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Abstract: 

The intriguing properties of reduced graphene oxide (rGO) have paved the way for a 

number of potential biomedical applications such as drug delivery, tissue engineering, 

gene delivery and bio-sensing. Over the last decade, there have been escalating 

concerns regarding the possible toxic effects, behaviour and fate of rGO in living 

systems and environments. This paper reports on integrative chemical-biological 

interactions of rGO with lung cancer cells, i.e. A549 and SKMES-1, to determine its 

potential toxicological impacts on them, as a function of its concentration. Cell viability, 

early and late apoptosis and necrosis were measured to determine oxidative stress 

potential, and induction of apoptosis for the first time by comparing two lung cancer 

cells. We also showed the general trend between cell death rates and concentrations 

for different cell types using a Gaussian process regression model. At low 

concentrations, rGO was shown to significantly produce late apoptosis and necrosis 

rather than early apoptotic events, suggesting that it was able to disintegrate the 

cellular membranes in a dose dependent manner. For the toxicity exposures 

undertaken, late apoptosis and necrosis occurred, which was most likely resultant from 

limited bioavailability of unmodified rGO in lung cancer cells. 
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The potential applications of graphene are rapidly expanding with a global industry 

estimated to be worth more than 1790.7 Million USD by 2020 [1], which is reflective of 

its wide range of application domains including, electronics, supercapacitors, energy 

storage and medicine [2]. The development of real-world applications of graphene is 

fuelled by its unique and superior properties such as high electron mobility, high 

mechanical strength and high specific surface area [3]. Although some effort has been 

made to investigate the biosafety profile of graphene, a significant lack of viable data 

on biocompatibility hinders the precise forecast of the potential of graphene to solve 

real-world clinical problems. 

 Pristine graphene, graphene oxide and reduced graphene oxide (rGO) have 

been investigated as potentially hazardous materials when used in healthcare  

because they could exert acute toxic effects on a wide range of living organisms 

including human cells, Gram-positive and Gram-negative bacteria, viruses, and plants, 

eukaryotic mammalian and in vivo animal models [4,5]. Current knowledge on their 

toxicological implications indicates the demand for further systematic investigations 

including a detailed basic physicochemical characterisation of the graphene-based 

materials exploited in each case. It has been demonstrated that graphene 

nanostructures cause harmful cellular effects when they enter the body, as they can 

pass through physiological barriers, encounter immune systems and trigger normal 

cellular responses and significantly enhance toxic potential in living systems [6]. Single 

and few-layered graphene having sharp edges may infiltrate cell membranes resulting 

in membrane damage and leakage of cytoplasmic substances. DNA damage, cell 

cycle arrest and oxidative stresses inside the cell are the main cytotoxicity responses 

to GO and rGO when they are exposed to different cell lines, which are likely due to 

the generation of reactive oxygen species, and deregulation of antioxidant genes [7]. 

The biocompatibility of graphene varies from their counterparts owing to their size, 

shape, lateral dimensions, high specific surface area and surface chemistry [8]. Most 

of the studies to date have focused mainly on the toxicity induced by pristine graphene 

and GO but the biocompatibility of rGO has not been fully understood. Recently, rGO 

has been evaluated for biological applications, for example, as drug delivery carriers, 

diagnostic sensors, biomarkers and antimicrobial agents [9]. However, it has been 

shown to cause several adverse effects in vitro including reactive oxygen species 
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formation, cell apoptosis, inflammatory cytokine, loss of membrane integrity, 

membrane distress induced by direct contact with sharp edges of rGO, and 

inflammatory cell infiltration [10]. Recent studies also have shown that rGO is likely to 

be toxic and could integrate cell membranes and induce programmed cell death in a 

dose-dependent manner, particularly in concentrations higher than 50 µg/L [11-13]. In 

order to address these issues and to improve the bioavailability of rGO, it is essential 

to investigate its implications on the safety of living systems and develop a better 

understanding of toxicological mechanisms, which would facilitate the existing 

methods for rGO preparation (with minimal toxicity for safer biomedical applications).  

 The current study is motivated by the requirements for a better understanding 

of the mechanisms and in vitro efficacy of graphene-induced degradation of cells. The 

in vitro toxicity of rGO against two lung cancer cells, A549 and SKMES-1, has been 

assessed and compared for the first time without premodification of rGO. We 

conducted the cell viability tests and measured the implications of early and late 

apoptosis and necrosis pathways to investigate the oxidative stress potential, and 

induction of apoptosis. We also showed the general trend between cell death rates 

and concentrations for cancer cells using a Gaussian process regression model. Our 

results demonstrated that a low concentration of rGO significantly produced late 

apoptosis and necrosis rather than early apoptotic events, though rGO was still able 

to disintegrate the cellular membranes in a dose dependent manner. Given the 

evolving field of graphene-based nanomedicine, our findings regarding the toxicity of 

graphene presented in this paper using in vitro models would play a significant role in 

paving a new way to future biomedical applications of graphene. 

 

2. Materials and methods: 

 

Synthesis and characterization: Exfoliated graphene oxide (GO) flakes were 

prepared following the modified Hummers method previously reported by us [14]. 2 g 

graphite flake,1.5 g NaNO3 and 150 ml H2SO4 (98%) were added in an 800ml flask 

and mixed under magnetic stirring. The flask was immersed in an oil bath warmed to 

35 ºC, before 9 g KMnO4 had been added into the flask. The mixture was continuously 

stirred for 24 h, followed by further addition of 280 ml H2SO4 (5%) and increasing the 

temperature to 85-95 ºC. After 2 h further stirring, the bath was removed and the flask 
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was allowed to cool down to around 60 ºC before further addition of 15ml H2O2 (30 

wt%) into it. After another 2 h stirring, the solid product in the suspension was 

collected, and washed repeatedly with diluted HCl (3 wt%) and distilled water to 

remove any residual Mn4+ and other impurities.  

The resultant GO was dispersed in water under stirring to the concentration of 0.25 

mg mL−1. 75 mL GO (0.25 mg/ml) was mixed with 1.5 mL hydrazine (35 wt%) under 

magnetic stirring in a flask heated (in an oil bath) to 100 ºC. The resultant rGO powder 

was then washed with distilled water for further characterization.  

High resolution microstructural images were taken on a JEOL-2100 transmission 

electron microscope (TEM) operating at an accelerating voltage of 200 kV. TEM 

samples were prepared by ultrasonic dispersion of sample powder in acetone for 20 

mins followed by dropping onto a holey carbon Cu grid using micropipette. X-ray 

diffraction (XRD) analysis was performed using Cu Kα radiation (at 40 kV and 40 mA). 

Spectra were collected at a scan rate of (2)/min and with a step size of 0.02° (2). 

Fourier-transform infrared (FTIR) spectra were recorded in the wavenumber range of 

4000–500 cm−1 using a Bruker Optics Tensor-27 FTIR spectrometer. Samples used in 

this case were prepared by mixing the original sample powders with KBr. Raman 

spectra were recorded using a 532 nm laser excitation operating at 6 mW power. Zeta 

potential measurements were carried out using a colloidal dynamics zeta probe to 

identify the surface charge of rGO as a function of pH, balanced in the acidic–basic 

ranges using 10−1M HCl and KOH solutions, respectively. 

 

Cell viability: A549 and SKMES-1 lung cancer cells were seeded in 6 well plates at 

a density of 350,000 per well. After overnight incubation, cells were treated with or 

without 5, 50, 250, 500 and 1000 µg/ml of rGO for 24 h. Then, cells were trypsinised 

and centrifuged at 200 g for 5 minutes. Cell pellets were then re-suspended in 100µl 

of annexin binding buffer (BioLegend, UK) containing annexin (BioLegend, UK) and 

propidium iodide (PI) (Sigma-Aldrich, UK), and incubated for 15 minutes in the dark. 

Flow cytometry was performed using a Guava flow cytometer. The data was analysed 

using the Guava 3.1.1 software. The early and late apoptotic populations of the cells 

were analysed by flow cytometer Alexa Fluor647 Annexin V (apoptosis) – F2, 

Propidium iodide necrosis –F3 YEL. The criteria for early and late apoptotic cells are 

Annexin V-positive, PI-negative and Annexin V-positive, and PI-positive, respectively. 

http://www.chemspider.com/Chemical-Structure.937.html
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Signals were detected using Alexa Fluor® 647, a bright far-red–fluorescent dye with 

excitation ideally suited for the 594 nm or 633 nm laser lines. PI is yellow-fluorescent 

dye with excitation ideally suited to the 532 nm laser line. Toxicity assays were 

repeated 3 times. The data were analysed in GraphPad Prism 5.04, and expressed as 

% cell count ± SD, Mann Whitney. P < 0.05 was considered statistically significant. 

The cell culture media were buffers that buffered the pH and maintained it at neutral 

level. The pH of the cell culture media were tested and collected from treated cells and 

no difference was found in the pH between basal media at 0 and 24 h after treatment. 

Regression model: Additionally, we investigated the relationships between 

concentration of rGO and cell death rate, so as to determine the most appropriate 

concentration levels for biological applications. Standard non-linear regression 

methods may only capture the general trend without taking into account the 

uncertainties in measurements and predictions. We therefore used a Gaussian 

process (GP) to model the relationships and readily incorporate the uncertainties in 

measurements to produce a Bayesian posterior predictive distribution [15]. A GP is 

essentially a collection of random variables, and any finite number of these have joint 

Gaussian distribution. Given a dataset 𝐷 =  {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑛  with 𝑛 data points (where 𝑥𝑖 is 

the 𝑖th rGO concentration and 𝑦𝑖 is the associated cell count), the posterior predictive 

distribution is 𝑃(𝑦𝑛+1|𝑥𝑛+1, 𝐷, 𝜃) ~ ℵ(𝑦𝑛+1|𝜇(𝑥𝑛+1), 𝜎(𝑥𝑛+1)) . Here, the mean 

prediction 𝜇(. ) and the standard deviation 𝜎(. ) are functions of the covariance matrix. 

The covariance matrix captures the covariance between observed concentrations, 

which is governed by the specific covariance function and the set of hyper-parameters 

𝜃. In this study, we used the Matern52 covariance function. The hyper-parameters are 

set by maximising the likelihood of the data. 

 

3. Results and discussion: 

 

As well-known, reduction of GO in an aqueous suspension results in agglomerated 

graphene nanosheets [16]. Similarly to that reported previously [17,18], as-prepared 

rGO nanosheets from the present work also exhibited typical wrinkled and scrolled 

structures (Figure 1 a, b). They consisted of a few-layers (typically 6–8 layers), and 

had an average thickness of 1.5nm, as revealed by HRTEM (Figure 1b). XRD 
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(Figure2 A) further shows a diffraction peak at 26.40o (2θ) corresponding to the (002) 

lattice plane of rGO with interlayer spacing of 3.37 Å, indicating the formation of sp2 

network of carbon [19]. As shown in Figure 2B, rGO exhibited a D band at 1358 cm−1 

and a G band at 1595 cm−1, showing a series of defects and the in-plane stretching 

motion of pairs of sp2 atoms, respectively [20]. FTIR peak at 3434 cm-1 was assigned 

to the O–H stretching vibration (Figure 2C). The weak peaks at 1622 cm-1, 1399 cm-1, 

1240 cm−1, and 1071 cm-1 arose from C=C stretching vibration, O–H deformation, C=O 

(epoxy) stretching vibration, and C=O (alkoxy) stretching, respectively, implying that 

the original functional groups were largely removed [21]. Zeta potential is a key 

parameter in the evaluation of stability of colloidal dispersions and prediction of the 

mobility/reaction of nanoparticles inside the cells [17]. Nanomaterials are generally 

considered to be fairly stable in a solution if the corresponding zeta potential is 

sufficiently high (more positive and negative than +30 mV and −30 mV respectively) 

[22]. As depicted in Figure 2D, as-prepared rGO nanosheets showed a maximal zeta 

potential of −49.2 mV at pH 12, which was resulted from the reduction of different 

functional groups existing on the surface of the original GO. 

 

http://www.sciencedirect.com/science/article/pii/S0167577X15300240#bib11
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Figure 1: (A)- TEM and (B) HRTEM images of as-prepared exfoliated rGO sheets.  
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Figure 2: (A)- XRD pattern, (B)- Raman spectrum, (C) FTIR spectrum, and (D) Zeta 

potential-pH curve of as-prepared rGO. 

 

As demonstrated in Figure 3A, after 24-h exposure to rGO, the cell viability in the case 

of A549 cells decreased by virtue of increasing the concentration of rGO from 5 to 

1000 µg/ml. For example, the percentage of living cells was reduced to 70, 50 and 

40% at concentrations 5, 50 and 250 µg/ml respectively, compared to the controls (0 

µg/ml, ~90%). However, in SKMES-1 cells, rGO-induced toxicity was reduced 

significantly at a concentration of 50 µg/ml or above. Cell viability was reduced to 70, 

60, 42  and 42% at concentrations of 50, 250, 500 and 1000 µg/ml, respectively, 

compared to the controls (0 µg/ml, ~80%). Cells undergoing early apoptosis 

significantly increased when treated with 50 µg/ml in a dose dependent manner up to 

500 µg/ml (both in A549 and SKMES-1 cells) (Figure 3B). A dose-dependent increase 

in late apoptosis (Figure 3C) and necrosis (Figure 3D) was also observed in both cell 
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lines, where rGO demonstrated a greater toxic effect on A549 cells compared to 

SKMES-1 cells. 

 

Figure 3.  Bar graphs quantifying the percentage of dead, living, early-stage apoptotic, 

and late-stage apoptotic cells in response to different concentrations of reduced 

graphene oxide (rGO). Flow cytometry for A549 and SKMES-1 lung carcinoma cells 

stained with annexin V (apoptosis) and propidium iodide (PI; late apoptosis and 

necrosis) following 24 h of treatment with various concentrations of rGO  (0–1000 

µg/ml). (A) graphic representation of percentage of living cells (B) early apoptosis (C) 

necrosis, (D) late apoptosis (flow cytometry) in response to rGO. Data were 

represented as mean ± SD, n.s., *p<0.05 vs control (0 µg/ml). 

 

The resulting predictive distributions from the trained GP models for A549 and 

SKMES-1 cells are shown in Figure 4. The models not only capture the measurement 

noises, but also indicate how much confidence may be derived from the predictions 

through the associated standard deviation. Interestingly, the model for A549 cells 

indicates that concentrations below 200 µg/ml are likely to be better than higher 
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concentrations. In contrast, the model for SKMES-1 cells, concentrations between 600 

and 800 are likely to yield lower cell death. These predictions match with the 

experimental results presented in Figure 3. 

 

Figure 4. Gaussian process (GP) regression models for cell survival rates of A549 

(left) and SKMES-1 (right) cells interacted with various concentrations of reduced 

Graphene Oxide (rGO). The green solid lines show the mean GP prediction, while the 

light green areas around the mean show the uncertainty (one standard deviation) in 

prediction. The models are trained with the data indicated by the red crosses.  

 

Most interestingly, GP models can predict cell-specific toxicity levels of concentrations. 

As such, we may exploit this knowledge to run further experiments to find out optimal 

levels of concentrations. This approach is better known as Bayesian optimisation: a 

sequential design method that may locate near-optimal solutions with limited number 

of time consuming and computationally expensive experiments [23].  
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Figure 5: Representative FACS images and analysis of one experiment. Data were 

presented as percentage of the cell population. Cell viability of A549 (upper panel) and 

SKMES-1 (lower panel) at selected concentrations. Experiments were performed and 

interpreted as follows: Annexin V-ve/PI-ve cells (lower left quadrant), AnnV+ve/PI-ve cells 

(lower right quadrant), AnnV+ve/PI+ve (upper right quadrant) and AnnV−ve/PI+ve (upper 

left quadrant) were considered as living, early apoptotic, late apoptotic, and necrotic 

cells respectively. 

 

 Cell viability, early and late apoptosis and necrosis were also measured under 

similar conditions to those mentioned above. Early apoptosis is typically defined by an 

increase in phosphatidylserine (PS) expression on an intact cell membrane (detected 

by annexin V). In late apoptosis, however the membrane loses its integrity allowing PI 

into the cell and flags these cells as late apoptotic/necrotic. This study showed that 

rGO induced apoptosis and necrosis above the concentration of 5 µg/ml in A549 and 

above the concentration of 50 µg/ml in SKMES-1 cell lines (Figure 5). Even at lower 

concentrations, rGO was shown to significantly produce late apoptosis and necrosis, 

suggesting that rGO was able to disintegrate cellular membranes (PI staining) at lower 

concentrations. Interestingly, the effect was more pronounced in A549 cells compared 

to SKMES-1 cells upon exposure of rGO. Kumar et al [11] recently reported the high 

toxicity of rGO on A549 cancer cells arising from its reduced lateral size, and showed 

alteration of mitochondrial homeostasis upon rGO exposure. Hu et al. [10] found that 
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rGO caused a dose-dependent decrease in A549 cell viability to 47% (20 mg/ml) and 

15% (85 mg/ml). Toxicity screening of engineered nanomaterials is always 

accomplished in concentration-dependent manner to develop safety profile and risk 

management strategies for their real-world applications. In the case of graphene, low 

concentrations are generally not toxic in mammalian cells but high concentrations play 

a role in plasma membrane internalization and induction of programmed cell death 

[24]. Liao et al. [25] reported toxicity of graphene sheets in dose-dependent manner 

which showed chronic hemolysis activity to suspended erythrocytes owing to its good 

electrostatic interactions with the erytrocyte membrane. Also high concentrations of 

graphene sheets (200 µg/ml) produced higher reactive oxygen species in human skin 

fibroblast cells than low concentrations (3.125 µg/ml) of graphene sheets due to their 

strong interaction and binding to the cell surface. Comparable results were reported in 

A549 cell line [10, 11] suggesting that higher concentrations of graphene sheets 

damage membrane integrity and block the localization of sheets with cell barriers and 

produce high yield of reactive oxygen species. rGO has pronounced effects on cellular 

viability, oxidative stress, and cell death compared to GO because of its sharp edges, 

functional groups, surface charge and nanosheets which facilitate its improved cellular 

uptake [26]. The combined effect of early and late apoptosis and necrosis events 

produced by rGO implies a threat to clinical utility of rGO. rGO induced toxicity 

potentially causes the poor delivery of essential nutrients to cancer cells by blocking 

the immune tolerance of the host cells to recruit blood vessel factories for their survival. 

Oxidative stress is one of the key paradigms leading to graphene toxicology that 

reduces the viability of cells and also hinders the uptake of essential proteins and 

nutrients into cells [12, 27]. Production and abolition of reactive oxygen species are 

well-adjusted inside the cells, and altering the balance could induce lipid peroxidation, 

dysfunction of mitochondria, and apoptosis and necrosis [28]. The toxic transformation 

of graphene, irrespective of the specific structure/assembly of graphene used, relies 

on its bioaccumulation, the structural and chemical morphology of graphene as well 

as the generation of reactive oxygen species in both dark and photo toxicity 

environments [29]. The excessive reactive oxygen species generation may induce the 

mitochondrial membrane damage from lipid peroxidation, DNA damage and apoptosis 

(at low dose) [30]. The generation of reactive oxygen species to induce oxidative 

stresses is considered to be a leading cause of toxicity for graphene nanocomposites 

[28]. Furthermore, the rGO revealed necrosis was more profound and prevalent at 
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high doses, which is likely due to gene deregulation and encoding, demolition phase 

of apoptosis process, whereas, apoptosis events induced by low dose of rGO might 

be triggered due to death-receptor medicated pathways and mitochondrial-driven 

intrinsic pathways [31]. Furthermore, based on the existing literature work and the 

present study, it is revealed that cellular membrane distress, oxidative stresses and 

direct contact of the sharp edges with the cells are considered to be majorly 

responsible for the toxicity of rGO. Direct contact of sharp edges and lateral 

dimensions of rGO may induce genotoxic lesions and genomic instability through their 

interactions with the DNA sequence and structure in target cells [32]. In addition, the 

presence of impurities and toxic chemicals during the fabrication of graphene 

nanocomposites may have adverse effects on their bioavailability to living systems. 

Diversity in size, shape, surface chemistry, lateral dimensions and fabrication routes 

of rGO make it impossible to establish clearly the comparison of biological and 

toxicological impacts of rGO between different studies. As different preparation 

methods produce different quantities of functional groups and free radicals on the 

surface of rGO, this subsequently induces oxidative stresses. Therefore, terminology, 

nomenclature and preparation methods need to be reconciled and standardized to 

validate analytical methods for measuring toxicology impacts, bio distribution and 

physicochemical characteristics of rGO in living systems. With the rapid growth and 

expansion of the graphene market, it is necessary to assess the risk management 

strategies related to the fabrication processes and clinical settings which can 

potentially minimise the environmental and clinical risks of graphene. Furthermore, an 

important benefit of graphene over other nano-assemblies is that its physiochemical 

properties such as hydrophobicity/hydrophilicity, surface charge, size, and surface 

area could be tuned by adjusting synthesis conditions. Moreover, a variety of post-

preparation methods may be introduced to graphene sheets targeting the efficient 

reduction of graphene oxide. Surface functionalization, reduction strategies, doping, 

and introduction of biocompatible coatings are another promising and intriguing 

window of opportunity to improve the bioavailability of rGO to living systems. This is of 

a particular importance in relation to bio-persistence and long-term toxicity of this 

material, since there is a lack of long term in vivo monitoring in this area. 

 

 The results from this study confirmed that rGO poses higher biological risks 

than GO and other derivatives of graphene. In order to improve the bioavailability of 
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rGO, several significant challenges remain to be addressed such as translating its 

toxicological mechanisms and preparation of safer and modified rGO sheets. Further 

toxicological studies should take into consideration the facile preparation of the sample 

such as the intermixing of debris from sample impurities, residues of strong acids and 

reducing agents, which may profoundly revise and improve the surface features of 

rGO. Further in vivo investigations are also required to trace the bioavailability of rGO 

and to clarify the clinical effects of this ‘miracle material’. 

 

 

4. Conclusion 

 

This paper reports the in vitro toxic effects of rGO on lung cancer cells (A549 and 

SKMES-1) as a function of its concentration. The results indicated that rGO caused 

significant late apoptosis and necrosis rather than early apoptotic event at lower 

concentrations, suggesting that rGO was able to disintegrate the cellular membranes 

in a dose dependent toxicity manner. For the toxicity exposures undertaken, late 

apoptosis and necrosis occurred, which was likely resultant from the limited 

bioavailability of unmodified rGO in lung cancer cells.  
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