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Abstract There is often a significant trade-off between formulation strength
and size in mixed integer programming (MIP). When modelling convex dis-
junctive constraints (e.g. unions of convex sets) this trade-off can be resolved
by adding auxiliary continuous variables. However, adding these variables can
result in a deterioration of the computational effectiveness of the formulation.
For this reason, there has been considerable interest in constructing strong
formulations that do not use continuous auxiliary variables. We introduce
a technique to construct formulations without these detrimental continuous
auxiliary variables. To develop this technique we introduce a natural non-
polyhedral generalization of the Cayley embedding of a family of polytopes
and show it inherits many geometric properties of the original embedding. We
then show how the associated formulation technique can be used to construct
small and strong formulation for a wide range of disjunctive constraints. In
particular, we show it can recover and generalize all known strong formulations
without continuous auxiliary variables.
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1 Introduction

Convex nonlinear mixed integer programming (MIP) adds integrality require-
ments to convex optimization problems and often arises from the need to model
disjunctive constraint of the form x ∈

⋃k
i=1 C

i where {Ci}ki=1 ⊆ Rn is a family
of closed convex sets. The two main classes of formulations for these constraints
are the so-called Big-M and convex hull formulations. Big-M formulations are
simple and small, but their continuous relaxations usually yield weak bounds,
which can hinder the performance of branch-and-bound based algorithms. In
contrast, the convex hull formulation yields the best possible relaxation bounds
for a single disjunctive constraint and normally yields strong bounds for prob-
lems with multiple constraints. Unfortunately, while convex hull formulations
are only moderately larger than Big-M formulations, their computational per-
formance is usually much worse. The folklor attributes this poor performance
to certain continuous auxiliary variables used by the convex hull formulation.
This has prompted significant interest on techniques to project out such vari-
ables (i.e. eliminate them without decreasing the formulation’s strength). The
resulting formulations can provide a significant computational advantage, but
existing techniques are limited to very specific structures (e.g. see [2,5,15,23,
25] for polyhedra and [7,9,11,21,22] for non-polyhedral sets). In this paper we
introduce a technique to project out the detrimental auxiliary variables for a
wide range of disjunctive constraints. In particular, the technique can be used
to recover and generalize all known results that use binary variables that add
to one (e.g. excluding the logarithmic formulation from [23,25]).

Our technique is based on a geometric characterization of the projection
of the convex hull formulation that conects it to a natural non-polyhedral
generalization of an object known as the Cayley embedding of a family of
polytopes. To obtain this characterization we generalize to the non-polyhedral
setting some known properties of the Cayley embedding and use it to obtain a
valid formulation of the disjunctive constraint. We then give simple sufficient
conditions for this formulation to be equal to the projection of the convex hull
formulation. Using these conditions we then recover and generalize all known
techniques to project the convex hull formulation. We also provide precise
necessary and sufficient conditions to obtain the projection and comment on
the practical implementation of the formulations. In particular, we evaluate
the representation of the projection from an algebraic geometry perspective.

The paper is organized as follows. In Section 2 we introduce a geomet-
ric abstraction that unifies all known formulations in common framework. In
Section 3 we introduce the geometric characterization and describe the pro-
jected convex hull formulation for two simple cases. In Section 4 we present
the generalized properties of the Cayley embedding and the simple sufficient
conditions. We then use these conditions to recover and generalize all existing
formulations in Section 5. In particular, we give guidance on how to apply the
technique, comment on its practical implementation and present the algebraic
geometry result. Finally, in Section 6 we give detailed neccessary and sufficient
conditions for the technique. Ommited proofs are included in Section 7.
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We use the following notation. For a function f : Rn → R ∪ {∞} we let
its epigraph be epi (f) :=

{
(x, z) ∈ Rn+1 : f(x) ≤ z

}
. For a set S ⊆ Rn we

denote its topological closure, its convex hull, its conic hull and its affine hull
by cl (S), conv (S), cone (S) and aff (S). For a closed convex set we let its
recession cone be C∞. We let JkK := {1, . . . , k}, ei ∈ Rn be the i-th canonical
vector, 1 ∈ Rn be the all ones vector and 0 ∈ Rn be the all zeros vector (the
specific dimension will be apparent from the context). For a closed convex cone
K we let K∗ be its polar cone. Finally, we let Z be the set of integers.

2 MIP formulations for unions of convex sets

Definition 1 Let {Ci}ki=1 ⊆ Rn be a finite family of closed convex sets and
Q ⊆ Rn+p+k be a closed convex set. We say (x, z, y) ∈ Q, y ∈ Zk is a MIP

formulation of x ∈
⋃k
i=1 C

i if and only if

x ∈
⋃k

i=1
Ci ⇔ ∃ (z, y) ∈ Rp × Zk s.t. (x, z, y) ∈ Q. (1)

We refer to Q as the continuous relaxation of the MIP formulation and say the
formulation is ideal if and only if for any minimal face F of Q and (x, z, y) ∈ F
we have y ∈ Zk.

Existing formulations dependend on specific set-representations. For in-
stance, Balas, Jeroslow and Lowe give linear MIP formulations for polyhedra
(e.g. [24, Section 5]), Ben-Tal, Helton, Nemirovski and Nie give conic MIP
formulations for conic representable sets [3,10] and Ceria, Merhotra, Soares
and Stubs give perspective function formulations for function level sets [8,20].
To abstract the representation we use the gauge of a convex set (e.g. [13]).

Definition 2 Let C ⊆ Rn be a closed convex with 0 ∈ C. The gauge of C is
the function γC : Rn → R ∪ {∞} defined by γC (x) := inf {λ > 0 : x ∈ λC}.
In particular, if x /∈ λC for all λ > 0, then γC (x) =∞.

Lemma 1 For any closed convex set C ⊆ Rn such that 0 ∈ C we have that
γC is convex and positively homogeneous, {x ∈ Rn : γC (x) ≤ r} = rC, and
{x ∈ Rn : γC (x) ≤ 0} = C∞. Furthermore, if C ⊆ Rn is a closed convex set
and b ∈ C, then C = {x ∈ Rn : γC−b (x− b) ≤ 1}.

Using gauge functions we can construct a generic versions of standard
formulations for convex sets that satisfy the following assumption.

Definition 3 We say C :=
{
Ci
}k
i=1
∈ Cn if and only if Ci ⊆ Rn is a non-

empty closed convex set for all i ∈ JkK and Ci∞ = Cj∞ for all i, j ∈ JnK.
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Theorem 1 Let
{
bi
}k
i=1
⊆ Rn and C :=

{
Ci
}k
i=1
∈ Cn be such that bi ∈ Ci

for all i ∈ JkK, then an ideal formulation for
⋃k
i=1 C

i is given by

γCi−bi
(
xi − biyi

)
≤ yi, ∀i ∈ JkK ,

∑k

i=1
yi = 1, y ∈ {0, 1}k . (2a)∑k

i=1
xi = x. (2b)

In particular, if ext
(
Ci
)
6= ∅ for all i ∈ JkK, then the continuous relaxation of

(2) is line-free and all of its extreme points have integral y components.

The proof of Theorem 1 is analogous to existing formulations, but for
completeness we include a proof in Section 7.1.

A key to obtain the relatively simple and small ideal formulation (2) is
the use of the k copies xi of the original variables x. Unfortunately, these
variable copies can detrimentally affect the performance of MIP solvers. For
this reason, simpler Big-M formulations are often preferred in practice, even
though they usually fail to be ideal. We can abstract the specific structure of
such Big-M formulations using gauge functions as follows.

Theorem 2 Let
{
bi
}k
i=1
⊆ Rn and C :=

{
Ci
}k
i=1
∈ Cn be such that bi ∈ Ci

for all i ∈ JkK, and M ∈ Rk×k be such that Mi,i = 1 for all i ∈ JkK and
Cj ⊆

{
x ∈ Rn : γCi−bi

(
x− bi

)
≤Mi,j

}
for all i, j ∈ JkK. Then a formulation

for
⋃k
i=1 C

i is given by

γCi−bi
(
x− bi

)
≤
∑k

j=1
Mi,jyj , ∀i ∈ JkK ,

∑k

i=1
yi = 1, y ∈ {0, 1}k . (3)

The strength of this formulation depended on M with the strongest formulation
being obtained for the smallest valid coefficients.

The abstraction provided by the use of gauge functions allow us to focus
on the geometric structure of the formulations. However, it does not provide
an explicit representation of the formulations that can be easily fed to a MIP
solver. Fortunately, we can use known properties of gauge functions to obtain
practical representation of various classes and recover existing formulations.

Lemma 2 Let C ⊆ Rn be closed and convex with 0 ∈ C and E ⊆ Rn×R+ be a
closed convex cone. Then E = epi (γC) if and only if C = {x ∈ Rn : (x, 1) ∈ E}
and C∞ = {x ∈ Rn : (x, 0) ∈ E}. In particular,

1. If C := {x ∈ Rn : ∃z ∈ Rp s.t. Ax+Bz + c ∈ K} for a closed convex cone
K ⊆ Rm, matrices A ∈ Rm×n and B ∈ Rm×p, and vector c ∈ Rm, then
epi (γK) =

{
(x, y) ∈ Rn+1 : ∃z ∈ Rp s.t. Ax+Bz + cy ∈ K, y ≥ 0

}
,

2. if f : Rn → R ∪ {∞} is a closed convex function, (cl f̃)(x, y) is the clo-
sure of the perspective function of f , and C :=

{
x ∈ Rd : f(x) ≤ 0

}
, then

epi (γC) = {(x, y) ∈ Rd × R+ : (cl f̃)(x, y) ≤ 0},
3. if b ∈ C, then epi (γC−b) =

{
(x, y) ∈ Rn+1 : γC (x+ by) ≤ y

}
, and

4. If 0 ∈ C1 ∩ C2 then, epi (γC1∩C2) = epi (γC1) ∩ epi (γC2).
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The following example illustrates Lemma 2 and Theorems 1 and 2.

Example 1 Let C1 = {x ∈ R2 : (2− s1x1) (2− s2x2) ≥ 1 ∀s ∈ {−1, 1}2}
and C2 = [−5/4, 5/4]2. Using standard conic representability results for the
cone Ln :=

{
(x, x0) ∈ Rn+1 : ‖x‖2 ≤ x0

}
(e.g. [3]) we have

C1 =
{
x ∈ R2 : ‖(2, s1x1 − s2x2)‖2 ≤ 4− s1x1 − s2x2 ∀s ∈ {−1, 1}2

}
.

Using Lemma 2 we have γC1 (x) ≤ y if and only if

‖(2y, s1x1 − s2x2)‖2 ≤ 4y − s1x1 − s2x2 ∀s ∈ {−1, 1}2

Similarly γC2 (x) ≤ y if and only if − (5/4) y ≤ xj ≤ (5/4) y ∀j ∈ J2K. Then

Theorem 1 yields the ideal formulation for
⋃2
i=1 C

i given by∥∥(2y1, s1x
1
1 − s2x

1
2

)∥∥
2
≤ 4y1 − s1x

1
1 − s2x

1
2 ∀s ∈ {−1, 1}2 (4a)

− (5/4) y2 ≤ x2
j ≤ (5/4) y2 ∀j ∈ J2K (4b)

x1 + x2 = x, y1 + y2 = 1, y ∈ {0, 1}2 . (4c)

Alternatively, we can use Theorem 2 to obtain the formulation given by

‖(2 (y1 +M1,2y2) , s1x1 − s2x2)‖2 ≤ 4 (y1 +M1,2y2)

− s1x1 − s2x2 ∀s ∈ {−1, 1}2 (5a)

−M2,1y1 − (5/4) y2 ≤ xj ≤M2,1y1 + (5/4) y2 ∀j ∈ J2K (5b)

y1 + y2 = 1, y ∈ {0, 1}2 . (5c)

The smallest Big-M values that make this formulation valid are M1,2 = 5/4
and M2,1 = 3/2. Unfortunately, we can check that for all t ∈ (0, 1) the point
(x̄(t), ȳ(t)) with x̄(t) = ((5 + t)/4, (5/4)(5− t)(t− 1)/(3t− 5)) and ȳ(t) =
(t, 1− t) is an extreme point of the continuous relaxation of (5) with frac-
tional y components. Furthermore, x̄(t) /∈ conv

(
C1 ∪ C2

)
for all t ∈ (0, 1). ut

An ideal formulation without the variable copies can be obtained by pro-
jecting (2) onto the the x and y variables, but characterizing such projection
can be challenging. However, an effective characterization can lead to sig-
nificant computational improvements [7,9,11,23,25]. Unfortunately, there are
only few general techniques to obtain these characterizations. One of the most
general results by Balas, Blair and Jeroslow [2,5,15] considers unions of poly-
hedra with a common geometric structure (See Proposition 5 in Section 5.1).
In contrast, non-polyhedral results require more structure and fall into two
classes. The first class considers convex sets contained in orthogonal spaces
[22] and can be stated in our gauge notation as follows.

Theorem 3 ([22]) Let
{
bi
}k
i=1
⊆ Rn,

{
Ci
}k
i=1

be a finite family of compact

convex sets in Rn and {Ji}ni=1 be disjoint sets such that
⋃n
i=1 Ji = JnK and for
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all i ∈ JkK we have bi ∈ Ci and Ci ⊆ {x ∈ Rn : xj = 0 ∀j ∈ JnK \ Ji}. Then

an ideal formulation for x ∈
⋃k
i=1 C

i is given by

γCi−bi
([
x− biyi

]
Ji

)
≤ yi ∀i ∈ JkK ,

∑k

i=1
yi = 1, y ∈ {0, 1}k . (6)

where for a ∈ Rn and J ⊆ JnK we let [a]J ∈ Rn be such that ([a]J)
j

= aj if

j ∈ J and ([a]J)
j

= 0 otherwise.

The second class considers sets with certain monotonicity properties and gen-
eralizes “on/off” constraints [9,7,11].

Theorem 4 ([7,11]) Let G1, G2 ⊆ Rn be a closed convex sets such that G1
∞ =

Rn− and G2
∞ = Rn+. Furthermore, for each i ∈ J2K, let li, ui ∈ Rn and Ci :={

x ∈ Gi : lij ≤ xj ≤ uij ∀j ∈ JnK
}

be such that lij = min
{
xj : x ∈ Ci

}
and

uij = max
{
xj : x ∈ Ci

}
for all j ∈ JnK, b1 = l1 and b2 = u2. Then an ideal

formulation for x ∈ C1 ∪ C2 is given by

γGi−bi
([
x− l1y1 − u2y2

]
J

)
≤ yi, ∀i ∈ J2K , J ⊆ JnK (7a)

y1l
1
j + y2l

2
j ≤ xj ≤ y1u

1
j + y2u

2
j , ∀j ∈ JnK (7b)

y1 + y2 = 1, y ∈ {0, 1}2 . (7c)

The most general known version of this result (e.g. Theorem 4 in [7]) is ob-
tained by combining Theorem 4 with Lemma 2 and noting that the result is
still valid if we flip or mirror the axes of the x variables. In fact, Theorems 4
and 3 can also be easily extended further by combining formulation (7) and
any orthogonal transformation of the x variables (i.e. axis flip plus rotation).

3 Ideal Formulations without Variable Copies

To construct the projection of formulation (2) onto the x and y variables we
use a geometric characterization introduced in [23] for the polyhedral setting.
This characterization is based on the Cayley trick or Cayley Embedding, which
is used to study Minkowski sums of polyhedra (e.g. [14,16,26]). The charac-
terization in [23] uses a generalization of the Cayley Embedding to consider
alternative uses of 0-1 variables (beyond the k variables yi that add to one used
in (2)). However, for simplicity we only generalize the standard version to the
non-polyhedral setting through the following result we prove in Section 7.1.

Proposition 1 Let C :=
{
Ci
}k
i=1
∈ Cn and Q (C) := conv

(⋃k
i=1 C

i ×
{
ei
})

,

where ei is the i-th k-dimensional unit vector. Then

1. Q (C) is a closed convex set and Q (C)∞ =
{

(x, y) ∈ Rn+k : x ∈ C1
∞, y = 0

}
,

2. Q (C) is the projection of the continuous relaxation of (2), and

3. (x, y) ∈ Q (C) , y ∈ Zk is an ideal formulation of x ∈
⋃k
i=1 C

i.
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Proposition 1 reduces the construction of an ideal formulation to that of
the convex hull defining Q (C), which can be as challenging as the projection of
(2). Fortunately, as illustrated in the following propositions, it can sometimes
be easily constructed for specially structures. The first structure we consider is
nearly-homothetic sets that are almost translations and scalings of one another
(we replace the scaling by 0 with the common recession cone of the sets).

Proposition 2 Let C ⊆ Rn be a closed convex set such that 0 ∈ C,
{
bi
}k
i=1
⊆

Rn and r ∈ Rk+ \ {0}. If C :=
{
Ci
}k
i=1

is such that Ci = riC + bi + C∞ for
each i ∈ JkK, then (x, y) ∈ Q (C) if and only if

γC

(
x−

∑k

i=1
yib

i

)
≤
∑k

i=1
riyi,

∑k

i=1
yi = 1, yi ≥ 0 ∀i ∈ JkK . (8)

Proof Let Q be the continuous relaxation of (8). Then Q is convex and Ci ×{
ei
}
⊆ Q for all i ∈ JkK, so we have Q (C) ⊆ Q. Finally, if (x, y) ∈ Q,

then x ∈
(∑k

i=1 yiri

)
C +

∑k
i=1 yib

i ⊆
(∑k

i=1 yiri

)
C +

∑k
i=1 yib

i + C∞ =∑k
i=1 yi

(
riC + bi + C∞

)
⊆ Q (C). ut

The second structure we consider is a technical generalization of Theorem 3
that we later use to generalize Theorem 4. This generalization relaxes the or-
thogonality requirement of Theorem 3 by allowing sets that are the Minkowski
sum of the orthogonal sets and the non-negative orthant. This requires adding
technical restriction (9) on the sets, which generalizes the monotonicity condi-
tion of Theorem 7. We discuss this condition further in Section 9. Finally, we
explicitly consider the possible orthogonal transformation we have previously
alluded to, and which we represent through an orthonormal basis. This last
step allows for a more direct practical application of the result, but makes the
proof more technical so we postpone it to Section 7.2.

Proposition 3 Let
{
Gi
}k
i=1

be closed convex sets in Rn such that 0 ∈ Gi

for all i ∈ JkK,
{
vj
}n
j=1
⊆ Rn be an orthonormal basis of Rn, and {Ji}ki=1

be disjoint sets such that JnK =
⋃k
i=1 Ji,

{
bi
}k
i=1
⊆ Rn, t ∈ {−1, 1}n and

M = cone
({
tjv

j
}n
j=1

)
. Finally, let

{
si
}k
i=1
⊆ {−1, 0, 1}n be such that for

each i ∈ JkK we have sij = 0 for all j /∈ Ji, K
i = cone

({
sijv

j
}n
j=1

)
and

Ci := bi +Gi ∩Ki +M . If for all i ∈ JkK we have((
Gi ∩Ki

)
−Ki

)
∩Ki = Gi ∩Ki (9)

and Gi ∩Ki is compact, then (x, y) ∈ Q (C) if and only if

γGi

(∑
j∈Ji

ui,j
(
ui,j · x−

∑k

l=1
b
i,l

j yl

)+ )
≤ yi ∀i ∈ JkK (10a)

tjv
j · x−

∑k

l=1
bljyl ≥ 0 ∀j ∈ JnK (10b)∑k

i=1
yi = 1, yi ≥ 0 ∀i ∈ JkK , (10c)



8 Juan Pablo Vielma

where (a)
+

= max {0, a} for any a ∈ R and for all i, l ∈ JkK and j ∈ JnK
we let ui,j =

(
−sijtj

)+
sijv

j, bij = min
{
tjv

j · x : x ∈ bi +Gi ∩Ki
}

and b
i,l

j =

max
{
sijv

j · x : x ∈ bl +Gl ∩Kl
}

if i 6= l and b
i,i

j = ui,j · bi.

4 Boundary Structure of the Cayley Embedding

To characterize Q (C) for more complicated unions we will use the special
structure of its boundary. It is known that if all Ci are polytopes, then every
face of Q (C) is of the form conv

(⋃n
i=1 F

i ×
{
ei
})

where the F i are faces of Ci

whose normals intersect [14,16,26]. We generalize this result beyond polyhedra
using standard properties of the boundary of a closed convex set (e.g. [13]).

Definition 4 The support function of S ⊆ Rn is the function σS : Rn →
R∪{∞} defined by σS (d) := sup {d · x : x ∈ S}. The domain of σS is the set
dom (σS) := {d ∈ Rn : σS (d) <∞}.

For a closed convex set C ⊆ Rn we denote its boundary by bd (C) =
C \ int (C), its relative boundary by rbd (C) = C \ ri (C), its affine hull by
aff (C) and the linear subspace parallel to aff (C) by L (C).

The face of C exposed by d ∈ Rn is FC (d) := {x ∈ C : d · x = σC (d)} and
its normal cone at x ∈ bd (C) isNC(x) := {d ∈ Rn : d · (y − x) ≤ 0 ∀y ∈ C}.
The tangent cone TC(x) to C at x ∈ bd (C) is the polar of NC(x).

Proposition 4 Let C :=
{
Ci
}k
i=1
∈ Cn ,

{
bi
}k
i=1
⊆ Rn be such that bi ∈

Ci for all i ∈ JkK and A ∈ Rr×n be such that L (C) :=
∑k
i=1 L

(
Ci
)

=
{x ∈ Rn : Ax = 0}. Then

aff (Q (C)) =

{
(x, y) ∈ Rn+k :

∑k

i=1
yi = 1, Ax =

∑k

i=1
Abiyi

}
.

In addition, let U (C) := {u ∈ L (C) \ {0} : FCi(u) 6= ∅ ∀i ∈ JkK}, N (C) :={(
xi
)k
i=1
∈ ×k

i=1 bd
(
Ci
)

: L (C) ∩
⋂k
i=1NCi

(
xi
)
6= {0}

}
, and for each X :=(

xi
)k
i=1
∈ N (C) let Q (X ) := conv

(⋃n
i=1

{
xi
}
×
{
ei
})

. Then rbd (Q (C)) is
equal to the union of⋃

u∈U(C)
conv

(⋃k

i=1
FCi(u)×

{
ei
})

=
⋃
X∈N(C)

Q (X ) (11)

and ⋃k

i=1
conv

(⋃
j 6=i

Cj ×
{
ej
})

=
⋃k

i=1
{(x, y) ∈ Q (C) : yi = 0} . (12)

We postpone the proof of Proposition 4 to Section 7.3 and instead illustrate
it in the following example.
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Example 2 Let C1 =
{
x ∈ R2 : (2− v1x1) (2− v2x2) ≥ 1 ∀v ∈ {−1, 1}2

}
and

C2 = [−5/4, 5/4]2 be the sets from Example 1 depicted in Figure 1(b). Let
x̂2 = (1,−1) ∈ bd

(
C2
)

and B̂1 :=
{
x ∈ C1 : (2− x1) (2 + x2) = 1

}
⊆ bd

(
C1
)

be the boundary subsets highlighted in black in Figure 1(b) (the range of
their normals are depicted by dashed arrows). Then NC1

(
x1
)
∩NC2

(
x̂2
)
6= ∅

if and only if x1 ∈ B̂1 and hence by Proposition 4 we have that B̂ :=⋃
x1∈B̂1 conv

(({
x1
}
×
{
e1
})
∪
({
x̂2
}
×
{
e2
}))

⊆ rbd (Q (C)). This is illus-
trated in Figure 1(a) were we use the fact that y1 +y2 = 1 for all (x, y) ∈ Q (C)
to eliminate y2 and depict Q (C) three dimensions. In Figure 1(a) the repre-
sentations (i.e. after eliminating y2) of B̂1 ×

{
e1
}

and
{
x̂2
}
×
{
e2
}

are high-

lighted in black and B̂ corresponds to the meshed surface. This surface is an
example of a portion of the boundary of Q (C) considered in (11). We ob-
tain another example of this portion if we let x̃1 := (0,−3/2) ∈ bd

(
C1
)

and

B2 :=
{
x ∈ C2 : x2 = −5/4

}
⊆ bd

(
C2
)

be the boundary subsets highlighted

in white in Figure 1(b), for which NC1

(
x̃1
)
∩ NC2

(
x2
)
6= ∅ if and only if

x2 ∈ B2, and B̃ := conv
(({

x̃1
}
×
{
e1
})
∪
(
B2 ×

{
e2
}))
⊆ rbd (Q (C)). An

example of a portion considered in (12) is simply C1 ×
{
e1
}

whose represen-
tation is depicted by the dotted surface in Figure 1(a). ut

(a) Cayley embedding with variable
y2 projected out.

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

(b) Sets in dark gray. Boundary subsets from Exam-
ple 2 in black and white, with normals as dashed ar-
rows. Supersets Cs,i from Example 3 in light gray.
One nonlinear inequality of C1 as dotted curve.

Fig. 1 An illustration of Propositions 4 and 5 for Examples 2 and 3.

Example 2 illustrates how the characterization of bd (Q (C)) from Proposi-
tion 4 can be turned into a piecewise description composed of a finite number
of sets (e.g. B̂, B̃, C1×

{
e1
}

, etc.). All sets associated to (12) have simple ex-

plicit descriptions that yield trivial valid inequalities for Q (C) (e.g. C1×
{
e1
}

yields y1 ≤ 1 or equivalently y2 ≥ 0). In contrast, the sets associated (11)
yield non-trivial valid inequalities, but do not always have clear explicit de-
scriptions (e.g. B̃ yields −x2 ≤ (3/2)y1 + (5/4)(1 − y1), but the non-linear
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inequality associated to B̂ is harder to describe). Fortunately, it is sometimes
possible to directly obtain a finite piecewise description of Q (C). The first
step is to describe Q (C) as a finite intersection of similar sets, but with known
descriptions.

Proposition 5 Let C :=
{
Ci
}k
i=1
∈ Cn, Cj :=

{
Cj,i

}k
i=1
∈ Cn for each

j ∈ JmK and U =
⋂k
i=1 dom (σCi) \ {0} or U = Rn. If

Ci ⊆ Cj,i ∀j ∈ JmK , i ∈ JkK (13a)

∀u ∈ U ∃j ∈ JmK s.t. σCi (u) = σCj,i (u) ∀i ∈ JkK , (13b)

then Q (C) =
⋂m
j=1Q

(
Cj
)
.

Proof Let Q =
⋂m
j=1Q

(
Cj
)
. Condition (13a) implies Q (C) ⊆ Q. For Q ⊆

Q (C) we show σQ (u, v) ≤ σQ(C) (u, v). If σQ(C) (u, v) =∞ this holds trivially,

so we assume (u, v) ∈ dom
(
σQ(C)

)
. By Theorem 3.3.2 in [13] we have

σQ(C) (u, v) = maxki=1 σCi (u) + v · ei. (14)

Then dom
(
σQ(C)

)
=
(⋂k

i=1 dom (σCi)
)
×Rk and u ∈ dom (σCi) for all i ∈ JkK.

If u = 0, then σQ (u, v) = σQ(C) (u, v) = maxki=1 vi. For u 6= 0 let j ∈ JmK
be the index from condition (13b). Combining this condition with (14) and
Theorem 3.3.2 in [13] for Q

(
Cj
)

we finally have σQ (u, v) ≤ σQ(Cj) (u, v) =

maxki=1 σCj,i (u) + v · ei = σQ(C) (u, v). ut

The second step is to combine Proposition 5 with the known descriptions of
the Q

(
Cj
)
. For instance, below we combine it with Proposition 2.

Corollary 1 Let C :=
{
Ci
}k
i=1
∈ Cn and for each j ∈ JmK let Cj,0 ⊆ Rn

with 0 ∈ Cj,0,
{
bj,i
}k
i=1
⊆ Rn, rj ∈ Rk+ \ {0} and Cj :=

{
Cj,i

}k
i=1

be such

that Cj,i = rjiC
j,0 + bj,i + Cj,0∞ for all i ∈ JkK and j ∈ JmK. If (13) holds for{

Cj
}m
j=1

, then an ideal formulation for x ∈
⋃k
i=1 C

i is given by

γCj,0

(
x−

k∑
i=1

yib
j,i

)
≤

k∑
i=1

rji yi ∀j ∈ JmK ,
k∑
i=1

yi = 1, y ∈ {0, 1}k . (15)

Example 3 Let C1 and C2 again be the sets from Example 1 depicted in Fig-
ure 1(b). To construct an ideal formulation for x ∈ C1∪C2 we divide directions

u ∈ R2 \ {0} for condition (13b) into four classes. For each s ∈ {−1, 1}2 let
Cs,1 :=

{
x ∈ R2 : (2− s1x1) (2− s2x2) ≥ 1, sjxj ≤ 3/2 ∀i ∈ J2K

}
, Cs,2 :={

x ∈ R2 : sjxj ≤ 5/4 ∀i ∈ J2K
}

andDs :=
{
u ∈ R2 : s1x1 ≥ 0, s2x2 ≥ 0

}
.

For s = (1,−1), Figure 1(b) depicts Cs,1 and Cs,2 in light gray and illustrates
how condition (13) is satisfied: for each i ∈ J2K, s ∈ {−1, 1} and u ∈ Ds

we have σCi (u) = σCs,i (u) and Ci ⊆ Cs,i. Finally, if we let Cs,0 = Cs,1,
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rs1 = 1, bs,1 = (0, 0)T , rs1 = 0 and bs,1 = (s1(5/4), s2(5/4))
T

we have Cs,i =
rsiC

s,0 + bs,i + Cs,0∞ for all i ∈ J2K and

epi (γCs,0) =

{
(x, y) ∈ R3 :

‖(2y, s1x1 − s2x2)‖2 ≤ 4y − s1x2 − s2x2,

sjxj ≤ (3/2)y ∀j ∈ J2K

}
.

Then (15) yields the ideal formulation of x ∈ C1 ∪ C2 given by

‖(2y1, s1x1 − s2x2)‖2 ≤ 4y1 + (5/2)y2 − s1x2 − s2x2 ∀s ∈ {−1, 1}2 , (16a)

sjxj ≤ (3/2)y1 + (5/4)y2 ∀j ∈ J2K , s ∈ {−1, 1}2 , (16b)

y1 + y2 = 1, y ∈ {0, 1}2 . (16c)

where we used the fact that s2
1 = s2

2 = 1 for all s ∈ {−1, 1}2 to simplify the
nonlinear inequalities in x and y. ut

Note that the key to effectively satisfy condition (13b) was to include
sjxj ≤ 3/2 in the definition of Cs,1. Indeed, as can be glimpsed from Fig-
ure 1(b) if we omitted these constraints for s = (1,−1), we would have
σC1 (0,−1) = 3/2 < 2 = σCs,1 (0,−1). Another way to understand the need for
these inequalities is by noting that for s = (1,−1) they ensure thatNCs,1

(
x̃1
)
∩

NCs,2
(
x2
)
6= ∅ for x̃1 := (0,−3/2) and all x2 ∈ B2 :=

{
x ∈ C2 : x2 = −5/4

}
(cf. white boundary subsets depicted in Figure 1(b) and discussed in Exam-
ple 2). This last observation can be useful to construct families

{
Cj
}m
j=1

that

satisfy condition (13b) (and verify that they do satisfy it) so we formalize
it in Corollary 3 of Section 6. However, we first showcase some important
applications where (13b) can be easily verified.

5 Applications of Proposition 5

While Proposition 5 and Corollary 1 are simple, together with Proposition 3
they can recover and generalize all known results from the literature.

5.1 Unions of Polyhedra

The first result that Corollary 1 can generalize is the following class of formu-
lations introduced by Balas, Blair and Jeroslow [2,5,15].

Definition 5 For any A ∈ Rm×n and B ⊆ JmK let AB ∈ R|B|×n be the sub-
matrix of A composed of the rows indexed by B. For a fixed A ∈ Rm×n let
B = {B ⊆ JmK : |B| = rank(A), rank (AB) = rank(A)}, and for any B ∈ B
and b ∈ Rm let P (B, b) := {x ∈ Rn : ABx ≤ bB} and x̄ (B, b) ∈ Rn be an
arbitrary solution of ABx = bB .
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Theorem 5 (Theorem 2 in [5]) Let A ∈ Rm×n and for each i ∈ JkK let
bi ∈ Rm and P i =

{
x ∈ Rm : Ax ≤ bi

}
. If

∀B ∈ B
(
x̄
(
B, bi

)
∈ P i ∀i ∈ JkK

)
∨

(
x̄
(
B, bi

)
/∈ P i ∀i ∈ JkK

)
,

then an ideal formulation of x ∈
⋃k
i=1 P

i is given by

Ax ≤
∑k

i=1
biyi,

∑k

i=1
yi = 1, y ∈ {0, 1}k . (17a)

Corollary 1 generalizes Theorem 5 as follows.

Corollary 2 Let A ∈ Rm×n and for each i ∈ JkK let bi ∈ Rm and P i ={
x ∈ Rm : Ax ≤ bi

}
. If for all c ∈ Rn there exist B ∈ B such that

max
{
c · x : x ∈ P

(
B, bi

)}
= max

{
c · x : x ∈ P i

}
∀i ∈ JkK , (18)

then (17) is an ideal formulation of x ∈
⋃k
i=1 P

i .

Proof For all B ∈ B let CB :=
{
CB,i

}k
i=1

be such that CB,i = P
(
B, bi

)
=

P (B,0) + x̄
(
B, bi

)
for all i ∈ JkK. Condition (13a) is trivially satisfied and

condition (13b) is satisfied by the corollary’s assumption. The result follows
from Corollary 1 by noting that JmK =

⋃
B∈B B, that because epi

(
γP (B,0)

)
={

(x, y) ∈ Rn+1 : y ≥ 0, ABx ≤ 0
}

we have (x, y) ∈ Q
(
CB
)

if and only if

AB

(
x−

∑k

i=1
x̄
(
B, bi

)
yi

)
= ABx−

∑k

i=1
biByi ≤ 0∑k

i=1
yi = 1, yi ≥ 0 ∀i ∈ JkK . ut

The sufficient condition of Theorem 5 implies that of Corollary 2, but the
following example adapted from [24] shows that the converse may not hold.

Example 4 Consider

A =


1 0 1
−1 0 1

0 1 1
0 −1 1

 , b1 =


1
1
2
2

 , b2 =


2
2
1
1

 .

We can check that B1 := {1, 2, 3} ∈ B, x̄
(
B1, b

1
)

= (0, 1, 1) ∈ P 1 and

x̄
(
B1, b

2
)

= (0,−1, 2) /∈ P 2. Furthermore,

max
{
x3 : x ∈ P

(
B1, b

2
)}

= 2 > 1 = max
{
x3 : x ∈ P 2

}
.

Then, neither Theorem 5 nor Corollary 2 are applicable and indeed formulation
(17) for these matrix/vectors is not ideal (x = (0, 0, 3/2) and y = (1/2, 1/2)
is an extreme point of its LP relaxation). However, if we augment A, b1 and
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b2 with the redundant inequality x3 ≤ 1 (i.e. let the fifth row of A be (0, 0, 1)
and b15 = b25 = 1) we have that B2 := {1, 2, 5} ∈ B and

max
{
x3 : x ∈ P

(
B2, b

2
)}

= 1 = max
{
x3 : x ∈ P 2

}
.

Moreover, with this additional inequality/row we have that for any u ∈ R3

condition (18) either holds trivially (i.e. with +∞ on both sides) or for a
basis of the form B = {i, j, 5} for i, j ∈ J4K. Hence, Corollary 2 shows that
(17) for this augmented matrix/vectors does yield an ideal formulation for
x ∈ P 1 ∪ P 2. In contrast, we still have x̄

(
B1, b

1
)
∈ P 1 and x̄

(
B1, b

2
)
/∈ P 2

for the augmented matrix/vectors so Theorem 5 cannot be used to prove that
this formulation is ideal. ut

Theorem 5 and Corollary 2 are based on exploiting a common tangent
structure of the P i. This can also be useful to (partially) satisfy condition
(13) for non-polyhedral sets so we give one formalization of the approach.

Lemma 3 Let C :=
{
Ci
}k
i=1
∈ Cn,

{
xj,i
}m
j=1
⊆ bd

(
Ci
)

for all i ∈ JkK,

Cj :=
{
Cj,i

}k
i=1
∈ Cn for all j ∈ JmK and Cj,0 ⊆ Rn be a closed convex cone

for all j ∈ JmK. If Cj,i = TCi
(
xj,i
)

= xj,i + Cj,0 for all i ∈ JkK and j ∈ JmK,

then
{
Cj
}m
j=1

satisfies (13) for U =
⋃m
j=1

(
Cj,0

)∗
.

Proof Direct from σC (u) = σTC(x) (u) for all x ∈ bd (C) and u ∈ TC (x)
∗
. ut

5.2 Common tangent structure through Minkowski sum

Example 3 uses a “nearly-homothetic” variant of “conic” tangents of Lemma 3.
For instance, as illustrated in Figure 1(b) for s = (1,−1) and x̄ = (5/4,−5/4),
we have that Cs,2 = x̄+Cs,0∞ is the cone tangent to C2 at x̄, but no translation
of Cs,0∞ is tangent to C1 at some x ∈ bd

(
C1
)
. However, Cs,1 = C1+Cs,0∞ serves

the same role as the translation of Cs,0∞ through the following property.

Lemma 4 Let C ⊆ Rn be a closed convex set and K ⊆ Rn be a closed convex
cone. Then σC (u) = σC+K (u) for all u ∈ K∗.

Proof By Theorem C.3.3.2 in [13] σC+K (u) = σC (u)+σK (u) and σK (u) = 0
for all u ∈ K∗. ut

The following example further illustrates this approach to guide the con-
struction of

{
Cj
}m
j=1

to use Corollary 1 for non-polyhedral sets with k, n > 2.

It also illustrates how redundancy in
{
Cj
}m
j=1

can simplify verification of (13).

Example 5 Let b =
√

2− 1, r ∈ Rk+,
{
si
}k
i=1
⊆ {0, 1}2,

{(
pi0, p

i
)}k
i=1
⊆ Rn+1,

Gi :=
{

(x0, x) ∈ Rn+1 :
∥∥(x, sil)∥∥2

≤ sil
(√

2− 1
)

+ 1 + (−1)lx0 ∀l ∈ J2K
}

and Ci =
(
pi0, p

i
)

+ riG
i for all i ∈ JkK. Family C :=

{
Ci
}k
i=1

is depicted in
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Figure 2 for k = 2, n = 1, r = (1, 1), s1 = (1, 0), s1 = (0, 1) and
(
pi0, p

i
)

= (0, 0)

for all i ∈ J2K. Let
{
Cj
}2

j=1
be such that for each j ∈ J2K

Cj,0 :=
{

(x0, x) ∈ Rn+1 : ‖(x, 1)‖2 ≤
√

2 + (−1)jx0, ‖x‖2 ≤ 1 + (−1)jx0

}
and Cj,i =

(
pi0 − (−1)j(1− sij)ri, pi

)
+ ris

i
jC

j,0 for all i ∈ JkK. Then C2,0
∞ =

−C1,0
∞ =

{
(x0, x) ∈ Rn+1 : ‖x‖2 ≤ x0

}
and for all j ∈ J2K and i ∈ JkK we have

Cj,i = TCi
(
pi0 − (−1)j , pi

)
if sij = 0 and Cj,i = Ci + Cj,0∞ if sij = 1. Then{

Cj
}2

j=1
satisfies (13) for U =

(
C1
∞
)∗ ∪ (C2

∞
)∗

. Furthermore, for each j ∈ J2K

epi (γCj,0) =

{
(x0, x, y) ∈ Rn+2 :

‖(x, y)‖2 ≤ y(b+ 1) + (−1)jx0,

‖x‖2 ≤ y + (−1)jx0

}

For all i ∈ JkK and j ∈ J2K let qij = ris
i
j

√
2 − (−1)jpj0 + (1 − sij)ri and

hij = ris
i
j − (−1)jpj0 + (1 − sij)ri. Because Ci = C1,i ∩ C2,i formulation (15)

for yields the valid formulation of (x0, x) ∈
⋃k
i=1 C

i given by∥∥∥∥(x−∑k

i=1
piyi,

∑k

i=1
ris

i
jyi

)∥∥∥∥
2

≤
∑k

i=1
qijyi + (−1)jx0, ∀j ∈ J2K (19a)∥∥∥∥x−∑k

i=1
piyi

∥∥∥∥
2

≤
∑k

i=1
hijyi + (−1)jx0, ∀j ∈ J2K (19b)∑k

i=1
yi = 1, y ∈ {0, 1}k . (19c)

We have
(
C1
∞
)∗∪(C2

∞
)∗

= C2
∞∪C1

∞ strictly contained in
⋂k
i=1 dom (σCi)\{0},

so Corollary 1 does not imply idealness of (19). To check that it is indeed ideal
let C3 be such that C3,0 :=

{
(x0, x) ∈ Rn+1 : ‖x‖2 ≤ 1 + x0, ‖x‖2 ≤ 1− x0

}
and C3,i =

(
pi0, p

i
)

+ riC
3,0 for all i ∈ JkK. Then for all i ∈ JkK and u ∈

Rn \
(
C2
∞ ∪ C1

∞
)

we have Ci ⊆ C3,i and σC3,i (u) = σCi (u). Finally, we have

epi (γC3) =
{

(x0, x, y) ∈ Rn+2 : ‖x‖2 ≤ y + x0, ‖x‖2 ≤ y − x0

}
.

We can now use Corollary 1 for
{
Cj
}3

j=1
to construct an ideal formulation

of (x0, x) ∈
⋃k
i=1 C

i that corresponds to (19) plus the inequalities associated
to C3. However, these additional inequalities are precisely (19b). ut

-1 0 1
-1

0

-1 0 1

0

1

Fig. 2 Sets from Example 5.
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Note that in Example 3 the approach based on Lemma 4 of adding Cs,0∞
to C1 in the definition of Cs,1 (or equivalently including sjxj ≤ 3/2 in the
definition of Cs,1) was enough to yield an ideal formulation and to verify
property (13). In contrast, in Example 5 this approach was enough to yield
an ideal formulation, but not to verify the property. We further discuss this
in Section 6 where the boundary subsets highlighted in white in Figure 2 will
play a similar role to those in Figure 1(b).

5.3 Constraints from power systems applications

A very clever technique to extend the applicability of Theorem 4 was intro-
duced by [4] in the context of power systems. The following example illustrates
how this technique relates to the use of Lemma 4 and Corollary 1.

Example 6 Let C1 := [−1, 1] × {0}, K (l, u) :=
{
x ∈ [l, u]× [0, 1] : x2

1 ≤ x2

}
and C2 := K (−1, 1). We have that {Ci}2i=1 does not satisfy the assump-
tions of Theorem 4. However, [4] notes that if C̃2 = K (−1, 0) or C̃2 =
K (0, 1), then (after a rotation) {C1, C̃2} does satisfy the assumptions. Hence,
Theorem 4 can characterize Q1 := conv

((
C2 ×

{
e1
})
∪
(
K (−1, 0)×

{
e2
}))

and Q2 := conv
((
C2 ×

{
e1
})
∪
(
K (0, 1)×

{
e2
}))

. Then [4] further notes

conv
((
C1 ×

{
e1
})
∪
(
K (−1, 1)×

{
e2
}))

= conv
(
Q1 ∪Q2

)
and using the con-

struction of the Qi from Theorem 4 shows that Q1 ∪Q2 convex and

Q1∪Q2 =

{
(x, y) ∈ R4 :

x1 − y1 ≤
√
x2y2, 0 ≤ x2 ≤ y2, y1 + y2 = 1,

−x1 − y1 ≤
√
x2y2, −1 ≤ x1 ≤ 1, y1, y2 ≥ 0

}
.

To instead construct a formulation using Corollary 1 let
{
Cj
}2

j=1
be such that

Cj,0 = {x ∈ R2 : (((−1)
j
x1)+)2 ≤ x2, x2 ≤ 1}, Cj,1 = (−1)

j
e1+Cj,0∞ = {x ∈

R2 : (−1)
j
x1 ≤ 1, x2 = 0} and Cj,2 = Cj,0 for each j ∈ J2K. Then Cj,0∞ =

{x ∈ R2 : (−1)
j
x1 ≤ 0, x2 = 0}, Cj,1 = TC1((−1)

j
, 0) and Cj,2 = C2+Cj,0∞

for all j ∈ J2K. Then
{
Cj
}2

j=1
satisfies (13) for U = R2. Furthermore, for each

j ∈ J2K we have epi (γCj,0) =
{

(x, y) ∈ R3 : (((−1)
j
x1)+)2 ≤ y · x2, x2≤ y

}
,

so Corollary 1 yields the ideal formulation of x ∈ C1 ∪ C2 given by(
((−1)jx1 − y1)+

)2 ≤ y2 ·x2 ∀j ∈ J2K , x2 ≤ y2, y1+y2 = 1, y ∈ {0, 1}2 . (20)

The continuous relaxation of this formulation is identical to Q1 ∪Q2. ut

The quadratic set considered [4] was an approximation of a trigonometric
set [4,12]. The following example shows that the Lemma 4 and Corollary 1
can also be applied directly to such sets.

Example 7 Let C2 := {x ∈ [π, 2π]× [0, 1] : sin (x1) + 1 ≤ x2}, C1 := [π, 2π]×
{0}, f1 (x) = 1−x2 +max {sin (max {−x1 + 3π, 3π/2}) , π − x1} and f2 (x1) =
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1 − x2 + max {sin (max {x1, 3π/2}) , x1 − 2π}. Finally, for each j ∈ J2K let

Cj,0 =
{
x ∈ R2 : fi (x) ≤ 0, (−1)

j
x1 ≤ (−1)

j
j · π, 0 ≤ x2 ≤ 1

}
. Then

(cl f̃i)(x, y) =


yfi (x/y) y > 0

y − x2 + ((−1)
j
x1)+ y = 0

∞ y < 0

and epi (γCj,0) = {(x, y) ∈ R3 : (cl f̃i)(x, y) ≤ 0, (−1)
j
x1 ≤ (−1)

j
j · π · y,

0 ≤ x2 ≤ y}. Then by a reasoning analog to Example 6 we can then use
Corollary 1 to obtain the ideal formulation of x ∈ C1 ∪ C2 given by

(cl f̃1) (x1 − πy2, x2, y1) ≤ 0, (cl f̃2) (x1 − 2πy2, x2, y1) ≤ 0,

π ≤ x1 ≤ 2π, 0 ≤ x2 ≤ y2, y1 + y2 = 1, y ∈ {0, 1}2 . ut

5.4 Generalization of Theorem 4

Lemma 4 and Proposition 5 can also be used to generalize Theorem 4 by
combining them with Proposition 3.

Theorem 6 Let
{
vj
}n
j=1
⊆ Rn be an orthonormal basis of Rn and for each

s ∈ {−1, 0, 1}n let Ks = cone
({
sjv

j
}n
j=1

)
. In addition, let

{
Gi
}k
i=1

be closed

convex sets in Rn such that 0 ∈ Gi for all i ∈ JkK,
{
si
}k
i=1
⊆ {−1, 1}n and

Di = Gi ∩Ksi for each i ∈ JkK be such that

1.
(
Di −Ksi

)
∩Ksi = Di and is compact for all i ∈ JkK,

2. for all t ∈ {−1, 1}n there exist disjoint sets {J ti }
k
i=1 such that J ti ⊆ JnK for

all i ∈ JkK and Di +Kt = Di ∩ span
({
vj
}
j∈Jti

)
+Kt ∀i ∈ JkK.1

Finally, let
{
bi
}k
i=1

and for all i, l ∈ JkK and j ∈ JnK let Ci := Di + bi,

vi,j := sijv
j, b

i,l

j = max
{
vi,j · x : x ∈ Cl

}
for i 6= l, b

i,i

j = vi,j · bi, Lij :=

min
{
vj · x : x ∈ Ci

}
and U ij := max

{
vj · x : x ∈ Ci

}
. Then an ideal formu-

lation for x ∈
⋃k
i=1 C

i is given by

γGi

(∑n

j=1
vi,j

(
vi,j · x−

∑n

l=1
b
i,l

j yl

)+ )
≤ yi ∀i ∈ JkK (21a)

∑k

i=1
Lijyi ≤ vj · x ≤

∑k

i=1
U ijyi ∀j ∈ JnK (21b)∑k

i=1
yi = 1, y ∈ {0, 1}k. (21c)

In particular, if Gi =
{
x ∈ Hi : vi,j ·

(
x+ bi

)
≤ bi,ij , ∀j ∈ JnK

}
for a closed

convex set Hi ⊆ Rn, then we can replace γGi by γHi in (21a).

1 with span (∅) = {0}.
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Proof For each t ∈ {−1, 1}n and i ∈ JkK let Cs,i := Ci+Kt = Di+Kt+bi. We
trivially have Ci ⊆ Ct,i for all t ∈ {−1, 1}n and i ∈ JkK. Furthermore, for all
t ∈ {−1, 1}n and u ∈ −Kt we have σCs,i (u) = σCi (u) for all i ∈ JkK because
(Kt)

∗
= −Kt and Ci is compact. Then, because Rn =

⋃
t∈{−1,1}n K

t and

Proposition 5 we have Q (C) =
⋂
t∈{−1,1}n Q (Ct) for Ct :=

{
Ct,i

}k
i=1

. Noting

that Ct,i := Ci + Kt = Di + Kt + bi = Di ∩ span
({
vj
}
j∈Jti

)
+ Kt + bi and

using Di = Gi ∩Ksi we can use Proposition 3 to describe Q (Ct). Noting that
ui,j = vi,j if sij = −tj and ui,j = 0 other wise we have that this description is
equal to

γGi

(∑
j∈Ĵti

vi,j
(
vi,j · x−

∑n

l=1
b
i,l

j yl

)+ )
≤ yi ∀i ∈ JkK (22a)

tjv
j · x−

∑n

l=1
bljyl ≥ 0 ∀j ∈ JnK (22b)∑k

i=1
yi = 1, yi ≥ 0 ∀i ∈ JkK , (22c)

where for all i, l ∈ JkK and j ∈ JnK, Ĵ ti =
{
j ∈ J ti : sij = −tj

}
and

bij = min
{
tjv

j · x : x ∈ bi +Di ∩ span
({
vj
}
j∈Jti

)}
= min

{
tjv

j · x : x ∈ bi +Di ∩ span
({
vj
}
j∈Jti

)
+Kt

}
= min

{
tjv

j · x : x ∈ bi +Di +Kt
}

= min
{
tjv

j · x : x ∈ bi +Di
}
,

where the first and last equality follow from tjv
j being a ray of Kt and the sec-

ond follows from the theorem’s assumptions. Because Ci = bi+Di we have that
(22b) for all t ∈ {−1, 1}n is equivalent to (21b). To show that (22a) for all t ∈
{−1, 1}n is equivalent to (21a) it suffices to note that if µ ∈ Rn+ and λ ∈ Rn+ are

such that µj ≤ λj for all j ∈ JnK then γGi
(∑n

j=1 µjv
i,j
)
≤ γGi

(∑n
j=1 λjv

i,j
)

.

For that assume for a contradiction that the reverse inequality holds for
some µ and λ. Then we can scale µ and λ so that

∑n
j=1 µjv

i,j /∈ Gi and∑n
j=1 λjv

i,j ∈ Gi. However,
∑n
j=1 λjv

i,j ,
∑n
j=1 µjv

i,j ∈ Ksi so
∑n
j=1 µjv

i,j =∑n
j=1 λjv

i,j −
∑n
j=1(λj − µj)vi,j ∈

((
Di −Ksi

)
∩Ksi

)
, which contradicts

the the theorem’s assumptions. The final statement by noting that epi (γGi) ={
(x, y) ∈ epi (γHi) : vi,j ·

(
x+ biy

)
≤ bi,ij y, ∀j ∈ JnK

}
. ut

Theorem 6 generalizes Theorem 4 in two ways. First by allowing unions
of more than two sets. Second by relaxing the monotonicity requirement on the
sets from a condition of the formGi∞ = Rn− to one of the form

(
Gi ∩ Rn+ − Rn+

)
∩

Rn+ = Gi ∩Rn+. An example of a set that satisfies the later condition, but not
the former is the Euclidean ball. Theorem 6 achieves this by using a repre-
sentation of the Minkowski sum based on the operation (·)+

(cf. Lemma 5),
which can have some practical implications that we explore next.
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5.5 Minkowski sum, formulation size and constraint representation

It is noted in [11] that formulation (7) from Theorem 6 might include an expo-
nential (in n) number of nonlinear inequalities (7a) for each i ∈ J2K. However,
to the best of our knowledge there is no explicit example where all these in-
equalities are needed to obtain an ideal formulation. In fact, formulation (21)
from Theorem 6 only requires one nonlinear inequality (21a) for each i ∈ JkK
to be ideal. We now study this seeming paradox starting with an example that
shows how and when an exponential number of inequalities (7a) are needed.

Example 8 Let G1 :=
{
x ∈ Rn :

∏n
j=1(2− xj) ≥ 1, xj ≤ 2 ∀j ∈ JnK

}
, G2 =

−2 · 1 + Rn+, r = 2 − 2−1/n < 2 − 21/(1−n), C1 = G1 ∩ [0, r]n and C2 =
G2 ∩ [−2, 0]n. By Theorem 4 an ideal formulation for x ∈ C1 ∪C2 is given by

γG1 ([x]J) ≤ y1 ∀J ⊆ JnK (23a)

−2y2 ≤ xj ≤ ry1, ∀j ∈ JnK , y1 + y2 = 1, y ∈ {0, 1}2 , (23b)

where we omitted γG2 ([x]J) ≤ y2 as they are redundant because epi (γG2) =

{(x, y) : xi ≥ −2y ∀i ∈ JnK}. Alternatively, if for any a ∈ Rn we let [a]
+ ∈ Rn

be such that [a]
+
j = (aj)

+
, then by Theorem 6 an ideal formulation is given

by

γG1

(
[x]

+
)
≤ y1 (24a)

−2y2 ≤ xj ≤ ry1, ∀j ∈ JnK , y1 + y2 = 1, y ∈ {0, 1}2 , (24b)

where we again removed a redundant inequality associated to γG2 . Finally,

epi (γG1) =

{
(x, y) ∈ Rn × R+ :

n∏
j=1

(2y − xj) ≥ yn, xj ≤ 2y ∀j ∈ JnK

}
. (25)

Now, by the selection of r we have that for any J ⊆ JnK such that |J | ≤ n− 1,
having −2y2 ≤ xj ≤ ry1 for all j ∈ JnK implies

2n−|J|yn−|J|
∏

j∈J
(2y − xj) > yn2

n
1−n (|J|−(n−1)) > yn.

Hence replacing (23a) or (24a) by γG1 (x) ≤ y1 also yields an ideal formulation.
In contrast, if we instead let r = 2, the replacement of (23a) or (24a) results

in a valid, but not ideal formulation. Indeed, for any J ⊆ JnK such that |J | ≤
n− 1, let (x, y) ∈ Rn+2 given by y1 = y2 = 1/2, xj = 1− 2−n/|J|(3/2)(|J|−n)/J

for j ∈ J and xj = −1/2 for j /∈ J . Then (x, y) is feasible for the continuous
relaxation of (23b)/(24b) and γG1 (x) ≤ y1, but violates γG1 ([x]J) ≤ y1 and

γG1([x]
+

) ≤ y1. Hence, in this case formulation (23) from Theorem 4 requires
an exponential number of inequalities, while formulation (24) from Theorem 6
only requires a linear number of inequalities. However, the non-polyhedral na-
ture of the inequalities makes such accounting a subtle matter. For instance,
(23a) is equivalent to the single inequality maxJ⊆JnK γG1 ([x]J) ≤ y1 and in



Small and Strong Formulations for Unions of Convex Sets 19

fact maxJ⊆JnK γG1 ([x]J) = γG1([x]
+

). Then (23a) or (24a) are different rep-
resentations of the same convex constraint. Further insight into this can be
gained by noting that (24a) (i.e. γG1([x]

+
) ≤ y1) is equivalent to

γG1 (z) ≤ y1, xj ≤ zj , 0 ≤ zj ∀j ∈ JnK . (26)

Hence, (24a) can be thought of as the implicit description of linear sized ex-
tended formulation (26) of the exponential number of inequalities (23a). ut
A detailed study of the size evaluation challenges illustrated in Example 8 is
beyond the scope of this paper, but we make two observations about it.

The first concerns explicit formulation representations that can be fed to
a MIP solver. Formulation (24a) can be explicitly represented using operation
(·)+ or through extended formulation (26). The former could cause numerical
issues due to the non-differentiability of (·)+, while the auxiliary variables z
of the later could have a similar detrimental effect as variable copies xi of
formulation (2) from Theorem 1. In addition, we can use representation (25)
of γG1 or use standard second order cone (SOC) representations of the geo-
metric mean that use additional auxiliary variables (e.g. [3]). In contrast to
variable copies xi, the auxiliary variables of such SOC representations have
been shown to have a significant positive performance effect [17,18]. Hence,
these implementation alternatives must be carefully compared to ensure the
potential performance gain of the significantly smaller formulation (24a) over
(23b) (or even formulations based on Theorem 1) is achieved in practice. Sim-
ilarly, the computational advantage of formulating trigonometric sets directly
(as in Example 7) instead of a quadratic approximation (as in Example 7) is
uncertain because of the high quality of the approximation from [4,12].

The second observation concerns the existence of linear-sized formulations
that do not use operation (·)+ or additional continuous auxiliary variables
z. As noted in Example 8 this question is meaningless unless we give pre-
cise restrictions on the class of nonlinear inequalities we allow. Restricting to
polynomial inequalities is not enough to achieve this goal, but the following
example shows that it can still lead to interesting results and insights.

Example 9 The sets considered in Examples 1–3, in Example 5 and in Exam-
ple 6 can be described by a finite number of polynomial inequalities. Such sets
are usually denoted basic semi-algebraic and unions of such sets are usually
denoted semi-algebraic sets. It is known that the convex hull of the union
of basic semi-algebraic sets is semi-algebraic, but not necessarily basic semi-

algebraic. Hence, if C :=
{
Ci
}k
i=1

is a finite family of basic semi-algebraic sets,
then Q (C) may or may not be basic semi-algebraic as it is the convex hull
of particularly structured sets. The continuous relaxations of (16) and (19)
show that Q (C) is basic semi-algebraic for the sets in Examples 1–3 and in
Example 5. However, we now show that it is not basic semi-algebraic for the
sets in Example 6. For that take the affine section of the continuous relaxation
of (20) obtained by fixing y1 = y2 = 1/2 and which is given by

M :=

{
x ∈ R2 :

((
(−1)jx1 − 1/2

)+)2

≤ x2/2 ∀j ∈ J2K , x2 ≤ 1/2

}
.
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This set is depicted in Figure 3 in gray where we can confirm that it is semi-
algebraic (it is the convex hull of portions of two parabolas). However, we can
check that the Zariski closure of its boundary (smallest algebraic variety that
contains this boundary) is given by

Z :=

{
x ∈ R2 :

((
x1 −

1

2

)2

− x2

2

)((
x1 +

1

2

)2

− x2

2

)(
x2 −

1

2

)
x2 = 0

}

and depicted in black in Figure 3. We can also check that Z ∩ int (M) 6= ∅,
which is a known impediment for a set to be basic semi-algebraic [1,6]. ut

-1 0 1

0

1
2

Fig. 3 Set M from Example 9 and its Zariski closure.

Note that for the sets in Examples 1–3 and in Example 5 the description
of the Minkoswki sum from Lemma 4 does not require the operation (·)+

and Q (C) is basic semi-algebraic. In contrast, the operation is required for
Example 6 and Q (C) is not basic semi-algebraic. This shows that operation
(·)+ can affect the properties of Q (C) and that this is strongly tied to the
Minkoswki sum operation. In fact, using Proposition 6 below, Example 9 yields
C1 := [−1, 1]× {0} and C2 :=

{
x ∈ [−1, 1]× [0, 1] : x2

1 ≤ x2

}
as examples of

basic semi-algebraic sets whose Mikowski sum is not basic semi-algebraic.

6 Necessary and Sufficient Conditions for Piecewise Formulations

Example 5 shows how condition (13b) of Proposition 5 may not be necessary
to obtain an ideal formulation. We now give necessary and sufficient strength
conditions through a variant of (13a) that guarantees formulation validity.

Definition 6 Let C :=
{
Ci
}k
i=1
∈ Cn and Cj :=

{
Cj,i

}k
i=1
∈ Cn for j ∈ JmK

be such that Ci =
⋂m
j=1 C

j,i for all i ∈ JkK so that a valid formulation of

x ∈
⋃k
i=1 C

i is given by

(x, y) ∈ Q
(
Cj
)
∀j ∈ JmK ,

∑k

i=1
yi, y ∈ {0, 1}k . (27)
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We say (27) is ideal if its continuous relaxation is equal toQ (C) and sharp if the

projection of this relaxation onto the x variables is equal to conv
(⋃k

i=1 C
i
)

.

Being sharp is a weaker strength requirement than being ideal (e.g. by
Proposition 6 bellow, if (27) is ideal, then it is sharp), but can still result in
good computational performance (e.g. [24, Section 2.2]). In fact, the polyhedral
work of Balas, Blair and Jeroslow [2,5,15] considered in Section 5.1 focused
on constructing sharp formulations and resulted in necessary conditions that
can be stated in the context of Definition 6 as follows.

Theorem 7 (Theorem 3 in [5]) Let A ∈ Rm×n and for each i ∈ JkK let

bi ∈ Rm and P i =
{
x ∈ Rm : Ax ≤ bi

}
, for each B ∈ B let CB :=

{
CB,i

}k
i=1

be such that CB,i = P
(
B, bi

)
for all i ∈ JkK and

{
Cj
}m
j=1

=
{
CB
}
B∈B. If (27)

is not sharp then

∃B ∈ B, i1, i2 ∈ JkK , u ∈ Rn s.t.
σconv(

⋃k
i=1 C

i) (u) = σCB,i1 (u) ,

σconv(
⋃k
i=1 C

i) (u) < σCB,i2 (u) .
(28)

To extend Theorem 7 we use the following generalization to non-polyhedral
sets of a known relation between the Cayley embedding and the Minkowski
sum of polytopes [14,16,26]. We present a proof in Section 7.3.

Proposition 6 Let ∆k :=
{
λ ∈ Rk+ :

∑k
i=1 λi = 1

}
, C :=

{
Ci
}k
i=1
∈ Cn,

Q ⊆ Rn+k be a closed convex set such that Q ⊆ Rn ×∆k and

(x, y) ∈ Q ∩
(
Rn × Zk

)
⇔ ∃i ∈ {1, . . . , k} s.t. y = ei ∧ x ∈ Ci, (29)

and Q (ȳ) := {x ∈ Rn : (x, ȳ) ∈ Q}. Then Q (C) ⊆ Q, C∞ = Q (C)∞,

∀ȳ ∈ ∆k x̄ ∈
∑k

i=1
ȳiC

i ⇒ (x̄, ȳ) ∈ Q. (30)

and the following are equivalent

1. Q = Q (C).
2. ∀ȳ ∈ ∆k (x̄, ȳ) ∈ Q ⇒ x̄ ∈

∑k
i=1 ȳiC

i.

3.
(
x̄, 1

k1
)
∈ Q ⇒ x̄ ∈ 1

k

∑k
i=1 C

i.

Theorem 8 For the
{
Cj
}m
j=1

from Definition 6 and for any λ ∈ ∆k let

Qm (λ) :=
⋂m
j=1

∑k
i=1 λiC

j,i. Formulation (27) is sharp if and only if

maxki=1 σCi (u) = maxλ∈∆k σQm(λ) (u) ∀u ∈ Rn.

Formulation (27) is ideal if and only if∑k

i=1
λiσCi (u) = σQm(λ) (u) ∀λ ∈ ∆k, u ∈ Rn,
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or equivalently if and only if

(1/k)
∑k

i=1
σCi (u) = σQm((1/k)1) (u) ∀u ∈ Rn.

Finally, the equivalences can be written as a function of σCj,i by noting that

σQm(λ) (u) = lim inf ū→u inf

{∑m

j=1

∑k

i=1
λiσCj,i

(
uj
)

:
∑m

j=1
uj = ū

}
.

In particular, formulation (27) is ideal if and only if for all u ∈ Rn∑k

i=1
σCi (u) = lim inf

ū→u
inf

{∑m

j=1

∑k

i=1
σCj,i

(
uj
)

:
∑m

j=1
uj = ū

}
. (31)

Proof By Theorem C.3.3.2 in [13] we obtain the characterization of σQm(λ)

and that for all u ∈ Rn we have that σconv(
⋃k
i=1 C

i) (u) = maxki=1 σCi (u),

σ∑k
i=1 λiC

i (u) =
∑k
i=1 λiσCi (u) and σ⋃

λ∈∆k Q
m(λ) (u) = maxλ∈∆k σQm(λ) (u).

The result for being sharp follows from Proposition 6 implying
⋂m
j=1Q

(
Cj
)

=⋃
λ∈∆k Q

m (λ) × {λ} and hence that its projection onto the x variables is⋃
λ∈∆k Q

m (λ). The results for being ideal follow from Proposition 6 implying

that
⋂m
j=1Q

(
Cj
)

= Q (C) if and only if Qm (λ) =
∑k
i=1 λiC

i for all λ ∈ ∆k or

equivalently if Qm ((1/k) 1) = (1/k)
∑k
i=1 C

i. ut

The conditions for formulation (27) being ideal and sharp from Theorem 8 can
be contrasted by noting that for all u ∈ Rn

maxki=1 σCi (u) = maxλ∈∆k
∑k

i=1
λiσCi (u) ≥

∑k

i=1
(1/k)σCi (u) .

Hence, being sharp requires matching the maximum weighted average of the
support functions while being ideal requires matching all weighted averages or
equivalently the equal weight average or simply the sum.

The necessary and sufficient condition (31) for being ideal of Theorem 8
can in turn be contrasted with condition (13b) of Proposition 5 which requires

∀u ∈ Rn ∃j ∈ JmK s.t. σCi (u) = σCj,i (u) ∀i ∈ JkK .

For instance, condition (31) can be simplified to replace condition (13b) with
the slightly weaker condition

∀u ∈ Rn ∃
{
uj
}m
j=1
⊆ Rn s.t.

u =
∑m

j=1
uj ,

σCi (u) =
∑m

j=1
σCj,i

(
uj
)
∀i ∈ JkK .

(32)

We can check that sets {Cj}2j=1 in the first part of Example 5 satisfy condition

(32), but only if we add recession cone Cj,0∞ following Lemma 4 (cf. the left side
of Figure 2 where the dotted curve describes C1,1 if we do not add the cone).
Similarly to the comments after Example 3, one way to interpret the need
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to satisfy condition (32) for Example 5 is to ensure that there is a non-zero
intersection of the normals to {C1,i}2i=1 at the portions of the boundary high-
lighted in white in Figure 2. The following corollary formalized this idea into
a sufficient condition that can be useful to verify that formulation (27) is ideal
and/or to guide the construction of {Cj}mj=1 to obtain an ideal formulation.

Corollary 3 Let the
{
Cj
}m
j=1

from Definition 6 be such that aff (Q (C)) ⊆⋂m
j=1Q

(
Cj
)
, and for D :=

{
Di
}k
i=1

in Rn let L (D) :=
∑k
i=1 L

(
Di
)

and

N (D) :=
{(
xi
)k
i=1
∈ ×k

i=1 bd
(
Di
)

: L (D) ∩
⋂k
i=1NDi

(
xi
)
6= {0}

}
. Then for-

mulation (27) is ideal if and only if

N (C) ⊆
⋃m

j=1
N
(
Cj
)
. (33)

Proof We have thatQ (C) =
⋃m
j=1Q

(
Cj
)

if and only if their affine hulls and rel-

ative boundaries match. Under the assumptions we have Q (C) ⊆
⋂m
j=1Q

(
Cj
)
,

aff (Q (C)) ⊆
⋂m
j=1Q

(
Cj
)

and yi ≥ 0 for all i ∈ JnK and (x, y) ∈
⋂m
j=1Q

(
Cj
)
.

Hence, Q (C) =
⋃m
j=1Q

(
Cj
)

if and only if portion (12) of the boundary char-
acterization of Q (C) from Proposition 4 is equal to the union of the same
portions for the Q

(
Cj
)
, which is equivalent to (33). ut

We can check that sets {Cj}2j=1 in the first part of Example 5 also satisfy

condition (33) and redundant sets C3 are not needed to show formulation (19)
is ideal. Now, in this case the redundancy of C3 needed for Proposition 5
only resulted in easy to recognize duplicate inequalities in (19). However, the
following example shows how using Corollary 3 instead of Proposition 5 can
avoid more consequential redundancies.

Example 10 Consider again the sets from Example 8 given by C1 = G1∩[0, r]n

for G1 :=
{
x ∈ Rn :

∏n
j=1(2− xj) ≥ 1, xj ≤ 2 ∀j ∈ JnK

}
, and C2 = [−2, 0]n.

The first version of these sets takes r = 2−2−1/n and is depicted in Figure 4 for
n = 3. The redundancy analysis in the example yielded the simplified version
of the formulation from Theorems 4 and 6 for x ∈ C1 ∪ C2 given by

γG1 (x) ≤ y1, −2y2 ≤ xj ≤ ry1, ∀j ∈ JnK , y1 + y2 = 1, y ∈ {0, 1}2 . (34)

An alternative way to get this formulation is by noting that the boundary of
C1 has a polyhedral portion associated to the variable bounds and a non-
polyhedral portion associated to G1. This non-polyhedral portion is high-
lighted dark gray in Figure 4(a) for n = 3, and for all n it can be sub-divided
into bd

(
G1
)
∩ (0, r)

n
and bd

(
G1
)
∩ bd ([0, r]n). If x1 ∈ bd

(
G1
)
∩ (0, r)

n
we

have that NC1

(
x1
)

is contained in the strictly positive orthant. Hence for

all x1 ∈ bd
(
G1
)
∩ (0, r)

n
we have

(
x1, x2

)
∈ N (C) if and if x2 = 0, which

is also highlighted in dark gray in Figure 4(b). In contrast, because of the
choice of r we have that if x1 ∈ bd

(
G1
)
∩ bd ([0, r]n) then there exist J ⊆ JnK

such that x1 ∈
{
x ∈ bd

(
G1
)

: xj = r ∀j ∈ J
}

and
(
x1, x2

)
∈ N (C) if and if
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x2 ∈
⋃
j∈J {x ∈ [−2, 0]n : xj = 0}. Then condition (33) is satisfied for

{
Cj
}2

j=1

given by C1,1 := [0, r]n, C1,2 := [−2, 0]n, C2,1 = G1, C2,2 = Rn−. In particular,
the key for satisfying the condition is that for all

(
x1, x2

)
∈ N (C) such that

x1 ∈ bd
(
G1
)
∩bd ([0, r]n) we have that

(
x1, x2

)
∈ N

(
C1
)
. Finally, Corollary 3

with this decomposition yields precisely (34). ut

(a) Set C1. (b) Set C2.

Fig. 4 Sets for Example 10.

Our final example illustrates how Corollary 3 can be used to show Theo-
rem 4 and give a geometric interpretation of the associated formulation.

Example 11 Consider now the second version of the sets from Example 8
which corresponds to the same sets in Example 10, but with r = 2. These

sets depicted in Figure 5 for n = 3. We can again use
{
Cj
}2

j=1
given by

C1,1 := [0, r]n, C1,2 := [−2, 0]n, C2,1 = G1, C2,2 = Rn− to get valid for-
mulation (34). However, from Example 8 we know that for this choice of
r this formulation is no longer ideal. Indeed, condition (33) of Corollary 3
is no longer satisfied because we no longer have

(
x1, x2

)
∈ N

(
C1
)

for all(
x1, x2

)
∈ N (C) such that x1 ∈ bd

(
G1
)
∩ bd ([0, s]n). For instance, if x1 ∈

D1 := bd
(
G1
)
∩
(
(0, s)n−1 × {0}

)
(highlighted in dark gray in Figure 5(a))

and x2 ∈ D2 := bd
(
C2
)
∩
(
{0}n−1 × [−r, 0]

)
(highlighted in dark gray in

Figure 5(b)) we have that
(
x1, x2

)
∈ N (C), but x1 /∈ bd

(
C1,1

)
. This spe-

cific case can be resolved by adding C4 such that C4,1 := G1 + span ({en})
and C4,2 := G1

∞ + span ({en}) = (−∞, 0]n−1 × {0} (C4,1 is depicted in Fig-
ure 5(a) by the transparent meshed surface), as

(
x1, x2

)
∈ N

(
C4
)

for all(
x1, x2

)
∈ D1 × D2. Similarly, we can resolve all additional cases and sat-

isfy condition (33) by adding CJ such that CJ,1 := G1 + span
({

ej
}
j∈J

)
and

CJ,2 := G1
∞+span

({
ej
}
j∈J

)
for all J ⊆ JnK with |J | ≤ n−1. By noting that

γCJ,1 (x) = γG1 ([x]J), we have that the formulation obtained from Corollary 3
for
{
CJ
}
J⊆JnK is precisely formulation (23) obtained from Theorem 4. ut
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(a) Set C1. (b) Set C2.

Fig. 5 Sets for Example 11.

7 Omitted Proofs

7.1 Theorem 1 and Proposition 1

Proof (of Theorem 1) Validity is direct from Lemma 1, Ci∞ =
(
Ci − ai

)
∞ and

C ∈ Cn. For idealness, let Q be the continuous relaxation of (2) and assume
for a contradiction that there exist a minimal face F of Q and (x, y) ∈ F with

y /∈ {0, 1}k. Without loss of generality y1, y2 ∈ (0, 1). Let ε = min{y1, y2, 1 −
y1, 1 − y2} ∈ (0, 1), y

1
= y2 = y1 + ε, y

2
= y1 = y2 − ε, yi = yi = yi for

all i /∈ {1, 2}, xi = (y
i
/yi)x

i and xi = (yi/yi)x
i for i ∈ {1, 2}, xi = xi =

xi for all i /∈ {1, 2}, x =
∑k
i=1 x

i and x =
∑k
i=1 x

i. Then (x, y) 6= (x, y),

(x, y) = (1/2)(x, y) + (1/2)(x, y). Multiplying γCi−bi
(
xi − biyi

)
≤ yi for i ∈

{1, 2} by y
i
/yi or yi/yi and using the positive homogeneity of γCi−bi we have

(x, y), (x, y) ∈ Q. Hence, (x, y), (x, y) ∈ F . Furthermore, by construction either
y

1
= 1, y

2
= 0, y1 = 0 or y2 = 1. If y

1
= 1, then {(x, y) ∈ F : y1 = 1} ( F is

a face of the continuous relaxation of (2), which contradicts the minimality of
F . All other three cases are analogous. The final statement follows from the
recession cone of the continuous relaxation of (2) being equal to all (x, y) such
that x ∈ C1

∞, y = 0 and xi ∈ C1
∞ for all i ∈ JkK. ut

Proof (of Proposition 1) Part 1 follow directly from Corollary 9.8.1 in [19]

by noting that if
{
Ci
}k
i=1
∈ Cn then

{
Ci ×

{
ei
}}k

i=1
∈ Cn+1. For part 2 note

that we have that (x, y) ∈ Q (C) if and only if y ∈ Rk+,
∑k
i=1 yi = 1 and

∃
(
x̃i
)k
i=1
∈×k

i=1
Ci s.t. x =

∑k

i=1
yix̃

i. (35)

The result follows directly if (35) is equivalent to

∃
(
xi
)k
i=1
∈ Rn·k s.t. x =

∑k

i=1
xi and γCi−bi

(
xi − biyi

)
≤ yi. (36)

To show this equivalence first note that x̃i ∈ Ci if and only if γCi−bi
(
x̃i − bi

)
≤

1, and if yi > 0 this last condition is in turn equivalent to x̃i = xi/yi for some
xi ∈ Rn such that γCi−bi

(
xi − biyi

)
≤ yi. Then note that if yi = 0, then
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γCi−bi
(
xi − biyi

)
≤ yi if and only if xi ∈ Ci∞. To show that (35) implies

(36) simply let xi = yix̃
i. For the reverse implication assume without loss of

generality that y1 > 0 and let I0 = {i ∈ JkK : yi = 0}. Then x̃1 = x1/y1 +∑
i∈I0 x

i ∈ C1 by
{
Ci
}k
i=1
∈ Cn. Finally, the implication follows because

x̃i = xi/yi ∈ Ci for all i ∈ JkK \ I0. Part 3 follows directly from part 2. ut

7.2 Proof of Proposition 3

Lemma 5 Let C ⊆ Rn be a closed convex set containing 0,
{
vj
}n
j=1

⊆
Rn be an orthonormal basis of Rn, s ∈ {−1, 0, 1}n, t ∈ {−1, 1}n, K =

cone
({
sjv

j
}n
j=1

)
, M = cone

({
tjv

j
}n
j=1

)
and uj = (−sjtj)+sjv

j for all

j ∈ JnK. If C ∩K is compact and ((C ∩K)−K) ∩K = C ∩K then (x, y) ∈
epi (γC∩K+M ) if and only if

γC

(∑n

j=1
uj
(
uj · x

)+) ≤ y, ((1−|sj |) + (sjtj)
+)tjv

j ·x ≥ 0 ∀j ∈ JnK . (37)

Proof Let E be the region described by (37). We have that E is a closed convex
cone such that y ≥ 0 for all (x, y) ∈ E so by Lemma 2 we just need to show
that (x, 0) ∈ E is equivalent to x ∈ (C ∩K +M)∞ = M and that (x, 1) ∈ E
is equivalent to x ∈ C ∩K +M .

For the first implication of both equivalence let y ∈ {0, 1}, C1 = C, C0 =
C∞, (x, y) ∈ E, J =

{
j ∈ JnK : uj · x > 0

}
, xC =

∑
j∈J v

jvj · x and xM =∑
j∈JkK\J v

jvj · x. Because
{
vj
}n
j=1
⊆ Rn is an orthonormal basis we have

x = xC + xM . Furthermore,
∑n
j=1 u

j(uj · x)+ =
∑n
j=1 v

jvj · xC = xC so

xC ∈ Cy, and sjv
j ·xC > 0 for all j ∈ J and sjv

j ·xC = 0 for all j ∈ JnK \J so
xC ∈ K. Finally, if j ∈ JnK \ J , then either (i) s = −t and tjv

j · x ≥ 0, or (ii)
s ∈ {0, t}. In the second case the linear inequalities of (37) imply tjv

j · x ≥ 0.
Then tjv

j · xM ≥ 0 for all j ∈ JnK \ J and tjv
j · xM = 0 for all j ∈ J . Hence,

xM ∈ M and for y = 1 we have x ∈ C ∩K +M . Similarly for y = 0 we have
x ∈ C∞ ∩K +M = (C ∩K)∞ +M = M (cf. Proposition A.2.2.5 in [13]).

For the reverse implication of the first equivalence note that if x ∈M , then

(x, 0) ∈ E because x satisfies the linear inequalities of (37) and
(
uj · x

)+
= 0

for all j ∈ JnK. For the second equivalence let x = xC+xM with xC ∈ C∩K and
xM ∈M . Then x satisfies the linear inequalities of (37) because both xC and
xM satisfy them. Now let J :=

{
j ∈ JnK : sj = −tj , sjvj ·

(
xC + xM

)
> 0
}

and x̃ :=
∑
j∈JnK\J v

jvj · xC +
∑
j∈J v

j
(
−vjxM

)
. By the definition of

J and because xM ∈ M and xC ∈ K we have x̃ ∈ K and xC − x̃ =∑
j∈J v

jvj ·
(
xC + xM

)
∈ K. Then xC − x̃ ∈ ((C ∩K)−K)∩K and hence by

the assumption on C and K we have xC − x̃ ∈ C. Then x satisfies non-
linear inequality of (37) because J =

{
j ∈ JnK : uj ·

(
xC + xM

)
> 0
}

and

hence xC − x̃ =
∑
j∈J v

jvj ·
(
xC + xM

)
=
∑n
j=1 u

j(uj ·
(
xC + xM

)
)+. ut

Proof (of Proposition 3) The result will follow from Proposition 1 by showing
that (10) is the projection of the continuous relaxation of (2) for the considered
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sets. Noting that (−0t)+0 = 0 for all t ∈ {−1, 1} we can use Lemma 5 to show
that the continuous relaxation of (2) is given by

γGi
(∑

j∈Ji
ui,j

(
ui,j ·

(
xi − biyi

))+) ≤ yi ∀i ∈ JkK (38a)

((1−
∣∣sij∣∣) + (sijtj)

+)tjv
j ·
(
xi − biyi

)
≥ 0 ∀i ∈ JkK j ∈ JnK (38b)∑k

i=1
xi = x,

∑k

i=1
yi = 1, yi ≥ 0 ∀i ∈ JkK . (38c)

Now, for all i ∈ JkK and j ∈ JnK such that sj = 0 or sj = tj we have bij = tjv
j ·bi,

so (38b) is dominated by tjv
j · xi − bijyi ≥ 0 for all i ∈ JkK and j ∈ JnK (the

additional inequalities for case sj = tj are clearly valid). To show that (10)
is contained in the projection of (38) let (x, y) be feasible for (10) and for all
i ∈ JkK let λij := yitjb

i
j if j ∈ JnK \ Ji and λij = vj · x−

∑
l∈JkK\{i} λ

l
j if j ∈ Ji.

Finally, for all i ∈ JkK let xi =
∑n
j=1 λ

i
jv
j . We can check that

(
x,
(
xi
)k
i=1

, y
)

is

feasible for (38). In particular, (x, y) feasible for (10a) implies
(
xi, yi

)
is feasible

for (38b) because ui,j = 0 if sij 6= −tj and if sij = −tj , then
(
−sijtj

)+
sijtj = −1,

blj = −b̄i,lj , and hence ui,j ·
(
xi − biyi

)
= ui,j · (x − biyi) +

∑
l∈JkK\{i} yib

i
j =

ui,j · x −
∑k
l=1 b

i,l

j yl. The reverse inclusion follows from validity of (10) plus

y ∈ Zk as a formulation for x ∈
⋃k
i=1 C

i. ut

7.3 Proof of Proposition 4

Proposition 7 For a closed convex set C ⊆ Rn we have that rbd (C) =⋃
d∈D∩L(C) FC (d) for D = L(C) \ {0} or D = L(C) ∩ dom (σC) \ {0}. In

addition, if u ∈ Rn and w ∈ L(C)⊥, then FC(u) = FC(u− w).

Proof The proof of the first statement is identical to that of Proposition C.3.1.5
in [13]. For the second note that by Definition C.2.1.4 and Proposition C.1.1.7
we have that σC(w) = σC(−w) and σC(u − w) = σC(u) + σC(−w). Further-
more, −w · x = σC(−w) for all x ∈ C. Then for any x ∈ C we have

x ∈ FC(u)⇔ u · x = σC(u)⇔ u · x− w · x = σC(u) + σC(−w)

⇔ (u− w) · x = σC(u− w)⇔ x ∈ FC(u− w). ut

Lemma 6 Let C :=
{
Ci
}k
i=1
∈ Cn, u ∈ Rn and v ∈ Rk. Then σQ(C) (u, v) =

maxki=1 σCi (u) + v · ei and FQ(C) (u, v) = conv
(⋃

i∈I(u,v) FCi (u)× ei
)

for

I (u, v) :=
{
i ∈ JkK : σCi (u) + v · ei = σQ(C) (u, v)

}
.

Proof The characterization of σQ(C) (u, v) is direct from Theorem C.3.3.2 in
[13]. For the characterization of the face of Q (C) exposed by (u, v) note that
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(x, y) ∈ FQ(C) (u, v) if and only if there exist λ ∈ ∆k :=
{
λ ∈ Rk+ :

∑k
i=1 λi = 1

}
and xi ∈ Ci for i ∈ JkK such that x =

∑k
i=1 λix

i, y =
∑k
i=1 λie

i and

u · x+ v · y =
∑k

i=1
λi
(
u · xi + v · ei

)
= σQ(C) (u, v) . (39)

By the definition of σCi and the characterization of σQ(C) for all i ∈ JkK

u · xi + v · ei ≤ σCi (u) + v · ei ≤ σQ(C) (u, v) . (40)

So if λi > 0 in (39) for i ∈ JkK then both inequalities in (40) hold as equalities
for i. Then (39) holds if and only if for all i ∈ JkK with λi > 0 we have (i) u·xi =
σCi (u) or equivalently xi ∈ FCi (u), and (ii) σCi (u) + v · ei = σQ(C) (u, v). ut

Proof (of Proposition 4) Let E := {(x, y) ∈ Rn+k :
∑k
i=1 yi = 1, Ax =∑k

i=1Ab
iyi}. The inclusion aff (Q (C)) ⊆ E follows by noting that aff

(
Ci
)
⊆{

x ∈ Rn : Ax = Abi
}

and hence
(
x, ei

)
∈ E for all x ∈ Ci. For the reverse

inclusion let (x, y) ∈ E and x̄ =
(
x−

∑k
i=1 b

iyi

)
. Then Ax̄ = 0, so x̄ ∈ L (C)

and hence there exist x̄i ∈ L
(
Ci
)

for i ∈ JkK such that x̄ =
∑k
i=1 x̄

i. For any

i ∈ JkK and λ 6= 0 we have x̄i/λ ∈ L
(
Ci
)
, x̄i/λ + bi ∈ aff

(
Ci
)

and hence(
x̄i/λ+ bi, ei

)
∈ aff

(
Ci ×

{
ei
})
⊆ aff (Q (C)). In particular, for any any i ∈

JkK we have
(
x̄i,0

)
=
(
x̄i/2 + bi, ei

)
−
(
−x̄i/2 + bi, ei

)
∈ L (Q (C)) and if yi 6= 0

we have
(
x̄i/yi + bi, ei

)
∈ aff (Q (C)). Then, letting I0 = {i ∈ JkK : yi = 0} and

I1 = JnK\I0 we have x =
∑
i∈I1 yi

(
x̄i/yi + bi, ei

)
+
∑
i∈I0

(
x̄i,0

)
∈ aff (Q (C)).

Then by Proposition 7 we have rbd (Q (C)) =
⋃

(u,v)∈L(C)\{0} FQ(C) (u, v).
The result will follow by refining the right hand side of this inclusion to include
only the FQ(C) (u, v) that are maximal with respect to inclusion.

We begin by showing that (11) corresponds to the maximal faces when u ∈
U (C). Indeed, from Lemma 6 we only need to show that for all ū ∈ U (C) there
exist (u, v) ∈ L (C) \ {0} such that I (u, v) = JkK and FCi (ū) = FCi (u) for all

i ∈ JkK. For that first let v̄ ∈ Rk be such that v̄1 = − 1
k

∑k
i=2 (σC1(ū)− σCi(ū))

and v̄j = σC1(ū) − σCj (ū) − 1
k

∑k
i=2 (σC1(ū)− σCi(ū)) for all j ∈ JkK \ {1}.

Then, I (ū, v̄) = JkK and
∑k
i=1 v̄i = 0. If ū −

∑k
i=1 b

iv̄i ∈ L (C) we are

done by letting (u, v) = (ū, v̄). If not, there exist w ∈ L (C)⊥ such that

u −
∑k
i=1 b

ivi ∈ L (C) for u = ū − w and v = v̄. Now, for any i ∈ JkK we

have w ∈ L (C)⊥ ⊆ L
(
Ci
)⊥

and hence by Proposition 7 we have FCi (ū) =
FCi (ū− w) = FCi (u). In particular, for all i ∈ JkK there exist xi ∈ FCi (u)
such that σCi(ū−w) = xi·(ū− w) and σCi(ū) = xi·ū. Then σC1(ū)− σCi(ū) =

σC1(ū− w)− σCi(ū− w) for all i ∈ JnK and hence I (u, v) = JkK and
∑k
i=1 vi =

0 by the definition of v̄ = v and u = ū− w.
We can also check that (12) corresponds to the maximal faces exposed by

(0, v) for v ∈ Rk, which are precisely those exposed when there exist i ∈ JnK
such that vi = 1− k and vj = 1 for i 6= j.

The last case is u ∈ L (C) \ {0} and there exist ∅ 6= I ⊆ JkK such that
FCi (u) = ∅ for i ∈ I and FCi (u) 6= ∅ for i ∈ JnK \ I. An analog argument
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to case u ∈ U (C) shows that the maximal faces here correspond to (u, v) ∈
L (C) \ {0} such that I (u, v) = JnK \ I. However, those faces are contained in

conv
(⋃

j 6=i C
j ×

{
ej
})

for any i ∈ I, which are already included in (12).

The alternative characterizations for (11)/(12) follow from the fact that
x ∈ FC (u) if and only if u ∈ NC (x) (e.g. Proposition C.3.1.4 in [13]). ut

7.4 Proof of Proposition 6

Proof (of Proposition 6) Property (29) implies
⋃k
i=1 C

i ×
{
ei
}
⊆ Q which

showsQ (C) ⊆ Q,Q (C)∞ ⊆ Q∞ and (30).Q ⊆ Rn×∆k impliesQ∞ ⊆ Rn×{0}
and Q

(
ei
)

= Ci ×
{
ei
}

further implies that Q∞ ⊆ C1
∞ × {0} = Q (C)∞.

Part 1 implies Part 2 is direct from the definition of Q (C), which together
with (30) shows their equivalence. Part 2 implies 3 is direct.

For 3 implies 1 we show that if Q (C) ( Q, then there exist x̃ ∈ Rn

such that
(
x̃, 1

k1
)
∈ Q and x̃ /∈ 1

k

∑k
i=1 C

i. For this we first claim that if
(x̄, ȳ) ∈ Q \Q (C) then there exist a ∈ Rn, b ∈ Rk and c ∈ R that satisfy the
following three separation conditions: (i) a · x̄+ b · ȳ > c, (ii)a · x+ b · y ≤ c for
all (x, y) ∈ Q (C), and (iii) for all i ∈ JkK and ε > 0 there exist x̄i (ε) ∈ Ci such
that a · x̄i (ε) + b · ei ≥ c − ε. Indeed the first two follow from the separation
theorem for closed convex sets. If the third condition does not hold for some
i ∈ JkK then max

{
a · x : x ∈ Ci

}
< c− bi and because ȳ ≥ 0 we can decrease

bi to achieve the equality while still satisfying the first two conditions.
Now, because of (30) for Q = Q (C) and separation condition (ii) we have

a · x+ (1/k)
∑k

i=1
bi ≤ c ∀x ∈ (1/k)

∑k

i=1
Ci. (41)

Additionally, because ȳ ∈ ∆k there exist (λ0, λ) ∈ ∆k+1 with λ0 > 0 such

that λ0ȳ +
∑k
i=1 λie

i = 1
k1. If

∑k
i=1 λi = 0, then λ0 = 1, ȳ = 1

k1 and(
x̄, 1

k1
)
∈ Q. Hence, because of separation condition (i) and (41) we have

x̄ /∈ 1
k

∑k
i=1 C

i. If instead we have
∑k
i=1 λi > 0, then there exist ε > 0 such

that λ0 (a · x̄+ b · ȳ − c) /
(∑k

i=1 λi

)
> ε because of separation condition (i).

For such (λ0, λ) and ε let (x̃, ỹ) = λ0 (x̄, ȳ) +
∑k
i=1 λi

(
x̄i (ε) , ei

)
. Because(

x̄i (ε) , ei
)
∈ Q for each i ∈ JkK we then have that

(
x̃, 1

k1
)
∈ Q. Furthermore,

because separation conditions (i) and (iii), and the condition on ε we have

a · x̃+ 1
k

∑k
i=1 bi > c and hence by (41) we have x̃ /∈ 1

k

∑k
i=1 C

i. ut

Acknowledgements This research was partially supported by NSF under grant CMMI-
1351619.

References

1. Andradas, C., Ruiz, J.M.: Ubiquity of  lojasiewicz’s example of a nonbasic semialgebraic
set. The Michigan Mathematical Journal 41, 465–472 (1994)



30 Juan Pablo Vielma

2. Balas, E.: On the convex-hull of the union of certain polyhedra. Operations Research
Letters 7, 279–283 (1988)

3. Ben-Tal, A., Nemirovski, A.: Lectures on modern convex optimization: analysis, algo-
rithms, and engineering applications. Society for Industrial Mathematics (2001)

4. Bestuzheva, K., Hijazi, H., Coffrin, C.: Convex relaxations for quadratic on/off con-
straints and applications to optimal transmission switching (2016). Optimization On-
line, http://www.optimization-online.org/DB_HTML/2016/07/5565.html.

5. Blair, C.: Representation for multiple right-hand sides. Math. Program. 49, 1–5 (1990)
6. Blekherman, G., Parrilo, P., Thomas, R.: Semidefinite Optimization and Convex Alge-

braic Geometry. MPS-SIAM Series on Optimization. SIAM (2013)
7. Bonami, P., Lodi, A., Tramontani, A., Wiese, S.: On mathematical programming with

indicator constraints. Math. Program. 151, 191–223 (2015)
8. Ceria, S., Soares, J.: Convex programming for disjunctive convex optimization. Math.

Program. 86, 595–614 (1999)
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