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Abstract

Malaria is highly dependent on climate and environmental factors. This 

thesis incorporates environmental and climatic factors into mathematical 

and geographic information system (GIS) models in order to assess the 

feasibility of an early warning system in a strongly seasonally transmitted 

region in Iran. It also measures Plasmodium spp interactions through meta­

analysis, modelling, and further analysis of a large epidemiological dataset.

The first part of the thesis assesses the feasibility of malaria prediction 

models based on ground climate and remote sensing data. Predicted values 

were typically extrapolated from the previous month’s data; adding ground 

climate data can improve these predictions by around ten percent. 

Predictive variables for these models are readily available in the field, so an 

improvement of even a few percent makes them feasible. However, more 

ground climate data are needed for prediction at finer than district spatial 

scales.

The second part of the thesis measures interactions between malaria 

species. A systematic literature review and meta-analysis assessed the 

heterogeneity of interaction terms between malaria species. Mathematical 

models assessed the effects of within-population heterogeneity in infection 

risks. Finally, data from a large epidemiological study in a highly malaria- 

endemic area (Garki, West Africa) were analysed cross-sectionally and 

longitudinally.

Random-effect meta-analysis produced a summary OR between 

P. falciparum and P. vivax of less than one (0.6, 95% Cl 0.46-0.8). The very
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wide range of ORs seen between studies (0.02 to 10.9) could be explained 

partly by species prevalence and the temporal span of studies.

Mathematical models indicated that within-population heterogeneity in 

infection risks may, by itself, explain ORs as great as ten or more.

Longitudinal analysis of the Garki data produced lower ORs than those 

from cross-sectional analysis. P. falciparum had suppressive effects on the 

other species. In addition, Plasmodium spp interactions highly depend on 

subject age and the temporal and spatial distribution of species. In 

conclusion, heterogeneity in infection risks, due to heterogeneity either in 

acquired immunity or in exposure risk, is the most important factor on 

interactions between Plasmodium spp.

Finally, it seems that species-specific models would improve the predictions 

due to the different impacts of climate on the transmission of species and 

the interaction between them.

3



Contents

Abstract 2
Contents 4
Dedication 8
Acknowledgements 9
Abbreviations 10
List of tables 12
List of figures 14

1. GENERAL INTRODUCTION 17
1.1. Malaria 17
1.2. Overview of thesis 20
1.3. Rationale 21

PART ONE
MODELLING OF MALARIA BASED ON CLIMATE AND REMOTE

SENSING DATA
Prospectus 23

2. CLIMATE EFFECTS ON MALARIA 24
2.1. Introduction 24
2.2. Direct effects of climate 25

2.2.1. Temperature 26
2.2.2. Humidity 31
2.2.3. Precipitation 31

2.3. Other considerations related to climate 32
2.3.1. Deforestation 32
2.3.2. Migration and urbanisation 33
2.3.3. Changing human behaviour 33
2.3.4. Natural disaster and conflict 33

2.4. Prediction of malaria by meteorological factors 34
2.4.1. Basic concepts 34
2.4.2. Limitation of modelling based on climate 36

2.5. Geographical Information System (GIS) 37
2.5.1. Definition 37
2.5.2. Remote sensing (RS) 37
2.5.3. Application of GIS in malaria 38

4



3. FEASIBILITY OF AN EARLY WARNING SYSTEM
3.1. Overview

42
42

3.2. Research setting 43
3.2.1. Geographical description of Iran 44
3.2.2. Description of Kahnooj 45
3.2.3. Description of malaria 51
3.2.4. Description of health system 55
3.2.5. Description of meteorology system 58

3.3. Methods of data collection and analysis 60
3.3.1. Malaria data 60
3.3.2. Demographic data 61

3.4. Statistical models 61
3.4.1. Malaria risks 61
3.4.2. Mean-median smooth 61
3.4.3. Poisson regression method 62
3.4.4. Fractional polynomial model 63
3.4.5. Cox regression method 64
3.4.6. Gaussian approximation 64
3.4.7. Modelling temporal variation 65
3.4.8. Accuracy of models 68

3.5. GIS and RS data 71
3.5.1. Electronic maps and field data 71
3.5.2. Software 72
3.5.3. Remote sensing images 73
3.5.4. Processing 73

3.6. Ground climate data 74
3.7. Results 75

3.7.1. The accuracy of microscopy results 75
3.7.2. Overview of malaria data 82
3.7.3. Repeated malaria attacks 85
3.7.4. Temporal variation 97
3.7.5. Spatial-temporal variations 128
3.7.6. Summary of the prediction results 142
3.7.7. Local transmission 145

3.8. Discussion 151
3.8.1. Temporal variations 152
3.8.2. Spatial variations 154
3.8.3. Species-specific variations 154
3.8.4. Accuracy of final models 155
3.8.5. Practical application of the models 157
3.8.6. Local transmission 157
3.8.7. Limitations and suggestions for further studies 158

3.9. Final conclusion 159

5



PART TWO
INTERACTION BETWEEN PLASMODIUM SPP

Prospectus 161

4. INTRODUCTION 163
4.1. Definition of interaction between species 163
4.2. Background 164
4.3. Possible explanation for positive interaction 167

4.3.1. Similarity in transmission routes 167
4.3.2. Higher susceptibility of a subgroup of people 167

4.4. Possible explanation for negative interaction 167
4.4.1. Suppression 167
4.4.2. Cross immunity 168
4.4.3. Differences in the biology of Plasmodium spp 168
4.4.4. Environmental factors 169
4.4.5. Missed mixed infections in blood slides 169

5. SYSTEMATIC REVIEW AND META-ANALYSIS 170
5.1. Objectives 170
5.2. Data collection method 170

5.2.1. Database search method 171
5.2.2. Merging the result of searches 173
5.2.3. Exporting the citations to Access 173
5.2.4. Reviewing the abstracts 174
5.2.5. Reviewing the full texts 175

5.3. Statistical methods 177
5.3.1. Overview of the methods 177
5.3.2. Simple methods 178
5.3.3. Meta-analysis methods 178

5.4. Results 182
5.5. Discussion 190

5.5.1. Description of main findings 190
5.5.2. Interaction between Plasmodium spp 191
5.5.3. Temporal and spatial span of studies 191
5.5.4. Geographical location 192
5.5.5. Effect of fever and age 193
5.5.6. Frequencies of infections 194
5.5.7. Final conclusion 195

6. MODELLING THE HETEROGENEITY EFFECT 197
6.1. Definition of the infection risk heterogeneity 197
6.2. Confounding effect of the heterogeneity 198
6.3. Heterogeneity models 201

6.3.1. Description 201
6.3.2. Model structures 202
6.3.3. Results 205

6



6.4. Discussion
6.5. Limitations

207
209

7. INTERACTION BETWEEN SPECIES IN THE GARKI DATA 210
7.1. Introduction 210
7.2. Prospectus 212
7.3. Objective 213
7.4. The original Garki project 213

7.4.1. Research area 214
7.4.2. Framework of the original Garki Project 214
7.4.3. Data collection method 218

7.5. Data manipulation and analysis 218
7.5.1. The cross-sectional analysis 219
7.5.2. The longitudinal analysis 219

7.6. Results 220
7.6.1. Overview of malaria infection frequency in the complete dataset 221
7.6.2. Cross-sectional analysis 232
7.6.3. Longitudinal analysis 245

7.7. Discussion 261
7.7.1. The accuracy of microscopy results 262
7.7.2. Positive associations between species 262
7.7.3. Cross-sectional versus longitudinal results 264
7.7.4. Acquired immunity 267
7.7.5. Cross-immunity between species 271
7.7.6. Suppressive effect of P. falciparum 272
7.7.7. Addressing the study objectives 275

8. OVERALL DISCUSSION 276
8.1. The relationship between Part One and Two 276
8.2. Feasibility of prediction models 277

8.2.1. Main findings 278
8.2.2. Research initiatives for further studies 280

8.3. The interactions between species 280
8.3.1. Main findings 281
8.3.2. Research initiatives for further studies 282

Appendices 284
1. Checklists of reviewing papers in meta-analysis 284
2. The computation of daily conversion rates 287
3. Multi-level model Structure 288

Bibliography 290

7



Dedication
I whole-heartedly dedicate this thesis expressing affection and gratitude to 

my wife, Atoosa and my daughter, Bahar for their understanding.

8



Acknowledgements

I should morally dedicate my grateful acknowledgements to Dr Neal 

Alexander for his continuous help and valuable advice. Also I would like to 

thank Dr Jonathan Cox who scientifically supported me particularly in GIS 

and RS issues; Dr Tom Smith who facilitated my access to the Garki Project 

data and gave me helpful advice especially about the interaction between 

malaria species; Dr Shakoor Hajat for his useful guidance on time series.

I would like also to convey sincere thanks to Dr Iraj Sharifi, Kambiz 

Bahadini, and Jelaladin Mahzooni for their kind and effective co-operation 

on field data collection, and all other staff in Kerman Medical University 

who help me in this project particularly F. Kazemi, E. Bamorovat, 

T. Shaban-Nejad, M. Safari and M. Mashayekhi.

The GIS part of this project is financially supported by DFID Malaria 

Programme (London School of Hygiene and Tropical Medicine) and the field 

data are being collected by the contribution of Kerman Medical University 

(Iran).

9



Abbreviations

ABER Annual Blood Examination Rate
AFI Annual falciparum Index
An. Anopheles
ANOVA Analysis of Variance
APC Antigen Presenting Cell
API Annual Parasite Index
ASO Annual Sum of Over-estimation
ASU Annual Sum of Under-estimation
AVI Annual vivax Index
CCD Cold Cloud Duration
DA Drug Administration
DME Digital Elevation Model
DNA Deoxyribonucleic Acid
EMRO Eastern Mediterranean Region Organisation
FP Fractional polynomial
GIS Geographical Information System
GP General Practitioner
GPS Global Positioning System
HW Health Worker
IgG Immunoglobulin G
IgM Immunoglobulin M
kg kilogram
km kilometre
LR test Likelihood Ratio test
LST Land Surface Temperature
m metre
MDA Mass Drug Administration
mg milligram
MHC Major Histocompatibility Complex
mm millimetre
NDVI Normalised Differentiate Vegetation Index
NPV Negative Predictive Value
OR Odds Ratio

P -f Plasmodium falciparum
P. m. Plasmodium malariae
P. o. Plasmodium ovale
P. V. Plasmodium vivax
PCR Polymerase Chain Reaction
PHC Paramount Health Centre

10



PPV Positive Predictive Value
RHC Rural Health Centre
RIGLS Restricted Iterative Generalised Least Squares
ROC Receiver Operating Characteristic
RR Risk Ratio
RS Remote Sensing
RSO Relative Sum of Over-estimation
RSU Relative Sum of Under-estimation
SAR Sum of the Absolute Residuals
SD Standard Deviation
SE Standard Error
Sen Sensitivity
SO Sum of Over-estimation
Spe Specificity
SPR Smear Positive Rate
SQL Structure Query Language
SSD Sub Sub District
SU Sum of Under-estimation
WHO World Health Organisation
WMH World Meteorological Organisation

ul Microlitre

11



List of tables

Table 2-1: Threshold temperatures and duration of the first gonotrophic 
cycle (u=i) for the three main malaria vectors in Kahnooj................... 29

Table 3-1: The situation of malaria in Kahnooj from 1997 to 1999 (annual 
reports of malaria, Health Organisation of Kerman province, 2000).... 54

Table 3-2: Distribution of sex, age and location; and history of symptoms 
among 124 subjects............................................................................... 79

Table 3-3: The accuracy of microscopy in detection of P. uivax among fever 
patients in Kahnooj............................................................................... 80

Table 3-4: Description of malaria cases in Kahnooj between March 1994 
and March 2002.................................................................................... 83

Table 3-5: The risk of malaria disease, classified by sex, age, nationality and 
accommodation type..............................................................................85

Table 3-6: The gap between two consecutive attacks according to the 
species in the former and latter episodes............................................. 89

Table 3-7: Pearson correlation coefficients between annual risk of malaria 
and meteorological variables in Kahnooj 1887-2001........................... 102

Table 3-8: The pseudo R2 of Poisson models classified by the species based 
on the whole district data; model 18 is the final model.....................122

Table 3-9: Over and under estimations of final model classified by 
transmission period, the numbers show the sum of differences between 
observed and predicted values............................................................. 126

Table 3-10: The pseudo R2 between malaria risks and the average NDVI 
around villages in 2001....................................................................... 134

Table 3-11: The pseudo R2 of Poisson models classified by the species based 
on village, SSD or whole district data.................................................. 141

Table 3-12: Over and under-predictions of models based on seasonality, 
time trend and ground and remote sensing data............................... 144

Table 3-13: The accuracy of local transmission models with seasonality, 
time trend, population and histoiy of the disease, with and without 
NDVI and LST.......................................................................................149

Table 5-1: The result of reviewing the abstracts.......................................175

Table 5-2: Descriptions of eligible studies for meta-analysis....................177

Table 5-3: The risk ratio of P. falciparum in P. vivax positive versus 
P. vivax negative group; studies are sorted by their publication year 183

12



Table 5-4: The odds ratio of P. vivcuc as risk factor of P. falciparum 
classified by continent, age group, study subjects, temporal and spatial
span and the frequencies of species among examined slides.............187

Table 5-5: Impacts of potential explanatory variables on the residual 
heterogeneities between the ORs........................................................ 189

Table 6-1: Cross tabulation between species one and two 202

Table 7-1: Numbers of villages, population and surface in areas treated by 
the 3 different control strategies (the Molineaux and Gramiccia book, 
page 28)................................................................................................217

Table 7-2: The effect of interventions on the frequencies of Plasmodium spp: 
the number and percentage of positive slides are classified by 
intervention and species......................................................................223

Table 7-3: Number of selected records according to the project phases ... 225

Table 7-4: The estimation of species' SPRs, and their within- and between- 
village variations, applying multilevel analysis................................... 227

Table 7-5: Some characteristics of Plasmodium spp infections in humans 
(Gilles (1993)) [1 ].................................................................................. 232

Table 7-6: The association of P. falciparum (as risk factor) with other 
species, classified by age and season; i.e., the ORs are stratum specific 
............................................................................................................. 235

Table 7-7: The risk of infection with Plasmodium spp classified by age; the 
infection risk in the last age group (=10 years) is the baseline.......... 243

Table 7-8: The frequencies of infections at the latter survey in relation to the 
infection status in the former survey..................................................246

Table 7-9: The ORs between Plasmodium infections in two consecutive 
surveys.................................................................................................247

Table 7-10: The age stratum specific ORs (95% confidence interval) between 
P. falciparum and other species, adjusted for repeated observation.. 248

Table 7-11: The season specific ORs (95% confidence interval) between 
P. falciparum with itself and with other species in consecutive surveys, 
adjusted for repeated observations..................................................... 249

13



List of figures

Figure 1-1: The distribution of malaria in the world [WHO/TDR 2003].....22

Figure 2-1: Development of eggs and pupae of An. minimus at different 
temperatures .........................................................................................31

Figure 2-2: The duration of the first gonotrophic cycle of three Anopheles 
species as main malaria vectors in Kahnooj, Iran ................................ 33

Figure 2-3: Duration of sporogonie cycle (the period required for parasites to 
become infective in the vector) of P. vivax and P. falciparum at different 
ambient temperatures (Equation 2-5)................................................... 35

Figure 3-1: Map of Iran, showing different climatic and biotic regions.
Kahnooj is shown in the south-east.......................................................49

Figure 3-2: Map of Kahnooj district, showing villages, roads and population 
density by subsubdistrict......................................................................50

Figure 3-3: Meteorological data of Kahnooj 1996-2000 (Meteorology centre 
of Kerman Province)............................................................................... 51

Figure 3-4: The typical vegetation of Kahnooj.............................................52

Figure 3-5: The main agriculture crops of Kahnooj................................... 52

Figure 3-6: A view from the mountains in the south of Kahnooj............... 53

Figure 3-7: Typical accommodation in rural area and mobile people........ 54

Figure 3-8: A rural health centre..................................................................61

Figure 3-9: A microscopist reading blood slides..........................................62

Figure 3-10: Some of the equipment in the Kahnooj synoptic centre........ 63

Figure 3-11: Gel nested PCR products........................................................ 84

Figure 3-12: The monthly secondary attack rates, classified by the gap and 
the species in the first and second attacks ......................................... 96

Figure 3-13: The temporal variations of P. falciparum therapeutic failure 
rate......................................................................................................... 97

Figure 3-14: The annual malaria indices between 1987 and 2002 in 
Kahnooj (See API, AFI and SPR definitions in the text)...................... 104

Figure 3-15: The annual malaria risk and meteorological variables between 
1987 and 2002 in Kahnooj district.................................................... 105

14



Figure 3-16: Temporal variations of malaria over a year; the observed 
numbers classified by species............................................................. 108

Figure 3-17: The seasonality of malaria classified by species, the observed 
numbers (dashes) and model estimated number (solid line) in the ‘fitting’ 
part of the dataset............................................................................... I l l

Figure 3-18: The seasonality and time trend of malaria classified by species, 
the observed numbers (dashes) and model estimated number (solid line) 
in the ‘fitting’ part of the dataset.......................................................... 112

Figure 3-19: The annual variation of mean monthly temperature and 
relative humidity...................................................................................115

Figure 3-20: The fitted values of models based on seasonality, time trend 
and meteorological variables classified by species, observed numbers 
(dashes) and model estimated number (solid line)............................. 118

Figure 3-21: The Autocorrelations and partied autocorrelations between the 
residuals of models, which estimated risks, based on climate, 
seasonality and time trend; the shaded areas show 95% confidence 
interval..................................................................................................123

Figure 3-22: The observed data and the fitted value of final model (based on 
seasonality, time trend, temporal autocorrelation, and climate variables) 
in the checking part of data.................................................................131

Figure 3-23: The annual spatial distribution of P. xnvax risk in Kahnooj 
between 1994 and 2001 by SSD..........................................................133

Figure 3-24: The annual spatial distribution of P. falciparum risk in 
Kahnooj between 1994 and 2001 by SSD..........................................134

Figure 3-25: The annual spatial distribution of malaria risk (all species) in 
Kahnooj between 1994 and 2001 by SSD........................................... 135

Figure 3-26: The spatial distribution of monthly malaria risk in Kahnooj 
classified by the transmission period (no transmission, early, mid and 
late transmission period) between 1994 and 2001 by SSD................136

Figure 3-27: The observed and predicted risk maps of malaria in 2001 in 
Kahnooj, the predicted maps were computed based on NDVI around 
villages (in 5km radius) (Section 3.7.5.2)............................................. 139

Figure 3-28: The observed and predicted risk maps of malaria in 1994-2001 
in Kahnooj, the predicted maps were computed based on the mean of 
altitude three kilometres around villages by using fractional polynomial 
models (see text)...................................................................................141

Figure 3-29: Species-specific ROCs, they assess the relationship between 
sensitivity and specificity of the full models (with NDVI and LST) in 
predicting local transmissions in all data........................................... 153

Figure 3-30: Comparing the fitted and observed risk maps of local 
transmission, the fitted values were computed based on seasonality, 
time trend, history of disease, NDVI and LST (see text for further 
explanations)........................................................................................154

15



Figure 5-1: Forest plot of the OR between P. vivax and P. falciparum using 
random effect model to estimate the confidence interval around the 
summary OR (diamond figure)............................................................192

Figure 6-1: Schematic relationship between the confounder, explanatory 
and outcome variables......................................................................... 203

Figure 6-2: Schematic diagram illustrating the confounding effect of the 
heterogeneity in infection risks on the crude association between 
species..................................................................................................204

Figure 6-3: The effect of the heterogeneity in exposure risks (ki and in x 
and y axes respectively) on the overall OR (z axis)............................. 210

Figure 6-4: The effect of the ratio of populations in high and low risk groups 
(x axis) on the maximum overall OR (y axis).......................................211

Figure 7-1 Study design of Garki project................................................... 221

Figure 7-2: Frequencies of single and mixed Plasmodium spp in 118,346 
assessed slides.................................................................................... 226

Figure 7-3: Frequencies of Plasmodium spp in every survey, mixed infected 
slides were counted more than once....................................................229

Figure 7-4: Annual variation of Plasmodium spp prevalence, based on 6 
years of slide data................................................................................ 234

Figure 7-5: The temporal variations of ORs between P. falciparum and other 
species based on 6 years of data......................................................... 241

Figure 7-6: Estimated daily clearance and acquisition rates of P. malariae 
and P. ovale classified by the presence of P. falciparum in the former 
survey...................................................................................................262

16



CHAPTER 1

1. General introduction

1.1. Malaria

Malaria is a parasitic infection transmitted to humans through the bites of 

infected female Anopheles mosquitoes. The resulting disease in humans can 

be devastating. After travelling rapidly through the bloodstream to the liver, 

the parasite emerges again into the blood stream, finally to settle in the red 

blood cells, where it multiplies and emerges in bursts of new organisms. 

These parasites, because of their large numbers, can cause particular 

damage to the nervous system, liver, and kidney [1].

Malaria occurs in over 100 countries and territories. More than 40% of the 

people in the world are at risk. Large areas of Central and South America, 

Africa, the Indian subcontinent, Southeast Asia, the Middle East, and

Oceania are considered malaria-risk areas [2].
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Figure 1-1: The distribution of malaria in the world [WHO/TDR 2003]

The World Health Organization (WHO) estimates that yearly 300-500 million 

cases of malaria occur and more than one million people die of malaria. In 

young children and adults who have not recently been infected (and 

therefore have not developed natural immunity), this cycle can result in 

death within hours from cerebral malaria. Others die later from 

overwhelming anaemia or liver and kidney failure. Untreated, up to 20% of 

persons infected with falciparum malaria will die [WHO/TDR 2003].

There are four species that can infect humans: P. falciparum, P. viuax, 

P. ovale, and P. malariae. They have a life cycle which is split between a 

human host and an insect vector. The Plasmodium spp, with the exception 

of P. malariae (which may affect the higher primates) are exclusively 

parasites of man [1].

The mosquito is always the vector, and is always an Anopheline mosquito, 

although, out of the 380 species of Anopheline mosquito, only 60 can 

transmit malaria. Only female mosquitoes are involved as the males do not 

feed on blood [2].
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Malaria has a complex life cycle. Infected female mosquitoes inject malaria 

sporozoites when they bite, and the sporozoites are carried to the liver 

where they rapidly infect liver cells. Without causing symptoms, these 

sporozoites undergo a radical change and multiply furiously for the next 4-5 

days. Tens of thousands of asexual stage merozoites are released from each 

infected liver cell, each of which rapidly targets and invades a red blood cell. 

Every few days, the merozoites multiply ten-fold and burst out to infect 

other red blood cells. This cyclic and massive increase in parasite burden 

gives rise to the clinical disease we recognise as malaria [1].

In the absence of immunity or drug treatment, death can occur within 

hours of noticeable symptoms. If death does not occur and infection 

continues, some of the parasites further differentiate into a form that is 

infectious for mosquitoes (gametocytes), thus permitting the life cycle to 

continue [2J.

The diagnosis of malaria is confirmed by blood tests and can be divided into 

microscopic and non-microscopic tests. Microscopic tests involve staining 

and direct visualisation of the parasite under the microscope. Non- 

microscopic tests involve identification of the parasitic antigen or the anti- 

plasmodial antibodies or the parasitic metabolic products [2j.

Many different approaches have been taken to prevent the cycle of disease 

and mortality from malaria. These approaches can be classified as follow [2]:
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1. Control of mosquitoes, e.g. by eliminating stagnant water where they 

can breed, or by using pesticides

2. Limiting human exposure to the infected mosquito

3. Prevention of the disease through prophylactic use of anti-malarial 

drugs

Nonetheless, despite of a great deal of research, malaria still is one of the 

main international health problems s and there are many questions without 

any precise responses, such as questions about the best controlling 

methods, immunity against malaria, and prediction of malaria based on 

climate and remote sensing data.

1.2. Overview of thesis

This thesis explores two related topics. The first topic is the effects of 

climate on malaria. The second topic is the interaction between 

Plasmodium spp. These are related because the interaction between species 

may affect temporal and spatial variations of species. In addition, the 

discrepancies between species distributions due to the climate effect may 

influence their interactions.

The number of malaria cases is modelled based on meteorological and 

remote sensing data in Part One. This part explains the effects of climate on 

malaria and models species-specific incidence in an endemic area of Iran. 

Furthermore, the differences between the spatial and temporal distributions 

of P. falciparum and P. vivax are explored.
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Part Two explores the interaction between Plasmodium spp and has four 

chapters. The first chapter (number 4) is an introduction and explanation of 

the possible sources of interactions between species. The second chapter 

assesses the interactions between P. falciparum and P. vivax in a 

systematic review of the literature and explores the sources of heterogeneity 

in this interaction. The third chapter models the association between 

species based on the variation of infection risks within a population. The 

fourth chapter assesses the interaction between Plasmodium spp in the 

Garki Project, a very large epidemiological study of malaria in Africa, with 

both cross sectional and longitudinal data.

The last chapter of this thesis discusses the main findings and links the 

results. It also explores the study’s limitations and suggests topics for 

further studies.

1.3. Rationale

A precise risk map can improve the effectiveness of control programmes. In 

addition, malaria transmission is highly affected by climate. Therefore, it 

seems that predictive models based on meteorological factors may improve 

the effectiveness of control programmes. There is a great deal of research on 

this topic, but most of it has explored this association in epidemic areas, 

mainly in Africa. Therefore, the feasibility of an early warning system based 

on ground meteorological and remote sensing data is assessed in a district 

in Iran with seasoned malaria (Part One).

The interaction between Plasmodium spp has been studied at different levels, 

from molecular up to human populations. Nonetheless, there is not any
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systematic literature review or meta-analysis on this topic. Also, most 

epidemiological studies have analysed this topic cross-sectionally. The 

second part of this project assesses some of these aspects in the interaction 

between Plasmodium spp longitudinally as well as cross-sectionally. In 

addition, it presents the results of mathematical models.

Considering these two parts together, it may be possible to explain some of 

the apparent interaction between species by spatial and climatic 

variabilities. Moreover, the observed discrepancies between temporal 

variations of Plasmodium spp may be explained either by their different 

sensitivities to climate or the interaction between species; i.e., the 

suppressive effect of one species on the others.

22



Part One: Modelling of malaria based on climate and remote

sensing data

Prospectus

This part addresses the association between climate and malaria risk and 

has two chapters. The first chapter reviews the literature and discusses the 

possible pathways through which climate may affect malaria risk. It also 

discusses the application of geographical information system and remote 

sensing to public health.

The second chapter presents the results of statistical modelling to which 

assess the feasibility of an early warning system in Kahnooj, a district in 

Iran with seasonal malaria. It describes the health system in Kahnooj and 

presents the malaria situation. Then, it assesses the feasibility of an early 

warning system in predicting malaria using meteorological variables and 

remote sensing data.
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CHAPTER 2

2. Climate effects on malaria

2.1. Introduction

Seasonal and climatic variation affects the occurrence of epidemics of 

malaria, as well as long-term trends. High temperature, humidity and 

rainfall are mostly considered as the main risk factors for malaria outbreaks 

in epidemic areas [2]. It is well established that climate is an important 

determinant of the spatial and temporal distribution of vectors and 

pathogens [3], Ndiaye et al. (2001) showed the relation between climate 

variability, both seasonally and inter-annually in Senegal, and the 

variability in the number of deaths attributable to malaria [4],

The approximate average monthly temperature cut off point between an 

epidemic and a non-malaria zone in Africa is indeed around 18°C; and 22°C 

allows stable transmission [5J. The minimum temperature is also important 

in the transmission of malaria. The minimum temperature iso-line is 

around 4°C and for stable transmission 6°C [5]. In addition, other factors 

such as wind and the duration of daylight can also be significant [6].

Furthermore, the duration of the warm season is also important. It seems 

that unusually high temperatures at the end of the normal malaria season
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prolong transmission and substantially increase the number of malaria 

cases (particularly those infected with P. falciparum) [7].

2.2. Direct effects of climate

Mosquito abundance depends on the rate at which insects are produced 

from their breeding sites, and their survival rates. Higher temperatures 

speed up the development of adult mosquitoes, which live longest between 

25°C and 35°C. At very low and very high temperatures, mosquitoes have 

shorter lives [2J.

The person-biting rate is a measure of the number of times that each 

person gets bitten each day. This number is dependent on the frequency of 

mosquitoes per person, the feeding behaviour of the mosquitoes, and 

human behaviour.

Climatic conditions and temperature in particular, directly influence 

mosquito development, feeding frequency and longevity, as well as the time 

in which the parasite develops inside the mosquito. Other environmental 

factors such as vegetation and breeding sites are indirectly influenced by 

climate conditions [8].

Vectorial capacity describes the intensity of malaria transmission [9] and is 

defined as the mean number of potentially infective bites that will be 

delivered by the vectors feeding on a single infectious host in one day. 

Vectorial capacity (Q is a function of four components [10]:

ma2p n
- I n  ( p )  Equation 2-1
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where m is the frequency of female mosquitoes per person; a is the 

frequency of blood feeding by one mosquito in one day; n is the duration of 

sporogonie phase in days; and p  is the probability of a vector surviving one 

day.

Suitable climate, particularly high temperature, speeds up the development 

of plasmodia parasites within mosquitoes. However, it should be borne in 

mind that without sufficient breeding sites and effective contact between 

mosquitoes and humans, higher temperature will not matter [11],

The critical density of mosquitoes for transmission of malaria can be 

expressed as [8]:

m* — - l o g ( l )  
_ a p

Equation 2-2

where m* is the critical number of female mosquitoes per human; and k is 

a constant which is dependent on the recovery rate of human and efficiency 

of transmission between human and mosquitoes.

All parameters in Equation 2-2 depend directly on climate factors except k, 

which might be affected indirectly by environmental factors.

The pathways by which climate affects malaria incidence are described in 

the following sections.

2.2.1. Temperature

Temperature is important because it governs [12]:

1. The rate at which mosquitoes develop into adults,
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2. How frequently they blood feed (and, therefore, acquire parasites),

3. The survival rate of adult mosquitoes,

4. The incubation time of parasites in the mosquito,

1. The rate at which mosquitoes develop into adults: as shown in Figure 

2-2, a small increase in temperature at low temperatures has a greater 

effect on the development time than similar changes at higher temperatures. 

In other words, the downward slope is steeper at lower temperatures. 

Mosquito populations generally increase more rapidly in warmer climates. 

At extremely high temperature, over 30°C, development actually slows down 

[13]. However, the availability of breeding sites is the main limiting factor of 

the abundance of mosquitoes [14]. For example, in spite of the cold climate 

of northern Canada, the number of mosquitoes in some places is 

surprisingly high due to availability of breeding sites [15].
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Figure 2-1: Development of eggs and pupae of An. minimus at different temperatures [16]
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2. Frequency of blood feeding: most Anopheles are “anautogenous”, 

requiring at least one blood meal to produce each clutch of eggs, therefore 

the search for blood is an ongoing, repetitive process [17]. Each cycle starts 

with an unfed adult, passing through a blood-fed, half gravid and gravid 

condition; then after oviposition the female is again unfed and seeks 

another blood-meal (gonotrophic cycle). In an idealised cycle, feeding and 

egg-laying occur once per cycle, irrespective of its duration [14]. During the 

dry-hot season the act of oviposition, and probably the maturing of the eggs, 

are delayed, and more than one blood meal is taken per gonotrophic cycle 

[18]. The feeding frequency and the length of the blood-digestion phase are 

dependent on the ambient temperature [14]. However, endophilic vectors, 

resting in more sheltered environments, are less sensitive to ambient 

temperature [15].

In the wild, tropical mosquitoes usually bite at regular intervals of 2-5 days. 

But small changes in temperature have substantial effects [14]. For example, 

Lindsay (1995) showed that An. gambiae and An. funestus feed every two 

days at around 25°C, but only every three days at lower temperatures [14].

In general, the length of gonotrophic cycle (nu days for the nth cycle) and 

temperature can be related as follows:

f u
n u ~  77, ~ Equation 2-3

T ~ S U

where f u is a thermal sum, measured in degree-days, representing the 

accumulation of temperature units over time to complete the development, 

gu a threshold below which the development ceases, and T is the ambient 

temperature. Table 1 shows these parameters for the first gonotrophic cycle
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(ii=l) [14], Figure 2-3 shows the estimated duration of the gonotrophic cycle 

of the three main malaria vectors in the research setting of Kahnooj, Iran, 

according to Equation 3 and Table 2-1.

Table 2-1: Threshold temperatures and duration of the first gonotrophic cycle («=/) for the
three main malaria vectors in Kahnooj.___________________________________________

Anopheles species
Parameter __________________________________________

maculipennis1 culicifacies2 stephensi2
f i  (degree days) 36.5 29.7 43.4
Threshold temperature(°C)__________ 9J3___________ 12.6________ 8.9

1 Data from Detinova (1962) [19]
2 Data from Mahmood and Resicn (1981) [20]

Figure 2-2: The duration of the first gonotrophic cycle of three Anopheles species as main 
malaria vectors in Kahnooj, Iran

3. Adult mosquito survival: experimental studies show that mosquitoes 

can survive many months in cold climates [6], while there may be a negative 

effect on survival of adult mosquitoes at high temperatures [21]. 

Experimental studies show that the thermal death of mosquitoes occurs 

around 40-42°C [22,23]. In the field, Anopheles have the highest survival at 

25-35°C [21].
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Assuming constant humidity, the probability of a mosquito surviving one 

day can be estimated as follows [5J:

p  =  e
(-4.4+1.317’-0 .037’2 )

Equation 2-4

4. The incubation time of parasites in the mosquito: the length of time 

required for the development of the malaria parasite within a mosquito (n() 

is also linked to ambient temperature, and can be summarised thus [19]:

where ru is the length of sporogonie cycle in days, M  is a constant (degree 

days representing the accumulation of temperature units over time, 105 for 

P. vivax and 111 for P. falciparum). In this equation t represents the mean 

monthly temperature, and m the lowest temperature at which the 

sporogonie cycle can be completed for the species of malaria (14.5°C for 

P. vivax and 16°CforP. falciparum) [19,24],

The minimum temperatures for the development of P. falciparum and 

P. vivax are about 18 and 15°C respectively [25],

M
Equation 2-5

( t - m )
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Figure 2-3: Duration of sporogonie cycle (the period required for parasites to become 
infective in the vector) of P. vivax and P. falciparum at different ambient temperatures 
(Equation 2-5)

2.2.2. Humidity

Humidity is one of the factors which has a direct effect on the survival of 

mosquitoes. Survival rate might be reduced when hot weather is 

accompanied by low humidity. But in areas with this type of climate, such 

as semi-arid parts of Sudan, local species have adapted themselves [6].

Humidity also affects the risk of exposure to vectors (Section 2.3.3).

2.2.3. Precipitation

Rain provides the breeding sites for malaria mosquitoes and helps create a 

humid environment, which prolongs the life of vectors [12], Craig (1999) 

shows that at least 80mm per month precipitation for five months is needed 

for stable malaria transmission in Africa [5]. Ndiaye et al. (2001) showed 

that the correlation between the variability in August rainfall and the
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variability in the number of deaths attributed to malaria between August 

and December was strong, positive and statistically significant (r=+0.61, 

p=0.02). In addition, highly significant cross-correlations were found 

between monthly rainfall series and monthly mortality series at one- and 

two-month lags (r=+0.43, p=0.0004 for one-month lag; r=+0.26, p=0.03 for 

two-month lag) [4].

On the other hand, heavy rains may have a flushing effect, cleansing 

breeding sites of their mosquitoes [5,6J. Heavy autumnal rain fall in Algeria, 

for example, normally brings the malaria transmission season to an end by 

flushing out the breeding sites of An. labranchiae [2],

2.3. Other considerations related to climate

2.3.1. Deforestation

Climate changes may lead to adaptation of in local human behaviour. 

Forest clearance and agricultural activity provide favourable conditions for 

those insects that prefer irrigation ditches, wells and temporary ground 

pools exposed to full sunlight as breeding sites, such as many types of 

Anopheles [26]. Agricultural fertilisers can promote the growth of algae and 

other larval nutrients, although herbicides may eliminate them altogether 

[6].
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2.3.2. Migration and urbanisation

Drought, flooding or economic factors can cause mass population 

movements [26]. Infected people can introduce malaria to non-endemic 

areas. Rapid population expansion can cause breakdown in public health 

services. In addition, extensive water storage and inadequate water disposal 

can lead to disastrous surges in the number of malaria mosquitoes. 

Furthermore in large cities and camps, zoophilic species might be 

encouraged to feed on people due to dense human population and the 

absence of cattle [6].

2.3.3. Changing human behaviour

The lifestyle of people is dependent on the climate. Usually people wear less 

clothes in warm and humid climates, and prefer to work and rest in open 

areas. Therefore, they are more exposed to mosquito bites. On the other 

hand, due to the abundance of insects they might use more bed-nets or 

other protective methods, which decrease the risk of effective exposure 

[26,27].

2.3.4. Natural disaster and conflict

Natural disasters such as drought and flood might disrupt the health 

infrastructures and change human life, and so might create an optimum 

condition of any types of epidemics [28-34].
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Flooding often causes disruption of breeding sites and temporary reduction 

of vectors. But it never eliminates the vectors, so that high rainfall is still 

considered optimal for transmission [5,26].

2.4. Prediction of malaria by meteorological factors

2.4.1. Basic concepts

Understanding the linkages between meteorological and ecological changes, 

as determinants of disease, emergence and redistribution will ultimately 

help to optimise preventive strategies [35]. Craig et al. (1999) demonstrated 

that a simple climate-based model can be used to define the crude 

distribution of malaria transmission in Africa [5]. However, the long term 

variation in malaria risk based on climate changes must be interpreted 

based on local environmental conditions, socio-economic development, and 

malaria control programmes or capabilities [8]. Reiter (2001) emphasised 

that human activity and general social behaviour can be much more 

important than the effect of climate on malaria incidence. Therefore, it is 

inappropriate to use only climate-based models to fully predict future 

prevalence [6].

Also, due to the complexity in the relationship between the variables, 

looking at only one meteorological factor and ignoring the effect of others 

might produce distorted results. Malaria in highly endemic regions is less 

sensitive to climate changes. However, a small increase in temperature in 

highly seasonal areas can disproportionately enhance malaria transmission
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[8,14]. A study in Mali, which has high temperatures, showed that a rainy 

season of only three months is enough to sustain transmission of 

P. falciparum. In contrast, in southern and eastern parts of Africa with 

cooler weather, at least five consecutive months of rain are needed to enable 

mosquitoes to achieve the abundance required to sustain malaria [5]. In 

western Kenya, malaria outbreaks have occurred at altitude of 2000m when 

the mean monthly temperature exceeded 18°C and rainfall reached more 

than 15 cm per month [36].

The results of another study in Pakistan showed that P. falciparum is more 

susceptible to climate changes than P. invax [37]. All these examples 

support the idea that a comprehensive view of the local epidemiology of 

malaria is needed to make an efficient model based on the meteorological 

factors.

Microclimate is very important in malaria transmission [38]. The mean daily 

ground temperature in dense forest is around 10°C less than adjacent open 

areas. In addition, indoor and outdoor temperature can be several degrees 

higher or lower, depending on the season, house design and construction 

material. Mosquitoes use a variety of strategies to exploit the timing and 

location to maximum advantage [6],

Distribution maps of vector types are important for understanding the 

epidemiology of the diseases they transmit. Bayoh et al. (2001) developed a 

model to predict the chromosomal forms of An. gambiae, the principal 

vector of malaria in West Africa, based on climate data, with more than 80% 

accuracy. Modelling demonstrated that climate affects not only the 

distribution of vector species but also their genotypes [39].
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In Africa, most malaria deaths occur at the end of the rainy season. 

Greenwood and Pickering (1993) explained this finding by the effect of 

climate on the malaria species, immunity of the population against malaria, 

drug resistance and other socio-economical factors [40].

Changes in precipitation and temperature can have a marked effect on the 

intensity of transmission [14], Multivariable analysis of the malaria in a 

district in North West Pakistan showed a significant relationship between 

the annual frequency of P. falciparum cases and rainfall in September and 

November, temperature in November and December, and humidity in 

December [37],

2.4.2. Limitation of modelling based on climate

Human vulnerability is the product of immunity, poverty and behaviour [14]. 

Economic, social and political factors are very important in the frequency of 

malaria cases, but are outside the scope of nearly all statistical and 

mathematical models. For example, Thomson et al. (1994) showed that in 

The Gambia the most malarious areas were those with fewest mosquitoes. 

This paradox was explained by the habits of people; in general, people slept 

under bed-nets only in villages with high densities of mosquitoes [27].

In addition, there are some assumptions in the mathematical models which 

might not be true in practice. For instance, the risk of contact between 

people and vectors is usually positively skewed, i.e., a small proportion of 

people have a much higher contact rate than the rest of population. Taking
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account of this heterogeneity usually gives a different result, but limitations 

of data often prevent it being included.

Furthermore, there are some uncertainties in measuring model parameters, 

especially with remote sensing (RS) data [41], These types of errors may 

significantly reduce the accuracy of model results.

Nevertheless, it should be mentioned that from a practical point of view, a 

simpler model based on existing field data is usually preferred to an 

expensive and complex model with more accuracy.

2.5. Geographical Information System (GIS)

2.5.1. Definition

GIS is a computer-based method for storing, mapping, visually analysing 

and reporting data in spatial as well as temporal formats [42],

In relation to vector-borne diseases, GIS enables us to identify and analyse 

factors that may explain part of the temporal and spatial distribution of 

vectors as well as the disease. In this way, climatic variables and land cover 

are the most important explanatory variables, and are being increasingly 

applied to the study of vector-borne diseases [41,42].

2.5.2. Remote sensing (RS)

Remote sensing methods enable us to assess some property of an object 

without direct contact with it.
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Nowadays, satellites are scanning the earth surface and capturing 

environmental data at a range of resolutions (spatial, temporal, spectral and 

radiometric) [42]. The satellite sensors measure radiation in various regions 

of the electromagnetic spectrum emitted, reflected or scattered from each 

point of the earth. Due to differences in the optical behaviour of different 

objects, it is possible to characterise them through their spectral signatures. 

In passive RS, the sensor measures the solar radiation reflected by the 

Earth surface, or radiation emitted by the Earth itself. In active RS the 

sensor detects of its own reflection of the generated long wavelength signal 

(3-30m) by land surface features [43].

In relation to vector-borne diseases, the main environmental proxies derived 

from meteorological satellite data are: Cold Cloud Duration (CCD) an 

estimator of rainfall; Normalised Difference Vegetation Index (NDVI), an 

indicator of land-cover and water tables; altitude and Land Surface 

Temperature (LST) [42].

2.5.3. Application of GIS in malaria

Sipe and Dale (2003) [44] reviewed the GIS and malaria literature and 

divided the publications into the five categories outlined below:

1. Mapping malaria incidence/prevalence

2. Mapping the relationships between malaria incidence/prevalence and 

other potential related variables

3. Using innovative methods of collecting data such as remote sensing 

(e.g., GIS)
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4. Modelling malaria risks

5. General commentary and reviews of GIS used in malaria control and 

research

Studies can be classified into two main groups according to types of 

outcome variables. Due to the direct effect of environmental factors on 

malaria vectors, the first group tries to model the abundance of vectors. The 

second group explains the effect of environmental factors on the frequency 

of malaria cases.

Klinkenberg and Van Der Hoek (2003) [45] and Noor et al. (2003) [46] used 

GIS methods to predict the malaria risk. Hay et al. (2000) reviewed the 

current status of GIS and RS as new tools to improve programmes for the 

control of malaria and its vector in sub-Saharan Africa [47]. He used remote 

sensing data to predict the population dynamics of arthropod vectors [48]. 

In a study in Mexico, the prevalence of Anopheles was predicted by RS data 

using two statistical approaches, discrimination analysis and regression. 

Both showed 70% accuracy in prediction of high prevalence villages [49],

Despite some limitations of these techniques, Sharma et al. (1996 and 1997) 

showed in his papers that GIS and RS are very useful in mapping the major 

breeding sites, recording temporal changes and estimating larval production 

in a cost-effective and timely manner [50,51],

Roberts et al. (1994 and 1996) [52,53], Rejmankova et al. (1995) [54] and 

Lindsay et al. (1998) [55] used RS data to predict the malaria vector 

distribution by different approaches.

Malaria transmission in the Red River basin in China is primarily 

determined by migration of people, environmental variables, particularly
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altitude, paddy and forest [56]. Connor et al. (1998 and 1999) used satellite 

data to generate a risk map of malaria and develop an early warning system 

[57,58], In another study in 26 villages in The Gambia, clinical and 

entomological data were linked to RS data. Malaria risk and the natural 

immunity against malaria were found to be closely related to the distance 

between villages and breeding sites [59], A study in Kenya showed a strong 

association between the number of paediatric severe malaria cases and 

NDVI (r2=0.71) [60]. Hay et al. (1996) compared RS data with ground data 

and discussed the potential source of errors. He also showed in another 

review that using RS methods improves the efficacy of malaria control 

programmes [43]. All these studies showed the application of RS data on the 

prediction of malaria.

It is expected that vector abundance and the frequency of malaria cases are 

strongly correlated. On this assumption, mosquito abundance should be a 

good proxy of malaria burden. However, some studies do not support this 

assumption. There are some malaria free areas with uninfected vectors in 

Europe, North America and Australia [43,53,58]. Human behaviour and 

other socio-economic factors are also important in determining the 

incidence of malaria (Section 2.3).

Due to this discrepancy between abundance of vectors and frequency of 

malaria cases, from the public health policy point of view, the modelling of 

malaria cases might be more reliable. However, due to greater validity and 

availability, most of studies modelled the abundance of vectors. Nonetheless, 

the following chapter models the incidence of malaria to assess the validity 

of predictions based on RS and ground climate data.
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Linear regression, logistic regression and discriminant analysis are the 

main statistical methods which have been used to assess the relationship 

between RS data and the frequency of vectors or cases. However, special 

methods are needed to take into account the dependencies caused by auto­

correlation between data consecutive in time or space [61]. In addition, new 

methods such as neural networks and fuzzy rule-based systems are being 

developed, although their applications are currently limited [42]. In the next 

chapter, the Poisson regression method (adjusted for dependencies) was 

used to predict the number of malaria cases.
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CHAPTER3

3. Feasibility of an early warning system

3.1. Overview

This chapter uses ground and remote sensing data to model temporal and 

spatial malaria risks in Kahnooj, a malaria endemic area in southern Iran, 

between 1994 and 2002.
*

The main objective is to assess the feasibility of an early warning system 

based on meteorological and remote sensing data for predicting malaria 

cases in an area of highly seasonal transmission.

Malaria data were extracted from the surveillance system, which records the 

date, location and the species of infection for each malaria case. In addition, 

the type of surveillance (active or passive), nationality and the names of 

cases were recorded.

The meteorological data were obtained from the synoptic centre in Kahnooj 

city, and remote sensing images. The ground data contain the daily 

minimum and maximum temperature, mean daily relative humidity and 

rainfall. The remote sensing data contain the mean land surface 

temperature and vegetation index over 10 or 30 days; with two spatial 

resolutions: 30x30m, and 8x8km.
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Using Poisson regression models, the numbers of expected cases were 

predicted based on temperature (ground and remote sensing), humidity, 

rainfall, vegetation index, seasonality, time trend and auto-correlation 

between temporal risks.

The data were grouped by month or ten day period; then the aggregated 

records were randomly allocated to modelling (75%) and checking (25%) 

(Section 3.4.8). The parameters were estimated based on the modelling data. 

The accuracy of models was checked by comparing the fitted and observed 

values in the checking data (Section 3.4.8).

This chapter also assesses the risk factors for local transmission. A map of

local transmission is a useful tool for the health system to identify and
*

concentrate its activities in high risk areas to prevent outbreaks. The local 

transmission in each village was defined as the presence of at least two 

conspecific malaria cases in one month, or one conspecific case in each of 

two consecutive months. The sensitivity and specificity of models in 

detection of locally transmission were computed using the ROC method.

In addition to sections which address the main objective, the relapse rate of 

P. vivax, and treatment failure risk of P. falciparum are presented in 

Section 3.7.3.

3.2. Research setting

The following sections describe the geography, including climate, of Iran 

and the study area. They also describe the health system and malaria 

surveillance.
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3.2.1. Geographical description of Iran

Iran is located in the Middle East with an area of 1.6 million square 

kilometres. It extends north to Azerbaijan, Turkmenistan, Armenia and the 

Caspian Sea; east to Afghanistan and Pakistan; south to the Persian Gulf 

and the Oman Sea; and west to Turkey and Iraq.

Mountain ranges divide Iran into four different climatic and biotic regions:

1. Caspian Sea littoral between the northern slope of the Alborz 

mountains and the Caspian Sea. This is a narrow strip of forested 

land, with a Mediterranean climate (10-35°C and 70%-100% relative 

humidity)

2. The central plateau extends to the east and south-east with hot and 

diy climate in summer and cold, snow-bound winters (0-40°C and 0- 

40% relative humidity)

3. Persian Gulf and Khuzestan plain in the south and south-west has a 

tropical climate (15-40°C and 40%-80% relative humidity),

4. Mountainous area in north-west area with very cold winters (-10 to 

25°C and 30%-60% relative humidity)
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Figure 3-1: Map of Iran, showing different climatic and biotic regions. Kahnocj is shown in 
the south-east.

3.2.2. Description of Kahnooj

3.2.2.1. Climate

Kahnooj is a district of Kerman province in southern Iran with hot dry 

weather and an area of 32,000km2. Three seasons may be recognised: wet 

and cold from December to April, dry and hot from May to September and
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warm and dry in October and November (Figure 3-3). The climate is 

characterised by relatively wide annual and diurnal ranges of temperature 

with restricted rainfall. Temperature reaches 45-50°C in July and 5-10°C in 

January. The annual precipitation is around 200mm, mostly in winter, and 

there are seven almost rainless months.

Figure 3-2: Map of Kahnooj district, showing villages, roads and population density by 
subsubdistrict

The dominant vegetation is scattered bush and scrub, with trees almost 

always occurring singly. Less than 8% of the district area is used for 

agriculture purposes and the main crops are date and citrus (Figures 3-4 

and 3-5). Deep wells are the main source of water throughout the year. The
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water table is around 30-50m but in some parts, it falls sharply to around 

100m. Marshes are formed in the wet season but dry out more or less 

completely at the beginning of dry and hot season.

Altitude varies between of 350m above sea level (in the east) and 2000m (in 

the south). There is a salt and gravel flat with sand dunes, and a small 

seasonal lake in east. In the south, there is a mountain chain with rock 

(Figure 3-6). There are scattered mountains in the northeast and northwest 

of the district.

date

'"V S t

— temperature ( Centigrade,right axis) 
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—o— precipitation (mm, left axis)

0}

Figure 3-3: Meteorological data of Kahnooj 1996-2000 (Meteorology centre of Kerman 
Province)
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3.2.2.2. Population

Kahnooj has a population around 250,000; 86% of which live in rural area. 

The mean population density is eight people per km2; the minimum is three 

in the eastern part of district. Kahnooj has five subdistricts and 20 

subsubdistricts (SSDs) (each subdistrict has two to six SSD). In 1994 

Kahnooj had just two cities but today has five cities based on national 

definitions (population more than 7000), and around 600 inhabited villages 

(Figure 3-2).

Almost all the population belongs to the domestic ethnic group, but there 

are also estimated to be around 15,000 Afghani refugees in Kahnooj.

More than 60% of people in cities, and 15% in villages, live in brick or 

cement houses. Most people in rural areas live in clay houses or round huts
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made with thatch (Figure 3-7). They live in small and nearly closed groups, 

practising agriculture and keeping cattle.

Around 19% of the population are nomadic. They move in large groups 

between this district and adjacent districts following suitable climate and 

grazing ground. They leave Kahnooj around April to May and come back 

around August to September, keeping large groups of cattle, and living in 

huts and temporary tents made of cowhides or grass.

Kahnooj is one of the poorest districts in Iran; 45% of people are illiterate 

and the annual population growth rate is 1.2% percent. Almost all people 

are Moslem.

Figure 3-7: Typical accommodation in rural area and mobile people
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3.2.3. Description of malaria

3.2.3.1. Malaria in Iran

As the result of extensive malaria control programmes in the last 5 decades, 

the malaria incidence rate has dropped dramatically. However, malaria is 

still one of the most common parasitic diseases in Iran (50 to 60 thousand 

cases per year) and one of the main public health concerns in the south­

east of the country [62].

Malaria was endemic in most parts of Iran around 100 years ago. It was 

estimated that 4-5 million people, out of a population of 13 million, 

contracted malaria in 1924 [63]. Just before the Second World War, Iran 

started the national malaria control programme, and in 1957 the 

government included the strategy of malaria eradication. In 1988, the 

malaria eradication programme became the malaria control programme.

According to the serial reports of Iran to WHO/EMRO (Eastern 

Mediterranean Region Organisation), there is a decreasing trend in malaria 

incidence. The 1997 report shows that 10 million (16.4%) of the population 

lived in initially non-malarious areas, 40 million in areas freed from malaria, 

7.5 million in areas of sporadic transmission and just 3.5 million (6%) in 

areas of constant transmission [63].

Of 3,244,334 blood slides examined in Iran’s programme in 1997, 38,766 

were diagnosed positive (SPR, Smear Positivity Rate, 1.99%), of which 8,698 

(22%) were P. falciparum and the remainder P. vivax or mixed. 434 cases 

were hospitalised and 22 deaths were reported.
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From a practical point of view, three regions are recognised in the country:

1. The region to the north of the Zagros range, with a population of 

around 43 million in the west and north-west. API (Annual Parasite 

Index) was 0.14 per 1000 people in 1997. More than 75% of the 

cases were imported from other countries (mostly from Azerbaijan) or 

the endemic areas of Iran.

2. The regions to the south of the Zagros, the central part of Iran, with 

around 15 million population. API was 0.18 per 1000 population and 

48% of the positive cases were imported.

3. The south-east corner, which consists of Sistan and Baluchestan 

(near to the Pakistan and Afghanistan border), Hormozagan and the 

southern part of Kerman provinces. The total population was around 

3 million and was known as “refractory malaria region” with API 8.74 

per 1000 population. The problems facing malaria control 

programmes were: drug resistance of P. falciparum; vector resistance 

to insecticides; low socio-economic level of people; and the 

importation of malaria, mostly from Afghanistan and, to a lesser 

extent, from Pakistan [63].

The long-term research of Edrissian on the drug resistance of malaria 

showed that most resistant cases were imported, mostly from Afghanistan. 

In addition, during the last decade, resistance to chloroquine has decreased 

[62,64-66], Although he reported an in vitro resistance rate of P  falciparum 

of up to 70% in some areas, the low rate of clinical treatment failure means 

that chloroquine can still be considered as the first line of treatment in Iran 

[67].
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P. falciparum and P. uivax malaria patients are treated according to the 

standard WHO protocol [68]; i.e., 25 mg/kg chloroquine over 3 days. 

Primaquine is administered in a single dose of 0.75 mg/kg on day 2 with 

the third dose of chloroquine as a gametocytocidal drug in P. falciparum 

malaria and as a hypnozoitocidal (anti-relapse) drug in uivax malaria. In 

P. uivax patients, administration of primaquine is continued at the same 

dose, weekly up to and including the 8th week or the same daily dose of 

primaquine for two weeks.

The five main malaria vectors in the south-east of Iran are An. stephensi, An. 

culicifacies, An. fluvuatilis, An. superpictus and An. d ’thali [62],

3.2.3.2. Malaria in Kahnooj

Malaria is an endemic disease in Kahnooj, and 1,200 to 3,500 malaria cases 

are diagnosed every year. Nearly 80% of these are infected with P. vivax, 

and between 1 are 4% are mixed infections. There is virtually no P. malariae 

or P. ovale. Severe malaria is rare (less than 2% of all cases) and mortality 

very rare.

The main and dominant Anopheles species are An. culicifacies (44%), An. 

stephensi (26%), An. fluvuatilis (8%), and An. superpictus (4%), the first two 

of which are the main vectors of malaria as well (Provincial report). The 

malaria situation in Kahnooj is summarised in Table 3-1. The statistics in 

this table are calculated from blood slides collected by surveillance system, 

as described in Section 3.2.4. However, due to very low malaria prevalence 

in the slides from active surveillance, and the coverage of the pubic health
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system, it is reasonable to assume that nearly all cases are identified, and 

so that the number of positive blood slides might be used as a valid 

estimator of the number of malaria cases in this district.

Table 3-1: The situation of malaria in Kahnooj from 1997 to 1999 (annual reports of malaria, 
Health Organisation of Kerman province, 2000) _____________________________

Year
April 1997 to 

May 1998
April 1998 to 

May 1999
April 1999 to 

May 2000
Population 235,297 249,448 251,315

Number of blood slides 369,918 312,491 235,982
% of slides from active surveillance 96.8 95.8 95
ABER1 157.2 125.3 93.9

Number of positive slides
Active (%) 507(37) 1627(48) 828(43)
Passive (%) 871(63) 1780(52) 1056(57)
Total 1378 3407 1924

SPR2
Active 0.14 0.54 0.48
Passive 7.4 13.5 11.7
Total 0.37 1.1 0.81

percent of P. falciparum
Active 26.9 31 14
Passive 24.7 24.8 8.2
Total 25.4 28.5 10.3

API3 5.86 13.66 7.66

AFI4 1.49 3.89 0.79

1: ABER (Annual Blood Examination Rate) the number of slides examined for malaria
parasites per one hundred population per year
2: SPR (Smear Positivity Rate) the percent of positive slides
3: API (Annual Parasite Index) the number of new malaria cases per one thousand
population per year
4: AFI (Annual falciparum Index) the number offalciparum malaria cases per one thousand 
population per year
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3.2.4. Description of health system

In accordance with the national health programme, there are rural health 

centres (RHC) in large villages (Figure 3-8). Trained-health workers (HW) are 

selected from the local people to provide primary health care services 

compatible with national health policy and local health priorities. In 

addition, there are mobile health workers based in each RHC who cover the 

marginal small villages and migratory people. Paramount health centres 

(PHC) are located in the centres of areas and have general practitioners (GP) 

and lab equipment, and supervise RHCs.

The total budget of the malaria programme was around US$680,000 in 

1999 in Kahnooj. There were 96 RHC in the district. HWs, GPs, 

microscopists, and the vector control group have the main roles in the 

malaria control programme.

There are active and passive surveillance systems in this district. HWs, in 

both rural and urban areas, take blood films from all fever cases that attend 

health centres (passive surveillance). The method of active surveillance 

differs according to malaria endemicity. Having asked about the history of 

fever, the health workers collect blood slides from all people with a positive 

history since last visit. In addition, in highly infected regions, HWs collect 

blood slides from around 6% of normal population every 15 days. In 

infected areas, they collect blood slides from 3 to 4% of population every 15 

days and in non-infected areas 1% every month. The definitions of highly 

infected, infected and non-infected regions are not fixed and the health 

authorities in the centre of province define their criteria every year.
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Trained microscopists stain and read the blood slides. They report the 

positive results to health workers. Also, they report the results of all slides 

to the district centre monthly.

All suspected malaria cases are referred to general practitioners (GPs), who 

diagnosis malaria according to physical exam, history, and thin and thick 

blood smears. In very remote regions, health workers themselves prescribe 

anti-malarial drugs according to the WHO protocol for confirmed cases. At 

least one more blood slide is taken from malaria cases between the 3rd and 

5th days after the first dose of anti-malarial drug to check the treatment 

effect.

The private health sector is active in both rural and urban areas, but it does
#

not have access to anti-malarial drugs, and the diagnosis and treatment of 

malaria is free of charge in the public sector. Furthermore, private doctors 

are requested officially to refer all suspected cases to the public health 

system.

Mosquito surveillance is done in 6 posts monthly, with two methods: total 

catch (spray sheet collection) and hand catch. The frequencies of species, 

their sex and the result of anatomical dissections are recorded on standard 

forms. Nevertheless, due to practical considerations and manpower 

shortage, especially in hot seasons, these data are not reliable.

Data on malaria cases, collected blood slides and vector surveillance are 

recorded in 5 standard forms. The cases’ forms have data on sex, age, type 

of accommodation, nationality, dates of collection and slide reading, 

location, and the response to treatment.
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Another section, under the supervision of district health system, is 

responsible for vector control by using insecticides, larvicides and 

controlling breeding sites. This group sprays houses and uses larvicides 

twice per year in areas with transmission (both ‘highly infected’ and 

‘infected’ areas).

An external quality control scheme is in place under the supervision of the 

provincial health organisation. It rechecks all positive and 10 percent of 

negative blood slides. The reference lab checks the slides and recognises 

three types of discrepancies: 1. Errors in classification of positive and 

negative slides; 2. Misclassification of species; 3. Errors in reporting of 

gametocyte/asexual P. falciparum forms. All microscopists receive feedback 

about their errors. Also, the provincial health organisation monitors the 

malaria situation of districts continuously via the malaria statistics.

Figure 3-8: A rural health centre
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Figure 3-9: A microscopist reading blood slides

3.2.5. Description of meteorology system

The national meteorological network in Iran is linked to the World 

Meteorological Organisation (WMO) network, which has two types of data 

collection centres; synoptic and climatological. The synoptic centres have 

online links to the provincial and national centres and send their data every 

3 hours. The synoptic centres are well equipped and measure 18 

meteorological variables including wet and dry temperatures, humidity, 

rainfall, wind speed and direction, and visibility. However, the climatological 

centres have only basic equipment, and measure wet and dry temperature, 

humidity and rainfall three times per day at 03.00, 09.00 and 15.00 GMT 

(06.30, 12.30 and 18.30 in local time), and report their data to provincial 

centres every week on paper forms.
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Kahnooj has one synoptic and three climatological centres. The synoptic 

centre was established in 1979 in Kahnooj city (the centre of the district, 

latitude 27.58°, longitude 57.42° and elevation 469.7m above sea level). The 

two climatological centres located in south and centre of Kahnooj district 

were established before 1980, while the one in southeast of the district was 

established in 1995. Only data from the synoptic centre will be used here 

due to missing data from the climatological centres.

59



3.3. Methods of data collection and analysis

3.3.1. Malaria data

The surveillance forms were the main data source. The frequency of malaria 

in slides from active surveillance is less than 0.5% (Table 3-1), and almost 

all cases are enrolled in the surveillance forms (Section 3.2.4); therefore it 

could be reasonable to calculate risk of disease based only on the 

surveillance data.

Copies of the original monthly forms for each area were collected from the 

health organisation of Kahnooj district. These forms had: names of cases 

and their parents; age; sex; type of surveillance (active, passive); type of 

accommodation (permanent or temporary); nationality (Iranian or Afghani); 

location (name of village); and the date of taking and reading blood films. 

For this study, case data from the 21st of March 1994 (Iranian New year) to 

the end of 2001 were collected.

Using Epi-Info, the data were double entered. The names of cases and their 

parents, age, sex and living place (village) were used to trace repeated 

episodes during the study period.

In order to link the malaria data to remote sensing data, the number of 

species-specific cases in 10 day (dekad) and one month periods were 

computed. Remote sensing data contain the mean vegetation index and 

land surface temperature in each dekad or month (Section 3.5). Therefore, 

the cumulative number of cases and means of ground climate and 

vegetation data were computed in each dekad and month.
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3.3.2. Demographic data

The populations of villages, subdistricts and SSD were obtained from the 

statistics of the local health organisation. Their age distributions were 

estimated according to the national census, which is done every 10 years, 

most recently in 1996. Village populations for each month were estimated 

using the population growth rate based on census data in 1997.

3.4. Statistical models

3.4.1. Malaria risks

In this study, dekad, month and annual malaria risks were computed per 

100,000 population. By definition, malaria risk was computed as the 

number of cases divided by the population in each time period.

3.4.2. Mean-median smooth

Smoothing is an exploratory data analysis technique for making the general 

shape of a series apparent. In this approach, the observed data series is 

assumed to be the sum of an underlying process (smooth) and of an 

unsystematic noise (rough) component. Smoothing values (zt) are obtained 

by taking mean and/or median of each point in the observed data (z/() and a 

few of the points around it. The number of points used is called the span of 

the smoother.
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Since a single smooth usually cannot adequately separate the smooth from 

the rough, multiple smoothers should be applied in sequence.

In this analysis, the temporal variations of Plasmodium spp risks w.ere 

smoothed using mean-median of span three dekads (Section 3.7.4.2).

3.4.3. Poisson regression method

In all models, the number of malaria cases is the dependent variable. This 

can only take non-negative integral values and can be modelled by the 

Poisson distribution. Given a rate X per unit of time, the probability of 

observing y cases in a unit time period is then given by Equation 3-1:

X could be predicted using above equation, after taking into account the 

values of explanatory variables Xi-Xn.

where P(X ) is the expected number of malaria cases in each time period (Xj 

to Xn are the predictors, and ¡3i to pn are the regression coefficients for those 

predictors.

In this study, seasonal and annual variations, autocorrelation between 

numbers of malaria cases in consecutive time bands, temperature (ground 

and remote sensing data), relative humidity, annual rainfall, vegetation 

index and altitude were used as explanatory variables. The seasonality was 

modelled using a sinusoidal transformation of time. The annual variability 

was modelled based on linear and quadratic effect of year. Using quadratic

Equation 3-1

Log (A) ~pO+PlXl + /12X2+— +/3nXn Equation 3-2
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and multiple regression methods, the optimal model in terms of predictions 

was constructed.

Using Poisson models, the numbers of cases were modelled based on the 

explanatory variables, with the log population as an offset (the variable 

which specified the amount of exposure) (Section 3.7.4).

3.4.4. Fractional polynomial model

Fractional polynomial (FP) regression models provide a flexible parametric 

method for modelling curved relationships by using few parameters. A FP 

model extends ordinary polynomial model by including non-positive and 

fractional powers. A polynomial of degree m may be written as

Po+Pix +P2x2+.....+ Pmxm Equation 3-3

where as a FP of degree m has m integer and/or fractional powers pi<...<pm,

Po + P\xP> + P2xPl +....+ PmxPm Equation 3-4

where for a power p

x P J xP... */..../> *0
[log*....i/....p = 0

The permitted powers are restricted to the set [-2, -1, -0.5, 0, 0.5, 1, 2, 3]

This family of FP functions may be extended in a mathematically natural 

way to include repeated powers. An FP of degree m with exactly m repeated 

powers of p  is defined as:

p0 + plxp + p2xp log* + .....+ pmxp (log*)""1
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3.4.5. Cox regression method

Survival analysis examines and models the time it takes for events to occur. 

It typically examines the relationship of the survival distribution - to 

covariates.

Cox regression models the outcome when the values of some explanatory 

variables change over time. In contrast to log linear models, Cox regression 

leaves the baseline hazard function unspecified: In other words, an 

important characteristic of this model is that both the individual and the 

baseline rates vary with time while their ratio is assumed to remain 

constant. The general Cox regression equation is:

0

X(t;i)= X(t;0).6i Equation 3-5

where di represents the hazard ratio which compares X(t;i) (the hazard rate 

in group i in time t) with X(t;0) (the hazard rate in baseline group in time t).

Cox regression was used to model the rate of secondary attack (Section 

3.7.3). Since these rates highly depend on the gap between two attacks, Cox 

regression was the most appropriate method.

3.4.6. Gaussian approximation

With a Gaussian approximation to the count data, linear regression models 

could be used. One type of Gaussian approximation is the linear regression 

model with log transformed dependent variable [69]:

E ( log(Y+c))=Po+PiXj + P2X2+. ■.. +PnXn■ Equation 3-6
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Although some papers showed that Poisson and Gaussian models usually 

give similar results, particularly with relatively large numbers of cases per 

unit of time [70], the more sophisticated Poisson model will be used in this 

research.

3.4.7. Modelling temporal variation

There are three methods to deal with systematic variation of the outcome 

and predictors with time, in other words auto-correlation [70]:

1. Smoothing, this is an appropriate method for Gaussian data, and 

also count data with a large number of events per each time period. 

Using moving average methods, such as kernel smoothing, with 

Poisson regression is straightforward:

Log (E(Yt))=[5o+PiXti+ $2X 12+■ ■ ■ ■ +PnXtn +log (WMA(Yt) Equation 3-7

where WMA{Yt) denotes the weighted moving average.

An alternative method is to use additive models [70]

L og(E (Y ) )  = ^ glS i ( X i) Equation 3-8
1

where Si is a smoothing function of Xi predictors (including time) and 

is determined by the data.
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2. Semi-parametric approach, in which the predictors are divided up 

into intervals and a cubic polynomial fitted to each interval. This 

approach cannot fully check the autocorrelation effect.

3. Parametric approach, which uses a sinusoidal term to fit a wave-like

pattern of data. The goodness of fit of models with pure sine

transformations of time depends on the origin of time (t= 0). Therefore,

to maximise the goodness of fit, the time phase (e) should be

estimated, which is the time lag between the t= 0 in sine

transformation and i =0 based on calendar (t=t'+ e). The following

equations show the method which was used to compute the best 
0

time phase (e):

P(sin 2n(t'+e))=P(sin(27rt')cos(27C£) + cos(2Kt')sin (2m)) Equation 3-9

A multiple Poisson regression model with “sin 27cf” and “cos 2nf” as 

independent variables gives:

pi sin 2jvt' + p2 cos 2ict' Equation 3-10

By comparing the Equations 3-9 and 3-10, it can be written 

Pi-Pcos 2ne Equation 3-11

/?2= psin 2ne
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so that:

/3=aM 2+&!)

and

1
e= — Arcsin 

I k ( A 2+ & 2)

Equation 3-12

Equation 3-13

The number of malaria cases in each stratum was low if the data were 

subdivided by spatial and temporal factors. Furthermore, the results of a 

pilot study indicated that a parametric approach with sinusoidal 

transformation was a valid approach. Therefore, method three; parametric 

method, was used to model the temporal variations.

Simple graphs showed a decreasing time trend in the risks of species- 

specific malaria. Therefore, between years variation was modelled using 

linear and quadratic effects. In order to deal with the co-linearity between 

the linear and quadratic terms, 1993 was subtracted from the original year 

variable; i.e., the first year of study (1994) was recoded to year one.

Malaria risk in consecutive time bands has autocorrelation (Section 3.7.4.5). 

The above statistical techniques were applied to the data using time series 

commands in Stata. More theoretical details can be found in papers written
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by Dominici et al. (2000) [71], Schwartz et al. (1996) [70] and Katsouyanni et 

al. (1996) [69].

3.4.8. Accuracy of models

The data were grouped by month or ten day period; then the grouped 

malaria data were randomly allocated to modelling (75%) and checking 

(25%). To do so, the records were sorted by date, then the first record of the 

checking part was selected based on a random number between one and 

four (which was two); and every four the record was included in the 

checking part (records number two, six, ten and so on). The parameters 

were estimated from the modelling data. Model accuracy was checked by 

comparing the fitted and observed values in the checking data adjusted for 

spatial and temporal clustering.

The main objective of this study was to assess the feasibility o f an early 

warning system. The model accuracy was assessed in checking part 

because predictions from a given set of parameters are better when they are 

used in the data from which were derived.

Using the forward selection method, the variables were entered into Poisson 

models. The simplest model estimated the number of cases in each time 

band based on seasonality (sine and cosine terms). Then, step by step, 

other explanatory variables were added to the models and their influences 

assessed according to their impact on the pseudo R2, and their statistical 

significance using likelihood ratio tests.
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The most common assessment of overall model fit in logistic regression is 

likelihood ratio test, which is simply the chi-square difference between the 

null model (i.e., with the constant only) and the model containing one or 

more predictors or between two nested models.

Nonetheless, in logistic regression, there is no true R2 value as there is in 

least square regression. However, because deviance is analogous to residual 

value in the regression analysis, one can approximate an R2 based on lack 

of fit indicated by the deviance (-2LL).

n2
■^logistic =  1-

^LL'reduced _j  

-Oil  -
iL ,L lreduced -ILL'reduced Equation 3-14

where the reduced model_ is the logistic model with just the constant and 

the full model contains all the predictor in the model.

Having selected the best combination of explanatory variables in the 

modelling part of data, model accuracy was assessed in the checking part. 

Residuals are defined as the differences between observed (r/t) and predicted 

values (zt).

The Sum of the Absolute Residuals (SAR) was defined as:

n
| y, -  z, | Equation 3-15

f=l

where n is the total number of time bands

This is the most straightforward statistic for measuring model accuracy. It 

measures how far the total estimated values are from the observed values. 

From a practical point of view, it helps health policy makers to know how
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many cases would be under or over estimated by the model. Nevertheless, 

to differentiate the amount of over and under-estimations, two different 

indices were defined: Sum of Over-estimations (SO) and Sum of Under­

estimation (SU) as follow

SO = ̂ z , - y ,  i f  y, <2 ,
1=1 Equation 3-16

SU = ^ y ,  - z ,  i f  yt >2,
1

SAR, SO and SU depend on the duration of follow up. To deal with this 

problem, the Average Annual number of Over and Under-estimation (ASO 

and ASU\ was computed based on the following formulae:

ASO =

ASU =

SO.k
n

SU.k

n

where k is the number of time bands per year.

Equation 3-17

The square root of the sum of squared residuals is another index which can 

be used to assess model accuracy. It is defined as:

X G ', - 0 2 Equation 3-18

Form the statistical point of view, this statistic has some advantages 

compared to the other explained indices such as SAR, particularly in the 

least square regression models; however, it is more difficult to interpret.
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Finally to show the Relative Over and Under-estimations, RSO and RSU, the 

SO and SU were divided by the total number of observed cases:

I *

RSU =
SU
n

2 »

Equation 3-19

Because this project aims to test the feasibility of an early warning system 

in Kahnooj, models and their results should be as clear as possible to 

health policy makers and it would be more practical to show the accuracy of 

models with relatively simple measures. Hence, the accuracy of the models 

was estimated using the four statistics ASU, ASO, RSU and RSO.

3.5. GIS and RS data

3.5.1. Electronic maps and field data

Various digital datasets, including existing data available from the Health 

Ministry of Iran, were used to model the spatial distribution of malaria 

cases and their relation to meteorological variables, altitude and land 

use/cover in three spatially distinct levels: village (high resolution), SSD 

(middle resolution) and district (low resolution).

Electronic maps of Kahnooj contain the borders, roads, villages and cities. 

The map scale was 1:50,000 in Arcview format. The maps were developed
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by the national geographical organisation in Iran and were updated in 2000 

and generated based on aerial photographs.

Using a GPS, the accuracy of co-ordinates of villages and roads in GIS files 

were assessed. Latitude, longitude and altitude of 20 points (mostly 

branching point of roads) and 14 villages were recorded; these points and 

villages were scattered geographically in the district. The maximum 

difference between the recorded co-ordinates of points and GIS files was 

less than 30m, while the maximum difference for villages was 300m. The 

greater errors in villages were mostly due to the locations within villages 

which were surveyed-by GPS; the buildings in villages were scattered mostly 

in an area of 2-3 km2, depending on the location of the selected point for 

GPS, the result might have around one kilometre difference with the points 

in the electronic maps. Based on the above findings, it seems that the 

electronic maps are accurate enough to be used in this study.

In addition, the ground data of land cover/use were matched with RS 

imagery. However, due to tiny differences in vegetation indices and little 

association between malaria risks and vegetation index, the results of these 

classifications are not reported.

3.5.2. Software

In this analysis two GIS programs were mainly used: Arcview 3.2 

(Environmental Systems Research Institute, Inc.) and Idrisi 32 (the George 

Perkins Marsh Institute, Clark University). In addition, the Landsat data 

was processed using ENVI software (version 4, RSI, Boulder, Colorado). 

Arcview is a vector digitising GIS software, which captures each point as a
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pair of (x, y) co-ordinates with extensive spatial analysis features. Idrisi is 

based on a raster data model, which converts the maps into grid composed 

of individual pixels. All satellite images are in raster format.

Having processed images in Idrisi, the extracted data were transferred to 

Stata for modelling and Arcview for visualisation. Idrisi has powerful 

facilities to manipulate and extract image data.

3.5.3. Remote sensing images

Land use/land cover was derived from supervised classification of digital 

Landsat ETM+ imagery. All other data were obtained from secondary 

sources. Modelling using land cover/use was initially restricted to southern 

Kahnooj. Landsat data has 30m spatial resolution (path 159, row 041, 7th 

January of 2001, path 158, row 041, 31st of December 2000 and path 158, 

row 042, 31st of December 2000). Also, another data set with 8km spatial 

and 10 days temporal resolution was obtained from NOAA-AVHRR from 

1990 to 2001. This data set has NDVI (Normalised Differentiate Vegetation 

Index) and LST (Land Surface Temperature). The first and second data sets 

were used to model the frequency of malaria by land cover/use, and NDVI 

and LST respectively.

3.5.4. Processing

Basic radiometric correction of the Landsat data was carried out using ENVI. 

Raw data were converted to reflectance for each of the seven spectral bands 

on the basis of the red and near infrared channels (channels 3 and 4 in the 

case of TM), using the following standard formula:
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NDVI =
CN IR -R E D ) 

( NIR + RED)

NDVI images were subsequently exported to Idrisi for further spatial 

analysis.

Dekadal NDVI data at an 8x8km resolution were provided by Dr. S.I. Hay 

for the period of January 1981-September 2001, These data were derived 

from NOAA-AVHRR satellite data using standard procedures. [48J Village 

specific time series for NDVI were calculated in this instance by overlaying 

village coordinates (on each NDVI decadal image in turn) using ENVI 

software.

The altitude was extracted from DEM (Digital Elevation Models) in one 

square kilometre resolution. The images were downloaded from the website 

of National Imagery and Mapping Agency of United State of America 

(http://geoengine.nima.mil/). Using ENVI version 4 (Environment for 

Visualising Images), the images were converted to Idrisi format. Then, in 

Idrisi, the average of elevation around villages were computed (buffer zone), 

using sensitivity analysis the best buffer zone was defined.

3.6. Ground climate data

The climate data were collected in the synoptic centre in Kahnooj City. 

Mean daily temperature and relative humidity were computed as the 

average of minimum and maximum values.
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3.7. Results

To assess the accuracy of microscopy on detection of Plasmodium spp -in 

Kahnooj, Section 3.7.1 compares the results of microscopy and Polymerase 

Chain Reaction (PCR) method in a small sample. Section 3.7.2 describes the 

overall situation of malaria in Kahnooj, and assesses the relationships 

between the frequencies of species and demographic variables. Using time 

series analysis, Sections 3.7.4 and 3.7.5 explain the temporal and special 

distributions of cases. Sections 3.7.5.2, 3.7.5.3, and 3.7.5.4 assess the 

goodness of fit of models based on remote sensing variables; in these 

models the numbers of cases in each 10 days in each village are linked to 

the vegetation indices, land surface temperature and altitude. The 

accuracies of models based on ground and remote sensing climate data are 

checked in Section 3.7.6. In the last Section (3.7.7), the local transmission 

risk was modelled based on climate and remote sensing data.

3.7.1. The accuracy of microscopy results

3.7.1.1. Introduction

Light microscopy has historically been the mainstay of the diagnosis of 

malaria in Iran (Section 3.2.4). The national health policy of Iran dictates 

that the clinical diagnosis of malaria disease should depend on visualisation 

of parasites by light microscopy of Giemsa-stained blood smear in febrile 

cases. This procedure is cheap and simple, but it requires well-trained 

personnel.
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Microscopists are expert in Iran, and there is a quality control programme 

which supervises the microscopy results (Section 3.2.4). However, there is 

only one published paper on the accuracy of microscopy results compared 

to PCR results in Iran, which was written by Zakeri at al. (2002) [72], They 

double checked the microscopy results of 120 fever patients in the 

Chahbahar district of Sistan and Baluchestan Province in south-eastern 

Iran. They found microscopy had more than 95% specificity in the detection 

of P. falciparum and P. vivax. However, this technique missed around 75% 

of mixed-species malarial infections.

While the results of -the Chahbahar study are useful, several factors may 

obscure the true accuracy of microscopy for the detection of 

Plasmodium spp. This is especially true when comparing the results found 

in Chahbahar with those expected for Kahnooj. For instance, the endemicity 

of malaria, particularly P. falciparum, is higher in Chahbahar than in 

Kahnooj. In addition, Chahbahar is located in a very remote area close to 

the Pakistan border and has an even poorer population than Kahnooj. This 

is an important factor considering that the entire Sistan and Baluchestan 

province has the most under-developed health system in Iran. On the other 

hand, Kahnooj has an efficient malaria surveillance system, with trained 

personnel. Therefore, it could be expected that the microscopy results in 

Kahnooj are more accuracte than in Chahbahar. However, to date there has 

not been any objective evidence to show the accuracy of their microscopy 

findings.

PCR is a useful tool to validate the effectiveness of light microscopy in the

detection of malarial parasites. PCR has greater sensitivity and specificity

than light microscopy [73-76], particularly in situations of low-level
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parasitaemia [77]. Furthermore, it is a more powerful technique to detect 

mixed infections of malarial species [78],

3.7.1.2. Materials and methods

During fieldwork in summer 2002, three highly endemic villages were 

selected in the north-west, centre and south-east of Kahnooj. In August and 

September 2002, a systematic sample of fever patients who sought 

treatment at the health centres of these villages was included. The sampling 

was based on the days of week: only patients who came to health centres in 

the 2nd and 4th of Iranian working days (Sundays and Tuesdays) were 

assessed.
m

First, informed consent from patients or their guardians was obtained, as 

was information on the age, sex, duration and symptoms of disease. Next, 

finger-prick blood samples were collected: thick blood slides were prepared 

for microscopical observation and, for comparison; three blood dots were 

dropped directly on filter mats for the PCR assay.

For the thick blood slide analysis, all the blood slides were air-dried, fixed in 

methanol and then stained in Giemsa for 15-30 minutes; a 1:10 dilution of 

Giemsa (pH 7.2) was used. The stain was washed off with tap water. Next, 

the slides were read by microscopists with the routine methods, i.e., oil 

immersion lens at xl,000 magnification for at least 100 oil immersion fields; 

also, an expert microscopist in the reference laboratory in the centre of the 

province re-checked the slides blindly.

For the PCR assay, extraction of parasite Deoxyribonucleic Acid (DNA) was 

carried out using a chelex extraction method described by Walsh et al (1991)
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[79]. Briefly, the blood samples on filter mats were thawed, and the parasite 

DNA was extracted by boiling with 20% chelex resin after the samples were 

left overnight in lxPBS/0.5% saponin. DNA samples were processed by PCR 

to amplify species-specific sequences of 18s subunit ribosomal ribonucleic 

acid (18ssrRNA) genes of P. vivax and P. falciparum. All positive samples 

based on microscopy and ninety of the slide negative samples were also 

extracted on a 96-well plate. Fifteen pi DNA was pooled together once into a 

‘row’ and once into a ‘column’ from each negative sample. Each pool was 

cleaned by phenol/chloroform and ethanol, precipitated and re-suspended 

in 15pl.

Using Epi-info 6, the data were analysed and the Sensitivity, Specificity, 

Positive and Negative Predictive Values (PPV and NPV) and their 95% 

confidence intervals were computed. These indices are for slide reading, 

taking PCR as the gold standard.

3.7.1.3. Findings

A total of 124 patients were included in this study; the mean and standard 

deviation of age were 20.2 and 16.7 years respectively (with minimum and 

maximum of 6 months and 77 years); 60 were male (48.4%) and 64 female 

(51.6%). All patients had a history of fever in last 48 hours prior to seeking 

treatment; 43% had pain, of which headache was the most common form; 

38% had shivering, and 6% vomiting. (Table 3-2)
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Table 3-2: Distribution of sex, age and location; and history of symptoms among 124
subjects

Frequency percentage
Sex

M ale 60 4 8 .4
fem ale 64 51 .6

Location
N o rth -W est 33 26 .6
Centre 67 54 .0
S o u th -E a st 24 19.4

A ge  (year) 
<10 38 30 .6
10-20 43 34 .7
2 1 -4 0 21 16.9
>40 22 17.7

H istory  sym ptom s  
Fever 124 100
Sh iver 47 38
Pain 53 43
Vom iting 7 6

Based on microscopist reports, ten patients were infected with P. vivax and 

none with P. falciparum (Table 3-3). These results were exactly the same as 

the referral laboratory reports.

The PCR results are shown in Figure 3-11. This figure illustrates that all of 

the positive slides for P. vivax based on microscopy were also detected as 

positive by PCR; none of these patients had mixed infections. On the other 

hand, three of the negative slides for P. vivax based on microscopy were 

detected as positive by PCR (samples in row A and columns 2, 4 and 9).

The sensitivity and specificity of microscopy in the detection of 

Plasmodium spp infection were 77% (95% Cl: 46%-94%) and 100% (95% Cl: 

95%-100%), correspondingly. Also, the estimated positive and negative 

predictive values were 100% (95% Cl: 66%-100%) and 97% (95% Cl: 91%- 

99%), respectively (Table 3-3)
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Figure 3-11: Gel nested PCR products; clinical specimens using species-specific 
oligonucleotide pairs for A (Pvmsp3a gene), and B (species-specific amplifications) in 
P . vivax slide positive samples, and C (Pvmsp3a gene) in pooled slide negative samples, 
which shows positive PCR in samples in row A and columns 2, 5 and 9. Markers are 100 bp 
ladders, x: 3D7, y: v97007 (a P. vivax gene extracted from Venezuela samples); and -ve: 
negative control

Table 3-3: The accuracy of microscopy in detection of P. vivax among fever patients in

Sensitivi ty=
(10/13). 100=77% 

Specificity= 
(97/97). 100= 100%

PPVi=(10/10)*100=100%  
NPV2=(97/100)*100=97%  
1: Positive Predictive Value 
2: Negative Predictive Value

Kahnoo)

PCR
Microscopy

positive negative total

Positive 10 0 10
negative 3 97 100
total 13 97 110

3.7.1.4. Discussion

In contrast to the sensitivity and specificity, the predictive values are

dependent on the disease prevalence. The blood samples were taken in the
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peak of malaria transmission season in highly endemic villages. Therefore, 

it could be expected that the NPV was higher in the whole district; i.e., 

negative blood slide based on light microscopy in the current setting can 

rule out Plasmodium spp infections in febrile cases with at least 97% 

precision, and positive slides confirm infection with 100% precision. Hence, 

from a medical point of view, the result of microscopy is a very accurate tool 

in diagnosis of malaria.

The three false negative samples were taken from two females aged 45 and 

55 years, respectively, and one male aged 18 years; two of them had a 

history of fever with vomiting, and the third one had only a history of fever. 

The blood slides of these three patients were re-read by an expert in the 

reference laboratory, and ¿00 fields were assessed per slide. No parasites 

were detected in any of these slides. Therefore, the discrepant results may 

either be due to very low levels of parasitaemia and false negative 

microscopy, or false positive results from the PCR as a result of cross­

contamination.

Assuming that the discrepancy between microscopy and PCR is the result of 

the lower sensitivity of the former method, reassessment of the slides was 

negative. Therefore, it could be concluded that these slides were from 

patients with very low levels of parasitaemia. If this is the case, it should be 

noted that such low-level parasitaemia can rarely be diagnosed by ordinary 

light microscopic methods.

Boisier et al. (2002) showed an association between the level of 

parasitaemia and fever in a seasonal transmitted area; i.e., the signs and 

symptoms of malaria are not common in very low levels of parasitaemia [80J,
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which supports others findings even in highly endemic places [81-83]. 

Therefore, the presence of fever in these three subjects may be due to other 

febrile diseases which are common during the summer in Kahnooj, e.g. 

gastroenteritis.

Malaria disease is defined as fever plus positive blood slide with or without 

other signs or symptoms in endemic areas of Iran. In this project, malaria 

disease, not infection, is the outcome. Therefore, for the purpose of this 

study, it can be implied that these three false negative results do not 

change the accuracy of microscopy results. In other words, since even after 

very extensive examinations the slides of these three subjects remained 

negative by microscopy, these patients do not meet the eligible criteria to be 

classified as malaria patients; therefore, the estimated sensitivity, specificity 

and predictive values show the accuracy of microscopy in diagnosis of 

malaria infection, not malaria disease.

Although the sample size might be a point of concern in extrapolating the 

result of this study, it can be concluded that the light microscopy had 

satisfactory accuracy in detection of malaria infection and particularly 

disease in Kahnooj.

3.7.2. Overview of malaria data

Between March 1994 and March 2002, 18,268 malaria attacks were 

recorded in Kahnooj, of which 12,337 (67.5%) were infected with P. vivax, 

5,858 (32.1%) with P. falciparum, and 73 (0.4%) had mixed infections.
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Sixty percent of attacks (10,680) were detected by passive surveillance, and 

40% (7,150) were identified by active surveillance.

Table 3-4 relates the frequencies of different species with sex, type of 

accommodation, nationality, type of surveillance, and age. Compared to 

P. vivax, P. falciparum was relatively less common in males, those who 

lived in temporary accommodation, Afghani people, and also cases detected 

by passive surveillance. All these differences are statistically significant, 

although the magnitudes of differences are not considerable.

Table 3-4: Description of malaria cases in Kahnooj between March 1994 and March 2002
Number
(percent) P. vivax P. falciparum Mixed Total (df)

p-value
Sex

Male
Female

6,788(55.1)
5,539(44.9)

3,095(52.8)
2,763(47.2)

49(67.1)
24(32.9)

9,932(54.4)
8,326(45.6)

12.8 (2) 
0.002

Accommodation
Permanent
Temporary

11,781(97)
350(2.9)

5,620(99.1)
50(0.9)

70(98.6)
1(1.4)

17,471(99)
401(2.2)

70.9 (2) 
<0.001

Surveillance
Active
Passive

4,563(37.7)
7,541(62.3)

2,541(44.9)
3,113(55.1)

46(63.9)
26(36.1)

7,150(40.1)
10,680(60)

101.2 (2) 
<0.001

Nationality
Iran
Afghanistan

11,758(95)
569(4.6)

5,800(99)
56(1)

70(98.6)
1(1.4)

17,628(97)
626(3.4)

161.4 (2) 
<0.001

Age
<5
5-14
15-29
=30
Mean (se)

2,008(16.3)
5,017(40.7)
3,326(27)
1,972(16)
16.66(0.13)2

957(16.3)
2,377(40.6)
1,656(28.3)
865(14.8)
16.07(0.18)2

7(9.6)
42(57.5)
19(26)
5(6.8)
13.3(1.19)

2,972(16.3)
7,436(40.7)
5001(27.4)
2,842(15.6)
16.46(0.11)

P<0.0011

1: p-value of ANOVA test on natural logarithm of age
2: The result of Tukey HSD test showed a significant difference only between the mean age 
of P. falciparum and P. vivax infected cases ®
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Having used the Kahnooj census data in 1997, the effects of sex, age, 

nationality and type of accommodation were assessed as risk factors for 

malaria disease. Table 3-5 shows that the risk of disease in females was 

around 14% lower than males. Also, the disease risk was more or less 

constant in those under 30 years old, while in older people (30 or more year 

old) the risk of disease was halved.

Surprisingly, inhabitants in temporary accommodation and particularly 

Afghani people had less chance of disease (accommodation RR=0.91, 

nationality RR=0.52). Since many Afghanis lived in temporaiy houses, the 

accommodation RR might be confounded by nationality.

Nevertheless, lower risk of reported malaria disease among Afghanis might
*

be explained by either information bias or under-estimation of Afghani 

cases. Most Afghanis live in Kahnooj illegally, and often do not disclose their 

nationality; therefore, it could be expected that their nationality was not 

always recorded accurately in health system files. Also, Afghanis usually 

live in very remote areas, with relatively poor accessibility to health facilities; 

furthermore, they might have less motivation to get health advice.

In addition, most Afghanis immigrated to seek a job; they might be older 

than the average Kahnooj population and, due to previous frequent 

exposures to Plasmodium spp, might be less susceptible to the malaria 

disease.
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Table 3-5: The risk of malaria disease, classified by sex, age, nationality and accommodation

±ZE£----------------------------------------------------------------------------------------------
number of 

Malaria 
cases

Population1

Disease risk 
between 1994 
and 2002 (per 

100 population)

Risk ratio 
(95% Cl)

Sex
Male 9,932 98,330 10.2 1
Female 8,326 97,950 8.7 0.86 (0.83-0.88)

Accommodation
Permanent 17,471 191,400 9.1 1
Temporary 401 4880 8.2 0.91 (0.83-1.0)

Nationality
Iran 17,628 179,936 9.8 1
Afghanistan 626 12,950 4.8 0.52(0.48-0.56)

Age
<5 2,972 28,571 10.4 1
5-14 7,436 66,316 11.2 1.07(1.03-1.11)
15-29 5,001 48,498 10.3 0.99(0.95-1.04)
>=30 2.842 50,962 5.6 0.56(0.53-0.59)

1: The population are extracted from census data of Kahnooj in 1997

3.7.3. Repeated malaria attacks

This section explores the frequency of multiple attacks within cases, and 

estimates the risk of the therapeutic failure as the frequency of secondary 

attack within 30 days after the first attack with the same species (Section 

3 7 3 1) and relapse risk of P. vivax as the difference between the risk of 

secondary P. vivax attack in those who had primary P. falciparum and 

P. vivax infections (Section 3.7.3.2). Although this section does not directly 

address to the main objective of this chapter which was the feasibility of an 

early warning system, its results are very important to understand the 

epidemiology of malaria in Kahnooj.

Multiple disease episodes might be attributable to any of these reasons:

85



1. Treatment failure: cases might either take insufficient main 

treatment (chloroquine) to eliminate the blood forms of

Plasmodium spp (schizonts, merozoites and trophozoites), or their 

infections might be resistant to the administrated drugs. In this 

group, the gap between consecutive episodes would be short, a few 

weeks at maximum, because the parasite was not effectively 

eliminated from their blood [84-88].

2. Re-infection: Plasmodium spp do not generate full protective 

immunity, particularly in areas with low endemicity; [89-92] therefore, 

cases may be re-infected. Furthermore, due to heterogeneity in 

exposure risk [27,93,94], it could be expected that cases are generally 

more exposed to vectors than non-cases, and so could have a greater 

chance of re-infection.

3. Relapse: this could be a reason only for those who were infected with 

P. vivax in both episodes. It is practically impossible to differentiate 

re-infection from relapse; therefore, most papers have estimated the 

joint risk of re-infection and relapse; i.e., they reported the risk of 

secondary P. vivax attack due to either of these reasons [95-103]. 

Nevertheless, some papers reported the risk of secondary P. vivax 

attacks during non-transmission season as an estimation of the 

relapse risk [104,105],

The joint risk of P. vivax relapse and re-infection without any 

hypnozoitocidal (anti-relapse) therapy is around 25-55% [98-100,105,106]. 

There is controversy about the efficacy of primaquine as anti-relapse
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treatment; Rowland and Durrani (1999) showed in his clinical trial in an 

Afghani refugee settlement in Pakistan that 5-day primaquine therapy did 

not have any significant effect against of P. vivax relapse (52% versus 51% 

first relapse or re-infection risk in control and treatment arms respectively), 

but 14-day therapy reduced relapses significantly (49% versus 34% first 

relapse or re-infection risk, in control and treatment arms respectively). 

This finding was also supported by a large study in India [107], another 

clinical trial in Pakistan [106] and a small study in Sri Lanka [97]. In 

contrast, Srivastava et al. (1996) [103] showed that even a 5-day primaquine 

regime could decrease the relapse rate; Roy et al. (1977) and Sharma et al. 

(1990) showed that 5-day therapy could prevent more than 60% of P. vivax 

relapses [101,102],

P. vivax exhibits three main patterns of relapse activity: 1) tropical pattern 

with short latency (1-3 months) between attacks, 2) temperate pattern with 

a latent period of 6-14 months, followed by renewed parasite activity in the 

form of one or more relapses with short intervals between each relapses, 3). 

intermediate form [104,105]. However, there is one case report of a P. vivax 

relapse occurring many years after the primary attack [108].

Among the available data in Kahnooj, there was not a unique variable to 

link the data of repeated disease episodes within cases. In this study, the 

records were linked based on case’s name, the first and last letters of 

parents’ names, living place and age. Twenty five records (out of 18,268) 

were excluded from this analysis due to missing fields. Then, the gaps
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between two consecutive episodes were assessed, and classified by the 

detected species in the former and latter episodes.

The 18,268 malaria attacks were recorded in 16,297 persons. 14,799 (91%) 

of cases had just one, and 1,169 (7.2%) had 2 attacks; less than 2% of 

cases had more than 2 attacks. The frequency of more than two attacks was 

low, but, nevertheless, the following results have been adjusted for within 

person clustering effect. Also, only 73 cases had mixed infections with 

P. falciparum and P. vivax, of whom only 23 showed repeated attacks. 

These 23 mixed infected cases have been excluded from those analyses 

related to the species-in the former and latter attacks.

Table 3-6 illustrates that the gap between two consecutive attacks depends 

on the species (Pearson %2=652.6, df=18, p<0.0001; Kruskal-Wallis 

X2=451.26, df=3, p<0.0001).
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Table 3-6: The gap between two consecutive attacks according to the species in the former 
and latter episodes_________________________ _

F o rm er in fection P . f a lc ip a r u m  (% ) P . v i v a x  {% )
Total

Latter in fection P. fa lc ip a ru m P. v iva x P. fa lc ip a ru m P. v iva x

=1 169(38.1) 15(4.3) 23(9.7) 28(3.1) 235(12.2)

1-2 133(29.9) 25(7.1) 44(18.5) 59(6.5) 261(13.4)

T h e  gap 3-5 33(7.4) 22(6.2) 37(15.5) 72(7.9) 164(8.4)

betw een 6-8 11(2.5) 22(6.2) 5(2.1) 79(8.7) 117(6)
two

ep isodes 9-11 17(3.8) 40(11.3) 17(7.1) 149(16.4) 223(11.5)

(m onths) 12-17 26(5.9) 36(10.2) 44(18.5) 134(14.8) 240(12.3)

= 18 55(12.4) 193(54.7) 68(28.6) 387(41.6) 703(36.2)

Total 444(100) 353(100) 238(100) 908(100) 1943(100)

Pearson %2=652.6, df=18, pO.OOOl; Kruskal-Wallis x2=451.26, df=3, p<0.0001 
Mixed infections and subjects with more than 2 attacks were counted more than once 
accordingly

In contrast to the other groups, P. falciparum-P. falciparum attacks 

occurred mostly within a short gap, which might provide some idea about 

treatment failure rate. On the other hand, the gap between two attacks was 

longer in P. vivax-P. vivax group, which gives an impression about relapse 

rate. The following sections present the results of Cox models to address 

these issues more precisely.

3.7.3.1. Therapeutic failure

Malaria treatment failure is a general term and is used when the case does 

not fully respond to anti-malaria drugs. In most such cases, drugs may 

decrease the blood density of parasites, even to levels undetectable by light 

microscopic exam, but after a short time the parasite density rises again. 

WHO defines early and late treatment failure based on the gap between the
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date of the first dose of the drug and the date of second parasitaemia. WHO 

recommends that cases be followed up to 28 days [109,110]. Therefore, 

studies usually report the first month treatment failure risk or rate [111- 

114]. In this analysis, any secondary attack within 30 days was considered 

as treatment failure. Nonetheless, it should be mentioned that the optimum 

cut-off would depend on the intensity of transmission; the higher the 

transmission the more likely an earlier re-infection; and this would in 

principle affect the optimum cut-off time.

Around 38% of P. falciparum-P. falciparum attacks occurred within 30 days, 

which was much higher than in P. vivax-P. falciparum (9.7%) and P. vivax- 

P. vivax (3.1%) (Table 3-6).
*

To check the treatment failure rates of P. vivax and P. falciparum, Cox 

regression models were used. Having stratified for the gap between two 

consecutive attacks, the number of cases was defined as the number of 

secondary attacks with the same species as the primary attack; the 

duration of follow up was measured in person-months; the rates were 

adjusted for within person clustering effect and season.

Among 566 person-months follow-up, 145 P. falciparum attacks were 

recorded with less than one month gap; i.e., the P. falciparum treatment 

failure rate was 256.2 per 1000 person-months (95% Cl: 217.7-301.5). The 

corresponding rate for 1-3 months gap was 146.6 (95% Cl: 123.2-174.3); 

after that, for longer gaps, the rates dropped sharply to less than 30 (Figure 

3-12). Among 851 person-months follow-up, 26 P. mvax attacks were 

recorded with less than one month gap, the estimated P. vivax treatment 

failure was 30.5 per 1000 person-months (95% Cl: 20.8-44.8). The variation
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of P. vivax rates was not compatible with those of P. falciparum, which has 

been explained in details in Section 3.7.4.3.

The rate ratios of sex, age group and nationality for P. falciparum treatment

failure were not significant; however, the corresponding rate ratio for type of

surveillance was 2.0 (95% Cl: 1.4-5.9). In other words, the rate of recorded

P. falciparum treatment failure in active surveillance was around twice that

in passive surveillance. This difference could be explained simply by the

follow-up method of cases in Kahnooj. The health workers should take at

least two follow up blood slides from P. falciparum cases actively (Section

3.2.4). Therefore, a P. falciparum treatment failure was more likely to be

detected in active than passive surveillance.
*

The rate of P. vivax treatment failure was not significantly associated with 

sex, age-group, nationality or type of surveillance, i.e., none of these factors 

could be counted as risk factors for P. vivax treatment failure.
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Figure 3-12: The monthly secondary attack rates, classified by the gap and the species in the 
first and second attacks. P. falciparum-P. falciparum rates are shown in left y axis, and the 
rate in other groups are shown in right y axis

Over the full follow up period, the P. falciparum treatment failure rate was 

around 8.5 times the P. vivax treatment failure rate. P. falciparum cases 

usually have higher compliance than P. vivax cases, because P. falciparum 

disease is typically more severe than P. vivax disease and the P. falciparum 

patients generally seek treatment more actively. Furthermore, the duration 

of P. falciparum treatment is shorter than in P. vivax (3 versus 5 to 14 days 

respectively) [68]. Therefore, higher P. falciparum treatment failure rate 

could probably not be explained by lower compliance in P. falciparum 

patients in taking drugs.

The above finding could be explained by a higher frequency of P. falciparum 

resistance to chloroquine. In other words, some of P. falciparum cases
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might not fully respond to chloroquine, and they contracted the second 

attack shortly after their first one.

If we assume that P. falciparum treatment failure reflects chloroquine 

resistance, it could be said that P. falciparum resistance risk was around 

250 per 1000 cases. In other words, a quarter of P. falciparum cases 

showed a second positive blood slide within a month of the first drug dose.

Figure 3-13: The temporal variations of P. falciparum therapeutic failure rate

Figure 3-13 illustrates the time trend of P. falciparum treatment failure 

between 1994 and 2001. The rate ratio for year for P. falciparum treatment 

failure was 0.72 (95% Cl: 0.65-0.8), meaning that during this period the 

P. falciparum treatment failure rate had a declining trend; the minimum 

treatment failure rate was less than 100 per 1000 person in 1999-2001.

In contrast to above finding, Edrissian et al. (1989, 1999) show an 

increasing trend in the frequency of P. falciparum resistance to chloroquine 

in Iran in the last two decades [62,65]. However, these data were not based
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on in mvo tests of clinical response of patients to chloroquine. There is not 

any precise information about the clinical resistance rate of P. falciparum to 

chloroquine in Iran; most studies estimated this rate based on molecular 

markers or in vito tests [64-66,115-121],

Given the available information, it is very difficult to explain the declining 

trend of P. falciparum treatment failure. It could be due to better health 

care provision or greater public awareness of malaria which might increase 

the level of compliance. Furthermore, it should be noted that during this 

period of time, Iran gradually accepted fewer Afghani immigrants. Although 

there is not any clear evidence to show that resistant strains came from 

Afghanistan, local health workers usually acknowledge that Afghani
t

immigrants had more resistant P. falciparum infections. Therefore, some of 

this trend might be due to the changes in immigration patterns.

On the whole, the P. falciparum treatment failure was around 250 per 1000 

person between 1994 and 2001. WHO recommends changing the first drug 

of choice if the frequency of resistance is more than 20% [67,109,110], The 

treatment failure had a declining trend; nevertheless, it seems that 

P. falciparum treatment failure is a very important issue in the 

management of malaria in Kahnooj, and the health system should be 

sensitive to this issue. To be proactive and verify the treatment protocol, the 

health system needs more accurate and up to date information about the 

chloroquine resistance rate. A precise monitoring system is needed to 

provide the necessary information.
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37.3.2. P. vivax relapse rate

As discussed in Section 3.7.3, differentiation of re-infection from relapse is 

very difficult; therefore, most papers reported a combined risk or rate of re­

infection and relapse, or estimated the relapse risk based on the frequency 

of P. vivax during the non-transmission season. In this section, a novel 

method is applied to estimate the relapse rate. The observed secondary 

P. vivax rate in those who had primary P. vivax infection is a combined 

rate of re-infection and relapse. The secondary P. vivax attack rate in whose 

who had primary P. falciparum infection could estimate the re-infection rate 

with P. vivax. Therefore, any differences between secondary P. vivax attack

rates in those who had primary infection with P. falciparum and P. vivax
$

can be interpreted as the relapse rate.

In this approach there are two assumptions. The first one is that 

P. falciparum induces the same immunity as does P. vivax to the 

acquisition of new P. vivax infections. The overall annual infection risk in 

Kahnooj was very low in recent years (Table 3-1). Due to low exposure risks 

and a few repeated infections, people did not acquire considerable immunity. 

Also, the cross immunity between species was not important particularly in 

low endemic areas (Section 7.7.5).

The other assumption is that the P. vivax inoculation rate in P. falciparum 

positive people was the same as in P. vivax positive people. Since the 

temporal distribution of these two species was not similar, the result was 

adjusted for season. However, the spatial distribution and age group of 

P. falciparum-P. vivax and P. vivax-P. vivax groups were comparable 

(p>0.13).
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Figure 3-12 compares the rates of secondary attack in those who had 

primary infection with P. vivax and P. falciparum, classified by the gap 

between two attacks. The patterns of changes in both groups were 

comparable; they had a sharp peak around one year, which reflected the 

annual variation of P. vivax. In other words, irrespective of the previous 

history of Plasmodium spp infections, the risk of P. vivax re-infection had 

an annual cycle. These two lines were very close before 3 and after 18 

months gap, i.e., the estimated relapse rate was trivial before 3 and after 18 

months. The relapse rates were considerable between 3 and 18 months, 

however, they were statistically significant only between 6 and 18 months. 

The monthly relapse rates at 3-5, 6-7, 8-12 and 12-17 months after the 

initial infection were 10.9,'15.7, 31.9 and 15.1 per 1000 person-months 

respectively; and the relapse rate in the first 2 years after the primary 

attack was 1.2 per 1000 person-months. Converting the rate to risk, the 

relapse risk in one and two years after the primary attack were 16.8% and 

24.5% respectively.

The pattern of relapse in Kahnooj was compatible with the relapse pattern 

in other temperate areas [104]; i.e., the P. vivax relapse rate before 3 

months was very low and its maximum rate was observed around one year 

after the primary attack.

The risk of P. mvax relapse was around 25% in two years, which is very 

close to the relapse risks which has been observed by Rowland and Durrani 

(1999) in Pakistan in the treatment arm with 14-day primaquine regime, 

[100] and by Prasad et al (1991) [99] and Leslie et al. (2004) [106], However,
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it is less than reported risks in other studies [98,102,103,105,122]; but it 

should be noted that these usually reported the joint risk of re-infection and 

relapse; but this analysis estimated the relapse risk separately.

Rowland and Durrani (1999) [100] showed in his clinical trial that, even 

with 14-day primaquine, around 34% of P. vivax cases show at least one 

episode of relapse/re-infection. Leslie et al. (2004) showed that around 20% 

of P. vivax cases showed at least one secondary attack within nine 

months.[106], The estimated relapse risk in this study was 25% in the first 

two years. However, it is an estimation of just relapse. Therefore, from a 

practical point of view, it seems that the anti-relapse treatment had an 

acceptable effectiveness in Kahnooj. Although the national protocol in Iran
t

has recommended a 14-day regime of primaquine, general practitioners and 

health workers have the right to make a final decision about the duration 

based on the compliance of cases. Unpublished reports from a few locations 

in Kahnooj show that around 80%-90% of cases receive a 14-day regime.

On the other hand, the relapse risk is high enough to reduce the. accuracy 

of predictive models if they do not adjust their results based on relapse 

risks. In other words, lower accuracy of P. mvax models than P. falciparum 

ones can be expected, if the relapse risks are ignored (Section 3.7.4.6).

3.7.4. Temporal variation

In the following sections, the temporal variations in the numbers of 

P. falciparum and P. vivax cases are modelled. Section 3.7.4.1 illustrates 

the annual variation of malaria, and meteorological variables in Kahnooj
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between 1987 and 2001; and assesses their relationships. Section 3.7.4.2 

explains the variations in the number of malaria cases between dekads (10 

day periods). Sections 3.7.4.3 and 3.7.4.4 assess the seasonality and time 

trend, and the effect of meteorological factors on malaria respectively. 

Section 3.7.4.5 presents the results of time series analysis; and the last 

section (3.7.4.6) discusses the accuracy of the final model in predicting 

malaria.

The results of this section explore the feasibility of models in prediction of 

malaria in temporal span.

3.7.4.1. Annual data
»

To evaluate the correlations between meteorological factors and malaria, 

annual malaria data for Kahnooj in last 16 years (1987-2003) are analysed 

in this section. The specific meteorological factors considered are total 

annual rainfall, the annual mean of daily minimum, maximum and mean 

temperatures and relative humidity. The malaria situation is described by 

the following standard indices:

1. Annual Blood Examination Rate (ABER): the number of slides 

examined for malaria parasites per one hundred population per year

2. Smear Positivity rate (SPR): the percentage of positive slides

3. Annual Parasite Index (API): the number of new malaria cases per 

one thousand population per year

4. Annual falciparum Index (AFI): the number of P. falciparum cases per 

one thousand population per year
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Malaria had a wide range of variation during the last 16 years (Figure 3-14). 

API and AFI rose between 1987 and 1993; the maximum API and AFI were 

55.4 and 34.4 per one thousand respectively in 1993. They subsequently 

decreased at a more or less constant rate. The ratio of maximum to 

minimum API was 27.7, the corresponding figure for AFI was 191.4; i.e., the 

risk of malaria in 1993 was around 28 times that of 2002; and the risk of 

P. falciparum in 1993 was around 190 times that of 2001.

Variations in ABER and SPR did not follow those in API. ABER peaked one 

year later in 1994 and remained at a high level for several years, which 

might reflect the health system’s alertness after the 1993 outbreak. In other
0

words, after the 1993 outbreak, the surveillance system might be more 

vigorous and more blood slides were taken between 1994 and 1998. 

Because of high ABER between 1994 and 1998 and decreasing trend of API, 

the SPR dropped sharply after 1993.
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Figure 3-14: The annual malaria indices between 1987 and 2002 in Kahnooj (See API, AFI 
and SPR definitions in the text)

Different calendar years were used to check the association between rainfall 

and malaria. Rain comes mostly between November and March in Kahnooj 

(Figure 3-3); and malaria transmission occurs predominantly between 

March and October (Figure 3-16). Therefore, any rainfall in the last two 

months of year does not have any impact on the malaria in that year, but it 

can influence malaria risk in following year. Therefore, the total amount of 

rainfall was computed based on the daily data of the last two months from 

previous year and the first ten months of that year; i.e., from November to 

October.

100



—o— any species —o—P.falciparum -x - P .v iv a x
| —o— tem perature  —o —  hum idity —± — rainfall

Figure 3-15: The annual malaria risk and meteorological variables between 1987 and 2002 in 
Kahnooj district, the mean temperature is measured in Celsius, relative humidity in percent 
and total rainfall in millimetre

Visual examination of Figure 3-15 does not suggest any strong associations 

between annual meteorological factors and malaria risk. Both species,
0

particularly P. falciparum had declining trends, with two peaks in 1993 and 

1998, while the relative humidity and temperature did not have 

considerable variations. However, the high amount of rainfall in 1991-93 

might explain the peak of malaria in those years to some extent.

In contrast to minimum temperature and humidity, mean and maximum 

temperature and humidity had positive associations with malaria (Table 

3-7). The Pearson correlation coefficient between the annual malaria risk 

and humidity was negative; the correlation with minimum temperature was 

very close to zero. On the other hand, maximum temperature and rainfall 

had considerable positive associations with annual risks. There is a 

suggestion that P. mvax was more strongly correlated with maximum 

temperature and P. falciparum with rainfall.
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Table 3-7: Pearson correlation coefficients between annual risk of malaria and 
meteorological variables in Kahnooj 1887-2001________________________

M e te o ro lo g ic a l  fa c t o r A P I 1 A F I 2 A V I 3

M in im u m  tem peratu re -0 .0 2 -0 .01 -0 .0 4

M a x im u m  tem peratu re 0 .40 0 .33 0 .46

M e a n  tem pera tu re 0 .18 0 .15 0 .19

H um id ity -0 .12 -0 .0 9 -0 .1 4

R ain fa ll 0 .45 * 0 .54 * 0 .40 *

1: Annual parasitic index 
2: Annual P. falciparum index 
3: Annual P. vivax index 
*p<0.05

Less than one third of annual malaria variation could be explained by

meteorological variables. P. falciparum had the strongest correlation with

rainfall (r=0.54); i.e., rainfall explained around one third of P. falciparum
0

variation (R2=0.292). Adding all meteorological variables into the regression 

model did not improve the goodness of fit considerably, the adjusted R2 was

O. 31. Therefore, even the best model can not explain two thirds of

P. falciparum variability. The R2 for P. vivax was 0.23.

In fact, the summaries of annual meteorological variables are not useful 

predictors. They cannot be used to predict the situation of malaria in the 

future. Also, the above analyses showed that they predict less than one 

third of malaria variations. In addition, malaria is transmitted in around 5 

months effectively (April to August) in Kahnooj, and climate effect during 

this period of time could be masked easily by the data in other months. Due 

to this limitation, in the following sections the models link the summaries of 

meteorological variables in dekads (every 10 days) to the malaria risk with 

different lags to analysis their relationships more precisely.
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3.7.4.2. Description of dekad data

This section explains the temporal variations of malaria. The number of 

cases in dekads is illustrated, and is compared with the result of mean- 

median smoothing. Then the shape of annual P. vivax and P. falciparum 

epidemics are compared.

Malaria has a clear seasonal pattern in Kahnooj (Figure 3-16). During the 

summer (April to September), malaria risk was more than 100 cases per 

100,000 population per dekad; however, during the winter (November to 

February), the risk was less than 10. These seasonal variations were 

observed for both P. falciparum and P. vivax species.

In contrast to P. vivax, P. falciparum had a declining trend; however, both 

of these species had two prominent peaks in 1994 and 1998. In 1994, the 

maximum risk of P. falciparum was around 100 cases per 100,000 

population per dekad which fell to less than 5 in 2001 and 2002. In 

contrast, the time trend in the annual P. vivax risk was not seen visually; 

maximum risk in 1994 and 1998 were around 100 cases per 100,000 

populations per 10 days, which was around twice of the risks in other years. 

The P. falciparum peak in 1994 was around three times of that in 1998; 

however, the P. vivax peaks in 1994 and 1998 were comparable.

The shape of smoothed curves in P. falciparum and P. vivax differ 

significantly. Using local mean-median smoothing method with a span of 

three dekads, the coarse variations between consecutive dekad risks were 

removed. A span of three dekad was chosen because one month captured 

the highest amount of variability. The P. falciparum curve had a prominent 

peak at the end of each summer, except in 1997 which had a short bimodal
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curve. However, P. vivax showed bimodal curves in summers except in 

1998 which had a very sharp peak at the end of summer; the first P. vivax 

annual peaks were around April-May, and the second ones were around 

August-September.

P. vivax ------------ P. falciparum
All species

Figure 3-16: Temporal variations of malaria over a year; the observed numbers classified by 

species

A bimodal P. vivax curve is frequently reported in temperate climates 

[37,123,124], Generally the early peaks are explained by P. vivax relapse 

and the late peaks by high transmission. Bouma et al. (1996) [37] added 

that low humidity in May and June in his study field in Pakistan might 

decrease the life span of vectors, which caused a drop in the number of 

cases between two P. vivax peaks.
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It is not easy to explain the early P. vivax peak by relapse based on the 

observations in this study. There were not any obvious associations 

between the late P. vivax peaks of one year and the early peak of the 

following year. For example, the high incidences of P. vivax later in the 

summers in 1994 and 1998 were not followed by a sharp peak at the 

beginning of 1995 and 1999.

In addition, the P. vivax relapse rate was low in Kahnooj. Section 3.7.3.2

shows that the maximum relapse rate was observed around 8-12 months

after the primary attack, and was 32 per 1000 P. vivax cases per month.

Therefore, it would be hard to expect a noticeable peak just due to relapse

in the beginning of summer.
$

However, P. vivax relapse could play an important role in the transmission 

chain between years. In the beginning of each summer, mosquito density 

increases and even small number of P. vivax relapse cases could be enough 

to infect the vectors, and start new transmission cycles.

An alternative explanation for the bimodal curve is unsuitable climatic 

conditions in the mid-summer [37], The effect of very hot temperature and 

low humidity in the mid summer is assessed in the following sections.

3.7.4.3. Seasonality and time trend

This section models the seasonality and time trend of malaria. Applying a 

Poisson model adjusted for population, the optimum sinusoidal model is
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used to explain seasonality. The time trend is modelled by the linear and 

quadratic effects of year.

Seasonality is a well known phenomenon in malaria. Gill (1938) ¡123] 

explained the different seasonal patterns in temperate, sub-temperate, 

tropical and equatorial zones. Macdonald (1953) [124] used a mathematical 

approach to assess the malaria epidemic curve. Since then, a great deal of 

research has been conducted to explain the effect of climate on the seasonal 

variations of malaria.
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Figure 3-17: The seasonality of malaria classified by species, the observed numbers (dashes) 
and model estimated number (solid line) in the ‘fitting’ part of the dataset
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fitted value ------------- ppv
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Figure 3-18: The seasonality and time trend of malaria classified by species, the observed 
numbers (dashes) and model estimated number (solid line) in the ‘fitting’ part of the dataset

Figure 3-17 shows clear seasonal pattern in malaria in Kahnooj particularly 

in P. invax, which was modelled sinusoidally (Section 3.4.7). LR tests
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showed highly significant p-values (<0.0001) in P. vivax, P. falciparum and 

all species. The pseudo R2 of P. vivax, P. falciparum and all species were

O. 42, 0.18 and 0.32 respectively.

The phases (e) of these models imply that P. vivax peaked around one 

month after P. falciparum. The fitted peaks of P. falciparum and P. vivax 

were on 12th of July and 16th of August respectively.

Nevertheless, prediction of the peaks of species incidences annual based on 

the peak of the sinusoidal curves might mask the actual annual variations. 

Section 3.7.4.3 explains the differences between P. falciparum and P. vivax 

curves; P. vivax had bimodal annual variations with two peaks in early and 

late summer; however, P. falciparum had one annual peak mostly in late 

summer. Therefore, other factors such as meteorological factors might 

change the peak of actual epidemic curves.

The P. falciparum and all species graphs had clear decreasing time trends.

P. falciparum risk in summer 1994 was around 200 times that risk in 

summer 2002. In contrast, the P. vivax graph does not show any clear time 

trend. Nevertheless, the linear effect of year in all models were significant 

(LR test: p<0.001).

Seasonality and time trend explain P. falciparum variations better than 

P. tnvax variations (Table 3-8). Having adjusted for seasonality and linear 

effect of year, the pseudo R2 for P. vivax was 0.49, the corresponding R2 for 

P. falciparum and all species were 0.76 and 0.6 respectively (Table 3-8). 

Nevertheless, the quadratic effects of year did not improve R2 values (all p- 

values were greater than 0.15).
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In summary, it could be concluded that the sinusoidal model with linear 

time trend is a simple and appropriate method to explain some part of 

temporal variations, particularly P. falciparum variations. The clear 

seasonal pattern of malaria in Kahnooj and its time trend could be modelled 

on sine transformation of time and linear effect of year.

3.7.4.4. Climate effect

This section examines the effect of rainfall, temperature and relative 

humidity on the variation of malaria classified by species. First, the annual 

variation of mean monthly temperature and relative humidity is illustrated. 

Then, the importance of meteorological variables is assessed, incorporates 

different lag effects. Finally, the optimum temperature and relative humidity 

for transmission of species are estimated.

The meteorological variables ranged widely in Kahnooj between 1994 and 

2001. Temperature ranged between -1 and 50°C; the minimum and 

maximum recorded mean daily temperatures were 5 and 42°C respectively. 

In 50% of days the mean daily temperatures were more than 28°C, and in 

20% of days more than 36°C. Relative humidity varied between 5 and 99%. 

The mean daily relative humidity was less than 23% and 36% in fifty and 

eighty percents of days respectively; and in only ten percent of days it was 

more than 62.4%. The minimum and maximum annual rainfalls were 93 

mm in 1994 and 371 mm in 1996 respectively.
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The temporal variation of temperature and relative humidity had opposite 

patterns (Figure 3-18). Temperatures peaked between June and September, 

when relative humidity was lowest. In contrast, maximum relative humidity 

and minimum temperature were recorded in January and February. The 

Pearson correlation coefficient between mean daily temperature and relative 

humidity was -0.53 (95% Cl: -0.53, -0.56). This correlation coefficient was -

0.52 (95% Cl: -0.5,-0.55) in transmission months, i.e., April to September.
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Figure 3-19: The annual variation of mean monthly temperature and relative humidity. The 
two horizontal lines cross the vertical axes at 33°C and 30% relative humidity; generally, the 
optimum condition for malaria transmission is when both curves are above these two lines. 
The cut off points are estimated in following paragraphs

A two to four dekad lag maximizes the correlation coefficient between the 

number of cases and meteorological variables. The associations were 

assessed based on the number of cases in each dekad and the mean 

temperature and relative humidity in the preceding 1-6 dekads. The 

maximum associations were detected between P. falciparum and 

meteorological variables with a three dekad gap, while maximum
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associations were observed between P. invax and meteorological factors 

with two dekad gap. (Also see following paragraphs about the optimum lag 

between climate and species.)

Associations between the number of cases and meteorological factors with 

0-6 dekad lags were very close. R2 values between P. wvax and mean 

temperature, for 0-6 lags, ranged from 0.37 to 0.4; and with humidity 

ranged from 0.19 to 0.21. The corresponding ranges between P. falciparum 

and mean temperature, and humidity were 0.04-0.05 and 0.03-0.04 

respectively.

P. vivax had stronger positive association with temperature than 

P. falciparum; but the relationships between both species and humidity 

were not strong. Having applied the partial correlation coefficient, the effects 

of temperature and humidity were adjusted for each other. The correlation 

coefficients between P. vivax and temperature, and humidity with a two 

dekad lag were 0.48 (p<0.0001) and -0.08 (p=0.19) respectively. The 

corresponding coefficients in P. falciparum with a three dekad lag were 0.12 

(p=0.048) and-0.07 (p=0.21).

Temperature and relative humidity explained P. vivax variations better than 

P. falciparum variations. The pseudo R2 between P. vivax and mean 

temperature and relative humidity with two dekad lag was 0.4. However, 

the pseudo R2 values between P. falciparum and all species with mean 

temperature and relative humidity were 0.06 and 0.24 respectively.

Rainfall was defined as the total amount of rain between the previous 

November and the preceding two dekads. Section 3.7.4.1 explained that the 

importance of rainfall in one rainy season on the malaria in the following
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transmission season. Therefore, the rainfall was measured from previous 

November. Although the amount of rainfall is negligible in the transmission 

season, to keep the rainfall data compatible with other meteorological 

variables, it was included with lags of up to two dekads.

On top of the seasonality and trend effects, meteorological factors still 

explained a significant amount of malaria variation, particularly in P. vivax. 

Reviewing the pseudo R2 in Table 3-8 shows that temperature and relative 

humidity in the previous two dekads could explain the malaria variations as 

well as temperature and relative humidity in all 6 previous dekads. 

Although the quadratic effect of temperature and relative humidity were 

significant in both P. vivax and P. falciparum models (p<0.0001), the
t

changes in pseudo R2 in the P. vivax model were much more than in the 

P. falciparum model (6% versus less than 1%). Adding the optimum 

combinations of temperature, relative humidity and annual rainfall to the 

seasonality and time trend improved the pseudo R2 by around 6% and 17% 

in the P. falciparum and P. vivax models respectively.
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Figure 3-20: The fitted values of models based on seasonality, time trend and meteorological 
variables classified by species, observed numbers (dashes) and model estimated number 
(solid line)
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The model based on seasonality, time trend and meteorological factors 

explained P. falciparum variations better than P. vivax. The pseudo R2 in 

the P. falciparum model was 0.8; the corresponding value for P. vivax was 

0.66. Figure 3-19 illustrates that except for the epidemic in 1998, the 

models explained the variations of species quite precisely.

Lower accuracy of the P. vivax model could be due to relapse. As explained 

in Section 3.7.3.2, generally P. vivax relapse is common even with a 

complete dose of an anti-relapse drug. In Kahnooj, around 25% of P. vivax 

cases showed relapse during the first 2 years after the primary attack. To 

address the relapse -effect on the goodness of fit of these models, the 

autocorrelation between the numbers of cases will be taken into account in 

Section 3.7.4.5.

The optimum meteorological conditions were estimated by solving the 

differential Poisson quadratic equation of lagged mean temperature and 

relative humidity. In the models, temperature and relative humidity and 

their square terms were entered. The solving first differential equation in 

respect to either of the variables estimates the turning point of the graph;

i.e., the value of temperature or relative humidity which the disease risks 

were minimum or maximum.

Compared to P. falciparum, P. vivax peaked during higher temperature and 

lower relative humidity. The optimum mean temperatures for P. vivax and 

P. falciparum were 35 and 31.1°C respectively. The corresponding values 

for relative humidity were 27.3 and 32%. The optimum temperature and 

relative humidity for all species were 34°C and 30.1 percent.
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The above estimated optimum temperatures were slightly greater than the 

estimated temperatures of other laboratory studies that assessed the effect 

of temperature on mosquito development [13]. These differences might be 

due to the fact that the rate of mosquito development is an important factor 

in malaria transmission; however, other factors such as parasite 

development inside the mosquito and the mosquito survival rate are also 

important. In addition, it should be mentioned that in the field, mosquitoes 

reside in the optimal microclimate [38].

According to Figure 3-18, the optimum climate for malaria transmission

was observed generally at the end of summer around August and

September. During these two months, temperature and relative humidity
*

were above 33°C and 30% respectively

The local minimum in the P. vivax curve in mid summer (Figure 3-16) 

could be explained by very hot weather. The mean of temperature in June 

and July were 36.5 and 37.4°C respectively, which were much higher than 

the estimated optimum temperature (35°C), while the mean temperatures 

before and after mid summer in May and August were 33.1 and 35.4°C 

respectively. The bimodal annual curve was more obvious in 1994, 1999 

and 2001. The maximum mean temperature in mid summer in these three 

years were 38, 37.4 and 37.2°C respectively, which were higher than the 

mid summer temperature in other years (p=0.02). However, there was no 

clear association between mid summer relative humidity and the drop in 

P. vivax risk. It should be mentioned that the spatial variation of relative 

humidity in summer was wider than in temperature. Therefore, to have a 

clearer view about the effect of relative humidity in mid summer drop, 

spatial analysis should be applied (Section 3.7.5).
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Low humidity in the beginning of summer might repress the early 

P. falciparum peaks because P. falciparum was more sensitive. In contrast 

to P. uivax, P. falciparum did not show a bimodal curve in most years. More 

precisely, it could be said that the early peaks of P. falciparum might be 

inhibited. Therefore, P. falciparum might not find appropriate conditions in 

most years to show early peaks similar to P. vivax peaks.

3.7.4.5. Time series analysis

This section analyses-the autocorrelation in disease risk in the consecutive

dekads. Plausible mechanisms for autocorrelation are explained, and its
«

magnitude assessed. Then, the goodness of fit for models, adjusted for 

autocorrelations are presented.

Dekadal risks of disease are dependent on each other. Malaria depends on 

climate; therefore, much of its autocorrelation might be explained by 

autocorrelation in meteorological variables. Malaria as an infectious disease 

has a transmission cycle between human, mosquito and human. Therefore, 

the infection load in each part of this circle can be passed to the other parts 

over time. This dependency can be explained by the following mechanisms:

1. Frequency of infectious vectors: infectious vectors can survive for 

more than one dekad, and influence the number of cases in 

consecutive dekads. However, since mosquitoes have short life spans 

(a few weeks) in the transmission season, it seems that this factor 

causes autocorrelation only over lags of one or two dekads.
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2. Frequency of infectious people: malaria transmits from infectious 

subject to healthy people via the vector. Therefore, a high number of 

infectious subjects in one dekad can be an indicator of another peak 

in the following dekads. The gap between two peaks, i.e., the 

duration of the transmission cycle, is determined mostly by climate. 

On average, it is expected to be two to four dekads in the 

transmission seasons.

3. Control programs: the health system usually enhances its activities 

after an epidemic; also, people may be more aware of malaria and 

use more preventive methods. Therefore, a drop may be observed 

after a prominent epidemic. This would induce a negative 

autocorrelation rather than the positive ones expected from the 

previous two mechanisms.

4. Relapse: in contrast to the other mechanisms, P. vivax relapse may 

generate positive autocorrelation in risks with large lags; i.e., months 

or even years.

Having adjusted for seasonality, time trend and climate, the autocorrelation 

patterns in P. falciparum and P. vivax were comparable. Figure 3-20 shows 

the correlation and partial correlation coefficients between dekad residual 

risks with different lags. The maximum autocorrelation coefficients were 

around 0.6 in both species with a one dekad lag, which shows the 

importance of autocorrelation. The correlation coefficients between dekad 

risks with five or less dekad lags were significant; however, the partial
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correlation coefficients were significant only with three or less dekad lags in 

P. uivax.
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Figure 3-21: The Autocorrelations and partial autocorrelations between the residuals of 
models, which estimated risks, based on climate, seasonality and time trend; the shaded 
areas show 95% confidence interval.

Relapses did not have much effect on the autocorrelation pattern in 

P. uivax. The autocorrelation pattern of P. uiuax risk had a seasonal 

pattern. Having removed the seasonality and climate effects, none of the 

correlation and partial correlation coefficients, except the partial correlation
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coefficient in dekad 37, were significant with more than 5 dekad lags while, 

the maximum relapse risks were expected to be observed between 18 and 

48 dekad lags (Section 3.7.3.2), the majority of correlation, and partial 

coefficients ranged between -0.1 and 0.05, and -0.05 and 0.05 after 18 

dekad lags.

To minimize the numbers of model parameters, and make it more 

appropriate for practical use in the field, the number of cases in dekads 

were aggregated. It is important to check the long term history of malaria in 

models in order to assess the impact of relapse. Nevertheless, the model 

would have had numerous parameters, if all dekad data had entered 

separately. Also, from a practical point of view, long term dekad data are 

usually inaccessible. To deal with these two problems, sum variables were 

computed which contain the sum of cases in dekads in the past as follow: 

last dekad, 2-3 dekads, 4-16 dekads, 17-24 dekads, 25-36 dekads and 37- 

48 dekads.

It was not possible to compute the sum variables in the first records, 

because of inaccessibility of past dekadal data. Because of the different 

number of missing values in different models, their goodness of fit were not 

comparable. In order to solve this problem and utilize as much of data as 

possible, missing values were estimated based on seasonality, time trend 

and meteorological variables.

Having entered the sum variables in the models, the pseudo R2 improved for 

P. vivcuc more than of P. falciparum. The likelihood ratio test showed 

significant effects of sum variables in P. vivax, P. falciparum and both 

species (pcO.0001). The difference between pseudo R2 values with and
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without these sum variables in P. falciparum was 0.03 (0.8 versus 0.83), 

the corresponding differences in P. vivax and both species were 0.14 (0.66 

versus 0.8) and 0.09 (0.75 versus 0.84) respectively. Having checked the 

effects of these sum variables separately, the number of cases in the last 

dekad played the main role; the pseudo R2 values with just the number of 

cases in last dekad were numerically very close to their correspondences 

with the number of cases in all periods; however, the pseudo R2 with the 

number of cases in past the two to three dekads were close only in 

P. falciparum (Table 3-8).

It seems that past history of malaria can improve a model’s goodness of fit

even after taking into account seasonality, time trends and climate effects.
»

Figure 3-20 shows substantial autocorrelations between malaria risks; 

particularly with a very short lag of a few dekads. While these 

autocorrelation effects were significant in all models, the changes they 

induced in pseudo R2 indicated that they are more important for P. vivax 

than P. falciparum (differences between R2 values in model 15 versus model 

16 in following tables).
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Table 3-8: The pseudo R2 of Poisson models classified by the species based on the whole 
district data; model 18 is the final model___________

Model number and Explanatory Pseudo R2
variables P. falciparum P. vivax All species

Ml Sine transform of time 0.2 0.43 0.35 .

M2 M1 & linear effect of year 0.76 0.49 0.6

M3 M1 & quadratic effect of year 0.76 0.49 0.61

M4 M2 & mean daily min temperatures 
in last 6 dekads1 0.76 0.5 0.61

M5 M2 8s mean daily max temperatures 
in last 6 dekads1 0.76 0.53 0.62

M6 M2 & mean daily mean temperatures 
in last 6 dekads1 0.76 0.51 0.62

M7 M2 8s mean daily relative humidity in 
last 6 dekads1 0.78 0.56 0.67

M8 M2 8s mean daily min temperatures 
in last 2 dekads1 0.76 0.49 0.61

M9 M2 & mean daily max temperatures 
in last 2 dekads1 0.76 0.52 0.62

M10 M2 & mean daily mean temperatures 
in last 2 dekads1 0.76 0.51 0.61

M il M2 & mean daily relative humidity in 
last 2 dekads1 0.78 0.55 0.66

M12 M8 & M9 8s M10 8s M il 0.78 0.55 0.66

M13 M8 8& M9 & Ml 1 0.78 0.55 0.66

M14 M13 8s rainfall2 0.8 0.6 0.72

M15
M14 & quadratic effect of min1, max2 
of temperature and humidity in last 2 
dekads

0.8 0.66 0.75

M16

M15 and the sum of cases in last 
dekad, and periods with these dekad 
lags:2-4, 5-16, 17-24, 25-36 and 37- 
48

0.83 0.8 0.84

M17 M15 and the sum of cases in last 
dekad 0.83 0.79 0.84

M18 M15 and the sum of cases in 2-4 
dekad ago 0.82 0.75 0.79

1: The mean of daily minimum, maximum or mean variable in one dekad (10 days) 
2: The total amount of rainfall between last November and 2 dekad ago
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3.7.4.6. Final predictive model

This section examines the accuracy of final model. Variables in the final 

models were selected based not only on their statistical significances, but 

also their accessibility in real situations in the field. To check the model 

accuracy, dekadal data were randomly divided into modelling and checking 

parts as described below. The parameters were estimated based on the 

modelling part. Differences between observed and fitted values in the 

checking part were then assessed (Section 3.4.8).

Table 3-8 shows pseudo R2 values for various models described previously, 

from the simplest with only the effect of seasonality, up to the most 

complicated ones incorporates seasonality, time trend, climate effect, and 

temporal autocorrelation. According to the likelihood ratio test, seasonality 

and linear effect of time trend were significant (p<0.0001). Also, the 

minimum and maximum of meteorological factors were more important 

predictors than just their means. Having assessed the impact of 

meteorological factors using different lags; and based on practical issues, 

meteorological variables with only two dekad lags show very close pseudo R2 

values to the complex model pseudo R2 with all data in last 6 dekads.

Although the numbers of cases in the last dekad were more important than 

the numbers in other dekads, in practice, at least a two dekad lag is needed 

for a warning system; because health system responses usually experience 

some delay. The last two rows in Table 3-8 show the pseudo R2 with the 

number of cases in last dekad (one dekad lag) or in past two to four dekads 

(two to four dekad lag). The two R2 values were close in the case of 

P. falciparum (0.83 versus 0.82); there was a small but noticeable difference
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in pseudo R2 values for the P. vivax models (0.79 versus 0.75). Nevertheless, 

this study aims to check the feasibility of an early warning system. It means 

that the models should predict the situation of malaria in future; therefore, 

a 20-day gap is the minimum required gap in practice, to allow time to act. 

Hence, the final model predicts the number of cases based on the number 

of cases in two to four dekads ago (model number 18 in Table 3-8).

A quarter of case records were selected randomly to check the accuracy of 

models (Section 3.4.8).

Parameters were estimated using the final model (number 18 Table 3-8) on 

the modelling data,' and the predicted values and observed numbers 

compared in the checking part. The accuracy of models was assessed based 

on the differences between observed and predicted values.

The percentages of under and over predictions were adjusted by 

transmission period and year. According to the climate and the duration of 

malaria transmission, four periods were defined: no-transmission: 

(December-March), early transmission (April-May), mid transmission (June- 

July), and late transmission (August-November). Then, the over and under 

predictions of models were divided by the sums of observed cases in each 

period and year. The overall percentages of over and under predictions were 

computed as the weighted averages of their corresponding periods; the 

numbers of observed cases in each period-year were used as the weight.

The over and under predictions of models were all less than 20%, and the 

maximum errors were seen during the no-transmission season (Table 3-9). 

The over and under predictions in the modelling and checking parts were 

very close. The errors were between 30 to 40% in no-transmission period in
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both species, while they were less than 20% in mid and late transmission 

periods. In other words, the models had more accuracy in high 

transmission periods. Also, the over and under predictions of P. falciparum 

and P. uivax models were comparable. In terms of numbers of cases, the 

maximum error was less than 500 cases per year: around 300 P. lAvcuc 

cases and 200 P. falciparum cases.

Nevertheless, the models did not predict the 1998 epidemic. Figure 3-21

illustrates the observed and residual values in the checking part of dataset.

The large values of residuals in 1998, particularly in the early and mid

transmission period, -shows that the epidemic was due to some factors

beyond the effect of explanatory variables in these models.
«

On the whole, it seems that the model based on the combination of 

predictive variables is an appropriate early warning method (Section 3.8.4). 

None of the variables by itself had a pseudo R2 value more than 0.43. 

However, the combination of variables improved the R2 to around 0.75. 

Moreover, all the models predict the risk of disease 20 days in advance; i.e., 

the gap is enough to warn the health system.

This model does not take into account spatial variations. The above 

analyses explain the temporal variation of malaria in the whole Kahnooj 

district. However, Kahnooj is a vast district with considerable variation in 

climate and environment factors (Section 3.2.2). Therefore, exploring the 

spatial distribution of malaria is as important as the temporal variation, 

which is the focus of in the following sections.
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Table 3-9: Over and under estimations of final model classified by transmission period, the 
numbers show the sum of differences between observed and predicted values.

Modelling part1 Checking part2
Transmission Over Under Over Under
period estimation estimation estimation estimation

(% 3) (% 3) (% 3) (% 3)
no4 197(24.5) 197(24.5) 64(32.5) 71(36)

*3*

I -

early4 147(19) 275(35.5) 35(31.7) 33(29.5)

m id4 156(15.4) 127(12.6) 86(20.4) 46(10.8)
&
3 late4 613(17.1) 544(15.2) 135(10.9) 246(19.8)
¡3

whole year 1,113(18.4) 1,113(18.4) 321(16.3) 396(20.1)

no4 242(37.7) 165(25.7) 75(38.6) 59(30.4)

ru early4 231(11.8) 415(21.3) 56(17.2) 79(24.3)

s . mid4 317(13.1) 296(12.2) 203(20.7) 101(10.3)

8 late4 664(13) 577(11.3) 274(15.2) 326(18.1)

whole year 1,454(14.4) 1,454(14.4) 608(18.4) 565(17.1)

no4 451(34.2) • 345(26.1) 132(33.6) 129(32.7)

Ë early4 338(2.1) 709(4.4) 82(18.9) 122(27.9)
09
oo

mid4 444(13) 327(9.6) 268(19.1) 121(8.6)

S"09 late4 1,093(12.6) 945(10.9) 388(12.8) 509(16.8)

whole year 2,326(14.4) 2,326(14.4) 870(16.5) 881(16.7)

1: The model was built based on three-quarters of dekad data
2: The fitted value was computed based on the estimated parameters in modelling data 
3: Total numbers of over or under prediction divided by total number of cases adjusted for 
year-period (Section 3.7.4.6 for more details)
4: The average of monthly number of over or under predictions
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Figure 3-22: The observed data and the fitted value of final model (based on seasonality, 
time trend, temporal autocorrelation, and climate variables) in the checking part of data
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3.7.5. Spatial-temporal variations

These analyses model the spatial and temporal distribution of malaria. The 

models link ground and remote sensing data with malaria risk. Section

3.7.5.1 explains the geographical distribution of malaria in Kahnooj. Then, 

the accuracy of NDVI (Normalised Difference Vegetation Index) and altitude 

as predictors of geographical distribution of malaria is assessed (Sections

3.7.5.2 and 3.7.5.3). The last Section (3.7.5.4) concerns the combination of 

temporal and spatial variations of malaria and their associations with 

ground-based and remotely sensed.

3.7.5.1. Geographical distribution of malaria

Figures 3-22 to 3-25 illustrate the spatial and temporal distribution of 

malaria in Kahnooj in the period 1994-2001. The cut of points between low, 

medium and high incidences were defined in a way to maximise their visual 

contrasts. Although the risks varied substantially between years and 

transmission periods, the areas in the centre and south east of district 

always had the minimum and maximum infection risks respectively. The 

spatial distribution of malaria in 1998 was more or less similar to the other 

years and most of malaria cases were reported from five SSDs and the 

highest risks were observed in the SSD in the south-east of Kahnooj. It 

suggests that the 1998 outbreak occurred in just a few SSDs.
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Figure 3-23: The annual spatial distribution of P. vivax risk in Kahnooj between 1994 and
2001 by SSD
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Annual P,falciparum risk per 100,000 population

Figure 3-24: The annual spatial distribution of P. falciparum risk in Kahnooj between 1994
and 2001 by SSD
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1994

Malaria annual risk (all species) per 100,000 population

Figure 3-25: The annual spatial distribution of malaria risk (all species) in Kahnooj between
1994 and 2001 by SSD

>3000
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Mid transmissionseaso 
(June-July)

Late transmission season’ 
(August-November)

Monthly P.vivax risk Monthly P.falciparum risk (allfpctief)

Figure 3-26: The spatial distribution of monthly malaria risk in Kahnooj classified by the 
transmission period (no transmission, early, mid and late transmission period) between 1994 
and 2001 by SSD
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3.7.5.2. High spatial resolution NDVI

This section links the risk of malaria cases in villages to their NDVI. Village 

NDVI were extracted from the Landsat images with 30-meter spatial 

resolution (Section 3.5.3), which were taken in December 2000 and January 

2001. Then, the average of NDVI around each village was computed, from 

15m up to 6 kilometre radius. Having done a sensitivity analysis the 

optimum radius for the mean of NDVI was chosen based on pseudo R2. 

Fractional polynomial (FP) Poisson model (m= 2) was used to link the 

number of cases in 2001 to NDVI adjusted for village population (Section 

3.4.4).

Modelling NDVI within a five km radius showed maximum pseudo R2 values
4

(Table 3-10).

Using FP models, the pseudo R2 values were improved considerably. The 

pseudo R2s for the linear effect of NDVI in 5km around each village for 

P. falciparum were 0.09 which increased to 0.15 with the FP model (Table 

3-10). The FP models also improved the pseudo R2 from 0.09 to 0.12 in 

P. viuax and 0.1 to 0.13 in all species. However it is still low compared to 

the values in previous sections (Table 3-8).
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Table 3-10: The pseudo R2 between malaria risks and the average NDVI around villages in 
2001 _________________

All species P. falciparum P. vivax
Radius1

Linear FR2 Linear FR2 Linear FR2
15m 0.004 0.009 0.006 0.07 0.006 0.06

1km 0.04 0.14 0.02 0.04 0.02 0.05

2km 0.07 0.17 0.03 0.03 0.03 0.04

3km 0.08 0.16 0.06 0.07 0.06 0.07

4km 0.08 0.12 0.07 0.1 0.09 0.11

5km 0.09 0.15 0.09 0.12 0.1 0.13

6km 0.06 0.083 0.05 0.094 0.05 0.075

1: The average NDVI around each village was computed in circles with 15m up to 6km 
radiuses
2: Fractional polynomial, degree two
3: Powers (1,2); 4: powers (-2,-0.5); 5: powers (-2,-0.5))

These models mostly over-estimated the number of cases (Figure 3-26). 

P. falciparum was observed mostly in north-west, north and south-east of 

Kahnooj. However, the predicted map classified some villages in the west 

and north-east of the district as moderate to high risk. Furthermore, 

P. vivax was less common in the centre of district than the predicted by the 

model.

The number of malaria cases was low in 2001. Only 50 P. falciparum cases 

were reported in 2001 compared to more than 2000 in 1994 (Figure 3-14). 

Although the drop in number of P. vivax cases was not as sharp as 

P. falciparum, P. vivax was reported in only 8% of villages in 2001. 

Therefore it was not possible to check model accuracy by subdividing data 

into modelling and checking parts classified by time and space in 2001.
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Figure 3-27: The observed and predicted risk maps of malaria in 2001 in Kahnooj, the 
predicted maps were computed based on NDVI around villages (in 5km radius) (Section 
3.7.5.2)

3.7.5.3. Elevation

This section describes the linking of malaria data to altitude. The village 

altitudes were computed based on the DEM images with 1km resolution.
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Then, the mean altitude around each village was computed, from one up to 

six kilometre radius. Having done a sensitivity analysis the optimum radius 

for the mean of altitude was chosen based on pseudo R2. A fractional 

polynomial Poisson model was used to link the number of cases in 1994- 

2001 to altitude adjusted for the village populations.

Modelling mean altitude in 2-5km radii showed very close pseudo R2 values 

(0.06 in P. falciparum, 0.1 in P. vivax and 0.09 in all species). Hence, a 

three kilometre radius was chosen because it is a plausible distance based 

on the dispersion of living places within villages in Kahnooj and the flight 

range of mosquitoes. •

Using FP models improved the pseudo R2 values considerably. The pseudo
0

R2 for the linear effect of altitude in three km around each village for 

P. falciparum was 0.06; the corresponding R2 in FP model was 0.17 (powers: 

0 and 0.5). The FP models also improved the pseudo R2 from 0.1 to 0.19 

(powers: 1 and 1) in P. vivax and 0.09 to 0.19 (powers: 0.5 and 0.5) in all 

species respectively.
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Figure 3-28: The observed and predicted risk maps of malaria in 1994-2001 in Kahnooj, the 
predicted maps were computed based on the mean of altitude three kilometres around 
villages by using fractional polynomial models (see text)

The predicted risk maps mostly identified high risk villages particularly in

the west part of the district (Figure 3-27). However, they missed most of the

high risk villages in the northeast, and some of the high risk villages in the

southeast of Kahnooj.
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Risk o f disease had a non linear association w ith altitude. M alaria was rare

in villages with less than 450 or more than 1400 meter altitude. The 

maximum risks were observed in villages with 700 to 900 meters altitude. 

These findings were persistent between years, and species.

3.7.5.4. Temporal NDVI and LST

Land Surface Temperature (LST) is a common remote sensing variable,

which is often used as a proxy for ambient temperature. Since vegetation

and temperature are significant determinants of mosquito densities, a great

deal of research has been done to assess the associations between these

indices and malaria [42,47-49,57].
*

In previous sections, only high spatial resolution NDVI (30m) in December 

2000 and January 2001 was used for modelling; however, serial values of 

NDVI and LST with low resolution (8km2) are used in this section to model 

spatial and temporal variation of malaria.

This section assesses how much of the temporal and spatial variations of 

malaria in Kahnooj can be explained by remote sensing data. Using Poisson 

models, mean monthly NDVI and LST of villages were linked to the malaria 

risk between January 1994 and September 2001. The remote sensing data 

were extracted from a set of serial monthly satellite images with 8x8km 

spatial resolution (Section 3.5.3). The models assess how much NDVI and 

LST improve the accuracies on top of seasonality, time trend and 

autocorrelations in risks.

These analyses were carried out at three spatially distinct levels: the village, 

SSD and district levels. At the village level, the NDVI and LST of villages
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were linked to their malaria risks. In the SSD and district levels, the mean 

of NDVI and LST of villages in each area or in the whole district were linked 

to the malaria risks.

Pseudo R2 values were smallest for the village models, higher for the SSD 

models and highest in the district models (Table 3-11). This is because 

there is more variation to be explained if the model predicts at the village 

than the district level. In other words, some of the between village variation 

was smoothed out of the SSD and district levels.

Having checked the associations from 0-6 month lags a one month lag 

maximised the pseudo R2 between infection risks and NDVI and LST in 

most of the models (Table 3-11). This finding can be explained by mosquito
0

biology and malaria incubation period. Suitable climate conditions are 

needed for at least one generation to increase the mosquito density and 

accelerate transmission. Also the incubation period of malaria is around 

one to two weeks in human body; and most infected subjects contract 

disease after around ten days. Therefore, one month is a reasonable gap 

between climate and malaria risk.

In general, P. falciparum had stronger associations with NDVI than with 

LST; on the other hand, the associations between P. vivax with NDVI and 

LST were comparable. It is difficult to explain this finding by the available 

data, which should be explored in further studies.

Having added NDVI and LST on top of the seasonality and time trend, the 

pseudo R2 values increased significantly. The model M10 in Table 3-11 

assesses the effects of seasonality, linear time trend and autocorrelation on 

the risks. Adding NDVI and LST in the model (M i l ) ,  the pseudo R2
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increased considerably. However, in terms of the numbers and percentages 

of under and over estimations, the models with remote sensing data did not 

have better predictions (Table 3-12).

Therefore, it seems that the remote sensing data with such low resolution 

does not improve the accuracy of models in prediction of malaria (next 

Section).
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Table 3-11: The pseudo R2 of Poisson models classified by the species based on village, SSD 
or whole district data

Pseudo R2
Model number and 
Explanatory variables

P. falciparum P. vivax All species
village SSD Distr­

ict village SSD Distr­
ict village SSD Distr- 

- ict

Models based on remote sensing data

M l
Current month 

NDVI 
LST

0.03
0.03

0.06
0.07

0.07
0.18

0.04
0.04

0.07
0.12

0.13
0.4

0.05
0.05

0.08
0.12

0.12
0.35

M2
Previous month 

NDVI 
LST

0.01
0.001

0.06
0.09

0.05
0.22

0.01
0.001

0.04
0.13

0.06
0.44

0.08
0.05

0.06
0.14

0.06
0.39

Two months

M3
previous

NDVI
LST

0.02
0.001

0.03
0.07

0.009
0.16

0.01
0.001

0.008
0.07

0.001
0.24

0.06
0.05

0.02
0.08

0.004
0.24

M4
M2 & M 3  

NDVI 
LST

0.02
0.001

0.06
0.09

0.06
0.23

0.02
0.001

0.06
0.13

0.13
0.46

0.09
0.06

0.07
0.14

0.11
0.41

M5

M4 &  their quadratic 
effects 

NDVI 
LST

0.02
0.001

0.06
0.1

0.11
0.27

0.02
0.001

0.07
0.14

0.14
0.48

0.09
0.06

0.07
0.15

0.13
0.44

M6
M4 with combine 
effect of NDVI and  
LST

0.03 0.13 0.33 0.03 0.16 0.5 0.13 0.17 0.47

Models based on time trend, seasonality and autocorrelation

M7 Linear effect o f year 0.05 0.07 0.07 0.001 0.07 0.13 0.005 0.08 0.12

M8
Sine transformation  
o f time (seasonality) 0.06 0.11 0.26 0.06 0.003 ' 0.44 0.07 0.16 0.41

M9 M 7 & M 8 0.11 0.21 0.49 0.06 0.16 0.44 0.07 0.18 0.45

M10
M9 &  the num ber of 
cases in previous 
month

0.11 0.40 0.65 0.07 0.29 0.66 0.08 0.36 0.67

r'he final model based on time trend, seasonality, autocorrelation and remote
sensing data

M il M6 &  M IO 0.17 0.46 0.77 0.12 0.32 0.73 0.14 0.4 0.75
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3.7.6. Summary of the prediction results

The model accuracies were assessed by looking at the number and 

percentages of over- and under-estimations in the checking part.

The models assessed the accuracies in three spatial distinct levels: whole 

district, SSD and village levels.

Of all the models, the simplest one extrapolated the number of cases from 

the previous month’s data. In other words, it implied that the number of 

cases in a month was the simplest predicted value for the number of cases 

in the following month. As this model is very simple, it does not need any 

computation. In the field therefore, the health authority is predicting the 

malaria risk based on this simple prediction. This study aimed to find how 

much predictors could improve the early warning accuracy. Hence, the 

results of complex models are comparing with this simple model.

In the next step, the accuracy of models based on seasonality and time 

trend were assessed. Then, ground climate data were added. In the most 

complex model, remote sensing variables also were entered. It should be 

mentioned that in this study, ground climate data for only one point 

(Kahnooj city) were available. Therefore, the effect of ground climate data 

was assessed only at the in district level.

Table 3-12 summarises the main results of the models. The village models 

had the greatest over and under-estimations; which was due to between 

village variations (Section 3.7.5.4).
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In contrast to remote sensing data, ground climate data improved the model 

accuracies considerably. Comparing the over and under-estimations in the 

simplest models (extrapolations form the previous month) with other models 

shows that remote sensing data did not improve predictions. However, 

ground climate data improved the predictions in district level.
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Table 3-12: Over and under-predictions of models based on seasonality, time trend and
ground and remote sensing data

Modelling part1 (%3) Checking part2 (%3)
Spatial level Over Under Over Under

estimation estimation estimation estimation

D istrict data
Predicted value extrapolated from previous month’s
data
P. falciparum 1,020 (23.9) 1,020 (23.9) 372 (27.3) 303 (25.6)
P. vivax 2,118 (24.1) 2,118 (24.1) 438 (22.6) 441 (22.6)
All species 2,994 (23) 2,994 (23) 613 (22.1) 743 (24.7)

Seasonality and time trend
P. falciparum 1,056 (24.8) 1,056 (24.8) 553 (35.2) 662 (42.1)
P. vivax 1,653 (18.8) 1,653 (18.8) 586 (25.4) 579 (25.1)
All species 2,517 (19.4) 2,517 (19.4) 1,387 (27.5) 1,575 (31.2)

Seasonality, time trend and ground climate data4 (dekad data, Table
3-9)
P. falciparum 1,113(18.4) 1,113(18.4) 321(16.3) 296(20.1)
P. vivax 1,454(14.4) 1,454(14.4) 408(18.4) 365(17.1)
All species 2,326(14.4) 2,326(14.4) 570(16.5) 581(16.7)

Seasonality, time trend and mean ofLST and NDVI4
P. falciparum 796 (18.7) 796 (18.7) 709 (45.1) 376 (23.9)
P. vivax 1,425 (16.2) 1,425 (16.2) 697 (20.0) 812 (23.3)
All species 2,131 (16.4) 2,131 (16.4) 1,271 (25.2) 1,187 (23.5)

S S D  d ata
Predicted value extrapolated from previous month’s
data
P. falciparum 1,796 (40.4) 1,807 (40.6) 535 (38.4) 524 (37.6)
P. vivax 3,171 (34.9 3,580 (39.5 1,286 (40.2) 864 (27)
All species 4,519 (33.6) 4,940 (36.7) 1,654 (36.2) 1,220(26.7)

Seasonality and time trend

P. falciparum 2,575 (57.9) 2,575 (57.9) 787 (56.5) 767 (55.1)
P. vivax 4,528 (49.9) 4,528 (49.9) 1,163 (36.4) 1,660 (51.9)
All species 6,588 (48.9) 6,588 (48.9) 1,674 (36.6) 2,265 (49.6)

Seasonality, time trend, NDVI and LST

P. falciparum 2,470 (55.6) 2,470 (55.6) 673 (48.3) 759 (54.5)
P. vivax 4,413 (48.6) 4,413 (48.6) 1,179 (36.9) 1,602 (50.1)
All species 6,424 (47.7) 6,424 (47.7) 1,647 (36.0) 2,215 (48.5)

Continued on next page
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Continuation of Table 3-12

v i l l a g e  d a t a

Predicted value extrapolated from previous month’s data
P. fa lc ip a ru m 3,638  (82.9) 3 ,912 (89.2) 1,233 (84.9) 952  (65.6)

P. v iva x 6,480 (69.8) 6 ,702 (72.2) 2 ,133  (71.5) 1,903 (63.8)

All species 9,514  (69.9) 10,016 (73.6) 3 ,13 7  (70.1) 2,621 (59.2)

Seasonality and time trend
P. fa lc ip a ru m 3,859  (88.0) 3 ,859  (88.0) 1,183 (81.4) 1,293 (88.9)

P. v iva x 7,232 (77.9) 7,232 (77.9) 2 ,457  (82.3) 2 ,342  (78.5)

All species 10,567 (77.6) 10,567 (77.6) 3,441 (77.8 ) 3 ,479  (78.6)

Seasonality, time trend, NDVI and LST

P. fa lc ip a ru m 3 ,836  (87.4) 3 ,836  (87.4) 1,205 (82.9) 1,285 (88.4)

P. v iva x 7,221 (77.8) 7,221 (77.8) 2 ,599  (87.1) 2 ,309  (77.4)

All species 105,34 (77.4) 10,534 (77.4) 3,592 (81.2) 3 ,424  (77.4)

1: The model was built based on three-quarters of monthly data (modelling data)
2: The fitted value was computed based on the estimated parameters in modelling data 
3: Numbers of over or under-estimation divided by total number of cases; since the 
denominators (the number of cases) were varied between models, the percentages should be 
used to compare the model accuracies
4: The model is based on the dekad mean of humidity and temperature 
Due to the unexplained outbreak of malaria in 1998, the accuracy of all models was dropped 
considerably. Having excluded the data of 1998, the models predicted the malaria with 
higher accuracies (Section 3.7.4.6)

In summary, the models predicted the number of cases one month ahead 

which is a reasonable gap from a practical point of view. The models at the 

district level had the best accuracies and RS data did not improve the 

accuracies. Section 3.8.5 discusses the application of these results in the 

field and presents the possible explanations for lower accuracies in the 

village models and models with RS data and some suggestions to improve 

the models.

3.7.7. Local transmission

This section explores the risk factors of local malaria transmission. Local 

transmission risk map can be a useful tool for health system to identify and
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concentrate its activities in high risk areas to prevent outbreaks. In other 

words, in terms of early warning system (one month ahead), local 

transmission risk map may be as important as the risk map based on 

incidence risks.

The local transmission in each village was defined as the presence of at 

least two conspecific malaria cases in a month or one conspecific case in 

two consecutive months. The effects of NDVI and LST were assessed by 

comparing the areas under the Receiver Operating Characteristic (ROC) 

curves. Furthermore, having adjusted for seasonality and within village 

clustering, the effect of LST, NDVI, population and history of the disease in 

the village were assessed.
0

ROC is a graphical representation of the trade off between the false negative 

and false positive risks. It is the standard approach to evaluate the 

sensitivity and specificity of diagnostic procedures. Each point on the ROC 

curve is associated with a specific diagnostic criterion. The area under the 

ROC curve has become a particularly important metric for evaluating 

diagnostic procedures because it is the average sensitivity over all possible 

specificities. The more discriminatory curves are those which go further 

towards the top left corner (Figure 3-28).

Villages were classified as either positive or negative in each month for each 

species. They were considered positive if at least two species-specific cases 

were reported in a village in a month or in two consecutive months; i.e., two 

cases in one month or one per month for two consecutive months. Also, due
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to the high number of imported cases in cities, data from cities were not 

included in this analysis.

The data were classified into modelling (75%) and checking parts (25%) 

randomly. To check the accuracy of predictions, models were run in the 

modelling data. Then, local transmission risks in the checking data were 

computed given the fitted equations. The model accuracies were estimated 

based on the differences between observed and predicted values in the 

checking part of the data.

Logistic regression was used to model the local transmissions for 

P. falciparum, P. vivax and any species. Having taken into account within 

village clustering, the local transmissions were modelled based on 

seasonality, time trend, population and history of disease with the same 

species in the village between 8 and 18 months ago (the highest risk of 

P. vivax relapse was observed in with this gap, Section 3.7.3.2), with or 

without NDVI, LST. Then, the effects of NDVI and LST were checked by 

comparing the area under the ROC curves.

All of the explanatory variables showed significant p-values. The odds ratios 

for the history of diseases were 5.3 and 3.5 in P. falciparum and P. vivax 

respectively. Also, there was a significant linear trend between population 

and the risk of local transmission; the odds ratio increased 1.15 times for 

every 100 people increase in population (the maximum number of village 

population was 980 people).

The result of modelling and checking parts are similar (Table 3-13). The 

largest differences between the accuracy of models with and without NDVI 

and LST were observed in the P. falciparum models in modelling data
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(specificity: 75.6% versus 80.1%, area under the ROC: 0.85 versus 0.87 in 

modelling and checking parts respectively). The other differences were even 

smaller than this difference. Small differences between the results of 

checking and modelling parts may imply that the models were predicted the 

local transmission risks in checking part as accurate as in modelling part.

Including of NDVI and LST increased the model accuracies significantly 

(p<0.02), as well as the area under the ROC curve (p<0.001) (Table 3-13). 

The magnitudes of differences were not large; however, in terms of actual 

numbers even these small differences, drops the numbers of false positives 

and negative villages considerably.

Spatial distributions of local transmission risks were more accurate in the 

P. vivax model than P. falciparum model (Figure 3-29). Comparing the 

corresponding maps shows that all models over-estimated the frequencies 

of local transmissions. However, P. vivax model discriminated particularly 

those villages with low and intermediate risks more accurately than the 

P. falciparum model.
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Table 3-13: The accuracy of local transmission models with seasonality, time trend, 
population and history of the disease, with and without NDVI and LST__________

Modelling part Checking part All data

Pf Pv All Pf Pv All Pf Pv All

Models without NDVI and LST

Sensitivity 77.1 76.8 72.7 78.2 76.5 72.2 75.9 70.7 71.4
Specificity 75.6 71.5 76.7 80.1 71.4 77.3 75.7 81.8 76.8
Area under the ROC 0.85 0.837 0.838 0.87 0.838 0.833 0.833 0.863 0.832
se of area under the ROC 0.006 0.004 0.004 0.01 0.008 0.007 0.003 0.002 0.001

Models with NDVI and LST

Sensitivity 78.6 77.1 78.1 78.7 76.8 78.2 78.4 78.3 77.5
Specificity 80.1 74.2 82.2 82.5 74.7 82.1 75.6 81.8 77
Area under the ROC 0.87 0.839 0.864 0.857 0.839 0.86 0.846 0.863 0.845
se of area under the ROC 0.006 0.003 0.003 0.009 0.005 0.005 0.003 0.001 0.001

Pf: P. falciparum, Pv: P. vivax

0 .00  0 .25  0 .50  0 .7 5  1.00  

1 - Specificity 
Area under ROC curve * 0.8626

0 .00  0 .25  0 .5 0  0 .75  1.00  

1 • Specificity 
Area under ROC curve = 0.8462

1 - Specificity 
Area under ROC curve * 0.8452

P.vivax P.falciparum all species

Figure 3-29: Species-specific ROCs, they assess the relationship between sensitivity and 
specificity of the full models (with NDVI and LST) in predicting local transmissions in all 
data
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observed fitted

P .v ivax

F r e q u e n c y  o f  

t r a n s m i s s i o n

< 10%
«  1 1 - 3 0 %

•  3 1 - 5 5 %

•  > 5 5 %

Figure 3-30: Comparing the fitted and observed risk maps of local transmission, the fitted 
values were computed based on seasonality, time trend, history of disease, NDVI and LST 
(see text for further explanations)

(Legends are showing the percentages of months were each village had local transmission)
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3.8. Discussion

This chapter presents and analyses the malaria data of Kahnooj district, 

with the aim of assessing the feasibility of an early warning system based 

on meteorological and remote sensing data in predicting of malaria. The 

transmission was seasonal and the peak of malaria observed in middle to 

late summer.

Sections 3.2.3.2 and 3.2.4 explained the situation of malaria in Kahnooj 

and described the malaria surveillance system. Also, Section 3.7.1 showed 

that the microscopy results had enough accuracy to be used in these 

analyses.

The sample size of this study was quite enough to run models: 18,268 

malaria attacks were recorded between 1994 and 2002. Although there 

were relatively few cases, particularly for P. falciparum in some time bands, 

overall, the sample size was enough to model.

Table 3-5 showed the main risk factors of malaria in Kahnooj. Although, 

Afghani immigrants are mostly blamed for malaria epidemics, this was not 

supported by the findings. Section 3.7.2 discussed possible explanations for 

this finding; in particular, that Afghani immigrants are mostly 

asymptomatic carriers. Therefore, from a public health point of view, it 

seems that they should be examined more closely and get full treatment, 

even those who do not contract clinical malaria.

It should be mentioned that to have an outbreak, suitable environmental

factors are not sufficient. In central and western of Iran, malaria

transmission is very low, but in some villages vectors have effective contact

with people (such as Fars province in west of Kahnooj). That is because at
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least a few carriers are needed to trigger the outbreak under appropriate 

conditions. Therefore, screening the carriers among Afghani people may 

play an important role in controlling malaria in Kahnooj.

Section 3.7.3 discussed the pattern of repeated episodes among cases. It 

seems that treatment failure, particularly in P. falciparum is a very 

important issue to which policy makers need to pay more attention in order 

to monitor this rate and mount a timely reaction to its level (Section 3.7.3.1).

This study estimated the relapse rate of P. vivax based on a new approach 

which allows differentiating the rate of real relapse from re-infection 

(Section 3.7.3.2). The'observed relapse pattern of P. vivax in Kahnooj was 

comparable with the pattern in other temperate areas [104]. Also, 

comparing the relapse rate with other studies [106], it seems that anti­

relapse treatment had an acceptable effectiveness in Kahnooj.

3.8.1. Temporal variations

Except the outbreak in 1998, malaria had a decreasing trend between 1994 

and 2002 in Kahnooj, which can not be explained by meteorological factors 

(Figure 3-15). Based on these analyses, there is no simple explanation for 

the 1998 outbreak, but based on the national statistics, it is clear that the 

outbreak occurred in some areas in south-east of Iran. Some experts in 

national and provincial levels explained it by the unstable situations inside 

Afghanistan which increased the number of illegal immigrations to Iran in 

1997 and 1998. Afghanistan's ruling Taliban militia massacred thousands 

of civilians, including nine Iranian diplomats and about 3,000 Hazaras - a 

Persian speaking Shi'a minority - when it seized the northern city of Mazar-i
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Sharif in August 1997. This caused a significant influx of refugees mostly to 

Iran in the end of 1997 and early months of 1998, because most of Shi'a 

Afghanis preferred to immigrate to Iran. There are no accurate data 

concerning the number of immigrants.

The decreasing level of malaria might be due to intensive control 

programmes in the field. In 1979, Iran had a deep political revolution; after 

that Iran had a long war with Iraq for 8 years, which absorbed a 

considerable part of Iranian national resources. Since 1990, Iran has had a 

more stable political and economic situation, which allowed the government 

to allocate more resources for health and education. Now more than 92% of 

inhabited villages in the Kahnooj have access to electricity, while in 1979 

just Kahnooj city had electricity. The illiteracy rate has dropped sharply in 

the last two decades, and now is less than 15% among people with aged 10 

years or more. Therefore, the decreasing trend of malaria could be due to 

the improvement in socio-economic situations which it is expected to 

continue.

Furthermore, severe drought in the last decade might have a considerable 

impact on the epidemiology of malaria in Kahnooj not only directly but also 

via changing the life styles of people.

Malaria had very clear seasonal pattern in Kahnooj. Seasonality alone 

explained around one third of the temporal malaria variations; also the 

combined effect of time trend and seasonality explained around sixty 

percent of the variation (Table 3-8). Seasonality alone explained more 

variation for P. wvax, while the combined effects of seasonality and time 

trend explained more variation in P. falciparum.
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3.8.2. Spatial variations

Malaria risk had a wide variation in Kahnooj district (Figure 3-25). Vast 

areas of Kahnooj with considerable variation in climate can be counted as 

the main source of the spatial variation in malaria risk. In addition, malaria 

was more prevalent in very remote villages, mostly in south-east of the 

district, which have more illegal Afghani immigrants and lower socio­

economic situations.

There was an interaction between spatial and temporal distributions of 

malaria. The seasonal pattern of malaria was not exactly the same in 

subsubdistricts (Figure 3-24). Also, the annual risk of malaria had different 

patterns; for instance, although the SSD in south-east of the district had 

the highest risk in most of the years, in 1999-2001 its risk was considerably 

lower than the other high risk SSDs.

Nonetheless, the middle part of the district had the lowest risks of malaria 

in most of the years and seasons.

3.8.3. Species-specific variations

There were considerable differences between temporal and spatial variations 

of Plasmodium spp. Section 3.7.4.1 explained the differences between 

P. vivax and P. falciparum annual curves; the former species had a 

bimodal curve with concavity in the mid summer, while the latter usually 

showed a sharp peak at the end of transmission season.
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This dissimilarity could be due to the different sensitivity of species to 

meteorological factors, particularly temperature. Figure 2-1 showed that 

P. falciparum requires higher temperature to mature within the mosquito 

(sporogonic cycle) as fast as P. vivax. Therefore, in the beginning of the hot 

season, P. vivax peaks faster than P. falciparum.

Unsuitable meteorological conditions are the most plausible explanation for 

concavity in the P. invax curve in mid summer which has been reported in 

other studies /37,123,124], P. vivax transmission started earlier in summer. 

However, in mid summer the temperature and humidity have their 

maximum and minimum values respectively. These conditions might 

decrease the survival rate of mosquitoes and slow down the transmission
0

rate, and thereby reduce caused a drop in the P. invax incidence.

The differing sensitivities of Plasmodium spp to meteorological factors, and 

the wide variation in these factors in Kahnooj, means that the spatial 

variations of species were not consistent. Comparing Figure 3-22 and 

Figure 3-23 illustrates these differences and suggests the need for species- 

specific models.

3.8.4. Accuracy of final models

Final model results are summarised in Table 3-12. This table showed the 

number and percentages of over and under-estimations of predictions one 

month ahead. Predictions relate to three spatially distinct levels: district, 

SSD and village levels.

The outbreak of malaria in 1998 decreased the model accuracies 

considerably. For example in the district level models, ground climate data
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improved the predictions around 6-8%. Having excluded the data of 1998, 

these differences rose to 18-23%. However, it should be mentioned that all 

of the analyses and conclusions were based on the whole data including the 

1998 data. Therefore, ground climate data can improve the accuracy of 

early warning models.

On the other hand, remote sensing data did not improve the model 

accuracies considerably, which could be due to the following reasons:

1. The resolution of satellite images was 8x8km; the extracted data from 

these coarse images might not have enough accuracy to demonstrate 

any associations.

2. Kahnooj is arid and most of its area is desert; therefore, NDVI (as the 

one of most common vegetation indices) might have not enough 

accuracy to measure the real greenness of land in arid and semiarid 

areas comparing to the other vegetation indices.

3. The cold cloud duration (CCD) was not available in this study; 

therefore, rainfall was not entered in these models. Rainfall had the 

strongest association with the annual risk of malaria (Section 

3.7.4.1), but was not estimated in the remote sensing data. Therefore, 

one of the most important explanatory variables was absent.

4. The remote sensing data reported monthly average of NDVI and LST; 

monthly averages might not have enough accuracy to present the 

situation in the whole month.
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3.8.5. Practical application of the models

These models show that ground-based meteorological data can be used as a 

very simple and accessible tool to predict malaria risk. As mentioned in the 

previous section, ground-based data can improve the accuracy of 

predictions by around 10%. Nonetheless, the predictions should be species- 

specific.

Using GIS to create risk maps may help the health system to identify the

SSDs at highest risk to mount more intensive control activities. A director of

malaria programme in the district level can predict the high risk SSDs one

month ahead and concentrate resources to prevent outbreaks. Since risk

varies in time and space, a mobile control team may be most efficient.
*

The final predicted model, based on ground climate data, improved the 

accuracies around 10%. Predictive variables for these models are readily 

available in the field, so an improvement of even a few percent makes them 

feasible.

3.8.6. Local transmission

Identifying the risk of local transmission is very important in control and 

eradication programmes. Section 3.7.7 described the risk factors of the local 

transmissions and the role of NDVI and LST.

The sensitivities and specificities of the models were high and their areas 

under the curves were highly significant. NDVI and LST increased the area 

under the curve around one percent. Even without NDVI and LST, the 

history of malaria and population were very important predictors. Therefore,
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these models can provide useful information about the local transmission 

risks. These risk maps together with the risk maps of malaria intensity can 

help the health system to make more accurate decision in identification of 

the high risk villages.

3.8.7. Limitations and suggestions for further studies

As for any other surveillance data, the accuracy of data was a point of 

concern in this study. Although, there was some convincing evidence about 

the quality of data, there might still be some errors or mistakes in case 

finding and reporting.

The models could not explain the outbreak in 1998. It seems that some 

other important factors played important role which they were not 

measured in this study. Further studies are needed to access the impact of 

other factors and address specifically to the outbreak causes.

These results are based on eight year surveillance data; during these years 

severe drought might change the pattern of malaria transmissions and life 

styles of people. A longer study might explain time trend of malaria 

variation more accurately. For this type of study, even monthly malaria data 

within subdistricts may be enough.

The results of this study illustrate the application of GIS in malaria control 

programmes. To introduce GIS in practice, health policy makers should be 

aware of its usefulness; therefore, researchers should simplify their findings 

and write their reports as clearly as possible. Otherwise, the heath system 

will not accept that this new tool could modify its traditional data collecting 

method and reporting system.
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The results generally do not show any potential for the use of remote 

sensing data in predicting malaria in Kahnooj. Section 3.8.4 discussed 

some explanations. Therefore, further studies are needed to address clearly 

on the application of remote sensing data. These studies should assess the 

association between malaria risk and remote sensing data in finer scale and 

include an estimation of rainfall.

The ground climate data were from only one point (Kahnooj city) which 

limited the climate models to only districts level. The results showed that 

ground climate data were predicted the number of malaria cases more 

accurately than remote sensing data. Therefore, it may suggest that more 

attention to the data climate stations could improve the feasibility of early
t

warning system.

Another limitation of this study was the definition of local transmission 

which was the simplest possible definition. Nonetheless, another study with 

more accurate definition of local transmission may find stronger evidence 

about the feasibility of such a model in prediction of malaria epidemics.

3.9. Final conclusion

The main objective of this study was to assess the feasibility of an early 

warning system based on ground and remote sensing data. Based on the 

accuracies of the models, it seems that models based on low spatial 

resolution remote sensing data (NDVI and LST) are not feasible. However, 

more studies are needed to assess the effect of remote sensing data in finer 

resolution with more predictors such as rainfall; and quantify the feasibility.
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Since these types of data are expensive, a cost-effectiveness analysis may be 

needed.

Ground climate data (which are available free of charge) improved the model 

accuracies and it seems that early warning system based on these models is 

feasible (Section 3.8.4).

Furthermore, combination of risk maps of malaria incidence and local 

transmission may improve the feasibility of early warning system. However, 

it is suggested that other studies explore the feasibility of models based on 

multiple climate centre data.
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Part Two: Interaction between P la s m o d iu m  spp

Prospectus

This part is about the interaction between Plasmodium species and has four 

chapters. The first one (Chapter 4) reviews the literatures and discusses the 

possible sources of the interaction.

The next chapter (Chapter 5) is a systematic review of the literature and 

meta-analysis to assess the interaction between P. falciparum and P. vivax 

and explore the potential source of heterogeneities. Many papers have 

reported the frequency of mixed infections, and there are a few review 

papers [125-128], However, neither a systematic review nor a meta-analysis
t

has been published about the interaction between P. falciparum and 

P. vivax and the source of heterogeneities.

This meta-analysis explores the effects of age group, the presence of fever, 

frequencies of individual infections, the geographical location of studies, 

and the temporal and spatial spans of the studies on the interaction 

between Plasmodium spp. Age group and presence of fever are related 

mostly to possible biological and immunological pathways while the 

temporal and spatial spans and geographical locations associate mainly to 

the environmental factors.

Chapter 6 presents the results of a mathematical model; it evaluates the 

impact of heterogeneity in infection risk on the interaction between species.

The last chapter (Chapter 7) explores the interactions between Plasmodium 

spp in the Garki data [129], one of the largest epidemiological studies on
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malaria, and examines the effect of study type in order to explain the 

differences between cross-sectional and longitudinal findings.

In contrast to cross sectional studies, the number of longitudinal studies 

among publications is low. In addition, no large epidemiological data set 

has been analysed in both ways to assess directly the effect of study type.
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CHAPTER 4

4. Introduction

Dual infections with Plasmodium spp are common and reported in many 

studies. Results of these studies generally do not support the hypothesis of 

species sampling independence [130], and a wide range of associations has 

been reported. In addition, there is an inconsistency between the findings of 

cross-sectional and longitudinal studies.

Exploring the interaction between species may help us to understand more 

about the biology of Plasmodium spp within the human body and to extend 

current knowledge about the immunological mechanisms against malaria.

4.1. Definition of interaction between species

In this study, the interaction between Plasmodium spp is assessed by 

looking at the presence or absence of infections in blood slides. The study 

utilises measures based upon the difference between the observed number 

of mixed infections in blood slides and the expected number if infection with 

one species is independent of infection with other species. The magnitude of 

interaction is shown by odds ratios.
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Based upon the above definition, a positive interaction would imply that 

mixed infection is more common than expected, and is illustrated by an 

odds ratio greater than one.

On the other hand, a negative interaction would imply that mixed infection 

between species is less common that expected; i.e., an odds ratio less than 

one.

4.2. Background

Human Plasmodium spp share the same transmission route. In addition, 

the exposure risk to mosquitoes is usually positively skewed within 

populations; i.e., a subgroup of people is more highly exposed to mosquitoes 

compared to the average population. Therefore, based upon the above two 

facts, a positive correlation between these infections might be expected [131].

Pinto et al. (2000) found a positive association between P. falciparum and 

other Plasmodium spp. They explained their findings by heterogeneity in 

exposure to mosquitoes. All of their febrile cases had single P. falciparum 

infection; therefore they suggested that that mixed infections may protect 

against clinical symptoms of disease [132].

Nonetheless, according to the results of most prevalence surveys, fewer 

mixed-species infections were observed than would be expected based on 

the product of the frequencies of individual species. This finding suggests 

that one parasite has excluded another or suppressed its parasitaemia to 

undetectable levels [6,133].
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McKenzie and bossert (1997) reviewed the point prevalence of P. falciparum 

and other Plasmodium spp in 35 papers published between 1984 and 1995 

[126]. They showed that high overall prevalence of infection was associated 

with significant deficits of dual P. falciparum and P. xnvax infections, while 

this was not observed in dual P. falciparum and P. malariae. Since the 

prevalence described frequencies of associations, they concluded that a 

pattern of more specific biological interaction, for instance, at the levels of 

immunity, pathogenicity, or transmission was involved but they did not 

explain any specific pathways.

Only a few longitudinal studies exploring this issue have been conducted.

One conducted by Bruce et al (2000) [134] reported that the frequency of
$

mixed infection was very close to the expected number, assuming no 

interaction.

A study in Thailand showed that P. vivax developed in a third of patients 

treated for acute P. falciparum within a month of receiving a regimen 

containing quinine or quinidine or within two months of receiving 

mefloquine treatment. However, less than one percent of patients in 

Thailand presenting with acute malaria were reported to have a mixed 

infection. The author concluded that either the routine microscopy could 

not detect most of the mixed infections or acute P. falciparum infection had 

suppressed the blood stage of P. vivax [135],

The effects of interaction terms vary in different studies, and cannot be 

explained solely by cross immunity. Howard et al. (2001) [125] used a log 

linear regression model to show the association between multiple species 

parasite infections. They showed that the logarithm of the odds ratio
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between P. falciparum and P. vivax varied over a wide range from -5.08 (in 

Bangladesh) to +2.56 (in Sierra Leone). In addition, they found that for 

Asian countries the associations were largely negative; however, positive 

associations were seen in Tanzania, Papua New Guinea and the USA.

Experimental studies in animals and some epidemiological studies have

provided evidence that infection dynamics (the blood stage of parasites and

their gametogenesis rates) are affected by cross-species immunity. The

majority of papers explained these interactions by cross immunity between

species, density-dependent regulation, and differential growth and

clearance rates of individual parasite populations resulting from clonal

antigenic variation. Most of them focused on the suppressive effect of
0

P. falciparum on the dynamics of other species [135,136],

An epidemiological study of the morbidity of malaria in young children in a 

highly endemic area of Africa suggests that clinical immunity depends 

mainly on the extent of exposure to blood-stage antigens [94], Mason et al. 

(1999) [137] built a mathematical model to describe only the blood stage 

dynamics of mixed infection and the effect of immune response to these 

interactions. However, due to uncertainty about the specific and non- 

specific-immunity proliferation and capture/removal rates, the model 

output was examined over a very wide range of values. The findings of this 

study were inconclusive.
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4.3. Possible explanation for positive interaction

4.3.1. Similarity in transmission routes

Similarity in transmission routes is the simplest explanation for the positive 

associations between the infections. Since all Plasmodium spp are 

transmitted by the same vector, any differences in exposure between 

persons can automatically be applied to all species [131]. In other words, 

exposure to mosquitoes might increase the risk of transmission of all 

species simultaneously.

4.3.2. Higher susceptibility of a subgroup of people

It is also theorised that certain subgroups have a higher susceptibility to 

infections. Based on this theory, susceptible people might get all infections 

more frequently than the others in the general population. The 

susceptibility might be due to genetic factors, or lower acquired immunity 

[138] or other factors such as the immunosuppressive effects of chronic 

infections, coexisting diseases or malnutrition [139,140],

4.4. Possible explanation for negative interaction

4.4.1. Suppression

The suppression hypothesis is supported by data derived from the 

simultaneous inoculation of two Plasmodium spp into laboratory animals. 

Many studies have shown that one or both species are suppressed. This
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may be mediated by competition for host cells or nutrients, or by 

heterologous immunity. However, the suppressed species rebounds after 

the other species has abated, and may show a prolonged infection

[135.136.140] . Fox and Strickland (1989) discarded the suppression effect 

of P. falciparum on P. invax in their studies in Punjab [141].

4.4.2. Cross immunity

It seems that cross immunity does not have any substantial effect on the

interaction between species; however, its role cannot be ignored completely.

Most of the experimental studies in animals showed that cross-immunity

between species did not give considerable protection [90,142], In addition,
»

Bruce et al. (2000) showed that Plasmodium spp are independent in 

humans [134]. The effective acquired immunity against each species was 

low over the long-term; therefore, there is not any convincing evidence to 

support substantial protective cross-immunity between Plasmodium spp

[138.140] .

4.4.3. Differences in the biology of P la s m o d iu m  spp

Plasmodium spp have different biological characteristics. For instance, 

maturation of the pre-erythrocytic hepatic stage of P. falciparum is more 

rapid than that of P. vivax, and asexual P. falciparum parasites will 

therefore appear earlier in the peripheral blood after simultaneous 

inoculation. Thus if patients present very early in the course of infection, 

low P. vivax parasitaemia could easily be missed [135]. In the same way, 

biological differences between Plasmodium spp such as relapse, incubation
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and infectious periods may explain some part of the observed interaction 

between species in cross sectional studies.

4.4.4. Environmental factors

Calculation of the expected number of dual infections might be over­

estimated based on the product of species-specific prevalence (incidences), 

particularly in large studies with non-homogeneous temporal and spatial 

distributions. Therefore, seasonal and spatial variation of these two species 

might partly explain the apparent interaction between the Plasmodium spp

[138,141].

t

4.4.5. Missed mixed infections in blood slides

In the assessment of the frequency of dually infected slides by microscope, 

observational bias in reading films is usually a very important issue. The 

effect of this bias is more prominent if junior microscopists without 

supervision read blood films. In addition, the reading method of the films is 

also crucial. The flexible method has the highest bias. In this method, the 

reader examines flexible number of fields based upon his/her own 

judgment. The assessment is usually terminated by finding some positive 

fields.

169



CHAPTER 5

5. Systematic review and Meta-analysis

This systematic review of the literature and meta-analysis estimates the 

interaction between P. falciparum and P. xnvax and explores the possible 

sources of heterogeneity such as the age group of subjects, geographical 

and temporal spans of studies and the prevalence of malaria in the 

populations.

5.1. Objectives

1. To quantify the interaction between P. falciparum and P. vivax

2. To decide whether or not there is heterogeneity in the interaction terms 

among the results of papers.

3. To assess the source of the heterogeneities, by focusing on the effects of 

endemicity, temporal and spatial spans of studies and the age group of 

the samples

5.2. Data collection method

The main electronic databases in medicine and public health were searched

with wide key words to optimise the sensitivity of data collection. Then the
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abstracts of selected papers were reviewed. Based on the abstracted data 

and a proforma checklist, the data were categorised into three groups: not 

eligible for meta-analysis, eligible for meta-analysis and a group in which 

their full texts were needed for final decision on their eligibility (Section 

5.2.4). In the next step, the full texts of the second and third groups were 

reviewed and the required data for meta-analysis were abstracted to a 

standardised form (Section 5.2.5).

5.2.1. Database search method

Medline, Embase and CAB-Health were searched. Due to differences in the

formats of these databases, the details of the searching method are
/

explained separately.

5.2.1.1. Medline

This database was searched from the first of January of 1966 to the end of 

May 2001.

Using the thesaurus of “Malaria”, the subheading of “epidemiology" was 

selected. These key words selected 3078 papers.

Then this search was limited by adding “TG=HUMAN". In this stage, 2977 

papers were selected (“TG ’ stands for Target Group).

Then the “falciparum” and “vivaxT words were added. The number of 

matched citations was reduced to 395.

Accordingly, the final searching phrase was:

“(malaria/ epidemiology) and falciparum and vivax and TG=HUMAN”
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5.2.1.2. Embase

This database was searched via the BIDS web site from the first of January 

1980 to the end of May 2001.

In the first stage, different expressions were searched separately, and then 

their results were merged. The search phrases and their results were as 

follow:

“Malaria/ focus or malaria as key word” 17242 citations

“Epidemiology/ expand” 322657 citations

“falciparum/ malaria or plasmodium/ focus” 7160 citations

“vivax/ plasmodium/ focus” 733 citations
*

The number of papers with “&” combination of the above phrases was 77. 

Result of the final search was saved in “Reprint/ medlars” format.

5.2.1.3. CAB-Health

This database was also searched via BIDS web site from 1st of January of 

1973 to the end of May 2001.

The search was started with the keyword “malaria” as the simplest 

expression.

Then, by adding new key words, the search was restricted. The details of 

search were as follow:

“Malaria” 23,895 citations

“Malaria & falciparum” 10,816 citations
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“Malaria & falciparum & vivax? 1954 citations

“Malaria & falciparum & vivax & epidemiology” 577 citations

“(Malaria/ in key words) & falciparum & vivax & (epidemiology/ in 

keywords)” 455 citations

5.2.2. Merging the result of searches

Using Endnote software, the results of the searches were merged. The 

results of the Medline and Embase searches were imported to Endnote 

directly. After merging these two files, 11 duplicate papers were found. After 

deleting the repeated citations, the merged file had 461 papers.

t

Endnote version 4 had no importing filter compatible with the structure of 

CAB-Health text file. After generating an appropriate filter, the results were 

imported to Endnote.

Then, the duplicate papers in the “Medline + Embase” file and CAB-Health 

file were detected according to their titles, authors and source. of paper 

fields. In this stage, 46 papers were found. After deleting them, only the title 

was used to mark duplicate papers. The abstracts of all detected citations 

were checked one by one to minimise errors. In this step, 30 citations were 

deleted. At the end, 829 citations remained in the main database.

5.2.3. Exporting the citations to Access

The content of the Endnote file was exported in tab-delimited format. Then 

a new database was created in MS-Access 97 and the content of the file was 

imported as a table into MS-Access.
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An interface was created to show the main bibliography of each paper 

(authors, publication year and abstract) and some new fields in relation to 

the content of abstracts in each page. This interface facilitated reviewing 

abstracts and checking their eligibilities (see next Section).

5.2.4. Reviewing the abstracts

Using a checklist, information about study objectives, sampling methods,

type of study and main findings were extracted from the abstracts

(appendix one). Based on this information some ineligible papers were

excluded. The eligible studies were those ones which reported the

frequencies of P. falciparum, P. uivax and mixed infections among random
»

samples in a define population.

Out of 829 abstracts, 104 (12.5%) papers were categorised as suitable for 

meta-analysis; also 68 (8.2%) papers were recruited to check their 

eligibilities by reviewing their full texts. Those papers which reported the 

results of surveillance systems, chose non random samples such as 

including immigrants from endemic areas, or estimated neither the 

incidence nor the prevalence of malaria were excluded (Table 5-1).
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Table 5-1: The result of reviewing the abstracts
F re q u e n cy P e rce n ta g e

O bjectives
In teraction  b e tw een  species 18 2.2
E p idem io logy 431 52.0
C on tro l p ro g ram m es 23 2 .8  ■
E n tom ology 64 7.7
T rea tm en t a n d  d ru g  resistance 37 4 .5
N e w  tech n iques 30 3.5
O th ers 226 27 .3

S am p lin g  m ethod
R an d o m  (any  sam p lin g  m ethod) 177 21.3
N o n -ra n d o m 125 15.1
N o t m en tioned 53 6.4
Irre lev an t1 4 7 4 57.2

D id  they  in c lu d e  im m igran t patien ts?
Y es 87 10.5
N o 207 25 .0
N o t m en tioned 62 7.5
Irre lev an t1 473

D id  they  d esc ribe  the s tu d y  location?
Y es 659 79 .5
N o 51 6.1
Irre lev an t1 119 14.4

D id  they  m en tion  the in c iden ce/p reva len ce  o f  m a la ria?
Yes 248 30
N o 122 14.7
Irre lev an t1 459 55.3

D id  they  m en tion  the frequ en cy  o f m ixed  in fection?
Yes 46 5.5
N o 306 36 .9
Irre lev an t1 47 7 57 .6

F in a l d ec is ion  b a s e d  o n  the con ten ts o f  ab strac ts
S u ita b le  fo r m eta -an a ly s is 104 12.5
D o  not have  requ ired  d a ta 657 ■ 72 .2
T h e  fu ll text o f  p a p e r  is n eed ed  to m ak e  dec is ion 68 8.3

Total 829 100

1: The abstracts were about some issues that were completely irrelevant to the questions, for 
example they may discuss about the prediction of malaria in future or the best health policy 
to control malaria in the word ( appendix one).

5.2.5. Reviewing the full texts

In this stage the full text of 172 papers were reviewed and the data of 

eligible papers was abstracted. Out of 104 papers that were classified as 

suitable based upon their abstracts, 42 papers were eligible (40.4%). Out of 

68 papers for which their appropriateness was not defined based upon the 

abstracts, 18 (26.4%) papers were eligible. The full text of one paper in
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Chinese was excluded, but papers in other languages (French, Portuguese 

and Arabic) were assessed.

Four papers reported the frequency of infections in more than one 

population. These papers recruited distinct populations in different 

geographical locations. The data for these populations were treated 

independently.

The abstracted data from the full texts of eligible papers included the

duration of the studies, their geographical spans and their locations, the

age group of subjects, subjects’ disease status (normal, febrile), the number

of examined blood slides and the number of positive slides for only

P. falciparum, P. vivax and for both species (Appendix 1).
#

Table 5-2 shows the geographical and temporal span of these studies. The 

minimum and maximum numbers of examined slides were 95 and 986,127 

respectively (mean=23,058). Eight studies did not find any mixed infections, 

while one study found 782 (mean=33). Out of 62 studies, 26 (42.9%) studies 

sampled febrile subjects and 5 (7.9%) studies sampled children exclusively.
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Table 5-2: Descriptions of eligible studies for meta-analysis
Frequency Percentage

Continent
Asia 52 83.9
Africa 4 6.4
America 6 9.7

Spatial span
Villages 36 58.1
District 16 25.8
Province or larger 10 16.1

Temporal span
Month 26 41.9
Season 12 19.3
Year 5 8.1
Greater than one year 19 30.7

Age group
Children 5 8.1
All age groups or adults 57 91.9

Samples
Febrile 26 41.9
Normal 36 58.1

Total 62 100

5.3. Statistical methods

5.3.1. Overview of the methods

The data of every study were summarised in two by two tables and the odds 

ratios (ORs) between P. falciparum and P. viuax were computed.

The analysis was started by simple statistical tests ignoring any 

heterogeneity between studies and assessed the significance between 

observed and expected number of mixed infections. Then, the differences in 

ORs of subgroups were assessed.

In the next step, random effects meta-analysis was done to summarise the 

overall OR and compute its confidence interval.
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In the last step, meta-regression used to assess the sources of heterogeneity 

in the study ORs and estimate the adjusted overall OR.

5.3.2. Simple methods

In the first step, simple statistical tests were used to check the significance 

between observed and expected numbers of dual infections. In this step any 

heterogeneity between studies was ignored. For this purpose, Pearson chi- 

square was used to test the significance of each study. Then, Mantel- 

Haenszel chi-square was used to check the discrepancies between observed 

and expected numbers of dual infections adjusted for the ID number of 

each study.
a

In the next step, the OR between P. vivcvc and P. falciparum was estimated 

in each study. Using ecological analysis (analysing data at the group level), 

the relationships between the ORs and the prevalence of malaria, the 

number of examined slides, the temporal and spatial span of studies, the 

geographical location of the studies (continent) and the age group of 

subjects were calculated.

5.3.3. Meta-analysis methods

Finally, the degree of heterogeneity in ORs explained by other variables was 

assessed. Using the random effect meta-analysis method, a summary of the 

OR was estimated. Then it was determined how much of the observed 

heterogeneity could be explained by age group, continent, endemicity, 

geographical size of study areas and duration of studies.
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Ignoring the possibility of residual heterogeneity (i.e., between study 

variance) would underestimate the standard errors of the regression 

coefficients and thus overstate the importance of covariates.

To overcome this problem there are two main approaches [143-145]. The 

first method is an extension of weighted regression and can be applied to all 

types of outcomes while the second method is an extension of logistic 

regression and can be applied just for dichotomous outcome. Both methods 

estimates another extra term (t2) as a measure of between studies 

heterogeneity (Equation 5-3).

Weighted regression assumes that the log OR between P. falciparum and 

P. vivax ( i / i )  of different studies (i=l to k) follows a Gaussian distribution. 

This regression needs to be weighted to take into account the precision of 

the estimated log ORs. The simplest model, without allowance for residual 

heterogeneity, is:

yi ~ N(a  + f .X i  ,v2)  Equation 5-1

where p.Xt is the scalar product of p. and Xi; Xi is a vector of explanatory 

variables in study i, P represents a vector of coefficients, a represents the 

log OR in the baseline of Xi, and v2 is the variance of the log OR between 

studies. Maximum likelihood estimates of a and P can be obtained by least 

squares regression of t/,- on Xi with weights w,=1/v2

To incorporate residual heterogeneity (variation of true effect between 

studies) multiplicative factor greater than 1 could be applied to each 

variance, as in the following model:
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y i ~ N (a  + p .X i  ,(pv2) Equation 5-2

where <p is an over dispersion parameter. This multiplicative method might 

introduce some bias due to the dominance of large studies over small ones:

The error can be overcome by including an additive term. This involves a 

new term (r2) which represents the residual heterogeneity as follows:

yi ~ N(a + p .X i, v2 + t2)  Equation 5-3

Maximum likelihood method estimates a and P by regression of yi on Xi 

with weights w?=\/(v2 +t2). Thompson (1999) explained four methods to

estimate I2: maximum likelihood, restricted maximum likelihood, moment 

and empirical Bayesian methods [144].

Logistic regression uses binomial structure of the data. The conventional 

logistic regression model (without allowance for residual heterogeneity) is:

logit (7tij)= yi + azij + Pxij Equation 5-4

where n tj  is the true risk of P. falciparum infection in group j  (j= 0 is for the 

absence of P. vivax and j= l  is for presence of P. mvax in study i which is 

shown by zj as an indicator variable for the group). The other parameters 

are the same as previous equations. Inclusion of y provides for a stratified 

analysis.

To correct the over-dispersion of SEs (standard errors), we could use 

multiplicative or additive methods. In the multiplicative method the SEs are 

adjusted by the following equation:
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var(yij) = (priyfl-mj) Equation 5-5

In this equation (p is an over-dispersion parameter, which can be estimated 

by dividing Pearson %2 by the residual degrees of freedom of the model. The 

variable ny is the number of subjects and yy is the numbers of events in the 

j  group of study i. This method has the same problem as the multiplicative 

model discussed in the previous Section.

In contrast, the additive model allows the variability between studies by 

multi-level method:

logit (Kij)= yi + azij + fiXij +CCiZj Equation 5-6

where a, is a random effect, drawn from a Gaussian distribution with mean
»

0 and variance r2, and expresses the way in which the log-odds ratio of 

study i deviates from the value expected from the other explanatory 

variables. Using restricted iterative generalised least squares,!2 can be 

estimated [144J.

The first method, weighted regression, has been used more commonly in 

meta-analysis papers. Also, it is more easily applied in Stata. Therefore, in 

this analysis, the OR was modelled by the weighted regression method. Also 

the additive term was utilised to estimate the effect of explanatory variables 

and the residual heterogeneity.

Using the “metareg” command of Stata, the probability of dual infections 

was predicted by entering in the probabilities of single infections. In order to 

compare the residual heterogeneity (t2) in random effect models with and 

without explanatory variables, the moment method was used. One reason
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for this choice is that maximum likelihood and even restricted maximum

likelihood methods introduced a downward bias in estimating of T2 [144] 

which is also observed in this study (the estimated t2 values were less than 

0.0005).

5.4. Results

The data of 62 studies were included in this meta-analysis. They were 

published between 1975 and 2001. The smallest and largest studies 

examined 95 and 206,997 blood slides respectively.

Eight studies reported zero mixed slides. To utilise their data in logarithm 

scale, 0.5 was added to all cells.
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Table 5-3: The risk ratio of P. falciparum in P. vivax positive versus P. vivax negative group; 
studies are sorted by their publication year ______________________________________
First author; year Odds Ratio (95%CI) First author; year Odds Ratio (95%CI)

J. H. Cross; 1975/246/ 1.53(0.37-6.41) M. Giboda; 1992/247/ 0.16(0.08-0.33)

M. Mafli; 1975/148/ 4.43(1.31-15.04) R. L. Anthony; 1992/149/ 0.03(0-0.44)

R. Rajagopal;1976[ 150] 1.94(0.12-32.75) Syafruddin; 1992/151/ 0.28(0.16-0.5)

J. H. Cross;1976/152/ 0.43(0.16-1.17) T. Adak; 1994/155/ 1.2(0.26-5.6)

L. L. Smrkovski; 1982/154/ 10.92(3.39-35.2) P. Dutta; 1994/155/ 0.5(0.12-2.02)

J. Cattani; 1983/256/ 0.44(0.05-3.57) S. Rail; 1994/157/ 0.86(0.24-3.1)

J. Hii; 1985/158/ 1.14(0.67-1.94) S. Das; 1994/2 59/ 0.71(0.1-5.09)

J. Hii; 1985/158/ 5.16(1-26.72) Y. Mizushima; 1994/160/ 0.1(0.03-0.34)

M. De Arruda; 1986/162/ 0.22(0.03-1.61) P. Gautret; 1995/162/ 0.84(0.56-1.28)

J. A. Cattani; 1986¡163] * 2.91(0.16-51.4) S. K. Ghosh; 1995/164/ 1.75(0.1-31.35)

B. L. Verma; 1986/2 65/ 0.46(0.4-0.53) R. Dietze; 1995/166/ 0.39(0.22-0.72)

A. E. Beljaev; 1987/167/ 0.15(0.07-0.35) P. Dutta; 1995/168/ 0.54(0.12-2.33)

G. T. Strickland; 1987/169/ 0.3(0.17-0.51) J. Y. Uchida; 1995/170/ 0.16(0.01-2.75)

G. T. Strickland; 1987/169/ 1.17(0.74-1.85) J. B. Sherchand; 1995/171/ 0.3(0.13-0.69)

G. T. Strickland;1987[ 169] 0.6(0.31-1.14) N. G. Das; 1997/2 72/ 0.19(0.17-0.21)

G. T. Strickland; 1988¡ 173] 1.73(1.04-2.86) F. W. Hombhanje; 1997/174/ 0.92(0.85-0.99)

N. Singh; 1989/175/ 0.79(0.57-1.08) V. Y. Belizario; 1997/2 76/ 0.07(0.01-0.56)

N. Singh; 1989[ 175] 0.94(0.75-1.17) V. Y. Belizario; 1997/176/ 9.56(4.5-20.32)

P. Dutta; 1989/177/ 0.13(0.03-0.58) V. Y. Belizario; 1997/2 76/ 2.58(0.35-18.94)

H. Itokawa; 1989/2 78/ 0.97(0.69-1.37) T. Seboxa; 1997/179/ 1.68(0.71-3.98)

S. K. Ghosh; 1989/2 80/ 0.05(0.03-0.07) W. P. Carney; 1977¡ 181] 0.95(0.13-7.04)

P. M. Graves; 1989/182/ 0.1(0.04-0.3) B. Mandal; 1998/183/ 0.02(0.01-0.04)

E. Fox; 1989/241/ 0.16(0.01-2.73) H. Joshi; 1998/184/ 0.14(0.03-0.59)

L. K. Das; 1989/185/ 0.83(0.33-2.07) L. M. A. Camarg; 1999/286/ 0.34(0.08-1.55)

P. Dutta; 1990/187/ 0.24(0.01-4.4) Singh Neeru;2000/188/ 2(0.93-4.31)

P. K. Rajagopal; 1990/2 89/ 0.32(0.04-2.59) S. Hozhabri;2000/190/ 3.49(1.1-11.09)

F. Nosten;1991/191/ 2.75(1.62-4.64) R. K. Mehlotra;2000/2 92/ 0.17(0.11-0.27)

S. Subramanian; 1991/193/ 3.11(1.11-8.72) H. C. Srivastav;2000/194/ 1.36(0.98-1.88)

M. da L. R.
Moitinho; 1991/195/ 0.34(0.19-0.61) J. Pinto;2000¡ 196] 1.24(0.07-22.18)

D. M. Gordon; 1991/2 97/ 0.31(0.15-0.62) M. H. Roper;2000/198/ 0.65(0.24-1.76)

P. Dutta; 1991/199/ 3.09(1.42-6.73) N. Singh;2001/200/ 0.51(0.18-1.39)
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The overall OR was 0.6 (Mantel-Haenszel chi2= 1205.32, df=l, p<0.0001, 

ignoring heterogeneity: 95% Cl: 0.46-0.79); the minimum and maximum 

ORs were 0.02 and 10.9 respectively (Table 5-3). Out of 62 studies, 41 

(66.1%) showed OR less than one; 20 of them (48.8%) were statistically 

significant. Among those studies with OR greater than one, 8 (38.1%) had 

significant p-value.

There were significant associations between the ORs and frequencies of 

Plasmodium spp. Pearson correlation coefficients between the ORs and the 

frequency of P. falciparum, P. vivcuc and all species were -0.33, -0.34 and 

-0.44 respectively (p<0.0001). These results show that the OR had negative 

associations with the frequencies of species i.e., ORs were greater in low 

endemic areas. However, the Pearson correlation coefficient between the 

number of examined slides and the OR was -0.05 (p=0.76). In other words, 

the OR was not influenced by the size of studies.

Potential explanatory variables in these analyses were age group (children 

or mixed), continent, study group (febrile or normal), temporal and spatial 

spans of studies and frequencies of P. falciparum and P. vivax infections 

among examined blood slides.

There were highly significant heterogeneities among the ORs even in 

subsets of studies (Table 5-4). Moment method (Section 5.3) was used to 

quantify the heterogeneity between ORs (t2). The overall t2was 0.91. It was 

even greater than this value in most subsets of studies classified by 

explanatory variables. However, it was considerably lower in studies with 

low P. tdvax frequency, high P. falciparum frequency, in studies with short
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temporal or wide spatial spans and among normal subjects and in studies 

in South America.

The summary OR in South American studies was significantly lower than 

those in other continents. It was 0.21, 0.62 and 1.76 in South America, 

Asia and Africa respectively. Although the difference between the ORs in 

Africa and Asia was considerable, it was not statistically significant.

The summary OR in studies that recruited only children was greater than

that in studies which recruited all age groups (1.28 versus 0.56). The

confidence interval around OR in children was very wide (0.31-6.08) which

was due to a few * available studies (five) and considerable residual

heterogeneity (x2=2.14). Nonetheless, it is compatible with the results of
*

many studies which reported higher risk of mixed infections among children.

The summary OR of studies in normal subjects was around twice of that in 

febrile subjects (0.9 versus 0.35; p=0.04). In other words, the risk of mixed 

infection in febrile subjects was less than that normal subject.

There were not any obvious trends in the summary ORs classified by 

temporal and spatial size of study. The maximum ORs were observed in 

middle size studies; ORs were lower in long studies (one year or longer: 0.39) 

or studies in wide areas (larger than a district: 0.49).

Lower summary ORs were observed in studies with higher frequencies of 

infections. The OR in studies with frequency of infection 30% or more was

O. 32 (95% Cl: 0.22-0.47); while the corresponding OR in studies with 

frequency less than 15% was 2.51 (95% Cl: 1.66-3.8). Similar descending 

trends in the ORs were observed classified by the frequencies of

P. falciparum and P. vivax infections.
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Lower summary OR in South American studies may be explained by the 

higher P. vivax frequencies. The average of P. vivax frequency in South 

American studies was 20.2% (SD=10.6); the corresponding values in African 

and Asian studies were 6.7 (SD=7.3) and 6.5 (SD=4.7) respectively. 

Therefore, lower ORs in South America may be explained by negative 

association between the frequency of P. vivax infection and the OR.

The difference between summary ORs in febrile and normal subjects can 

also be explained by differences in the frequencies of Plasmodium spp. The 

average of frequencies of infections in febrile and normal subjects were 

30.2% (SD=19.7) and 21.0% (SD=13.5) respectively. Most of this difference 

was due to the difference in the frequencies of P. falciparum infection 

(22.7% versus 15.1%).

Furthermore, the frequencies of infections in studies among children was 

lower than those in mixed age group studies (7.9%, SD=5.7 versus 19.2%, 

SD=15.6). Therefore, the greater summary OR in the former group can be 

due to the lower frequencies of infections.

Based on the above findings, it seems that the frequencies of infections are 

the only main explanatory variables in describing the patterns of the ORs in 

subsets of studies.
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Table 5-4: The odds ratio of P. vivax as risk factor of P. falciparum classified by continent, 
age group, study subjects, temporal and spatial span and the frequencies of species among 
examined slides
Subgroup (number of studies) Odds ratio 

(95%CI)
P-value of 

heterogeneity
Tau

square
C on tin en t

A s ia  (52) 0 .6 2 (0 .4 6 -0 .8 3 ) <0 .0001 0.8
S o u th  A m erica  (6) 0 .2 1 (0 .1 6 -0 .2 6 ) 0 .0 0 1 3 0 .59
A frica (4 ) 1 .76 (0 .47 -6 .6 ) <0 .0001 1.68

A ge  g ro u p
C h ild ren (5 ) 1 .38 (0 .31 -6 .08 ) <0 .0001 2 .14
M ixed (57 ) 0 .5 6 (0 .4 3 -0 .7 5 ) <0 .0001 0 .82

S u b jec ts
N o rm a l(3 6 ) 0 .9 (0 .6 5 -1 .2 4 ) <0 .0001 0 .68
Febrile (26 ) 0 .3 5 (0 .2 1 -0 .5 8 ) <0 .0001 1.33

S p a tia l s p a n
A  few  v illages (36 ) 0 .5 (0 .3 3 -0 .7 5 ) <0 .0001 1.14
D istrict! 16) 0 .9 9 (0 .5 9 1 -1 .6 3 ) <0 .0001 0 .73
L a rge r  th an  a  d istrict! 10) 0 .4 9 (0 .3 -0 .8 2 ) <0 .0001 0 .43

T em p o ra l S p a n
M on th (26 ) 0 .8 1 (0 .5 6 -1 .1 7 ) <0 .0001 0 .55
S easo n ! 12) 0 .9 7 (0 .5 2 -1 .7 9 ) <0 .0001 0 .66
Y e a r  o r  longer(24 ) 0 .3 9 (0 .2 6 -0 .6 ) <0 .0001 0 .88

P. falciparum r isk  (% )
<10 (23 ) 1 .06 (0 .54 -2 .1 ) <0 .0001 5 .15
10 -14 .99 (10 ) 0 .7 5 (0 .4 2 -1 .3 5 ) <0 .0001 0 .6
= 15(29) 0 .4 (0 .2 8 -0 .5 7 ) <0 .0001 0 .77

P. vivax r isk  (% )
<5 (27 ) 1 .43 (0 .98 -2 .1 ) <0 .0001 0.5
5 -9 .9 9 (1 8 ) 0 .4 9 (0 .3 2 -0 .7 5 ) <0 .0001 0 .6
= 10(17) 0 .2 5 (0 .1 3 -0 .5 ) <0 .0001 1.72

B o th  spec ies  r isk  (% )
<15 (18 ) 2 .5 1 (1 .6 6 -3 .8 ) 0 .0021 0 .36
15 -29 .99 (22 ) 0 .5 (0 .3 6 -0 .7 ) <0 .0001 0 .37
=30 (22 ) 0 .3 2 (0 .2 2 -0 .4 7 ) <0 .0001 0.62

A ll s tu d ies  (62) 0 .6 (0 .4 6 -0 .8 ) <0 .0001 0.91
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.00167 1 100Odds ratio

Figure 5-1: Forest plot of the OR between P. vivax and P. falciparum using random effect 
model to estimate the confidence interval around the summary OR (diamond figure)

The results of regression models show that only P. falciparum and P. vivax 

frequencies explained some part of the residual heterogeneity (Table 5-5). 

Although in these models temporal span of studies showed negative 

association with the OR (p<0.03), it did not change the x2 considerably 

(model with the frequency of all species: x2= 0.73, model with both the 

frequency of all species and temporal span of studies: x2=0.72). None of the 

other potential explanatory variables were significant and they mostly 

inflated x2 (0.91 versus 1.18). However, both P. falciparum and P. vivax 

frequencies dropped x2; accounting for their joint effects, x2 was 0.73. 

Therefore, it seems that the frequencies of infections were the only
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important predictor on the risk of mixed infection which explained a 

considerable part of residual variations (more explanation in Section 5.5.6).

Compatible with the pattern of ORs in subsets (Table 5-4), the modelling 

results show that the OR was greater in studies with low frequency of 

infection. Also, there were a negative association between the temporal span 

of studies and the OR between P. falciparum and P. vivax.

Table 5-5: Impacts of potential explanatory variables on the residual heterogeneities between 
the ORs

Subgroup Main finding Tau
square

M o d e l 1 : no  exp lan a to ry  va riab le  

O R 0 .6 (0 .4 6 -0 .8 ) 0.91

M odel2 : exp lan a to ry  v a r ia b le s  w e re  age  

g ro u p , su b je c ts  (febrile  or n o rm a l), spatia l 
a n d  tem pora l s p a n  o f  s tu d ies  a n d  continen t

on ly  fever a n d  age  g ro u p  
w ere  sign ifican t

1.18

M ode l3 : exp lan a to ry  v a r ia b le s  w e re  the 

v a r ia b le s  in  m ode l 2 a n d  the frequenc ies  o f  
P. falciparum a n d  P. vivax

O n ly  the frequ en c ies  o f  
P. falciparum a n d  

P. vivax a n d  tem p ora l 
s p a n  o f  s tu d ie s  h a d  
sign ifican t p -v a lu e ; a ll o f  
them  h a d  negative  
asso c ia tio n s

0 .96

M odel4 : ex p lan a to ry  v a r ia b le s  w e re  on ly  the  

frequ en c ies  P. falciparum a n d  P. vivax a n d  

tem pora l s p a n  o f  s tu d ies

B o th  P. falciparum a n d  
P. vivax h a d  s ign ifican t  

p -v a lu e

0 .77

M ode l5 : the on ly  ex p lan a to ry  va r ia b le  w a s  
the frequ en c ies  o f  a ll spec ies  (a ll Plasmodium 
spec ies  con s id e red  together) a n d  tem pora l 
sp a n  o f  s tu d ies

B o th  v a r ia b le s  h ad  
s ign ifican t negative  

asso c ia tio n s

0.72
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5.5. Discussion

This section reviews the main findings and then explains the differences 

between summary ORs. It also compares the meta-analysis results with 

others’ findings.

This systematic literature review only included published papers. 

Estimation of the mixed infections frequency was not the main objective of 

almost all of the eligible papers. Therefore, there is not a convincing reason 

to believe that the chance of their publications had any correlation with 

mixed infections frequencies. Based on this reason, it can be expected for 

that publication bias not to be an important issue in this meta-analysis.

4

5.5.1. Description of main findings

The systematic review of the literature found 62 eligible studies between 

1975 and 2001. Surveillance data were not included in this meta-analysis 

to minimise the possible error of misclassification of mixed infections, 

because research studies usually examine blood slides more accurately.

The OR of P. irivcuc and P. falciparum infection was computed based on the 

data from these studies. The OR varied over a wide range from 0.02 to 10.9. 

The summary OR was 0.6 (random effect 95% Cl: 0.46-0.79). It means that 

in overall, one species infection decreases the risk of the other species.

The ORs in studies that recruited children or subjects without fever were 

greater. Also, the summary OR of studies from South America was 

significantly lower than those in studies from Asia or Africa. However, these
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differences could be explained based on the differences in the frequencies of 

infections.

The above explanation was also supported with the meta-regression results 

(Table 5-5). Both age group of subjects and presence of fever were 

significant (model 2) but their significance disappeared by adding the 

frequencies of P. falciparum and P. vivax (model 3).

In addition, the modelling shows that a considerable part of the 

heterogeneity between ORs can be explained by the frequencies of 

Plasmodium spp among the examined blood slides. The residual 

heterogeneity between ORs of all studies was 0.91; having taking into 

account of the frequency of all infections, it dropped to 0.72. Also, the
t

temporal span of studies had significant negative association with the OR, 

but it did not change Tau-square considerably. None of the other potential 

explanatory variables were significant and they mostly inflated Tau-square.

5.5.2. Interaction between P la s m o d iu m  spp

Sections 4.3 and 4.4 explain the possible explanations for the positive and 

negative interactions between Plasmodium spp. The following sections relate 

these explanations with the main results of the meta-analysis.

5.5.3. Temporal and spatial span of studies

High risk group for one species may not have high infection risk for the 

other species simultaneously. Therefore, discrepancies between temporal
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and spatial variations of Plasmodium spp risks are one of the possible 

explanations for negative interaction between species.

It might be expected that the discrepancies to be greater in larger studies 

which observed people in longer period or wider area.

This meta-analysis checked the effect of temporal and spatial spans of 

studies. No trend in ORs was observed based on the spatial span of studies. 

However, temporal span had a negative association. It means that generally, 

the OR is longer studies were smaller.

Therefore, it may imply that the spatial span of studies is not accurate 

measures of the discrepancies in infection risks. However, the temporal 

span of studies play a role on the observe interaction between species.

5.5.4. Geographical location

Most of the included studies were from Asian countries. This is because 

P. vivax is generally common and many studies have been carried out to 

assess the epidemiology of P. vivax in this continent.

Howard et al. (2001) assessed the risk of infections with multiple parasite 

species and a log-linear method was presented for analysing data from 

multiple communities and testing whether the associations in different 

communities were equal [125]. He did not systematically review of the 

literature and assessed the associations between many parasitic infections. 

He reported largely negative associations between Plasmodium spp in Asian 

countries, however, positive associations were found in Tanzania, Papua 

New Guinea and the USA [125].
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The geographical pattern of association in this meta-analysis was not 

compatible with Howard’s findings. It seems that geographical location is 

not an independent factor; the results of this meta-analysis show that lower 

OR in South American studies may be due to higher frequency of infections.

Therefore, the differences between Howard’s findings and the results of this 

meta-analysis could be only due to the differences in the frequencies of 

infections in the recruited studies.

5.5.5. Effect of fever and age

The crude ORs in febrile subjects were less them those in normal subjects. 

Acquired immunity against,malaria has negative correlation with fever [80- 

83]. Therefore, it may be implied that mixed infection was less common in 

those who had not acquired immunity.

The above conclusion is not compatible with the differences between crude 

ORs in studies that recruited children and mixed age groups. Children 

usually have less immunity while their summary OR was higher and this 

showed that the risk of mixed infection in the young age group was higher. 

This finding is also supported with the results of many other studies.

This contradiction may be explained by the fact that this is a meta-analysis 

and it assessed the risk of mixed infections in studies not individuals. 

Therefore, it should be paid enough attention to some confounding factors 

such as the frequency of infections.

In the regression models, the frequencies of infections were the only 

significant variables and explained a considerable part of the residual
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heterogeneity. Having taken into account of the frequencies, the effects of 

both variables were not significant (Table 5-5).

There were also clear differences between the frequencies of infections in 

subsets of studies which recruited in febrile and normal subjects, and 

studies which surveyed children and all age groups. The OR was lower in 

studies with high infection frequencies and the effects of age and fever could 

be explained based on the differences in frequencies of infections.

5.5.6. Frequencies of infections

Higher frequency of infection in blood slides particularly in normal subjects 

was correlated with the prevalence (or incidence) of infections. Therefore, it 

can be implied that the interaction is negatively correlated with the risk of 

infections in the population.

McKenzie and Bossert (1997) showed that high overall prevalence of 

infection is associated with significant deficits of dual infections based on 

the product of individual species prevalences ¡126], He explained this 

finding based on biological interactions between species but He did not 

discuss about any specific pathways.

Some of findings in McKenzie’s study was similar to the findings in this 

meta-analysis although this analysis was based on OR not the product of 

prevalences, i.e., risk ratio. In addition, this analysis assesses the effects of 

temporal and spatial span of studies and other possible explanatory 

variables.
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Regarding to the possible explanation between the interaction and the 

frequencies of species, the differences between group and individual data 

should be noted. Both of these two studies checked the associations in 

group data. Although, it is not possible to rule out the possible effects of 

biological interactions, it should be taking into account the other possible 

confounder factors which may distort relationships in group data (cross 

level confounding effect).

One of these possible variables might be the heterogeneity in infection risks 

in a population. Chapter 6 illustrated the positive impact of heterogeneity 

on the interaction between species. However, it is very difficult to measure 

the heterogeneities in infection risks within populations even in 

epidemiological studies. Therefore, there are not any explicit data to 

quantify its association with the infection prevalences.

The acquired immunity is an alternative rational explanation. In highly 

endemic area people usually have stronger immunity which may protect 

them against mixed infections.

5.5.7. Final conclusion

The overall OR between P. vivax as risk factor of P. falciparum was less 

than one and shows negative interaction between these two species.

It seems that the prevalence of infections in the populations has negative 

association with the OR and decreases the residual heterogeneity between 

studies ORs. This negative association may be due to either biological 

interaction between species [126] or the effect of heterogeneity in exposure 

risks among the population which may confound the analysis of group data.
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The crude effects of other factors such as age group, continent and 

presence of fever can be explained by the frequency of infections.

It was also shown that the temporal span of studies had negative 

association with the interaction between species. Therefore, some part of 

negative associations in long studies may be explained based on the 

discrepancies between the temporal variations of species.
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CHAPTER 6

6. Modelling the heterogeneity effect

In this chapter, the effect of heterogeneity in infection risks on the overall 

interaction between species is assessed. The possible explanations of the 

positive interactions between species are discussed. A number of models 

which assess the impact of the heterogeneity in infection risks on the 

interaction between species are then presented.

6.1. Definition of the infection risk heterogeneity

Positive associations between species mean that a subgroup of people, in 

terms of time or space, has higher infection risks for all species, i.e., 

heterogeneity in infection risks within the population. For example, suppose 

that children get infections more than adults. Then children could be a 

subgroup which ‘has higher infection risks for all species’ because they 

have higher risk than adults. However, within children, there may be no 

species interaction (i.e., there may be sampling independence). So at the 

population level there might appear to be an interaction, which would 

disappear on stratifying by age. In this thesis the above explanation is 

called “heterogeneity hypothesis”.
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Section 4.3 presents two main explanations of the positive associations 

between species, similarity in transmission routes and higher susceptibility 

of a subgroup of people, which are not mutually exclusive.

These two explanations can be easily linked to the heterogeneity hypothesis. 

The first explanation, similarity in transmission route, describes the 

heterogeneity in exposure risks; i.e., a subgroup of people has higher 

exposure risks to all species, and the second explanation describes the 

heterogeneity in susceptibility, i.e., a subgroup of people is more susceptible 

to infections by all species. Both of the heterogeneities in exposure risks 

and susceptibilities reflect different aspects of the heterogeneity in infection 

risks.
0

6.2. Confounding effect of the heterogeneity

A confounder is a variable which distorts the observed association between 

two variables. In other words, a confounder decreases or increases the 

magnitude of the observed association between explanatory and outcome 

variables.

A confounder must have independent associations with both explanatory 

and outcome variables and not be on the causal pathway.
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Explanatory variable Outcome variable

^onfounder'

Figure 6-1: Schematic relationship between the confounder, explanatory and outcome 
variables

The individual infection risks can be considered as a confounder on the 

interaction between species if it varies within population. Considering one 

species, e.g. P. falciparum, as a risk factor for other species, the infection 

risk has positive associations with both P. falciparum (explanatory variable) 

and the other species (outcome variables). Therefore, a crude analysis in the 

whole population might show positive associations artificially, i.e., OR 

greater than one, as the result of the confounding effect of the heterogeneity 

in infection risks.

Figure 6-2 is a schematic diagram which illustrates the mechanism of the 

heterogeneity effect on the crude OR. It divides population into high and low 

risk groups. The ORs between species in both subgroups are one, meaning 

no association between species in the subgroups. However, the overall OR is 

more than one, due to the confounding effect of the heterogeneity in 

infection risks.
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Figure 6-2: Schematic diagram illustrating the confounding effect of the heterogeneity in 
infection risks on the crude association between species
(0, 1, 2, and 3 represent no infection; infection with species number one; species number 2; 
and mixed infection respectively)
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Nevertheless, based on the above suggestion, a positive association should 

exist between the risks of all infections; i.e., the high-risk people should be 

prone to all types of Plasmodium spp infections.

Strong positive associations between species were reported as high as OR 

around ten (Table 5-3). The following section assesses if heterogeneity in 

infection risks can, by itself, explain these very strong positive associations.

6.3. Heterogeneity models

6.3.1. Description

This section models the impact of heterogeneity in infection risks among 

people on the overall OR, and assesses whether the heterogeneity on its 

own can explain ORs as high as those observed in some of the studies in 

the meta-analysis chapter (Table 5-3).

Simple models were created using Microsoft Excel 2000. The models 

assumed that the population consisted of two layers, low and high-risk 

groups, with no real associations between infections in each layer (stratum 

specific OR=l).

In the main models, the infection prevalences in the low-risk group were set 

to 0.17 and 0.06 (the minimum frequency of P. falciparum and P. malariae 

infections among villages and age groups in the Garki data, see next 

chapter). Nonetheless, the model sensitivity to these frequencies was 

assessed.
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The infection frequencies in high-risk group were computed as the product 

of uk ” (i= 1, 2 for the first and second species respectively) and infection 

frequencies in low-risk group. In other words, h  was the risk ratio of 

infection i in high-risk versus low-risk groups, and varied between one up to 

its maximum valid values of 5.9 and 16.6 for the first and second infections 

respectively (the maximum risk of infections in the high-risk group could 

not be more than one; therefore, k j=l/0.17=5.88 and k2=l/0.06=16.6). The 

model simulated the effects of k,, and the ratio between the numbers of 

people in the high and low risk groups, (m=Nl/NO\ on the overall OR.

6.3.2. Model structures
§

ki indicates the ratio of infection risk in high versus low risk group (i= l and 

2 stands for species one and two). Also, subscript j  stands for risk group, 

j=0  and 1 show low and high risk groups.

The following table shows the numbers of positives and negatives in group j  

for species one and two.

Table 6-1: Cross tabulation between species one and two

species two 
species one

+ - Total

+ A.j B.j N»
- Cj Dj N.j-Nij

Total N2i N.rN2i *-J
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Assuming N.i =N.2, i.e., equal size of low and high risk groups, it could write

Ni2=Nu . fa

In other words, the number of infected people by species i in high risk group 

is the product of the corresponding infected people in low risk group and its 

risk ratio.

OR.o and OR. j are the odds ratios between two species in the low and high 

risk groups, which are. one based on the independence assumption.

OR.« is the odds ratio between two species in the whole population, and it
t

would be estimated by OR.o, OR.i and fa­

in the low risk group (/=0):

A. o-Nio-B.o 

D,o=N, 0-N20-BJ 

C.0—N20-N: o+B.j 

and

OR.o=l

[(Nw-B.o) . (N.0-N20-B.0)]/ [B.o . (N20-N10+B.0)] = 1

(N10-B.0) • (N.0-N20-B.0) — B,o. (Nso-Nw+B.o)

Hence:

B. o = (NwN.o-NwNso) / N.o 

A.o = (Ni0N20) / N.o

C. o = (N.0P20-P10P20) / No

D. o = [(N.o-Pio) . (N.0-P20)]/ No
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Having assumed ki=k^k  and N.o=N.i

Nn=k. Nio 

N2i=k. N20 

Hence:

B.i = (NwN, k -N10N20 k) /  Nj 

A.i = (N10N2 0 k) /  N.i 

Ci = (N.1N20k-N10N2o k) /N.i 

D.i = [(N.i-Ni0k)*(N. 1-N20 k)]/ N.i

In the whole population
*

At = A.0+A.1 = [(N10N20) / N.t]+ [(N10N20RR2) / N,]

Bt = B.0+B.1 = [(Nio N.rNwN2o) /  N t]+ [(Nio Ntk-NioN20k) /  N.t]

Ct = C.0+C.1 = [(N.tN20k-Ni 0N20k) /  N.t]+ [(N.tN2o-NwN20) /  N.t]

Dt = D.0+D.1 = [[(N.t-Nw) ■ (NrN20)]/ N t]+ [[(N.t-Niok) . ( N t-N20k)]/ N.t]

Hence:

OR., =
IN )  + N lN 2(\ + k ) - ( N A + N 2 )(1 + N, ,N ,)

N aN 2 ( - N ,  (k + ! ) ( * , * , ) )  + N , (1 + k)2 + N {N 2 (l + k )2

The above formula is too complicate to illustrate the relationships of ORt 

with k and the ratio of N.1/N.2.Therefore, more explanation is presented 

based on the following graphs.
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6.3.3. Results

There is an exponential relationship between the overall OR and the 

heterogeneity in the whole population. Figure 6-3 plots the effect of ki and 

k2 on the overall OR in the whole population. In this graph, ki and foare 

varying between one, up to their maximum possible values (5.8 and 16.6 for 

ki and respectively). The model also assumed that the low and high risk 

group populations are equal in size; i.e., their ratio (m) is one. The overall 

OR is very close to one when fa is less than three; while, it increases steeply 

when fa is greater than five. It implies that the confounding effect of the 

heterogeneity is considerable when the ratio of the risks of infections in low 

and high risk groups is substantial.

The overall OR is much greater (around 100) if the model allows that ki and 

k2 take their maximum values. In other words, if the maximum values for ki 

and k2 are estimated independently based on the prevalences of two species 

in the low risk group, the overall OR will increase by greatly.
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Figure 6-3: The effect of the heterogeneity in exposure risks (k j and k2 in x and y axes 
respectively) on the overall OR (z axis)

The overall OR is not so sensitive to the ratio of populations in high versus 

low risk groups (m). Figure 6-4 shows the relationship between the 

maximum overall odds ratio and m. The graph peak is at m equal one. 

However the overall OR is greater than four when m is around 0.2 and 

greater than five when m is around five. Hence, the confounding effect of the 

heterogeneity is considerable and its impact is not so sensitive to the ratio 

of high and low risk populations in a wide range of m between 0.2 and 5.
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Figure 6-4: The effect of the ratio of populations in high and low risk groups (x axis) on the 
maximum overall OR (y axis)

In addition, the maximum possible OR is observed when the species 

prevalences are equal. In addition, there is a negative association between 

the species prevalences in the low risk group and the maximum possible OR. 

In other words, the possible maximum OR is greater when the prevalences 

are lower. That is, the lower the prevalence in the low risk group the greater 

the maximum possible heterogeneity in infection risks (i.e., the ratio 

between 100% prevalence in the high risk group, and the prevalence in the 

low risk group). Hence, the maximum possible heterogeneity in infection 

risks between low and high risk groups decreases when the prevalences in 

the lower risk group increases.

6.4. Discussion

Very strong positive associations between species have been reported in 

some epidemiological studies (Table 5-3). The models in this chapter
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assessed whether the proposed reasons in Section 6.2 can explain these 

very strong positive associations.

It was explained how heterogeneity in infection risk can confound the 

association between species. In addition, its confounding effect has been 

quantified in simple models.

The degree of heterogeneity, the prevalences of infections in the low risk

group, and the size of the low and high risk groups affect the confounding

effect. The models illustrated that the confounding effect was not

considerable when the heterogeneity in infection risk is low; i.e., the ratio of

infection risk in high versus low risk group was less than three. However,

the confounding effect rose exponentially if the heterogeneity increased and
0

theoretically it could inflate the OR up to one hundred.

Nonetheless, the confounding effect of the heterogeneity was relatively 

robust to the population sizes in low and high risk groups. In other words, 

the confounding effect was substantial in a wide range of the ratio between 

population sizes of the high and low risk groups.

The confounding effect was reduced when the prevalences in the low risk 

group increased. The negative association was solely due to the effect of 

prevalences in low risk group on the maximum possible heterogeneity. 

Since the maximum prevalence in high risk group was one, by increasing 

the prevalences in low risk groups, the ratio of prevalences in low and high 

risk groups; i.e., the heterogeneity in infection risks, decreased.

In conclusion, based upon the model results, it can be implied that merely 

the heterogeneity in infection risks could explain the observed strong 

positive relationship between species in some epidemiological studies.
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Therefore, there is not necessarily any need to explain the positive 

associations based on more complicated biological pathways within the 

human body such as the role of mixed infections on the risk of symptoms, 

or the degree and duration of parasitaemia. It should be added that most of 

the findings in molecular or even epidemiological studies do not support 

these pathways.

6.5. Limitations

This model divides the population into two groups, which may not be an 

appropriate assumption, as the infection risks have a continuum from zero 

up to one within a population. However, for the purpose of this analysis, it 

seems reasonable to believe that heterogeneity in infection risks might 

explain observed ORs as great as ten which has been reported in some of 

epidemiological studies.
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CHAPTER 7

7. Interaction between species in the Garki data

7.1. Introduction

This chapter explores the interactions between Plasmodium species in the 

Garki data [129], and* seeks to explain the differences that are commonly 

found between the findings of cross-sectional and longitudinal studies
t

(Section 7.4).

Cross-sectional and longitudinal studies report disparate findings on the 

frequencies of mixed species infections. Most prevalence surveys find fewer 

mixed-species infections than would be expected based on the product of 

the frequencies of individual species. This suggests that one parasite may 

be excluding another or suppressing the secondary species’ parasitaemia to 

undetectable levels [6,133]. In contrast, only a few longitudinal studies have 

explored this issue. Nevertheless, a longitudinal study conducted by Bruce 

et al. (2000) reported that the frequency of mixed infection was very close to 

the number that would be expected assuming no species interaction was 

occurring [134].

Based on these seeming contradictions, the differences between cross- 

sectional and longitudinal analysis must be assessed more extensively to 

explain these findings and test hypotheses more appropriately.
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The Garki data is an extremely large, well established malarial dataset from 

Nigeria (Section 7.4) and even today, remains one of the best sources to 

study many aspects of malaria. Up until now, the published results of the 

Garki data had not thoroughly explored the interactions between 

Plasmodium species, and that too had only approached this issue cross- 

sectionally using very simple methods. Exploring the Garki data both cross- 

sectionally and longitudinally and assessing the effects of seasonality, age 

and other important variables may clarify if study design provides differing 

results about species interaction, and provide more evidence about any 

possible patterns of these interactions.

This chapter explores different aspects of the interaction between
#

Plasmodium species using an extensive, well-established repository of 

malaria data, the Garki project. It explains the findings based on short and 

long term acquired anti-parasite immunity, cross-immunity and the 

suppression effect of one Plasmodium species on the blood density of 

another species. In this study, short-term effects are any effects which 

protect subjects for months to at maximum a few years; while long-term 

effects may protect individuals for decades or even an entire lifetime. Cross­

immunity is acquired protection against one species through contracting an 

infection from another species. The suppression effect may be mediated by 

competition for host cells or nutrients, or by heterologous immunity (more 

details in Section 7.7.6).
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7.2. Prospectus

This chapter describes the study area and project phases of the original 

Garki project. In order to further explore the interactions between 

Plasmodium spp, the Garki data were analysed with two approaches:

1. Cross-sectionally, where the presence of P. falciparum in each survey 

was considered as a risk factor for the presence of the other species 

in the same survey (Section 7.6.2), and the odds ratios (ORs) between 

P. falciparum and other Plasmodium spp were computed. The effects 

of age, season and locations were assessed. Since most of the papers 

based on cross-sectional data have explored the associations between 

species with the same approach, the results of this section could be 

expected to be comparable with their findings.

2. Longitudinally, where the probabilities of positive slides for 

P. malariae or P. ovale were evaluated based on the presence of 

P. falciparum in previous surveys (Section 7.6.3). Furthermore, the 

effects of P. falciparum on the daily acquisition and clearance rates 

of the other Plasmodium spp were explored.

Although the longitudinal approach may be more appropriate to address

certain research questions, comparing the results of these two approaches

helps explain at least some differences between the results of cross-

sectional and longitudinal studies (Section 7.7.3). In addition, the

combination of cross-sectional and longitudinal results may help explain in

a more comprehensive manner both the short and long-term suppressive

effects as well as the acquired immunity between Plasmodium spp (Section
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7.7.4). Sections 7.6.2 and 7.6.3 present the results of the cross-sectional 

and longitudinal analyses, respectively; and their differences are discussed 

in Section 7.7.3.

7.3. Objective

The objective of this part of the thesis is to measure the associations 

between P. falciparum-P. malariae and P. falciparum-ovale; assess the 

effects of repeated infections (i.e., within subject clustering), age, spatial 

and temporal distribution of individual species on their interactions; and 

explore the source of associations.

7.4. The original Garki project

The Garki project was one of the largest epidemiological studies on malaria,

with data comprised from more than 12,000 people in 23 rounds of

treatment. It was conducted in a highly endemic area in northern Nigeria

from 1969 to 1976 by co-operation between the World Health Organisation

(WHO) and the Nigerian government. This following information is primarily

derived from the definitive book by Molineaux and Gramiccia on the Garki ^

*
project entitled, The Garki Project, research on the epidemiology and »

control of malaria in the Sudan Savanna of west Africa’ [129].
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7.4.1. Research area

The Garki project research site was situated 500m above sea level and was 

arid, with one river and no permanent still surface water. The area is 

considered part of the tropical continental region due to its wide annual and 

diurnal temperature ranges and restricted rainfall (250-1000 mm per year). 

The yearly maximum temperature proceeded the rainy season (around 40°C) 

in March or April, and a secondary peak of high temperature occurred at its 

end, in October. There were three seasons: dry cool (November-February), 

dry hot (March-May) and wet (June-October). In the wet season, the 

research site had temporary collections of water and marshes of various 

sizes, but these water sources completely dried up in the latter part of the 

dry season.

The population density of the Garki project area was relatively high. Most 

residents of the area lived a sedentary life and were farmers; a small group 

of the population were nomadic herdsmen.

7.4.2. Framework of the original Garki Project

The Garki project had the following objectives: J
i

1. Study the epidemiology of malaria - primarily though measurement 

of entomological, parasitological and sero-immunological variables

and examining their relationships.
i

214



2. Measure the effect of specific interventions - an insecticide (propoxur) 

was used with or without mass drug administration, at two time 

intervals with different combinations of sulfalene and pyrimethamine.

3. Construct a mathematical model for malarial transmission - this was 

developed to link entomological and parasitological variables, 

particularly Vectorial capacity and the prevalence of P. falciparum. 

Also, it could predict the effect of changes in entomology on parasite 

density, as well as the effect of mass drug administration schemes 

[201] .

To achieve its objectives, thiŝ  project had four successive phases, as follows:

1. Preparatory phase (September 1969 to September 1970). The 

research protocol was written, the study area was selected, the 

required forms were developed and the data collection methods were 

checked.

2. Baseline phase (October 1970 to March 1972; i.e., two dry and one 

wet seasons). Baseline entomological, parasitological, immunological 

and meteorological data were collected.

3. Intervention phase (April 1972-October 1973; i.e., two wet and one 

dry seasons). Epidemiological data were collected in both intervention 

and control clusters of villages.

4. Post-intervention phase (November 1973-February 1976). Fever 

cases received active and passive drug administration in some of the 

villages covered by the mass drug administration programme of the
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intervention phase (selective drug administration). Epidemiological 

data collection was continued in nearly all the villages, most of which 

had interventions as well as one cluster of untreated control villages.

Regarding the interventions, villages in three concentric areas were treated 

with one of the following three control strategies (Figure 7-1): insecticide 

(Area B), insecticide with a low frequency of mass drug administration (Area 

A2) and insecticide with a high frequency of drug administration (Area A l); 

each intervention was given in the largest, middle size and smallest areas, 

respectively [129]. Table 7-1 provides information on the number of villages, 

population within each village, and surface area of each intervention area.
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Area B

Residual spraying with the 
carbamate insecticide, 
propoxur. 3 or 4 rounds at 
intervals of 2 months before 
or during each of 2 
transmission seasons 
(1972,1973)

Area A2
Residual spraying, plus mass 
drug adminstration (MDA) of 
suifaiene-pyrimethamine 
every 10 weeks

Residual spraying plus mass 
Imcy adminstration (MDA) of 
lulfalene-pyrimethamine 
ve ry  2 weeks

9  k m

Figure 7-1 Study design of Garki project: the black circles show villages; the four outside the 
shaded (intervention) area are the control villages without any interventions (the Molineaux 
and Gramiccia book, page 24)

Table 7-1: Numbers of villages, population and surface in areas treated by the 3 different 
control strategies (the Molineaux and Gramiccia book, page 28)________________________
A rea T rea tm en t N u m ber o f 

v illages
Popu la tion . S u rface  

k m 2
Period  o f 

observa tion

B In sec tic id e1 a lone 104 32 ,858 550 1970-73

A2
In sec tic id e  + low  
frequ en cy  M D A 2

54 14,129 350 1970-76

A l
In sec tic id e  + 

h igh -frequ en cy  
M D A 3

6 1,810 12 1970-73

1 Propoxur
2 Propoxur + MDA every 10 weeks in 1972-3, chloroquine to self-reporting fever cases in
1974-5
3 Propoxur + MDA every 2 weeks wet season and every 10 weeks in dry seasons in 1972-3, 
chloroquine below 10 years of age every 5 weeks, in wet season in 19 74, chloroquine to self- 
reporting fever cases in 19 74-75
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7.4.3. Data collection method

Demographic and parasitological data were collected in 23 surveys. These 

surveys covered the total population of selected village clusters, and were 

administered every 10 weeks from 1970-73; some intervals between data 

collection between 1974 and 76 were longer than 10 weeks.

At each survey, a thick blood film was collected and examined for the 

presence of Plasmodium spp in 200 microscopic fields. The numbers of 

fields that were positive for P. falciparum asexual and gametocyte forms; 

P. malariae and P. ovale were recorded.

7.5. Data manipulation and analysis

The full data set from the Garki project was received by the Swiss Tropical 

Institute, Department of Public Health & Epidemiology, in “dbf” format. The 

file contained 138,197 records of 12,849 subjects in 23 surveys, with each 

record containing around 50 fields. The main variables of interest for this 

analysis were the parasitological findings, age, data collection date, and 

location of each subject in the dataset. Some data related to the non­

intervention groups were selected from the full dataset to address the 

objectives of this chapter (Section 7.6.1).
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7.5.1. The cross-sectional analysis

Section 7.6.2 discusses the associations between species in each survey; 

the ORs were estimated by logistic regression. Since the quadrature 

assumptions of the accuracy of the numerical integration were met, the 

random effects model was used to adjust the confidence intervals for the 

effects of repeated measurements [202], In these analyses, P. malariae and 

P. ovale were treated as dependent variables and the main effects and 

interactions of P. falciparum, age, location, season and P. falciparum 

density were assessed. Since this analysis is cross-sectional, the stratum 

specific ORs (for age and season) of simple cross-tabulation for 

P. falciparum as risk factor for other species can be interpreted the other 

way around, treating the other species as risk factors for P. falciparum.

7.5.2. The longitudinal analysis

Data were manipulated using SQL (Structured Query Language); the 

queries were written and run in Microsoft Access. In the new format, the 

parasitological findings of each subject in two consecutive surveys were 

treated as a record. Hence, some survey data were occurred twice, once as 

the endpoint of an inter-survey period, and again as the baseline of the 

following period.

For the purpose of this analysis, only records with both surveys outside the 

intervention period were included. Nevertheless, the statistical approach 

was similar to the cross-sectional analysis. In most of the analyses, a 

single-species infection at the beginning of the initial survey was counted as 

the risk factor for single or mixed species at the following one. Mixed
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infected slides in the initial survey were excluded from the analyses. 

(Section 7.6.3)

In the next step, for each species, transition frequencies between 

consecutive surveys were determined, i.e., the numbers N++, N+-, N-+ and 

N—; where N++ is the number of persons positive at both surveys, N+- the 

number positive at the first survey and negative at the second one, etc. 

From these transition frequencies, daily rates of transitions between 

negative and positive states were derived [203] (Appendix 2).

Daily transitional rates were computed in Microsoft Excel. SPSS 10 was 

used for data cleaning’ and creating new variables, and statistical analyses 

were done using Stata7.

7.6. Results

The results are presented in Section 7.6.1, from the parasitological findings 

of the whole dataset to addressing the differing effects of the interventions 

on the Plasmodium spp interactions. Section 7.6.1.1 describes the data from 

the non-intervention subsets who were eligible for cross-sectional and the 

longitudinal analysis. The spatial and temporal variations of species are 

compared in Sections 7.6.1.2 and 7.6.1.3, respectively. Section 7.6.2 

illustrates the results of the cross-sectional approach (i.e., the associations 

between P. falciparum with P. malariae and P. ovale in the same survey) 

and discusses the effects of repeated observations, age and P. falciparum 

density on species interactions (Sections 7.6.2.5 and 7.6.2.8) and their 

temporal and spatial variations (Sections 7.6.2.3 and 7.6.2.4). Finally, the
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results of longitudinal analysis (i.e., the effect of P. falciparum in each 

survey on the presence of Plasmodium spp in the following survey) are given 

in Section 7.6.3, along with the effects of age and season (Sections 7.6.3.2 

and 7.6.3.3). At the end, Section 7.6.3.6 illustrates the effects of 

P. falciparum on the acquisition and clearance rates of other species.

7.6.1. Overview of malaria infection frequency in the 

complete dataset

The parasitological data of 118,346 out of 138,197 slides were recorded 

(14.4% of the data were missing). Among the available data, 37% of slides 

were positive for P. falcipar\im, 10.8% were positive for P. malariae and 

1.2% were positive for P. ovale. The frequency of co-infection with 

P. falciparum and P. malariae was 8.5%, while for P. falciparum and 

P. ovale it was 0.1%; a total of 435 slides were positive for all species. 

P. vivax did not exist in the Garki area.

In terms of seasonal and spatial deviations, wide ranges of variations were 

observed; these are further assessed in Sections 7.6.2.3 and 7.6.2.4.
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Figure 7-2: Frequencies o f  single and m ixed Plasm odium  spp in 118,346 assessed slides

Table 7-2 shows the effect of interventions on Plasmodium spp prevalences. 

Frequencies of each species in the different intervention arms were 

compared with the control group, which contained all records of the non­

intervention group and other groups outside the intervention period.
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Table 7-2: The effect of interventions on the frequencies of Plasmodium spp: the number and 
percentage of positive slides are classified by intervention and species_________________

P. fa lc ip a ru m P. m a la ria e P. ov a le
In tervention Num ber Crude OR Num ber Crude OR Num ber Crude OR

% Adj. OR2 % Adj. OR2 % Adj. OR2

N o n 32 ,579 1 9,630 1 1,205 1

in terven tion 1 49.2 1 14.5 1 1.8 1

0 .56 1.1 0 .26

Insectic ide
5,308 (0 .5 -0 .6 ) 2 ,409 (1 .06 -1 .2 ) 72 (0 .2 -0 .33 )

35 .2 0 .37 16.0 1.1 0.5 0.22
(0 .3 -0 .4 ) (1 .05 -1 .2 ) (0 .17 -0 .28 )

0.08 0 .12 0.11

Insectic ide + 1,034 (0 .08 -0 .09 ) 292 (0 .1 1 -0 .1 4 ) 28 (0 .07 -0 .16 )

h igh  M D A 7.4 0 .044 2.1 0 .09 0.2 0 .09
(0 .04 -0 .05 ) (0 .08 -0 .1 ) (0 .06 -0 .13 )

0.08 0 .07 0 .05

Insectic ide+ 665 (0 .08 -0 .09 ) 106 (0 .06 -0 .08 ) 8 (0 .02 -0 .09 )

lo w  M D A 7.5  - 0 .037 1.2 0 .05 0.1 0 .04
(0 .03 -0 .41 ) (0 .04 -0 .06 ) (0 .02 -0 .08 )

0 .43 0 .14 0 .22

Selective D A 3
4 ,127 (0 .41*0 .45 ) 324 (0 .12 -0 .15 ) 59 (0 .17 -0 .29 )

29 .4 0.31 2.3 0.1 0 .4 0.2
(0 .3 -0 .33 ) (0 .0 9 -0 .1 1 ) (0 .16 -0 .26 )

Total
43 ,713

36.9
(rho = 0.45)

12,761
10.8

(rho  = 0 .44 )
1,372

1.2
(rho  = 0.35 )

1. Non-intervention group contained all records of non-intervention group and the records of 
other groups outside the intervention period
2 Adjustment of repeated observations; person were treated as cluster, and rho showed inter­
cluster correlation
3 The drug was administrated to fever cases in post-intervention phase in MDA arms 
(Section 7.4.2)

From Table 7.2, it is evident that insecticide alone had no preventive effect 

on the P. malariae (adjusted O R-1.1), however it decreased the risk of 

P. falciparum and P. ovale dramatically (adjusted OR=0.37 and 0.22, 

respectively). On the other hand, the combination of insecticide and mass 

drug administration had a similar effect, more or less, on every species.

Because each of the interventions had a different impact on the frequencies 

of Plasmodium spp, it is also plausible that they had unbalanced effects on
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the patterns of those interactions, particularly if the effects of drug 

administration coverage and resistance are also taken into account. 

Therefore, it was decided that the interactions between Plasmodium spp 

would only be assessed in the non-intervention sets (i.e., all records of the 

control group) and pre and post intervention phases of the other groups 

(Section 7.6.1.1).

7.6.1.1. Description of the non-intervention data

In Table 7-3, the numbers of eligible records for cross-sectional and 

longitudinal analysis are shown in different project phases and intervention 

arms. It contains all records in the pre-intervention phase, some records 

from the post-intervention phase and all records of the non-intervention 

arm. Since the first post-intervention survey was done around 2-3 months 

after the end of interventions, it could be expected that most effects of the 

interventions were washed out.

In the longitudinal analysis, only those records were included in which both 

former and latter surveys were not in the intervention phase. Hence, the 

numbers of eligible records were not exactly the same in these two analyses 

(71,270 records in cross-sectional and 68,894 ones in longitudinal analysis).
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Phase o f  d a ta  co llec tion

Table 7-3: Number of selected records according to the project phases

Fo llow -u p  grou p Pre­
in te rven tion

M a in
in te rven tion

P os t­
in te rven tion

To ta l

C on tro l (no C ross-section a l 14,120 13,915 8 ,476 36,511
in terven tion ) Long itu d in a l 12,969 12,363 7,071 32 ,403

In sec tic id e  a lon e
C ross-section a l
Long itu d in a l

13,698
13,170

0
0

0
0

13,698
13,170

In sec tic id e  + h igh - C ross-section a l 11,441 0 1,080 12,521

frequ en cy  M D A 1 Long itu d in a l 10,990 0 4 ,188 15,178

In sec tic id e  + low - C ross-section a l 8 ,540 0 0 8,540

freq u en cy  M D A 1 Lon g itu d in a l 8 ,143 0 0 8,143

To ta l
C ross-section a l
Long itu d in a l

47 ,799
45 ,272

13,915
12,363

9 ,556
11,259

71,270
68,894

1 Mass drug administration

^ ] p .  o v a le  

Y/AP- m a la r ia e  

^ ] P .  fa lc ip a ru m

Figure 7-3: Frequencies of Plasm odium  spp in every survey, mixed infected slides were 
counted more than once.
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Figure 7.3 illustrates that the relative frequencies of species Eire more or 

less comparable in surveys and more than 80% of positive slides were 

positive for P. falciparum.

7.6.1.2. Between village variations of the infections

The largest village in the study had a population of 1,130 people while the 

smallest one had a population of 92 people. On average, villagers were 

surveyed 6.1 times (SD=3.3). Comparing villages, the smallest average 

number of surveys per person was 2.6; this number was 13.2 times as great 

for a village with 'the longest follow up (this village belonged to the non­

intervention arm and all data of its three phases were included in analyses).
i

Among collected slides, 50% were positive for P. falciparum (SPR), 15% for 

P. malariae and 3% for P. ovale (Table 7-4). However, the correlation 

structure of data was taken into account in multilevel models in order to 

estimate within- and between-village variations and adjust for the clustering 

effect of individuals, surveys and villages. Using MLwiN 1.1, a 3-level model 

was considered for each species; survey number, person ID and village code 

were the first, second and third levels, respectively. The models fitted the 

logit of species based on the random effect of the first level, and fixed and 

random effect of the second and third levels (Appendix 3). Hence, the 

estimated fixed constant shows the logit of SPR, and the random effects of 

the second and third levels show within- and between-village variations. To 

optimise goodness of fit, the Restricted Iterative Generalised Least Squares 

(RIGLS) method was applied where the convergence of each parameter was 

assessed individually [204].
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Table 7-4 shows the results of these multilevel models. The adjusted SPR 

for P. falciparum, P. malariae and P. ovale were 53.6%, 12.4% and 2.2%, 

respectively. The results of heterogeneity tests show highly significant 

differences in the within- and between-village SPRs; these variations were 

more or less comparable among species.

Table 7-4: The estimation of species’ SPRs, and their within- and between-village variations, 
applying multilevel analysis
Population of villages

Mean (SD) 469.5 (253)
Minimum- maximum 92-1130

The number of survey rounds2
Mean (SD) 6.1 (3.3)
Minimum- maximum 2.55-13.2

Crude SPR1 (%)
P. falciparum 50
P. malariae 15
P. ovale 3

Adjusted SPR for hierarchical structure of data (e61) (%)
P. falciparum 53.6
P. malariae 12.4
P. ovale 2.2

Between village variations of SPR (o2vi)
(95% Cl of village SPR)

P. falciparum (x2, p-value3) 51-56 (7.43,0.006)
P. malariae (x2, p-value) 12-14 (5.55, 0.018)
P. ovale (x2, p-value) 1-3 (8.77, 0.003)

Within village variations of SPR (a2ui)
(95% Cl of individual SPR)

P. falciparum (x2, p-value) 2-98 (2004, <0.0001)
P. malariae (x2, p-value) 0.7-74 (1031, <0.0001)
P. ovale (x2, p-value) 0.4-10 (51.49, <0.0001)

1: Smear Positive Rate
2: Of the 22 within-village averages of rounds per person
3: Heterogeneity test based on quasilikelihood method, the results of yf with df=l
(Appendix 3 for definitions of <J2vi, and e®1)
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Figure 7.4 shows that there was a wide heterogeneity in the risks of having 

of positive slide in consecutive surveys, not only between inhabitants of 

different villages, but also within villages.

The very wide range of within-village SPRs could be due to the heterogeneity 

in exposure risks; however, at least some part of this wide range might be 

explained by acquired immunity. Young people with less immunity were 

more susceptible to repeated infection and/or had a lower parasite 

clearance rate. Partial acquired immunity in the older age group might 

protect these individuals from having repeated positive slides [138].

In his seminal book on the Garki project, Molineaux and Gramiccia did not 

explore within- and between-village variations of infection risks and
t

therefore, the above findings were original. The heterogeneity of repeated 

infections between villages are discussed in more details in Section 7.6.2.4.

7.6.1.3. Temporal variations of the infections

Molineaux and Gramiccia discussed, in general, seasonal variations of 

Plasmodium spp [138]. However, this section explores this issue more widely 

and explains the results in relation to the results of the previous sections in 

order to explore the possible effects of season on the interaction between 

species.

The monthly variation in SPR is illustrated in Figure 7-4. The maximum 

and minimum SPR of P. falciparum were 64% and 39%, respectively. The 

corresponding figures for P. malariae and P. ovale were 21%, 11% and 5%,
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0%, respectively; the annual P. falciparum and P. ovale variations were 

more or less comparable. The SPRs of both of these species peaked at the 

end of the wet season (September to November) when the mosquito 

prevalence was highest, and the lowest SPRs were detected in the dry-hot 

season (April to June). However, the temporal variation of P. malariae had 

exactly the reverse pattern, i.e., its highest frequency was detected in the 

dry-hot season, in which other species and the mosquito population were at 

their minimum densities. This difference in SPR peaks is very important, 

because a direct association between the population of vectors and the 

frequency of all Plasmodium spp would be expected.

Molineaux and Gramiccia showed that the P. malariae infant conversion 

rate, the rate at which'infants became positive for the first time, had a 

positive association with vector density and had its highest magnitude in 

wet season. The discrepancy between seasonal variations of Plasmodium 

spp were not detected in children younger than 5 years old [138]. Therefore, 

it is unlikely that the different temporal patterns of species were due to 

either genetically determined characteristics of the parasites or the effect of 

environmental factors on the extrinsic cycles of parasites.
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Figure 7-4: Annual variation of Plasm odium  spp prevalence, based on 6 years of slide data

Alternatively, the lack of concurrent increases in the prevalences of vectors 

and P. malariae could be explained by the suppressive effect of 

P. falciparum on the patent form of P. malariae in the wet season. 

Suppression of one species of Plasmodium by another is known from clinical 

observations [205]. Looareesuwan et al. (1987) found that among patients 

treated for acute P. falciparum, P. viuax developed in one third of patients 

within one month of receiving a regimen containing quinine or quinidine or 

after two months of receiving mefloquine treatment; this was much higher 

than the risk of infection in normally found in Thailand, and much higher 

than the normal risk of mixed infection [135]. Based on this finding, he 

concluded that P. falciparum suppressed P. rnuax, and furthermore that
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after treatment of P. falciparum, P. vivax became patent. The prevalence of 

mixed infections was higher based on molecular diagnostic techniques than 

the microscopic diagnosis commonly used in western Africa, and again 

showed that a considerable portion of subjects had both infections but by 

microscopy they showed only P. falciparum [132].

Based on the Garki data, suppression of P. malariae by P. falciparum is 

also suggested by the timing of observed events. A rapid increase in vector 

density was apparent after the onset of the wet season and was rapidly 

followed by a marked increase in the prevalence of P. falciparum. This 

coincided with a marked decease in the prevalence of P. malariae, which 

was observed repeatedly in different villages over several years (Section 

7.7.6).

Table 7-5 shows that compared to P. malariae, P. falciparum has a shorter 

pre-patent period, which might cause the frequency of P. falciparum to 

elevate faster by increasing mosquito density in the wet season while having 

a suppressive force on other species, particularly P. malariae. In addition, 

as P. malariae has lower blood density, it could be suppressed by 

P. falciparum to undetectable levels faster than P. ovale. To more fully 

understand the force of suppressive effects between species, cross­

immunity between species must also be taken into account (Section 7.7.5).
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Species
Table 7-5: Some characteristics of Plasmodium spp infections in humans (Gilles (1993)) [1]

P. fa lc ip a ru m  P. m a la ria e  P. ov a le________ P. v iva x

Pre-erythrocytic stage 
(days) 5.5-7 14-16 9 6-8

Pre-patent period from 
inoculation (days) 9-10 15-16 10-14 11-13

Incubation period 
(days) 12 (9-14) 28 (18-40) 

or longer
17 (16-18) or 

longer

15 (12-17)or 
up to 6-12 

months

Erythrocytic cycle 
(hours) 48 72 50 48

Parasitaemia per mm3
Average
Maximum

20,000-500,000
2,000,000

6,000
20,000

9.000
30.000

20,000
50,000

Primary attack Severe Mild Mild Mild to severe

Febrile paroxysm * 
(hours) 16-36 or longer 8-10 8-12 8-12

Relapses - - ++ ++

Period of recurrence Short Very long Variable Variable

Duration of untreated 
infection (years) 1-2 3-50 1.5-5 1.5-5

7.6.2. Cross-sectional analysis

Although the interactions between species were analysed cross-sectionally 

in the Garki project and some analyses have been published, most of the 

results of this section, particularly discussions and relationships between 

the findings, are original and are explained in detail in the following 

sections.

This section presents the frequency of dually infected slides and explains 

effect modification of age, season and spatial distribution by species on the
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mixed infections (Section 7.6.2.4). Having reviewed the crude odds ratios 

(ORs) between P. falciparum (as the independent variable) and other species, 

the effect of repeated observations is discussed in Section 7.6.2.2. Then, the 

temporal and spatial variations of dually infected slides and the effects of 

age and infection density are quantified in Sections 7.6.2.6 to 7.6.2.8.

7.6.2.1. Crude associations

Of the 43,713 P. falciparum positive slides, 23.8% and 3.2% were positive

for P. malariae and P. ovale, respectively. Only 5.7% and 0.6% of the

31,235 negative P. falciparum slides were positive for P. malariae and
#

P. ovale, respectively (P. malariae: X2=407, p<0.0001 and OR=5.2; and 

P. ovale x2=556, p<0.0001 and OR=5.7). Based on these results, 

P. falciparum increased the risk of other infections more than 5 times 

(Table 7-6). These crude ORs were calculated based on repeated 

observations, therefore, before drawing any conclusion, they should have 

traditionally be adjusted. However, their high magnitudes showed that the 

risk of P. falciparum and other Plasmodium spp were strongly correlated.

7.6.2.2. Repeated measurement effect

Using a logistic regression model adjusted for repeated observation by 

random effects, the adjusted ORs between species were computed (Section 

7.5). The adjusted OR of P. falciparum as a risk factor for P. malariae
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decreased from 5.2 (crude OR) to 3.6 (95% Cl: 3.4-3.9). The corresponding 

figures between P. falciparum and P. ovale decreased from 5.37 (crude) to 

5.1 (95%CI: 4.3-6). In addition, the intra-cluster correlation coefficients (rho) 

in simple models without any predictors (in each logistic regression model, 

only one species was entered) for P. falciparum, P. malariae and P. ovale 

were 0.55 (Cl: 0.5-0.53) 0.46 (Cl: 0.44-0.47) and 0.39 (Cl: 0.34-0.43), 

respectively (Section 7.5 for explanation).

The adjustment decreased the association between P. falciparum and 

P. malariae dramatically; although it did not have much effect on the 

association between P. falciparum and P. ovale. In addition, it showed that 

intra-person correlation was higher in P. malariae than P. ovale; intra­

person correlations for both were smaller than that for P. falciparum.
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Table 7-6: The association of P. falciparum (as risk factor) with other species, classified by
age and season; i.e., the ORs are stratum specific

Model P. malariae 
OR (95% Cl)

P. ovale 
OR (95% Cl)

All subjects 5.2 (4.92-5.49) 5.37 (4.6-6.28)

Crude

Age (year) 
<1 
1-9 
>=10

16.62 (9.42-29.32) 
3.35 (2.95-3.79) 
2.69 (2.50-2.89)

6.25 (2.63-14.82) 
2.32 (1.70-3.16) 
3.97 (3.24-4.85)

Season
Dry and cool 
Dry and hot 
Wet

5.59 (5.14-6.08) 
6.85(5.90-7.95) 
4.39(4.02-4.81)

6.05(4.97-7.35)
3.92(2.17-7.08)
3.73(2.76-5.03)

Adjusted for
repeated
observations*

All subjects

Age (year) 
<1 
1-9

' >=10

Rho**=0.34 
3.64 (3.4-3.9)

6.25 (2.63-14.82) 
2.32 (1.70-3.16) 
3.97 (3.24-4.85)

Rho**=0.25 
5.1 (4.33-6.0)

6.26 (2.64-14.83) 
2.19 (1.59-3.03) 
3.95 (3.23-4.84)

Season
Dry and cool 
Dry and hot 
Wet

4.02(3.7-4.35)
6.32(5.48-7.29)
3.58(3.3-3.9)

5.53(4.6-6.68)
3.94(2.18-7.12)
3.76(2.78-5.07)

* Logistic regression models with random effect were applied. None of them were 
multivariate model. In each step, only one independent variable was entered and stratum 
specific ORs were computed
** A measure of the intra-person clustering effect ranges between 0 and 1

The highest heterogeneity in P. falciparum risk means that the variation in 

susceptibility to P. falciparum was wider compared to the other species. In 

other words, a group of people was contracting P. falciparum repeatedly, 

while another group of people had greater protection against it. The range of 

susceptibilities of people to P. falciparum was greater than it was for people 

with either P. ovale or P. malariae. This is compatible with the finding that 

the within- and between-village SPR variations in P. falciparum were greater 

than the variations in other species (Section 7.6.1.2).

Nevertheless, the greater heterogeneity in the risk of repeated P. falciparum 

infection could not be explained simply by the differences in the biology of
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Plasmodium spp; because P. falciparum does not generate hypnozoites, it 

does not produce relapses (Table 7-5). In short, there are no convincing 

explanations for any possible differences in the transmission risks 

heterogeneities among Plasmodium spp, except acquired immunity which 

could explain most of the findings (Section 7.7.4).

7.6.2.3. Temporal variations of odd ratios

The OR between P. falciparum (as a risk factor) and P. malariae adjusted 

for season and repeated observations was 2.97 for the whole year; season 

specific ORs in thê dry-cool, dry-hot and wet seasons were 4.02, 6.32 and 

3.58, respectively. The corresponding OR between P. falciparum and
t

P. ovale, again adjusted for season and repeated observations, was 4.9 for 

the whole year; season specific ORs were 5.53, 3.94 and 3.76 for the dry- 

cool, dry-hot and wet seasons respectively.

Figure 7-5 shows wide temporal variations between the ORs of 

P. falciparum and other species. The results of heterogeneity tests by the 

Mantel-Haenszel method showed significant differences between the 

monthly and seasonal ORs (all heterogeneity test p-values were less than 

0.0001) However, within each season, the monthly ORs were more or less 

comparable. The peak in OR between P. falciparum and P. ovale was at the 

end of the dry-cool season with a very wide confidence interval (6.1-41).
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Figure 7-5: The temporal variations of ORs between P . fa lc ip a ru m  and other species based 
on 6 years of data

The highest ORs between P. falciparum and P. ovale were detected in the 

dry-cool season, just after the peaks of both species, and were compatible 

with the corresponding figure in the longitudinal analysis (Section 7.6.3.3). 

The highest ORs between P. falciparum and P. malariae were detected at 

both the end of the dry-cool and beginning of the dry-hot seasons; these 

peaks were after the P. falciparum peak and before that of P. malariae 

(Figure 7-4). This means that because P. falciparum decreased in the dry- 

cool season, the OR between these two species increased, and then 

P. malariae increased in the dry-hot season (see following paragraphs and 

Section 7.7.6 for its explanation).

Molineaux and Gramiccia found that higher infant conversion rates were

observed for all species in the wet season compared to the other seasons

[138]. Conversely, in those aged more than 5 years, P. malariae infection

was less common in wet season. This temporal sequence is compatible with
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the hypothesis that P. falciparum exerts a suppressive effect on P. malariae 

(Section 7.7.6). This suppression hypothesis implies that as the density of 

P. falciparum infection declined in the dry-cool season, sub-patent 

P. malariae became patent in mixed-infection slides; however, later on, a 

higher number of single P. malariae slides were detected due to greater 

P. falciparum clearance and low transmission. However, more evidence is 

needed to test this hypothesis; longitudinal analysis further examined this 

issue (Section 7.6.3.3).

The mean age of people infected with only P. falciparum was 17.2 years, 

while the corresponding means for P. ovale and P. malariae were 26 and 

29 years (greater than the average age in the whole population, which was 

24.6 years). The mean age of people infected with both P. falciparum and 

P. ovale was 11 years, and that of people infected with P. falciparum and 

P. malariae was 10.4 years. These figures show that single P. ovale and 

P. malariae infections were most often patent in elderly people; however, 

mixed infections were more common in younger age groups. This age 

pattern was more or less constant in all seasons.

The above finding about the age distributions of infected people with single 

and mixed species could also be explained by the effect of acquired 

immunity. Younger people, who were less exposed to infections might have 

had less protection against all species, as well as may have been more 

susceptible to acquire different species. Specifically, the evidence that 

P. falciparum is associated with a lower mean age of infection is consistent 

with theories that it produces acquired immunity.

238



The above explanation is also compatible with the higher observed 

heterogeneity risk of P. falciparum infection compared to the other species 

(Section 7.6.2.5). A higher frequency of infections in the early years of life 

and lower infection risk in adulthood, probably due to acquired immunity, 

increased the differences of P. falciparum infection risks between young and 

adult groups. This might have increased the observed heterogeneity risk.

7.6.2.4. Spatial variations of odd ratios

Among 22 villages, the minimum and maximum of ORs between 

P. falciparum and P. malariae were 3.91 and 8.87, respectively 

(heterogeneity test: x2=65, p<0.0001). The corresponding figures between
a

P. falciparum and P. ovale were 1.29 and 18.53, respectively (heterogeneity 

test: x2=33.4, p=0.04). These results show that the ORs between 

P. falciparum and other species were not uniform among villages.

To explore the possible sources of these heterogeneities, an ecological 

analysis was performed. Also, the Pearson correlation coefficients between 

the ORs and the demographic and malarialogical factors of villages 

(population, duration of follow up period, SPRs, and their within village 

variations) were computed. Although none of these correlation coefficients 

were significant (all p-values were greater than 0.4), small negative 

associations were detected between the ORs and SPRs, suggesting that 

greater ORs were seen in villages with lower averages of smear positive rates. 

However, after adjustment for these factors, the heterogeneity still existed.
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This finding was compatible with the observed negative associations 

between the frequencies of species and the ORs between species in meta­

analysis (Section 5.5.6).

7.6.2.5. The age effect

Table 7-7 presented the risk of infections classified by age (less than 1, and

1-9 years and more than 10 years old). Having put the infection risk of more

than 10 years olds as the baseline, the 1-9 year old group had the highest

ORs, particularly with P. falciparum (11.68 in P. falciparum versus 5.9 and

4.2 in P. malariae and P. ovale respectively). It means that the relative risk

of P. falciparum in children less than 10 years old versus the older age
»

group was more prominent compared to other species risks.

There is no evidence to support lower exposure risk to infections in the 

older age group [18]. Therefore, acquired immunity against species is the 

only reasonable explanation for higher infection risks in children less than 

10 years old.

The higher P. falciparum OR could be explained by stronger natural 

acquired immunity. Having experienced more P. falciparum infections 

during the first decade of life, people were less susceptible afterwards. This 

idea is also supported by a lower mean age of apparent infected subjects 

with P. falciparum compared to the other species (Section 7.6.2.3). However, 

it should be noted that the booster effect of repeated inoculations of 

P. falciparum in older age might have a major role in keeping up the 

alertness of the immune system even in non-patent forms.
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In addition, the suppressive effect of P. falciparum on the other species 

might also explain some of the differences between the ORs. Given this fact, 

P. falciparum as the dominant species might not allow others to be patent 

in the 1-9 year-old age group. However, after age 10 years, as P. falciparum 

incidence declined, other species would find more chance to be patent, 

therefore the relative risk of infection between ages 1-9 years and more than 

10 years was less prominent in P. malariae and P. ovale.

7.6.2.6. Effect modification by age

Regarding the interactions between P. falciparum and other species, there

was a wide heterogeneity between age stratum specific ORs. The ORs
§

between P. falciparum and P. malariae were 25.4, 3.03, and 2.32 in less 

than one year, one to nine years and more than nine years, respectively. 

The corresponding figures for P. falciparum and P. ovale were 6.26, 2.19 

and 3.95, respectively. As the above ORs show, there were stronger positive 

associations between P. falciparum and other species in children aged less 

than one year old.

Based on the heterogeneity hypothesis (Chapter 6), the differences between 

the age-specific ORs could be explained as follows. Since infants had less 

history of infections and acquired less immunity, the risks of infections 

were highly correlated to the exposure risk; i.e., heterogeneity in exposure 

risk increased the overall OR. However, older people might get more 

immunity due to previous infections; therefore, the risks of infections were 

less strongly linked to the exposure. In other words, highly exposed people 

might be less susceptible to infections due to higher acquired immunity,
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and vice versa. Hence, lower ORs might be expected as the heterogeneity in 

the infection risks were less than the heterogeneity in the exposure risks.

7.6.2.7. Acquired maternal immunity

Table 7-7 compared the age-specific infection risks; the baseline was the 

risk in more than ten year old group. Lower observed risk of infections in 

less than one year olds and the 1-9 age group (ORs were 2.1 and 11.7 for 

P. falciparum, 1.3 and 5.9 for P. malariae, and 2 and 4.2 for P. ovale) 

might be due to either less exposure to vectors, and/or maternal acquired 

immunity, which partially protected babies in the first years of their lives. 

Kitua et al. (1996) [206] and Sehgal et al. (1989) [207] showed that maternal
i

immunity might protect babies against severe malaria attacks for a few 

months if mother got infection or disease during pregnancy, particularly in 

the second part of pregnancy.

To explore this issue more deeply, the ORs of infections in the first 4, 4-7 

and 8-12 months of life were computed based on their risks in children 

aged ten or more years old. The ORs for babies aged less than four months 

were 0.75, 0.56 and 1 for P. falciparum, P. malariae and P. ovale, 

respectively; these were much lower than the ORs for the rest of first year of 

life (Table 7-7). This was compatible with other findings that four months 

seems to be the duration of effective maternal acquired immunity [206,207].

Infection risks in infants, particularly those aged less than four months, 

seemed to be even lower than those for the oldest age group to which their 

mothers belonged. Having assumed effective maternal acquired immunity, 

one would not expect to detect stronger protection among infants than that
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conferred upon their own mothers. Therefore, this lower infection risk in 

babies might be due to not only the obtained immunity from their mothers, 

but also a lower chance of effective contact with vectors as a result of higher 

protection by their families or less attraction between mosquitoes and 

babies (lower exposed body surface or different temperature) [208-21OJ.

Table 7-7: The risk of infection with Plasmodium spp classified by age; the infection risk in
the last age group (=10  years) is the baseline

A ge  g rou p
<4 months 
Num ber (%)

4-7 months 
Num ber (%)

8-12  
months 

Num ber (%)

1-9.9 year 
Num ber (%)

«1 0  year 
Num ber (%) Total

P. fa lc ip a ru m
31,234Negative 484 (70.7) 356 (42) 272 (31.6) 2,220 (13.5) 27,902 (64.6)

Positive 201 (29.3) 492 (58) 558 (68.4) 14,224 (86.5) 15,299 (35.4) 30,804

OR 0.75 2.52 3.9 11.68 1 X2*=1270
(95% Cl) (0.64-0.9) (2.2-2.9) (3.41-4.56) (11.13-12.27) - p-value

<0.001
OR for the whole first year: 2.1 (1.8-2.4)

P. m a laria e
Negative 654 (95.9) 763 (90) 738 (85.8) 10,957 (66.6) 39 ,826  (92.2) 52,938
Positive 31 (4.5) 85 (10) 122 (14.2) 5,486 (33.4) 3,375 (7.8) 9,099

OR 0.56 1.31 1.95 5.9 1 X2**6285
(95% Cl) (0.39-0.8) (1.04-1.65) (1.6-2.37) (5.63-6.2)

‘ p-value
<0.001

OR for the whole first year: 1.3 (1.1-1.5)

P. o va le
Negative 678 (99) 826 (97.4) 841 (97.8) 15,761 (95.8) 42,761(99) 60,867
Positive 7 (1 ) 22 (2.6) 19 (2.2) 682 (4,2) 440(1) 1,170

OR 1 2.59 2.2 4.2 1 X2*“ 630
(95% Cl) 0.47-2.12 (1.68-4) (1.38-3.49) (3.72-4.75) - p-value

<0.001
OR for the whole first year: 4.2 (3.6-5.0)

*X2 tests checks the associations between age group and the frequencies of species

7.6.2.8. The effect of P. fa lciparum  density

Based on the number of positive P. falciparum fields, out of 200 examined, 

slides were categorised into three groups, slides with 0, 1-50 and more them
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50 positive fields. Then, the risk of infection with P. malariae and P. ovale 

in the second and third density groups were compared with the negative (0) 

group. The ORs in the 1-50 and more than 50 positive fields were 4.05 and 

8.66 for P. malariae; 4.05 and 8.73 for P. ovale. Hence, higher risks of 

infections were detected in greater density of P. falciparum infection.

Based on the above results, a positive association between P. falciparum 

density with the risks of other species were detected. However, even though 

negative associations might be expected because of observational bias 

(missing other species in slides infected with a high density of 

P. falciparum), these results show positive relationships. It may seem that 

this finding is not compatible with the suppression hypothesis. However, 

Section 7.7.5 discusses hcfw this finding contradicts the explanation that 

competition for host cells or nutrients is responsible and supports the 

possible role of immunity in suppression effect.

The observed positive associations might be explained as follows. Given 

short-term cross-immunity between species, in individuals infected with P. 

falciparum, one may expect to see more P. malariae and P. ovale infections. 

Also, the partial immunity against P. falciparum usually reduces its blood 

density [92]; the Garki project results showed a negative association 

between IgM level and P. falciparum density in all age groups [211]. 

Therefore, highly infected slide might show lower immunity against 

P. falciparum, and greater infection risk for the other species.

Nevertheless, as the density of P. falciparum and the infection risks 

decreased by age, the density effect might be confounded by age. Older age 

groups experienced more infections with all species, therefore, obtained
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stronger immunity against every species. Therefore, lower density of 

P. falciparum with less risks of infection with P. malariae and P. ovale 

could be as a result of acquired immunity.

7.6.3. Longitudinal analysis

In this part of the analysis, the presence of each species in the former 

survey was considered as a risk factor for the presence of Plasmodium spp 

in the latter survey, and their crude and adjusted (for the effect of repeated 

measurements) ORs were computed. It presents the effect of species-specific 

acquired immunity (Section 7.6.3.4) and their cross-immunities (Sections 

7.6.3.1 and 7.6.3.5). Also, the effect modifications of age and season are 

assessed in Sections 7.6.3.2 and 7.6.3.3, respectively. In the last section 

(7.6.3.6) the conversions rates (acquisition and clearance) of P. malariae 

and P. ovale are computed and the effects of P. falciparum on these rates 

are assessed.

7.6.3.1. P. falciparum  as a risk factor for other species

Out of 68,894 slides, 54,730 (79.4%) had parasitological data in both 

former and latter surveys (Table 7-3). Table 7-8 shows the frequency of 

positive slides based on the results of their baselines. All positive
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associations were statistically significant, and show that the infection risks

were higher in those who had positive slides in the former survey. However, 

the final discussion should be based on the adjusted ORs for the effect of 

repeated observations (Table 7-9).

Table 7-8: The frequencies of infections at the latter survey in relation to the infection status 
in the former survey

Former survey

Latter survey
P. falciparum 

Negative Positive
P. malariae 

Negative Positive
P.

Negative
ovale

Positive
P. falciparum

Negative 20,201 7,934 25,080 1,522 27,802 176
(%) (71.8) (28.2) (94.3) (5.7) (99.4) (0.6)
Positive 7,933 18,662 17,223 3,120 25,147 608
(%) (29.8) - (71.2) (84.7) (15.3) (97.6) (2.4)
OR(95% Cl) 6(5.7-6.3) 3.0 (2.8-3.2) 3.8 (3.2-4.5)

P. malariae $
Negative 19,309 7,293 42,303 4,642 45,723 555
(%) (72.6) (27.4) (90.1) (9.9) (98.8) (1.2)
Positive 892 641 4,498 3,287 72,26 229
(%) (58.2) (41.8) (57.8) (42.2) (96.9) (3.1)
OR(95% Cl) 1.9 (1.7-2.1) 6.7 (6.3-7.1) 2.6 (2.2-3.1)

P. ovale
Negative 20,115 7,863 41,807 447 52,949 784
(%) (71.9) (28.1) (90.3) (9.7) (98.5) (1.5)
Positive 86 71 496 171 887 n o
(%) (54.8) (45.2) (74.4) (25.6) (89) (11)
OR(95% Cl) 2.1 (1.5-2.9) 3.2 (2.7-3.8) 8.4 (6.8-10.3)
Records with positive results for the species of interest in the former survey were excluded in 
this analysis. For example, the association between P. falciparum in the former survey and 
P. malariae in the following survey was assessed only in those who were negative for 
P. malariae in the former survey. Each slide (except the first & last one for each person) 
went in to two records; once as the initial result & once as the subsequent one (Section 7.5.2)

The crude ORs between P. falciparum as a risk factor for P. malariae and 

P. ovale-were 3 (95% Cl: 2.8-3.2) and 3.8 (95% Cl: 3.2-4.5) respectively. The 

corresponding adjusted ORs were 2.7 (95% Cl: 2.5-2.9) and 3.6 (95% Cl: 3- 

4.4). The ORs between P. falciparum and other species in cross-sectional

246



analysis were greater than the observed ORs in longitudinal analysis. 

Section 7.7.3 discusses the possible explanation for these differences.

Table 7-9: The ORs between Plasmodium infections in two consecutive surveys

Detected species in Detected species in Crude OR Adjusted OR2 (95% 
Cl) 
rhothe former survey the latter survey (95% Cl)

P. falciparum 6.0(5.7-6.3) 1.9 (1.9-2) 
0.73

P. falciparum1 P. malariae 3.0 (2.8-3.2) 2.68 (2.5-2.9) 
0.44

P. ovale 3.8 (3.2-4.5) 3.6 (3-4.4) 
0.34

P. falciparum 1.9 (1.7-2.1) 1.7 (1.5-2.0) 
0.22

P. malariae1 P. malariae 6.7 (6.3-7.1) 2.7 (2.5-2.9) 
0.33

P. ovale 2.6 (2.2-3.1) 2.6 (2.2-3.0) 
0.03

P. falciparum 2.1 (1.5-2.9) 1.9 (1.3-2.8) 
0.22

P. ovale1 P. malariae 3.2 (2.7-3.9) 2.8 (2.3-3.4) 
0.29

P. ovale 8.4 (6.8-10.4) 5.3 (3.9-7.2) 
0.17

P. falciparum+ P. falciparum 7.3 (6.8-7.9J 2.4 (2.2-2.6) 
0.5

P. malariae P. malariae 7.9 (7.5-8.4) 3.1 (2.8-3.3) 
0.32

P. falciparum+ P. falciparum 6.4 (5.3-7.7) 2.4 (1.9-3.1) 
0.53.

P. ovale P. ovale 9.8 (7.9-12.1) 6.1 (4.4-8.4) 
0.17

P. falciparum 5.8 (5.6-6) 1.9 (1.8-2.0) 
0.73

Any P. malariae 4.9 (4.6-5.2) 2.9 (2.7-3.1) 
0.63

Plasmodium spp P. ovale 4.5 (3.8-5.3) 4.2 (3.5-5.0) 
0.53

Any Plasmodium 
spp 5.7 (5.5-5.9) 1.8 (1.7-1.9) 

0.72
1: positive for the given species and negative for the other relevant ones
2: by logistic regression method adjusted for repeated observation effect with random effect
model
Each slide (except the first & last one for each person) went in to two records; once as the 
initial result and once as the subsequent one (Section 7.5.2)
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7.6.3.2. The effect modification of age

The OR (adjusted for repeated intra-person clustering) between 

P. falciparum in two consecutive surveys in children aged less than one 

year was 9.3; the corresponding ORs in children aged 1-9 years and more 

than 9 years were 3.1 and 1.5, respectively. Similar age stratum-specific 

ORs between P. falciparum and P. malariae were 11.6, 2 and 1.8, 

respectively; corresponding ORs for P. falciparum and P. ovale were 6.9, 2 

and 2.7 (Table 7-10).

, Table 7-10: The age stratum specific ORs (95% confidence interval) between P. falciparum 
and other species, adjusted for repeated observation______________________________

Age group (year) P. falciparum P. malariae P. ovale
<1 9.3(7.6-11.5)
1-9 3.1(2.7-3.6)

=  10 1.5(1.4-1.6)

11.6(6.8-20) 6.9(2.7-17.7)
2(1.7-2.3) 2(1.4-2.7)
1.8(1.7-2) 2.7(2.2-3.4)

All 1.9 (1.9-2) 2.7 (2.5-2.9) 3.6 (3-4.4)

These ORs show that the strongest associations were in children aged less 

than one year old; these associations diminished by increasing age. 

Nevertheless, the relative age patterns of the species-specific ORs were 

comparable. These results are compatible with the cross-sectional finding 

(Section 7.6.2.5)

Stronger positive associations in infancy are compatible with the suggestion 

that less immunity against Plasmodium spp, as a result of fewer exposures 

to infections in the early years of life, causes higher heterogeneity in 

infection risks according to mosquito exposure risks and maternal acquired 

immunity (a detailed explanation can be found in Section 7.6.2.6).
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7.6.3.3. Temporal variation

In order to assess seasonal variations of the ORs, the records were 

categorised in three groups based on the date of their latter surveys. Then, 

the ORs (adjusted for the effect of repeated observations) between 

P. falciparum in the former survey and Plasmodium spp in the following one 

were computed. The ORs between P. falciparum in two consecutive surveys 

in the wet season was 4.3, and the corresponding ORs in the dry-cool and 

dry-hot seasons were 4.3 and 9.8, respectively. Similar season stratum- 

specific ORs between P. falciparum in the former survey and P. malariae in 

the latter survey w ere-3.6, 4.1 and 5.5, respectively; corresponding ORs 

between P. falciparum and P. ovale were 4, 2.6 and 4.7 (Table 7-11).

Table 7-11: The season specific ORs (95% confidence interval) between P. falciparum with

Season* P. falciparum P. malariae P. ovale
Wet 4.3(3.9-4.6) 3.6(3.2-4.1) 4(3.5-6.4)
Dry-cool 4.3(3.9-4.6) 4.1(3.7-4.5) 2.6(2-3.5)
Dry-hot 9.8(9-10.6) 5.5(4.8-6.2) 4.7(2.8-5.7)
All 1.9(1.8-2) 2.8(2.6-3) 3.9(3.3-4.6)

*Based on tle date of the latter survey

These ORs show that P. falciparum-P. falciparum associations had a wide 

temporal variation and its highest magnitude was seen in the dry-hot 

season. Figure 7-4 illustrated a considerable variation in annual 

P. falciparum frequency, which peaked at the end of wet season and had its 

lowest prevalence with more or less a stable state in the dry-hot season. In 

other words, the highest OR was observed in the low transmission period. 

Based on the discussion in Section 6.3, one could infer that greater ORs in
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the dry-hot season were the result of higher heterogeneity in infection risks 

among people; i.e., a subgroup of people had repeated positive slides in the 

dry-hot season, when the transmission in the whole population was low. 

Therefore, either this subgroup had a low clearance rate, i.e., long infection, 

or they had a high acquisition rate in the dry-hot season when transmission 

was low in the whole population.

The seasonal variation between P. falciparum and P. ovale was compatible 

with the corresponding cross-sectional figures (Section 7.6.2.3). This

variation has its highest magnitude in the dry-cool season just after the 

high transmission season and both species peaks.

Although, the differences between stratum specific ORs of P. falciparum
t

and P. malariae were low, the likelihood ratio test was significant (p<0.01). 

The temporal variation of OR between P. falciparum in the former survey 

and P. malariae in latter one was not consistent with cross-sectional 

findings (Section 7.6.2.3). Cross-sectional analysis showed that this OR 

reached its highest magnitude in the dry-cool before P. malariae and after 

P. falciparum peaks. In contrast, longitudinal analysis showed the OR had 

its highest magnitude with delay in the dry-hot season.

These interesting results support the hypothesis that a considerable 

proportion of P. malariae infected subjects in the dry-hot season had 

probably masked P. malariae and patent P. falciparum infection in the 

previous survey. This is also compatible with the proposed explanation 

about the suppressive effect of P. falciparum as the source of delay in a 

P. malariae surge (Sections 4.4.1 and 7.7.6).
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The ORs derived in cross-sectional and longitudinal analyses were different. 

The most reasonable explanation might be the difference in the definitions 

of dually infected subjects in these two types of analysis. In the cross- 

sectional analysis, the risks of concurrent infections were assessed, but in 

the longitudinal analysis, the relationships between infections in two 

consecutive rounds were checked. The former analysis showed a stronger 

association between P. falciparum and P. malariae in the dry-cool season. 

However, longitudinal analysis showed a greater P. malariae positive rate in 

those who, in the previous round of the dry-hot season, were negative for 

P. malariae and positive for P. falciparum  Therefore, the suppressive effect 

was more evident in the cross-sectional OR, while temporal variations of 

species and cross-immunity were more important in the longitudinal OR 

(Section 7.7.3)

7.6.3.4. ORs among the same species

The crude and adjusted (for repeated observations) ORs for P. falciparum as 

a risk factor for the same species in a following survey were 6 and 1.9. The 

corresponding figures were 6.7 and 2.7 for P. malariae, and 8.4 and 5.3, for 

P. ovale. Furthermore, the intra-person correlations (rho) of P. falciparum, 

P. malariae and P. ovale infections were 0.73, 0.33 and 0.17, respectively 

(Table 7-9). The above results indicate that the OR for P. falciparum-P. 

falciparum was higher than those of P. falciparum-P. malariae and P. 

falciparum-P. ovale.

P. falciparum was much more common than the other two species in the 

Garki area (Figure 7-2), and compared to the other species, its estimated
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acquisition rates were greater in all age groups [138], Further, people 

acquired immunity against P. falciparum faster in the early years of their 

lives. While 100% of babies showed P. falciparum antibody around their 

first birthdays, P. malariae antibody was detected in all children after five 

year age [211]. Although these antibodies are not protective on their own, in 

endemic areas they increases with age, and are usually taken as a measure 

of immunity [92],

Most available evidence points to a major role of CD4+ T cells in controlling 

blood stages of Plasmodium spp. [92,212-214] The antigen-antibody 

complex has a major role in activating CD4+ T cells both directly as well as 

via the complement pathway [91,213-215]. Furthermore, in vitro studies 

show that antibody binds to "antigens on extracellular stages of malarial 

parasites or infected erythrocytes, enabling recognition of the parasite by 

neutrophils and macrophages via Fc receptors [216].

P. falciparum has the highest blood density among Plasmodium spp (Table 

7-5); therefore, the immune system is more exposed with P. falciparum 

antigens. For that reason, all types of immune cells (particularly CD4+ 

T cells, neutrophils and macrophages) might eliminate the blood stages of 

P. falciparum faster than those of other species, especially in those who 

acquired effective immunity due to previous infection.

According to the above explanation, the lower observed ORs in 

P. falciparum-P. falciparum (1.9) compared to the other species (2.7 in 

P. malariae-P. malariae and 5.3 in P. ovale-P. ovale) might be explained as 

follows. Humoral and cellular immunity helped to efficiently eliminate 

parasites in subjects with a higher exposure to P. falciparum (Figure 7-3),
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especially when compared to the other species (also Section 7.7.4, and 

above paragraphs). In addition, higher P. falciparum density (as a result of 

recent infection) exposed immune cells to a high load of antibody-antigen 

complex, which in turn stimulated immune cells to eliminate P. falciparum 

faster than other species. This explanation is also supported by Molineaux 

and Gramiccia (1980) [138], who found that the daily clearance rate of 

P. falciparum was significantly lower than those of the other species in early 

years of life; however, among adults, the differences were not significant 

[138].

Even though P. malarias has a lower blood density than P. ovale, (Table 

7-5) it produced a greater OR (see above paragraphs), which was not 

compatible with the P. falciparum pattern described above. This finding 

could be explained by a lower prevalence of P. ovale in the Garki area. 

Despite a higher load of P. ovale antigens (due to recent infection), a history 

of less exposure to P. ovale infections meant that immune cells might not 

have reacted quickly enough to eliminate P. ovale parasites as rapidly as 

they eliminated those of P. malariae.

A higher rho of P. falciparum meant stronger intra-person clustering; i.e., 

having known a subject’s blood slide results, the prediction of infections in 

their following blood slides would be more accurate in P. falciparum 

compared to the other species. In other words, a person infected with 

P. falciparum was more likely to have a positive slide in the following 

surveys, (although not necessarily the next one because of a lower 

P. falciparum OR) and negative people had less chance of having a positive 

slide during their follow up.
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A plausible explanation for the above finding is as follows. Acquired 

immunity against P. falciparum increased its clearance rate, as explained in 

the above paragraphs. However, much stronger immunity might have also 

decreased the acquisition rate. Therefore, people with very high immunity 

against P. falciparum showed few episodes of infections, while semi- 

immune people got infections but eliminated P. falciparum faster than they 

did other species. This explanation is also supported by lower age of 

infections with P. falciparum (section 7.6.2.5) because older people acquired 

immunity against P. falciparum infection. However, since the mean ages of 

infection with P. malariae and P. ovale were greater than the mean age in 

the whole population, people were infected with both species during their 

whole lives.

7.6.3.5. ORs among different species

The adjusted ORs between P. falciparum in the former survey and 

P. malariae and P. ovale in the latter one were 2.68 and 3.6, respectively 

(Section 7.6.3.1). Alternatively when exposure and risk were reversed, the 

adjusted ORs between P. malariae and P. ovale in the former survey and 

P. falciparum in the following round were 1.7 and 1.91, respectively (Table 

7-9).

The OR for P. falciparum as risk factor of P. malariae was less than the 

corresponding OR between P. falciparum and P. ovale, but greater than 

that for P. falciparum and P. falciparum, whose OR was 1.9. However, the 

reverse ORs for P. malariae and P. ovale as risk factors of P. falciparum are 

more or less comparable (1.7 and 1.91, respectively).
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Although, all the ORs are greater than one, possibly due to the 

heterogeneity effect in infection risks (Section 7.7.2), ORs closer to one 

could be inferred as either stronger cross-immunity or stronger suppressive 

effects between species, respectively explained as follows:

1. P. falciparum had stronger cross-immunity, i.e., a stronger tendency 

to prevent new infections, against P. malariae (OR=2.7) than it did 

against P. ovale (OR=3.6). However, the reverse cross-immunities 

were more or less the same (OR=1.9 and 2.1 for P. malariae and P. 

ovale, respectively); i.e., immunity against P. malariae and P. ovale. 

roughly had a similar impact on P. falciparum.

2. There was a stronger P. falciparum suppressive effect on P. malariae
$

than P. ovale. This implies that people with mixed infections of 

P. falciparum and P. malariae did not show their P. malariae 

infection for longer time (even after clearance of P. falciparum) 

compared to people with mixed P. falciparum and P. ovale infections.

Comparing the effects of P. falciparum on the other species with their 

reverse effects on P. falciparum shows that other species had greater 

impact on subsequent P. falciparum infection, and shifted the ORs closer to 

one. The adjustment for potential confounding effects of age and season did 

not change this ordering. To explain this finding, two hypotheses can be 

proposed:

1. Other species generated stronger cross-immunity against 

P. falciparum than P. falciparum generated against the others. 

However, this explanation is not compatible with previous findings;
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i.e., P. falciparum was usually the dominant species, had higher 

density and stimulated the immune system more effectively (Section 

7.6.3.4).

2. P. falciparum infection suppressed other species below patency but it 

did not eliminate them. Therefore, some of the P. falciparum positive 

group (with undetectable mixed infections) in the former survey 

showed other, previously concealed, infections in the following round 

as the force of P. falciparum declined. This explanation is also 

supported by other finding (see above paragraphs and Section 7.7.6).

7.6.3.6. The conversion rates

Based on the transition numbers from positive to negative and reverse 

figures, the daily acquisition and clearance rates were computed and 

classified by age group (Section 7.5.2, and Appendix 3). Checking the effect 

of P. falciparum, the conversion rates of other Plasmodium spp were 

computed based on the presence or absence of P. falciparum in the former 

survey. These methods are similar to those in used by Molineaux and 

Gramiccia [138], except he did not assess the P. falciparum effect on the 

conversion rates of the other species.

The applied formulae are valid only in stable situations, i.e., situations with 

constant Plasmodium spp prevalence. To assess the validity of the 

computations, the estimated frequencies were compared with their 

corresponding observed frequencies. The computed frequencies based on 

these conversion rates were very close to the observed frequencies (less than
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1% difference), except for the P. falciparum frequencies in less than one 

year-old babies (observed 52% and predicted 69%). It seems that the main 

reason for these discrepancies was due to seasonality of infections. 

Therefore, the estimated conversion rates should be explained with care.

In both P. malariae and P. ovale, the highest acquisition and lowest 

clearance rates were seen in the middle age group, children aged 1-9 years 

old. This means that 1-9 year old children were more susceptible to 

infections, and they were infected for longer periods of time.

In addition, the conversion rates were greater in P. falciparum positives in 

all age groups and both species. Clearance rates were lower in 

P. falciparum positives and the age patterns were the same in two species.
4

The differences between clearance rates of P. falciparum positives and 

negatives were more prominent in the older age group in both species.
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Daily conversion rates in

logarithmic scale

>1 1-9 >=10 >1 1-9 >=10
age group (year)

Plasmodium malariae Plasmodium ovale

— □ —  p f negative acquisition rate— ■ —  p f negative clearance rate 
p f positive acquisition rate p f positive clearance rate

Figure 7-6: Estimated daily clearance and acquisition rates of P. malariae and P. ovale 
classified by the presence of P. falciparum in the former survey.

The observed differences in acquisition rates might be explained by either:

1. The association in the exposure risks, which means that given 

P. falciparum infection, the person had a higher risk of effective 

contact with a vector, thereby contracting every species.

2. The suppressive force of P. falciparum on the other species, which 

means that some of the P. falciparum positives in the former survey 

had other infections that were non-detectable by microscopy 

diagnostic tools. However, by the time the force of P. falciparum 

diminished, the hidden infections were detected.
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Lower clearance rates in the P. falciparum positives can also be explained 

by the following suggestions:

1. Higher super-infection rates in P. falciparum positives, which might 

have been due to more exposure to vectors

2. Higher susceptibility to all Plasmodium spp in P. falciparum positives. 

Since the acquisition rates in all age groups were higher in 

P. falciparum positives, susceptibility due to other causes such as 

genetic factors or other illnesses should also be taken into account.

In summary, P. falciparum infection decreased the parasite clearance rate; 

i.e., P. falciparum positive subjects had longer infection periods. In addition, 

P. falciparum positive subjects had greater acquisition rates.

7.6.3.7. Summary of the longitudinal results

In the longitudinal approach, the ORs between Plasmodium spp in two 

consecutive surveys were assessed, and the results were shown in Table 7-9. 

Section 7.6.3.1 presented the ORs between P. falciparum in the former 

survey on the other species in the latter survey; the ORs between 

P. falciparum and P. malariae, and P. falciparum and P. ovale were 2.7 

and 3.6, respectively. These results suggested that P. falciparum had 

stronger cross-immunity with P. malariae than with P. ovale, or 

P. falciparum suppressed P. malariae more than it suppressed P. ovale.

The age stratum-specific ORs showed that the strongest associations were 

in the children less than one year old; by increasing age, these associations
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diminished (Section 7.6.3.2). These finding were compatible with suggested 

interactions between exposure risks and acquired immunity as the main 

source of heterogeneity in infection risk, as discussed in Section 7.6.2.6.

These ORs had seasonal variations, and reached their highest magnitudes 

in the dry-hot season. Section 7.6.3.3 explored the possible explanations for 

these temporal variations, which supported the hypothesis of P. falciparum 

having suppressive effects on the other species, particularly P. malariae.

The OR (adjusted for repeated observations) between P. falciparum- 

P. falciparum was 1.9; the corresponding ORs between P. malariae- 

P. malariae and P. ovale-P. ovale were 2.7 and 5.3, respectively. Section 

7.6.3.4 discussed the differences between these ORs and concluded that the
t

lower P. falciparum-P. falciparum OR might be due to its greater clearance 

rate as well as the result of stronger acquired immunity.

Section 7.6.3.6 presented the daily acquisition and clearance rates of 

P. malariae and P. ovale, classified by age group in P. falciparum positive 

and negative groups. In all groups, the acquisition rates were greater, and 

the clearance rates were lower in P. falciparum infected subjects. Section 

7.6.3.6 explained these findings based on either suppression of 

P. falciparum on the other species or higher exposure risk of P. falciparum 

positives.

The following section links the findings from the previous sections and 

discusses their possible immunological and non-immunological 

mechanisms.
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7.7. Discussion

Within the results of Molineaux and Gramiccia book [138], there is a short 

section about the interactions between species. Using a simple statistical 

approach, the authors showed positive associations between species, and 

suggested that the associations were mostly due to a subgroup of the 

population who had a higher susceptibility to all species (Section 4.3.2).

The Garki project was one of the largest field studies of malaria. In addition, 

it had a large sample size, and measured a wide range of variables with a 

long follow-up period. Therefore, even after nearly 30 years, it can be used
i

as a comprehensive epidemiological data source.

This analysis was based on the Garki data to specifically address the 

interactions between Plasmodium spp. In the Molineaux and Gramiccia 

book, the interactions between species were analysed with a cross-sectional 

approach and did not assess the effects of age, P. falciparum density and 

seasonal variations. This study explored the associations between 

Plasmodium spp with both cross-sectional and longitudinal approaches. The 

effects of age, season and temporal variations were also explored.

The results are important not only to explain the differences between cross- 

sectional and longitudinal approaches but also to explore the possible 

explanations about the immunological and non-immunological interactions 

between Plasmodium spp.
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7.7.1. The accuracy of microscopy results

In the assessment of the frequency of dually infected slides by microscope, 

observational bias in reading films is an important issue (Section 4.4.5).

In the Garki project, most of the blood slides were assessed for 200 fields, 

and a systematic random sample of one-fifth was examined for 400 fields. 

This study analysed only the data of 200 fields; the positive films in 400 

fields were allocated to positive or negative by a random experiment based 

on the number of fields found positive with the same method which had 

been used in the Molineaux and Gramiccia book [138J.

Although it is impossible to rule out the effect of observational bias 

completely, it seems that the dqta in the Garki project had been collected in 

an accurate way. Throughout the duration of the Garki project, a 

systematic random sample of blood films examined by microscopists had 

been re-examined by a supervisor and the microscopists had not known 

which of these films would have been re-examined. In total, the kappa 

agreement coefficients, between microscopists and supervisors were more 

than 0.77 for all species [138]. This implies acceptable agreement between 

the findings of microscopists and supervisors.

7.7.2. Positive associations between species

Reviewing the literature shows a wide range of associations from negative to 

highly positive correlations between Plasmodium spp (chapter 5). Chapter 6 

explained the impact of heterogeneity in infection risks on the overall OR, 

and illustrated that the observed positive ORs could be explained just by 

the confounding effects of the heterogeneity in infection risks.
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To explain the source of heterogeneity, three suggestions could be proposed 

which are not mutually exclusive:

1. Similarity in the transmission routes within Plasmodium spp and . 

heterogeneity of exposure risk to vectors among the population

2. Acquired immunity, which means that a group of people with lower 

immunity will have higher risk for all species. In practice, age is a 

proxy variable which may show the strength of acquired immunity in 

highly endemic areas.

3. Heterogeneity in susceptibility to Plasmodium spp due to genetic or 

other factors, such as malnutrition, which means that a group of 

people is prone to all infections.

The Molineaux and Gramiccia book mostly discussed the importance of the 

second explanation. Although there is some evidence to support all of the 

above hypotheses based on the results of the Molineaux and Gramiccia 

book and this analysis, it seems that the first and second hypotheses 

together could explain most findings (Sections 7.6.1.3, 7.6.2.3, 7.6.2.5,

7.6.2.8, 7.6.3.2, 7.6.3.3, and 7.6.3.6).

The Molineaux and Gramiccia book showed an excess of persons who 

tended to be positive or negative in consecutive surveys compared to a 

binomial distribution with the same average, especially in older age groups. 

Adjusting for the seasonal effect explained a considerable portion of this 

skewness [138]. They concluded that heterogeneity in the exposure risk to 

mosquitoes, i.e., the temporal variations of mosquitoes, was an important 

source of the positive skewness, and was more prominent in the older age 

group.
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This analysis showed that the highest ORs between species by far were in 

infants in both the cross-sectional and longitudinal analyses (Sections 

7.6.2.5 and 7.6.3.2). However, the similarity in exposure risk hypothesis 

proposed in the Molineaux and Gramiccia book can not easily explain the 

higher ORs in infants.

To address the very high ORs in infants, Section 7.6.2.6 explained this 

finding based on the interaction between exposure risks and acquired 

immunity; i.e., in the older age group a stronger acquired immunity in a 

highly exposed group might decrease the forces of these two factors as 

sources of heterogeneity of infection risks. While during the early years of 

life, even among highly exposed infants, immunity was low.

7.7.3. Cross-sectional versus longitudinal results

Most findings about species interactions come from cross-sectional studies. 

However, it should be mentioned that the two types of studies measure 

different things. A cross-sectional study measures the risk of concurrent 

mixed infections, whereas, a longitudinal study measures the risk of one 

infection based on the history of another species in the past.

The force of suppressive effects between species is an important issue in 

cross-sectional analysis; however, its force in longitudinal analysis depends 

on the gap between consecutive assessments. In addition, the results from 

longitudinal studies depend on the force of cross immunity between species. 

Assuming strong suppressive effects between species, one would expect to 

see stronger negative associations; i.e., smaller ORs in cross-sectioned
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studies. In other words, the dominant species pushes the other ones’ 

densities to levels undetectable by microscope.

On the other hand, short term acquired immunity and suppression effects 

may decrease the ORs; i.e., more negative association in longitudinal 

analysis. Given effective cross-immunity between species, a person in a 

high risk group for one species would be moved to a low risk group after 

contracting other species. This means that the risk of infections would have 

been lower, if one had had an infection in a previous round. Also, the 

suppressive effect of P. falciparum may play an important role in a 

longitudinal analysis if the gap between two consecutive blood tests is short.

However, it should be added that other transient factors related to infection
»

risk, such as, within personal variation of the exposure risk or concurrent 

diseases, might also reduce ORs in longitudinal analysis. Section 6.3.3 

shows that the OR would be confounded by heterogeneity in infection risks 

if heterogeneity exists in both species; i.e., even maximum heterogeneity in 

the risk of one species (maximum ki) with no heterogeneity in the risk of the 

other species (fc2=l), does not inflate the overall OR. Therefore, a lower 

association between species would be expected if a considerable proportion 

of highly exposed people in the first survey moves to the other group and 

vice versa. In other words, heterogeneity in exposure status over time is an 

important factor in only the longitudinal approach. Based on this 

justification, the effect of cross-immunity between species on longitudinal 

ORs could be explained from a different point of view: cross-immunity might 

change the temporal infection risks of individuals since the infection risk of 

people in the second round would be less if they had contracted another 

species previously.
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In this analysis, only records in non-intervention groups were included, in 

which people did not have access to any anti-malarial drugs and were 

mostly asymptomatic [211]. Nevertheless, the residual drug effect may 

partially protect cases against the secondary attacks in the short term, and 

change the pattern of ORs in longitudinal analysis, as well.

To summarise, it could be suggested that the suppression effect might 

decrease the positive associations between species in cross-sectional 

analysis; however, the cross-immunity, suppression and temporal variation 

of infection risks may decrease the positive associations in the longitudinal 

analysis.

In this study, the ORs based on longitudinal analysis were less than the
*

corresponding ones on cross-sectioned analysis (Sections 7.6.2.2 and 

7.6.3.1). This implies that the suppression of one species with concurrent 

infections had less effect than within personal variations of susceptibility to 

infection risks due to acquired immunity, concurrent diseases or variation 

in exposure risks, or the short term suppression effect.

The ratio between ORs of P. falciparum with P. malariae in longitudinal and 

cross-sectional analyses was 0.73 (2.68/3.64); the corresponding ratio 

between P. falciparum and P. ovale was 0.71 (3.6/5.1). Hence it seems that 

the pattern of differences in cross-sectional and longitudinal results 

between P. falciparum and other species are comparable.

In conclusion, it should be mentioned that the cross-sectional and 

longitudinal ORs measure different things and to explain these difference, 

other factors, such as the gap between two observations, the effect of anti­
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malarial drugs, and the temporal and spatial variations of species, should 

be taken into account.

7.7.4. Acquired immunity

Table 7-5 shows that in naive people, the duration of infections are very 

long; i.e., very low daily clearance rates. There is no evidence to support 

that within susceptible people, infections resolve as a result of intrinsic 

features of the parasite. For this reason, the clearance rate of infections 

without any medication might be inferred as the force of immunity against 

species.

In malaria endemic areas, the levels of antibodies increase with age. [92] 

Although the correlation between antibody levels and protection is low, their 

levels are usually taken as a measure of exposure, and antibodies play an 

important role in the clearance of parasites [92].

Serological data of the Garki project also showed that antibodies against 

Plasmodium spp rose with age and had negative correlations with infection 

risks [211].

Efficient production of anti-malaria antibodies however requires an intact 

and functioning T cell system [91,212-215]. Furthermore, possessing 

antibodies does not protect against infections unless T cells, particularly 

CD4+, and other immune system components work functionally [92,212- 

214], On the other hand, specific T cell immunity and non-specific 

immunity (via the complement pathway, the neutrophils, macrophages and 

natural killer cells) work much more efficiently in the presence of antibodies
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[216-218]. Thus, it could be inferred that humoral and cellular immunities 

have synergistic effects on the elimination of parasites.

Section 7.6.3.6 shows a lower clearance rate among of children, suggesting 

that acquired immunity due to a history of infections plays an important 

role in the clearance of infections.

However, Molineaux and Gramiccia (1980) showed that older people were

also more susceptible to infections in the beginning of the transmission

season [138]. Although older people were prone to infections in the

beginning of the wet season, their P. falciparum densities were much lower

than the level of parasitaemia in young subjects (Section 7.6.2.6). Therefore,

it seems that long-term acquired immunity reduces the severity of infections
$

and increases the clearance rate.

Based on the above finding, it seems that a frequent booster effect due to 

natural infections, or the presence of antigens, is needed to keep up 

effective immunity against Plasmodium spp (see following paragraphs); and 

even a short period, such as a few months, is enough to reduce the 

protective force of immunity (Section 7.7.4).

According to available immunological findings, it seems that acquired 

cellular and humoral immunities keep their functions up for months or 

even years after frequent exposures. In the secondary immune response, 

Immunoglobulin G (IgG), which has a long half life, increases. Cellular 

immunity also has long term effects, as it generates memory cells, which 

remain in the body for the rest of life [219,220]. Therefore, high 

susceptibility within older people in the beginning of the transmission 

season is not easily explained by declining immunity in the short term.
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Genetic diversity among Plasmodium spp and annual mutations in their 

antigens could be an alternative explanation for higher susceptibility of 

older people in the beginning of transmission seasons. While, this 

explanation should not be rejected, P. falciparum peaked only for few weeks 

in the beginning of the transmission season within adults. Based on current 

knowledge about immunity against malaria, it seems that the immune 

system needs a longer time to obtain enough strength to eliminate parasites 

with new antigens [221-224].

The above explanation is also supported with the long duration of infections 

among children who had low acquired immunity (Sections 7.6.2.5, 7.6.3.2, 

and 7.6.3.6). In other words, it seems that a few weeks is not enough time
t

for an immune system to cope with new antigens even in those who had 

memory against similar antigens.

In addition, mutations are more likely to occur during transmission seasons, 

when Plasmodium spp proliferate faster. In this case, some peaks of 

infections among adults at the end of transmission seasons would be 

expected; but this hypothesis was not supported with the Garki data.

Alternatively, it is known that within people who have activated immune 

cells and antibodies, the presence of the antigen-antibody complex improves 

the efficiency of immune systems considerably [91,92,212-214,216], It could 

be suggested that in the beginning of transmission season, adults showed 

lower protection against Plasmodium spp due to the absence of antigens, 

and they contracted infections, more or less at the same rate as children. 

However, soon afterward, the presence of antigens strongly stimulated the 

adult immune systems, resulted in higher clearance rates in adults than
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children. In other words, the complex of antigen-antibody might magnify the 

specific T cell functions and non-specific immunity.

Based on this suggestion, even an immune system which is activated due to 

a history of exposures has a delay in responding against Plasmodium spp 

functionally. This delay cannot be explained by humoral immunity because 

immunoglobulin has a long half-life in serum and attaches rapidly to the 

antigens [219,220], However, cellular immunity might need more time, since 

it needs the complex of antigen-antibody, processed antigens by Antigen- 

Presenting Cells (APC) conjugated with Major Histocompatibility Complex 

(MHC) class II proteins, and a wide range of cytokines [225-231],

In summary, it could be inferred that, although long term acquired
«

immunity plays an important role against infections, it needs to be 

stimulated by an antigen-antibody complex and processed antigen epitopes.

Some longitudinal studies in Irian-Jaya compared the prevalence of 

parasitaemia in native people with trans-migrants from an area of low 

malaria transmission. In the first year of exposure, the risks of infection in 

trans-migrants were higher than in native people in all age groups. After 14 

months however, children showed a higher density of parasites, and 

malaria-naïve adults acquired partial resistance to infection faster than 

naïve children. Based on this finding, writers concluded that protective 

immunity against P. falciparum developed after only a relatively brief period 

of exposure, and the efficacy of protection was profoundly affected by a 

function of age unrelated to cumulative exposure. In other words, the 

degree of protection was governed by recent exposure and age, independent 

of history of chronic heavy exposure [221-224,232],
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Although intrinsic features of the immune system that change with age may 

determine key characteristics of the immune response to the infection, non­

specific immunity, i.e., activated T cells even with non specific antigens, 

might also have a role [221]. The interaction between age and acquired 

immunity might be explained by the higher non-specific immunity in adults, 

perhaps acquired via other infections.

Compared to other species, P. falciparum had the highest clearance rate

based on the ORs between two consecutive positive slides (Sections 7.6.3.4

and 7.6.3.5). This implies that P. falciparum stimulated the immune system

more efficiently than other species. Section 7.6.3.4 explains this finding
$

based on greater exposure to P. falciparum in the past and a higher density 

of P. falciparum as a result of recent infections.

7.7.5. Cross-immunity between species

There is little published information on the cross-immunity between 

Plasmodium spp and most of it is from experimental studies in animals 

which showed that cross-immunity between species did not give 

considerable protection [90,142]. Bruce et al. (2000) showed that 

Plasmodium spp are independent in humans [134], Section 7.6.3.7 explains 

the findings regarding the ORs between Plasmodium spp. Based on these 

results, it is very difficult to differentiate the impact of cross-immunity 

between Plasmodium spp and the short-term suppressive effect. The 

protective effect of the acquired long-term immunity against each species 

was low, which goes against the cross-immunity hypothesis.
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According to the presented results, it seems that cross-immunity did not 

have any considerable impact on the burden of infections even in older 

people. However, the role of non-specific immunity should be taken into 

account (Section 7.7.4). This means that even without specific cross 

immunity between species, infection with one species activates non-specific 

immunity, which might boost the strength of immunity against other 

species as well.

7.7.6. Suppressive effect of P. fa lc ip a ru m

It is not possible to differentiate the cross-immunity and suppressive effects 

between Plasmodium spp. The, suppressive effect may be mediated by 

competition for host cells or nutrients, or by heterologous immunity, which 

is the same mechanism for cross-immunity. To be more specific about the 

role of immunity in these two effects, it can be said that cross-immunity 

protects subjects against the acquisition of a second infection or increases 

its clearance rate, while the suppressive effect just prevents the 

parasitaemia of the second species for a short term while the dominant 

species has its peak.

In agreement with others findings, the results of this analysis showed that 

P. falciparum suppressed the expression of other species. Looareesuwan et 

al. (1987) [135] found considerable P. mvax relapses, more than expected 

by chance, after treatment of P. falciparum cases and explained these 

findings by the suppressive effect between Plasmodium spp. The 

suppression hypothesis is supported by data derived from the simultaneous 

inoculation of two Plasmodium spp into laboratory animals; many studies
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have shown that one or both species are suppressed [136,140]. However, 

the suppressed species rebounds after the other species has abated, and 

may show a prolonged infection [136,140].

There is consistency between the cross-sectional and longitudinal results in 

this analysis about the suppressive effect of P. falciparum on the other 

species, particularly P. malariae.

P. malariae peaked in the dry-hot season around 6 months after the 

P. falciparum peak in the transmission season (Section 7.6.1.3). However, 

the P. malariae infant conversion rate had a strong positive association 

with Vectorial capacity [138]. Longitudinal analysis showed that a 

considerable proportion of P. malariae positives in the dry-hot season had a 

positive P. falciparum slide in their previous survey (Section 7.6.3.3). In 

addition, mixed infected slides were detected mostly after the wet season, 

which again, can be explained by the suppressive effect of P. falciparum as 

the dominant species. That is, as P. falciparum density declined following 

the transmission season, the chance to become patent increased in other 

previously masked species (Section 7.6.2.3).

Section 7.6.3.5 shows that the ORs between P. falciparum in the former 

survey and other species in the latter survey are greater than their reverse 

temporal order. Because of the non significant cross-immunity impact, the 

protective effects of other species against P. falciparum are particularly 

questionable. The suppressive effect of P. falciparum on the other species in 

the former survey seems the only plausible explanation (Section 4.4.1).
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Furthermore, the suppressive effect of P. falciparum can explain the higher 

daily acquisition rates of P. malariae and P. ovale in P. falciparum positive 

people (Section 7.6.3.6).

Table 7-2, which summarizes the impact of interventions in the Garki 

project, showed that in contrast to P. falciparum and P. ovale, P. malariae 

frequency did not drop by using insecticide in the short term. This finding 

could be also explained by the suppressive effect of P. falciparum as follows. 

The P. falciparum incidence decreased as the result of insecticide impact on 

the Vectorial capacity. In turn, the suppressive force of P. falciparum on the 

other species decreased and a reverse surge in the P. malariae incidence 

was observed.
9

The risks of P. malariae and P. ovale had positive associations with the 

P. falciparum density. If there had been competition, it would be expected 

that a high density of P. falciparum infection would give other species less 

chance of expression.

Alternatively, the suppression phenomenon could be considered as a type of 

cross-immunity which does not eliminate other species, but pushes their 

densities to undetectable levels. Thus, it can be concluded that 

P. falciparum has a considerable suppressive effect on the other species, 

particularly P. malariae, and that this effect is mediated by immunological 

inferences rather than competition for host cells or nutrients. This effect 

depends on previous exposure experiences. The effect fades just after the 

P. falciparum peak. This suggests that the complex of antigen-antibody may 

inhibit the proliferation of other species. This hypothesis can be used to
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explain the differences between interactions in all age groups and their 

temporal variation.

7.7.7. Addressing the study objectives

The main findings in this study showed very strong positive associations 

between the risks of Plasmodium spp infections in both cross-sectional and 

longitudinal analyses. However, the associations were stronger in the cross- 

sectional analysis. The intra-person clustering effect was stronger for 

P. falciparum infection and gill types of ORs were greater by far in infants. 

ORs between species were significantly affected by age, P. falciparum blood 

density, season and location.

These findings, compatible with findings in other studies, can be explained 

by the heterogeneity in infection risks and their temporal and spatial 

variations, the suppressive effect of P. falciparum on the other species and 

immunological pathways. In addition, it can be implied that immunological 

mechanisms had an important role on the suppressive effects of 

P. falciparum on the other species.
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CHAPTER 8

8. Overall discussion

This chapter reviews the main findings and expresses the final conclusions. 

It concludes by formulating initiatives for further research.

8.1. The relationship between Part One and Two
»

This thesis explored two aspects of malaria, linked by the need to 

understand the differing epidemiology of Plasmodium spp. The first part 

assessed the feasibility of an early warning system based on climate and 

remote sensing data. The second part was about the interaction between 

Plasmodium spp.

The spatial and temporal variations of Plasmodium spp were important in 

both parts. The first part, assessed whether the temporal and spatial 

discrepancies between species could decrease the accuracy of the 

predictions. The second part discussed whether these discrepancies were 

entirely due to the interaction between species.

Acceding to the results these, it seems that species-specific models would 

improve the predictions due to the different impacts of climate on the 

transmission of species and the interaction between them. In addition, the
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temporal and spatial spans of studies may change the overall pattern of the 

interactions between species.

8.2. Feasibility of prediction models

It is well known that climate affects malaria epidemics. Also, there has been 

a great deal of research on the modelling of malaria based on meteorological 

factors. However, most of these studies examined the accuracy of their 

models based on malaria data in epidemic areas mostly in Africa. In 

addition, Geographical Information System (GIS) and Remote Sensing (RS) 

data has not been used in this field until recently.

For these reasons, the decision to assess the feasibility of an early warning 

system in an endemic area in Iran with seasoned malaria using GIS and RS 

data was made.

The main goal in this part of thesis was to evaluate the accuracies of the 

models and assess their practical applications in the field. It also focused on 

the scientific aspects of the models and introduced some new 

epidemiological methods.

The selected area, Kahnooj district, had an acceptable surveillance system 

and its health system cooperated fully to provide all required data. In 

addition, its ground climate data has been collected in a standard format 

and archived systematically for the past 30 years.
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8.2.1. Main findings

These analyses assessed the feasibility of an early warning system and 

provided an in-depth exploration of the epidemiology of malaria in Kahnooj 

in terms of the malaria risk factors, the seasonal variations, P. vivax 

relapse rate and therapeutic failure rate.

To address the main objectives of this part of the thesis, accuracy of models 

were evaluated by comparing the model predictions to the observed 

numbers of malaria cases in the checking part of the data.

According to the findings,, it seems that P. falciparum and P. vivax have 

different sensitivities to the meteorological factors, and that these 

differences explain most of the discrepancies in their temporal variations. 

Hence, it is suggested that distinct species-specific models based upon 

climate fit the variations more precisely.

The findings from this part of the thesis also imply that the models based 

on the ground climate data were more appropriate than the models based 

on the remote sensing data. However, for final conclusions, more studies 

are needed to assess the accuracies of models with remote sensing data in 

finer scale and with more data, particularly rainfall estimation.

The models predicted the number of malaria cases one month ahead, which 

is enough for the health system to reinforce its control programmes in high 

risk areas.

The models also predicted the number of cases at three distinct spatial 

levels: district, subsubdistrict (SSD) and village levels. The accuracies of 

these models had a negative relationship with their spatial levels, i.e., the
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models at the district and village levels had maximum and minimum 

accuracies, respectively.

The accuracies of the predictions at the district level were improved by 

using the ground climate data. Although predictions at the district level 

may help to establish an early warning system to improve the effectiveness 

of control programmes, from a practical point of view, it seems that 

predictions at the SSD level would be more appropriate.

In this study, ground climate data were available only at the district level 

from the synoptic centre in Kahnooj city, which may be one of the main 

reasons for the low accuracies observed in the SSD and village models.

Measuring the required meteorological factors for these models is very 

simple and does not need any special expensive equipment or highly skilled 

personnel. Climatological centres are located in different parts of the district 

and measure the required meteorological factors continuously. Nonetheless, 

the reporting system to district and province centres is not as well- 

established as the reporting system of the synoptic centre. Therefore, it 

seems that with a small effort, the system could be improved to provide 

accurate and up-to-data climate data, even at the SSD level, which may 

improve the accuracy of the SSD model considerably.

As final conclusion it seems that the model based on ground climate data is 

feasible to predict the number of cases one month ahead in the district level.
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8.2.2. Research initiatives for further studies

1. This study did not quantify the feasibility of the predictions in terms 

of cost-effectiveness. Further cost-effectiveness analysis could 

provide much more objective measures to judge the feasibility of the 

models.

2. RS data with finer resolution and with greater number of variables 

such as rainfall and different vegetation indices may improve the 

model accuracies. Therefore, further studies in this field may help to 

clarify the feasibility of the RS data in the prediction of malaria 

epidemics.

3. It may be worth to assess the feasibility of the models based on 

extrapolated meteorological data extracted from the data of synoptic 

centres around the Kahnooj district for every village and SSD. These 

models may show whether synoptic data are enough to improve the 

accuracies of the SSD models or whether meteorological 

measurements from each SSD are also needed.

8.3. The interactions between species

The second part of this thesis assessed the interactions between species 

from different points of view: systematic review of the published literature 

and meta-analysis, modelling, and extended analyses of the Garki data. 

New hypotheses, compatible with the current knowledge about the 

interaction between species, were also generated and tested.
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The interaction between species is highly dependant on the type of study 

and many environmental and biological factors which introduce a wide 

heterogeneity in the interactions between species. Exploring this issue can 

expand our knowledge about the immunology and epidemiology of malaria. 

This thesis discussed the possible impacts of acquired immunity and cross 

immunity and suppressive effects between Plasmodium spp.

8.3.1. Main findings

The meta-analysis showed an overall negative association between 

P. falciparum and P. vivax. However, a very wide range of associations were 

observed among studies. This heterogeneity was explained partly by the 

prevalence of infections and temporal span of studies.

The modelling chapter showed that within-population heterogeneity in 

infection risk (due to heterogeneity either in the exposure risks or in the 

susceptibility to infections) may distort the observed OR and can, by itself, 

explain ORs even as great as ten, which have been observed in some 

studies.

The Garki data were analysed with two approaches, cross-sectional and 

longitudinal. The ORs in the longitudinal analysis were less than in the 

cross-sectional analysis. ORs were also found to be dependent on the age 

group of subjects, season and P. falciparum densities.

In conclusion, an explanation compatible with all the findings in other 

studies seems to necessitate an important role for acquired immunity, 

possibly via the combination of the humoral and cellular pathways. 

Nevertheless, the immune system needs constant exposure to antigens to
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maintain effectiveness against Plasmodium infections. It seems that the 

cross-immunity between Plasmodium spp does not protect against 

infections, although the role of unspecific immunity cannot be ruled out.

The results also suggest that the suppressive effect of P. falciparum on the

other species, particularly P. malariae, is considerable. It other words,

P. falciparum may push the densities of the other species to levels

undetectable by microscopy when it has its blood stage peak, but the

suppressed species reappear in the blood just after the P. falciparum surge.

This suppressive effect cannot be explained entirely by the competition

between species for red blood cells or nutrients. Therefore, it seems that

other immunological pathways, such as non-specific immunity, may
§

decrease the blood densities of other species when the concentration of the 

complex between antibodies and P. falciparum antigens is high.

8.3.2. Research initiatives for further studies

1. The meta-analysis chapter focused on the association between 

P. falciparum and P. vivax. To clarify the associations between other 

Plasmodium spp, a systematic literature review and meta-analysis is 

necessary.

2. Although there are clear findings about the suppressive effect of 

P. falciparum on the other species, the current knowledge of possible 

mechanisms is poor. It seems that more attention to this area, 

particularly its molecular aspects, may add valuable information to 

our knowledge about the biology of Plasmodium spp in the human 

body and the reaction of the immune system.
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3. Although this study tried to explore sources of the heterogeneity in 

the interactions between species, further studies are needed to 

investigate other possible aspects of this issue, such as the role of 

specific and non-specific immunity.

4. Vaccine against one Plasmodium species may indirectly change 

patterns and distributions of the others. These effects may be partly 

due to the interaction between species, although other factors, such 

as health seeking behaviour, are also important. This could be a 

valuable topic for further studies to evaluate and model the possible 

impact of such a vaccine in the global burden of malaria.
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Appendices

1. Checklists of reviewing papers in meta-analysis

1.1. Abstracts

Citation identification number:

1. What is the main object of the study?
□ Evaluation of the interactions between different 

Plasmodium infections in humans
□ Estimation of the prevalence/incidence of malaria
□ Evaluation of the effect of control programs (bed-nets, 

vaccine...)
□ Assessment of the efficacy of malaria treatment
□ Evaluation of the new techniques of diagnosis of malaria
□ Others:

t

2. Did they choose random sample of cases?
□ Yes
□ No
□ Not mentioned
□ Not relevant

3. Did they exclude immigrant cases?
□ Yes
□ No
□ Not mentioned
□ Not relevant

4. Is the location of study mentioned in the abstract?
□ Yes
□ Yes, but not clearly
□ No
□ Not relevant

5. Did they calculate the incidence/prevalence of malaria?
□ Yes
□ No
□ Not clearly stated in the abstract
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6. Did they state to the frequency of mixed infections in the abstract?
□ Yes
□ No
□ No, but they mentioned that they calculate them

7. Does it have a cross sectional component?
□ Yes
□ No

Final conclusion  
This paper

1. is not relevant to the aim of meta-analysis*
2. does not have the required information
3. for the final decision the full text of the paper is 

needed
4. is suitable for this meta-analysis

1 P ap e rs  th at w e re  not con s id e red  to b e  re levan t w e re  th ose  in  w h ich :
1. T h e  ob jectives w e re  not re levan t to the a im  o f  the m eta -an a ly s is  

(op tions 3 ,4  o r  5 in  the first question , o r  op tion  2 o f  the seventh  
question )

2. T h e  c a se s  w e re  ch o sen  n o n -ra n d o m ly  (option  2 in  the secon d  
question )

3. T h e  im m igran t c a se s  w e re  not exc lu d ed  (option  2 in  the th ird  
question )

4. T h e  frequ en cy  o f  m a la r ia  a n d  m ixed  in fections w e re  not sta ted  in  the  
p a p e r  (option  2 in  the fifth  a n d  s ixth  qu estion s ).
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1.2. Full text

General information about the paper
ID number of paper: Name of first author: Date of paper:
Date of data collection:

Type of publication: journal report
Age group:

Methodological issues
The main object of paper

assessment of the incidence/prevalence of malaria 
others

Location: Africa Asia America Australia Europe
Name of country: Other geographical information:
Name of area:
Type of climate:
Altitude:
TREATMENT STRATEGY:

Epidemiology of malaria in the region
Stable or endemic malaria

Hypoendemic,
Mesoendemic
Hyperendemic
Holoendemic

Unstable or epidemic malaria

Results
Number of examined blood slides:

The number of positive slides for: 
falciparum 
vivax 
Mixed

Duration of study 
(temporal distribution)

Area of study 
(spatial distribution)
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2. The computation of daily conversion rates

For each species, transition frequencies between consecutive surveys are 

N++, N+ N- + and N- where N+ + is the number of persons positive at 

both surveys, N+- the number positive at the first survey and negative at the 

second one, etc.

The h and r are the daily acquisition and clearance rates from detectable 

parasitaemia, Sh2 and sp their variances, and t the average of days between 

two consecutive surveys.

r=(̂ >ta<ÌT(ST»>
where.

N - +

2 (S', ( a V  +  P U ) 2 +  S2 ( a U  -  a V ) 2
1 ~~ 4

Y

2 ( S2( j3V +  a U ) 2 + S I ( / 3 U - / 3 V ) 2

where 
y - a  + P



3. Multi-level model Structure

The response variables were binary (whether or not the slide was positive or 

negative for species of interest). A variance components model was fitted to 

assess the average of Smear Positive Rate (SPR) along with between and 

within village variations.

I made a 3 level model; survey, person and villages were defined as the first, 

second and third level respectively, and were indicated by subscript of i, j  

and k.

Pijk is the probability of infection in blood slide of jth subject in ith survey in 

fcth village. This probability is as a function of the intercepts as follows:

logit (pijk)= fiijkXi, where fiijk=fii + Vik+Uijk
0

In the above equation, xi is a constant, and takes the value 1 for all slides. 

(Subscript “i” indicates the first level of variation and is explained in the 

following paragraphs). The coefficient fiijk indicates that the intercepts are 

modelled in this relationship as random at the second and third levels, Xi 

was used for this purpose since Xo was used to specify the variation at level 

one (survey). Logit is the link function in this model.

jSj is the fix term in second and third level and indicates the logit of SPR

Vik is the random term in the third level which shows between villages 

variation of SPR, and has a normal distribution with 0 mean and 

variance.

uijk is the random term in the second level which shows within village 

variance of SPR, i.e., between person variations, with a normal distribution 

with 0 mean and Qu variance.

The full model can be written as:

yijk = Pijk Soijk Xo
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where yÿk are the observed (0, 1) responses, xo'is equal to 1, and eoijkis level 

one random term which shows the level one residuals. The standard 

assumption is that the response r/ÿjt is distributed as binominal (1, p tJk). It 

could be written this distribution assumption in a general form as:

yak ~ Binomial (n̂ k, Pÿk)

Where in this case the n tJk are all equal to 1, so that the variance of eoÿjcis 

P i jk (l -P ijk )

The whole structure of the model is as follows:

y ijk 7%jk  ̂OyJc* 0

logit(%fc) =

f i l j k  =  P \  + V l k + U l jk
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