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ABSTRACT We have resequenced the genomes of four Burkholderia pseudomallei
K96243 laboratory cultures and compared them to the reported genome sequence
that was published in 2004. Compared with the reference genome, these laboratory
cultures harbored up to 42 single-nucleotide variants and up to 11 indels, including
a 31.7-kb deletion in one culture.

Burkholderia pseudomallei causes melioidosis, a bacterial disease of humans and
animals (1). It is also a potential biothreat agent (2), and a panel of strains, including

K96243, has been proposed to have potential countermeasures to melioidosis (2). Strain
K96243 was originally isolated in 1996 from a 34-year-old female diabetic patient in
Khon Kaen Hospital in Thailand (3). Since then, this strain has been extensively studied
and passed between laboratories around the world. We genome sequenced cultures of
strain K96243 with different passage histories held at different laboratories, namely, two
from the Defense Science and Technology Laboratory (Dstl) and one each from the
University of Exeter (UoE) and the London School of Hygiene and Tropical Medicine
(LSHTM). Bacteria were grown with aeration in Luria-Bertani broth at 37°C for 24 h. DNA
was extracted using a Genomic-tip 100/G kit (Qiagen Ltd.) following the manufacturer’s
instructions. DNA was concentrated using a GeneRead kit (lot no. 145025210), and end
repair and adenylation of fragments were carried out using a NEXTflex rapid DNA-seq
kit (catalog no. 5144-02) according to the manufacturer’s instructions. Purification and
concentration of the PCR-amplified library were carried out according to the GeneRead
kit instructions.

The genome sequences shown in Table 1 were determined using 100-bp paired-end
libraries with the Illumina HiSeq 2500 system. Quality and adapter trimming were
performed using TrimGalore version 0.3.7 (https://www.bioinformatics.babraham.ac.uk/
projects/trim_galore/) with the options “— q30 –paired.” TrimGalore uses CutAdapt
version 1.15 (4). We used the “mem” algorithm in Burrow-Wheeler aligner (BWA) version
0.7.12-r1039 (5) to align the trimmed reads to the strain K96243 reference genome
sequence already available (GenBank accession no. BX571965 and BX571966) (6). The
resulting sequence alignment map (SAM) file was converted to binary alignment map
(BAM) format using SAMtools version 0.1.19-96b5f2294a (7) with the command line
options “view -bS -q 1.” We called variants using Pilon version 1.22 (8) with the options
“-Xmx16G – changes –vcf –tracks” and checked the variants using Integrated Genome
Viewer version 2.3.78 (9) with its default settings.

In total, compared with the published sequence, we found 60 single-nucleotide
variants (SNVs) across the 4 resequenced cultures (Table 1), and 29 of these SNVs were
previously reported (2). At 21 sites, the same SNV was present in all resequenced
cultures, suggesting errors in the reference genome. Many of the SNVs were
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colocated in a 260-bp GC-rich region which may be difficult to sequence or may be
hypermutable.

We identified 19 indels ranging from 1 nucleotide (nt) to 33.7 kb across the 4
resequenced cultures. At 5 sites, the same indel was present in all resequenced cultures,
suggesting errors in the reference genome. A 31.7-kb region was deleted from chro-
mosome 1 (nucleotide position 1439846 to 1471563; BPSL1247 to BPSL1269) of the UoE
culture. This region did not correspond to any of the previously reported genome
islands (3) and was not flanked by insertion sequence (IS) elements. It includes 5
hypothetical proteins and a cluster of 5 genes predicted to be involved in cytochrome
oxidase-related functions (BPSL1256 to BPSL1257 and BPSL1259 to BPSL1261). It is
possible that this region plays a role in electron transport.

Other workers have reported genome plasticity and diversity between different
isolates of B. pseudomallei (10), and a recent study reported that, of a number of B.
pseudomallei isolates resequenced, strain K96243 showed the greatest divergence from
the deposited sequence (2).

The microevolution of B. pseudomallei during infection has previously been reported,
with 8 SNVs and 6 small-scale (up to 56 nucleotides [nt]) indels differentiating these variants
(11). In addition, derivatives from a single isolate, but with different colony morphologies,
showed different virulences (12, 13) and different genetic makeups (14). However, it is
reported that genetic differences, including SNVs, do not distinguish these different colony
morphotypes (15).

Our findings show that the genetic makeups of laboratory stock cultures of B.
pseudomallei strain K96243 are not identical. These findings highlight the need to
sequence culture stocks of K96243 held in laboratories before carrying out work with
this strain.

Data availability. These data have been deposited in DDBJ/ENA/GenBank under
BioProject accession no. PRJNA486512. The SRA accession numbers for each strain are
SRS3855208 (K96243-Exeter), SRS3855207 (K96243-LSTHM), SRS3855209 (K96243-Dstl-
1), and SRS3855206 (K96243-Dstl-2).
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