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Abstract 34 

Indicators are effective tools for summarising and communicating key aspects of ecosystem 35 
state and have a long record of use in marine pollution and fisheries management. The 36 
application of biodiversity indicators to assess the status of species, habitats, and functional 37 
diversity in marine conservation and policy, however, is still developing and multiple 38 
indicator roles and features are emerging. For example, some operational biodiversity 39 
indicators trigger management action when a threshold is reached, while others play an 40 
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interpretive, or surveillance, role in informing management. Links between biodiversity 41 
indicators and the pressures affecting them are frequently unclear as links can be obscured 42 
by environmental change, data limitations, food web dynamics, or the cumulative effects of 43 
multiple pressures. In practice, the application of biodiversity indicators to meet marine 44 
conservation policy and management demands is developing rapidly in the management 45 
realm, with a lag before academic publication detailing indicator development. Making best 46 
use of biodiversity indicators depends on sharing and synthesising cutting-edge knowledge 47 
and experience. Using lessons learned from the application of biodiversity indicators in 48 
policy and management from around the globe, we define the concept of ‘biodiversity 49 
indicators’, explore barriers to their use and potential solutions, and outline strategies for 50 
their effective communication to decision-makers.  51 

 52 

Introduction 53 

Threats to marine biodiversity, from human activities such as fishing, shipping, coastal 54 
development, and energy production and from indirect pressures, like climate change, are 55 
increasing (Halpern et al., 2015), with only 13% of the world ocean still considered 56 
unimpacted by humans, or ‘wild’ (Jones et al., 2018). The loss of marine biodiversity impacts 57 
the resilience of ecosystems and the ability to maintain essential ecosystem services that 58 
support human life, such as food provision and water quality maintenance (Worm et al., 59 
2006). The vulnerable state of global marine ecosystems and the need to sustainably 60 
monitor, assess, and manage habitats and species is increasingly recognised (Addison et al., 61 
2017). Consequently, the assessment of the state of marine biodiversity, with associated 62 
biodiversity management and conservation measures, is now explicitly articulated in 63 
national (Department of Environmental Affairs and Tourism, 2004; Natural Resource 64 
Management Ministerial Council, 2010; Defra, 2018), regional (Cartagena Convention, 1983; 65 
European Commission, 2008b; 2011), and international (United Nations, 2010; United 66 
Nations General Assembly, 2015) legislative mechanisms. These mechanisms address both 67 
marine policy (the setting of regulation through legislation) and management 68 
(implementation of management plans, monitoring, evaluation and reporting on the status 69 
of the marine environment).   70 

 ‘Biodiversity’ is ‘‘the variability among living organisms, from all sources, including, inter 71 
alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which 72 
they are part; this includes diversity within species, between species and of ecosystems’’ 73 
(Convention on Biological Diversity (CBD); United Nations, 1992). In other words, 74 
‘biodiversity’ refers broadly to all species and habitats in an ecosystem, rather than simply 75 
the number of taxa. This definition is broad, encompassing all marine and coastal species 76 
and habitats. It is impossible to monitor and assess the state of all aspects of marine 77 
biodiversity, so the complexity of biodiversity is typically reduced in dimension by using 78 
indicators to summarise its key aspects. Indicators are therefore frequently used in marine 79 
policy and management to assess and communicate change in ecosystem state. They are 80 
the primary tool for assessing progress towards the CBD Aichi targets, which aim to halt 81 
global biodiversity decline (Balmford et al., 2005; Tittensor et al., 2014; United Nations 82 
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General Assembly, 2015). Indicators as a concept have been used for decades in marine 83 
fisheries management (e.g., commercial fish stock management in South Africa and Europe 84 
(Plagányi et al., 2007; ICES, 2018), ecosystem-based fisheries management in Australia, New 85 
Zealand, the U.S.A., and Canada (Sainsbury et al., 2000; Link et al., 2002; Methratta and Link, 86 
2006; Fu et al., 2015),  in marine pollution regulation (e.g., assessment and management of 87 
marine sediment pollution in the North Sea (OSPAR, 2017k), and pollution assessment of 88 
fish, crustaceans, and molluscs in the Baltic Sea (HELCOM, 2018)).  89 

Unlike more established indicators in marine fisheries and pollution regulation, which are 90 
measurable against a clear objective or target, techniques to develop indicators and targets 91 
and to assess the status of marine biodiversity to inform biodiversity management more 92 
widely, however, are new but rapidly developing (e.g. Tam et al., 2017). In Europe, for 93 
example, the Marine Strategy Framework Directive (MSFD) uses biodiversity indicators to 94 
assess the state of marine habitats and species, with the overarching objective of achieving 95 
‘Good Environmental Status’ (GES) (European Commission, 2008b). Similarly in South Africa, 96 
the National Biodiversity Strategy and Action Plan aims to achieve ‘Good Ecological 97 
Condition’ which refers to ecosystems that are intact or largely intact with minimal 98 
modification from a natural condition (Department of Environmental Affairs, 2015). In the 99 
U.S., implementing the ecosystem-based approach to management has moved to the 100 
forefront of efforts, including the development of quantitative indicators and criteria that 101 
can be used to assess overall ecosystem status (Leslie and McLeod, 2007). Where ecological 102 
data are lacking, such as in South Africa,  expert judgement is often used to set targets for 103 
marine biodiversity indicators (e.g. Driver et al., 2011; Department of Environmental Affairs, 104 
2015). Under the MSFD, while some biodiversity indicators already have agreed quantitative 105 
targets for individual regions (Defra, 2012; HELCOM, 2018), targets for other regions or 106 
indicators are still in development.  Approaches to indicator development and target setting 107 
for effective management require not only a clear understanding of the system in question, 108 
which might need substantial amounts of data in some cases, but also explicit policy goals or 109 
objectives. These attributes may inhibit indicator development and policy uptake.  110 

In June 2018, international developers and users of marine biodiversity indicators 111 
participated in a symposium and focus group entitled “From science to evidence – 112 
innovative uses of biodiversity indicators for effective marine policy and conservation” as 113 
part of the 5th International Marine Conservation Congress (IMCC5) in Kuching, Malaysia. 114 
The mission of the symposium and focus group was to form a community of practice for 115 
both users and developers of biodiversity indicators for marine policy and conservation, and 116 
to provide a forum to share successes and failures in developing and applying these 117 
indicators. Themes emerged which are common across geographic regions and political 118 
scales. This paper uses lessons learned from the application of biodiversity indicators in 119 
policy from around the globe to define the concept of biodiversity indicators, explore and 120 
discuss barriers and solutions to their use, and outline strategies for their effective 121 
communication to policy-makers.  122 

Concept, use, and suitability of biodiversity indicators 123 
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The wide definition of the terms 'indicator' and ‘biodiversity’, as well as their broad 124 
applicability, can lead to confusion regarding the function of a biodiversity indicator. For 125 
instance, indicators can be defined simply as  a "quantitative or qualitative variable that 126 
provides reliable means to measure a particular phenomenon or attribute" (USAID, 2009) 127 
or, using a process-oriented definition, as a "quantitative or qualitative factor or variable 128 
that provides a simple and reliable means to measure achievement, to reflect changes 129 
connected to an intervention, or to help assess the performance of a development actor" 130 
(OECD, 2002). In a marine context, indicators have been defined as a tool “to monitor and 131 
assess the state of the marine environment and to manage human activities having an 132 
impact upon it” (European Commission, 2008b). Under the Convention of Biological 133 
Diversity (CBD), indicators are defined as tools “for assessing progress towards, and 134 
communicating the 2010s target at the global level” (United Nations Environment 135 
Programme, 2004), which hereby further extends their application and allows a broader use 136 
of terminology.  137 

A bibliographic analysis of > 2500 abstracts queried from the Web of Science database a 138 
difference in treatment of the term ‘biodiversity indicator’ between academic scientists, 139 
marine policy-makers and managers (Fig 1). In publications on marine systems, ‘ecosystem 140 
indicator’ is used more commonly and synonymously with ‘biodiversity indicator’, though 141 
the use of the ‘biodiversity indicator’ is increasing (see Fig. 1a). Overall, we found that 142 
depending on the purpose, region, or policy context, indicator terminologies can differ 143 
despite representing similar ecosystem/biodiversity components. Nevertheless, biodiversity 144 
indicators are still often represented by conventional diversity indices such as species 145 
richness or evenness. These indices can be highly useful for summarizing and assessing 146 
community structures such as biogenic reefs or infaunal communities and linking them to 147 
anthropogenic pressures such as trawling (Cook et al., 2013; Fariñas-Franco et al., 2014; van 148 
Loon et al., 2018). To provide sufficient information on ecosystem dynamics and processes 149 
for sound policy and management, however, other components such as biological trait 150 
diversity and ecosystem functioning can be similarly useful (Dıáz and Cabido, 2001; Juan et 151 
al., 2007; Bremner, 2008; Pacheco et al., 2011). 152 

The implementation of regional and international legislative frameworks has triggered a big 153 
rise in developing biodiversity indicators to determine the state of the ecosystem and its 154 
components in the last two decades. Publications on ‘ecological’, ‘ecosystem’, or 155 
‘biodiversity’ indicators started to increase in the early 1990s after the United Nations 156 
Conference on Environment and Development with the resulting ratification of the CBD (Fig. 157 
1a) (United Nations, 1992) and the publication of the Organization for Economic Co-158 
operation and Development (OECD) core set of indicators for environmental performance 159 
reviews (OECD, 1993). Publications addressing marine systems, however, started much 160 
later, in the mid-2000s, and so represent only 18% of all articles on biodiversity indicators, 161 
covering predominantly the temperate northern Atlantic ecoregion (see Fig. 1b).  162 

While the term ‘biodiversity’ may refer strictly to the diversity of biological components in 163 
an ecosystem, ‘biodiversity’ is increasingly used to reflect a much broader ecosystem view. 164 
This broader definition includes trophic interactions, network structure and system stability 165 
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or resilience (e.g. Samhouri et al., 2009; Dakos, 2011), which is in line with the Convention 166 
on Biodiversity’s definition of ‘biodiversity’, above, and is often used by applied scientists, 167 
policy-makers, and managers. It is this second definition of ‘biodiversity’ that is used 168 
throughout this paper, due to its frequency of use in conservation. While we do not want to 169 
ignite a discussion on terminology superiority, we want to highlight the importance of 170 
understanding biodiversity in a wider context and propose a more flexible approach to the 171 
term ‘biodiversity indicator’ that includes multiple concepts such as ecosystem structure 172 
and functioning (as outlined by the Essential Biodiversity Variables for policy; Pereira et al., 173 
2013). 174 

In recent decades, a variety of approaches for the use of indicators in the marine 175 
environment have emerged, particularly in the temperate northern Atlantic ecoregion, 176 
which is largely triggered by the implementation of regional and international legislative 177 
frameworks (Fig. 1). Table 1 illustrates some examples of the applied versatility of 178 
biodiversity indicators, providing a wide-range of evidence types, at different ecological and 179 
spatial scales, for the assessment and management of marine biodiversity within the 180 
context of the policy questions they aim to address. 181 

Despite the wide range of applications of biodiversity indicators observed during recent 182 
decades, specific selection criteria have been commonly accepted within the scientific 183 
community to determine indicator suitability for operational use. These include 184 
measurability, scientific basis, interpretability, and ease of communication, but also 185 
sensitivity and responsiveness to environmental changes, specificity, robustness with well-186 
known pressure-state relationships, and links to identified targets and thresholds (e.g. 187 
OECD, 1993; FAO, 1997; Rice and Rochet, 2005; Heink and Kowarik, 2010; Kershner et al., 188 
2011; Queirós et al., 2016; Otto et al., 2018a). Biodiversity indicators that address policy and 189 
management goals are likely to be most effective if the relevant stakeholders and decision-190 
makers also perceive them to be credible, salient and legitimate (Cash et al., 2003; van 191 
Oudenhoven et al., 2018). Linking indicators to environmental conditions and ideally to 192 
management measures requires a good understanding of indicator responses to pressures 193 
and a sound testing of indicator performance, which is often lacking for biodiversity 194 
indicators (Rossberg et al., 2017). Thus, new modelling approaches and decision support 195 
tools are emerging to tackle the performance evaluation of indicators for assessing the 196 
health status of marine ecosystem and biodiversity components (Hayes et al., 2015; Lynam 197 
et al., 2016; Otto et al., 2018a; Shin et al., 2018) (see also section Linking biodiversity 198 
indicators to ecosystem change). To complement assessments of state, additional pressure 199 
indicators can be useful, particularly to measure the impacts of human activities on the 200 
system when there can be a long time-lag before natural processes can be expected to 201 
respond (Rossberg et al., 2017). 202 

Indicators that lack a clear link to a defined pressure however can still contribute effectively 203 
to the assessment and management of biodiversity. These indicators without clear links to 204 
defined pressures, known as ‘surveillance indicators’ (Shephard et al., 2015), may not be 205 
able to be assessed against quantitative thresholds, but can still provide contextual 206 
information on either wider ecosystem impacts of pressures or underlying environmental 207 
change (Bedford et al., 2018). Critically, indicators used in a ‘surveillance’ context should still 208 
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increase the knowledge base from which to make management decisions. For example, a 209 
suite of ‘Essential Ocean Variables’ for biodiversity and ecosystem change has been 210 
identified by Miloslavich et al. (2018) to effectively reduce the complexity of ecosystem 211 
processes for a summary of ecosystem state. Although not linked to specific defined 212 
pressures, the impacts of both direct anthropogenic pressures and climate change on these 213 
ecosystem processes can be monitored and assessed, providing holistic surveillance 214 
information to support management.  215 
 216 
Biodiversity indicators in policy and management: needs, barriers, and solutions 217 

Indicator development is challenged by the need to establish associated targets, political 218 
acceptance, and evaluation of confidence to support widespread use for management of 219 
biodiversity (Table 2).  220 

Biodiversity indicators linked to policy and management 221 

Often, scientists develop biodiversity indicators in academia, usually to address a scientific 222 
problem but also to assess the ecosystem status within the context of specific policies, and 223 
then publish their results in the scientific literature. A recent review by Bal et al. (2018) 224 
showed that indicators (in this case, those based on species traits) developed in academia 225 
and reported in the scientific literature typically fail to address decision-making 226 
requirements for biodiversity management, with only 21% of studies detailing how 227 
indicators explicitly address policy objectives. This review clearly demonstrates the broad 228 
use of the term 'indicator', but it also shows that the academic approach to indicator 229 
development is often driven by scientific questions rather than a response to policy needs, 230 
or if policy-focused takes place outside the policy process. In such cases indicators are 231 
frequently not formally incorporated into the assessment of management objectives and 232 
targets (Bal et al., 2018). Regardless of the scientific soundness of an indicator, or even the 233 
appropriateness for a specific policy, the lack of involvement of end-users (e.g., marine 234 
managers, policy-makers, and stakeholders) during the development of indicators may 235 
result in unsuccessful implementation of the outputs or even the application and use of the 236 
indicator itself. 237 

A solution resulting in fit-for-purpose biodiversity indicators is to co-produce indicators, with 238 
scientists providing the scientific input and decision-makers providing the policy steer 239 
(Lemos and Morehouse, 2005; Hayes et al., 2015; Bolman et al., 2018; Cvitanovic and 240 
Hobday, 2018; de Juan et al., 2018). Co-production spans the science-policy interface and is 241 
an iterative process, with each party relying on the other’s experience and expertise to gain 242 
a deeper understanding of the current science and policy landscapes, opportunities, and 243 
limitations (Lemos and Morehouse, 2005). The co-production of biodiversity indicators has 244 
resulted in their successful use in marine policy and management (e.g., in Australia and 245 
Europe; Pocklington et al., 2012; OSPAR, 2017d). For example, biodiversity indicators 246 
developed for the 2017 OSPAR Intermediate Assessment followed this process (OSPAR, 247 
2017d). The indicators were developed by scientists with significant and consistent input 248 
from policy-makers to ensure the indicators fulfil policy obligations. As a result, the regional 249 
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biodiversity assessments can be used by EU member states for the fulfilment of the MSFD 250 
(OSPAR, 2017d).  251 

Data requirements for biodiversity indicators 252 

A basic requirement when developing a biodiversity indicator is an understanding of the 253 
types of data available and a critical evaluation of the temporal and spatial scales that are 254 
appropriate for the ecological processes being assessed and the pressures on the marine 255 
ecosystem. Large-scale monitoring programmes collecting time-series data are very rare, 256 
particularly in offshore areas, mainly due to the costs of data collection (Koslow and 257 
Couture, 2013). Marine monitoring needs to be well governed, cost-effective, organised, 258 
transparent, open, designed on a scientific basis, and “fit for purpose” (Turrell, 2018). 259 
Furthermore, data collection for biodiversity indicators ideally should be tailored to the 260 
policy questions the indicator is trying to address, for example by developing relevant 261 
sampling strategies and power analyses to establish the level of sampling effort required to 262 
detect community change at a particular scale.  263 

However, data-intensive indicators, even if they are high in confidence and accuracy, are not 264 
always practical for large scale biodiversity assessments, such as required for management 265 
of regional marine environments, especially for those ecosystem components for which 266 
monitoring is expensive. This lack of practicality is a particular challenge for evaluating 267 
ecological processes or distributional patterns of habitats or species which require 268 
monitoring surveys over a large spatial area as compared to verifying the presence of, for 269 
example, a sensitive species in an MPA (Barrio Froján, 2016). 270 

The costs of data collection can pose a barrier to indicator development, particularly for low 271 
income countries, which contain some of the world’s most diverse species and habitats 272 
(Tittensor et al., 2010; Ramírez et al., 2017), but are generally poorly monitored due to 273 
economic challenges and lack of infrastructure and scientific experts (Danielsen et al., 2000). 274 
While high-income countries tend to pose more threats to marine ecosystems (Beck et al., 275 
2011; Thurstan et al., 2013; Halpern et al., 2015; Fariñas-Franco et al., 2018), a lack of 276 
fundamental biodiversity research, capacity and coordination of information in low-income 277 
countries makes them highly vulnerable, particularly to climate change (Bellard et al., 2014). 278 
Many marine and coastal ecosystems are highly diverse, yet there is a lack of fundamental 279 
biodiversity research required to understand processes and species distributions in the 280 
marine environment (Griffiths et al., 2010). This lack of investment also extends to the 281 
capacity and coordination of marine biodiversity information within and outside of the 282 
scientific community which can prevent its use within decision-making (Atkinson et al., 2016).  283 

A solution to overcome data shortages or limitations to access, involves a pragmatic 284 
approach to indicator construction, together with good use of existing ecological datasets 285 
for the relatively new purpose of informing biodiversity indicators for policy and 286 
management. Data limitations often can be overcome by constructing indicators with the 287 
flexibility to use data from multiple sources (e.g. OSPAR, 2017g; h; b; a) or by using a risk 288 
based approach to identify areas where targeted, more intensive monitoring should be 289 
concentrated (Elliott et al., 2018).  290 
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Additional solutions include setting clear monitoring objectives and clearly articulating the 291 
decision context that defines the temporal and spatial requirements for management 292 
decisions. This will ensure that the data required to inform biodiversity indicators are 293 
collected in a cost efficient manner (Turrell, 2018). In cases where extensive monitoring data 294 
are needed but not practical to collect, the use of alternative data sources, such as Earth 295 
observation, rather than data solely collected via in situ monitoring, can facilitate regional 296 
biodiversity assessments (Bean et al., 2017; Strong and Elliott, 2017; Pettorelli et al., 2018). 297 
For example, models combining physical, geological and biological parameters are currently 298 
being used to evaluate the extent and distribution of benthic habitat types at regional scale 299 
(OSPAR, 2017b). Furthermore, modelled species distributions can provide data to develop 300 
indicators such as the presence/absence of species and biotopes based on their 301 
environmental preferences for areas where survey data are missing or limited in extent 302 
(Elith et al., 2006; Butchart et al., 2010). They can also help in identifying impact hot spots 303 
and evaluating management actions (Guisan et al., 2013). 304 

South African practice presents a possible solution to the challenges of monitoring marine 305 
biodiversity (Atkinson et al., 2016). Broad scale assessments of the state of South African 306 
marine ecosystems have been based on the Ocean Health Index method (Halpern et al., 307 
2008; Halpern et al., 2009) which uses cumulative human impacts in the absence of 308 
spatially-extensive biodiversity monitoring data. This method can enable low income 309 
countries and other regions with limited biodiversity data to arrive at an indicative national 310 
scale assessment of biodiversity. The Ocean Health Index assumes that areas of high human 311 
pressure are in poor ecological condition. While useful, the method may not capture fine-312 
scale natural variability, and can fail to identify areas of high resilience as well as the 313 
presence of unique or vulnerable ecosystems. Nevertheless, South African policy-makers 314 
have so far accepted this method of assessment, acknowledging the challenges and 315 
limitations to assessing the condition of the marine environment for the entire exclusive 316 
economic zone of South Africa using impact, or pressure, information in the absence of 317 
biodiversity data (Driver et al., 2011; Department of Environmental Affairs, 2015). To 318 
evaluate the outcomes of this practice, these methods should be verified with empirical 319 
evidence at varying scales using  ecological monitoring data where available (Sink et al., 320 
2012). 321 

Involving the public in monitoring may be another cost-effective solution to the labour-322 
intensive data collection required to inform biodiversity indicators (Thiel et al., 2014; 323 
Freiwald et al., 2018). Limitations on data collection are common, such as lack of 324 
standardization and spatio-temporal coverage, particularly in geographical areas which are 325 
greatly impacted but less accessible to the public. Despite these challenges, there are some 326 
notable regional and global citizen science programmes that are increasing data coverage 327 
for some aspects of the marine environment for use in policy and management such as: 328 
collection of species data by volunteer scuba divers around the coast of Britain and Ireland 329 
(http://seasearch.org.uk/); Reef Check and Reef Life Survey, which are global programmes 330 
that monitor the health of temperate and tropical reefs (Hodgson, 2000; Stuart-Smith et al., 331 
2017); public monitoring of European seabirds (ICES, 2017); and a series of national citizen 332 
science programmes for temperate rocky reefs in California (Gillett et al., 2012), subtidal 333 
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habitats in the UK (Bull et al., 2013), and marine biodiversity health in northern Italy 334 
(Goffredo et al., 2010).  335 

 336 

Linking biodiversity indicators to ecosystem change 337 

Developing biodiversity indicators that are responsive to a defined anthropogenic pressure 338 
or linking biodiversity indicator change to a single manageable pressure is often desired by 339 
policy-makers but is scientifically challenging to achieve. Micheli et al. (2013) found that 340 
~60-99% of the territorial waters of EU member states were heavily impacted as a result of 341 
multiple pressures, rather than one individual stressor. These multiple pressures, which 342 
include climate change, can have cumulative and synergistic effects on biodiversity 343 
components, reflected by indicator state (Côté et al., 2016). For example, warming 344 
temperatures have been shown to interact with fishing pressure on temperate fish stocks 345 
(Kirby et al., 2009) and with multiple stressors including pathogens on coral reef ecosystems 346 
(Ban et al., 2014). Furthermore, biodiversity components are fundamentally linked through 347 
trophic interactions, affecting biodiversity indicators. Torres et al. (2017) showed that no 348 
pressure-state relationships for fish indicators in the Central Baltic Sea could be found 349 
unless predator-prey feedback or density dependence was accounted for. These complex 350 
and interacting drivers obscure the interpretation of change in biodiversity indicators. For 351 
example, the limited understanding of the effects of environmental drivers on the variation 352 
of Porifera and Anthozoa assemblages across the North of Scotland and Celtic Sea is 353 
hindering the ability to accurately measure ecological responses of benthic rocky reef 354 
indicators to direct anthropogenic pressures (Haynes et al., 2014).  355 

 356 

Multiple biodiversity indicators may respond to the same anthropogenic pressure. 357 
Integrating information from a range of biodiversity indicators is a solution that can help to 358 
provide an overall assessment of the ecosystem (Elliott et al., 2018) and clarify the main 359 
drivers of change affecting a system (Smith et al., 2016). Although significant development is 360 
often required, ecosystem modelling can provide a comprehensive means to detect change 361 
in multiple biodiversity components and identify the important pathways by which impacts 362 
from pressures can cascade through an ecosystem (Lynam et al., 2016). Thus embedding 363 
indicators within a model framework can demonstrate key pressure-state linkages (Fulton et 364 
al., 2005; Shin et al., 2018), although it must be noted that data quality may impact model 365 
performance. Such models can then be used to examine the effects on biodiversity 366 
indicators of potential management measures or climate change through scenario testing 367 
(e.g. Mackinson et al., 2018; Queirós et al., 2018). 368 

Another factor to consider when linking indicators to pressures is the non-linearity in marine 369 
ecological systems. For some marine ecosystems abrupt community shifts have been 370 
reported (e.g. Hare and Mantua, 2000; Frank et al., 2005) that can only be explained by non-371 
linear state responses to abrupt changes in pressures (Scheffer and Carpenter, 2003). Non-372 
stationarity, i.e. spatio-temporal change in the state-pressure relationship (Hunsicker et al., 373 
2016), impedes the development of robust indicators that behave in a consistent and 374 
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predictable way. A new tool, the R package 'INDperform' (Otto et al., 2018b) accounts for 375 
these dynamics and allows the user to explicitly test for non-linear and non-additive 376 
indicator-pressure relationships. The package builds on a quantitative framework for 377 
selecting and validating the performance of indicators tailored to specific management 378 
needs (Otto et al., 2018a) and offers additional functions to quantify the robustness of these 379 
models, identify temporal indicator changes, test for indicator redundancy, and visualize 380 
performances. While single indicator-pressure models, such as offered in INDperform, can 381 
easily be applied to any number of indicators and pressures they cannot account for 382 
synergistic or counteracting effects of multiple pressures or estimate trade-offs between 383 
individual indicators. For this, more complex modelling tools are required, which in turn can 384 
be difficult to communicate, may require many assumptions, and take longer to build 385 
(Hyder et al., 2015).  386 

Using biodiversity indicators to measure progress towards policy goals 387 

Policy goals are often definitive, moving beyond broad-scale visions, and instead specifying a 388 
target condition that needs to be reached to meet the goal. An example of this is “…the 389 
abundance/extent, distribution and condition of marine species and habitats are in line with 390 
prevailing environmental conditions” from Descriptor 1 Biological Diversity of the EU’s 391 
Marine Strategy Framework Directive (2008/56/EC). Such an approach has long been used 392 
to assess indicators of environmental quality, including concentration of contaminants in 393 
water bodies (e.g. mercury, PCBs, nitrates) and of harmful gases in the air (e.g. carbon 394 
monoxide, sulphur dioxide). For these indicators, laboratory tests establish safe limits which 395 
can then be used to define desirable target levels for environmental conditions (European 396 
Commission, 2008a). Setting quantitative targets that define a good or favourable condition 397 
for biodiversity indicators, however, is much more challenging, as our understanding of 398 
ecological processes influencing the recovery of species or habitats and the associated 399 
ecosystems functions is more limited. Consequently, many biodiversity indicators currently 400 
still lack associated defined targets (Teixeira et al., 2016). 401 

The most common first step to defining targets for biodiversity indicators is to establish a 402 
baseline against which future change in condition can be measured (Fig. 2). The most robust 403 
approach to baseline setting is to first establish a ‘reference condition’ (Borja et al., 2012; 404 
Greenstreet et al., 2012; OSPAR, 2012; Probst et al., 2013) or “natural range” (Rossberg et 405 
al., 2017) which will enable the full effects and changes caused by anthropogenic pressures 406 
to be evaluated (van Loon et al., 2018). Reference conditions can be derived from 407 
information on species and habitats from areas where human pressure is considered 408 
negligible or non-existent but that information must be shown to be applicable to other 409 
areas (Borja and Tunberg, 2011). Reference conditions for marine biodiversity indicators, 410 
however, can be difficult to identify as areas of the marine environment that have been 411 
unimpacted by human pressures are increasingly scarce (Jones et al., 2018). Furthermore, 412 
time-series for most indicators are not long enough to include a time when human impacts 413 
were absent or negligible (Butchart et al., 2010; Dornelas et al., 2018). Unimpacted 414 
conditions are particularly difficult to identify for mobile species such as birds, marine 415 
mammals, fish and turtles because they move between impacted and unimpacted areas 416 
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(OSPAR, 2012). Modelling, however, can be used to predict reference conditions, based on 417 
knowledge of human pressures and their impact on the state of the indicator (Borja et al., 418 
2012; Rossberg et al., 2017). Once reference conditions are established, targets can then be 419 
set that are within a specified distance from them (OSPAR, 2012), where the acceptable 420 
target range for this distance is dependent on the rate of recovery of the state in question 421 
(Rossberg et al., 2017). 422 

In the absence of empirical or modelled reference conditions, recent assessments of birds, 423 
seals, and fish in the NE Atlantic have used the start of time-series to define baselines for 424 
indicators (Fig. 2) (OSPAR, 2017i; j; c; f). The risk with this approach is that the baseline is set 425 
at a value that represents a degraded condition which may or may not be within the 426 
acceptable target range of the ecosystem state. If targets are then set close to the baseline 427 
condition, this may jeopardise any improvement or recovery beyond that observed recently. 428 
This concept is referred to as Shifting Baseline Syndrome (Pauly, 1995; Pinnegar and 429 
Engelhard, 2008; Papworth et al., 2009) and can result in targets lacking in ambition 430 
(Plumeridge and Roberts, 2017) or worse, ‘locking in loss’ (Maron et al., 2015). Objective 431 
baselines and targets can be set once we improve our understanding of pressure-state 432 
relationships and the influence of the environment on them. Duarte et al. (2009) caution 433 
that it might not be possible for an indicator to return to a historic state because of 434 
fundamental alterations to the ecosystem caused by long-term or chronic effects of 435 
pressures or similarly changes in environmental conditions (Möllmann et al., 2009). In such 436 
cases, baselines that denote reference conditions would need to be set at a theoretical 437 
natural state, which could be achieved in the future if all current human impacts were 438 
removed (Rossberg et al., 2017). If the policy goal is sustainable use, the indicator targets 439 
should allow components of the ecosystem to achieve the theoretical natural state in a 440 
societally acceptable period of time (such as within a human generation) if all current 441 
human activities were to cease (Rossberg et al., 2017). To ensure the highest probability of 442 
such a recovery, impacts by human activities on structure, productivity, function and 443 
biological diversity of the ecosystem should be minimized (Garcia, 2003). 444 

Where indicators are required to measure progress towards broad-level policy goals and 445 
visions, trend-based targets provide an appropriate solution. Trend-based assessment 446 
approaches are relatively simple to apply and communicate and are useful to inform on the 447 
progress of management in helping to recover degraded habitats or ecosystems or depleted 448 
species populations. For example, the Convention on Biological Diversity Aichi Target 12 is a 449 
broad-level vision stating that “By 2020 the extinction of known threatened species has 450 
been prevented and their conservation status, particularly of those most in decline, has 451 
been improved and sustained” and is used to assess progress towards Strategic Goal C “to 452 
improve the status of biodiversity by safeguarding ecosystems, species and genetic 453 
diversity”(United Nations, 2010). Measuring progress towards this goal, however, does not 454 
require indicators to reach a specified endpoint or target point, but instead assessment is 455 
based on indicator trend.  456 

An additional barrier to setting targets for biodiversity indicators is that political resistance 457 
can be generated by a lack of agreement on the level of ambition by different parties, for 458 
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example, across different countries sharing the same sea area. This can stem from a lack of 459 
understanding of what the indicator values signify and/or uncertainty around the 460 
implications or consequences of missing a target. Failure to meet targets may carry 461 
reputational risks or could lead to costly remedial measures such as changes in regulation or 462 
management, which may create resistance to targets from industry. Some of these political 463 
sensitivities can be alleviated through scientists working closely with policy leads to co-464 
produce SMART targets that make the most of the available evidence (Cvitanovic and 465 
Hobday, 2018). For international targets, fora involving national representatives from 466 
science and policy can help to achieve international consensus and ensure targets are 467 
adopted by countries rather than imposed upon them (Heritier, 2002; OSPAR, 2017i; j; c; f).  468 

 469 

Decision triggers are less contentious than firm targets and can provide a useful link from 470 
monitoring data to management decisions. Decision triggers are becoming an appealing tool 471 
for conservation managers to help support decision-making by providing clarity about when 472 
and how to act; improving transparency of organizational decisions; removing the need for 473 
guess work; guarding against the paralysing effects of uncertainty; and preventing negative 474 
conservation outcomes (Addison et al., 2016). Decision triggers represent a point or zone in 475 
the status of a monitored variable indicating when management intervention is required to 476 
address undesirable ecosystem changes (Cook et al., 2016). Decision triggers can be set 477 
using a number of methods, depending on the availability of scientific data and expertise, 478 
the number of objectives for management and the resources available (Bie et al., 2018).  479 

 480 

Strategies for communicating biodiversity indicators to policy 481 

Effective communication of biodiversity indicators and assessments is integral to their 482 
uptake by policy-makers and managers. Critically, the target audience must be identified so 483 
indicator communication can be tailored appropriately. The group ‘policy-makers’ is often 484 
used as a generic term for decision-makers at multiple levels, including local councillors, 485 
environmental managers, civil servants, congress people, Members of Parliament (MPs), 486 
and ministers, among others. These subgroups use biodiversity indicators in different ways 487 
to make decisions and therefore require information in different formats with varying levels 488 
of associated detail and specificity. 489 

Regardless of the audience, biodiversity indicator communication must be clear, transparent 490 
and easy to understand to support their legitimate use in decision-making. There are different 491 
ways to present indicator results and assessments, each of which involves trade-offs 492 
between the complexity of biodiversity information and the simplicity of the product 493 
required for clear communication (Fig 3). The simplest methods of indicator communication 494 
use traffic lights summaries (United Kingdom Marine Monitoring and Assessment Strategy, 495 
2010; Driver et al., 2011; Karnauskas et al., 2017) or trend lines (WWF, 2016), which are 496 
simple visual illustrations of indicator change and are easily understood by non-scientists. 497 
These approaches often include composite indicators that are constructed by integrating 498 
numerous indicators to provide a single value (e.g. the Ocean Health Index, 2017) or trend 499 
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(e.g. the Living Planet Index; WWF and ZSL, 2016). These products can deliver a simple but 500 
powerful, attention-grabbing message to a wide and diverse policy- and decision-making 501 
audience. However, the simplicity of these approaches, and lack of associated written 502 
narrative, also brings a risk that the audience may misinterpret the message conveyed by 503 
the indicator results. It is therefore the responsibility of scientists and managers to 504 
communicate results unambiguously, in a way that effectively takes account of any 505 
uncertainty in the results (Fischhoff and Davis, 2014).  506 

Conversely, more complex communication methods such as summary report cards (e.g. 507 
Carey et al., 2017; European Environment Agency, 2017; Marine Climate Change Impacts 508 
Partnership, 2017) and narrative reports (e.g. Conservation of Arctic Flora and Fauna, 2017; 509 
Evans et al., 2017; OSPAR, 2017d) can provide a strong written narrative and contextual 510 
information, reducing the likelihood of misinterpretation by policy-makers. Protocol 511 
documents (e.g. Ehler and Douvere, 2009) are even more detailed, acting as a ‘user guide’ 512 
for indicators.  513 

For all policy audiences, confidence in indicator assessments must also be clearly 514 
communicated. Addison et al. (2017) suggest that confidence in indicator assessments can 515 
be communicated through a variety of ways. For example, relatively simple categorical 516 
estimates of confidence in scientific robustness and/or supporting data informing indicator 517 
assessments can be applied. Some examples from Australia and Europe include reporting 518 
simple ‘high, medium, and low’ confidence designations (e.g., Carey et al., 2017; OSPAR, 519 
2017e), measuring comparability with previous assessments (e.g., designating current 520 
indicator assessments as ‘comparable’, ‘somewhat comparable’, or ‘not comparable’ with 521 
previous assessments (e.g., Evans et al., 2017)), and making the evidence (data, metadata, 522 
reports, papers) used in assessment transparent and accessible (e.g., Ocean Health Index, 523 
2017; OSPAR, 2017d).  524 

Progress towards achieving any associated targets may also be appropriate to communicate 525 
to policy-makers, including some measure of distance from the associated target as well as 526 
an indication of management interventions needed to achieve the target in the future 527 
(Andersen et al., 2014; HELCOM, 2018). Emphasising socioeconomic needs linked to 528 
biodiversity indicators and assessment, such as ecosystem service provision, can help 529 
articulate policy relevance and increase usefulness of biodiversity indicators and 530 
assessments. Delivering the right indicator information in the right communication format 531 
for the right audience is therefore key to successful use of biodiversity indicators and 532 
assessments. For example, environmental managers who must make rapid management 533 
decisions require a higher level of detail about indicator implementation and interpretation 534 
than a national minister, who may only need to understand high-level information (Fig 3).  535 

The co-development of indicators by scientists working closely with policy-makers can 536 
facilitate feedback on product communication format to ensure that the final indicators or 537 
assessment products are useful for policy-makers. Furthermore, indicator co-production 538 
allows the articulation of scientific confidence limits and risks, enabling agreement on a way 539 
to consider and express these limitations in assessments (Addison et al., 2017; Bolman et al., 540 
2018). This is a critical, and often iterative, step in biodiversity indicator and assessment 541 
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utility. Recent examples of this collaborative approach to indicator development are the 542 
OSPAR Intermediate Assessment of the Northeast Atlantic (OSPAR, 2017d) and the HELCOM 543 
Holistic Assessment of the Baltic Sea (HELCOM, 2018) where scientists worked closely with 544 
policy-makers to develop a suite of marine biodiversity indicators. The science-policy 545 
working groups co-developed communication products tailored to the requirements of two 546 
levels of decision-makers. Firstly, a detailed assessment report containing information about 547 
indicator development, assessment methods, and the interpretation of indicator results was 548 
developed for government civil servants to use for reporting. Secondly, a two-page report 549 
card for elected officials, containing simple figures, provided a high-level overview of 550 
assessment results. Close working across the science-policy interface therefore resulted in 551 
biodiversity assessment products which meet the needs of both policy audiences. 552 

Lastly, evidence-based decision making is essential for effective biodiversity management in 553 
the marine environment and in that sense promotes the use of user friendly mathematical 554 
or statistical models, such as decision-support tools that can translate science into policy 555 
(Pınarbaşı et al., 2017). Multifunctional decision support tools have been developed for a 556 
wide range of components in marine management, some of which may be useful to 557 
communicate results to decision-makers or to identify trade-offs and perform scenario 558 
analyses. These types of DSTs are particularly useful for detecting changes in marine 559 
ecosystems by performing scenario analyses on key drivers or biodiversity indicators within 560 
marine systems.  561 

Although the scientific process in developing a set of indicators may be complex, the 562 
outputs should be simplified such that the outputs are connected to the human or social 563 
context in which they will be used. Technical DSTs or complex indicators may result in a 564 
disconnection between the objective of the indicator and its utilisation in the decision-565 
making process (Bolman et al., 2018). Therefore, simplifying complexity should rather focus 566 
on the communication of the scientific outputs rather than on the actual development of 567 
the indictors or tools. Communicating biodiversity indicators should include emphasising key 568 
trends or sensitive parameters to communicate the dynamics within complex marine 569 
systems, in the format most useful to different decision-makers (e.g. decision support tools, 570 
report cards, or web-based interfaces).  571 

 572 

Conclusions 573 

As we enter the UN decade of ocean science for sustainable development (UNESCO, 2018) a 574 
concerted effort will be required to develop strategies to meet the UN global goal to 575 
“Conserve and sustainably use the oceans, seas and marine resources for sustainable 576 
development“ (Sustainable Development Goal 14 (United Nations General Assembly, 577 
2015)). Marine biodiversity indicators are likely to be critical to meeting the targets 578 
associated with this ambitious goal.   579 
 580 
In the context of marine management, we highlight a holistic approach to understanding the 581 
term ‘biodiversity indicator’ to include ecosystem structure and functioning. Several 582 
challenges around biodiversity indicator development limit the widespread implementation 583 
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in biodiversity management. Firstly, the policy application of marine biodiversity indicators 584 
varies across geographical regions and is currently most common in, but not limited to, high 585 
income countries with established monitoring programs. Where marine biodiversity 586 
indicators are in use for policy assessments, these indicators often use region-specific 587 
terminologies and data requirements, and were created for specific policy drivers. 588 
Additionally, marine ecosystems are complex, non-linear systems and links between internal 589 
interactions and exogenous pressures frequently distort human intuition of the marine 590 
system and hence management approaches. Marine management, and the development of 591 
biodiversity indicators to support management, thus require methods of analysis and 592 
decision-support tools that recognize multiple forms of complexity.  593 
 594 
Formation of a community of practice was a key aim of this IMCC symposium and focus 595 
group, and these sessions revealed that the concept of biodiversity indicators is most useful 596 
when kept broad and flexible in both definition and application. A community of practice 597 
will facilitate knowledge exchange between indicator users to find alternative solutions for 598 
the common challenges outlined in this paper. Solutions to many of the challenges facing 599 
the policy application of marine biodiversity indicators were discussed and further 600 
developed and are now described in this paper. Some solutions require advanced numerical 601 
expertise while others address barriers by adopting innovative solutions involving citizen 602 
science data collection, combining multiple datasets to populate indicators, communicating 603 
assessment results in audience-specific formats, and enhancing collaborations within the 604 
international scientific community. The key to overcoming many barriers to biodiversity 605 
indicator uptake is to include policy-makers from the start of indicator development to 606 
ensure that implementation needs are met. It is our hope that the solutions outlined here 607 
will support the use of biodiversity indicators for marine policy, management, and 608 
conservation, helping us to meet the UN aspiration of the sustainable use of our oceans, 609 
seas, and marine resources. 610 
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 631 
Figure legends: 632 
Figure 1: Bibliographic analysis of publications on biodiversity, ecological, or ecosystem 633 
indicators in general and for marine systems specifically. a) The number of publications 634 
using one of the indicator terms (biodiversity (green shading), ecosystem (blue shading), or 635 
ecological (grey shading) indicator(s)) between 1975 and 2017 (total of 2502), and the 636 
number of publications using these terms in relation to marine systems only (white trend 637 
line; total of 457), shown in relation to the years when three significant international or 638 
regional legislative frameworks were implemented. b) The geographic distribution of a 639 
subset of 1430 publications across marine ecoregions (Spalding et al., 2007), extracted from 640 
publication abstracts and keywords. The bibliographic data were queried from the Web of 641 
Science database (accessed last Sept 18th, 2018). 642 

Figure 2. Establishing baselines and setting targets under two scenarios of biodiversity data 643 
availability. a) The relative condition of the indicator is known, with data available 644 
representing unimpacted conditions (reference conditions). In this case, an indicator target 645 
can be set as a range of indicator values within a specified distance from the baseline 646 
reference conditions. b) The relative condition of the indicator is not known, and no data 647 
representing reference conditions are available. In this case, time-series data are used to 648 
establish baseline conditions and set targets. Baselines can be set using 1) historical data, 649 
such as from an alternative data source or model, 2) the earliest time-series data available, 650 
or 3) data representing current conditions. Targets can then be set as a range or as an 651 
‘improving’ trend from baseline state.  652 

 653 
Figure 3. Indicator communication formats should vary in level of technical detail depending 654 
on the policy audience. 655 

 656 
Table 1.  Applications of biodiversity indicators relevant to marine environments and global marine 657 
conservation policy and management. Citations preceded by “e.g.” reflect one example of many. 658 

 659 

Indicators used for assessments Examples of application Spatial scale of application 
(presented in order of cited 
publications) 

Status of, or changes in, species, 
habitats, or ecosystems 

(Beaugrand, 2005; Rochet et al., 
2005; Blanchard et al., 2010; Shin et 
al., 2010; Shephard et al., 2014; 
Probst and Stelzenmüller, 2015) 

North Atlantic Ocean; France; Global; 
Global; Celtic Seas and Greater North 
Sea; North Sea 

Track and communicate trends in 
quantity and quality of ecosystem 
services 

(van Oudenhoven et al., 2018) European seas 

Signals prior to or after trending or 
oscillating changes  

(e.g. Lindegren et al., 2012; Cline et 
al., 2014) 

Baltic Sea; Global (lakes); 

Impact of an anthropogenic pressure 
on the ecosystem 

(Shannon et al., 2010; Henriques et 
al., 2014; Coll et al., 2016) 

Global; Portugal; Global 

Ecosystem stability or resilience (e.g. Samhouri et al., 2009; 
Vasilakopoulos et al., 2017) 

Global; Mediterranean Sea 
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Oceans at different spatial scales (e.g. Blanchard et al., 2010; Halpern 
et al., 2012; Coll et al., 2016; Uusitalo 
et al., 2016; Torres et al., 2017) 

Global; global; global; regional 
(European); single ecosystem (Baltic 
Sea) 

Ocean biological indicators at 
different organizational levels (single 
species, individual guilds, entire food 
webs and trophic interactions) 

(Teixeira et al., 2016; McQuatters-
Gollop et al., 2017) 

Global with European focus; European 

 660 

Table 2. Needs, barriers and solutions to the development and use of marine biodiversity indicators. 661 

 662 

Need Barrier Solution 
Biodiversity indicators 
linked to policy and 
management 

Siloed development of indicators, 
resulting in indicators that do not meet 
the needs of decision-makers. 

Co-production of indicators by scientists and 
decision-makers (Lemos and Morehouse, 
2005). 

Appropriate biodiversity 
data are required to inform 
indicators 

Insufficient data to capture spatial and 
temporal variability of marine 
ecosystems due to: 

− High costs of data collection. 
− Vast scales (spatial and 

temporal) over which 
ecological processes and 
patterns occur. 

− Non-policy oriented focus of 
historic data collection.  

− Lack of capacity for marine 
management infrastructure. 

Pragmatic approach to indicator design that 
supports the combination and repurposing of 
existing data sets (OSPAR, 2017g; h; b; a). 
 
Risk-based approach to target intensive 
monitoring in order to answer specific and 
clear policy question (Elliott et al., 2018; 
Turrell, 2018). 
 
Use of earth observation and models to 
supplement in situ data (Elith et al., 2006; 
Butchart et al., 2010; Bean et al., 2017; 
Strong and Elliott, 2017; Pettorelli et al., 
2018). 
 
Use of human impact (pressure) data where 
biodiversity monitoring data are unavailable 
(Halpern et al., 2012). 
 
Use of citizen science programmes for data 
collection (Hodgson, 2000; Goffredo et al., 
2010; Gillett et al., 2012; Bull et al., 2013; 
ICES, 2017; Stuart-Smith et al., 2017). 
 

Linking biodiversity 
indicators to ecosystem 
change 

Biodiversity indicator respond to 
multiple pressures, including climate 
change, making it difficult to identify 
causes of change  
 
 
 
 
Systems may respond non-linearly to 
pressures, obscuring indicator 
interpretation 
 

Integration of biodiversity indicators during 
assessments increases confidence in identify 
causes of change (Smith et al., 2016). 
 
Ecosystem modelling to identify the 
important pressure-state pathways (Fulton 
et al., 2005; Lynam et al., 2016; Shin et al., 
2018). 
 
A range of modelling tools can examine non-
linear indicator-pressure relationships (e.g. 
Hyder et al., 2015; Otto et al., 2018a; Otto et 
al., 2018b). 

Using biodiversity 
indicators to measure 
progress towards policy 
goals 

Setting targets for biodiversity 
indicators is challenging due to: 
 

- Difficulty in identifying 
reference conditions 

- Political resistance to targets 
 

 
Reference conditions can be constructed 
based on spatial or time-series data or using 
models  (Borja and Tunberg, 2011; Borja et 
al., 2012; OSPAR, 2017i; j; c; f; Rossberg et 
al., 2017) allowing targets to be set at an 
acceptable distance from the reference 
conditions. 
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Trend based approaches do not require 
indicators to reach a specified endpoint or 
target point  (Butchart et al., 2010). 
 
Close science-policy collaboration can 
produce evidence-based SMART targets 
(Heritier, 2002; Cvitanovic and Hobday, 
2018). 
 
Decision triggers may be used instead of 
targets to trigger management action 
(Addison et al., 2016) 

 663 

  664 



19 
 

 665 
 666 
 667 
References 668 
 669 
 670 
Addison, P.F.E., Collins, D.J., Trebilco, R., Howe, S., Bax, N., Hedge, P., Jones, G., Miloslavich, P., 671 

Roelfsema, C., Sams, M., Stuart-Smith, R.D., Scanes, P., Von Baumgarten, P., and 672 
Mcquatters-Gollop, A. (2017). A new wave of marine evidence-based management: 673 
emerging challenges and solutions to transform monitoring, evaluating, and reporting. ICES 674 
Journal of Marine Science, fsx216-fsx216. 675 

Addison, P.F.E., Cook, C.N., and Bie, K. (2016). Conservation practitioners' perspectives on decision 676 
triggers for evidence-based management. Journal of Applied Ecology 53, 1351-1357. 677 

Andersen, J.H., Dahl, K., Göke, C., Hartvig, M., Murray, C., Rindorf, A., Skov, H., Vinther, M., and 678 
Korpinen, S. (2014). Integrated assessment of marine biodiversity status using a prototype 679 
indicator-based assessment tool. Frontiers in Marine Science 1. 680 

Atkinson, L., Sink, K., Raven, H., Franken, M.-L., and Terrapon, H. (2016). "SeaKeys Monitoring 681 
Working Group Workshop Report".). 682 

Bal, P., Tulloch, A., Addison, P., Mcdonald-Madden, E., and Rhodes, J.R. (2018). Selecting indicator 683 
species for biodiversity management. Frontiers in Ecology and the Environment 684 
https://doi.org/10.1002/fee.1972. 685 

Balmford, A., Bennun, L., Ten Brink, B., Cooper, D., Côté, I.M., Crane, P., Dobson, A., Dudley, N., 686 
Dutton, I., Green, R.E., Gregory, R.D., Harrison, J., Kennedy, E.T., Kremen, C., Leader-687 
Williams, N., Lovejoy, T.E., Mace, G., May, R., Mayaux, P., Morling, P., Phillips, J., Redford, K., 688 
Ricketts, T.H., Rodríguez, J.P., Sanjayan, M., Schei, P.J., Van Jaarsveld, A.S., and Walther, B.A. 689 
(2005). The Convention on Biological Diversity's 2010 Target. Science 307, 212-213. 690 

Ban, S.S., Graham, N.A., and Connolly, S.R. (2014). Evidence for multiple stressor interactions and 691 
effects on coral reefs. Global Change Biology 20, 681-697. 692 

Barrio Froján, C. (2016). "1714S Solan Bank Reef SCI Environmental Data Analysis: JNCC/Cefas 693 
Partnership Report Series, No. 12". (Peterborough, UK: JNCC/Cefas). 694 

Bean, T.P., Greenwood, N., Beckett, R., Biermann, L., Bignell, J.P., Brant, J.L., Copp, G.H., Devlin, M.J., 695 
Dye, S., Feist, S.W., Fernand, L., Foden, D., Hyder, K., Jenkins, C.M., Van Der Kooij, J., Kröger, 696 
S., Kupschus, S., Leech, C., Leonard, K.S., Lynam, C.P., Lyons, B.P., Maes, T., Nicolaus, E.E.M., 697 
Malcolm, S.J., Mcilwaine, P., Merchant, N.D., Paltriguera, L., Pearce, D.J., Pitois, S.G., 698 
Stebbing, P.D., Townhill, B., Ware, S., Williams, O., and Righton, D. (2017). A Review of the 699 
Tools Used for Marine Monitoring in the UK: Combining Historic and Contemporary Methods 700 
with Modeling and Socioeconomics to Fulfill Legislative Needs and Scientific Ambitions. 701 
Frontiers in Marine Science 4. 702 

Beaugrand, G. (2005). Monitoring pelagic ecosystems using plankton indicators. ICES Journal of 703 
Marine Science 62, 333-338. 704 

Beck, M.W., Brumbaugh, R.D., Airoldi, L., Carranza, A., Coen, L.D., Crawford, C., Defeo, O., Edgar, 705 
G.J., Hancock, B., Kay, M.C., Lenihan, H.S., Luckenbach, M.W., Toropova, C.L., Zhang, G., and 706 
Guo, X. (2011). Oyster reefs at risk and recommendations for conservation, restoration, and 707 
management. BioScience 61, 107-116. 708 

Bedford, J., Johns, D., Greenstreet, S., and Mcquatters-Gollop, A. (2018). Plankton as prevailing 709 
conditions: A surveillance role for plankton indicators within the Marine Strategy Framework 710 
Directive. Marine Policy 89, 109-115. 711 

Bellard, C., Leclerc, C., Leroy, B., Bakkenes, M., Veloz, S., Thuiller, W., and Courchamp, F. (2014). 712 
Vulnerability of biodiversity hotspots to global change. Global Ecology and Biogeography 23, 713 
1376-1386. 714 

https://doi.org/10.1002/fee.1972


20 
 

Bie, K., Addison, P.F.E., and Cook, C.N. (2018). Integrating decision triggers into conservation 715 
management practice. Journal of Applied Ecology 55, 494-502. 716 

Blanchard, J.L., Coll, M., Trenkel, V.M., Vergnon, R., Yemane, D., Jouffre, D., Link, J.S., and Shin, Y.-J. 717 
(2010). Trend analysis of indicators: a comparison of recent changes in the status of marine 718 
ecosystems around the world. ICES Journal of Marine Science 67, 732-744. 719 

Bolman, B., Jak, R.G., and Van Hoof, L. (2018). Unravelling the myth – The use of Decisions Support 720 
Systems in marine management. Marine Policy 87, 241-249. 721 

Borja, Á., Dauer, D.M., and Grémare, A. (2012). The importance of setting targets and reference 722 
conditions in assessing marine ecosystem quality. Ecological Indicators 12, 1-7. 723 

Borja, A., and Tunberg, B.G. (2011). Assessing benthic health in stressed subtropical estuaries, 724 
eastern Florida, USA using AMBI and M-AMBI. Ecological Indicators 11, 295-303. 725 

Bremner, J. (2008). Species' traits and ecological functioning in marine conservation and 726 
management. Journal of Experimental Marine Biology and Ecology 366, 37-47. 727 

Bull, J.C., Mason, S., Wood, C., and Price, A.R.G. (2013). Benthic marine biodiversity patterns across 728 
the United Kingdom and Ireland determined from recreational diver observations: A 729 
baseline for possible species range shifts induced by climate change. Aquatic Ecosystem 730 
Health & Management 16, 20-30. 731 

Butchart, S.H.M., Walpole, M., Collen, B., Van Strien, A., Scharlemann, J.P.W., Almond, R.E.A., Baillie, 732 
J.E.M., Bomhard, B., Brown, C., Bruno, J., Carpenter, K.E., Carr, G.M., Chanson, J., Chenery, 733 
A.M., Csirke, J., Davidson, N.C., Dentener, F., Foster, M., Galli, A., Galloway, J.N., Genovesi, 734 
P., Gregory, R.D., Hockings, M., Kapos, V., Lamarque, J.-F., Leverington, F., Loh, J., Mcgeoch, 735 
M.A., Mcrae, L., Minasyan, A., Morcillo, M.H., Oldfield, T.E.E., Pauly, D., Quader, S., Revenga, 736 
C., Sauer, J.R., Skolnik, B., Spear, D., Stanwell-Smith, D., Stuart, S.N., Symes, A., Tierney, M., 737 
Tyrrell, T.D., Vié, J.-C., and Watson, R. (2010). Global Biodiversity: Indicators of Recent 738 
Declines. Science 328, 1164-1168. 739 

Carey, J., Howe, S., Pocklington, J., Rodrigue, M., Campbell, A., Addison, P., and Bathgate, R. (2017). 740 
"Report on Condition of Yaringa Marine National Park - 2002-2013", in: Parks Victoria 741 
Technical Series No. 112. (Melbourne, Victoria: Parks Victoria). 742 

Cartagena Convention (1983). Convention for the Protection and Development of the Marine 743 
Environment in the Wider Caribbean Region,. 744 

Cash, D.W., Clark, W.C., Alcock, F., Dickson, N.M., Eckley, N., Guston, D.H., Jäger, J., and Mitchell, 745 
R.B. (2003). Knowledge systems for sustainable development. Proceedings of the National 746 
Academy of Sciences 100, 8086-8091. 747 

Cline, T.J., Seekell, D.A., Carpenter, S.R., Pace, M.L., Hodgson, J.R., Kitchell, J.F., and Weidel, B.C. 748 
(2014). Early warnings of regime shifts: evaluation of spatial indicators from a whole-749 
ecosystem experiment. Ecosphere 5, art102. 750 

Coll, M., Shannon, L.J., Kleisner, K.M., Juan-Jordá, M.J., Bundy, A., Akoglu, A.G., Banaru, D., Boldt, 751 
J.L., Borges, M.F., Cook, A., Diallo, I., Fu, C., Fox, C., Gascuel, D., Gurney, L.J., Hattab, T., 752 
Heymans, J.J., Jouffre, D., Knight, B.R., Kucukavsar, S., Large, S.I., Lynam, C., Machias, A., 753 
Marshall, K.N., Masski, H., Ojaveer, H., Piroddi, C., Tam, J., Thiao, D., Thiaw, M., Torres, M.A., 754 
Travers-Trolet, M., Tsagarakis, K., Tuck, I., Van Der Meeren, G.I., Yemane, D., Zador, S.G., and 755 
Shin, Y.J. (2016). Ecological indicators to capture the effects of fishing on biodiversity and 756 
conservation status of marine ecosystems. Ecological Indicators 60, 947-962. 757 

Conservation of Arctic Flora and Fauna (2017). "State of the Arctic Marine Biodiversity Report". 758 
(Akureyri, Iceland: Conservation of Arctic Flora and Fauna  International Secretariat). 759 

Cook, C.N., De Bie, K., Keith, D.A., and Addison, P.F.E. (2016). Decision triggers are a critical part of 760 
evidence-based conservation. Biological Conservation 195, 46-51. 761 

Cook, R., Fariñas-Franco, J.M., Gell, F.R., Holt, R.H.F., Holt, T., Lindenbaum, C., Porter, J.S., Seed, R., 762 
Skates, L.R., Stringell, T.B., and Sanderson, W.G. (2013). The Substantial First Impact of 763 
Bottom Fishing on Rare Biodiversity Hotspots: A Dilemma for Evidence-Based Conservation. 764 
PLOS ONE 8, e69904. 765 



21 
 

Côté, I.M., Darling, E.S., and Brown, C.J. (2016). Interactions among ecosystem stressors and their 766 
importance in conservation. Proc. R. Soc. B 283, 20152592. 767 

Cvitanovic, C., and Hobday, A.J. (2018). Building optimism at the environmental science-policy-768 
practice interface through the study of bright spots. Nature Communications 9, 3466. 769 

Dakos, V., Kefi, S., Rietkerk, M., Van Nes, E.H. & Scheffer, M. (2011). Slowing Down in Spatially 770 
Patterned Ecosystems at the Brink of Collapse (2011). Slowing Down in Spatially Patterned 771 
Ecosystems at the Brink of Collapse. American Naturalist 117, E153-E166. 772 

Danielsen, F., Balete, D.S., Poulsen, M.K., Enghoff, M., Nozawa, C.M., and Jensen, A.E. (2000). A 773 
simple system for monitoring biodiversity in protected areas of a developing country. 774 
Biodiversity & Conservation 9, 1671-1705. 775 

De Juan, S., Hewitt, J., Subida, M.D., and Thrush, S. (2018). Translating Ecological Integrity terms into 776 
operational language to inform societies. Journal of Environmental Management 228, 319-777 
327. 778 

Defra (2012). "Marine strategy part one: UK initial assessment and good environmental status". 779 
(London, UK: Department for Environment, Food and Rural Affairs). 780 

Defra (2018). "A Green Future: Our 25 Year Plan to Improve the Environment". (London: Department 781 
of Environment, Farming, and Rural Affairs). 782 

Department of Environmental Affairs (2015). "South Africa's 2nd National Biodiversity Strategy and 783 
Action Plan". (Pretoria: Government of South Africa). 784 

Department of Environmental Affairs and Tourism (2004). "The National Environmental 785 
Management: Biodiversity Act, No. 10 of 2004". (South Africa). 786 
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