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Computational imaging through scatter generally is accomplished by first characterizing the scattering medium so
that its forward operator is obtained and then imposing additional priors in the form of regularizers on the
reconstruction functional to improve the condition of the originally ill-posed inverse problem. In the functional,
the forward operator and regularizer must be entered explicitly or parametrically (e.g., scattering matrices and dic-
tionaries, respectively). However, the process of determining these representations is often incomplete, prone to errors,
or infeasible. Recently, deep learning architectures have been proposed to instead learn both the forward operator and
regularizer through examples. Here, we propose for the first time, to our knowledge, a convolutional neural network
architecture called “IDiffNet” for the problem of imaging through diffuse media and demonstrate that IDiffNet has
superior generalization capability through extensive tests with well-calibrated diffusers. We also introduce the negative
Pearson correlation coefficient (NPCC) loss function for neural net training and show that the NPCC is more
appropriate for spatially sparse objects and strong scattering conditions. Our results show that the convolutional
architecture is robust to the choice of prior, as demonstrated by the use of multiple training and testing object data-
bases, and capable of achieving higher space–bandwidth product reconstructions than previously reported. © 2018

Optical Society of America under the terms of the OSA Open Access Publishing Agreement

OCIS codes: (100.3190) Inverse problems; (100.4996) Pattern recognition, neural networks; (110.1758) Computational imaging.
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1. INTRODUCTION

Imaging through random media [1,2] remains one of the most
useful as well as challenging topics in computational optics.
The reason is that scattering impedes information extraction from
the wavefront in two distinct, albeit related ways. First, light scat-
tered at angles outside the system’s numerical aperture is lost; sec-
ond, the relative phases among spatial frequencies that pass are
scrambled—convolved with the diffuser’s own response. In most
cases, the random medium is not known, or it is unaffordable to
characterize it completely. Even if the random medium and,
hence, the convolution kernel are known entirely, deconvolution
is highly ill-posed and prone to noise-induced artifacts.

Therefore, the strategy to recover the information, to the de-
gree possible, must be two-pronged: first, to characterize the
medium as well as possible so that at least errors in the deconvo-
lution due to incomplete knowledge of the medium’s response
may be mitigated; second, to exploit additional a priori knowledge
about the class of objects being imaged so that the inverse
problem’s solution space is reduced and spurious solutions are

excluded. These two strategies are summarized by the well-
known Tikhonov–Wiener optimization functional for solving
inverse problems as

f̂ � argminf fkg −Hf k2 � αΦ�f �g, (1)

whereH is the forward operator in the optical system g � Hf , f
is the unknown object, g is the raw intensity image (or images if
some form of scanning is involved), Φ�·� is the regularizer func-
tion, α is the regularization parameter controlling the relative
contribution of the two terms in the functional, and f̂ is the
estimate of the object.

The forward operator H includes the effects of the scatterer, as
well as of the optical system utilized in any situation. A number of
ingenious strategies have been devised to design forward operators
that improve the imaging problem’s condition, most famously
by using nonlinear optics [3,4] or stimulated emission [5].
Restricting oneself to linear optics, structured illumination [6–8]
is an effective strategy that modulates object information onto
better-behaved spatial frequencies.
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Several approaches characterize the random medium
efficiently. One method is to measure the transmission matrix
(TM) of the medium by interferometry or wavefront sensing
[9–11]. Alternatively, one may utilize the angular memory effect
in speckle correlation [12–16]. The angular memory principle
states that rotating the incident beam over small angles does
not change the resulting speckle pattern but only translates it over
a small distance [17,18]. In this case, computing the autocorre-
lation of the output intensity and deconvolving it by the speckles’
autocorrelation function, which is a sharply peaked function [19],
result in the autocorrelation of the input field. Then, the object is
recovered from its own autocorrelation using the Gerchberg–
Saxton–Fienup (GSF) algorithm [20,21] with additional prior
constraints.

The regularizer Φ expresses prior knowledge by penalizing
unacceptable objects so the optimization is prohibited from land-
ing onto them; alternatively, the priors expressed by the regular-
izer can be thought of as helping to resolve nonuniqueness due to
the ill-posed nature of the forward operator. In the case of strong
scattering, it is common to say that information “is lost” because it
is convolved into the high spatial frequencies escaping the system
aperture. (The opposite may also be possible: a cleverly designed
scattering medium may bring high-spatial frequency information
back into the aperture, by convolving it to low spatial frequencies
[6,22,23].) However, the prior may help to recover the missing
information by enforcing properties such as edge sharpness or,
more generally, sparsity, positivity, etc. During the past two dec-
ades, owing to efforts by Grenander [24], Candés, et al. [25], and
Brady et al. [26], the use of sparsity priors was popularized and
proved to be effective in a number of contexts including random
media. For example, Liu et al. successfully recovered the 3D
positions of multiple LEDs embedded in turbid scattering media
by taking phase-space measurements and imposing the L1
sparsity prior [27].

Instead of establishing H and Φ independently and explicitly
from measurements and prior knowledge, an alternative approach
is to learn both operators simultaneously through examples of ob-
jects imaged through the random medium. To our knowledge,
the first instance of this strategy was by Horisaki et al. [28].
In that paper, a support vector regression (SVR) learning archi-
tecture was used to learn the scatterer and the prior of faces being
imaged through. The approach was effective in that the SVR
learned correctly to reconstruct face objects; it also elucidated
the generalization limitations of SVRs, which are shallow fully
connected two-layer architectures: for example, when presented
with nonface objects the SVR would still respond with one of
its learned faces as a reconstruction. A deeper fully connected
architecture in the same learning scheme has been proposed
recently [29]. The Horisaki paper was the first, to our knowledge,
to use machine learning in the computational imaging context; it
certainly influenced our own work on lensless imaging [30] and
other related works [31–35].

In this paper, we propose for the first time, to our knowledge,
two innovations in the use of machine learning for imaging
through scatter: the first is the use of the convolutional neural
network (CNN) architecture, [36] and the second is the use
of a negative Pearson correlation coefficient (NPCC) as the loss
function. Different from fully connected network architectures,
in the CNN each neuron is connected to only a few nearby
neurons in the previous layer, and the same set of weights is used

for every neuron. The fewer number of connections and weights
reduces the complexity of the CNN architecture and makes con-
volutional layers relatively cheap in terms of memory needed.
Moreover, overfitting is less of a problem, resulting in better
generalization.

These two observations have further implications: first, due to
the reduced memory requirement, we can tackle original objects
of space–bandwidth product (SBP) 128 × 128, higher than pre-
viously reported [28,29]. Second, the use of the convolutional
architecture is counterintuitive because the scatterer may not
be shift-invariant. Indeed, in Fig. 2 we show that it is not. It
may seem justified, therefore, to worry whether the reduced
memory and antioverfitting benefits of CNNmay be outweighed.
However, we found that the inverse estimate obtained by the
CNN does in fact learn to compensate for the scatterer’s shift
variance, as shown in Fig. 12.

To characterize IDiffNet response, we conducted training and
testing with well-calibrated diffusers of known grit size and well-
calibrated intensity objects produced by a spatial light modulator.
We also examined a large set of databases, including classes of
objects with naturally embedded sparsity (e.g., handwritten
characters or digits). These experiments enabled us to precisely
quantify when IDiffNet requires strong sparsity constraints to
become effective, as a function of diffuser severity. (the smaller
the grit size, the more ill-posed the inverse problem becomes.)

The adoption of the NPCC instead of the more commonly
used mean absolute error (MAE) as the loss function for training
IDiffNet was an additional enabling factor in obtaining high-SBP
image reconstructions through strong scatter. We compared the
performance of these two loss functions under different imaging
conditions and to different training databases determining the ob-
ject priors that the networks learn, and showed that the NPCC is
preferable for cases of relatively sparse objects (e.g., characters)
and strong scatter. Lastly, we probed the interior of our trained
IDiffNets through the well-established test of maximally activated
patterns (MAPs) [37] and compared to standard denoising net-
works to eliminate the possibility that IDiffNet might be acting
trivially instead of having learned anything about the diffuser and
the objects’ priors.

The structure of the paper is as follows: In Section 2, we
describe the architecture of our computational imaging system,
including the hardware and the IDiffNet machine learning archi-
tecture. In Section 3, the reconstruction results are analyzed,
including the effects of scattering strength, object complexity
(i.e., the object priors that the neural networks must learn),
and choice of the loss function for training. In Section 4, we test
the spatial resolution as well as the degree of shift invariance for
the IDiffNets trained in different conditions. The comparison to a
denoising neural network is described in Section 5, and conclud-
ing thoughts are in Section 6.

2. COMPUTATIONAL IMAGING SYSTEM
ARCHITECTURE

The optical configuration that we consider in this paper is shown
in Fig. 1. Light from a He–Ne laser source (Thorlabs,
HNL210 L, 632.8 nm) is transmitted through a spatial filter,
which consists of a microscope objective (Newport, M -60 × ,
0.85 NA) and a pinhole aperture (D � 5 μm). After being colli-
mated by the lens (f � 150 mm), the light is reflected by a
mirror and then passes through a linear polarizer, followed by
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a beam splitter. A spatial light modulator (Holoeye, LC-R 720,
reflective) is placed normally incident to the transmitted light and
acts as a pixel-wise intensity object. The SLM pixel size is
20 μm × 20 μm and number of pixels is 1280 × 768, out of
which the central 512 × 512 portion only is used in the experi-
ments. The SLM-modulated light is then reflected by the beam
splitter and passes through a linear polarization analyzer before
being scattered by a glass diffuser. A telescopic imaging system
is built after the glass diffuser to image the SLM onto a comple-
mentary metal-oxide semiconductor (CMOS) camera (Basler,
A504k), which has a pixel size of 12 μm × 12 μm. To match
the pixel size of the CMOS with that of the SLM, we built
the telescope using two lenses, L1 and L2, of focal lengths: f 1 �
250 mm and f 2 � 150 mm. As a result, the telescope magnifies
the object by a factor of 0.6, which is consistent with the ratio
between the pixel sizes of the CMOS and SLM. The total number
of pixels on the CMOS is 1280 × 1024, but we crop only the
central 512 × 512 square for processing; thus, the number of pix-
els measured by the CMOS camera, as well as their size, match
1:1 the object pixels at the SLM. Images recorded by the CMOS
camera are then processed on an Intel i7 CPU. The neural
network computations are performed on a GTX1080 graphics
card (NVIDIA).

The modulation performance of the SLM depends on the
orientations of the polarizer and analyzer. Here, we implement
the cross-polarization arrangement to achieve a high-intensity
modulation contrast. Specifically, we set the incident beam
to be linearly polarized along the horizontal direction and
also set the linear polarization analyzer to be oriented along
the vertical direction. We experimentally calibrate the correspon-
dence between the 8-bit grayscale input images projected
onto the SLM and intensity modulation values of SLM (see
Supplement 1, Section 1). We find that in this arrangement,
the intensity modulation of the SLM follows a monotonic rela-
tionship with respect to assigned pixel value, and a maximum in-
tensity modulation ratio of ∼17 can be achieved. At the same
time, the SLM also introduces phase modulation, which is corre-
lated with the intensity modulation due to the optical anisotropy
of the liquid crystal molecules. The phase depth is ∼0.6π.

Fortunately, the influence of this phase modulation is negligible
in the formation of the speckle images that we captured in this
system; a detailed demonstration can be found in Section 2 of
Supplement 1. Therefore, we are justified in treating this SLM
as a pure-intensity object.

As shown in Fig. 1(b), the glass diffuser is inserted at a distance
zd in front of the lens L1. Here, we approximate the glass diffuser
as a thin mask whose amplitude transmittance is t�x1, y1�. In this
case, a forward model can be derived to relate the optical field at
the detector plane gout�x 0, y 0� to the optical field at the object
plane g�x, y� (constant terms have been neglected) [38],
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where λ is the light wavelength, R the radius of the lens L2,
and J1�·� denotes the first-order Bessel function of the first
kind. T is the Fourier spectrum of the diffuser, as follows:
T �u, v� � RR

dx1dy1�t�x1, y1�e−i2π�x1u�y1v��. Here, * denotes the
convolution product, and the last term in the convolution ac-
counts for the influence of the finite aperture size of the lenses.

We model the diffuser transmittance t�x1, y1� as a pure-
phase random mask, i.e., t�x1, y1� � exp�i2πΔnλ D�x1, y1��, where
D�x1, y1� is the random height of the diffuser surface, and Δn is
the difference between the refractive indices of the diffuser and
the surrounding air (Δn ≈ 0.52 for glass diffusers). The random
surface height D�x1, y1� can be modeled as follows [39]:

D�x, y� � W �x, y� � K �σ�: (3)

Here, W �x, y� is a set of random height values chosen according
to the normal distribution at each discrete sample location �x, y�,
i.e., W ∼ N �μ, σ0�; and K �σ� is a zero-mean Gaussian smooth-
ing kernel having full width half-maximum (FWHM) value of σ.

The values of μ, σ0, and σ are determined by the grit size of the
chosen glass diffuser [40]. In this paper, we use two glass diffusers
of different grit size: 600-grit (Thorlabs, DG10-600-MD) and
220-grit (Edmund, 45-653). We have also conducted analysis
and experiments with a 400-grit diffuser (OptoSigma, DFB1-
30C02-400), included as part of the Supplement 1, and found
the results almost identical to 220-grit size. Using the 220-grit
and 600-grit values in Eqs. (2) and (3), we simulate the point
spread function (PSF) of our imaging system as shown in
Fig. 2, with a point source at the center of the object plane as
input. We can see that the PSF for the 600-grit diffuser has a
sharp peak at the center, while the PSF for the 220-grit diffuser
spreads more widely. This indicates that the 220-grit diffuser
scatters the light much more strongly than the 600-grit diffuser.

It is important to emphasize that, due to the existence of the
diffuser, the imaging system is no longer shift-invariant. As can be
seen in Eq. (2), the optical field at the detector plane gout cannot
be expressed as a convolution of the object g and a shift-invariant
PSF term. The degree of shift variance may be compared using the
PSF correlation function

Fig. 1. Optical configuration. (a) Experimental arrangement. SF, spa-
tial filter; CL, collimating lens; M, mirror; POL, linear polarizer; BS,
beam splitter; SLM, spatial light modulator. (b) Detail of the telescopic
imaging system.
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(4)

Here, h�x 0, y 0; x, y� denotes the PSF on the detector plane �x 0, y 0�
due to a point source in the object plane at location �x, y�. Δx and
Δy are the shifts in the object plane along x and y direction,
respectively, and h·i denotes the ensemble average over many
simulated realizations of the diffuser. To make the comparison
between different values of Δx, Δy possible, we normalized
h�:, :� to have zero mean and standard deviation equal to one.

Two slices of the PSF correlation function along the Δx and
Δy directions, each for 10 random realizations of the simulated
diffuser, are shown in Fig. 2(d) and Fig. 2(e), respectively, for the
two grit sizes. As expected, in the 600-grit case, where scattering is
weak, the shifted PSFs are more correlated than those in the 220-
grit case. In both cases, the degree of correlation between the
shifted PSFs decreases as the shift becomes larger. In addition,
the degree of shift variance along the x direction is almost
identical to that along the y direction.

We may also represent Eq. (2) in terms of a forward operator
Hg : gout�x 0, y 0� � Hgg�x, y�. When the object is pure-intensity,
i.e., g�x, y� � ffiffiffiffiffiffiffiffiffiffiffiffi

I�x, y�p
, the relationship between the raw inten-

sity captured at the detector plane I out�x 0, y 0� and the object in-
tensity I�x, y� can also be represented in terms of another forward
operator H : I out�x 0, y 0� � HI�x, y� � �SHgSr�I�x, y�. Here, S
denotes the modulus square operator, and Sr denotes the square
root operator. Then, to reconstruct the intensity distribution of
the object, we have to formulate an inverse operator H inv such
that

Î�x, y� � H invIout�x 0, y 0�, (5)

where Î�x, y� is an acceptable estimate of the intensity object.
Owing to the randomness of H , it is difficult to obtain its

explicit form and do the inversion accordingly; prior works
referenced in Section 1 employed measurements of the scattering
matrix to obtainH approximately. Here, we instead use IDiffNet,
a deep neural network (DNN) trained to the underlying inverse
mapping given a set of training data. IDiffNet uses the densely
connected convolutional network (DenseNet) architecture [41],
where each layer connects to every other layer within the same
block in a feed-forward fashion. Compared to conventional con-
volutional networks, DenseNets have more direct connections be-
tween the layers, strengthening feature propagation, encouraging
feature reuse, and substantially reducing the number of parame-
ters. Therefore, DenseNets have better generalization capability.

A diagram of IDiffNet is shown in Fig. 3. The input to
IDiffNet is the speckle pattern captured by the CMOS. It first
passes through a dilated convolutional layer with filter size
5 × 5 and dilation rate 2, and is then successively decimated
by six dense and downsampling transition blocks. After transmit-
ting through another dense block, it successively passes through
six dense and upsampling transition blocks and an additional up-
sampling transition layer. Finally, the signals pass through a stan-
dard convolutional layer with filter size 1 × 1, and the estimate of
the object is produced. This is the “encoder–decoder network”
architecture [42,43], where the dense and downsampling transi-
tion blocks serve as encoder to extract the feature maps from the
input patterns, and the dense and upsampling transition blocks
serve as decoder to perform pixel-wise regression. Owing to the
scattering by the glass diffusers, the intensity at one pixel of the
image plane is influenced by several nearby pixels at the object
plane. Therefore, we use dilated convolutions with dilation rate
2 and a larger filter size of 5 × 5, compared to filter size 3 × 3 in
[30], in all our dense blocks to increase the receptive field of the
convolution filters. In addition, we also use skip connections [44]
to pass high-frequency information learned in the initial layers
down the network toward the output reconstruction. Additional
details about the architecture and training of IDiffNet are
provided in Section 3 of Supplement 1.

Fig. 2. Point spread functions (PSFs) and degree of shift variance of
the imaging system. (a) PSF for the 600-grit diffuser: μ � 16 μm,
σ0 � 5 μm, σ � 4 μm. (b) PSF for the 220-grit diffuser: μ �
63 μm, σ0 � 14 μm, σ � 15.75 μm. (c) Comparison of the profiles of
the two PSFs along the lines indicated by the red arrows in (a) and (b).
(d) Degree of shift variance along the x direction (Δy � 0). (e) Degree of
shift variance along the y direction (Δx � 0). Other simulation param-
eters are set to be the same as the actual experiment: zd � 15 mm,
R � 12.7 mm, and λ � 632.8 nm. All the PSF plots are in logarithmic
scale.
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3. RESULTS AND NETWORK ANALYSIS

Our experiment consists of two phases: training and testing.
During the training process, we randomly choose image samples
from a training database. The space bandwidth products of the
original images are all 128 × 128, and we magnify each image by a
factor of 4 before uploading to the SLM. The corresponding
speckle patterns are captured by the CMOS. As mentioned in
Section 2, we crop only the central 512 × 512 square of the
CMOS. We further downsample the captured speckle patterns
by a factor of 4 and subtract from them a reference speckle pat-
tern, which is obtained by uploading to the SLM a uniform image
with all pixels equal to zero. The purpose of this subtraction
operation is to eliminate the background noise on the CMOS
and also to better extract differences between speckle patterns
resulting from different objects.

After the subtraction operation, we feed the resulting speckle
patterns into IDiffNet for training. In this way, the input and
output signal dimensions are both 128 × 128. We collected data
from six separate experiment runs: each time we used training
inputs from one of the three different databases—Faces-LFW
[45], ImageNet [46], or MNIST [47]—and inserted one of
the two glass diffusers that we have into the imaging system.
Each of our training dataset consists of 10,000 object-speckle pat-
tern pairs. These data were used to train six separate IDiffNets for
evaluation. In the testing process, we sample disjoint examples
from the same database (Faces-LFW, ImageNet, or MNIST)
and other databases such as Characters, CIFAR [48], and
Faces-ATT [49]. Altogether, 450 examples are used in the test

dataset, including 50 Characters, 40 Faces-ATT, 60 CIFAR,
100 MNIST, 100 Faces-LFW, and 100 ImageNet. We upload
these test examples to the SLM and capture their corresponding
speckle patterns using the same glass diffuser as the training phase.
We then input these speckle patterns to our trained IDiffNet and
compare the output to the ground truth.

In training the IDiffNets, we use two different loss functions
and compare their performances. The first loss function that we
consider is the MAE, defined as follows:

MAE � 1

wh

Xw
i�1

Xh
j�1

jY �i, j� − G�i, j�j: (6)

Here, w, h are the width and height of the output, Y is the output
of the last layer, and G is the ground truth.

The qualitative and quantitative reconstruction results when
using MAE as the loss function are shown in Fig. 4 and
Fig. 5, respectively. From Fig. 4, we find that, generally,
IDiffNet’s reconstruction performance for the 600-grit diffuser
is better than that for the 220-grit diffuser. High-quality recon-
structions are achieved for the 600-grit diffuser when IDiffNets
are trained on Faces-LFW (column iv) and ImageNet (column v).
For the 220-grit diffuser, the best reconstruction is obtained when
IDiffNet is trained on the ImageNet database (column ix). The
recovered images are close to the low-pass filtered version of the
original image, where we can visualize the general shape (salient
features) but the high frequency features are missing. This result is
expected since the scattering caused by the 220-grit diffuser is
much stronger than that of the 600-grit diffuser, as we had already

Fig. 3. IDiffNet, our densely connected neural network that images through diffuse media.
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deduced from Fig. 2. As a result, we can still visualize some
features of the object in the raw intensity image captured in
the 600-grit diffuser case. By contrast, what we capture in the
220-grit diffuser case looks indistinguishable from pure speckle,
without any object details visible. This means we should expect it
to be much more difficult for IDiffNet to do the inversion.

Noticeable from Fig. 4 is that when IDiffNet is trained on
MNIST for the 220-grit diffuser (column x), all the reconstruc-
tions seem to be uniform. The reason is that the objects that this
IDiffNet was trained on were sparse; hence, it also tends to make
sparse estimates. Unfortunately, in this case the sparse local
minima where IDiffNet is trapped are featureless. Tackling this
problem motivated us to examine the NPCC as an alternative
loss function.

The NPCC is defined as follows [50]:

NPCC�
−1×

Pw
i�1

Ph
j�1�Y �i,j�−Ỹ ��G�i,j�−G̃�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPw

i�1

Ph
j�1�Y �i,j�−Ỹ �2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPw
i�1

Ph
j�1�G�i,j�−G̃�2

q :

(7)

Here, G̃ and Ỹ are the mean value of the ground truth G and the
IDiffNet output Y , respectively.

The qualitative and quantitative reconstruction results using
the NPCC as the loss function are shown in Fig. 6 and Fig. 7,
respectively. The reconstructed images are normalized since the
NPCC value will be the same if we multiply the reconstruction
by any positive constants. Similar to the case where MAE is used
as the loss function, the reconstruction is better in the 600-grit

Fig. 4. Qualitative analysis of IDiffNet trained using MAE as the
loss function. (i) Ground truth pixel value inputs to the SLM.
(ii) Corresponding intensity images calibrated by SLM response curve.
(iii) Raw intensity images captured by CMOS detector for 600-grit glass
diffuser. (iv) IDiffNet reconstruction from raw images when trained us-
ing Faces-LFW dataset [45]. (v) IDiffNet reconstruction when trained
using ImageNet dataset [46]. (vi) IDiffNet reconstruction when trained
using MNIST dataset [47]. Columns (vii)–(x) follow the same sequence
as (iii)–(vi), but in these sets the diffuser used is 220-grit. Rows (a)–
(f ) correspond to the dataset from which the test image is drawn:
(a) Faces-LFW, (b) ImageNet, (c) Characters, (d) MNIST, (e) Faces-
ATT [49], (f ) CIFAR [48], respectively.

Fig. 5. Quantitative analysis of IDiffNet trained using MAE as the
loss function. Test errors for IDiffNet trained on Faces-LFW (blue),
ImageNet (red), and MNIST (green) on six datasets when the diffuser
used is (a) 600-grit and (b) 220-grit. The training and testing error curves
when the diffuser used is (c) 600-grit and (d) 220-grit.

Fig. 6. Qualitative analysis of IDiffNets trained using NPCC as
the loss function. (i) Ground truth pixel value inputs to the SLM.
(ii) Corresponding intensity images calibrated by SLM response curve.
(iii) Raw intensity images captured by CMOS detector for 600-grit glass
diffuser. (iv) IDiffNet reconstruction from raw images when trained us-
ing Faces-LFW dataset [45]. (v) IDiffNet reconstruction when trained
using ImageNet dataset [46]. (vi) IDiffNet reconstruction when trained
using MNIST dataset [47]. Columns (vii)–(x) follow the same sequence
as (iii)–(vi) but in these sets the diffuser used is 220-grit. Rows (a)–(f )
correspond to the dataset from which the test image is drawn: (a) Faces-
LFW, (b) ImageNet, (c) Characters, (d) MNIST, (e) Faces-ATT [49],
(f ) CIFAR [48], respectively.

Fig. 7. Quantitative analysis of our trained deep neural networks for
using NPCC as the loss function. Test errors for the IDiffNets trained on
Faces-LFW (blue), ImageNet (red), and MNIST (green) on six datasets
when the diffuser used is (a) 600-grit and (b) 220-grit. The training and
testing error curves when the diffuser used is (c) 600-grit and (d) 220-grit.
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diffuser case than the 220-grit diffuser case. However, when
IDiffNet is trained on MNIST for the 220-grit diffuser (column
x), high-quality reconstruction is achieved for the test images com-
ing from Characters and MNIST database (row c and d). This is in
contrast to the MAE-trained case, thus indicating that NPCC is a
more appropriate loss function to use in this case. It helps IDiffNet
to learn the sparsity in the ground truth and in turn use the sparsity
as a strong prior for estimating the inverse. In addition, when
trained on ImageNet for the 220-grit diffuser (column ix),
IDiffNet is still able to reconstruct the general shape (salient
features) of the object. But the NPCC-trained reconstructions
are visually slightly worse compared to the MAE-trained cases.

In both MAE and NPCC training cases, IDiffNet perfor-
mance also depends on the dataset that it is trained on. From
Figs. 4 and 6, we observe that IDiffNet generalizes best when
being trained on ImageNet and has the most severe overfitting
problem when being trained on MNIST. Specifically, when
IDiffNet is trained on MNIST, even for the 600-grit diffuser
(column vi), it works well if the test image comes from the same
database or a database that shares the same sparse characteristics as
MNIST (e.g., characters). It gives much worse reconstruction
when the test image comes from a much different database.
When IDiffNet is trained on Faces-LFW, it generalizes well
for the 600-grit diffuser, but for the 220-grit diffuser it exhibits
overfitting: it tends to reconstruct a face at the central region, as in
Horisaki’s case. When IDiffNet is trained on ImageNet, it
generalizes well even for the 220-grit diffuser. As we can see in
column ix, for all the test images, IDiffNet is able to at least re-
construct the general shapes (salient features) of the objects. This
indicates that IDiffNet has learned at the very least a generalizable
mapping of low-level textures between the captured speckle pat-
terns and the input images. Similar observation may also be made
from Figs. 5 and 7. From subplots (a) and (b) in both figures, we
notice that the IDiffNets trained on MNIST have much higher
MAEs/lower PCCs when tested on other databases. As shown in
subplot (d), the IDiffNets trained on Faces-LFW have a large dis-
crepancy between training and test error, while for IDiffNets

trained on ImageNet, the training and testing curves converge
to almost the same level. An explanation for this phenomenon
is that all the images in MNIST or Faces-LFW databases share
the same characteristics (e.g., sparse, circular shape), imposing
a strong prior on IDiffNet. On the other hand, the ImageNet
database consists of a mixture of generic images that have not
too much in common. As a result, IDiffNet trained on
ImageNet generalizes better. It is worth noting that overfitting
in our case evidences itself as face-looking “ghosts” occurring
when IDiffNet trained on Faces-LFW tries to reconstruct other
kinds of images, for example (see Fig. 6, column viii). This is
again similar to Horisaki’s observations [28].

From comparing the four possible combinations of weak to
strong scattering and constrained dataset (e.g., MNIST) to
generic dataset (e.g., ImageNet), we conclude the following: when
scattering is weak, it is to our benefit to train the IDiffNets on a
generic dataset because the resulting neural networks generalize
better and can cope with the scattering also for general test images.
On the other hand, when scattering is strong, it is beneficial to use
a relatively constrained dataset with strong sparsity present in the
typical objects: the resulting neural networks are then more prone
to overfitting, but now this works to our benefit for overcoming
strong scattering (at the cost, of course, of working only for test
objects coming from the more restricted database). The choice of
optimization functional makes this tradeoff even starker: MAE
apparently does not succeed in learning the strong sparsity even
for MNIST datasets, whereas the NPCC does much better, even
being capable of reconstructing test objects under the most severe
scattering conditions (220-grit diffuser, column x in Fig. 6) as
long as the objects are drawn from the sparse dataset. These
observations are summarized in Table 1.

4. RESOLUTION AND SHIFT INVARIANCE TESTS
FOR IDIFFNET

In this section, we investigate the spatial resolution of our trained
IDiffNet. Without the diffuser, our system is a telescope of

Table 1. Summary of Reconstruction Results in Different Cases

600-grit 220-grit

Training Dataset Loss: MAE Loss: NPCC Loss: MAE Loss: NPCC

Test: Faces-LFW Faces-LFW ✓ ✓ • ×
ImageNet ✓ ✓ • •
MNIST × × × ×

Test: ImageNet Faces-LFW ✓ ✓ × ×
ImageNet ✓ ✓ • •
MNIST × × × ×

Test: Characters Faces-LFW ✓ ✓ × ×
ImageNet ✓ ✓ • •
MNIST ✓ ✓ × ✓

Test: MNIST Faces-LFW ✓ ✓ × ×
ImageNet ✓ ✓ • •
MNIST ✓ ✓ × ✓

Test: Faces-ATT Faces-LFW ✓ ✓ × ×
ImageNet ✓ ✓ • •
MNIST × × × ×

Test: CIFAR Faces-LFW ✓ ✓ × ×
ImageNet ✓ ✓ • •
MNIST × × × ×

[✓: visually recognizable; •: salient feature recognizable; ×: visually unrecognizable.]
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numerical aperture NA � 12.7∕250 � 0.0508. The diffraction-
limited Abbé resolution is d 0 � λ∕�2NA� � 6.23 μm.

With the 600-grit diffuser in the system, we analyze experi-
mentally four IDiffNets that we trained on either the ImageNet
or MNIST database and using either MAE or the NPCC as the
loss function. To evaluate the spatial resolution, we designed
two different sets of test patterns, dots and fringes, as shown
in Fig. 8. The dots are constructed as superpixels from 4 × 4 pixels
(80 μm × 80 μm), and the fringes are constructed as bands of
width equal to 4 pixels (80 μm). These choices make the dot
and fringe spacings consistent with the sampling scheme chosen
in the experiments of Section 3. It should also be mentioned that
the superpixel size places a limit on IDiffNet resolution, since
IDiffNet is trained with examples whose sampling distance is
equal to one superpixel. In the dot pattern set, each pattern con-
tains eight dot pairs, and the spacings D between the two dots
within the same pair are set to be the same. The entire set consists
of 10 such dot patterns with D gradually varying from 1 super-
pixel to 10 superpixels. In the fringe pattern set, each pattern con-
tains equally spaced fringes. Similarly, the entire set consists of 10
such fringe patterns with the spacing D gradually varying from 1
superpixel to 10 superpixels.

Those resolution test patterns are displayed on the SLM, and
the corresponding speckle patterns are captured and fed into our

trained IDiffNet for reconstruction. The results are shown in
Figs. 9 and 10. Here, we show only the resolution test results
of the IDiffNets trained using MAE as the loss function. The
choice of the loss function actually does not affect the spatial res-
olution of the trained IDiffNet in the 600-grit diffuser case. The
resolution test results of the IDiffNets trained using NPCC as the
loss function can be found in Section 4 of Supplement 1.

As shown in Fig. 9, the IDiffNet trained on the MNIST data-
base is able to resolve two dots with spacing D � 4 superpixels
but fails to distinguish two dots with spacing D � 3 superpixels.
The same spatial resolution is demonstrated using fringe patterns
as well, where nearby fringes with spacing D � 4 superpixels are
resolved while fringes with spacing D � 3 superpixels are unable
to be distinguished. In addition, we find that the reconstruction
qualities of dot patterns are better than those of the fringe pat-
terns. This result is as expected since the MNIST training data-
base imposes a strong sparsity prior in a set of basis functions that
themselves look relatively spatially sparse [51]. This property
makes IDiffNet perform better on spatially sparse test samples
(dot patterns) than other less sparse test samples (fringe patterns).
Therefore, dot patterns are more appropriate to be used to test the
resolution of IDiffNet trained on MNIST.

For the IDiffNet trained on ImageNet, its spatial resolution is
the same as the MNIST training case, as demonstrated in Fig. 10.
However, the reconstruction qualities of fringe patterns are better
than those of the dot patterns since the ImageNet training data-
base contains more general images, which are sparse in a set of
basis functions that is spatially richer than the MNIST dictionary
[52]. Because of this observation, fringe patterns are more appro-
priate for testing the resolution of IDiffNet trained on ImageNet.

Now, let us test the spatial resolution of IDiffNet trained using
the 220-grit diffuser. In this strong scattering case, as described in
Section 3, we have to use MNIST as the training database and use
the NPCC as the loss function. To match the strong prior im-
posed by the MNIST database, we design the resolution test pat-
tern as shown in Fig. 11(a), where those dots are placed in a layout
resembling the digit “7” and the spacing between nearby dots is

Fig. 8. Resolution test patterns. Left: dot pattern. Right: fringe
pattern.

Fig. 9. Experimental resolution test result for IDiffNet trained on
MNIST using MAE as loss function. The diffuser used is 600-grit.
(a) Reconstructed dot pattern when D � 3 superpixels. (b) 1D cross-sec-
tion plot along the line indicated by red arrows in (a). (c) Reconstructed
fringe pattern when D � 3 superpixels. (d) Reconstructed dot pattern
when D � 4 superpixels. (e) 1D cross-section plot along the line indi-
cated by red arrows in (d). (f ) Reconstructed fringe pattern when D � 4
superpixels.

Fig. 10. Experimental resolution test result for IDiffNet trained on
ImageNet using MAE as loss function. The diffuser used is 600-grit.
(a) Reconstructed dot pattern when D � 3 superpixels. (b) 1D cross-sec-
tion plot along the line indicated by red arrows in (a). (c) Reconstructed
fringe pattern when D � 3 superpixels. (d) Reconstructed dot pattern
when D � 4 superpixels. (e) 1D cross-section plot along the line indi-
cated by red arrows in (d). (f ) Reconstructed fringe pattern when D � 4
superpixels.
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D. The entire set consists of 10 such patterns with the spacing D
gradually varying from 10 superpixels to 19 superpixels. As shown
in Fig. 11, we can find that the trained IDiffNet is able to resolve
nearby dots with spacing D � 17 superpixels but fails to distin-
guish two dots with spacing D � 16 superpixels. As expected, the
spatial resolution in this case is worse than that in the 600-grit
diffuser case.

In light of our earlier observation about limited shift invariance
in the forward operator (see discussion after Fig. 2), we also
analyzed IDiffNet’s shift invariance. In simulation, as in
Section 2, we chose 100 test images in the MNIST database.
For each image I�x, y�, we first obtain its corresponding speckle
pattern I out�x 0, y 0; x, y�. Then, we shift I�x, y� along the x direc-
tion for some distance Δx and obtain the corresponding speckle
pattern I out�x 0, y 0; x � Δx, y�. After that, we shift the speckle pat-
tern Iout�x 0, y 0; x � Δx, y� back by a distance Δx 0 � mΔx to
obtain I out�x 0 − Δx 0, y 0; x � Δx, y�, where m � 0.6 is the ratio
between the camera and SLM pixel sizes. Finally, we compute
the correlations in the speckle patterns as

Cs�Δx� � PCC�I out�x 0, y 0; x, y�, Iout�x 0 − Δx 0, y 0; x � Δx, y��:
(8)

Here, PCC is defined as in Eq. (7) and without the negative sign.
Similarly, we can compute the correlations in the reconstruc-

tions Î�x, y; x, y� as

Cr�Δx� � PCC�Î�x, y; x, y�, Î�x − Δx, y; x � Δx, y��: (9)

As shown in Fig. 12, shift invariance after IDiffNet increases
�Cr > Cs�, demonstrating that IDiffNet has learned to compen-
sate for shift variance in the forward operator. In fact, the domain
of shift invariance obtained with IDiffNet is bigger than generally
obtained by approaches based on the memory effect [13,16]. In
the latter, the field of view (FOV) is limited by shift invariance in
the forward operator, i.e., the domain of high correlation between
shifted PSFs, and is typically small, e.g., FOV ∼ 2.5 × 10−2

in [13]. On the other hand, our experimental results with

IDiffNet demonstrate FOV ≳ 4 × 10−2 for the same diffuser of
220-grit size.

5. COMPARISON WITH DENOISING NEURAL
NETWORKS

To get a sense of what IDiffNets learn, we first compare their
reconstruction results to those of a denoising neural network.
Specifically, we use ImageNet as our training database. To each
image in the training dataset, we simulate a noisy image using
Poisson noise and make the peak signal-to-noise ratio (PSNR)
of the resulting noisy image visually comparable to that of the
corresponding speckle image captured using the 600-grit diffuser.
We use Poisson noise rather than different kinds of noise such as
Gaussian because Poisson noise is signal-dependent, similar to the
diffuser case. We then train a denoising neural network using
those noisy images. For the denoising neural network, we imple-
ment the residual network architecture [53]. Finally, we feed the
test speckle images captured using the 600-grit diffuser into this
denoising neural network and compare the outputs to those
reconstructed by IDiffNet (using MAE as the loss function).

The comparison results are shown in Fig. 13. From column iv,
we find that the denoising neural network works well when the
test images are indeed noisy according to the Poisson model.
However, as shown in column v, if we input the diffuse image
into the denoising network, it can only output a highly blurred
image, much worse than IDiffNet given the same diffuse input, as
can be seen in column vi. This result demonstrates that IDiffNet
is not doing denoising, although the speckle image obtained using
the 600-grit diffuser visually looks similar to a noisy image.

Fig. 11. Experimental resolution test result for IDiffNet trained on
MNIST using NPCC as loss function. The diffuser used is 220-grit.
(a) Resolution test pattern when D � 16 superpixels. (b) Reconstructed
test pattern whenD � 16 superpixels. (c) 1D cross-section plot along the
line indicated by red arrows in (b). (d) Resolution test pattern when D �
17 superpixels. (e) Reconstructed test pattern when D � 17 superpixels.
(f ) 1D cross-section plot along the line indicated by red arrows
in (e).

Fig. 12. Simulated shift invariance test. (a) Correlations in the speckle
patterns Cs calculated on MNIST database. (b) Correlations in the re-
constructions Cr calculated on MNIST database. In the 600-grit case,
the IDiffNet is trained on ImageNet using MAE loss function; in the
220-grit case, the IDiffNet is trained on MNIST using NPCC loss
function.
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We posit the reason for this as follows: Poisson noise operates
pixel-wise. Consequently, denoising for Poisson noise is effec-
tively another pixel-wise operation that does not depend much
on spatial neighborhood, except to the degree that applying priors
originating from the structure of the object helps to denoise
severely affected signals. A denoising neural network, then, learns
spatial structure only as a prior on the class of objects it is trained
on. However, this is not the case when imaging through a diffuser:
then every pixel value in the speckle image is influenced by a set of
nearby pixels in the original image. This may also be seen from
the PSF plots shown in Fig. 2. The denoising neural network fails
because it has not learned the spatial correlations between the
nearby pixels and the correct kernel of our imaging system, as
our IDiffNet has.

We also examined the MAPs of the IDiffNets and the denois-
ing neural network; i.e., what types of inputs would maximize

network filter response (gradient descent on the input with aver-
age filter response as loss function) [37]. Figure 14 shows the
MAP analysis of two convolutional layers at different depths
for all three neural networks. For both the shallow and deep
layers, we find the MAPs of our IDiffNets are qualitatively differ-
ent from those of the denoising network. This further corrobo-
rates that IDiffNet is not merely doing denoising. In addition, the
MAPs of the 600-grit IDiffNet show finer textures compared to
those of the 220-grit IDiffNet, indicating that the IDiffNet learns
better in the 600-grit diffuser case.

6. CONCLUSIONS

We have demonstrated that IDiffNets, built according to the
densely connected convolutional neural network architecture,
can be used as an end-to-end approach for imaging through scat-
tering media. The reconstruction performance depends on the
scattering strength of the diffusers, the type of the training dataset
(in particular, its sparsity), and the loss function used for optimi-
zation. The IDiffNets seem to learn automatically the properties
of the scattering media, including the degree of shift invariance
and how to at least partially compensate it, as well as the priors
restricting the objects where the network is supposed to perform
well, depending on the database the network was trained with.
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