
ar
X

iv
:1

80
3.

01
44

0v
2

 [
st

at
.M

L
]

 2
2

Ju
n

20
18

Hierarchical Modeling and Shrinkage for User Session Length

Prediction in Media Streaming

Antoine Dedieu∗1, Rahul Mazumder†1, Zhen Zhu‡2,3, and Hossein Vahabi§2

1Massachusetts Institute of Technology
2Pandora Media, Inc.

3Stanford

June 26, 2018

Abstract

An important metric of users’ satisfaction and engagement within on-line streaming ser-
vices is the user session length, i.e. the amount of time they spend on a service continuously
without interruption. Being able to predict this value directly benefits the recommendation
and ad pacing contexts in music and video streaming services. Recent research has shown that
predicting the exact amount of time spent is highly nontrivial due to many external factors
for which a user can end a session, and the lack of predictive covariates. Most of the other
related literature on duration based user engagement has focused on dwell time for websites,
for search and display ads, mainly for post-click satisfaction prediction or ad ranking.

In this work we present a novel framework inspired by hierarchical Bayesian modeling
to predict, at the moment of login, the amount of time a user will spend in the streaming
service. The time spent by a user on a platform depends upon user-specific latent variables
which are learned via hierarchical shrinkage. Our framework enjoys theoretical guarantees and
naturally incorporates flexible parametric/nonparametric models on the covariates, including
models robust to outliers. Our proposal is found to outperform state-of- the-art estimators in
terms of efficiency and predictive performance on real world public and private datasets.

1 Introduction

On-line streaming services such as Pandora, Netflix, and Youtube constantly seek to increase their
share of on-line attention by keeping their users as engaged as possible with their own services
[13]. A well known challenge is how to measure the users’ engagement, and what are the key
components that create an engaging streaming service. One important engagement metric is the
amount of time spent by users within the service. When users access streaming services, they
usually watch videos, movies, on-line TV or listen to music, and after a while they leave the
service. We refer to the user interaction from the moment they start the service to the moment
they leave as a user session, and the time spent during one session as user session length [20].

∗adedieu@mit.edu
†rahulmaz@mit.edu
‡zzhu@pandora.com
§puya@pandora.com

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/189430054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1803.01440v2

In this paper, we aim to predict the user session length using real world datasets from two
music streaming platforms, i.e. predicting, at the beginning of the session, the amount of time
they will spend listening music. Understanding and modeling the factors that can affect the
session length is of great use for various downstream tasks. In fact it allows recommender systems
to tune the explore vs exploit parameters for each user. In addition, having an accurate estimate
of the users’ session lengths allows the streaming service to adjust ad pacing per user. Ads can
be rescheduled in a way to keep the revenue target (i.e. total number of ads presented) as well as
improve user experience.

Predicting the length of user sessions is very challenging as the authors reported in [20]. First,
user sessions can end for many different external reasons that have nothing to do with quality of
the streaming services, such as moving to subway, reaching home, and most of these contextual
covariates are not easily accessible because of technological or privacy reasons [20]. Second, a
certain amount of users are casual users in the sense that they only use the streaming services a
few times per month, which makes the problem of estimating session lengths for those users hard.
Furthermore, a lack of predictive covariates makes it harder to correctly predict what is going to
be the next session length for a user.

A first approach toward session length analysis and prediction [20] is based on a Boosting
algorithm. Most of the other related research were focused on modeling the time spent after
clicking a search result [3, 12] or advertisement [1]. The best models are based on survival analysis,
mainly because data are censored in these applications. In fact, after clicking of a search result
or an ad, users can either turn back to the search page or can abandon the final page, instead
of turning back to the main search page. This is not the case of session length data that is not
censored1 – this opens the door to using a suite of methods based on regression modeling, shrinkage
and relevant generalizations. Furthermore, in the case of web search or ad click, the user enters
a query or click and checks the results, therefore the intersection between search or ad title and
the landing page give highly predictive features [12]. In the case of a streaming service, the user
interaction can be very low, but still they can have very long sessions ("lean-back" behavior) [20].

In this paper, we propose a novel framework inspired by hierarchical Bayesian modeling and
shrinkage principles that allows us to express session lengths in terms of user-specific latent vari-
ables. These variables are estimated via a joint learning framework which is rather broad in scope
– we use Bayes, Empirical Bayes and MAP estimation techniques–particular choices are based on
computational tractability considerations. Informally speaking, our models learn by borrowing
strengths across all users and making use of rich covariate information. We also propose models
that can incorporate outliers in data. A salient aspect of our framework is its modularity – it
includes state-of-the-art models as special cases, and naturally allows for a hierarchy of flexible
generalizations. Hence, it allows the practitioner to glean insights about the problem, by assessing
incremental gains in predictive accuracy associated with different generalizations and the incor-
poration of covariate-information. We present tailored algorithmic approaches based on modern
large convex optimization techniques to address the computational challenges. We summarize
some of our key findings in this paper:

• We outperform a baseline estimator by a margin of 13% to 19% and the state-of-the art
in session length prediction [20] up to 4.3% in terms of Mean Absolute Error measured in
seconds on 2 different real world datasets.

• We show that some of our proposed prediction models can be (a) more accurate than state
of the art (with 1-2% relative improvement in prediction performance), (b) between 22 to

1Observations are called censored when the information about their survival time is incomplete.

2

43 times faster in training time; and (c) 30-500 times faster in prediction time, reaching
around 1ms.

• We provide a modular framework specifically for this problem that allow more flexible gen-
eralizations,

2 Key idea

The main focus of this paper is the prediction of user session length at the moment of login into a
streaming service. For this purpose, we exploit the users past interaction with streaming services,
previous sessions lengths, build a set of features (as we will describe in Section 4.1), and we set
a learning framework for prediction purposes. We proceed by using a Gaussian approximation
for the distribution of the log of a users’ session length (Section 4.1). As we will see, this
will help us in creating a well-grounded and tractable inferential framework. Since we want a
prediction framework that is performing well for very active users (with many sessions) and less-
frequent users (with only a few sessions per month), we propose a formal framework inspired by
hierarchical Bayesian shrinkage ideas that allows us to model the session-length of a user in terms
of user-specific latent variables. Fundamental principles of Bayesian shrinkage and estimation
encourage users to borrow strengths across each other, including (but not limited to) covariate
information. This (i) ameliorates the high variance (and hence low predictive accuracy) of user-
specific maximum likelihood estimates for less-frequent users; and (ii) leads to an overall boost in
prediction accuracy for more frequent users as well. Bayesian decision theory and empirical Bayes
methodology [6] provides a formal justification of our framework. The notion of shrinkage that
we undertake here is quite broad: It applies to cases with or without covariate information; by a
flexible choice of priors on the latent variables, we can also build models robust to heavy tailed
errors. We show that the state-of-the-art model [20] on this particular problem is a special case of
our framework. For flexible models and/or priors when Bayes estimators become computationally
demanding, we recommend MAP estimation for computational efficiency, this includes the case
for robust modeling with a Huber loss [9]. We resort to techniques in modern large scale convex
optimization to achieve computational scalability and efficiency.

3 Mathematical Framework

We formally develop the inferential framework to address the session length prediction problem.
We denote the total number of users by N . For every i ∈ [N] := {1, . . . , N}, let ni be the number of
past sessions of user i, and ỹij be the time spent by user i in the jth session. We will work with log
of session length yij = log(ỹij) as our response as this gives a better approximation to the Gaussian
distribution (See Table 1). We note that similar (variance stabilizing) transformations2 are often
used in the empirical Bayes literature [6] so that one can take recourse to the rich literature in
Gaussian estimation theory. We denote by yi = (yij)j∈[ni]

∈ R
ni a vector of log-session-lengths

of user i; N0 =
∑N

i=1 ni the total number of sessions across all users; and y = (yi)i∈[N] ∈ R
N0 is

a vector of log-session-lengths of all users across all sessions. In addition, covariate information

2We note that it is also possible to fine-tune the transformation by considering a family of the form: log(·)τ

for τ > 0; and optimizing over τ to obtain the closest approximation to a Gaussian distribution in terms of the
Kolmogorov-Smirnov goodness of fit measure (for example). However, we do not pursue this approach here; as it
leads to marginal gains in eventual prediction performance.

3

per-session is available (See Section 4.1). For a given user, some of these features are fixed across
sessions (age, gender...) and others depend upon the session (network, device...). Let xij ∈ R

d

denote covariates corresponding to the jth session of user i. X ∈ R
N0×d denotes a matrix with

rows xij that are stacked on top of each other. The kth row of X corresponds to kth entry of
the response vector y. The columns of X were all mean-centered and standardized to have unit
ℓ2 norm.

A natural point estimate of the time spent by the ith user may be taken to be the average time
spent by the user in past sessions – however, we see that this does not lead to good predictions
due to the high variance associated with users with few sessions. This behavior is not surprising
and occurs even in the simple Gaussian sequence model as explained in Section 3.1.

3.1 Review of Bayes, Empirical Bayes and MAP

This section provides a brief review of Bayes, Empirical Bayes (EB) and Maximum A posteriori
(MAP) estimation in the context of the Gaussian sequence model [6]. The exposition in this
section lays the foundation for generalizations to more flexible structural models that we present
subsequently.

The Bayes Estimator: We consider a latent Gaussian vector µn×1 = (µ1, . . . , µn) where,

µi
iid
∼ N (0, A2); that gives rise to an observable Gaussian vector z = (z1, . . . , zn) such that

zi|µi ∼ N (µi, 1) for all i. Note that the posterior distribution of µ|z is given by a n-dimensional
multivariate Gaussian with mean B2z and covariance B2I , i.e., µ|z ∼ Nn(B

2z, B2I) where,

B2 = A2

1+A2 . Recall that the Bayes estimator is the mean of the posterior µ|z and given by:

µ̂Bayes = E(µ|z) =
(

1− 1/(1 +A2)
)

z. (1)

We remind the reader that the Bayes estimator shrinks each observation towards the mean 0 of the
prior distribution – this is to be contrasted with the usual maximum likelihood (ML) estimator,
µ̂ML = z that does not shrink µi’s. The Bayes estimator has smaller risk than the ML estimator
(Theorem 1).

Empirical Bayes (EB) estimator: The Bayes estimator depends upon the unknown hyper-
parameter A2; which needs to be estimated from data. The “Empirical Bayes" (EB) framework [6]
achieves this goal by using a data-driven plug-in estimator for A2 in (1) – this leads to an EB
estimator for µ.

The basic EB framework obtains an unbiased estimator for A2 based on the marginal dis-
tribution of z∼Nn

(

0,
(

1 +A2
)

I
)

. Using standard properties of Gamma and inverse-Gamma
distributions, it follows that (n − 2)/S (where, S =

∑n
i=1 z

2
i) is an unbiased estimator of 1

A2+1
.

This leads to an EB estimate µ̂EB =
(

1− n−2
S

)

z, which has smaller risk (Theorem 1) than the
ML estimator.

Theorem 1 [6] For n ≥ 3, the EB estimator µ̂EB has smaller risk (defined as R(µ̂) := E(‖µ −
µ̂‖22)) than the ML estimator µ̂ML, i.e., R(µ̂EB) < R(µ̂ML) for any µ. The risks of the EB and

Bayes estimators are comparable, with a relative ratio: R(µ̂EB)−R(µ̂Bayes)

R(µ̂Bayes)
= 2

nA2 .

We make the following remarks: (i) Theorem 1 states that the price to pay for not knowing A is
rather small, and as n becomes large the Bayes and EB estimators are similar. (ii) Instead of taking

4

an unbiased estimator for 1/(A2+1) as above, one can also take a consistent estimator which might
be easier to obtain for more general models (see Section 3.2). For more general models, a good
plug-in estimate for A may be obtained based on validation tuning. The framework above provides
important guidance regarding a range of good choices of A thereby reducing the computational
cost associated with the search for tuning parameters.

MAP estimation: As an alternative to the Bayes/EB estimator, we can also consider the MAP
estimator, a mode of the posterior likelihood µ|z. Here the MAP estimate (µ̂MAP) coincides with
the Bayes estimator. The MAP and Bayes estimators are not the same in general. For flexible
priors/models, computing Bayes estimators can become computationally challenging and one may
need to resort to (intractable) high dimensional MCMC computations. In these situations (see
Section 3.3), the MAP estimator may be easier to compute from a practical viewpoint. For all
models used in this paper, we observe that MAP computation can be tractably performed via
convex optimization.

3.2 Model 1: Modeling user effects

We present a hierarchical shrinkage framework for predicting user-specific session lengths, gener-
alizing the framework in Section 3.1.

Suppose that the log-session lengths of the ith user are normally distributed with mean µi; and
these latent variables {µi}

N
1 are generated from a centered Gaussian distribution. The (random)

µi is the ith user effect. This leads to the following hierarchical model:

yij|µi
iid
∼ N

(

µi, σ
2
1

)

, i ∈ [N], j ∈ [ni]; µi
iid
∼ N (0, σ20) (2)

generalizing the model in Section 3.1 to the case with multiple replications per user. The posterior
distribution is given by:

µi|yi ∼ N

(

ȳi
1 + λ/ni

,
σ21

λ+ ni

)

∀i,

where, λ = σ21/σ
2
0 and ȳi =

∑ni

j=1 yij/ni is the mean of the vector yi. The Bayes estimator

of µ is given by the posterior mean µ̂Bayes
i = ȳi

1+λ/ni
. Here, the MAP estimator of µ coincides

with the Bayes estimator as well. We note that the Bayes/MAP estimators in this example bear
similarities with the model in Section 3.1 – we shrink the observed mean of each user towards
the global mean of the prior distribution: this lowers the variance of the estimator at the cost of
(marginally) increasing the bias. The amount of shrinkage depends upon the number of sessions
of the ith user via the factor 1 + λ/ni. In particular, the shrinkage effect will be larger for users
with a small number of sessions.

Estimating the hyper-parameters: The estimators above depend upon hyper-parameters
σ0, σ1 via λ = σ21/σ

2
0 , which is unknown and needs to be estimated from data. In the spirit of an

EB estimator we obtain a plug-in estimator for λ. To this end we use the marginal distribution of
yi, which follows Nni

(0,Σni
) where, Σni

has diagonal entries equal to σ20 + σ21 and off-diagonal
entries equal to σ20. Consequently, yiy

T
i is an unbiased estimator for the covariance matrix Σni

.
In particular, if Ti = ‖yi‖

2
2 then the estimators

σ̂20(i) =
(niȳi)

2 − Ti
ni(ni − 1)

and σ̂20(i) + σ̂21(i) =
Ti
ni

(3)

5

are unbiased estimators of σ20 and σ20 + σ21 (respectively). To see this, note that σ̂20(i) is obtained
by taking the average of all the ni(ni − 1) off-diagonal entries of the matrix yiy

T
i . Similarly,

σ̂20(i)+ σ̂
2
1(i) corresponds to the average of the diagonal entries. Estimators in (3) are based solely

on observations from the ith user; and can have high variance if ni is small (which is the case
for less heavy users). Hence, we aggregate the estimators across all N users to obtain improved
estimators of σ20, σ

2
1 given by:

σ̂20 = 1
N

N
∑

i=1

σ̂20(i) =
1
N

N
∑

i=1

(1T
ni

yi)
2−Ti

ni(ni−1)

σ̂21 = 1
N

N
∑

i=1

σ̂21(i) =
1
N

N
∑

i=1

Ti

ni
− σ̂20 .

(4)

Using laws of large numbers, one can verify that σ̂20 (and σ̂21) are consistent estimators for σ20 (and
σ21). Interestingly, this holds under an asymptotic regime where, N → ∞ but mini ni remains
bounded – this regime is relevant for our problem since there are many users with few/moderate
number of sessions. We emphasize that even if N is large but the ni’s are small, shrinkage plays
an important role and leads to estimators with smaller risk than the usual maximum likelihood
estimator µML

i = ȳi for i ∈ [N]. The plug-in estimators suggested above lead to consistent estima-
tors for the Bayes and EB estimators. This framework provides guidance regarding the choice of
the tuning parameters in practice (and reduces the search-space associated with hyperparameter
tuning).

3.3 Model 2: Modeling with covariates

We describe a generalization of Model 1 that incorporates user and device-specific covariates (See
Section 4.1 for details). Our hierarchical model is now given by:

yij|β, µi
iid
∼ N

(

xT
ijβ + µi, σ

2
1

)

, i ∈ [N], j ∈ [ni]

where, β ∼ Nd(0, σ
2
2I), µi

iid
∼ N (0, σ20), i ∈ [N].

(5)

The above represents a generative model with latent variables (µ,β) – where, β ∈ R
d denotes a

vector of regression coefficients corresponding to the covariates X; and µi explains the residual
user-specific effect of user i. Both the latent variables are normally distributed with mean zero;
and given these parameters, yij’s are normally distributed with mean xT

ijβ + µi. This model is
more structured and also more flexible than Model 1 in that the ith user effect has two components:
a global regression-based response xT

ijβ (this depends upon both the user and the session); and a
residual component µi. We now derive the EB and MAP estimators.

Let us define µ̃ = σ2

σ0
µ and the latent vector γ = (β, µ̃). Model (5) can be reformulated as:

yij|γ
iid
∼ N

(

x̃T
ijγ, σ

2
1

)

,∀i, j; γ ∼ NN+d

(

0, σ22I
)

,

where, x̃ij ∈ R
d+N is such that its first d entries correspond to xij, its (d + i)th entry is σ0/σ2;

and all remaining entries are 0. If X̃N0×d+N be the matrix obtained by row concatenation of the
x̃ij’s; then the posterior distribution of γ|y is given by

γ|y ∼ NN+d

(

H−1X̃
T
y, σ22H

−1
)

,

6

where, the matrix H = X̃
T
X̃ + αI and the regularization parameter α = σ21/σ

2
2 . The Bayes

estimate of γ is given as:

γ̂Bayes = E(γ|y) =
(

X̃
T
X̃ + αId+N

)−1
X̃

T
y ∈ R

d+N .

β̂
Bayes

and µ̂Bayes can be derived from the components of γ̂Bayes =
(

β̂
Bayes

, σ2

σ0
µ̂Bayes

)

. In

this model, the MAP estimator coincides with the Bayes estimator, and can be computed as

(β̂
MAP

, µ̂MAP) ∈ argminL2(β,µ), where, L2(β,µ) is the convex function:

L2(β,µ) :=

N
∑

i=1

ni
∑

j=1

(yij − xij
Tβ − µi)

2 + λµ2i

+ α‖β‖22, (6)

and λ = σ21/σ
2
0 , α = σ21/σ

2
2 are hyper-parameters. In Section 3.4, we propose Algorithm 1 to

minimize Problem (6).
An empirical Bayes estimator of (β,µ) can be computed by using data-driven estimators for

the hyper-parameters. We can obtain consistent estimators of the hyper-parameters following
the derivation in Section 3.2. Since this derivation 3 is quite tedious, we do not report it here.
In practice, we recommend tuning (λ, α) on a validation set (where, λ is taken to be in the
neighborhood of the values suggested by Section 3.2 pertaining to Model 1). As we discuss in
Section 3.5, this does not add significantly to the overall computational cost, as our algorithm
effectively uses warm-start continuation [8] across different tuning parameter choices.

We now move beyond the Gaussian prior setup considered so far and consider a Laplace prior on
β. In this case, and the models we consider subsequently, Bayes estimators are difficult to compute
due to high-dimensional integration that require MCMC computations. With computational
tractability in mind, we will resort to MAP estimation for these models.

Laplace prior on β: Motivated by ℓ1 regularization techniques [19] popularly used in sparse
modeling, we propose a Laplace prior on β – the corresponding MAP estimators lead to sparse, in-
terpretable models [8, 19]. Here, computing the Bayes estimator becomes challenging and requires
MCMC computation. However, the MAP estimator is particularly appealing from a statistical

and computational viewpoint; and given by
(

β̂
MAP

, µ̂MAP
)

∈ argminL1(β,µ), where,

L1(β,µ) :=

N
∑

i=1

ni
∑

j=1

(yij − xij
Tβ − µi)

2 + λµ2i

+ α‖β‖1 (7)

is a convex function with hyper-parameters λ, α. The tuning parameters are chosen based on a
validation set. Section 3.4 presents an algorithmic framework based on first order convex opti-
mization methods [16, 21] for optimizing Problem (7) – our proposed algorithm leads to significant
computational gains compared to off-the-shelf implementations.

3Note that for Model (5) the marginal distribution of y is a multivariate Gaussian with mean zero and covariance
matrix Σ, which is a function of {σi}

2

0 and XXT . Following Section 3.2, we have E(yyT) = Σ. We can then
derive consistent estimators of {σi}

2

0 based on functionals of yyT and entries of XXT .

7

3.3.1 Nonparametric modeling with covariates

The framework presented above is quite modular–it allows for flexible generalizations, allowing a
practitioner to experiment with several modeling ramifications, and understand their incremental
value (prediction accuracy vis-a-vis computation time) in the context of the particular applica-
tion/dataset.

Recall that the basic model put forth by Model 2 is yij|θij
iid
∼ N

(

θij, σ
2
1

)

where, θij = xT
ijβ+µi.

We propose to generalize this linear ‘link’ by incorporating flexible nonparametric models for the
covariates, as follows:

yij|θij
iid
∼ N

(

θij , σ
2
1

)

, and θij = f(xij) + µi, (8)

where, f(·) is a flexible nonparametric function of the covariates. For example, we can train f
via Gradient Boosting Trees (GBT) [8] as our non-parametric model4. Trees introduce nonlin-
earity and higher order interactions among features and can fit complex models. By adjusting
tuning parameters like learning rate, maximal tree-depth, number of boosting iterations, etc,
they control the bias-variance trade-off and hence the generalization ability of a model. Given
a continuous response zn×1 and covariates Un×d; GBT creates an additive function of the form
f(U) =

∑

k ηhk(U) where, hk(·)’s are trees of a certain depth and η is the learning rate – the com-
ponents {hk} are learned incrementally via steepest descent on the least squares loss ‖z− f(U)‖22
with possible early stopping. This imparts regularization and improves prediction accuracy.

Summarizing the general framework: In summary, our framework assumes that we have
access to an oracle that solves the following optimization problem

f̂ ∈ argminf
{

‖z − f(U)‖22 +Ω(f)
}

, (9)

with a regularizer Ω(·) that restricts the family f . Problem (9) encompasses the different models
that we have discussed thus far: e.g., model (7) (here, f(U) = Uβ and Ω(β) = α‖β‖1), model (6)
(here, f(U) = Uβ and Ω(β) = α‖β‖22); and GBT.

For flexible nonparametric models, a MAP estimator can be obtained by minimizing the
negative log-likelihood of the posterior distribution jointly w.r.t µ and f . This entails minimizing
the negative log-likelihood of the posterior distribution – this is given by the function L(f,µ) (up
to constants) as follows:

L(f,µ) :=
N
∑

i=1

ni
∑

j=1

(yij − f (xij)− µi)
2 + λµ2i

+Ω(f), (10)

where, λ = σ21/σ
2
0 . Section 3.4 presents an algorithmic framework for minimizing (10) to obtain

estimates f̂ , µ̂.
We note that for the class of the models in Section 3.3.1, it is not clear how to tractably

construct and compute Bayes/EB estimators–we thus focus on MAP estimation; and note that
the associated tasks can be cast as tractable convex optimization problems.

3.3.2 Some Special Cases

As we have noted before, an important contribution of this paper is to propose a general modeling
framework – so that a practitioner can glean insights from data analyzing the incremental gains

4We also experimented with classical Classification and Regression trees as well as random forests, but the best
predictive models were obtained via GBT.

8

available from different modeling components. To this end, we note that if all the residual user
effects are set to zero (i.e, µi = 0 for all i), then we can use covariates alone to model the user
effects. In the case of model (6) with µ = 0 this is referred to as Ridge in Section 4.3. Furthermore,
if we learn f(·) via boosting (with µ = 0) then we recover the model proposed in [20] (denoted
as SIGIR2017 in Section 4) as a special case. Predictive performances of these models are presented
in Section 4.

3.3.3 Robustifying against outliers

The models described above assume a normal distribution (see (8)) — in reality, to be more
resistant to outliers in the data it is useful to relax this assumption to account for heavier tails [9]
in the error distribution. To this end, with computational tractability in mind, we propose a
scheme which is a simple and elegant modification to our framework, by assuming a stylized
decomposition of the link θij = f(xij) + µi in (8). To this end, we write

θij = f(xij) + µi + sij (11)

and place an additional prior on sij’s – they are all drawn from πδ, where, πδ(u) = δ exp(−2δ|u|)
is the Laplace density. The MAP estimator for this joint model requires minimizing the following
convex function

L(f,µ, s) :=
N
∑

i=1

ni
∑

j=1

(yij − f (xij)− µi − sij)
2 + λµ2i

+Ω(f) + 2δ
∑

ij
|sij |.

(12)

w.r.t. the variables f,µ, s. It is not immediately clear why an estimator available from Prob-
lem (12) has robustness properties. To this end, Theorem 2 establishes a crisp characterization
of Problem (12) in terms of minimizing a Huber loss [9] on the residuals yij − f (xij)− µi, where,
the Huber-loss is given by

Hδ(a) =

{

a2 if |a| ≤ δ

δ(2|a| − δ) otherwise.

The Huber loss is quadratic for small values of a (controlled by the parameter δ) and linear
for larger values – thereby making it more resistant to outliers in the y space. The Huber loss
remains relatively agnostic to the size of the residuals, therefore offering a robust approach to
regression [9]. If δ is small, Hδ(a) resembles the least absolute deviation loss function—this makes
it more suitable for the MAE metric used for evaluation in Section 4.

Theorem 2 Minimizing Problem (12) w.r.t (f,µ, s) is equivalent to minimizing Lδ(f,µ) (below)
w.r.t. (f,µ):

Lδ(f,µ) :=
N
∑

i=1

ni
∑

j=1

Hδ(yij − f (xij)− µi) + λµ2i

+Ω(f) (13)

Proof 1 We use a variational representation of the Huber loss

Hδ(a) = min
s∈R

ψ(s, a) :=
{

(s − a)2 + 2δ|s|
}

. (14)

9

To derive identity (14), we compute ŝ a minimizer of s 7→ ψ(s, a) in (14) via soft-thresholding:
ŝ = sign(a)(|a| − δ)+ (where, (·)+ := max{·, 0}). We plug-in the value of ŝ into ψ(s, a) and upon
some simplification obtain (14). The proof of the theorem follows by applying (14) to Problem (12),
where, we minimize L(f,µ, s) wrt s to obtain criterion (13) involving f,µ (and not s).

The above development: decomposition (11) and hence criterion (12) nicely falls within the general
hierarchical framework discussed in this paper. In fact all models described before this section
can be cast as special instances of Problem (12) by setting δ = ∞ and stylized choices of f(·),Ω(·).
Our numerical experiments suggest that a finite nonzero choice of δ leads to the best out-of-
sample prediction performance, thereby suggesting the importance of doing robust modeling in
this application. In addition, our model is nicely amenable to the computational methods discussed
in Section 3.4. This further underlines the flexibility of our overall framework – even if our basic
assumption relies on Gaussian errors at the core, simple hierarchical modeling decompositions of
the latent variables make it flexible enough to accommodate adversarial corruptions in the data.

3.4 Computation via Convex Optimization

All the estimation problems alluded to above can be cast as convex optimization problems; for
which we resort to modern computational methods [16, 21]. To compute the estimators mentioned
in Section 3.3, we need to minimize Problem (12). To this end, we use a block-coordinate descent
scheme [21]: at iteration t, we minimize (12) w.r.t. f , followed by a minimization w.r.t the latent
vectors µ, s. The algorithm is summarized below.

Algorithm 1: Block-Coordinate-Descent for MAP estimation
Input: X,y, tuning parameters, tolerance ǫ; initialization f0,µ0, s0.
Output: An estimate (f̂ , µ̂, ŝ), minimizing Problem (10)

(1) Repeat Steps 2 to 5 until |Lt − Lt−1|/Lt−1 > ǫ for t ≥ 1.

(2) Let f̂ (t) ∈ argminf L
(

f, µ̂(t−1), ŝ(t−1)
)

be a solution of the optimization problem (10) with

µ, s held fixed at µ̂(t−1), ŝ(t−1) respectively – this is equivalent to solving (9) with z = z(t) where

z
(t)
ij = yij − µ̂

(t−1)
i − ŝ

(t−1)
ij ∀i, j.

(3) Update the residuals r
(t)
ij = yij − f̂ (t)(xij), ∀i, j. Estimate user-specific effects via: µ̂(t) ∈

argminµ L
(

f̂ (t),µ, ŝ(t−1)
)

(with f, s respectively set to f̂ (t), ŝ(t−1)). This is a closed-form update:

µ̂
(t)
i = 1

ni+λ

∑ni

j=1

(

r
(t)
ij − s

(t−1)
ij

)

, ∀i.

(4) Update the vector: ŝ(t) ∈ argmins L
(

f̂ (t), µ̂(t), s
)

, corresponding to the sparse corruptions.

The closed form update is ŝ
(t)
ij = sign(η

(t)
ij)(|η

(t)
ij | − δ)+; where, η

(t)
ij = r

(t)
ij − µ

(t)
i ∀i, j.

(5) Set the value of Lt+1 = L
(

f̂ (t), µ̂(t), ŝ(t)
)

.

Algorithm 1 applies to a fixed choice of the hyper-parameters. We need to consider a sequence
of hyper-parameters to obtain the best model based on the minimization of prediction error (see
Section 4) on a validation set. In the case of models (6) and (7) estimates of β can be computed
over a grid of parameters by using warm-starts across different tuning parameters–to this end,
the EB estimators provide a good ballpark estimate of relevant tuning parameters. Section 3.5
describes specialized algorithms that are found to speed up the computations pertaining to mod-
els (6) and (7) when compared to off-the-shelf implementations of these algorithms. We note that

10

GBT does not benefit from warm-start continuation across hyper-parameters. For Algorithm 1,
we use a stopping criterion of ǫ = 0.01 (Step 1) in the experiments.

3.5 Computational Considerations

We consider certain algorithmic enhancements for Algorithm 1 that lead to important savings
when the number of sessions become large (of the order of millions). We focus on the critical
Step 2 of Algorithm 1 when f(U) = Uβ and Ω(β) corresponds to the ridge or ℓ1 regularization –
this leads to a problem of the form:

minβ

{

‖z(t) −Xβ‖22 +Ω(β)
}

. (15)

where Ω(β) ∈
{

α‖β‖22, α‖β‖1
}

. Indeed, in these instances, we found out that the default im-
plementation of Python’s scikit-learn package [17] was prohibitively slow for our purpose, and
hence careful attention to algorithmic details seemed necessary (details below). We derived new al-
gorithms for (15) with an eye towards caching numerical linear algebraic factorizations, exploiting
warm-starts, etc; as we describe below.

3.5.1 ℓ2 regression subproblem

When Ω(β) = α‖β‖22, the ridge estimator has an analytical expression:

β̂
R
=

(

XTX + αId

)−1
XTz(t), (16)

which needs to be computed for several tuning parameters, and iterations. To reduce the computa-

tional cost, we obtain an equivalent expression for β̂
R

via the eigendecomposion of XTX ∈ R
d×d

given by, XTX = V ΓV T , with Γ being a diagonal matrix with eigenvalues {γi}
d
1 – this has a cost

of O(d3) in addition to the O(N0d
2) cost of computing XTX (and they can both be done once,

off-line). This leads to β̂
R
= V ΓXTz(t) which can be computed with cost O(N0d + d2). In our

experiments (Section 4) d is small, which leads to a cost that is linear in N0. The predicted values

Xβ̂
R

can be computed with an additional cost of O(N0d). Note that computing estimator (16)
for different values of the tuning parameter α does not require additional eigendecompositions –
this is critical in making the overall algorithm efficient, especially when training across multiple
values of the hyper-parameter.

3.5.2 ℓ1 regression subproblem

When Ω(β) = α‖β‖1, Problem (15) becomes equivalent to a Lasso estimator – we emphasize
that scikit-learn’s implementation of Lasso became rather expensive for our purposes since it
could not effectively exploit warm-starts and cached matrix computations. This motivated us to
consider our own implementation, based on proximal gradient descent [2, 16]. To this end, since
N0 ≫ d, we precomputed5 Q := XTX and considered a d-dimensional quadratic optimization
problem of the form:

minβ F (β) := βTQβ − 2〈XTzt,β〉+ α‖β‖1, (17)

5Note that this computation is also required for the ridge regression model.

11

where, the smooth part of F (β) has C-Lipschitz-continuous gradient – that is, it satisfies ‖∇F (γγγ)−
∇F (β)‖2 ≤ C‖γ − β‖2,∀γ,β for C = 2maxi γi (recall, γi’s are eigenvalues of Q). A proximal
gradient algorithm for (17) performs the following updates:

βk+1 ∈ argminβ

{

1

2

∥

∥

∥

∥

β −

(

βk −
1

L
∇F (βk)

)∥

∥

∥

∥

2

2

+
α

L
‖β‖1

}

(18)

till convergence. Note that βk+1 can be computed via soft-thresholding, i.e., βk+1 = Sα/L(βk −
1
L∇F (βk)) where, for a vector a ∈ R

d the ith coordinate of the soft-thresholding operator Sτ (a)
is given by sgn(ai)max{|ai| − τ, 0}. Note that the objective function F (β) is strongly convex6;
and hence sequence βk converges to an κ-suboptimal solution to Problem (17) in O(log(1κ)) iter-
ations [16] – i.e., it enjoys a linear convergence rate. Every iteration of (18) has a cost of O(d2)
(arising from the computation of ∇F (β) and the soft-thresholding operation). In addition, com-
puting XTz(t) costs O(N0d) (this is computed once at Step 2 of Algorithm 1). Problem (17) needs
to be computed for several tuning parameters and iterations (of Algorithm 1) – this does not add
much to the overall run-time as the proximal gradient algorithm can be effectively warm-started
– this is found to speed-up convergence in practice.

3.5.3 GBT subproblem

When the optimization in Step 2 involves performing GBT, the runtimes increase substantially
(See Section 4.5). Unlike the models in Sections 3.5.1,3.5.2; GBT is computationally intensive and
needs to be done for every iteration of Algorithm 1. Unlike the optimization based algorithms
for ℓ1/ℓ2 regression as described above, GBT does not naturally accommodate warm-starts across
iterations, and/or tuning parameters.

4 Experiments

Here, we evaluate the effectiveness of our prediction model with respect to several baselines and
state of the art session length prediction solutions. We proceed by describing our datasets, our
evaluation framework, the comparisons, and then present the results.

4.1 Datasets

We used two different real world datasets of users listening to music, namely, PMusic and lastfm.
PMusic is a sample of user interaction data from a major music streaming service in United
States, and lastfm is a publicly available dataset from last.fm [4]. We defined the user sessions as
periods of continuous listening, interrupted if the user stop or pause the music for more than 30
minutes [20]. For PMusic we gathered data from a small subset of PMusic users for a period of 3
months (February-May 2016) resulting in 3, 976, 561 sessions 7. lastfm public dataset was gathered
between 2004 to 2009 and it contains 911, 770 sessions for 1, 000 different users. Table 1 reports
some statistics about the user session length in the two datasets. For the log values, we first take
the log transform of the raw data, as mentioned in the modeling part, and then normalize. An
interesting finding is that mean and median are quite different for the raw data in both datasets.

6Note that F (β) − ρ/2‖β‖22 is convex for ρ = 2mini γi, i.e., the minimum eigenvalue of Q – this means that
F (β) is strongly convex with strong convexity parameter ρ.

7Due to confidentiality we can not report the number of users for this dataset.

12

Table 1: Summary statistics of normalized user session lengths in the two datasets. The upper half are
on the normalized raw session lengths. The bottom half are on the normalized log session lengths.

Stats PMusic lastfm

25th quantile(raw) 0.008 0.009
median(raw) 0.021 0.029
mean(raw) 0.044 0.060
75th quantile(raw) 0.049 0.069

25th quantile(log) 0.57 0.59
median(log) 0.66 0.69
mean(log) 0.65 0.62
75th quantile(log) 0.74 0.76

Table 2: Example of user-based and contextual features used in the models.

Feature Description

gender gender of the user
age age of the user
subscription_status whether the user is ad-supported

device device used for the session
network type of network used for the session
absence_time time elapsed since the previous session
previous_duration duration of the previous session
avg_user_duration average user session length (training)
session_time session started in morning or afternoon

In fact, as reported in [20], Weibull distributions give a better fit to user session lengths, while
after a log-transformation, the data can be reasonably modeled via normal distributions, which
is what our modeling framework requires for tractable inference.

Feature Engineering. For all the sessions in PMusic we create two kinds of features, namely,
user-based and contextual as in [20]. Table 4 reports some of the co-variates used in our models.
As user-based features we consider "gender (the gender of the user), age (the age of the user),
subscription_status (whether the user is ad-supported)", these features are fixed for a given user.
As contextual features we consider "device (the device used for the session), network (the type
of network used for the session), absence_time (time elapsed since the user’s previous session),
previous_duration (the duration of the user’s previous session)".

We refine this set of features to include additional contextual features to [20], this is mainly
to lower the variance of the past sessions, and introduce non-linearity. We consider as additional
features "avg_user_duration(average user session length in training set), log_avg_user_duration
(logarithm of avg_user_duration), log_absence_time (logarithm of absence_time), log_previous_duration
(logarithm of previous_duration), session_time (whether the user session started in morning or
afternoon)". For lastfm dataset the "age, subscription_status, device, network are missed.

13

4.2 Evaluation

We sort our dataset by chronological order, use the first 80% for the training set, 10% for the
validation set, and the rest 10% for the test set. Additionally we require each user in the validation
or test set to appear at least once in the training set. The final datasets for PMusic and lastfm have
respectively in total 3, 949, 137, and 713, 089 sessions. For the models that need parameter tuning,
we first train the models on the training set for each set of the parameters. Then we use the
validation set to pick the best set of parameters. Finally, we use that set of parameters for
training on the combined set of training and validation, and predict on the test set. For the
evaluation metric of our session length prediction model, we use Normalized Mean Absolute Error
measured in seconds, averaged over all the test sessions and normalized by the Baseline model
which by our definition has MAE = 1. MAE is a good metric due the possibility of important
errors resulting from very large session length. More formally, let |Stest| be the number of sessions
in the test set and ỹij be the time spent by user i on his jth session, where j is a test session of
user i, and ỹpij be the predicted value then:

MAE = 1
|Stest|

∑

(i,j)∈Stest
|ỹpij − ỹij|

4.3 Comparisons

We compare our model with several baselines and state of the art methods. In particular we have
considered the following:

Baseline. The baseline model is the per-user mean session length, i.e., we compute for each user
the mean session length in the training set and use the value as a prediction value for all
the test sessions of the same user.

XGBoost. This corresponds to a Gradient Boosting Model [5] run on basic features to predict
session-length. We do not consider the log-transformation.

SIGIR2017. This is method in [20] that is using a modified version of boosting algorithm. Our
tuned models have a number of trees in {10, 15, 50, 100}, with depth {6, 10} and use a
learning rate in {0.1, 0.05}.

Baseline can be interpreted as a natural baseline and SIGIR2017 is the state of the art in this
particular application. Among the models proposed in this paper (cf Section 3), we consider the
following in the experiments:

Model1. This is the model described in Section 3.2, where we don’t use any covariates. All the
parameters of this model were derived using parameter estimation described in 3.2.

Ridge. This is the Ridge estimator defined in Section 3.3.2, i.e., we perform a ridge regression
only on covariates. We take 50 values of the tuning parameter (as per Section 3.3).

Model2-L2. This is the Bayes (which is also the MAP) estimator for the model presented in
Section 3.3 with an ℓ22 regularization on β. We run Algorithm 1 (Section 3.5.1) on a 2D grid
of tuning parameters (α, λ) with 500 different values (Section 3.3).

Model2-L1. This is MAP estimator model presented in Section 3.3 with the use of an ℓ1 regular-
ization on β. We use Algorithm 1 (Section 3.5.2) for computation, and take 500 values of
the 2D grid of tuning parameters (Section 3.3).

14

Model2-GBT. This model uses Gradient Boosting Trees (GBT) to compute the MAP estima-
tor (10) via Algorithm 1 (Section 3.5.3). We use the same sequence of tuning parameters as
in SIGIR2017 and a sequence of 10 λ values in [1, 10].

Model3-L2. This is the extension of Model2-L2 to criterion (12) (or equivalently (13) with the
Huber loss)8.

Model3-GBT. This is the extension of Model2-GBT to criterion (12) (or equivalently (13) with
the Huber loss).

Similar to the Baseline model, Model1 does not consider covariates. Model1 however, performs
shrinkage on the user-specific effects, and thus any gain in predictive accuracy (as evidenced in
Table 3) is due to shrinkage. Ridge considers only covariates and does not include the residual
user-specific effects. The rest of the models use features regarding the context and user, and
additional user-specific effects. All versions of Model3 allow us to build models that are less sensitive
to outliers, hence any performance boost in MAE over its Model2-counterpart can be attributed to
robustness. As described in Section 5 we do not have censored data, and we are interested in making
point predictions on user session-lengths, therefore survival analysis models are not suitable for our
scenario — hence they are not included in our comparisons.

4.4 Effectiveness

We report the results regarding the effectiveness of our model. Table 3 reports the results of the
Normalized MAE on all the models in Section 4.3. By borrowing strength across users, Model1 improves
over the Baseline even without using any covariate-information. SIGIR2017, the model presented in
[20] is benefiting from the usage of the covariates, and it is clearly better than Model1. XGBoost which
relies (solely on) covariates, has poor performance on both the datasets. Model2-GBT by combining
hierarchical shrinkage with flexible modeling of covariates, reaches a significantly lower MAE than
SIGIR2017. This observation shows the importance of the user effect in our hierarchical modeling
framework. Model2-L2 is performing quite well in all the datasets and only considers 2 hyper-parameters.
We did not observe any gain in MAE by using an ℓ1 penalization, though the models were sparse (in β)
when compared to ℓ2 regularization. Model3-GBT has the lowest MAE for all the datasets — thereby
suggesting the usefulness of using a robust model for training purposes. For the PMusic dataset,
the robustification strategy leads to good improvements: Model3-L2 has MAE 0.891 whereas, its
non-robust counterpart Model2-L2 has MAE 0.911. Further improvements are possible by using
nonparametric modeling of the covariates. Overall, our Model3-GBT seems to be the best in terms of
prediction in both datasets. Model2-L1 or Model2-L2 are close to SIGIR2017 for PMusic and better
for lastfm and as we see in Table 6 they are actually much faster in training time.

Feature Importance. By centering and normalizing the columns of the matrix of covariates X, the
absolute values of the coefficients of β̂ for Ridge or Model3-L2 suggest the relative importances of
the features. Table 4 reports the highest absolute values of the coefficients for the Ridge estimator
and for Model3-L2 estimator for PMusic dataset. Device and time-related features appear as the most
relevant features. The two most important features for Ridge correspond to logarithm of the average
user session length in training set and the absence time since last session. In addition, considering user
effect on Model3-L2 lowers the magnitude of time-related features, even though they still appear in
the top ones.

8For Model3-L2 and Model3-GBT, we take 7 values of δ ∈ [0.1, 10].

15

Table 3: Normalized MAE on test set for our model compared to the baselines and state of the art.

Models MAE PMusic MAE lastfm

Baseline- no covariates 1.0 1.0
XGBoost 1.005 0.862
SIGIR2017 0.910 0.826
Model1- no covariates 0.936 0.830
Ridge 0.921 0.828
Model2-L1 0.911 0.824
Model2-L2 0.911 0.824
Model3-L2 0.891 0.822
Model2-GBT 0.878 0.812
Model3-GBT 0.871 0.811

Table 4: Feature importance for PMusic dataset considering highest absolute value for Ridge and Model3-

L2 (we centered and normalized all the features first).

Ridge log_avg_user_duration 0.516
absence_time 0.430
avg_user_duration 0.064
device=smartphone 0.045
device=Web 0.042

Model3-L2 device=smartphone 0.097
device=Web 0.088
avg_user_duration 0.085
absence_time 0.069
log_avg_user_duration 0.068

Performance Breakdown by Sessions per User. We perform a break down of users into three
different types by quantiles of number of sessions per user in the training set. Table 5 reports the
normalized MAE for these three groups. The results show a monotonic decrease in terms of gain
in performance (with respect to the Baseline) for all the models with number of sessions per user.
This serves as a validation of an important message presented through our modeling framework –
shrinkage is more critical for less active users when compared to the Baseline. In fact, even for the
more frequent users, we observe that shrinkage helps when compared to the Baseline (but the gains
are less pronounced). Both Model2-GBT/Model3-GBT outperform the state of art SIGIR2017 for all
three cutoffs chosen. The gains obtained by Model3-GBT over Model2-GBT for PMusic dataset can
be primarily attributed to the robustness to outliers. Model2-GBT/Model3-GBT perform better than
SIGIR2017 by modeling the user-specific effects – this gain seems to be most prominent for heavier
users for both PMusic and lastfm datasets.

16

Table 5: Normalized MAE, restricted to people in the first decile, the first two deciles or the last 8th
deciles of the training set. (Hierarchical) shrinkage has a more prominent effect over the Baseline model
(with MAE=1) for users with fewer sessions.

Model < q10 < q20 > q20

PMusic

Model1 0.860 0.876 0.938
Ridge 0.790 0.809 0.925
SIGIR2017 0.780 0.806 0.904
Model2-GBT 0.778 0.804 0.881
Model3-GBT 0.767 0.792 0.875

lastfm

Model1 0.610 0.798 0.834
Ridge 0.606 0.789 0.833
SIGIR2017 0.622 0.779 0.829
Model2-GBT 0.606 0.775 0.817
Model3-GBT 0.609 0.775 0.816

4.5 Efficiency

We further investigate the efficiency of our model by looking at the training time and time of prediction
for our best models and state of art solution. We implemented everything using python

9. We run
the experiments in a MacBook Pro with 2.7GHz Intel Core i5 with 8 GB of RAM. For each model
we fixed a set of parameters to tune. We then run each model sequentially, each time with different
fixed parameters. Table 6 reports the average running time (across the number of runs done for tuning
purposes) and the time to predict all the test instances for our best models and SIGIR2017. The most
important thing to note here is that Model3-L2 can be trained between 20 to 30 times faster than any
tree based method such as SIGIR2017, and it has an MAE that is 1% to 2% better than SIGIR2017.
This is mainly because the Model3-L2 (and Model2-L2) computations benefit from warm-starts (see
Section 3.4), so the increase in number of tuning parameters do not increase the run time as in the
case of SIGIR2017 and Model3-GBT that are based on Gradient Boosting Trees. They are also at
least 30 to 500 times faster in prediction time, and therefore they can be used for real-time prediction
with time constraints. While Model3-GBT is slow in training time, it shows better MAE performance
compared to other methods. However, we note that these models are meant for off-line training in the
context of the application herein–while it is important to have algorithms that are fast, they are not
of critical importance as in tasks where real-time learning is of foremost importance.

5 Related work

Session length is an important metric serving as a proxy for user engagement. Therefore the solutions
and evaluation are tailored to similar duration based engagement metric such as dwell-time prediction.
Dwell-time. Liu et al. in [15] presented one of the first studies on dwell-time for web search. Kim et
al. in [12] proposed a dwell-time based user satisfaction prediction model in the web search context.
Lalmas et al. in [14] proposed new way to improve ad ranking. Barbieri et al. in [1] propose to use

9Our code will be released, we are removing the link to github due to double blind process.

17

Table 6: Average training time, time of prediction for our best models and the state of the art. We report
for each model the effectiveness (in terms of MAE), training time (in seconds), and average prediction time
(in seconds), averaged across the tuning parameters. The GBT-based models have longer training and
prediction times, when compared to models that are not based on GBT.

Models MAE Train. Time Pred. Time

PMusic

SIGIR2017 0.910 731 7.70
Model2-L2 0.911 17 0.24
Model3-L2 0.891 36 0.24
Model3-GBT 0.871 1885 9.71

lastfm

SIGIR2017 0.826 22 0.53
Model2-L2 0.819 1 0.001
Model3-L2 0.819 5 0.001
Model3-GBT 0.812 66 0.64

survival forest [10] using landing page and user feature in the ad context to estimate the dwell-time
and incorporate it in the ad ranking system as a quality score. Vasiloudis et al. in [20] presented
recently a first session length prediction model in the music streaming context using survival analysis
and gradient boosting [5]. In that work, the authors show that in the case of media streaming services
the probability of a session to end evolves differently for different users. In particular 44% of the
users exhibit “negative-aging” length distributions, i.e. sessions that become less likely to end as they
grow longer. Although not directly comparable, we report that this percentage is going to 98.5% for
dwell-time on a web page after a search, i.e., after clicking on a search result the more you stay the
more you are likely to stay on the clicked page. Finally, Jing et al. in [11] presented a neural network
based model combined with survival analysis for recommendation purpose and absence time prediction
at the same time. In our work we compared against the most recent related work done by Vasiloudis
et al. [20]. It is worth mentioning that while dwell-time can benefit from survival analysis, because a
user can click on a search engine result and never turn back, in our case we don’t have censored data,
therefore our is a regression problem.
Empirical Bayes and MAP estimation: The statistical models proposed in this paper are inspired by
Empirical Bayes methods that are well-known in statistics community, dating back to [18, 7]. In theory,
when the model is true, these estimators are known to lead to estimators with better prediction accuracy
when compared to (unregularized) maximum likelihood estimators. Empirical Bayes estimators offer
an appealing trade-off between frequentist and Bayesian modeling [6] — in that expensive MCMC
computations may be avoided by a clever combination of guided hyperparameter tuning and numerical
optimization (to obtain MAP estimates for example). We also consider more flexible models wherein
MAP (maximum a posteriori) estimation becomes a pragmatic choice from a computational viewpoint.
To our knowledge, this is the first time such a methodology is used in the context of user session length
prediction.

18

6 Conclusions and future work

In this paper, we presented a new hierarchical modeling framework, inspired by core Bayesian modeling
principles to predict the amount of time people will spent in a streaming service, and in particular
listening to streaming music. We also propose modern convex optimization algorithms for enhanced
computational efficiency and tractable inference. Our family of flexible models is meant to provide
a practitioner insights regarding the incremental gains in predictive accuracy with enhanced modeling
components. We focused on predicting the amount of time a user might spend on a platform, at the
beginning of the user session.

In our experimental section, we have shown that our method is performing better than the state of
the art in this context. Furthermore, we have shown that our model is better for heavy users as well
as for users with few sessions. Due to the flexibility of our models, we can achieve lower prediction
error for users with many sessions. We can also flexibly incorporate the choice of loss functions that
are more robust to outliers in the data. Our results show that our models can lead to an improvement
of up to 4.3% in MAE on real-life data. Some of our models can be 22 to 43 times faster (with a 1 to
2% improvement in MAE) in training time; and 30 to 500 times faster in prediction time.

So far we have always investigated a scenario where the model is learned off-line, and it tries to
predict the user session length with only few static and off-line extractable features. In the future we
aim to extend our model to an on-line version. Furthermore we want to investigate the session length
prediction utility within advertising or recommender systems context.

References

[1] Nicola Barbieri, Fabrizio Silvestri, and Mounia Lalmas. 2016. Improving Post-Click User
Engagement on Native Ads via Survival Analysis. In Proceedings of the 25th Interna-
tional Conference on World Wide Web (WWW ’16). International World Wide Web
Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, 761–770.
https://doi.org/10.1145/2872427.2883092

[2] Amir Beck and Marc Teboulle. 2009. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences 2, 1 (2009), 183–202.

[3] Alexey Borisov, Ilya Markov, Maarten de Rijke, and Pavel Serdyukov. 2016. A Context-aware
Time Model for Web Search. In Proceedings of the 39th International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR ’16). ACM, New York, NY, USA,
205–214. https://doi.org/10.1145/2911451.2911504

[4] O. Celma. 2010. Music Recommendation and Discovery in the Long Tail. Springer.

[5] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting Sys-
tem. In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD ’16). ACM, New York, NY, USA, 785–794.
https://doi.org/10.1145/2939672.2939785

[6] Bradley Efron. 2012. Large-scale inference: empirical Bayes methods for estimation, testing, and
prediction. Vol. 1. Cambridge University Press.

[7] B Efron and C Morris. 1972. Limiting the risk of Bayes and empirical Bayes estimators. II. The
empirial Bayes case. J. Amer. Statist. Assoc. 67 (1972), 130–139.

19

https://doi.org/10.1145/2872427.2883092
https://doi.org/10.1145/2911451.2911504
https://doi.org/10.1145/2939672.2939785

[8] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2001. The elements of statistical learning.
Vol. 1. Springer series in statistics New York.

[9] Peter J Huber. 2011. Robust statistics. In International Encyclopedia of Statistical Science.
Springer, 1248–1251.

[10] Hemant Ishwaran, Udaya B. Kogalur, Eugene H. Blackstone, and Michael S. Lauer. 2008.
Random Survival Forests. The Annals of Applied Statistics 2, 3 (2008), 841–860.
http://www.jstor.org/stable/30245111

[11] How Jing and Alexander J. Smola. 2017. Neural Survival Recommender. In Proceedings of the
Tenth ACM International Conference on Web Search and Data Mining (WSDM ’17). ACM, New
York, NY, USA, 515–524. https://doi.org/10.1145/3018661.3018719

[12] Youngho Kim, Ahmed Hassan, Ryen W. White, and Imed Zitouni. 2014. Modeling Dwell
Time to Predict Click-level Satisfaction. In Proceedings of the 7th ACM International Confer-
ence on Web Search and Data Mining (WSDM ’14). ACM, New York, NY, USA, 193–202.
https://doi.org/10.1145/2556195.2556220

[13] Dmitry Lagun and Mounia Lalmas. 2016. Understanding User Attention and Engage-
ment in Online News Reading. In Proceedings of the Ninth ACM International Conference
on Web Search and Data Mining (WSDM ’16). ACM, New York, NY, USA, 113–122.
https://doi.org/10.1145/2835776.2835833

[14] Mounia Lalmas, Janette Lehmann, Guy Shaked, Fabrizio Silvestri, and Gabriele Tolomei. 2015.
Promoting Positive Post-Click Experience for In-Stream Yahoo Gemini Users. In Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD
’15). ACM, New York, NY, USA, 1929–1938. https://doi.org/10.1145/2783258.2788581

[15] Chao Liu, Ryen W. White, and Susan Dumais. 2010. Understanding Web Browsing Behaviors
Through Weibull Analysis of Dwell Time. In Proceedings of the 33rd International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR ’10). ACM, New York,
NY, USA, 379–386. https://doi.org/10.1145/1835449.1835513

[16] Yu Nesterov. 2013. Gradient methods for minimizing composite functions. Mathematical Pro-
gramming 140, 1 (2013), 125–161.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research 12 (2011), 2825–2830.

[18] Herbert Robbins. 1954-1955. An empirical Bayes approach to statistics. In Proceedings of the
Third Berkeley Symposium on Mathematical Statistics and Probability, Vol. I. UC Press, 157–163.

[19] Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological) (1996), 267–288.

[20] Theodore Vasiloudis, Hossein Vahabi, Ross Kravitz, and Valery Rashkov. 2017. Predicting Session
Length in Media Streaming. In Proceedings of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR ’17). ACM, New York, NY, USA,
977–980. https://doi.org/10.1145/3077136.3080695

20

http://www.jstor.org/stable/30245111
https://doi.org/10.1145/3018661.3018719
https://doi.org/10.1145/2556195.2556220
https://doi.org/10.1145/2835776.2835833
https://doi.org/10.1145/2783258.2788581
https://doi.org/10.1145/1835449.1835513
https://doi.org/10.1145/3077136.3080695

[21] Stephen J Wright. 2015. Coordinate descent algorithms. Mathematical Programming 151, 1
(2015), 3–34.

21

	1 Introduction
	2 Key idea
	3 Mathematical Framework
	3.1 Review of Bayes, Empirical Bayes and MAP
	3.2 Model 1: Modeling user effects
	3.3 Model 2: Modeling with covariates
	3.3.1 Nonparametric modeling with covariates
	3.3.2 Some Special Cases
	3.3.3 Robustifying against outliers

	3.4 Computation via Convex Optimization
	3.5 Computational Considerations
	3.5.1 2 regression subproblem
	3.5.2 1 regression subproblem
	3.5.3 GBT subproblem

	4 Experiments
	4.1 Datasets
	4.2 Evaluation
	4.3 Comparisons
	4.4 Effectiveness
	4.5 Efficiency

	5 Related work
	6 Conclusions and future work

