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Abstract

Experimental comparisons of performance represent an important aspect of research on
optimization algorithms. In this work we present a methodology for defining the required
sample sizes for designing experiments with desired statistical properties for the comparison of
two methods on a given problem class. The proposed approach allows the experimenter to define
desired levels of accuracy for estimates of mean performance differences on individual problem
instances, as well as the desired statistical power for comparing mean performances over a
problem class of interest. The method calculates the required number of problem instances,
and runs the algorithms on each test instance so that the accuracy of the estimated differences
in performance is controlled at the predefined level. Two examples illustrate the application
of the proposed method, and its ability to achieve the desired statistical properties with a
methodologically sound definition of the relevant sample sizes.

1 Introduction
Research on optimization algorithms, particularly heuristics, tends to rely heavily on experimental
results to evaluate and compare different methods, as well as to measure the impact of algorithmic
modifications. This central role of experimentation has generated an ongoing interest in the defi-
nition of adequate experimental protocols and the use of inferential procedures for comparing two
or more algorithms, either on single or multiple problem instances [2, 46, 34, 18, 37, 58, 22, 59, 9,
11, 5, 6, 30, 29, 24, 23, 16, 39, 33, 8]. Despite these improvements, however, most works dealing
with the proposal and application of statistical protocols for algorithm comparison still lack a solid
discussion on the required sample sizes – number of instances, number of repeated runs – to obtain
an experiment with predefined statistical properties. Other related themes are also rarely found in
the literature: discussions on the statistical power and accuracy of parameter estimation; on the
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observed effect sizes and their practical significance; and on the problem class(es) for which the
conclusions of a particular experiment can be extended.

Regarding sample sizes, the standard approach in most cases has been one of maximizing the
number of instances, limited only by the computational budget available [2, 30, 28, 24, 1]; and of
using “standard” values for the number of repeated runs (usually 30 or 50, with occasional recom-
mendations of using 100 or more). While the probability of detecting a difference in performance
between algorithms does indeed increase as the effective sample size grows [18, 5], this does not im-
ply that sample sizes need to be arbitrarily large for an experiment to yield high-quality conclusions,
or that a large sample size can substitute a well-designed experiment [42, 17, 7, 45].

A first point against the approach of blindly maximizing sample size is that statistical analyses
made with moderately-sized samples, or even small ones, can be as useful and convincing as ones
made with very large samples [18, 45], provided that the experimental design is adequate, the test
assumptions are valid, and the sample is representative – i.e., the test instances used represent a
typical (ideally random) sample of the problem class for which conclusions are to be drawn. While
there are works focused on small sample sizes [59], the use of large test sets is constantly reinforced
despite of computational difficulties in some cases, e.g., applied optimization based on numeric
models [48].

Second, and more critically, arbitrarily large sample sizes allow statistical procedures to detect
even minuscule differences, which may lead to the wrongful interpretation that effects of no practical
consequence are strongly significant [45, 4]. Using arbitrarily large samples increases the probabil-
ity that such small differences (in many cases due to implementation details or subtle differences
in tuning) influence the conclusions and recommendations of a given study, suggesting practical
superiority where none exists. Of course this problem can be alleviated by defining a minimally
relevant effect size (MRES) (also known as the smallest difference of practical importance) prior
to the experiment, but in practice this is rarely, if ever, found in the literature on experimental
comparison of algorithms.

Assuming that we are only interested in detecting effects that may have some practical conse-
quence – i.e., differences larger than a given MRES – it is possible to define the smallest number
of observations required to obtain predefined statistical power and accuracy, instead of arbitrarily
increasing the sample size. In the case of algorithmic comparisons, two types of sample sizes are
of particular interest: (i) the number of repetitions, i.e., repeated runs of an algorithm on a given
problem instance under different initial conditions, such as seed values for (pseudo-)random number
generators, or the initial candidate solution for the search; (ii) the number of replicates, i.e., the
amount of test instances used in the experiment.

There is no established rule on how to estimate either value in the literature on experimental
comparison of algorithms. Jain [36] discusses a simple, standard formula for determining the number
of repetitions for a desired confidence interval half-width, given the value of the sample standard
deviation for a single algorithm on a single instance. Coffin and Saltzman [18] mention the idea of
sample size calculations, but provide no further discussion on the topic. Czarn et al. [20] discusses
power and sample size in the context of the number of repeated runs, when the experiment is
intended at uncovering differences of algorithms on a single problem instance. Their work also
suggest a sequential inference procedure, iteratively increasing the sample size and re-testing until
an effect is found or a statistical power of 0.8 is reached for a given MRES, but fails to adequately
correct for the increase in type-I errors due to multiple hypothesis testing [54, 12]. Ridge [51] and
Ridge and Kudenko [6, Ch. 11] follow a similar approach, and also do not correct the significance
level for multiple hypothesis testing.
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Birattari [9, 10] correctly advocates for a greater focus on the number of instances than on
repetitions, showing that the optimal allocation of computational effort, in terms of accuracy in
the estimation of mean performance for a given problem class, is to maximize the amount of test
instances, running each algorithm a single time on each instance if needed. This approach, however,
yields very little information on the specific behavior of each algorithm on each instance, precluding
further analysis and investigation of specific aspects of algorithmic performance. It also does not
take into account the questions of desired statistical power, sample size calculation, or the definition
of a MRES.

Bartz-Beielstein [4, 5] discusses the perils of using a sample size that is too large, in terms
of the increase in spurious “significant” results, and also provides some comments on the need to
detect effect sizes of practical importance. Finally, Chiarandini and Goegebeur [6, Ch. 10] provide
a discussion on statistical power and sample size in the context of nested linear statistical models
and provide some guidelines on the choice of the number of instances and number of repeated runs
based on the graphical analyses of power curves.

In this work we present an algorithmic methodology for defining both the amount of test in-
stances and the number of repeated runs required for an experiment to obtain desired statistical
properties. More specifically, the proposed experimental framework aims at guaranteeing (i) a pre-
defined accuracy in the estimation of paired differences of performance between two algorithms on
any given instance, based on optimal sample size ratios; and (ii) a given statistical power to detect
differences larger than a predefined MRES, when comparing the performance of two algorithms on
a given problem class.

An important aspect of the methodology proposed in this paper is the fact that the estimation
of each relevant sample size (number of instances, number of within-instance repeated runs) can
be done independently of the other: as an example, researchers testing their methods on a prede-
fined set of benchmark instances (as is common practice in comparative performance assessment)
can employ the full problem set, and use the methodology only to define the required number of
runs for each algorithm on each instance, as well as the statistical power achievable by their ex-
periment. Conversely, the method also works if the researcher wants to maintain the number of
repetitions fixed (e.g., at 30 runs/algorithm/instance), and only estimate the smallest number of
instances required for a given test. Moreover, the estimation of the minimal sample sizes required
for designing experiments with predefined statistical properties does not preclude the use of other
methods of analysis, such as graphical profiling or the investigation of performance on individual
instances. On the contrary, the methodology proposed in this paper can be easily extended to
other approaches, providing researchers with a richer and more methodologically sound approach
for designing experiments for performance evaluation and comparison of algorithms.

The remainder of this paper is organized as follows: in the next section we formally define the
algorithm comparison problem that is tackled in this work, namely that of comparing the (mean)
performance of two algorithms on a given problem class, based on information gathered from a
representative subset of instances. The definitions provided in Section 2 can be later extended to
instantiate a number of other comparisons, and will hopefully provide a basis onto which more
sophisticated comparison methodologies will be eventually built.

Section 3 provides the main statistical concepts and definitions needed to introduce the proposed
method for calculating the required sample sizes for experiments involving algorithms. The proposed
method is introduced in Section 4, where sample size calculations are detailed for two specific cases,
namely that of simple differences and percent differences in the mean performance of two algorithms.
The application of the proposed methodology is illustrated in two examples of application discussed
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in Section 5. Finally, concluding remarks and possibilities of continuity are discussed in Section 6.

2 The Algorithm Comparison Problem
Let Γ = {γ1, γ2, . . . } represent a problem class consisting of a set of (possibly infinitely many)
problem instances γj which are of interest as a group (e.g., the set of all possible TSP instances
within a given size range); and let A = {a1, a2, . . . } denote a set of algorithms capable of returning
tentative solutions to each instance γj ∈ Γ.1 In this work, we are interested in comparing the
performance of two algorithms a1, a2 ∈ A as solvers for a given problem class Γ.2 We assume that
both algorithms of interest can be run on the same subset of instances, and that any run of the
algorithm returns some tentative solution, which can be used to assess the quality of that result.

Let φj = f (a1, a2, γj) : A2 × Γ 7→ R denote the difference in performance between algorithms
a1, a2 on instance γj , measured according to some indicator of choice; and let Φ = {φj : a1, a2 ∈ A, γj ∈ Γ}
denote the set of these paired differences in performance between a1 and a2 for all instances γj ∈ Γ,
with P (Φ) denoting the probability density function describing the distribution of values φj ∈ Φ.

Given these definitions, the algorithm comparison problem discussed in this work can be generally
defined, given two algorithms a1, a2 ∈ A and a problem class Γ, as the problem of performing
inference about a given parameter θ of the underlying distribution P (Φ), based on information
obtained by running a1 and a2 a certain number of times on a finite sample of instances ΓS ⊂ Γ.
The parameter of interest, θ, should represent a relevant quantity on which algorithms are to be
compared. Common examples of parameters of interest are the mean of P (Φ), in which case the
comparison problem presented here would result in the test of hypotheses on the paired difference
of means (performed using, e.g., a paired t-test); or the median, in which case we could use the
Wilcoxon signed-rank test or the binomial sign test [47].

Finally, assume that the result of a given run of algorithm ai on instance γj , denoted xij , is
subject to random variations – e.g., due to ai being a randomized algorithm, or to randomly defined
initial states in a deterministic method – such that xij ∼ Xij , where Xij is the underlying random
variable associated with the distribution of performance values for the pair (ai, γj).

Notice that these assumptions, which represent the usual case for the majority of experimental
comparisons of algorithms, mean that there are two sources of uncertainty that must be considered
when trying to address the algorithm comparison problem. First, there is the uncertainty arising
from the fact that we are trying to answer questions about a population parameter θ based on
a limited sample, which is the classical problem of statistical inference. The second source of
variability is the uncertainty associated with the estimation of φj from a finite number of runs.

These two components of the total variability of the results to be used for comparing two
algorithms influence the statistical power of any inferential task to be performed on the value of θ.
To control these influences there are two types of sample sizes that need to be considered:

• The number of repeated runs (repetitions), i.e., how many times each algorithm ai needs to
be run on each instance γj . These sample sizes, which will be denoted nij , can be used to
control the accuracy of estimation of φj and, to a lesser extent, contribute to the statistical
power of the comparison;

1Throughout this work we refer to an algorithm as the full structure with specific parameter values, i.e., to a
completely defined instantiation of a given algorithmic framework.

2 Γ can either be explicitly known or implicitly defined as a hypothetical set for which some available test instances
can be considered a representative sample.
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• The number of problem instances used in the experiment (replicates), also called here the
effective sample size. This value, which will be denoted N = |ΓS |, can be used to more
directly set the statistical power of the comparison at a desired level.

In this work we focus on comparisons of mean performance, with simple extensions to the testing
of medians. The specifics of this particular case are discussed next.

2.1 Comparison of mean performance
When comparing two algorithms in terms of their mean performance over a given problem class of
interest, we are generally interested in performing inference on the value of θ = µD = E [P (Φ)].
In this case, the statistical hypotheses to be tested, if we are interested in simply investigating
the existence of differences in mean performance between the two algorithms, regardless of their
direction, are:

H0 : µD = µ0

H1 : µD 6= µ0;
(1)

or, if we are interested in specifically determining whether algorithm a2 (e.g., a proposed approach)
is superior to a1 (e.g., a state-of-the-art approach) in terms of mean performance over the problem
class of interest3,

H0 : µD ≥ µ0

H1 : µD < µ0.
(2)

The value of µ0 in (1) and (2), i.e., the mean of the paired differences of performance under the
null hypothesis H0, is commonly set as µ0 = 0 when comparing algorithms, reflecting the absence
of prior knowledge of differences in performance between the two algorithms compared.

As mentioned earlier in this section, there are two types of sample sizes that need to be considered
for comparing algorithms: the number of within-sample repetitions for each algorithm, and the
number of instances to be employed. In Section 4 we present a methodology for calculating these
two sample sizes for the algorithm comparison problem defined in this section. Prior to describing
the method, however, it is important to review some relevant statistical concepts that provide the
basis for the proposed approach.

3 Relevant Statistical Concepts
In this section we discuss the main statistical concepts needed to introduce the proposed method-
ology for sample size estimation. More specifically, we provide a brief overview on the statistical
error rates associated with the test of hypotheses [47], and discuss the concept of statistical power
and its relationship with the effect size [31, 45] in the comparison of algorithms. We employ these
concepts to define the minimally relevant effect size (MRES), also known as the smallest difference
of practical significance, which is essential for estimating the smallest number of instances required
for the comparison of algorithms. Finally, we present a brief discussion about accuracy of parameter
estimation, which will be important as a basis for calculating the number of runs required for each
algorithm on each instance.

3The direction of the inequalities in (2) will depend on the type of performance measure used, i.e., on whether
larger = better or vice versa.
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3.1 Statistical errors and effect size
Statistical inference can be seen as a methodology for deciding between two competing statements
regarding a given populational parameter, based on an incomplete sample, with a quantifiable degree
of confidence. This process is subject to two types of statistical errors [47]: Type I, which quantifies
the probability of incurring in a false positive, i.e., wrongly rejecting a true null hypothesis; and
Type II, which represents the probability of a false negative – failing to reject a null hypothesis
that is false. The Type I error rate of an inferential procedure is quantified by the significance level
α (or the confidence level, 1 − α), which depends only on the null hypothesis and can be directly
controlled by the experimenter. On the other hand, the Type II error rate β (or, equivalently, the
statistical power π = 1 − β), depends on several parameters, some of which cannot be so easily
controlled.

Given a pair of hypotheses of the form (1) or (2), the power of a statistical test is related
to two controllable quantities, namely the significance level α and the sample size N ; and one
uncontrollable one, namely the ratio

d =
|µ− µ0|

σ
=
|δ|
σ
, (3)

where σ denotes the standard deviation of P (Φ), and δ the difference between the true mean of
P (Φ) and the value stated in the null hypothesis, µ0. The difference δ is called the simple effect
size, and d is known as the standardized effect size or Cohen’s d coefficient [31].

Generally speaking, statistical power can be interpreted as the sensitivity of a test to a given
effect size, i.e., its probability of detecting deviations from the null hypothesis at or above a certain
magnitude. All other quantities being equal, the power of a test increases as α,N and d increase.
The significance level is usually set a priori by the experimenter, and the sample size is also
commonly controllable (at least up to a certain value), but the true value of the effect size is usually
unknown (otherwise there would be no need for inference). However, the fact that power increases
with d means that, if we define a minimally relevant effect size d∗ = |δ∗| /σ – i.e., the smallest
value of d that the experimenter is interested in detecting – and design the experiment to have a
desired power for the limit case where d = d∗, then the test will have greater power for any effect
size d > d∗. Values smaller than d∗ will of course result in lower power, but by definition these
values are deemed uninteresting, and as such failure to detect them is of no practical consequence.
Setting an adequate d∗ means that the experimenter can calculate the necessary sample size N to
achieve the desired power level. In the next section we show how this can be done for statistical
tests on the value of µD.

Finally, while the definition of d∗ (or of δ∗, if a reasonable upper estimate of σ can be provided)
is important for determining the required sample size for a given experiment, we argue that its
importance goes beyond this aspect. By forcing the experimenter to define which differences would
have practical relevance prior to the experiment, the MRES helps to avoid well-known problems
associated with the exclusive use of the p-value in statistical inference [49, 4]. In short, it provides
a practical relevance dimension to the usual tests of statistical significance.

3.2 Parameter estimation and accuracy
One of the most common uses of statistics is parameter estimation, i.e., the use of information
contained in a finite sample to estimate, with a certain accuracy, the value of a given parameter.
For any parameter θ, the usual notation for its point estimator is Θ̂, and a specific value of this
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point estimator is a point estimate, θ̂ [47]. Two common examples of point estimators, which have
their own specific notations, are the sample mean and the sample standard deviation,

X̄ = µ̂ =
1

n

n∑

i=1

Xi, (4)

S = σ̂ =

√√√√ 1

n− 1

n∑

i=1

(
Xi − X̄

)2
. (5)

While point estimators return the value of greatest likelihood for a parameter given a sample,
their values are also subject to uncertainties due to the randomness of their inputs. More specifically,
a point estimator Θ̂ has a given sampling distribution [47], which is a function of populational
parameters and the sample size used in its calculation. The sample mean, for instance, has a
distribution P

(
X̄
)
with mean E

[
X̄
]

= E [X] = µ and variance V
[
X̄
]

= V [X] /n = σ2/n.
Given these aspects of parameter estimation, an important point to consider is the accuracy

of parameter estimates. A simple way of measuring this accuracy is using the standard error seθ̂,
which represents the standard deviation of the sampling distribution of the estimator [47]. For
the sample mean, for instance, the standard error is given as seX̄ = σ/

√
n, and can be generally

interpreted as analogous to a “measurement error” of the parameter being estimated, in this case
the true mean µ. Since in most cases the populational standard deviation is not known, it must be
estimated from the data, which results in the calculation of the sample standard error,

ŝeX̄ = s/
√
n, (6)

Notice that it is straightforward to solve for n in (6), which allows us to predefine a desired level
of accuracy (i.e., a desired upper limit for ŝeX̄) for the estimation and calculate the required sample
size to obtain it. Since we need some data to estimate s in the first place, an iterative approach
can be used for this calculation, as will be presented in Section 4.1.

4 Proposed Approach
Given the definitions provided in the preceding sections, we present a methodology for estimating
the relevant sample sizes for the algorithm comparison problem described in Section 2, that is, the
comparison of two algorithms in terms of their mean paired differences of performance over instances
belonging to a given problem class. More specifically, we describe (i) an algorithmic approach to
iteratively sample each algorithm on each problem instance (i.e., repetitions) with sample size
ratios close to theoretical optimal values, so that a predefined accuracy in the estimation of each
φj is obtained; and (ii) specific formulas for determining the required number of instances (i.e.,
replicates), so that a desired power level can be achieved for a predefined MRES.

As mentioned in the Introduction, it is important to highlight here that the two main results
of the proposed methodology, namely the estimation of the number of instances and number of
within-instance replicates, are independent: researchers can employ the two calculations separately
if desired or required by the specifics of a particular experiment. For instance, it is common for
certain application domains to have predefined test sets composed of heterogeneous instances, aimed
at testing the behavior of algorithms on a variety of possible situations. In these cases the researcher
may wish to employ the full set of available test instances (assuming computational time is not an
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issue), but he or she can still employ the proposed methodology to: (i) determine the number of
runs for each algorithm on each instance (see Section 4.1 below), and (ii) determine the statistical
properties of the experiment in terms of the power to detect differences of a given magnitude (see
Section 4.5). In any case, the application of the principles discussed in this work can aid the research
to design and perform comparative experiments with increased statistical soundness.

Finally, for readers who want to skip the derivations of the method, a short summary is available
in the Supplementary Materials, together with a quick use guide.

4.1 Estimating the number of repetitions
The proposed strategy to calculate the number of runs of each algorithm ai on a given instance γj ,
(i.e., the number of repetitions, nij) consists in iteratively increasing the number of observations of
each algorithm until the standard error of φ̂j (the estimate of the difference in performance between
the two algorithms for instance γj) falls below a given threshold. While the specifics of standard
error estimation depend on which statistic is being used to quantify the difference in performance,
the accuracy of estimation improves as the sample sizes n1j and n2j are increased. This allows us
to define the problem of estimating the number of runs of algorithms a1, a2 on a given instance γj
as that of finding the smallest total sample size, n1j + n2j, such that the standard error of φ̂j falls
below a desired accuracy threshold se∗.

Notice that unlike the usual practice in the experimental comparison of algorithms, the solution
for this problem will almost always result in different numbers of runs of a1 and a2 on any given
instance. This is a consequence of the fact that distinct algorithms will present different variances
of performance within any instance, which means that their contributions to the standard error of
any estimator used to quantify the paired differences in performance will be unequal. In general, the
larger-variance algorithm will need a larger sample size, as will be made clear in this section. Notice,
however, that the method presented in this section will work perfectly well if the experimenter forces
equal sample sizes (which can be done by a small, trivial modification of Algorithm 1), although
the total number of runs in this case may be larger than necessary.

In what follows we provide the derivation of the optimal sample sizes for two specific cases of φj ,
namely the simple and the percent difference between two means. The derivations are performed
assuming that the conditions for the Central Limit Theorem (CLT) are met [47], which means
that the sampling distributions of the means are approximately normal. An alternative approach,
which does not need to comply with this particular set of assumptions (at the cost of increased
computational costs) involves the use of resampling strategies such as the Bootstrap [13], which is
discussed in Section 4.4.

4.1.1 Using the Simple Difference of Two Means

Assume that we are interested in using the simple difference of mean performance between algo-
rithms a1, a2 on each instance as our values of φj . In this case we define φj = µ2j − µ1j , for which
the sample estimator is given by

φ̂
(1)
j = ∆̂µ = µ̂2j − µ̂1j = X̄2j − X̄1j , (7)

where X̄ij is the sample mean of algorithm ai on instance γj . Let the distribution of performance
values of algorithm ai on instance γj be expressed as an (unknown) probability density function
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with expected value µij and variance σ2
ij , i.e.,

xij ∼ Xij = P
(
µij , σ

2
ij

)
.

Assuming that the conditions of the Central Limit Theorem hold, we expect X̄ij ∼ N
(
µij , σ

2
ij/nij

)

and, consequently,

φ̂
(1)
j ∼ N

(
µ2j − µ1j ,

σ2
1j

n1j
+
σ2

2j

n2j

)
. (8)

By definition, the standard error of φ̂(1)
j is the standard deviation of this sampling distribution

of the estimator,
se
φ̂
(1)
j

=
√
σ2

1jn
−1
1j + σ2

2jn
−1
2j .

Given a desired upper limit for the standard error, se∗, the optimal sample sizes for the two
algorithms a1, a2 on instance γj can be obtained by solving the optimization problem defined as

Minimize: f(nj) = n1j + n2j ,

Subject to: g(nj) = se
φ̂
(1)
j
− se∗ ≤ 0.

(9)

This problem can be solved analytically using the Karush-Kuhn-Tucker (KKT) optimality con-
ditions,

∇f(nj) + β∇g(nj) = 0,

βg(nj) = 0,

β ≥ 0.

(10)

The solution of (10) for the objective and constraint functions in (9) yields the optimal ratio of
sample sizes,

ropt =
n1j

n2j
=
σ1j

σ2j
, (11)

which means that algorithms a1 and a2 must be sampled on instance γj in direct proportion to
the standard deviations of their performances on that instance. The result in (11) is known in
the statistical literature [45] as the optimal allocation of resources for the estimation of confidence
intervals on the simple difference of two means.

Since the populational variances σ2
1j , σ

2
2j are usually unknown, their values need to be estimated

from the data. This results in the sample standard error,

ŝe
φ̂
(1)
j

=
√
s2

1jn
−1
1j + s2

2jn
−1
2j . (12)

A good approximation of the optimal ratio of sample sizes can be similarly obtained by replacing
σij by sij in (11). This requires that an initial sample size n0 be obtained for each algorithm, to
calculate initial estimates of s1j , s2j

4, suggesting the iterative procedure described in Algorithm 1,
where Sample(ai, γj , n times) means to obtain n observations of algorithm ai on instance γj . To
prevent an explosion of the number of repetitions in the case of poorly specified threshold values
se∗ or particularly high-variance algorithms, a maximum budget nmax can also be defined for the
sampling on a given problem instance.

After performing the procedure shown in Algorithm 1, the estimate φ̂j can be calculated using
the vectors of observation x1j and x2j into (7) or (13), depending on the type of difference used.

4The definition of an initial value of n0 also helps increasing the probability that the sampling distributions of
the means will be approximately normal.
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Algorithm 1 Sample algorithms on one instance.
Require: Instance γj ; Algorithms a1, a2; accuracy threshold se∗; initial sample size n0; maximum

sample size nmax.
1: x1j ← Sample(a1, γj , n0 times)
2: x2j ← Sample(a2, γj , n0 times)
3: n1j ← n0

4: n2j ← n0

5: Calculate ŝe using (12) or (15) or Algorithm 4
6: while (ŝe > se∗) & (n1j + n2j < nmax) do
7: Calculate ropt using (11) or (17)
8: if (n1j/n2j < ropt) then
9: x← Sample(a1, γj , 1 time)

10: x1j ← [x1j , x]
11: n1j ← n1j + 1
12: else
13: x← Sample(a2, γj , 1 time)
14: x2j ← [x2j , x]
15: n2j ← n2j + 1
16: end if
17: Calculate ŝe using (12) or (15) or Algorithm 4
18: end while
19: return x1j , x2j

4.1.2 Using the Percent Difference of Two Means

While the approach of defining φj as the simple difference between the means of algorithms a1, a2 on
a given instance γj is certainly useful, it may be subject to some difficulties. In particular, defining
a single precision threshold se∗ for problem classes containing instances with vastly different scales
can be problematic and lead to wasteful sampling. In these cases, it is generally more practical and
more intuitive to define the differences in performance φj as the percent mean gains of algorithm
a2 over a1. In this case we define5 φj = (µ2j − µ1j) /µ1j , for which the sample estimator is

φ̂
(2)
j = ∆̂µ(%) =

X̄2j − X̄1j

X̄1j
=
φ̂

(1)
j

X̄1j
(13)

For this definition to be used we need to consider an additional assumption, namely that
P (X̄1j ≤ 0) → 0 (which is guaranteed, for instance, when objective function values are always
strictly positive, which is common in several problem classes).6 The distribution of φ(1)

j is given
in (8), which means that under our working assumptions φ̂(2)

j is distributed as the ratio of two
independent normal variables.7

5Considering a comparison where larger is better.
6If this assumption cannot be guaranteed, the use of percent differences is not advisable, and the researcher should

instead perform comparisons using the simple differences.
7The independence between φ(1)j and X̄1j is guaranteed as long as X1j and X2j are independent.
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A commonly used estimator of the standard error of φ̂(2)
j is based on confidence interval deriva-

tions by Fieller [26]. Considering the assumption that P (X̄1j ≤ 0)→ 0, a simplified form of Fieller’s
estimator can be used [27], which provides good coverage properties. Under balanced sampling,
i.e., n1j = n2j = nj , the standard error is given as

ŝe
φ̂
(2)
j

=
∣∣∣φ̂(2)
j

∣∣∣



s2

1j/nj

x̄2
1j

+

(
s2

1j/nj + s2
2j/nj

)
(
φ̂

(1)
j

)2 +
2

nj

cov (x1j , (x2j − x1j))

φ̂
(1)
j x̄1j




1/2

, (14)

where xij ∈ Rnj represents the vector of observations of algorithm ai on instance γj ; and cov (·, ·)
is the sample covariance of two vectors.

Under the assumption of within-instance independence, i.e., that X1j and X2j are independent,
the expected value of covariance will be close to zero, allowing us to disregard the covariance term in
(14). This offers two advantages: first, it simplifies calculations of the standard error, particularly
for larger sample sizes. Second, and more importantly, it allows us to consider unbalanced sampling,
as we did for the case of simple differences, which can lead to gains in efficiency. Removing the
covariance term, replacing the nj dividing each sample standard deviation by the corresponding
nij and simplifying (14) results in

ŝe
φ̂
(2)
j

=
∣∣∣φ̂(2)
j

∣∣∣
√
c1n
−1
1j + c2n

−1
2j , (15)

with

c1 = s2
1j

[(
φ̂

(1)
j

)−2

+ (x̄1j)
−2

]
;

c2 = s2
2j

(
φ̂

(1)
j

)−2

.

(16)

The problem of calculating the smallest total sample size required to achieve a desired accuracy
is equivalent to the one stated in (9) (substituting ŝe

φ̂
(1)
j

by ŝe
φ̂
(2)
j

in the constraint function) and
can be solved in a similar manner to yield the optimal ratio of sample sizes in the case of percent
differences,

ropt =
n1j

n2j
=

√
c1
c2

=
s1j

s2j

√
1 +

(
φ̂

(2)
j

)2

(17)

The expressions in (15) and (17) can be used directly into Algorithm 1, so that the adequate
sample sizes for obtaining an estimate φ̂(2)

j with a standard error controlled at a given threshold
se∗ can be iteratively generated.

4.2 Estimating the number of instances
As described in Section 2, the algorithm comparison problem treated in this work naturally induces
a paired design [47], which allows instance effects to be modeled out. Here we discuss the definition
of the number of instances required for the experiment to obtain the desired statistical properties,
namely a power of at least π∗ = 1 − β∗ to detect differences equal to or greater than a minimally
relevant effect size d∗ at a predefined significance level α.
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Before we proceed it is important to highlight that, since the hypotheses of interest concern the
expected value of a distribution defined over the set of paired differences in performance, Φ, the
independent observations to be used in the test of this hypotheses are the individual values φj (or,
more accurately, their estimates φ̂j), and not the individual runs of the algorithms on each instance.
Failure to realize this point leads to pseudoreplication [35, 41], i.e., the calculation of test statistics
under falsely inflated degrees-of-freedom, with a consequent loss of control over the statistical error
rates of the tests.

Under the assumption that the sampling distributions of means for the paired differences are
approximately normal, i.e., that

1

N

∑

γj∈ΓS

φ̂j = µ̂D ∼ N
(
µD, σ

2
Φ/N

)
, (18)

where N = |ΓS | is the number of instances used in the experiment, the uniformly most powerful
unbiased test for hypotheses of the forms (1)–(2) is the paired t-test [47]. The test statistic for this
procedure is calculated as:

t0 =
µ̂D − µ0

σ̂Φ/
√
N

=
δ̂

σ̂Φ

√
N = d̂

√
N, (19)

where σ̂Φ is the sample estimate of the total standard deviation σΦ, and d̂ is the sample estimate
of Cohen’s d coefficient (3). Under H0 this test statistic is distributed according to Student’s
t distribution with N − 1 degrees of freedom [47], leading to the criterion for rejecting the null
hypothesis at the 1− α confidence level being, for hypotheses of form (1)

|t0| ≥ t(N−1)
1−α/2; (20)

or, for (2),
t0 ≤ t(N−1)

α , (21)

where t(df)
q denotes the q-th quantile of Student’s t distribution with df degrees-of-freedom [47].

Under the alternative hypothesis H1, t0 is distributed according to a noncentral t distribution
[45] with noncentrality parameter

ncp = (µD − µ0)
√
N/σ̂Φ = δ

√
N/σ̂Φ = d

√
N

Assuming a MRES d∗ = |δ∗| /σΦ, the power of the test is given by the integral of the noncentral
t distribution with ncp∗ = d∗

√
N over the values of t0 for which H0 is rejected. For instance, for

the case (1) the rejection region is given in (20), and the power can be calculated as

π∗ = 1− β∗ = 1−
∫ t

(N−1)

1−α/2

t=t
(N−1)

α/2

[
t
(N−1)
|ncp∗|

]
dt. (22)

The sample size for this test can then be calculated as the smallest integer such that π∗ is equal
to or larger than a desired power. This leads to the formulas for the required sample size for the
case of the paired t-test [45] for the two-sided alternative hypothesis (1),

N∗ = min N
∣∣∣t(N−1)

1−α/2 ≤ t
(N−1)
β∗;|ncp∗| , (23)
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or, for the directional alternative (2),

N∗ = min N
∣∣∣t(N−1)

1−α ≤ t(N−1)
β∗;|ncp∗| . (24)

While there are no analytical solutions for (23)–(24), the calculation of these sample sizes can
be easily done iteratively [45], and is available in most statistical packages, e.g., R [50]. Algorithm 2
summarizes the full procedure for calculating the relevant sample sizes and running the experimental
comparison of mean performance of two algorithms for a given problem class. As mentioned earlier,
the researcher can either adopt the full procedure or, if desired, opt for using only part of the
methodology (e.g., employ a predefined number of instances, use a predefined number of repetitions,
force balanced runs on each instance, etc.).

Algorithm 2 Full procedure for the comparison of algorithms
Require: Set of available instances ΓS ; algorithms a1, a2; accuracy threshold se∗; initial sample

size n0; maximum sample size nmax; desired significance level α, type-II error rate β∗, and
MRES d∗.

1: Calculate N∗ . Using (23) or (24)
2: if N∗ > |ΓS | then
3: Investigate power, change parameters if needed. . Sec. 4.5
4: end if
5: x← [ ]
6: for min (N∗, |ΓS |) times do
7: Sample (without replacement) instance γj ∈ ΓS
8: Sample a1, a2 on γj . Algorithm 1
9: Calculate φ̂j . Using (7) or (13)

10: x←
[
x, φ̂j

]

11: end for
12: Test of hypotheses using x as the test sample
13: Verify test assumptions . Secs. 4.3-4.4
14: return Test results; power profile (if needed)

Finally, as mentioned in Section 2, there are two sources of variability that affect the total
variance σ2

Φ, namely the across-instances variance σ2
φ, which represents the variance of the values of

paired differences in performance if all φj were precisely known; and the within-instances variance
σ2
ε = se2

φ̂j
, which quantifies the “measurement error” on the values of φj . Considering this, the

standardized effect size used in the preceding discussion can be expressed as

d =
δ

σΦ
=

δ√
σ2
φ + σ2

ε

. (25)

While the experimenter can do little to change the across-instances variance, it is possible to
reduce the standard error of estimation, as presented in Section 4.1. This composition of the
total variance can be helpful in defining se∗ when calculating of the number of repetitions. Some
guidelines are provided in Section 4.6.
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4.3 Independence and normality
The techniques presented so far have been based on two explicit assumptions: independence, i.e.,
the assumption that observations used for calculating the statistics of interest do not present any
unmodeled dependencies, or that one observation does not influence another [47, 55]; and normality
of the sampling distribution of the means.

In the case of this work, the assumption of independence can be guaranteed by design. In
Algorithm 1, the samples generated for the two algorithms on any given instance are produced
without one observation influencing the value of any other – e.g., by the usual (and rather obvious)
practice of using different random seeds for different runs of randomized algorithms; or of using
distinct, preferably randomly distributed initial points for deterministic methods. As for the paired
test and sample size calculations, the assumption of independence can also be guaranteed by design.
By using the values of φ̂j as the individual observations we avoid the most common error in this
kind of experiment, namely that of pseudoreplication [35, 41], i.e., the use of repeated measurements
xij as if they were independent replicates. Ensuring independent algorithmic runs, as mentioned
previously, also helps guarantee this assumption.

The other assumption, i.e., that of normality of the sampling distribution of the means, cannot
be so easily guaranteed by design. It can, however, be verified a posteriori without much effort. A
first test of this assumption relies on the fact that, if the distribution of the data is normal, then the
sampling distribution of the means will also be normal, regardless of the sample size. This suggests
that a first test of normality can be performed on the data itself – i.e., on the sets of observations
x1jk and x2jk used to estimate φj ; and on the set of estimates φ̂j used for testing the hypotheses of
interest. Common statistical tests of normality include the Kolmogorov-Smirnov or Shapiro-Wilk
tests [55], although in most cases visual inspection using a normal Q-Q plot is considered sufficient
[47]. If the data is found not to be significantly deviant from normality then the methods presented
in this section can be considered accurate.

If the data itself deviates significantly from normality, an approximate test can be performed on
the estimated sampling distribution of the means instead, e.g., using bootstrap [21]. A quick (albeit
computationally intensive) procedure for assessing normality of the sampling distribution of the
means is to generate a vector yB of resampling estimates of the mean using a bootstrap procedure
and then visually inspecting this vector using a normal Q-Q plot.8 This assessment strategy is
summarized in Algorithm 3, where SampleWithReplacement(y, n times) means to build a vector
of n observations sampled (with replacement) from y. If this estimated sampling distribution of
the mean does not deviate from normality, then the assumption can be considered satisfied for the
methods presented in this section.

Finally, if the assumption of normality is violated (or expected to be, in the design phase of
the experiment), one must employ nonparametric methods instead. A brief discussion of these
techniques is provided next.

8Using inferential tests on yB is not good practice, as the number of resamples can be made arbitrarily large,
which would artificially inflate the degrees-of-freedom of any such test.
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Algorithm 3 Bootstrapping the sampling distribution of the mean
Require: Sample vector y; number of bootstrap resamplings R.
1: ȳB ← [ ] . Initialize empty vector
2: n← dim(y) . Vector length
3: for (R times) do
4: yT ← SampleWithReplacement(y, n times)
5: ȳT ← mean(yT )
6: ȳB ← [ȳB , ȳT ] . Append ȳT to ȳB
7: end for
8: return ȳB

4.4 Nonparametric alternatives
If the assumption of normality of the sampling distribution of the means cannot be guaranteed,9
different procedures should be employed. Some possibilities for estimating φj and for testing hy-
potheses regarding the expected performance difference between two algorithms are presented in
this section.

4.4.1 Nonparametric estimation of seφj and of the number of repetitions

When the assumptions regarding the sampling distribution of φ̂j are not true, the estimates of
the standard error calculated in Section 4.1 may be incorrect (particularly for the case of percent
differences). If that is the case, a bootstrap approach can be used to estimate seφ̂j and, consequently,
the required number of repetitions.

To obtain a bootstrap estimation of seφ̂j , recall the definition of standard error as the standard
deviation of the sampling distribution of a given estimator. A bootstrap estimator of seφ̂j can be
calculated using the routine shown in Algorithm 4, and the value returned can then be used directly
into Algorithm 1.

Notice that, unlike in the parametric approach, the optimal ratio ropt used in Algorithm 1 to
determine which algorithm should be sampled may not be optimal in the theoretical sense when
using a bootstrap estimate of seφ̂j . Nonetheless, there are two arguments that can be advanced
for using it in this case: first, it will always result in more intensive sampling of the algorithm
presenting the greatest variance, which makes sense from the perspective of reducing the standard
error of the estimates of φj . Second, since the sampling distribution of the means will become
progressively closer to a normal distribution as the sample sizes are increased, the estimation of
ropt will become increasingly better as more observations are collected, and thus the sample sizes
yielded by Algorithm 1 should approach optimality as the sampling progresses.

Finally, it is important to highlight that the bootstrap procedure tends to be considerably more
computationally intensive than the parametric one, due to the resampling procedures involved in
its calculation. This difference, however, becomes less important when the run times of a1, a2 are
longer, needing, e.g., seconds or minutes to complete.

9Notice that it is relatively common for the normality assumption to be violated in the original data, but valid
under transformations such as log or square root. The topic of data transformations is, however, outside the scope
of this manuscript.
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Algorithm 4 Bootstrap estimation of seφ̂j
Require: Sample vectors x1j ,x2j ; number of bootstrap runs R.
1: φ̂j ← [ ]
2: n1j ← dim(x1j)
3: n2j ← dim(x2j)
4: for (R times) do
5: xb1 ← SampleWithReplacement(x1j , n1j times)
6: xb2 ← SampleWithReplacement(x2j , n2j times)
7: Calculate φ̂j,r using (7) or (13)
8: φ̂j ←

[
φ̂j , φ̂j,r

]

9: end for
10: return sample standard deviation of φ̂j

4.4.2 Nonparametric tests of hypotheses

Common alternatives for the paired t-test include Wilcoxon’s signed-ranks test, which assumes
independence and symmetry about the median10 of P (Φ) [55]; and the binomial sign test, which
requires only the assumption of independence [55], at the cost of reduced power. Both can be used
to test hypotheses regarding the median of P (Φ) instead of the mean, which is another way to
quantify the expected differences between two algorithms.

The determination of the number of instances for these cases can be done using an argument
based on the asymptotic relative efficiency (ARE) of these tests relative to the paired t-test. The
ARE can be defined [47] as “the limiting ratio of the sample sizes necessary to obtain identical error
probabilities for the two procedures.”. In the specific case of the Wilcoxon test, we have that [47] “For
normal populations, the ARE of the Wilcoxon signed-rank test relative to the t-test is approximately
0.95; For non-normal populations, the ARE is at least 0.86, and in many cases it will exceed unity.".
As for the binomial sign test, the ARE is 0.637 [55], showing its more conservative characteristic.

Under these considerations, a reasonable rule-of-thumb is to calculate the required number of
instances using the formulas for the paired t-test, and then dividing the value of N∗ by the ARE
of the test under normality:

N∗wilc = N∗/0.86 u 1.16N∗

N∗sign = N∗/0.637 u 1.57N∗
(26)

Notice that i) these are conservative estimates, reflecting (particularly in the case of Wilcoxon’s
test) an expected worst-case scenario, which means that the actual power can be larger than the
one used for the calculations; and ii) the binomial sign test requires over 50% more instances to
achieve the same power under this supposed worst-case scenario, which may be unreasonable in
many situations. However, if P (Φ) is severely skewed, this may be the only test for which the
assumptions can be maintained (i.e., for which nominal error rates can be reasonably expected to
hold), and as such it remains as an interesting last resource.11

10Although it is very common in the literature on the experimental comparison of algorithms to ignore the fact
that Wilcoxon’s signed-ranks test works under the assumption of symmetry.

11There are other ways to calculate the sample size for the binomial sign test that are less conservative, but for
the sake of brevity this will not be discussed here.
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4.5 The case of predefined N

The second part of the proposed methodology, described in Sections 4.2 and 4.4.2, is concerned with
estimating the smallest number of instances required for achieving predefined statistical properties
for a given experiment. This estimation can be very useful in several distinct situations, e.g., when
designing test sets for specific problem classes, or when performing experiments on algorithms for
computationally expensive optimization problems [38]. As mentioned earlier, however, there are
cases in which it may not be possible to arbitrarily choose the sample size for a given experiment.
Common examples include situations when only a limited number of instances is available, or
when a predefined test set needs to be employed, as is often the case in standardized comparison
experiments [32].

Even if that is the case, however, it is still possible to employ the principles discussed in the
preceding sections to obtain a better perspective of the statistical properties of the experiment. For
instance, for predefined N , the proposed methodology can still be used to determine the number
of runs of each algorithm on each instance, so as to guarantee a desired standard error for the
paired differences in each instance. Moreover, the sample size calculations provided in Section 4.2
can be easily adapted to maintain a fixed N and estimate instead other relevant properties, e.g.,
the expected statistical power for a given MRES. For instance, by keeping α and N fixed in (22),
one can iterate over different values of ncp = d/

√
N and obtain a power curve for a fixed-sample

experiment, prior to actually collecting the data. Figure 1 provides an example of this kind of
power curve, which can be quite useful for researchers interested in evaluating which differences
between algorithms could the experiment be reasonably expected to detect. Similar curves can be
constructed for other pairs of power-related variables, e.g., maintaining a fixed power and iterating
over N to obtain a curve of effect sizes d for which that power is expected as a function of sample
size.
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power = 0.5 for d = 0.56
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Figure 1: Example of power curve that can be derived in cases with a predefined number of instances.

17



4.6 Defining reasonable experimental parameters
Finally, it is important to discuss the choice of reasonable values for the experimental parameters.
In terms of the proposed methodology, the required parameters are shown at the beginning of
Algorithm 2. The set of available instances ΓS and the algorithms to be compared, a1, a2, are
relatively straightforward - ΓS is usually a list of available instances, which may or may not be
exhausted in the experiment, and a1, a2 are the algorithms to be compared.

The definition of the remaining user-defined parameters for the experimental protocol – namely
se∗, n0 and nmax for calculating the number of repetitions, and α, β∗ and d∗ for the number of
replicates – is a little more subtle. Starting with the statistical error rates, α and β∗ should ide-
ally be defined based on the consequences of the errors they control - i.e., the consequences of
falsely detecting a nonexistent difference, or of failing to detect an existing one. However, defin-
ing these consequences can be very challenging even in experiments with more easily quantifiable
consequences, and in practice “standard” values are often used – 0.05 or 0.01 for α, and 0.2 or 0.15
for β∗. It is important to recall that (i) there is nothing inherently special about these values,
they are simply conventions that can, and often should, be challenged; and (ii) there is a tradeoff
between the error rates and the sample size, so that the lower these values, the larger the number
of instances will be needed to control both errors at their nominal values for a given MRES.

Determining a good value for the MRES is also heavily experiment-dependent, since a small
difference in one context could be considered substantial in another. In our discussions we have
been using the standardized effect size d for the power calculations, in which case the MRES, d∗,
should be selected based on units of standard deviations - e.g., a d∗ = 0.5 would mean that we are
interested in detecting differences equal to or larger than one half standard deviation. While some
fields possess somewhat standard target values for “small”, “medium” and “large” effects (see, e.g.,
the discussion by [53]), researchers should be aware that specific features of different application
areas can and should take precedence over application-agnostic predefined values.

When φj is defined as the percent differences (Sec. 4.1.2), it may be more intuitive to use
the simple effect size, δ, instead of the standardized one. This would allow statements such as
“we are interested in detecting mean performance gains of more than 5%”, which tend to be more
straightforward. In this case, however, a reasonable upper bound for the total standard deviation –
the denominator of the r.h.s. of (25) – must be provided by the user. Such bound may be obtained
using either a pilot study, estimated from published results, or defined using previous knowledge
about the algorithms tested.

Regarding the experimental parameters necessary for estimating the number of runs on each
instance, n0 should ideally be set based on the expected shape of the distribution of observations
of algorithm performance – bell-shaped distributions can use lower n0 (values as low as 3 or 4 are
sufficient for the sampling distribution of means to converge to a Gaussian shape in these cases),
other symmetric distributions can use intermediate values (e.g., 10), and more strongly skewed
distributions should use larger values (n0 = 20 or 30). If the distribution is severely skewed, it
is often more practical to work on log-transformed data, which tends to bring the distribution
to a more well-behaved shape [19]. The value of nmax should be selected based on the available
computational budget for the experiment, but knowing that lower values will result in sample sizes
that may fail to control the within-instances error seφ̂j at the predefined level se∗, which can result
in reduced overall power for the experiment.

The definition of the measurement error threshold, se∗, should be performed in such a way that
this component of the total standard deviation does not dominate the power calculations – in other
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words, the value of se∗ should be much smaller than the expected across-instances variance – e.g.,
(se∗)2 ≤ 0.1σ2

Φ.
Finally, it is important to remember that even if the number of available instances is much

larger than the calculated N∗ and the researchers desire (or are required) to employ all in the
comparison, the methodology presented in this section can still provide precious information - both
for the determination of the number of runs on each instance and, critically, for defining a MRES
prior to the experiment, so that the results obtained are interpreted under the light of practical
relevance, and not only statistical significance.

5 Examples of application
In this section we present results aimed at demonstrating the application of the proposed method
for the definition of sample sizes in the experimental comparison of two algorithms. Since the
objective in this section is to illustrate the comparison methodology, and not to generate new
results regarding the performance of specific algorithms, we opted for using algorithms for which an
existing implementation is readily available. The implementation of the proposed methodology for
calculating the sample sizes is available as the R package CAISEr (Comparison of Algorithms with
Iterative Sample-size Estimation in R) [15], which is also introduced in the Supplemental Materials.

5.1 Experiment 1
For the first experiment we assume a situation in which we wish to compare two versions of the
Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D) [60, 43, 14], in terms
of their mean IGD [62], for which smaller values indicate better performance. . The first version is
the one presented in Section V-E of the original MOEA/D paper [60], and the second is a modified
MOEA/D known as MOEA/D-DE, proposed by Li and Zhang in 2009 [43]. The specific parameters
of these two algorithms are summarized in Table 1, and a detailed explanation can be found in the
relevant literature [14, 60, 43].

Table 1: Algorithms and parameters. Boldface entries highlight differences. nv denotes the
dimension of the problem instance being solved.

Component Alg. 1: MOEA/D Alg. 2: MOEA/D-DE

Decomposition strategy SLD (H = 99) SLD (H = 99)

Neighborhood strategy By weight vectors (T = 20, δ = 1.0) By weight vectors (T = 20, δ = 0.9)

Aggregation function Weighted Tchebycheff Weighted Tchebycheff

Variation Operators
SBX (η = 20, pc = 1)

Differential mutation /rand/1 (F = 0.5)
Binomial recombination (CR = 1.0)

Polynomial mutation (η = 20, pm = 1/nv) Polynomial mutation (η = 20, pm = 1/nv)

Update strategy Standard update Restricted update (nr = 2)

Stop criterion 2000nv function calls 2000nv function calls

Suppose that we wish to compare the performance of these two algorithms on a hypothetical
problem class based on the UF benchmark set [61], defined as the set of all possible problems
for which functions UF1 to UF7, with dimensions nv ∈ [10, 40], can be considered representative.
While in this case one would be justifiably interested in using all available test instances (a total of

19



217) to obtain a more complete understanding of the behavior of these algorithms on the problem
class of interest, the resulting computational cost of such an exhaustive experiment may be quite
large.12 Consequently, a first step in comparing these two methods may be to investigate whether
they present differences in mean IGD performance that exceed some minimal threshold of practical
relevance, which can be achieved using a subset of the available instances, at a computational cost
much smaller than what would be required for the full investigation.

To this end we used the proposed methodology to investigate the mean percent differences of
performance between the two algorithms summarized in Table 1 on the problem class of interest.
The parameters used for this experiment were defined as follows: α = 0.05, β∗ = 0.2, d∗ =
0.5, n0 = 15, nmax = 200, se∗ = 0.05. The standard errors were calculated using the bootstrap
approach (Algorithm 4), using R = 999; and the number of instances was calculated assuming the
use of a t test (Section 4.2) and a bilateral alternative hypothesis (23).13

Following the procedure outlined in Algorithm 2, the proposed methodology indicated that the
required number of instances in this case was N∗ = 34. This amount of instances was randomly
sampled (without replacement) from the set of available instances, and the two algorithms were run
on each instance according to the procedure defined in Algorithm 1. The results of this process are
summarized in Table 2.

Some interesting remarks can be made regarding the results summarized in Table 2. First,
we observed negative values of φ̂j in the majority of instances tested, suggesting an advantage of
the MOEA/D-DE over the original MOEA/D (recall that smaller IGD is better). MOEA/D-DE
also seems to require less repetitions in most instances, which indicates lower variance on several
instances, a desirable feature since it means that the algorithm tends to return more consistent
performance values across repeated runs.

Another noteworthy point is that in three of the 34 instances sampled – UF3 (29), UF5 (17), and
UF5 (28), boldfaced in the table – the maximum allocated budget (nmax = 200) was not enough to
reduce the standard error ŝeφ̂j below the predefined threshold of se∗ = 0.05. In these three cases
the second algorithm, MOEA/D-DE, seems to present an unusually high variance (evidenced by
the large number of runs attributed to it by the proposed sampling methodology), resulting in the
need for a larger number of repeated runs to reduce the uncertainty on the estimate of φ̂j . However,
since the resulting standard errors in these three cases were not particularly high14, their effect on
the total residual variance is likely negligible.

Continuing with the experimental procedure outlined in algorithm 2, a t-test performed on
our sample of estimated paired differences of performance yields statistically significant results
(p = 2.90 × 10−6, df = 33) with an estimated paired mean difference in IGD of µ̂D = −0.379
(CI0.95 = [−0.517,−0.242]), which means an expected value of IGD for the MOEA/D-DE that is
(37.9± 13.7) % better than that of the original MOEA/D for our problem class of interest.

The normality assumption of the t-test can be easily validated using the normal QQ-plot shown
in Figure 2. The plot indicates that no expressive deviations of normality are present, which gives us
confidence in using the t test as our inferential procedure of choice, since the sampling distribution

12While in this particular example the required computational budget for exhausting all available instances would
not be unattainable, limitations to the number of instances that can be reasonably employed in an experiment
can be much more severe when researching, for instance, heuristics for optimizing numerical models in engineering
applications, or other expensive optimization scenarios [56]. The present example was inspired in part by the authors’
past experience with such problems.

13The full replication script for this experiment is available in the Vignette “Adapting Algorithms for CAISEr ” of
the CAISEr package [15].

14More specifically: ŝe
φ̂j

= 0.0518 for UF5 (28); ŝe
φ̂j

= 0.0544 for UF3 (29); and ŝe
φ̂j

= 0.0536 for UF5 (17)
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Table 2: Summary of results obtained in Experiment 1. Instances marked in boldface were sampled
up to the maximum allowed budget, nmax = 200.

Instance (dim.) φ̂j ŝeφ̂j n1j n2j Instance (dim.) φ̂j ŝeφ̂j n1j n2j

UF4 (13) -0.14 0.02 15 15 UF5 (17) 0.46 0.05 83 117
UF2 (29) -0.36 0.05 65 15 UF3 (15) -0.08 0.05 40 53
UF5 (28) 0.69 0.05 80 120 UF4 (16) -0.11 0.03 15 15
UF1 (29) -0.63 0.05 25 15 UF7 (18) -0.89 0.05 41 33
UF2 (36) -0.29 0.05 71 16 UF7 (38) -0.86 0.05 32 16
UF3 (29) 0.05 0.05 99 101 UF4 (14) -0.21 0.02 15 15
UF3 (10) 0.07 0.05 57 58 UF1 (11) -0.82 0.02 15 15
UF7 (16) -0.95 0.00 15 15 UF1 (16) -0.75 0.02 15 15
UF7 (29) -0.90 0.04 15 15 UF2 (32) -0.35 0.05 51 15
UF2 (25) -0.38 0.05 66 15 UF3 (24) -0.19 0.05 42 47
UF4 (30) -0.04 0.02 15 15 UF6 (34) -0.74 0.05 15 15
UF1 (26) -0.65 0.05 15 15 UF4 (32) -0.00 0.03 15 15
UF2 (18) -0.46 0.05 40 15 UF2 (11) -0.47 0.05 46 15
UF7 (36) -0.92 0.02 15 15 UF2 (22) -0.54 0.05 44 15
UF4 (18) -0.17 0.02 15 15 UF1 (17) -0.71 0.03 15 15
UF2 (34) -0.40 0.05 44 15 UF1 (18) -0.69 0.03 15 15
UF2 (39) -0.29 0.05 71 15 UF3 (23) -0.18 0.05 33 58

of the means will be even closer to a Normal variable than the data distribution, diluting whatever
small deviations from normality may be present.

Finally, it is important to reinforce that these results could also be used to motivate further
analyses of the performance of these two algorithms for problems belonging to the problem class of
interest, even before proceeding to the full, exhaustive test on all available instance. For example,
the individual IGD distributions and mean values of each algorithm on each instance, presented in
Figure 3, suggest that both algorithms encounter difficulties when solving UF5 (and, to a lesser
extent, UF3 ) instances, which could motivate a more focused investigation into the reasons for
these poor performance profiles, and on possible algorithmic improvements to remedy this problem.
A natural follow-up to the experiment presented in this first example would be to broaden the
investigation to include the full available test set, in which case the proposed methodology could
still be useful in defining the number of repetitions to be performed for each algorithm on each test
instance, as well as the expected statistical power of whatever subgroup comparisons the researcher
could deem interesting.
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Figure 2: Normal quantile-quantile plot for observations φ̂j in Experiment 1.

5.2 Experiment 2
As mentioned in Section 4.5, the proposed methodology can also be useful in situations when the
researcher uses a predefined set of benchmark instances to compare two algorithms. To illustrate
this case, we used a set of 200 large instances of the unrelated parallel machines problem with
sequence dependent setup times, provided by Vallada and Ruiz [57] for calibration experiments.15
Currently the best results for this problem are those presented by Santos et al. [52] using a simulated
annealing algorithm with six neighborhood structures (Shift, Switch, Task move, Swap, Two-Shift,
and Direct swap), randomly selected at each trial move.16.

Preliminary tests suggest that the most influential neighborhood structure for this case is Task
move, which presents the largest expected improvement value across a wide range of problem sizes.
To isolate and quantify the effect of this specific neighborhood structure to the performance of the
method, two versions of the algorithm were compared: a full version, which is the original algorithm
equipped with all six neighborhood structures; and a no-task-move version, which uses exactly the
same structure but does not include the Task move neighborhood. As mentioned above, these two
versions were tested on the calibration test set proposed by Vallada and Ruiz [57], which features
200 large instances with M ∈ {10, 15, 20, 25, 30} machines and N ∈ {50, 100, 150, 200, 250} jobs.
All algorithmic aspects were set exactly as in [52], with the stop criteria employed at each instance
being the total run time, calculated as a function of instance size following guidelines from the
original references [57, 52].

15The instance files can be retrieved from http://soa.iti.es/problem-instances
16The source codes used for this experiment can be retrieved from http://github.com/andremaravilha/

upmsp-scheduling
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Figure 3: Top: 95% confidence intervals on the means of individual IGD values of each algorithm
on each sampled instance. Bottom: Density estimates of IGD for MOEA/D and MOEA/D-DE
on each sampled instance. Notice the discrepant performance of MOEA/D-DE on instance UF5.
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Given that the number of instances is predefined, there is no need to calculate it using the
approach presented in Section 4.2. Instead, we used the proposed methodology to estimate the
power curve of the experiment, that is, the expected sensitivity of this comparison to detect effects
of different magnitudes. This is illustrated in Figure 4, which was derived assuming that the desired
significance of the experiment is α = 0.05, and that a t-test test will be performed using a one-sided
alternative hypothesis, since we have a prior expectation that the full version algorithm should be
better than the no-task-move, and are interested in testing and quantifying this effect.
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Figure 4: Expected sensitivity of experiment 2 to different effect sizes, for a t-test test with a one-
sided alternative hypothesis. With 200 instances we can be fairly confident that the experiment will
be able to identify mean performance gains greater than approximately 0.2 standard deviations.

As suggested in the figure, this experiment has a reasonable probability of detecting mean
performance gains due to the use of the Task move neighborhood structure greater than about
0.2 standard deviations. Smaller differences in mean performance, particularly under about 0.1
standard deviations, can go undetected, but in terms of impact on the expected behavior of the
algorithm these would be really minor effects.

The experiment was performed using the proposed method for iteratively estimating the required
number of repetitions for each algorithm on each of the 200 instances. The experimental parameters
were set as se∗ = 0.05 on the percent differences, n0 = 15 and nmax = 150. The standard errors
were calculated using the parametric formulas provided in Section 4.1.2. A t test performed on the
resulting data suggested significant differences at the 95% confidence level (p < 2×10−16, df = 199,
against a one-sided, lower H1) with an estimated paired mean difference of µ̂D = −0.361 (CI0.95 =
[−0.380,−0.342]), which means that the expected impact of the Task move neighborhood on the
performance of the algorithm, for an instance belonging to the same problem family defined by the
test, set is a reduction of (36.1± 1.9) % in the makespan of the final solution returned.17

Notice that further analyses could (and should) be performed on this same data, to refine
the conclusions and, possibly, suggest new lines of inquiry. For instance, while the overall ex-

17The graphical analysis of the residuals did not suggest expressive deviations of normality. The results table and
residual analysis are provided in the Supplemental Materials.
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pected improvement due to the use of Task move in the pool of possible movements is quantified as
(36.1± 1.9) %, knowledge, e.g., of instance size can improve the estimation accuracy of performance
gains. This is illustrated in Figure 5, which suggests that, while the use of Task move provides rele-
vant improvements across all problem sizes tested, its effect increases with the number of machines
(M) and decreases with the number of jobs (N). A detailed quantification of these effects and the
reasons behind them is, however, outside the scope of the present work.

N = 50 N = 100 N = 150 N = 200 N = 250
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Figure 5: Percent gains in performance attributable to using the Task-move neighborhood. The
y-axis indicates how much lower the average makespan was for the full algorithm in comparison to
the no-task-move version (notice that the y-axis is vertically reversed). Vertical lines represent the
standard errors of each observation. The x-coordinates of the observations were perturbed slightly
around their true values (M = {10, 15, 20, 25, 30}), for visualization purposes.
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6 Conclusions
Experimental comparisons play a central role in the research and development of optimization
heuristics. In this work we proposed a methodology to address an often neglected aspect of the
design of experiments for the comparison of two algorithms on a given problem class, namely the
determination of adequate sample sizes, in terms of the amount of problem instances to be employed
in a given comparison as well as the number of repeated runs of each algorithm on each instance.

Prior to describing the methodology for sample size calculations, it was important to formally
define the algorithm comparison problem considered in our work. This definition, presented in
Section 2, was important for two reasons: first, it allowed us to delimit the scope of the scientific
and statistical questions of interest in this particular paper, and to formalize the population which
our statistical procedures would attempt to interrogate. Second, we hope that it may provide
statistical grounds for future discussions and developments in the field of experimental comparisons
of algorithms.

Based on the concepts defined in Sections 2 and 3, the proposed methodology for calculating the
relevant sample sizes for the comparison of two algorithms on a given problem class was presented
in Section 4. The determination of the number of instances is based on considerations of practically
relevant differences and on the desired statistical power to detect them. Analytic formulas were
presented for the parametric case, using both one-sided and two-sided alternative hypotheses. Non-
parametric approximations based on the asymptotic relative efficiency of the Wilcoxon signed-ranks
and the binomial sign test were also provided.

The number of runs of each algorithm on each instance is determined iteratively, approximating
optimal sample size ratios for the reduction of the uncertainty associated with the estimation of
paired differences in performance. Analytic solutions for the optimal ratio of sample sizes were
provided for the simple and percent difference cases, based on the assumption of normality of
the sampling distribution of the means. These results were also useful as approximations for the
calculation of the standard errors using bootstrap, for cases in which the assumption of normality
described in Section 4.3 cannot be expected or guaranteed.

Examples of application were provided in Section 5, illustrating the potential of the proposed
methodology to provide researchers in the field with a methodologically sound, reproducible way
of determining the required numbers of instances and runs, as well as to identify limitations with
existing experimental benchmark sets. Two common situations were discussed: the first, in which
the researcher needs to determine how many instances of a given problem class to use for a given
test, as well as how many runs each algorithm should perform on each instance; and a second one,
which focused on the use of the proposed methodology for an experiment dealing with a fixed-
size, predefined benchmark set, in which case the assessment of the sensitivity of the experiment
to different effect sizes replaces the estimation of the required number of instances to achieve a
redefined statistical power.

It is important to reinforce that the proposed methodology is by no means an universal way
to test algorithms: when the goal of the experiment is to characterize an heuristic, how robust
it is and its best / worst case performance behavior, different methodologies can and should be
employed. However, such extensive experimentation is prohibitive in a number of scenarios, such
as in several cases of applied engineering optimization [56] or when comparing heuristics on very
large, time-consuming instances.

One of the main aims of this work was to lay the statistical and methodological groundwork for
the calculation of required sample sizes in the experimental comparison of algorithms. While the
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developments and results presented do fulfill this particular goal, there are a number of limitations
and possibilities of continuity that can be explored. We finish this work by examining a few of the
most promising ones.

6.1 Limitations and Possibilities
Possibly the main limitations of the methodology developed in this paper are, in order of severity:
(i) the fact that it is only defined for the comparison of two algorithms; (ii) the fact that the
definition of the number of instances is performed a priori, using a fixed sample size methodology;
and (iii) the fact that only centrality statistics (the mean and, to a certain extent, the median) were
considered. Below we offer a brief discussion these three points, and offer our views of what can be
done to further extend the proposed methodology.

Regarding the number of algorithms considered in the comparison, a natural next step of this
work is to extend the sample size estimation methodologies for multiple algorithms. This can be
achieved in a relatively straightforward manner for the estimation of the number of instances, using
standard formulas for either omnibus tests (e.g., ANOVA, Friedman) or planning directly for the
eventual post-hoc pairwise comparisons [45]. Estimating the number of runs, however, will require
greater improvements on the method proposed in this work, probably based on the definition of
standard error thresholds for each individual algorithm on each instance, instead of on the standard
error of the differences.

While the a priori definition of the number of instances provides a reasonable expectation of
statistical power for a given MRES, the required sample size may be considerably smaller if the
actual effect size is much larger than the predefined d∗. Using sequential analysis methodologies,
such as the ones commonly employed in clinical trials or industrial settings [12, 3], may result in a
reduced number of instances being necessary to determine the existence of differences between two
(or eventually more) algorithms, and represent another possibility of continuity for this work. In
this aspect, Bayesian alternatives to the comparison of algorithms can be of particular interest, since
they may allow the aggregation of existing knowledge in the form of prior probability distributions,
as well as the incremental aggregation of observations without the need for cumbersome significance
corrections [40].

The possibility of using the methodology defined in this work as a framework for comparisons
of algorithms according to different statistics – e.g., variances, rates of convergence, regression
coefficients, or best/worst cases – is yet another promising direction. While most experiments still
focus on average (mean/median) cases, the need for methodologically sound comparisons of other
quantities has long been recognized [34, 25], and we believe the methodology presented in this
paper can be easily adapted for such comparisons. First, the bootstrap approach for the calculation
of the number of runs can be extended to different measures of paired differences in performance
- medians, quantiles, or other statistics - in a relatively straightforward manner (using balanced
samples if needed, or deriving optimal ratios for these statistics). Moreover, standard statistical tests
for other quantities tend to be readily available, as well as analytic formulas for power and sample
size [45], providing a rich basis upon which better, more comprehensive protocols for algorithmic
comparisons can be built.

27



References
[1] del Amo, I.G., Pelta, D.A., González, J.R., Masegosa, A.D.: An algorithm comparison for

dynamic optimization problems. Applied Soft Computing 12(10), 3176–3192 (2012).

[2] Barr, R.S., Golden, B.L., Kelly, J.P., Resende, M.G.C., Stewart, W.R.: Designing and report-
ing on computational experiments with heuristic methods. Journal of Heuristics 1(1), 9–32
(1995).

[3] Bartroff, J., Lai, T., Shih, M.C.: Sequential Experimentation in Clinical Trials: Design and
Analysis. Springer (2013)

[4] Bartz-Beielstein, T.: New Experimentalism Applied to Evolutionary Computation. Ph.D.
thesis, Universität Dortmund, Germany (2005)

[5] Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation. Springer (2006)

[6] Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M.: Experimental Methods for the
Analysis of Optimization Algorithms. Springer (2010)

[7] Bausell, R., Li, Y.F.: Power analysis for experimental research: a practical guide for the
biological, medical and social sciences. Cambridge University Press (2006)

[8] Benavoli, A., Corani, G., Mangili, F., Zaffalon, M., Ruggeri, F.: A bayesian wilcoxon signed-
rank test based on the dirichlet process. In: 30th International conference on machine learning,
pp. 1026–1034 (2014)

[9] Birattari, M.: On the estimation of the expected performance of a metaheuristic on a class
of instances: how many instances, how many runs? Tech. Rep. IRIDIA/2004-001, Université
Libre de Bruxelles, Belgium (2004)

[10] Birattari, M.: Tuning Metaheuristics – A Machine Learning Perspective. Springer Berlin
Heidelberg (2009)

[11] Birattari, M., Dorigo, M.: How to assess and report the performance of a stochastic algorithm
on a benchmark problem: Mean or best result on a number of runs? Optimization Letters 1,
309–311 (2007)

[12] Botella, J., Ximénez, C., Revuelta, J., Suero, M.: Optimization of sample size in controlled
experiments: The CLAST rule. Behavior Research Methods 38(1), 65–76 (2006).

[13] Bradley Efron, R.T.: An Introduction to the Bootstrap, 1 edn. Chapman and Hall (1994)

[14] Campelo, F., Batista, L.S., Aranha, C.: The MOEADr package – a component-based frame-
work for multiobjective evolutionary algorithms based on decomposition. Submitted: Journal
of Statistical Software (2017)

[15] Campelo, F., Takahashi, F.: CAISEr: Comparison of Algorithms with Iterative Sample Size
Estimation (2017). URL https://CRAN.R-project.org/package=CAISEr

28



[16] Carrano, E.G., Wanner, E.F., Takahashi, R.H.C.: A multicriteria statistical based compari-
son methodology for evaluating evolutionary algorithms. IEEE Transactions on Evolutionary
Computation 15(6), 848–870 (2011).

[17] Chow, S.C., Wang, H., Shao, J.: Sample Size Calculations in Clinical Research. CRC Press
(2003)

[18] Coffin, M., Saltzman, M.J.: Statistical analysis of computational tests of algorithms and heuris-
tics. INFORMS Journal on Computing 12(1), 24–44 (2000).

[19] Crawley, M.: The R Book, 2nd. edn. Wiley (2013)

[20] Czarn, A., MacNish, C., Vijayan, K., Turlach, B.: Statistical exploratory analysis of genetic
algorithms: the importance of interaction. In: Proceedings of the 2004 IEEE Congress on
Evolutionary Computation. Institute of Electrical & Electronics Engineers (IEEE) (2004).

[21] Davison, A.C., Hinkley, D.V.: Bootstrap methods and their application. Cambridge University
Press (1997)

[22] Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research 7, 1–30 (2006)

[23] Derrac, J., García, S., Hui, S., Suganthan, P.N., Herrera, F.: Analyzing convergence perfor-
mance of evolutionary algorithms: A statistical approach. Information Sciences 289, 41–58
(2014)

[24] Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonpara-
metric statistical tests as a methodology for comparing evolutionary and swarm intelligence
algorithms. Swarm and Evolutionary Computation 1(1), 3–18 (2011).

[25] Eiben, A., Jelasity, M.: A critical note on experimental research methodology in EC. In:
Proceedings of the 2002 IEEECongress on Evolutionary Computation. Institute of Electrical
& Electronics Engineers (IEEE) (2002).

[26] Fieller, E.C.: Some problems in interval estimation. Journal of the Royal Statistical Society.
Series B (Methodological) 16(2), 175–185 (1954)

[27] Franz, V.: Ratios: A short guide to confidence limits and proper use (2007). URL https:
//arxiv.org/pdf/0710.2024v1.pdf

[28] García, S., Fernández, A., Luengo, J., Herrera, F.: A study of statistical techniques and
performance measures for genetics-based machine learning: accuracy and interpretability. Soft
Computing 13(10), 959–977 (2009).

[29] García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multi-
ple comparisons in the design of experiments in computational intelligence and data mining:
Experimental analysis of power. Information Sciences 180(10), 2044–2064 (2010).

[30] García, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests
for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special
session on real parameter optimization. Journal of Heuristics 15(6), 617–644 (2008).

29



[31] Grissom, R.J., Kim, J.J.: Effect Sizes for Research, 2nd edn. Routledge (2012)

[32] Hansen, N., Auger, A., Mersmann, O., Tusar, T., Brockhoff, D.: COCO: A platform for
comparing continuous optimizers in a black-box setting. CoRR abs/1603.08785 (2016). URL
http://arxiv.org/abs/1603.08785
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1 Detailed Derivation of the number of Repetitions

1.1 Using the Simple Difference of Two Means
Assume that we are interested in using the simple difference of mean performance between algo-
rithms a1, a2 on each instance as our values of φj . In this case we define φj = µ2j − µ1j , for which
the sample estimator is given by

φ̂
(1)
j = ∆̂µ = µ̂2j − µ̂1j = X̄2j − X̄1j , (1)

where X̄ij is the sample mean of algorithm ai on instance γj . Let the distribution of performance
values of algorithm ai on instance γj be expressed as an (unknown) probability density function
with expected value µij and variance σ2

ij , i.e.,

xij ∼ Xij = P
(
µij , σ

2
ij

)
.

Assuming that the conditions of the Central Limit Theorem hold, we expect X̄ij ∼ N
(
µij , σ

2
ij/nij

)

and, consequently,

φ̂
(1)
j ∼ N

(
µ2j − µ1j ,

σ2
1j

n1j
+
σ2
2j

n2j

)
. (2)

By definition, the standard error of φ̂(1)j is the standard deviation of this sampling distribution
of the estimator,

se
φ̂
(1)
j

=
√
σ2
1jn

−1
1j + σ2

2jn
−1
2j .

Given a desired upper limit for the standard error, se∗, the optimal sample sizes for the two
algorithms a1, a2 on instance γj can be obtained by solving the optimization problem defined as

Minimize: f(nj) = n1j + n2j ,

Subject to: g(nj) = se
φ̂
(1)
j
− se∗ ≤ 0.

(3)
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This problem can be solved analytically1 using the Karush-Kuhn-Tucker (KKT) optimality
conditions,

∇f(nj) + β∇g(nj) = 0,

βg(nj) = 0,

β ≥ 0.

(4)

The partial derivatives of the objective and constraint functions are
∂f

∂n1j
=

∂f

∂n2j
= 1,

∂g

∂n1j
= −

σ2
1j

n21j

√
σ2
1jn

−1
1j + σ2

2jn
−1
2j

,

∂g

∂n2j
= −

σ2
2j

n22j

√
σ2
1jn

−1
1j + σ2

2jn
−1
2j

.

(5)

Substituting the derivatives in (5) into (4) and simplifying the terms results in the system:

βσ2
1jn

−2
1j = 1, (6)

βσ2
2jn

−2
2j = 1, (7)

σ2
1jn

−1
1j + σ2

2jn
−1
2j = (se∗)

2
, (8)

with β > 0 (simple inspection of (6) shows β = 0 to be an impossibility). Equating the l.h.s. of (6)
with that of (7) and rearranging the terms yields the optimal ratio of sample sizes,

ropt =
n1j
n2j

=
σ1j
σ2j

, (9)

which means that algorithms a1 and a2 must be sampled on instance γj in direct proportion to
the standard deviations of their performances on that instance. The result in (9) is known in
the statistical literature [9] as the optimal allocation of resources for the estimation of confidence
intervals on the simple difference of two means.

Since the populational variances σ2
1j , σ

2
2j are usually unknown, their values need to be estimated

from the data. This results in the sample standard error,

ŝe
φ̂
(1)
j

=
√
s21jn

−1
1j + s22jn

−1
2j . (10)

A good approximation of the optimal ratio of sample sizes can be similarly obtained by replacing
σij by sij in (9). This requires that an initial sample size n0 be obtained for each algorithm, to
calculate initial estimates of s1j , s2j2, suggesting the iterative procedure described in Algorithm 1,
where Sample(ai, γj , n times) means to obtain n observations of algorithm ai on instance γj . To
prevent an explosion of the number of repetitions in the case of poorly specified threshold values
se∗ or particularly high-variance algorithms, a maximum budget nmax can also be defined for the
sampling on a given problem instance.

After performing the procedure shown in Algorithm 1, the estimate φ̂j can be calculated using
the vectors of observations x1j and x2j .

1Actually we solve a relaxed version of the problem which admits non-integer nij .
2The definition of an initial value of n0 also helps increasing the probability that the sampling distributions of

the means will be approximately normal.
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Algorithm 1 Sample algorithms on one instance.
Require: Instance γj ; Algorithms a1, a2; accuracy threshold se∗; initial sample size n0; maximum

sample size nmax.
1: x1j ← Sample(a1, γj , n0 times)
2: x2j ← Sample(a2, γj , n0 times)
3: n1j ← n0
4: n2j ← n0
5: Calculate ŝe
6: while (ŝe > se∗) & (n1j + n2j < nmax) do
7: Calculate ropt
8: if (n1j/n2j < ropt) then
9: x← Sample(a1, γj , 1 time)

10: x1j ← [x1j , x]
11: else
12: x← Sample(a2, γj , 1 time)
13: x2j ← [x2j , x]
14: end if
15: Calculate ŝe
16: end while
17: return x1j , x2j

1.2 Using the Percent Difference of Two Means
While the approach of defining φj as the simple difference between the means of algorithms a1, a2 on
a given instance γj is certainly useful, it may be subject to some difficulties. In particular, defining
a single precision threshold se∗ for problem classes containing instances with vastly different scales
can be problematic and lead to wasteful sampling. In these cases, it is generally more practical and
more intuitive to define the differences in performance φj as the percent mean gains of algorithm
a2 over a1. In this case we define3 φj = (µ2j − µ1j) /µ1j , for which the sample estimator is

φ̂
(2)
j = ∆̂µ(%) =

X̄2j − X̄1j

X̄1j
=
φ̂
(1)
j

X̄1j
(11)

For this definition to be used we need to consider an additional assumption, namely that
P (X̄1j ≤ 0) → 0 (which is guaranteed, for instance, when objective function values are always
strictly positive, which is common in several problem classes).4 The distribution of φ(1)j is given
in (2), which means that under our working assumptions φ̂(2)j is distributed as the ratio of two
independent normal variables.5

A commonly used estimator of the standard error of φ̂(2)j is based on confidence interval deriva-
tions by Fieller [7]. Considering the assumption that P (X̄1j ≤ 0)→ 0, a simplified form of Fieller’s

3Considering a comparison where larger is better.
4If this assumption cannot be guaranteed, the use of percent differences is not advisable, and the researcher should

instead perform comparisons using the simple differences.
5The independence between φ(1)j and X̄1j is guaranteed as long as X1j and X2j are independent.
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estimator can be used [8], which provides good coverage properties. Under balanced sampling, i.e.,
n1j = n2j = nj , the standard error is given as

ŝe
φ̂
(2)
j

=
∣∣∣φ̂(2)j

∣∣∣



s21j/nj

x̄21j
+

(
s21j/nj + s22j/nj

)
(
φ̂
(1)
j

)2 +
2

nj

cov (x1j , (x2j − x1j))

φ̂
(1)
j x̄1j




1/2

, (12)

where xij ∈ Rnj represents the vector of observations of algorithm ai on instance γj ; and cov (·, ·)
is the sample covariance of two vectors.

Under the assumption of within-instance independence, i.e., that X1j and X2j are independent,
the expected value of covariance will be close to zero, allowing us to disregard the covariance term in
(12). This offers two advantages: first, it simplifies calculations of the standard error, particularly
for larger sample sizes. Second, and more importantly, it allows us to consider unbalanced sampling,
as we did for the case of simple differences, which can lead to gains in efficiency. Removing the
covariance term, replacing the nj dividing each sample standard deviation by the corresponding
nij and simplifying (12) results in

ŝe
φ̂
(2)
j

=
∣∣∣φ̂(2)j

∣∣∣
√
c1n

−1
1j + c2n

−1
2j , (13)

with

c1 = s21j

[(
φ̂
(1)
j

)−2

+ (x̄1j)
−2

]
;

c2 = s22j

(
φ̂
(1)
j

)−2

.

(14)

The problem of calculating the smallest total sample size required to achieve a desired accuracy
is equivalent to the one stated in (3) (substituting ŝe

φ̂
(1)
j

by ŝe
φ̂
(2)
j

in the constraint function) and
can be solved in a similar manner to yield the optimal ratio of sample sizes in the case of percent
differences.

The partial derivatives of f (nj) and g (nj) are:

∂f

∂n1j
=

∂f

∂n2j
= 1,

∂g

∂n1j
= −

c1

∣∣∣φ̂(2)j
∣∣∣

2n21j

√
c1n

−1
1j + c2n

−1
2j

,

∂g

∂n2j
= −

c2

∣∣∣φ̂(2)j
∣∣∣

2n22j

√
c1n

−1
1j + c2n

−1
2j

.

(15)

Using these results in (4) results in the system

βc1

∣∣∣φ̂(2)j
∣∣∣ = 2n21j

√
c1n

−1
1j + c2n

−1
2j , (16)

βc2

∣∣∣φ̂(2)j
∣∣∣ = 2n22j

√
c1n

−1
1j + c2n

−1
2j . (17)

∣∣∣φ̂(2)j
∣∣∣
√
c1n

−1
1j + c2n

−1
2j = se∗, (18)

4



with β > 0 (again, simple inspection of (16) shows β = 0 to be impossible). Dividing (16) by (17)
yields the optimal sample size ratio,

ropt =
n1j
n2j

=

√
c1

c2
=
s1j
s2j

√
1 +

(
φ̂
(2)
j

)2
(19)

The expressions in (13) and (19) can be used directly into Algorithm 1, so that the adequate
sample sizes for obtaining an estimate φ̂(2)j with a standard error controlled at a given threshold
se∗ can be iteratively generated.

2 Quick Use Guide for Running Experiments

2.1 Introduction
This document provides a quick use guide to the methodology described in the main text of “Sample
size estimation for power and accuracy in the experimental comparison of algorithms”. This guide
covers the main concepts needed for using the proposed methodology to design and run comparative
experiments on algorithms, with references to the specific sections of the main text where the
concepts are introduced, as well as instructions on how to perform each step using the routines
implemented in the CAISEr package [1].

Two use cases are covered, and for each one we prepared a description that is independent of
the other two. While this resulted in some amount of repetition, we opted for this strategy so as to
allow readers to select the section most similar to their intended use as a standalone “tutorial” for
the methodology. The use cases described here are not intended as an exhaustive list of possible
applications, but instead as an example of two experimental situations in which we believe the
proposed methodology can be useful.
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2.2 Use Case 1: Full Experimental Setup
The first use case covers the situation in which the experimenter wishes to design a comparative
experiment essentially from scratch: he or she has a certain problem class of interest; two algorithms
to be compared; and potential access to a certain number of problem instances, or maybe to an
instance generator. The researcher is interested in determining the smallest number of instances
required (for achieving certain statistical properties in the comparison) as well as the optimal num-
ber of runs of each algorithm on each instance. The need for these calculations arise, for example,
in computationally expensive contexts [3]. Typical cases include the comparison of algorithms for
problem classes in which evaluation of the objective or constraint functions are costly, e.g., applied
optimization based on numeric models [5]; or situations in which the algorithms need to run for a
very large number of iterations, e.g., when trying to solve very large instances of classic problems
in operations research [4].

2.3 Number of instances
To use the proposed methodology for determining a full experimental design, the researcher must
be able to provide some input values related to the desired statistical properties. First, to estimate
the smallest number of instances required for the experiment, the following information must be
provided:

• Desired significance level, α;

• Minimally relevant effect size (MRES), d∗;

• Desired statistical power, π∗;

• Direction of the alternative hypothesis (one sided or two-sided).

Some suggestions for setting reasonable values for the first three points are provided in Section
4.6 (“Defining reasonable experimental parameters”) of the main text, and a detailed description
of these concepts is available in Section 3 (“Relevant statistical concepts”). The definition of the
direction of the alternative hypotheses is related to the kind of question being asked in the experi-
ment: general questions of the type “is one of these methods better than the other in terms of mean
performance” should employ a two-sided alternative; whereas questions where there is a specific
direction of interest (such as “is method A better than method B in terms of mean performance”)
can benefit from using a one-sided alternative hypothesis, which allows using smaller sample sizes
to achieve the same statistical power.

Once the researcher has defined values for each point above, estimating the smallest required
number of instances to obtain the desired properties is just a matter of using the chosen values into
expressions (23) or (24) of the main text (Section 4.2, “Estimating the number of instances”).

If the CAISEr package is used, this can be done as follows. Here we assumed that the researcher
has set α = 0.05, π∗ = 0.85 and d∗ = 0.5, for a two-sided alternative hypothesis. In the R
environment, the smallest number of instances required for the experiment can be estimated as
follows:
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> install.packages("CAISEr") # To install from CRAN
> library(CAISEr) # Load package

# Calculate required number of instances, considering the t-test
> Ncalc <- calc_instances(power = 0.85,
+ d = 0.5,
+ sig.level = 0.05,
+ alternative = "two.sided",
+ test.type = "t.test")
> Ncalc$ninstances
[1] 38

that is, for the experiment to achieve the desired statistical properties (namely, to have an 85%
probability of detecting differences at least 0.5 standard deviations with a significance level 0.05) it
would require at least 38 instances, considering that the assumptions of the t-test will be valid. If
the researcher wants to be more conservative and not assume normality of the sampling distribution
of means, he or she could opt for calculating the sample size considering, e.g., the use of a Wilcoxon
Signed-ranks test, as discussed in Section 4.4.2 (“Nonparametric tests of hypotheses”) of the main
text. As mentioned in the main text, the number of instances in this case can be estimated
by multiplying the quantity calculated above by 1.16 and rounding up the resulting number of
instances; or, if the CAISEr package is used:

# Calculate required number of instances, considering Wilcoxon’s test
> Ncalc <- calc_instances(power = 0.85,
+ d = 0.5,
+ sig.level = 0.05,
+ alternative = "two.sided",
+ test.type = "wilcoxon")
> Ncalc$ninstances
[1] 45

which, as explained, requires a larger number of instances to be able to guarantee the same statistical
power.

2.4 Number of repetitions
After the number of instances is determined, the user can run the experiment using the proposed
methodology to iteratively estimate the required number of runs for each algorithm on each instance,
as described in Section 4.1 (“Estimating the number of repetitions”) of the main text. For that, the
following quantities must be defined:

• Accuracy threshold for the estimation, se∗;

• Initial number of repetitions, n0;

• Maximum allowed number of repetitions, nmax;
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• Type of paired difference to use (simple differences or percent gains)

Suggestions for setting the first three values are also provided in Section 4.6 (“Defining reasonable
experimental parameters”) of the main text, and a detailed description of these concepts is available
in Section 4.1 (“Estimating the number of repetitions”). The determination of which type of paired
difference to use depends on the way the researcher wants to quantify the differences in performance
between the two algorithms (namely, mean differences or mean percent gains).

After these values are chosen, the researcher is able to, for each instance included in the ex-
periment (ideally equal to or greater than the number calculated earlier), run each algorithm a
number of times iteratively determined so as to obtain estimates of performance difference with
the predefined precision se∗. This can be done by following the sampling procedure illustrated in
Algorithm 1 (Section 4.1, “Estimating the number of repetitions”) of the main text.

Using the implementation available in the CAISEr package to perform this step on a single
instance is straightforward. To illustrate it, we borrow an example from the documentation of
function optim of the standard R package stats, which is concerned with optimizing a 21-city
Traveling Salesman instance using Simulated Annealing. We assume, for the sake of simplicity,
that the experiment was concerned with comparing two configurations of Simulated Annealing
(varying only the Temp parameter). Both the algorithm runner and the instance are provided as
examples in the documentation of the CAISEr package. Supposing the researcher wants an accuracy
threshold se∗ = 0.01 on the percent gains of one configuration over the other; and that he or she
sets n0 = 20, nmax = 200, we have:

# Run both algorithm configurations on a single problem instance,
# with number of repetitions determined according to the
# proposed methodology
> algorithm1 <- list(FUN = "my.SANN", alias = "algo1",
+ Temp = 2000, budget = 10000)

> algorithm2 <- list(FUN = "my.SANN", alias = "algo2",
+ Temp = 4000, budget = 10000)

> instance <- list(FUN = "TSP.dist", mydist = datasets::eurodist)

> my.reps <- calc_nreps2(instance, algorithm1, algorithm2,
+ se.max = 0.01, dif = "perc",
+ method = "param", seed = 1234,
+ nstart = 20)

# Get summary
> cat("n1j =", my.reps$n1j, "\nn2j =", my.reps$n2j,
+ "\nphi_j =", my.reps$phi.est, "\nse =", my.reps$se)

n1j = 48
n2j = 41
phi_j = 0.05267972
se = 0.009958074

8



which shows that the second configuration (sampled 41 times) yielded routes that presented, on
average, 5.27% longer distances when compared to the first (sampled 48 times) for that particular
instance. As desired, the standard error of estimation was just below 0.01. The complete set of
results can be extracted from the output structure my.reps.

To run the complete experiment using the proposed methodology, the researcher simply needs
to sample each algorithm on each instance (again, ideally at least as many instances as determined
in the first part) using the proposed method for estimating the number of repetitions. This can
be achieved in the CAISEr package by repeatedly calling calc_nreps2(), as shown above, for each
instance; or by using the wrapper function run_experiment(), provided in the package.
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2.5 Use Case II: Using a Predefined Set of Benchmark Instances
The second use case covers the situation in which the experimenter wishes to compare two algorithms
for a given problem class using a predefined, fixed-size set of benchmark instances. This is a common
situation in several problem domains (e.g., scheduling problems [6] or multiobjective optimization
[2]). In these cases, the researcher does not need to calculate the number of instances for the
experiment, which is predefined for the experiment. The proposed methodology can nonetheless be
valuable as an experimental tool. Two elements of the experimental design that can be provided in
these cases are:

• Determination of the number of runs for each algorithm on each instance.

• Determination of the expected power of the experiment, i.e., its ability to detect differences
larger than a given minimally relevant effect size (MRES).

2.6 Number of repetitions
To perform the experiment using the proposed methodology to iteratively estimate the required
number of runs for each algorithm on each instance, the researcher must define the following quan-
tities, as presented in Section 4.1 (“Estimating the number of repetitions”) of the main text:

• Accuracy threshold for the estimation, se∗;

• Initial number of repetitions, n0;

• Maximum allowed number of repetitions, nmax;

• Type of paired difference to use (simple differences or percent gains)

Suggestions for setting the first three values are provided in Section 4.6 (“Defining reasonable
experimental parameters”) of the main text. The determination of which type of paired difference
to use depends on the way the researcher wants to quantify the differences in performance between
the two algorithms (namely, mean differences or mean percent gains), and a detailed description of
these concepts is available in Section 4.1 (“Estimating the number of repetitions”).

After these values are determined, the researcher is able to, for each instance of the benchmark
set, run each algorithm a number of times iteratively determined so as to obtain estimates of
performance difference with the predefined precision se∗. This can be done by following the sampling
procedure illustrated in the Algorithm 1 of the main text.

Using the implementation available in the R package CAISEr to adaptively sample two algo-
rithms on a single instance is straightforward. To illustrate it, we borrow an example from the
documentation of function optim of the standard R package stats, which is concerned with opti-
mizing a 21-city Traveling Salesman instance using Simulated Annealing. We assume, for the sake
of simplicity, that the experiment was concerned with comparing two configurations of Simulated
Annealing (varying only the Temp parameter). Both the algorithm runner and the instance are
provided as examples in the documentation of the CAISEr package. Supposing the researcher wants
an accuracy threshold se∗ = 0.01 on the percent gains of one configuration over the other; and that
he or she sets n0 = 20, nmax = 200, we have:
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# Run both algorithm configurations on a single problem instance,
# with number of repetitions determined according to the
# proposed methodology
> algorithm1 <- list(FUN = "my.SANN", alias = "algo1",
+ Temp = 2000, budget = 10000)

> algorithm2 <- list(FUN = "my.SANN", alias = "algo2",
+ Temp = 4000, budget = 10000)

> instance <- list(FUN = "TSP.dist", mydist = datasets::eurodist)

> my.reps <- calc_nreps2(instance, algorithm1, algorithm2,
+ se.max = 0.01, dif = "perc",
+ method = "param", seed = 1234,
+ nstart = 20)

# Get summary
> cat("n1j =", my.reps$n1j, "\nn2j =", my.reps$n2j,
+ "\nphi_j =", my.reps$phi.est, "\nse =", my.reps$se)

n1j = 48
n2j = 41
phi_j = 0.05267972
se = 0.009958074

which shows that the second configuration (sampled 41 times) yielded routes that presented, on
average, 5.27% longer distances when compared to the first (sampled 48 times) for that particular
instance. As desired, the standard error of estimation was just below 0.01. The complete set of
results can be extracted from the output structure my.reps.

To run the complete experiment using the proposed methodology, the researcher simply needs
to sample each algorithm on each instance (again, ideally at least as many instances as determined
in the first part) using the proposed method for estimating the number of repetitions. This can
be achieved in the CAISEr package by repeatedly calling calc_nreps2(), as shown above, for each
instance; or by using the wrapper function run_experiment(), provided in the package.

2.7 Power estimation
When a predefined test set needs to be used for the experiment, the researcher has no control
over the number of instances to be employed. In these cases, the method used for estimating the
number of instances in the proposed methodology can be used instead to estimate the statistical
power of the experiment, as explained in Section 4.5 (“The case of predefined N ”) of the main text.
To estimate the power of a given experiment a priori, the researcher must provide the following
information:

• Number of instances to be used, N ;
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• Desired significance level, α;

• Minimally relevant effect size (MRES), d∗;

• Direction of the alternative hypothesis (one sided or two-sided).

In the case of a fixed benchmark set, the value of N is simply the number of available instances
in the set. Some suggestions for setting reasonable values for the second and third points are
provided in Section 4.6 (“Defining reasonable experimental parameters”) of the main text, and a
detailed description of these concepts is available in Section 3 (“Relevant statistical concepts”). The
definition of the direction of the alternative hypotheses is related to the kind of question being asked
in the experiment: general questions of the type “is one of these methods better than the other in
terms of mean performance” should employ a two-sided alternative; whereas questions where there
is a specific direction of interest (such as “is method A better than method B in terms of mean
performance”) can benefit from using a one-sided alternative hypothesis, which allows using smaller
sample sizes to achieve the same statistical power.

After these values are defined, the researcher can simply compute the integral in Equation (22)
(Section 4.2, “Estimating the number of instances”, of the main text) to compute the power of the
experiment, i.e., its sensitivity to detect differences of at least d∗ under significance level α. Using
the implementation provided in the CAISEr package, this can be done quite easily. Assuming the
researcher has a benchmark set composed of N = 100 instances, and that the other experimental
parameters were set as α = 0.01, d∗ = 0.25, and that he or she intends to use a test with a one-sided
alternative, we have:

> my.power <- calc_instances(ninstances = 100,
+ d = 0.25,
+ sig.level = 0.01,
+ alternative = "one.sided",
+ test.type = "t.test")
>
> my.power$power
[1] 0.5554571

that is, a 100-instance benchmark set will have a power of π∗ u 0.55 to detect standardized
differences of d∗ = 0.25 under a significance level of α = 0.01 using a one-sided alternative hypothesis
(the power is even lower if a two-sided alternative is used). To obtain a more detailed power profile
for the experiment the researcher can iterate over different possible values of d∗ to obtain a power
curve for this experiment, as outlined in Section 4.5 (“The case of predefined N ”) of the main text.
Using CAISEr yields a summary table and a power curve:
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> my.pc <- calc_power_curve(ninstances = 100,
+ sig.level = 0.01,
+ alternative = "one.sided",
+ test.type = "t.test",
+ d.range = c(0.05, 0.5),
+ npoints = 300)

> plot(my.pc, highlights = c(.25, .5, .8, .95))
#====================================
Number of points: 300
power = 0.25 for d = 0.17
power = 0.5 for d = 0.24
power = 0.8 for d = 0.32
power = 0.95 for d = 0.4
#====================================
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Figure 1: Power curve for the 100-instance example.

This result informs the researcher regarding which effect sizes the experiment would actually be
capable of identifying. This information can be useful, e.g., in determining how to interpret eventual
failures to reject the null hypothesis6, enabling the researcher to infer, at least qualitatively, upper
bounds for possibly-undetected differences in mean performance of the algorithms.

6Understanding that failure to detect differences is different from establishing equivalence.
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3 Results Table and plots for Experiment 2

Table 1: Summary of results obtained in Experiment 2.

Instance φ̂j ŝe
φ̂j

n1j n2j

1 I_100_10_S_1-124_1 -0.23 0.05 17.00 15.00
2 I_100_10_S_1-124_2 -0.18 0.04 15.00 15.00
3 I_100_10_S_1-49_1 -0.25 0.04 15.00 15.00
4 I_100_10_S_1-49_2 -0.32 0.05 15.00 15.00
5 I_100_10_S_1-9_1 -0.28 0.04 15.00 15.00
6 I_100_10_S_1-9_2 -0.32 0.04 15.00 15.00
7 I_100_10_S_1-99_1 -0.24 0.05 18.00 16.00
8 I_100_10_S_1-99_2 -0.25 0.04 15.00 15.00
9 I_100_15_S_1-124_1 -0.30 0.05 15.00 15.00
10 I_100_15_S_1-124_2 -0.27 0.04 15.00 15.00
11 I_100_15_S_1-49_1 -0.31 0.05 15.00 15.00
12 I_100_15_S_1-49_2 -0.27 0.04 15.00 15.00
13 I_100_15_S_1-9_1 -0.39 0.05 16.00 15.00
14 I_100_15_S_1-9_2 -0.39 0.03 15.00 15.00
15 I_100_15_S_1-99_1 -0.25 0.04 15.00 15.00
16 I_100_15_S_1-99_2 -0.35 0.04 15.00 15.00
17 I_100_20_S_1-124_1 -0.34 0.04 15.00 15.00
18 I_100_20_S_1-124_2 -0.35 0.04 15.00 15.00
19 I_100_20_S_1-49_1 -0.39 0.04 15.00 15.00
20 I_100_20_S_1-49_2 -0.38 0.05 18.00 15.00
21 I_100_20_S_1-9_1 -0.48 0.05 33.00 15.00
22 I_100_20_S_1-9_2 -0.50 0.05 16.00 15.00
23 I_100_20_S_1-99_1 -0.36 0.05 19.00 15.00
24 I_100_20_S_1-99_2 -0.35 0.05 20.00 15.00
25 I_100_25_S_1-124_1 -0.40 0.05 21.00 15.00
26 I_100_25_S_1-124_2 -0.40 0.04 15.00 15.00
27 I_100_25_S_1-49_1 -0.49 0.05 15.00 15.00
28 I_100_25_S_1-49_2 -0.47 0.05 20.00 15.00
29 I_100_25_S_1-9_1 -0.57 0.05 42.00 15.00
30 I_100_25_S_1-9_2 -0.57 0.05 33.00 15.00
31 I_100_25_S_1-99_1 -0.44 0.05 21.00 15.00
32 I_100_25_S_1-99_2 -0.43 0.04 15.00 15.00
33 I_100_30_S_1-124_1 -0.43 0.04 15.00 15.00
34 I_100_30_S_1-124_2 -0.49 0.05 16.00 15.00
35 I_100_30_S_1-49_1 -0.48 0.05 22.00 15.00
36 I_100_30_S_1-49_2 -0.55 0.05 34.00 15.00
37 I_100_30_S_1-9_1 -0.57 0.05 26.00 15.00
38 I_100_30_S_1-9_2 -0.58 0.05 26.00 15.00
39 I_100_30_S_1-99_1 -0.45 0.04 15.00 15.00
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Table 1 – Continued from previous page

Instance φ̂j ŝe
φ̂j

n1j n2j

40 I_100_30_S_1-99_2 -0.45 0.05 30.00 15.00
41 I_150_10_S_1-124_1 -0.13 0.04 15.00 15.00
42 I_150_10_S_1-124_2 -0.15 0.03 15.00 15.00
43 I_150_10_S_1-49_1 -0.19 0.04 15.00 15.00
44 I_150_10_S_1-49_2 -0.21 0.04 15.00 15.00
45 I_150_10_S_1-9_1 -0.24 0.03 15.00 15.00
46 I_150_10_S_1-9_2 -0.31 0.03 15.00 15.00
47 I_150_10_S_1-99_1 -0.13 0.04 15.00 15.00
48 I_150_10_S_1-99_2 -0.21 0.03 15.00 15.00
49 I_150_15_S_1-124_1 -0.25 0.05 15.00 15.00
50 I_150_15_S_1-124_2 -0.21 0.05 15.00 15.00
51 I_150_15_S_1-49_1 -0.31 0.04 15.00 15.00
52 I_150_15_S_1-49_2 -0.25 0.04 15.00 15.00
53 I_150_15_S_1-9_1 -0.41 0.05 16.00 15.00
54 I_150_15_S_1-9_2 -0.39 0.05 15.00 15.00
55 I_150_15_S_1-99_1 -0.26 0.03 15.00 15.00
56 I_150_15_S_1-99_2 -0.25 0.04 15.00 15.00
57 I_150_20_S_1-124_1 -0.30 0.04 15.00 15.00
58 I_150_20_S_1-124_2 -0.30 0.05 15.00 15.00
59 I_150_20_S_1-49_1 -0.41 0.05 18.00 15.00
60 I_150_20_S_1-49_2 -0.36 0.03 15.00 15.00
61 I_150_20_S_1-9_1 -0.46 0.04 15.00 15.00
62 I_150_20_S_1-9_2 -0.52 0.05 18.00 15.00
63 I_150_20_S_1-99_1 -0.31 0.04 15.00 15.00
64 I_150_20_S_1-99_2 -0.24 0.04 15.00 15.00
65 I_150_25_S_1-124_1 -0.41 0.04 15.00 15.00
66 I_150_25_S_1-124_2 -0.37 0.05 15.00 15.00
67 I_150_25_S_1-49_1 -0.38 0.03 15.00 15.00
68 I_150_25_S_1-49_2 -0.40 0.04 15.00 15.00
69 I_150_25_S_1-9_1 -0.53 0.05 19.00 15.00
70 I_150_25_S_1-9_2 -0.49 0.05 17.00 15.00
71 I_150_25_S_1-99_1 -0.31 0.04 15.00 15.00
72 I_150_25_S_1-99_2 -0.32 0.05 15.00 15.00
73 I_150_30_S_1-124_1 -0.39 0.05 16.00 15.00
74 I_150_30_S_1-124_2 -0.42 0.05 21.00 15.00
75 I_150_30_S_1-49_1 -0.43 0.04 15.00 15.00
76 I_150_30_S_1-49_2 -0.43 0.03 15.00 15.00
77 I_150_30_S_1-9_1 -0.52 0.05 16.00 15.00
78 I_150_30_S_1-9_2 -0.59 0.05 19.00 15.00
79 I_150_30_S_1-99_1 -0.38 0.05 17.00 15.00
80 I_150_30_S_1-99_2 -0.36 0.05 16.00 15.00
81 I_200_10_S_1-124_1 -0.23 0.05 21.00 15.00
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Table 1 – Continued from previous page

Instance φ̂j ŝe
φ̂j

n1j n2j

82 I_200_10_S_1-124_2 -0.19 0.04 15.00 15.00
83 I_200_10_S_1-49_1 -0.18 0.02 15.00 15.00
84 I_200_10_S_1-49_2 -0.14 0.04 15.00 15.00
85 I_200_10_S_1-9_1 -0.19 0.03 15.00 15.00
86 I_200_10_S_1-9_2 -0.17 0.03 15.00 15.00
87 I_200_10_S_1-99_1 -0.14 0.03 15.00 15.00
88 I_200_10_S_1-99_2 -0.17 0.03 15.00 15.00
89 I_200_15_S_1-124_1 -0.26 0.03 15.00 15.00
90 I_200_15_S_1-124_2 -0.21 0.03 15.00 15.00
91 I_200_15_S_1-49_1 -0.31 0.04 15.00 15.00
92 I_200_15_S_1-49_2 -0.25 0.04 15.00 15.00
93 I_200_15_S_1-9_1 -0.35 0.05 20.00 15.00
94 I_200_15_S_1-9_2 -0.28 0.03 15.00 15.00
95 I_200_15_S_1-99_1 -0.30 0.04 15.00 15.00
96 I_200_15_S_1-99_2 -0.21 0.04 15.00 15.00
97 I_200_20_S_1-124_1 -0.25 0.05 15.00 15.00
98 I_200_20_S_1-124_2 -0.26 0.03 15.00 15.00
99 I_200_20_S_1-49_1 -0.37 0.03 15.00 15.00
100 I_200_20_S_1-49_2 -0.33 0.04 15.00 15.00
101 I_200_20_S_1-9_1 -0.37 0.04 15.00 15.00
102 I_200_20_S_1-9_2 -0.42 0.04 15.00 15.00
103 I_200_20_S_1-99_1 -0.27 0.04 15.00 15.00
104 I_200_20_S_1-99_2 -0.27 0.03 15.00 15.00
105 I_200_25_S_1-124_1 -0.35 0.05 15.00 15.00
106 I_200_25_S_1-124_2 -0.26 0.03 15.00 15.00
107 I_200_25_S_1-49_1 -0.39 0.03 15.00 15.00
108 I_200_25_S_1-49_2 -0.30 0.03 15.00 15.00
109 I_200_25_S_1-9_1 -0.45 0.04 15.00 15.00
110 I_200_25_S_1-9_2 -0.37 0.04 15.00 15.00
111 I_200_25_S_1-99_1 -0.30 0.03 15.00 15.00
112 I_200_25_S_1-99_2 -0.33 0.04 15.00 15.00
113 I_200_30_S_1-124_1 -0.30 0.03 15.00 15.00
114 I_200_30_S_1-124_2 -0.33 0.04 15.00 15.00
115 I_200_30_S_1-49_1 -0.42 0.04 15.00 15.00
116 I_200_30_S_1-49_2 -0.37 0.05 15.00 15.00
117 I_200_30_S_1-9_1 -0.52 0.03 15.00 15.00
118 I_200_30_S_1-9_2 -0.51 0.04 15.00 15.00
119 I_200_30_S_1-99_1 -0.35 0.03 15.00 15.00
120 I_200_30_S_1-99_2 -0.36 0.03 15.00 15.00
121 I_250_10_S_1-124_1 -0.15 0.02 15.00 15.00
122 I_250_10_S_1-124_2 -0.14 0.02 15.00 15.00
123 I_250_10_S_1-49_1 -0.15 0.03 15.00 15.00
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Table 1 – Continued from previous page

Instance φ̂j ŝe
φ̂j

n1j n2j

124 I_250_10_S_1-49_2 -0.17 0.02 15.00 15.00
125 I_250_10_S_1-9_1 -0.16 0.02 15.00 15.00
126 I_250_10_S_1-9_2 -0.23 0.04 15.00 15.00
127 I_250_10_S_1-99_1 -0.17 0.02 15.00 15.00
128 I_250_10_S_1-99_2 -0.18 0.02 15.00 15.00
129 I_250_15_S_1-124_1 -0.21 0.03 15.00 15.00
130 I_250_15_S_1-124_2 -0.19 0.03 15.00 15.00
131 I_250_15_S_1-49_1 -0.22 0.02 15.00 15.00
132 I_250_15_S_1-49_2 -0.26 0.04 15.00 15.00
133 I_250_15_S_1-9_1 -0.27 0.03 15.00 15.00
134 I_250_15_S_1-9_2 -0.25 0.04 15.00 15.00
135 I_250_15_S_1-99_1 -0.24 0.04 15.00 15.00
136 I_250_15_S_1-99_2 -0.17 0.03 15.00 15.00
137 I_250_20_S_1-124_1 -0.19 0.04 15.00 15.00
138 I_250_20_S_1-124_2 -0.28 0.03 15.00 15.00
139 I_250_20_S_1-49_1 -0.24 0.02 15.00 15.00
140 I_250_20_S_1-49_2 -0.27 0.03 15.00 15.00
141 I_250_20_S_1-9_1 -0.32 0.04 15.00 15.00
142 I_250_20_S_1-9_2 -0.34 0.04 15.00 15.00
143 I_250_20_S_1-99_1 -0.26 0.03 15.00 15.00
144 I_250_20_S_1-99_2 -0.24 0.03 15.00 15.00
145 I_250_25_S_1-124_1 -0.24 0.05 16.00 15.00
146 I_250_25_S_1-124_2 -0.28 0.04 15.00 15.00
147 I_250_25_S_1-49_1 -0.31 0.03 15.00 15.00
148 I_250_25_S_1-49_2 -0.30 0.03 15.00 15.00
149 I_250_25_S_1-9_1 -0.37 0.03 15.00 15.00
150 I_250_25_S_1-9_2 -0.39 0.03 15.00 15.00
151 I_250_25_S_1-99_1 -0.24 0.03 15.00 15.00
152 I_250_25_S_1-99_2 -0.29 0.03 15.00 15.00
153 I_250_30_S_1-124_1 -0.27 0.03 15.00 15.00
154 I_250_30_S_1-124_2 -0.33 0.04 15.00 15.00
155 I_250_30_S_1-49_1 -0.30 0.03 15.00 15.00
156 I_250_30_S_1-49_2 -0.35 0.04 15.00 15.00
157 I_250_30_S_1-9_1 -0.43 0.05 15.00 15.00
158 I_250_30_S_1-9_2 -0.40 0.03 15.00 15.00
159 I_250_30_S_1-99_1 -0.31 0.03 15.00 15.00
160 I_250_30_S_1-99_2 -0.33 0.02 15.00 15.00
161 I_50_10_S_1-124_1 -0.30 0.05 16.00 16.00
162 I_50_10_S_1-124_2 -0.27 0.05 15.00 15.00
163 I_50_10_S_1-49_1 -0.31 0.05 16.00 15.00
164 I_50_10_S_1-49_2 -0.37 0.05 40.00 15.00
165 I_50_10_S_1-9_1 -0.37 0.05 35.00 15.00
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Table 1 – Continued from previous page

Instance φ̂j ŝe
φ̂j

n1j n2j

166 I_50_10_S_1-9_2 -0.42 0.04 15.00 15.00
167 I_50_10_S_1-99_1 -0.29 0.05 30.00 18.00
168 I_50_10_S_1-99_2 -0.32 0.04 15.00 15.00
169 I_50_15_S_1-124_1 -0.31 0.05 29.00 21.00
170 I_50_15_S_1-124_2 -0.42 0.05 31.00 15.00
171 I_50_15_S_1-49_1 -0.44 0.05 23.00 15.00
172 I_50_15_S_1-49_2 -0.43 0.05 45.00 15.00
173 I_50_15_S_1-9_1 -0.63 0.05 75.00 15.00
174 I_50_15_S_1-9_2 -0.54 0.05 21.00 15.00
175 I_50_15_S_1-99_1 -0.43 0.05 33.00 15.00
176 I_50_15_S_1-99_2 -0.44 0.05 29.00 15.00
177 I_50_20_S_1-124_1 -0.49 0.05 19.00 15.00
178 I_50_20_S_1-124_2 -0.49 0.05 21.00 15.00
179 I_50_20_S_1-49_1 -0.51 0.05 20.00 15.00
180 I_50_20_S_1-49_2 -0.50 0.04 15.00 15.00
181 I_50_20_S_1-9_1 -0.65 0.05 68.00 15.00
182 I_50_20_S_1-9_2 -0.63 0.05 25.00 15.00
183 I_50_20_S_1-99_1 -0.50 0.05 24.00 15.00
184 I_50_20_S_1-99_2 -0.48 0.05 26.00 15.00
185 I_50_25_S_1-124_1 -0.64 0.05 21.00 15.00
186 I_50_25_S_1-124_2 -0.58 0.05 39.00 15.00
187 I_50_25_S_1-49_1 -0.56 0.05 27.00 15.00
188 I_50_25_S_1-49_2 -0.56 0.05 35.00 15.00
189 I_50_25_S_1-9_1 -0.66 0.05 26.00 15.00
190 I_50_25_S_1-9_2 -0.66 0.05 33.00 15.00
191 I_50_25_S_1-99_1 -0.55 0.05 40.00 16.00
192 I_50_25_S_1-99_2 -0.53 0.05 18.00 15.00
193 I_50_30_S_1-124_1 -0.69 0.05 21.00 15.00
194 I_50_30_S_1-124_2 -0.70 0.05 48.00 15.00
195 I_50_30_S_1-49_1 -0.61 0.05 15.00 15.00
196 I_50_30_S_1-49_2 -0.67 0.05 15.00 15.00
197 I_50_30_S_1-9_1 -0.67 0.05 33.00 15.00
198 I_50_30_S_1-9_2 -0.66 0.05 38.00 15.00
199 I_50_30_S_1-99_1 -0.64 0.05 22.00 15.00
200 I_50_30_S_1-99_2 -0.68 0.05 19.00 15.00
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Figure 3: Mean makespan for each algorithm on each instance. Vertical bars represent 95% confi-
dence intervals (invisible if smaller than point size). Notice that there are two instances for each
tuple <M, N, SetupTimes> (overlapping in most plots)
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