percent or less given that the bare band dispersion is known. 

In extracting the , we used , and non-parabolicity parameter   e Σ  R    .067 m  mef f = 0 e     − 3.7 A  η ~ 4 ˙ 2
 

with to calculate the expected bare electron dispersion . The tunneling /2m k| (1 |k| )εk = h̄2 
ef f  × | 2 + η 2          εk    

19 

https://paperpile.com/c/HAzkaa/Uplqv+BJ2Da
https://paperpile.com/c/HAzkaa/Uplqv+BJ2Da
https://paperpile.com/c/HAzkaa/Uplqv+BJ2Da
https://paperpile.com/c/HAzkaa/Uplqv+BJ2Da
https://paperpile.com/c/HAzkaa/Uplqv+BJ2Da


distance is a source of possible systematic error in this estimation because the is calibrated with .  dt               k      dt  
The is determined from the 1D Poisson-Schrodinger equation to account for the well-to-well distance  dt               
change when a voltage bias is applied across the top and bottom electrodes. Generally, the changes                dt   
less than 1% when the tunneling energy changes, and less than 5% when density changes upon       V  Et = e t           
application of DC voltage bias. It is important to account for this effect when we extract , otherwise                e Σ  R   
the effect generates an erroneous background slope in .e Σ  R   

 
To confirm the validity of the extraction of self-energy, it is important to check the extracted                

and are consistent with each other; the imaginary and real part of the self-energy are mutuallym Σ  I   e Σ  R                 
related via the Kramers-Kronig relationship (KKR), a formal requirement for causality of response             
functions of a physical system. As shown in Fig. S5C, we plotted converted by the KKR from the            e Σ  R        

of the measured MDC widths (black curves), and colored data points that represent the valuesm Σ  I                 
measured by the energy difference of measured peak locations to the bare dispersion, i.e. .               EMDCpeak − εk  
These two curves show a reasonable agreement with each other. Thus, we conclude that values extracted                
from our tunneling spectrum validly represent the intrinsic self-energy of an interacting electronic system. 

 

 

Figure S5 | Extraction of the self-energy from momentum distribution curves. (A) MDCs of the               
measured tunneling spectra (black lines) and curve fits (red lines) for extracting peak locations and widths. (B)                 

obtained after the simple deconvolution process discussed in the section 5. The curves are offset for clarity.m Σ  I                   
Carrier densities are 1.2 (blue), 1.7 (red), and (yellow) from top to bottom curves. (C) A        .2 0  cm  2 × 1 11 −2          
comparison between the obtained by using the KKR on the data of (B) (colored markers) and the   e Σ  R                e Σ  R  
obtained by directly measuring in the spectrum (gray markers). Black lines are moving averages of the    Epeak − εk              
colored data points. All curves are offsetted for clarity with individual zero values indicated by horizontal dashed                 
lines. 
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6. Neutral excitations of a 2D system upon a sudden injection of an electron 
 
Many phenomena inside of a solid originate from the many-particle interactions of electrons, ions and               
their collective excitations. One of the most intuitive ways to describe the interactions is in terms of a                  
scattering process between two particles that increases the imaginary part of the self-energy (most              
intuitively as an increase in the inverse quasiparticle lifetime). By enumerating possible scattering             
processes, we thus can predict basic features of the self-energy to gain insight of the underlying                
interactions.  

Electrons injected into a 2D electronic system at energy decay towards the         V  e t = Et = E − EF     
Fermi level, generating various excitations of the subject 2D system by means of scattering events. One                
example of visualizing the phase space of possible scattering events is shown in Fig. S6. Because in the                  
scattering process the momentum and energy are always conserved, the scattering is only possible when               
the momentum and energy of excitations (Fig. S6A) match the momentum and energy of energy loss                
mechanisms (Fig. S6B). The dispersion of the electron system, the injection energy, and the Fermi level                
define the phase space for possible inter-particle interactions (Fig. S6C).  

As the injection energy of an electron increases, in general, more scattering channels open and the                
quasiparticle lifetime decreases ( increases) assuming that the scattering matrix element roughly   |Im Σ|  2          
stays constant as a function of energy and momentum. Thus, the imaginary part of the self-energy,                
inversely proportional to the lifetime, shows jumps and increasing slopes that can be identified with the                
specific scattering mechanisms (Fig. S6C). Noticeably, electrons strongly scatter plasmon and phonon at             
characteristic energies (black dash-dot lines), but also generate e-h continuum excitations in a wide range               
of energy (blue-green shaded regions). In , scatterings with particles with well-defined energy, such      m Σ  I         
as plasmons and phonons, show up as steps, and the generations of e-h continuum excitations usually                
show up as increasing slopes (Fig. S6D). 

In a QW, there are multiple subbands exist due to the non-zero width of confinement. This leads                 
to two different kinds of e-h continua (40); intrasubband (blue shaped region) and intersubband (green               
shaded region) e-h continua. The former affects electrons near the Fermi level, but is known to be                 
suppressed near the Fermi level due to the Pauli blocking that restricts phase space for e-e scatterings. The                  
intersubband e-h continuum excitations, on the other hand, contribute to the electron quasiparticle             
spectrum above for decays that leave one electron into the second subband. Above   eV t ~ ε2,0 − EF            
another threshold at , the decay of one high energy electron in the first subband can   )  eV t ~ 2(ε2,0 − EF              
place two electrons in the second subband.  
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Figure S6 | Possible excitation mechanisms and loss channels of a 2D electron system. (A) Green                
and blue shaded regions indicates (E,q) values of possible intra- and intersubband e-h excitations. Black               
dash-double-dot and dash-dot lines show (E,q) values of phonon and plasmon excitations, respectively, as              
denoted in the figures. (B) Light and dark gray shaded regions indicate possible (E,q) values that an injected                  
electron can lose energy and momentum (i.e. electron-loss spectrum). (C) When the electron-loss spectrum              
overlaps in E-k space with the excitations spectra, there is a non-zero probability of an injected electron at energy                   

to lose energy and momentum by generating excitations as listed in (A). (D) Qualitative prediction ofEt                  m Σ  I  
of the quasiparticle dispersion in the 1st subband based on the above model. (E) Comparison of the prediction                  
with the typical data measured at . Note the qualitative agreement of features in the      .7 0  cm  n = 0 × 1 11 −2          
prediction (D) and the measurement (E). 
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Figure S7 | Measured spectra at T = 1.5 K at various electron densities. (A) We show measured                  
tunneling spectra at various densities, whose values are indicated by the corresponding numbered             
yellow squares in the density vs. bias voltage plots in (B). (C) The plot is a zoomed-in view of the                    
green rectangle in (B). 

 
 
 
 
 

(continued on next page) 
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Figure S8 | Temperature dependence of the kink structure. (A) A tunneling spectrum measured at               
nearly zero density and , and (B) spectra measured at 4, 8, 16 and 24 K with the same density. (C) A    .5 K  T = 1                   
spectrum measured at and , and (D) spectra measured at 4, 8, 16 and 24K at the   0  cm  n ~ 3 × 1 10 −2   .5 K  T = 1              
same density. The kink structure (inside the yellow circle) only exists at very low density near the depletion                  
regime and low temperature below 16 K. In (B) and (D), we adjusted color contrast and added constant current                   
contours to ease distinction of the kink features as temperature varies.  

 
 
 
 
 
 

(continued on next page) 
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Figure S9 | Line-cuts of the resonant polaron splitting at . (A) (B)          T  B⊥ = 8   .5 0  cm  n = 2 × 1 10 −2   
. (C) . Each upper panel shows a vertical line-cut through the yellow.3 0  cm  n = 1 × 1 11 −2   .3 0  cm  n = 2 × 1 11 −2            

dotted lines in each spectrum. The splitting disappears at higher electron densities because the unoccupied               
electronic states near the Fermi level decrease and eventually no more 1-phonon states are available for the                 
polaron resonance to occur. The sample temperature is 3K. In each 2D spectrum, the contrast is adjusted for                  
maximum visibility.  
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