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The Ordered k-Median Problem:

Surrogate Models and Approximation Algorithms

Ali Aouad∗ Danny Segev†

Abstract

Motivated by applications in supply chain, network management, and machine learning,

a steady stream of research has been devoted to studying various computational aspects of

the ordered k-median problem, which subsumes traditional facility location problems (such

as median, center, p-centrum, etc.) through a unified modeling approach. Given a finite

metric space, the objective is to locate k facilities in order to minimize the ordered median

cost function. In its general form, this function penalizes the coverage distance of each vertex

by a multiplicative weight, depending on its ranking (or percentile) in the ordered list of

all coverage distances. While antecedent literature has focused on mathematical properties

of ordered median functions, integer programming methods, various heuristics, and special

cases, this problem was not studied thus far through the lens of approximation algorithms.

In particular, even on simple network topologies, such as trees or line graphs, obtaining

non-trivial approximation guarantees is an open question.

The main contribution of this paper is to devise the first provably-good approximation

algorithms for the ordered k-median problem. We develop a novel approach that relies

primarily on a surrogate model, where the ordered median function is replaced by a sim-

plified ranking-invariant functional form, via efficient enumeration. Surprisingly, while this

surrogate model is Ω(nΩ(1))-hard to approximate on general metrics, we obtain an O(log n)-

approximation for our original problem by employing local search methods on a smooth

variant of the surrogate function. In addition, an improved guarantee of 2 +  is obtained

on tree metrics by optimally solving the surrogate model through dynamic programming.

Finally, we show that the latter optimality gap is tight up to an O() term.
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1 Introduction

Motivated by applications in supply chain, network management, and machine learning [36, 35,

8, 38], the ordered k-median problem has been developing in the last two decades as a robust

and unified approach to facility location. In this setting, we are given a finite metric space (V, d)

on n vertices, a sequence of penalty weights λ1 ≥ · · · ≥ λn ≥ 0, and an integer parameter k.

For any set of facilities F ⊆ V , the ordered median cost function penalizes the distance d(v,F)

of each vertex v ∈ V to its nearest facility by a multiplicative weight, depending on its ranking

(or percentile) in the ordered list of all coverage distances. To formalize this criterion, for every

ranking i ∈ [n], let ∆F (i) be the i-th largest distance out of {d(v,F) : v ∈ V }, breaking ties

arbitrarily. Then, the largest distance ∆F (1) is penalized by λ1, the second largest distance

∆F (2) is penalized by λ2, so forth and so on, ensuring that higher-ranked vertices are penalized

more heavily than lower-ranked ones. Consequently, the objective is to compute a set F ⊆ V

of at most k facilities that minimizes the ordered median cost function:

ψ (F) =


i∈[n]
λi ·∆F (i) .

Relation to basic models. The ordered median framework develops a uniform and stan-

dardized approach to a wide array of facility location problems, where the cost function is

expressed in general form, applying arbitrary penalty weights depending on the percentile rank

of the coverage distances. This modeling framework subsumes some of the most fundamental

objective functions in location theory [11, 23, 3, 29, 9, 22, 48, 49], such as:

• k-median, which minimizes the average distance to the nearest facility, captured by setting

(λ1, . . . ,λn) = (1, . . . , 1).

• k-center, which minimizes the maximal coverage distance, with (λ1, . . . ,λn) = (1, 0, . . . , 0).

• k-centdian, which generalizes convex combinations of k-median and k-center.

• k-facility p-centrum, which minimizes the sum of the p-largest coverage distances, with

λ1 = · · · = λp = 1 and λp+1 = · · · = λn = 0.

In its utmost generality, the ordered median function allows one to formulate a continuum

of trade-offs between the k-median and k-center models (see, for example, [37, Chap. 1]), where

outlier vertices are penalized according to their percentile rank. For an in-depth discussion

of the theory and applications of facility location models, we refer the reader to books on this

general topic [34, 13] as well as to those dedicated specifically to ordered median models [27, 37].

Computational challenges. The modeling power discussed above poses additional techni-

cal obstacles, in comparison to specialized objectives such as k-median and k-center, which are

known to admit constant-factor approximations [11, 23, 3, 29, 9, 22]. The first challenge stems

from the dependency of the ordered median cost function on the relative distance rankings. For

example, due to the lack of clear separability properties [45], even on tree metrics or line graphs
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the ordered k-median problem is not known to admit efficient dynamic programming formu-

lations, unlike k-median and k-center, where such formulations are straightforward. Another

inherent challenge is presented by the nonlinearity of the ordered median cost function. In par-

ticular, we are not aware of any way to employ probabilistic embeddings into trees [4, 5, 18, 33]

to obtain approximation guarantees on general metrics, as further explained in Section 2.

Directly-related work. For these reasons, one line of research has focused on continuous

ordered median problems [42, 14, 17, 46, 37], where the metric space is induced by a network,

and facilities can be located in the interior of each edge. In such settings, polynomial-time

algorithms were obtained for locating a single facility [36, 25, 15, 17], while discrete multi-

facility problems were shown to be efficiently solvable under additional structure, such as that

combining tree metrics and specific forms of penalty weights [24, 48, 44]. A concurrent line

of research has focused on compact integer programming formulations [35], branch-and-bound

methods [6, 41], and various heuristics [12, 39, 47]. Along the way, several closely-related models

were studied, including line location, hub location, and inverse optimization problems [45, 47,

43, 20, 32, 28, 40, 41]. The book of Nickel and Puerto [37], dedicated to the ordered median

problem, provides a detailed review of this literature. Nevertheless, in spite of this substantial

body of work, obtaining any non-trivial approximation for the ordered k-median problem is still

an intriguing open question, even on simple network topologies, such as trees or line graphs.

Our results. The main contribution of this paper is to devise the first provably-good approx-

imation algorithms for the ordered k-median problem. As further explained in Section 2, we

develop a novel approach, that relies primarily on a surrogate model, where the ordered median

cost function is replaced by a ranking-invariant functional form. Given an error parameter

 > 0, the latter function is constructed through efficient enumeration, while ensuring that the

optimality loss resulting from this reduction is bounded by a factor of 2 + .

Surprisingly, while this surrogate model is Ω(nΩ(1))-hard to approximate by itself, we devise

an O(log n)-approximation for our original problem on general metrics. Specifically, we con-

struct a smooth variant of the surrogate function, which is optimized by employing local search

methods. In addition, we show that an improved guarantee of 2 +  can be obtained on tree

metrics, by optimally solving the surrogate model through dynamic programming. We argue

that this optimality gap is tight up to an O() term by introducing a family of instances that

fool our surrogate construction into having the desired gap.

2 Technical Overview

As previously mentioned, the main complicating feature of the ordered k-median problem stems

from the cost function ψ, which depends on: (1) The distance of each vertex to its nearest facility,

and (2) The relative ranking of these vertices with respect to their associated distances. The

crux of our method is to construct an alternative cost function which is invariant to the relative

distance ranking and only depends on item (1). In this setting, at the expense of incurring a

constant-factor loss in optimality, the new cost function can be optimized and analyzed with

greater ease, as the cost terms are separable conditional on the individual distance of each
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vertex. In what follows, we provide a high-level outline of our algorithmic approach and its

analysis.

Step 1: Introducing the surrogate cost function. In Sections 3.1 and 3.2, we introduce

an alternative cost function ψsg, referred to as the surrogate of ψ. To this end, we develop

a polynomial-time procedure for guessing certain structural properties of the optimal set of

facilities F∗ with respect to the cost function ψ. This structural information is leveraged to

eliminate ranking-based dependencies between different vertices, and thus motivates studying

the surrogate cost function ψsg. In order to better fit our approach to various metrics, we also

introduce a family of scaled surrogate functions, denoted by {ψsg,α}, where α ≥ 1 is a scaling

parameter whose value will be determined according to the type of metric considered.

Step 2: Analyzing the surrogate problem. In Section 3.3, our objective is to bound

the optimality gap due to considering the scaled surrogate function ψsg,α, showing that the

latter approximates the original cost function ψ within a constant factor. However, as shown

in Appendix A, the resulting surrogate problem is Ω(nΩ(1))-hard to approximate on general

metrics. Motivated by this finding, we prove that the desired performance guarantees can

alternatively be derived, as long as ‘good’ solutions for ψsg,α can be computed efficiently, noting

that such ‘good’ solutions are not approximations in the standard sense. Instead, we utilize

the notion of a β-comparable solution, that describes a set of facilities whose surrogate cost is

at most a β-factor away from the optimal cost of the original instance (rather than from the

optimal surrogate cost).

Step 3a: Approximation on general metrics. On general metrics, we prove that an

appropriately scaled surrogate function admits O(log n)-comparable solutions in polynomial

time. Technically speaking, such solutions are computed through local search methods, by

considering a smooth variant of the scaled surrogate function, created through exponential

interpolation. The specifics of our algorithm are given in Section 4.

Theorem 2.1. On general metrics, the ordered k-median problem can be approximated within

factor O(log n) in polynomial time.

Step 3b: Approximation on tree metrics. When the underlying metric is induced by a

tree, we show that the surrogate function ψsg can indeed be solved to optimality in polynomial

time. For this purpose, we exploit the separable nature of ψsg to compute an optimal set of

facilities by means of dynamic programming. Combined with the established gap between ψsg

and ψ, we derive the next result.

Theorem 2.2. On tree metrics, the ordered k-median problem can be approximated within

factor 2 +  in time O(nO((1/)·log(1/))), for any  ∈ (0, 1).

To complement this result, we show that our analysis is essentially tight for tree metrics, by

presenting a construction where the optimal surrogate solution has an optimality gap of 2−O()

with respect to the ordered median cost function. These results are presented in Section 5.
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Relationships between tree metrics and general metrics. It is worth noting that we are

not aware of any way to derive an approximation guarantee on general metrics using probabilistic

embeddings into tree metrics [4, 5, 18]. Indeed, the distortion bounds in such embeddings hold

for each single edge, in expectation. However, in our setting, the ordered median cost function is

highly non-linear due to its dependency on the relative distance rankings. As a result, evaluating

the joint distortion effects across all edges is instrumental to obtain approximation guarantees

in this context, which does not seem possible using existing methods. For similar reasons,

even stronger distortion guarantees, such as maximum-gradient embeddings [33] or those into

spanning trees [2, 16, 1], seem insufficient for our purposes.

3 Surrogate Functions

3.1 Preprocessing

As a preliminary step, we describe a rather standard transformation of the original instance,

in order to reduce the variability in the penalty weights λ1, . . . ,λn, at the cost of a negligible

loss in optimality. Due to this alteration, the optimal set of facilities could very well change

in the modified instance; throughout the paper, we keep using F∗ to denote the optimal set of

facilities for the original instance.

Initial guesses. In what follows, we assume that the precise value of∆F∗(1), i.e., the maximal

distance between a vertex in V and its nearest facility in F∗, is known in advance. This

assumption can be enforced by observing that ∆F∗(1) corresponds to the distance between

some pair of vertices, and therefore, there are only O(n2) values to be tested. In addition, given

an accuracy parameter  ∈ (0, 1), let imin be the minimal ranking i ∈ [n] for which λi ≤ ·λ1
n or

∆F∗(i) ≤ ∆F∗ (1)
n . If none of the rankings satisfies this property, we set imin = n+1. Note that

imin can easily be guessed by testing each of the values 1, . . . , n+ 1 as a candidate.

Rounding the penalty weights. We now create a modified sequence of weights λ̃1 ≥ · · · ≥
λ̃n that dominates λ1 ≥ · · · ≥ λn, i.e., λ̃i ≥ λi for every i ∈ [n]. To this end, the modified

weights are obtained by rounding up every λi as follows:

λ̃i =


λi, if i < imin

max{λimin ,
λ1
n }, if i ≥ imin

Recalling that ψ stands for the cost function with respect to the original weights λi, let us

denote by ψ̃ the one with respect to the rounded-up weights λ̃i. Given the above rounding

operation, ψ(F) ≤ ψ̃(F) for any set of facilities F ⊆ V . The next lemma, whose proof appears

in Appendix B.1, shows that the cost of F∗ under the modified function ψ̃ is at most a (1 + )-

factor away from the original optimal cost.

Lemma 3.1. ψ̃(F∗) ≤ (1 + ) · ψ(F∗).

It follows that any β-approximate solution for ψ̃ provides a (1 + ) · β-approximate solution

with respect to the original cost function ψ. Therefore, following this modification, we overload
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on notation and use λ1, . . . ,λn to denote the modified weights, in place of λ̃1, . . . , λ̃n, and ψ as

a substitute to ψ̃. By construction, we have just ensured that λimin = λimin+1 = · · · = λn and

λn ≥ λ1/n.

3.2 Defining the surrogate cost function

To better understand the next steps of our construction, we advise the reader to consult Figure 1.

Partition into distance classes. Recall that the precise value of∆F∗(1) was guessed exactly,

as part of the initial preprocessing step. With this parameter at hand, letting P = ⌈log1+(
n
 )⌉ =

O(1 log
n
 ), we partition the interval (0,∞) geometrically by powers of 1 +  into the segments

{Dp}p∈Z, where

Dp =


 ·∆F∗(1)

n
· (1 + )P−p−1,

 ·∆F∗(1)

n
· (1 + )P−p


.

Note that, by definition of P , the segment D0 contains the maximal distance ∆F∗(1). In the

sequel, for any d ∈ Dp, we say that p is the distance class of d, and use [p]0 to denote the set

{0, 1, . . . , p}.
Next, for every p ∈ [P − 1]0, we define the collection of rankings I∗

p ⊆ [n] whose distance

value in F∗ resides within the segment Dp, i.e., I∗
p = {i ∈ [n] : ∆F∗(i) ∈ Dp}. In addition, we

define I∗
P = {i ∈ [n] : ∆F∗(i) ∈ [0,maxDP ]}. Consequently, I∗

0 , . . . , I∗
P is a partition of [n] into

pairwise-disjoint subintervals in left-to-right order.

Series13( Series16(

Ranking 

Distance 
�F⇤(i)

I⇤
0 I⇤

1 I⇤
2

�(1)

�avg(1)Penalty 
weight 

�avg�

i

�avg(2)

�avg(0)

⇥ 1

1 + ✏

⇥ 1

1 + ✏

Figure 1: Schematic illustration of how the surrogate function is constructed.
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Approximately guessing λavg values. For every p ∈ [P ]0, we introduce the average penalty

weight:

λavg (p) =


1

|I∗
p |
·


i∈I∗
p
λi, if I∗

p ∕= ∅
min{λj : j ∈


p′<p I∗

p′}, if I∗
p = ∅

(1)

In other words, when the interval I∗
p is not empty, λavg(p) is the average penalty weight across

I∗
p . Otherwise, this value corresponds to the minimal penalty weight in the first non-empty

interval to the left of I∗
p . The latter case is indeed well-defined since the first interval I∗

0 is

non-empty, due to having ∆F∗(1) ∈ D0, as mentioned above.

We now argue that, by considering a polynomial number of possible guesses, we can obtain an

over-estimate λguess(p) for the quantity λavg(p), simultaneously for all p ∈ [P ]0. As subsequently

shown, these estimates will satisfy

1

1 + 
· λguess(p) ≤ λavg(p) ≤ λguess(p) , (2)

and will also form a non-increasing sequence λguess(0) ≥ · · · ≥ λguess(P ). To this end, by

definition of λavg, it is easy to verify that λavg(0) ≥ · · · ≥ λavg(P ). Thus, there exists a non-

increasing sequence of integers µ0 ≥ · · · ≥ µP for which (1+ )µp−1 ≤ λavg(p) ≤ (1+ )µp , where

each (1 + )µp will serve as the value of our estimate λguess(p). The important observation is

that µ0 − µP = O(1 log
n
 ) since λ1/λn ≤ n/, following the preprocessing step of Section 3.1.

Therefore, basic counting arguments imply that the number of sequences µ0 ≥ · · · ≥ µP to

consider is O(exp(O((1/) · log(n/)))) = O(nO((1/)·log(1/))).

Defining the surrogate cost functions. We begin by defining the penalty function λsg :

(0,∞) → R+ as follows:

λsg(d) =






λguess(P ), if d ≤ maxDP

λguess(p), if d ∈ Dp with p ∈ [P − 1]0

λ1, if d > maxD0

Observation 3.2. λsg is a non-decreasing left-continuous step function.

We are now ready to specify the surrogate cost function, for any set of facilities F ⊆ V ,

ψsg(F) =


v∈V
λsg (d (v,F)) · d(v,F) ,

where the marginal cost associated with each vertex v ∈ V is expressed as λsg(d(v,F)) ·d(v,F),

which is clearly a function of the distance d(v,F) and nothing more. In addition, we define

the scaled penalty function λsg,α(d) = λsg(d/α), where α ≥ 1 is the scaling parameter, whose

precise value will be determined based on the metric considered, potentially depending on the

number of vertices n. Consequently, for every set of facilities F ⊆ V , the scaled surrogate cost

function is defined as

ψsg,α(F) =


v∈V
λsg,α (d (v,F)) · d(v,F) =



i∈[n]
λsg,α (∆F (i)) ·∆F (i) .
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The next lemma shows that, regardless of the scaling parameter α, the surrogate cost associated

with the optimal set of facilities F∗ is at most a (1+5)-factor away from the true optimal cost.

Lemma 3.3. ψsg,α (F∗) ≤ (1 + 5) · ψ (F∗), for any α ≥ 1.

Proof. Based on the preceding discussion, we have

ψsg,α (F∗) =


i∈[n]
λsg


∆F∗ (i)

α


·∆F∗ (i)

≤


i∈[n]
λsg (∆F∗ (i)) ·∆F∗ (i) (3)

=

P

p=0



i∈I∗
p

λsg (∆F∗ (i)) ·∆F∗ (i) (4)

≤
P

p=0



i∈I∗
p

λguess (p) ·maxDp (5)

≤ (1 + ) ·
P

p=0

I∗
p

 · λavg(p) ·maxDp (6)

= (1 + ) ·
P

p=0



i∈I∗
p

λi ·maxDp (7)

≤ (1 + )2 ·




P−1

p=0



i∈I∗
p

λi ·∆F∗(i)



+ (1 + ) · |I∗
P | · λ1 ·

∆F∗(1)

n
(8)

≤ (1 + 5) · ψ (F∗) .

Here, inequality (3) holds since α ≥ 1 and since the function λsg is non-decreasing (Observa-

tion 3.2). Equality (4) holds since the intervals I∗
0 , . . . , I∗

P form a partition of [n]. The next

inequality (5) follow from the definition of λsg, while inequality (6) holds due to the accuracy of

our guessing procedure (2). Equality (7) is obtained by observing that, for non-empty intervals

I∗
p , we have |I∗

p | · λavg(p) =


i∈I∗
p
λi (see (1)). Inequality (8) holds since, when p ∈ [P − 1]0,

each of the rankings i ∈ I∗
p has ∆F∗(i) ∈ Dp, and therefore, maxDp ≤ (1 + ) ·∆F∗(i), whereas

for the last interval I∗
P , we have by construction maxDP = 

n ·∆F∗(1).

3.3 Relating between the original and surrogate functions

We say that a feasible set of facilities F ⊆ V is a β-comparable solution for a cost function ψ̂

if ψ̂(F) ≤ β · ψ(F∗). In contrast to a standard approximation, the latter inequality compares

the surrogate cost ψ̂(F) directly against the original optimal cost ψ(F∗), which is generally

different than the optimal surrogate cost. In the remainder of this section, we argue that

any β-comparable solution for the surrogate cost function ψsg,α provides an O(max{α,β})-
approximation for the original ordered k-median problem, as stated in the next theorem. In

particular, this result implies that any optimal solution for the surrogate cost function ψsg is a

(2 +O())-approximation with respect to the original instance.
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Theorem 3.4. Let F ⊆ V be a β-comparable set of facilities for the cost function ψsg,α. Then,

ψ(F) ≤ (2 + 2) ·max{α,β} · ψ(F∗).

Benchmark sequence. The analysis proceeds by comparing how the sequence of ranked

distances ∆F (1), . . . ,∆F (n) evolves with respect to an appropriate benchmark, chosen as

∆∗α = ( α ·∆F∗(1) , α ·∆F∗(2) , . . . , α ·∆F∗(n) ) .

Note that this ranked sequence of distances does not necessarily correspond to any feasible set

of facilities; it is only defined to be compared with ∆F , for purposes of analysis. In addition,

we define a cost value associated with the benchmark:

ϕ (∆∗α) =


i∈[n]
λi · (α ·∆F∗(i)) = α · ψ (F∗) . (9)

Auxiliary function. We define an auxiliary function sign : [n] → {+,−, 0}, that allows us

to identify the rankings where the sequence ∆F (1), . . . ,∆F (n) significantly deviates from the

benchmark sequence ∆∗α:

sign(i) =






+, if ∆F (i) < α∆F∗(i)/(1 + ) ,

−, if ∆F (i) > (1 + ) · α∆F∗(i) ,

0, if α∆F∗(i)/(1 + ) ≤ ∆F (i) ≤ (1 + ) · α∆F∗(i) .

The next lemma establishes certain ‘stabilization’ properties, which are crucial ingredients of

our analysis. Essentially, whenever the sequence ∆F is beaten by the benchmark ∆∗α, i.e., the

sign function is negative, the surrogate cost ψsg,α applies a penalty weight larger than the true

cost ψ. Thus, the surrogate setting is being conservative by overestimating the penalty weights.

Conversely, whenever the sequence ∆F outperforms ∆∗α, i.e., the sign function is positive, ψsg,α

applies a penalty weight smaller than in ψ. Here, the surrogate setting is conservative in a

different way, by diminishing the fraction of the cost where ∆F is smaller than ∆∗α.

Lemma 3.5. For every ranking i ∈ [n], we have:

1. If sign(i) = − then λsg,α(∆F (i)) ≥ λi.

2. If sign(i) = + then λsg,α(∆F (i)) ≤ (1 + ) · λi.

Proof. To prove claim 1, consider some i ∈ [n] for which sign(i) = −. By definition of the sign

function, we have ∆F (i) > (1 + ) · α ·∆F∗(i). In this case,

λsg,α (∆F (i)) = λsg


∆F (i)

α


≥ λsg ((1 + ) ·∆F∗(i)) ,

where the last equality holds due to the monotonicity of λsg (Observation 3.2). From this point

on, we distinguish between three cases based on the value of π∗(i) ∈ [P ]0, which denotes the

index of the interval in I∗
0 , . . . , I∗

P that contains i, i.e., i ∈ I∗
π∗(i).
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Case 1: π∗(i) = 0. Since the distance classes {Dp}p∈Z are delimited by powers of 1 + , it

follows that (1 + ) ·∆F∗(i) > maxDπ∗(i) = maxD0. Therefore, λsg((1 + ) ·∆F∗(i)) = λ1, and

we get λsg,α(∆F (i)) ≥ λ1 ≥ λi, where the last inequality holds since λ1 ≥ · · · ≥ λn.

Case 2: π∗(i) = P . In this case, the distance class of (1 + ) ·∆F∗(i) is greater or equal to

P − 1. Hence, we obtain

λsg ((1 + ) ·∆F∗(i)) ≥ min {λguess(P − 1),λguess(P )}

= λguess(P )

≥ λavg (P )

=
1

|I∗
P |

·


j∈I∗
P

λj

= λi ,

where the first inequality holds since λguess(0) ≥ · · · ≥ λguess(P ), and the second inequality is

due to (2). The second equality proceeds from the definition of λavg (see (1)), by observing

that the interval I∗
P is non-empty since in particular i ∈ I∗

P . To understand the last equality,

note that i ∈ I∗
P and the penalty weights are uniform across the interval I∗

P , since by our

preprocessing step λimin = λimin+1 = · · · = λn and I∗
P ⊆ [imin, n]. Indeed, for any j ∈ I∗

P , we

have ∆F∗(j) ≤ ∆F∗(1)/n, meaning that j ≥ imin, given the definition of imin in Section 3.1.

Case 3: 1 ≤ π∗(i) ≤ P − 1. In this case, we necessarily have ∆F∗(i) ∈ Dπ∗(i), and therefore

(1 + ) ·∆F∗(i) ∈ Dπ∗(i)−1. Hence,

λsg ((1 + ) ·∆F∗(i)) = λguess (π
∗(i)− 1) ≥ λavg (π

∗(i)− 1) ≥ λi ,

where the first inequality holds due to the accuracy of the guessing procedure (2). To understand

the last inequality, observe that: (i) when I∗
π∗(i)−1 is non-empty, λavg (π

∗(i)− 1) is defined as

the average penalty weight in the interval I∗
π∗(i)−1; (ii) when I∗

π∗(i)−1 is empty, λavg (π
∗(i)− 1)

is the minimal penalty weight in the first non-empty interval to the left of I∗
π∗(i). The inequality

follows from the position of ranking i relative to the intervals considered, since λ1 ≥ · · · ≥ λn.

Since the proof of claim 2 makes uses of symmetrical arguments, it is deferred to Ap-

pendix B.2.

Decomposition of cost functions. We now describe a decomposition of the cost functions

defined so far, by slicing the sequence of distances according to the sign function value:

ψsg,α (F) =


i:sign(i)=+

λsg,α (∆F (i)) ·∆F (i)

  
ψ+
sg,α(F)

+


i:sign(i)=−
λsg,α (∆F (i)) ·∆F (i)

  
ψ−
sg,α(F)

+


i:sign(i)=0

λsg,α (∆F (i)) ·∆F (i)

  
ψ0
sg,α(F)

,
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ψ (F) =


i:sign(i)=+

λi ·∆F (i)

  
ψ+(F)

+


i:sign(i)=−
λi ·∆F (i)

  
ψ−(F)

+


i:sign(i)=0

λi ·∆F (i)

  
ψ0(F)

,

ϕ (∆∗α) =


i:sign(i)=+

λi · α ·∆F∗(i)

  
ϕ+(∆∗α)

+


i:sign(i)=−
λi · α ·∆F∗(i)

  
ϕ−(∆∗α)

+


i:sign(i)=0

λi · α ·∆F∗(i)

  
ϕ0(∆∗α)

.

With these definitions at hand, we highlight a number of cost comparisons on the different

slices, which are straightforward implications of Lemma 3.5, combined with the definition of

the sign function.

Observation 3.6. ϕ0(∆∗α)/(1 + ) ≤ ψ0(F) ≤ (1 + ) · ϕ0(∆∗α).

Observation 3.7. ψ+(F) ≤ ϕ+(∆∗α)/(1 + ) and ψ−(F) ≥ (1 + ) · ϕ−(∆∗α).

Observation 3.8. ψ−(F) ≤ ψ−
sg,α(F) and (1 + ) · ψ+(F) ≥ ψ+

sg,α(F).

Concluding the analysis. We can now complete the proof of Theorem 3.4, by showing that

ψ (F) ≤ (2 + 2) ·max {α,β} · ψ (F∗). For this purpose, we examine two cases:

1. ψ+(F) + (1 + ) · ϕ0(∆∗α) ≥ ψ−
sg,α(F). Here,

ϕ+(∆∗α) ≥ ψ+(F) ≥ ψ−
sg,α(F)− (1 + ) · ϕ0(∆∗α) , (10)

where the first inequality is due to Observation 3.7, and the second inequality holds given

the case hypothesis. Consequently,

ψ(F) = ψ+(F) + ψ−(F) + ψ0(F)

≤ ϕ+(∆∗α) + ψ−
sg,α(F) + (1 + ) · ϕ0(∆∗α)

≤ 2 · ϕ+(∆∗α) + 2(1 + ) · ϕ0(∆∗α)

≤ 2(1 + ) · ϕ (∆∗α)

= 2(1 + ) · α · ψ (F∗) .

The first inequality proceeds from combining Observations 3.6, 3.7, and 3.8, the second

inequality follows from (10), and the last equality follows from (9).

2. ψ+(F) + (1 + ) · ϕ0(∆∗α) < ψ−
sg,α(F). In this case, we obtain

ψ(F) = ψ+(F) + ψ−(F) + ψ0(F)

≤ 2 · ψ−
sg,α(F)− (1 + ) · ϕ0(∆∗α) + ψ0(F)

≤ 2 · ψ−
sg,α(F)

≤ 2 · ψsg,α(F)

≤ 2β · ψ (F∗) ,

10



where the first inequality holds by the case hypothesis and Observation 3.8, the second

inequality is due to Observation 3.6, and the last inequality holds since F is a β-comparable

solution for ψsg,α.

4 General Metrics: Computing O(logn)-Comparable Solutions

In this section, we establish Theorem 2.1 by obtaining an O(log n)-approximation for the or-

dered k-median problem on general metrics. Our algorithm relies on computing an O(log n)-

comparable solution for the surrogate cost function ψsg,α with logarithmic scaling, through a

single-swap local search procedure.

Theorem 4.1. There is a polynomial-time algorithm to compute an O(log n)-comparable solu-

tion for the surrogate cost function ψsg,α on general metrics, with α = 80 log n.

By combining the above result with Theorem 3.4, we obtain an O(log n)-approximation for

the ordered k-median problem on general metrics. It is worth pointing out that the notion of

comparable solutions is indeed necessary, and in fact, we prove in Appendix A that the surrogate

model cannot be efficiently approximated (in the standard sense) within factor O(nΩ(1)), unless

NP ⊆ TIME(nO(log logn)).

Definitions and notation. In the remainder of this section, rather than dragging cumber-

some expressions throughout the analysis, the error parameter is fixed to  = 1. In addition,

we define the segment Dα
p = {x ∈ (0,∞) : x/α ∈ Dp}, corresponding to each of the original

segments {Dp}p∈Z. Note that, due to picking  = 1, the segments Dα
p are now delimited by

powers of 2. That is, letting δp = maxDα
p , we have δp−1/δp = 1 +  = 2.

4.1 Smoothing the penalty function

To better understand the upcoming discussion, we advise the reader to consult Figure 2. Due

to Observation 3.2, and the definition of the scaled surrogate penalties, λsg,α is a non-decreasing

left-continuous step function defined over (0,∞), which is constant over each distance segment

Dα
p . Now, for any distance value d ∈ (0,∞), there exists a unique integer p such that d ∈ Dα

p ,

as well as a unique real γ ∈ (1, 2] such that d = (γ/2) ·δp. With this notation at hand, we define

the function λsmooth
sg,α (d) = λsg,α(δp) · ηγ−1

p , where ηp = λsg,α(δp−1)/λsg,α(δp). Finally, we define

the smooth surrogate cost function ψsmooth
sg,α , for every set of facilities F ⊆ V ,

ψsmooth
sg,α (F) =



v∈V
λsmooth
sg,α (d (v,F)) · d (v,F) .

4.2 Properties of the smooth surrogate function

Bounded increment. Note that, due to the preprocessing step in Section 3.1, we necessarily

have λ1/λn ≤ n/ = n. As a result, by definition of the penalty function λsg,α in Section 3.2,

it is easy to verify that the ratio between the extremal values of λsg,α is upper bounded by n

as well, meaning in particular that ηp = λsg,α(δp−1)/λsg,α(δp) ≤ n for any p ∈ Z. We make use

11
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Figure 2: Schematic illustration of ψsg,α and its smooth approximation ψsmooth
sg,α .

of this observation to bound the multiplicative increments of λsmooth
sg,α in the next lemma, whose

proof is given in Appendix B.3.

Lemma 4.2. λsmooth
sg,α (d′)/λsmooth

sg,α (d) ≤ n2(d′/d−1) for any two distances d′ ≥ d.

Transfer of β-comparability. We also observe that, for any distance d ∈ Dα
p , we have

λsg,α(d) ≤ λsg,α(δp) ≤ λsmooth
sg,α (d). Here, the first inequality holds since λsg,α is non-decreasing

while d ≤ maxDα
p = δp, and the second inequality follows from the definition of λsmooth

sg,α , given

that ηp ≥ 1. Therefore, λsmooth
sg,α upper bounds λsg,α, meaning that any β-comparable solution

for ψsmooth
sg,α is β-comparable for ψsg,α as well.

Additional upper bounds. Finally, we remark that for any distance d ∈ Dα
p ,

λsmooth
sg,α (d) ≤ λsg,α(δp−1) = λsg,α (2d) = λsg


2d

α


≤ λsg(d) . (11)

Here, the first inequality follows from the definition of λsmooth
sg,α , the first equality holds since

2d ∈ Dα
p−1, and the second inequality is due to the scaling factor α = 80 log n ≥ 2 and the

monotonicity of λsg (Observation 3.2). In particular, we infer that

ψsmooth
sg,α (F∗) =



v∈V
λsmooth
sg,α (d (v,F∗)) · d (v,F∗)

≤


v∈V
λsg (d (v,F∗)) · d (v,F∗)

= ψsg(F∗)

≤ 6 · ψ(F∗) , (12)

where the last inequality is due to Lemma 3.3, specialized with  = 1 and ψsg = ψsg,1.
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4.3 Local search

Algorithm. In order to construct an O(log n)-comparable solution for the smooth surrogate

function ψsmooth
sg,α , we make use of the single-swap local search algorithm originally proposed by

Charikar and Guha [10] for the uncapacitated facility location problem, and by Arya et al. [3] for

the metric k-median problem. By defining a local swap as the operation of closing one facility

and opening a new one instead, this algorithm picks in each step a local swap with maximal

cost reduction, until the marginal cost change becomes smaller than some pre-defined accuracy

level, when a local minimum is nearly reached. For simplicity of presentation, we assume that

this local search procedure is executed until all local swaps do not result in cost reduction, and

designate by F̂ the set of facilities corresponding to the local minimum reached.

Properties of locally-optimal solutions. We will utilize certain ingredients of the analysis

developed by Gupta and Tangwongsan [21], who compared the cost of F̂ against any benchmark

solution, by considering an appropriate collection of swaps between the facilities of F̂ and those

of the benchmark. In their setting, the objective was to establish a performance guarantee

relative to the optimal solution, which was therefore picked as the benchmark. However, in order

to prove that F̂ is an O(log n)-comparable solution for ψsmooth
sg,α , here we pick the benchmark

as the optimal set of facilities F∗ for the original problem, which could be suboptimal for the

current cost function ψsmooth
sg,α .

Specifically, Gupta and Tangwongsan constructed a collection of swaps (f̂1, f
∗
1 ), . . . , (f̂k, f

∗
k ),

where each f̂ℓ is a vertex of F̂ and each f∗
ℓ is a vertex of F∗. For every ℓ ∈ [k], let F̂ℓ =

(F̂ \ {f̂ℓ}) ∪ {f∗
ℓ } be the set of facilities obtained from F̂ by closing f̂ℓ and opening f∗

ℓ . As

explained below, corresponding to each swap (f̂ℓ, f
∗
ℓ ), they also defined a reallocation function

Aℓ : V → F̂ℓ, that maps each vertex to a ‘sufficiently close’ facility in F̂ℓ. For any facility f̂ ∈ F̂ ,

let N̂(f̂) be the set of vertices in V whose nearest facility in F̂ is f̂ ; similarly, N∗(f∗) stands for

the set of vertices in V whose nearest facility in F∗ is f∗. In slight abuse of notation, we make

use of N̂−1(v) to denote the facility in F̂ nearest v, while N∗−1(v) is defined in an analogous

way for F∗. Their construction satisfies the following properties:

1. Each facility f∗ ∈ F∗ occurs exactly once in f∗
1 , . . . , f

∗
k , while each facility f̂ ∈ F̂ occurs

at most twice in f̂1, . . . , f̂k.

2. Focusing on a single local swap (f̂ℓ, f
∗
ℓ ), the reallocation function Aℓ : V → F̂ℓ is defined

as follows:

(a) For every vertex v ∈ N∗(f∗
ℓ ), we have Aℓ(v) = f∗

ℓ .

(b) For every vertex v ∈ N̂(f̂ℓ)\N∗(f∗
ℓ ), we have Aℓ(v) = N̂−1(N∗−1(v)), and moreover,

this facility is shown to be different from f̂ℓ.

(c) For every vertex v ∈ V \ (N̂(f̂ℓ) ∪N∗(f∗
ℓ )), we have Aℓ(v) = N̂−1(v).

When the distance function d is a metric, as in our case, Gupta and Tangwongsan further

established the projection lemma [21, Lem. 2.4], which ensures in particular for every v ∈
N̂(f̂ℓ) \N∗(f∗

ℓ ) that d(v,Aℓ(v)) ≤ d̄(v), where d̄(v) = d(v, F̂) + 2 · d(v,F∗). It is important to
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note that these structural properties hold regardless of the cost function being optimized, and

thus far, the specifics of ψsmooth
sg,α have not come into play.

Bounding the cost of F̂ℓ. The cost variation due to the local swap (f̂ℓ, f
∗
ℓ ) is bounded by

ψsmooth
sg,α


F̂ℓ


− ψsmooth

sg,α


F̂


=


v∈V


λsmooth
sg,α


d

v, F̂ℓ


· d


v, F̂ℓ


− λsmooth

sg,α


d

v, F̂


· d


v, F̂



≤


v∈V


λsmooth
sg,α (d (v,Aℓ (v))) · d (v,Aℓ (v))− λsmooth

sg,α


d

v, F̂


· d


v, F̂



=


v∈N∗(f∗
ℓ )∪N̂(f̂ℓ)


λsmooth
sg,α (d (v,Aℓ (v))) · d (v,Aℓ (v))− λsmooth

sg,α


d

v, F̂


· d


v, F̂



≤


v∈N∗(f∗
ℓ )


λsmooth
sg,α (d (v, f∗

ℓ )) · d (v, f∗
ℓ )− λsmooth

sg,α


d

v, F̂


· d


v, F̂



+


v∈N̂(f̂ℓ)


λsmooth
sg,α


d̄(v)


· d̄(v)− λsmooth

sg,α


d

v, F̂


· d


v, F̂


. (13)

Here, the first inequality is obtained by combining the monotonicity of λsmooth
sg,α with d(v, F̂ℓ) ≤

d(v,Aℓ(v)). The next equality is a consequence of property 2(c). To understand the last

inequality, observe that if v ∈ N∗(f∗
ℓ ) then Aℓ(v) = f∗

ℓ by property 2(a), and if v ∈ N̂(f̂ℓ) \
N∗(f∗

ℓ ) then d(v,Aℓ(v)) ≤ d̄(v) by combining property 2(b) with the projection lemma.

Now, since F̂ is a local minimum, for each local swap (f̂ℓ, f
∗
ℓ ) there is no cost reduction, i.e.,

ψsmooth
sg,α (F̂) ≤ ψsmooth

sg,α (F̂ℓ). Therefore, the right-hand side of inequality (13) is non-negative. By

summing over the local swaps (f̂1, f
∗
1 ), . . . , (f̂k, f

∗
k ) and invoking property 1, we finally obtain:

3 · ψsmooth
sg,α


F̂

− ψsmooth

sg,α (F∗) ≤ 2 ·


v∈V
λsmooth
sg,α


d̄ (v)


· d̄ (v) . (14)

The next claim provides an upper bound on the latter term.

Lemma 4.3.


v∈V λsmooth
sg,α (d̄(v)) · d̄(v) ≤ 3α · ψ(F∗) + 1.27 · ψsmooth

sg,α (F̂) .

Proof. We begin by partitioning the set of vertices V to two subsets V1 and V2, where V1

contains all vertices for which d(v, F̂) ≤ 20 log n · d(v,F∗), and V2 contains the remaining ones,

where d(v, F̂) > 20 log n · d(v,F∗).

Bounding the sum over V1. Observe that for every vertex v ∈ V1,

d̄(v) ≤ (20 log n+ 2) · d (v,F∗) ≤ 40 log n · d (v,F∗) =
α

2
· d (v,F∗) , (15)

where the first inequality follows from the definitions of d̄(v) and V1, while the last equality is

obtained by recalling that α = 80 log n. As a result, we infer that

λsmooth
sg,α


d̄(v)


≤ λsg,α


2d̄(v)


= λsg


2d̄(v)

α


≤ λsg (d (v,F∗)) , (16)
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where the first inequality was derived in (11), and the second inequality holds by the mono-

tonicity of λsg (Observation 3.2) and (15). Therefore, we obtain the following upper bound:



v∈V1

λsmooth
sg,α


d̄ (v)


· d̄ (v) ≤ α

2
·


v∈V1

λsg (d (v,F∗)) · d (v,F∗) ≤ α

2
· ψsg (F∗) ≤ 3α · ψ(F∗) , (17)

where the first inequality is an immediate consequence of (15) and (16), while the last inequality

follows from Lemma 3.3, specialized with  = 1 and ψsg,1 = ψsg.

Bounding the sum over V2. In order to analyze the remaining terms, consider a vertex

v ∈ V2. By definition of V2, it follows that d̄(v)/(d(v, F̂)) ≤ 1 + 1/(10 log n) ≤ 1.1. Therefore,

for such vertices, λsmooth
sg,α (d̄(v))/λsmooth

sg,α (d(v, F̂)) ≤ n2/(10 logn) ≤ 1.15, where the first inequality

follows from the bounded increments of λsmooth
sg,α (Lemma 4.2). Consequently, we obtain



v∈V2

λsmooth
sg,α


d̄ (v)


· d̄ (v) ≤ 1.27 ·



v∈V2

λsmooth
sg,α


d

v, F̂


· d


v, F̂


≤ 1.27 · ψsmooth

sg,α


F̂


. (18)

By combining inequalities (17) and (18), we derive the desired upper bound.

By inequality (14) and Lemma 4.3, we conclude that:

3 · ψsmooth
sg,α


F̂


≤ ψsmooth
sg,α (F∗) + 6α · ψ(F∗) + 2.54 · ψsmooth

sg,α


F̂


≤ 6 (α+ 1) · ψ (F∗) + 2.54 · ψsmooth
sg,α


F̂


,

where the last inequality holds due to (12). It follows that ψsmooth
sg,α (F̂) ≤ 14(α + 1) · ψ(F∗),

meaning that F̂ is an O(log n)-comparable solution for the smooth surrogate function ψsmooth
sg,α ,

since α = 80 log n. As noted in Section 4.2, this property transfers to the scaled surrogate cost,

i.e., F̂ is also an O(log n)-comparable solution for ψsg,α. Finally, by picking α = 80 log n and

β = 14(α+1) in Theorem 3.4, we have just obtained an O(log n)-approximation for the ordered

k-median problem on general metrics.

5 Optimizing the Surrogate Cost Function on Trees

By exploiting the separability properties of the surrogate cost function ψsg,, we argue in Sec-

tion 5.1 that the surrogate problem can be solved optimally on trees using dynamic program-

ming ideas. In turn, Lemma 3.3 implies that an optimal set of facilities for ψsg is in particular a

(1 + 5)-comparable for this function. Hence, the (2 + )-approximation stated in Theorem 2.2

for the ordered k-median problem on trees comes as an immediate consequence of Theorem 3.4,

specialized with α = 1 and β = 1 + 5. To show that our analysis is essentially tight, we

construct in Section 5.2 a sequence of tree-based instances where the optimality gap tends to

2−O().

5.1 Dynamic program

In what follows, we present a dynamic programming formulation to optimize the surrogate

function ψsg on trees in polynomial time. It is worth mentioning that an improved recursion
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can be designed, with a collapsed state space of size O(kn2). However, due to the rather involved

nature of the latter approach, we focus here on a simpler formulation, for ease of presentation.

Without loss of generality, we assume that the metric space (V, d) is represented by a binary

edge-weighted tree T = (V,E). Further, we root the tree T at an arbitrary vertex v0, and for

any vertex v ∈ V , use Tv to denote the subtree rooted at v, with lv and rv as the left and right

children of v, respectively.

State space. Each state of the dynamic program is described by the following parameters:

• v ∈ V : The root of the current subtree.

• κ ∈ [k]0: The residual number of facilities to be located in Tv.

• u ∈ V \ (Tlv ∪ Trv): The nearest facility to v outside of Tlv ∪ Trv .

• l ∈ Tlv : The nearest facility to v in the left subtree.

• r ∈ Trv : The nearest facility to v in the right subtree.

In this setting, the function F (v,κ, u, l, r) stands for the minimum surrogate cost due to the

vertices of Tv, over all sets of facilities F ∪ {u, l, r} such that F is picked among Tlv ∪ Trv with

l, r ∈ F and |F| ≤ κ. When one or more of the facilities u, l, and r are not located, we use ⊥
to denote this decision. Clearly, the optimal value of ψsg corresponds to

min


min

l∈Tlv ,r∈Trv
F (v0, k,⊥, l, r) , min

l∈Tlv ,r∈Trv
F (v0, k − 1, v0, l, r)


,

where the disjunction above expresses whether the root v0 holds a facility or not.

Recursion. The recursion proceeds by first assigning the root v of the current subtree Tv to

its nearest facility among {l, r, u}. This way, we can compute the marginal surrogate cost due

to the vertex v, i.e., the quantity λsg(d(v,F)) · d(v,F) with respect to the final set of facilities

F , which is precisely minx∈{l,r,u} λsg(d(v, x)) · d(v, x).
Next, we are left with separately solving the subproblems formed by the left and right

subtrees, Tlv and Trv . For simplicity, we discuss the case where l belongs to left subtree of Tlv
and r belongs to right subtree of Trv ; the other cases are treated through similar arguments.

To update the parameter u, we define ur as the nearest facility among {l, u} to rv and similarly

define ul as the nearest facility among {u, r} to lv. Denoting by r0 the root of the left subtree

of Trv and l0 the root of the right subtree of Tlv , we obtain the following recursion:

F (v, k, u, l, r) = min
x∈{l,r,u}

λsg(d(v, x)) · d(v, x)

+ max
κl≤κ

l1∈Tl0 ,r1∈Tr0

{F (lv,κl, ul, l, l1) + F (rv,κ− κl, ur, r1, r)} .

5.2 Tight example

In what follows, we show that the analysis conducted for proving Theorem 3.4 is essentially

tight when the underlying metric is induced by tree, and the objective is to minimize the
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surrogate cost ψsg. Specifically, given an accuracy parameter  ∈ (0, 1/4), we construct a family

of instances, indexed by an integer parameter n ≥ 25, that matches our approximation bound

up to lower-order terms, i.e., limn→∞ ψ(Fsg(n))/ψ(F∗(n)) = 2−O(). Here, F∗(n) is an optimal

set of facilities for the ordered k-median problem, and Fsg(n) is an optimal surrogate solution.

We begin by constructing in Section 5.2.1 a family of worst-possible trees for the original

cost function ψ. Next, we show in Section 5.2.2 that ψ(F∗(n)) = (1 + o(1)) · n2, and prove in

Section 5.2.3 that ψ(Fsg(n)) = (2− 2+ o(1)) · n2.

5.2.1 Instance construction

Graph description. The tree T (n) consists of three components, shown in Figure 3:

• Core vertex. We first introduce the core vertex C, which is connected to the auxiliary

vertex A by an edge with distance d(C,A) = 1− .

• Stars. The core vertex C is connected to n distinct stars, indexed by i ∈ [n]. Each star is

formed by a center ci, connected to n immediate neighbors mi
1, . . . ,m

i
n. Here, d(ci, C) = ,

and d(ci,m
i
j) = 1−  for every neighbor index j ∈ [n].

• Remote vertices. Finally, each center ci is connected to a (distinct) remote vertex Ri by

an edge with d(ci, Ri) = (1− ) · n.

It is easy to verify that the tree T (n) consists of n2 + 2n+ 2 vertices.

Instance parameters. To finalize the construction, we fix the allowed number of facilities

to k = n. In addition, the penalty weights are picked such that the top n2 + 1 values are

equal to 1, i.e., λ1 = · · · = λn2+1 = 1, and the 2n + 1 remaining weights are chosen as

λn2+2 = · · · = λn2+2n+2 = /n2.

C A 

Ri 

ci 

mi
1 

mi
2 

mi
3 

mi
n-1 

mi
n 

               identical stars           
& remote vertices 

↵n

✏

1� ✏

1� ✏

n� 1

remote vertex 

center auxiliary 

Figure 3: Illustration of the tree construction.
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5.2.2 Upper bounding ψ(F∗(n))

We begin by characterizing the set of optimal solutions to the instance constructed above.

Lemma 5.1. Any optimal set of facilities for the ordered k-median problem is comprised of the

core vertex C and n− 1 remote vertices.

Proof. To arrive at a contradiction, suppose that F∗ is an optimal solution that opens at most

n − 2 facilities at the remote vertices R1, . . . , Rn. Since all pairwise distances are positive, F∗

necessarily consists of n facilities. As a result, F∗ contains at least two facilities at non-remote

vertices. We now create a modified solution F̃ , where one of the non-remote facilities is relocated

at the core vertex C, and another non-remote facility is relocated to a free remote vertex, that

was not holding a facility in F∗. To analyze the effects of this transformation, we bound the

variation of the marginal cost due to each vertex v ∈ V , given by λi2 · d(v, F̃) − λi1 · d(v,F∗)

when v occupies the rankings i1 in F∗ and i2 in F̃ . Specifically, the cost terms are broken down

according to the three components of the tree T (n):

• Core vertex and auxiliary vertex: Since the core vertex C is now holding a facility in F̃ ,

and the auxiliary vertex A is at distance 1 − , the variation of the cost due to these

vertices is clearly upper-bounded by λ1 · (1− ) = 1− .

• Remote vertices: Note that the free remote vertices in F∗ have distances at least (1−)·n >

2 to their nearest facility, and therefore necessarily occupy rankings within 1, . . . , n, since

all other non-remote vertices are within distance 2 of any non-remote facility in F∗. As

a result, their corresponding penalty weights are 1. Hence, an upper bound on the cost

variation due to all remote vertices is given by 2 − (1 − ) · n. Indeed, our relocation

procedure increases the distance of at most two remote vertices, each by at most , and

reduces to 0 the distance of at least one remote vertex (holding a new facility), incurring

a cost variation of −(1− ) · n.

• Stars: Our transformation relocates at most two facilities, and in addition, F̃ holds a

facility at the core vertex C, which is nearest to any star than any vertex contained

in another star. Consequently, there are at most two distinct stars where the distance

between a vertex to its nearest facility may increase. Within each such star, since the core

vertex C holds a facility in F̃ , the distance of the two (non-remote) vertices made vacant

by our transformation would increase by at most 1, while the distance of all other vertices

increases by at most . In addition, there are at most 3 vertices in the stars that could

have a larger penalty weight in F̃ than in F∗, since the only vertices outside of the star

graphs with a potentially improved ranking are: the core vertex C, the auxiliary vertex

A, and the remote vertex chosen for the relocation. As a result, the variation of the cost

due to the stars is upper bounded by 2n+ 5.

Overall, we obtain that ψ(F̃)−ψ(F∗) ≤ −(1−3)n+6+ , which is clearly negative for n ≥ 25

and  ∈ (0, 1/4), contradicting the optimality of F∗.

Consequently, F∗ opens at least n − 1 facilities at the remote vertices R1, . . . , Rn, and it

remains to show that one facility is necessarily located at the core vertex C. Specifically, the
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cost of such solutions, whose sequence of ordered distances is described by (19), is

ϕ = (1− ) · n+ + n2 +


n2
· (1− + n) ≤ n2 + (1− ) · n+ 2 +  .

To complete the proof, we compare this quantity to the cost of other candidate solutions:

1. Opening facilities at all the remote vertices R1, . . . , Rn. This solution has a cost of at

least (1− ) · n3 ≥ 3n3/4, by observing that the distance of the n2 star neighbor vertices

to their nearest facility is (1− ) · n+ 1− . Here, ϕ < 3n3/4 since n ≥ 25.

2. Opening a facility at the auxiliary vertex A. This solution has a cost of at least (1 − ) ·
n+1+ (2− ) · n2, which is larger than the cost quantity ϕ since n ≥ 25 and  ∈ (0, 1/4).

3. Opening a facility at a center vertex ci. This solution has a cost of at least (1 − ) · n +

(1 + ) · (n− 1) · n+ 1+ (1− ) · n, which is larger than the cost quantity ϕ since n ≥ 25.

4. Opening a facility at a neighbor vertex mi
j. It is easy to verify that the cost of this solution

is larger than that of item 3.

It follows that the cost of the optimal solution is ψ(F∗(n)) = ϕ = (1 + o(1)) · n2

5.2.3 Lower bounding ψ(Fsg(n))

We now describe the surrogate cost function ψsg, arising from the construction described in

Sections 3.1 and 3.2. Given the structure of optimal solutions as stated in Lemma 5.1, any such

solution forms the following sequence of ordered distances:

(1− ) · n+ , 1, . . . , 1  
n2

, 1− , , . . . ,   
n

, 0, . . . , 0  
n

. (19)

As a result, we have λsg((1 − ) · n + ) = 1, λsg(1) = 1, λsg(1 − ) = /n2, λsg() = /n2, and

λsg(d) = /n2 for any d ≤ /n. Indeed, the preprocessing step of Section 3.1 does not modify the

original penalty weights (as imin = n2 + n+ 3), since both the ratios between extremal penalty

weights (n2/) and between extremal positive distances (((1 − ) · n + )/) are smaller than

|V (T (n))|/ = (n2 + 2n + 2)/. We can now proceed by characterizing the optimal surrogate

solution.

Lemma 5.2. The surrogate problem has a unique optimal solution, consisting of the n star

centers, i.e., Fsg(n) = {c1, . . . , cn}.

Proof. To arrive at a contradiction, suppose that F is an optimal set of facilities to the surrogate

problem, that opens at most n−1 facilities at the centers c1, . . . , cn. We construct a new solution

F̃ by picking one facility f ∈ F , chosen among those in F \ {ci : i ∈ [n]} as explained below,

and relocate it to a free star center, i.e., chosen out of {ci : i ∈ [n]} \ F . The proof proceeds by

considering three cases.
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Case 1: F ∩ {R1, . . . , Rn} ∕= ∅. In this case, at least one star does not contain any facility

in F . Since the construction of T (n) is symmetric, we assume without loss of generality that

the corresponding star has index 1. Consequently, f is arbitrarily picked as one of the remote

vertices F ∩ {R1, . . . , Rn}, and relocated at the free center c1. To analyze the effects of this

transformation, we distinguish between remote and non-remote vertices:

• Remote vertices: Note that the surrogate cost terms due to remote vertices increase by

at most (1 − ) · n + 2. Indeed, the distance of f to its nearest facility in F̃ is at most

d(f, c1) = (1−)·n+2, whereas the distance of any other remote vertex can only decrease.

• Non-remote vertices: The distance of any non-remote vertex to its nearest facility can only

decrease following this relocation procedure, since c1 is closer than the remote vertex f to

any non-remote vertex. In particular, the distance of all immediate neighbors m1
1, . . . ,m

1
n

of c1, which was previously at least 1 since this star did not contain any facility in F ,

is now 1 − . Since λsg(1 − ) = /n2 and λsg(1) = 1, the surrogate cost terms due to

non-remote vertices decrease by at least n · (1− (1− )/n2).

Overall, the surrogate cost variation is bounded by

ψsg


F̃

− ψsg (F) ≤ (1− ) · n+ 2− n ·


1− 

n2
· (1− )


≤ −n+ 3 .

Since n ≥ 25, the overall variation is negative, contradicting the optimality of F .

Case 2: F ∩ {R1, . . . , Rn} = ∅ and there exist i1 and j such that mi1
j ∈ F . In this

case, there necessarily exists a star index i2 (potentially equal to i1) containing at most one

facility, whose center ci2 is free. Here, we create F̃ by picking f = mi1
j and relocating it to

ci2 . Note that, since  ∈ (0, 1/4), this relocation may only decrease the distance of all vertices

to their nearest facility, except for mi1
j , as their distance to ci2 is smaller than that to mi1

j . In

particular, since the star i2 originally has at most one facility, the distance of at least n − 1

neighbors of ci2 decreases from 1 to 1− . On the other hand, the only increase in distance can

be for mi1
j ; however, we have d(mi1

j , ci2) ≤ d(mi1
j , ci1) + d(ci1 , ci2) ≤ 1 + . Hence, the surrogate

cost variation is bounded by

ψsg


F̃

− ψsg (F) ≤ (n− 1) · (λsg(1− )− λsg(1)) + (1 + ) = −(n− 1) ·


1− 2

n


+ 1 +  ,

which is negative for n ≥ 25 and  ∈ (0, 1/4), contradicting the optimality of F .

Case 3: F ⊆ {C,A, c1, . . . , cn}. In this case, every star either holds a single facility at its

center, or does not contain any facility. Given that facilities are either placed at the center

vertices or at two other locations, namely the core vertex C and the auxiliary vertex A, and the

optimal solution makes use of n facilities, there are at least n− 2 stars holding a vertex at their

center. We now pick f as a vertex in F that does not correspond to the center of a star (i.e.,

either the core vertex C or the auxiliary vertex A, since F has at most n − 1 facilities in the

centers {c1, . . . , cn}), and relocate it to a free center ci1 . As a result, the surrogate cost terms
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due to the star i1 decrease by at least

n · (λsg(1)− (1− ) · λsg(1− )) ≥ n ·

1− 2

n


.

On the other hand, the surrogate cost terms due to the auxiliary vertex A and the core vertex

C may increase by at most 2. In addition, there is at most one additional star i2, not holding

any facility, that incurs a surrogate cost variation of at most (n+1). Indeed, the distance of its

center ci2 could increase by at most , since d(ci2 , f) ≥  and d(ci2 , ci1) = 2, and the distance of

its neighbors mi2
1 , . . . ,m

i2
n increases by at most  as well (by the case hypothesis, the neighbor

vertices do not hold a facility in F). Finally, since F contains at least n− 2 star centers, there

at most two remote vertices that can be affected by this transformation, leading to a surrogate

cost variation of at most 2. Overall,

ψsg


F̃

− ψsg(F) ≤ −n ·


1− 2

n


+ 2 + (n+ 1) + 2 ≤ −n

2
+ 3 .

Since n ≥ 25, the surrogate cost variation is negative, contradicting the optimality of F .

Based on Lemma 5.2, we can now compute the distances associated with Fsg(n):

• Auxiliary and core vertices. The core vertex C is at distance  from each of the facilities

c1, . . . , cn, while the auxiliary vertex A is at distance 1.

• Stars. In each star, the neighbor vertices are at distance 1−  from their nearest facility,

located at the center, while the centers are at distance 0.

• Remote vertices. Each remote vertex is connected to the center of a star, and thus its

nearest facility is at distance (1− ) · n.

By arranging these distances in non-increasing order and multiplying by the penalty weights,

we obtain:

ψ(Fsg(n)) = n · (1− ) · n+1+ (n2 − n) · (1− ) + n · (1− ) · 

n2
+  · 

n2
= (2− 2+ o(1)) · n2 .

6 Concluding Remarks

Quasi-PTAS for trees. On trees metrics, some of our techniques can be utilized to obtain

a (1 + )-approximation in time O(nO(1) · kO((1/) log(n/))). To this end, once the segments

{Dp}p∈Z are defined, we guess the exact number of rankings occupied by each of the distance

classes 0, . . . , P−1 in the optimal set of facilities F∗, thereby obtaining the length of the intervals

{I∗
p} for every p ∈ [P ]0. Next, this information is exploited by refining the dynamic program

formulated in Section 5.1, where each state is now augmented with a vector (n0, . . . , nP ), that

encodes the number of rankings (or multiplicity) within each distance class of [P ]0. Rather than

minimizing the cost function ψ, the recursion now aims at finding a certificate for feasibility, by

checking whether there exists a set of facilities in the current subtree such that the multiplicity

within all distance classes of [P ]0 is given by (n0, . . . , nP ).
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Bi-criteria approximation. Although the ordered median function ψ is not supermodular,

it is not difficult to verify that, for any scaling parameter α ≥ 1, the scaled surrogate function

ψsg,α satisfies this property. By leveraging recent results on the minimization of supermodular

functions subject to a cardinality constraint [7], one can derive bi-criteria performance guaran-

tees for the ordered k-median problem on general metrics, in the form of a (1+)-approximation

using O(k log n) facilities. It would be interesting to examine whether the capacity violation

can be decreased to a constant factor (depending on 1/), similar to known results in this spirit

for the k-median problem [31, 30, 26].

Additional open questions. In an attempt to obtain improved approximation guarantees

on general metrics, one challenging direction for future research is to analyze the single-swap

local search procedure with the ordered median cost function. In contrast to our surrogate

methods, this approach requires dealing with the ranking intricacies of different vertices. An-

other interesting question is to examine whether our techniques can be refined and tailor-made

to improve on the best known O(log n)-approximation for the k-facility p-centrum problem [48],

corresponding to the special case where λ1 = · · · = λp = 1 and λp+1 = · · · = λn = 0.
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A Inapproximability of the Surrogate Problem

In what follows, we prove that the surrogate model is strongly inapproximable. Here, we are

given a finite metric space (V, d) on n vertices, a non-decreasing left-continuous step-function

λ : [0,∞) → R+, and an integer parameter k. For any set of facilities F ⊆ V , the distance

d(V,F) of each vertex v ∈ V to its nearest facility is penalized by a multiplicative weight of

λ(d(v,F)). The objective is to compute a set F ⊆ V of at most k facilities that minimizes the

surrogate function ψsg(F) =


v∈V λ(d(v,F)) · d(v,F).

Theorem A.1. There are constants δ ∈ (0, 1) and Csg > 0 such that the surrogate model cannot

be approximated in polynomial time within factor Csgn
δ lnn, unless NP ⊆ TIME(nO(log logn)).

Proof. To establish the claim, we describe a gap-preserving reduction from the dominating set

problem. Given an undirected graph G = (V,E), a subset of vertices D ⊆ V is a dominating set

if every vertex not in D is adjacent to at least one member of D. The objective is to compute

a minimum-cardinality dominating set. We utilize a well-known inapproximability result of

Feige [19], stating that the set cover problem cannot be efficiently approximated within factor
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(1− ) · lnn for any  ∈ (0, 1), unless NP ⊆ TIME(nO(log logn)). When this result is translated to

dominating set terms, including the precise parameters involved in Feige’s construction, one can

infer that there exists a constant δ ∈ (0, 1) such that it is hard to distinguish between graphs

with γ(G) ≤ nδ and those with γ(G) ≥ nδ · (1− ) · lnn under the same complexity assumption,

where γ(G) stands for the minimum cardinality of a dominating set in G.

Now, given an instance of the dominating set problem, consisting of a graph G = (V,E) on

n vertices, we define a corresponding instance of the surrogate model as follows:

• The underlying metric (V, d) on the same set of vertices is obtained by defining the distance

function:

d(u, v) =


1, if (u, v) ∈ E

2, if (u, v) /∈ E .

• The penalty function λ : [0,∞) → R+ is given by

λ(d) =


1, if d ∈ [0, 1.5)

n, if d ∈ [1.5,∞) .

• The number of facilities to be located is at most k = nδ.

We first argue that γ(G) ≤ nδ implies the existence of a feasible facility set F with ψsg(F) ≤
n. Indeed, by picking F as a minimum-cardinality dominating set, every remaining vertex is

within distance 1 of its nearest facility in F , and therefore, ψsg(F) = n− |F| ≤ n. Conversely,

when γ(G) ≥ nδ · (1− ) · lnn, any set of at most nδ facilities leaves at least nδ · (1− ) · lnn−
nδ − 1 vertices whose distance to their nearest facility is 2. Otherwise, by adding these vertices

to the chosen set of facilities, we would have obtained a dominating set of size smaller than

nδ · (1 − ) · lnn. As a result, for the optimal set of facilities F∗, we must have ψsg(F∗) ≥
(nδ · (1− ) · lnn− nδ − 1) · n.

To summarize, it follows that unless NP ⊆ TIME(nO(log logn)), the surrogate model cannot

be approximated in polynomial time within factor nδ · (1− ) · lnn− nδ − 1 ≥ 1−
2 · nδ lnn, for

sufficiently large n.

It is worth mentioning that our reduction creates instances of the surrogate model where

the ratio between the maximum and minimum values of λsg is O(n), similar to the instances

created by the algorithm we present in Section 3.1.

B Additional Proofs

B.1 Proof of Lemma 3.1

Since only the penalty weights of rankings i ≥ imin are modified, we have

ψ̃(F∗)− ψ(F∗) =

n

i=imin

(λ̃i − λi) ·∆F∗(i)

≤ n · max
imin≤i≤n


(λ̃i − λi) ·∆F∗(i)
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≤  · λ1 ·∆F∗(1)

≤  · ψ(F∗) ,

where the second inequality holds by observing that for any ranking i ≥ imin we have λ̃i ≤ ·λ1
n

or ∆F∗(i) ≤ ·∆F∗ (1)
n , while λi ≤ λ1 and ∆F∗(i) ≤ ∆F∗(1).

B.2 Proof of Claim 2 in Lemma 3.5

Consider some i ∈ [n] for which sign(i) = +. By definition of the sign function, we know that

∆F (i) ≤ α ·∆F∗(i)/(1 + ), meaning that:

λsg,α (∆F (i)) = λsg


∆F (i)

α


≤ λsg


∆F∗(i)

1 + 


,

where the latter inequality follows from the monotonicity of λsg (Observation 3.2). We now

distinguish between three cases.

Case 1: π∗(i) = P . Here, we simply observe that λsg is constant across all distance classes

p ≥ P . Therefore,

λsg


∆F∗(i)

1 + 


= λsg (∆F∗(i)) = λguess(P ) ≤ (1 + ) · λavg (P ) = (1 + ) · λi ,

where the third equality holds since i ∈ I∗
P . Indeed, it implies that i ≥ imin by definition of

imin, while λimin = · · · = λn due to our preprocessing step (see Section 3.1).

Case 2: π∗(i) ≤ P − 1 and Iπ∗(i)+1 = ∅. In this case, ∆F∗(i)/(1 + ) ∈ Dπ∗(i)+1. Since

Iπ∗(i)+1 is empty, by observing that Iπ∗(i) is the first non-empty interval located at the left of

Iπ∗(i)+1 (as i ∈ Iπ∗(i)), it follows that

λsg


∆F∗(i)

1 + 


= λguess (π

∗(i) + 1) ≤ (1 + ) · λavg (π
∗(i) + 1) ≤ (1 + ) · λi ,

where the last inequality holds since i ∈ Iπ∗(i) and λ1 ≥ · · · ≥ λn.

Case 3: π∗(i) ≤ P − 1 and Iπ∗(i)+1 ∕= ∅. Here, ∆F∗(i)/(1+ ) ∈ Dπ∗(i)+1 as well, and we

obtain:

λsg


∆F∗(i)

1 + 


= λguess (π

∗(i) + 1)

≤ (1 + ) · λavg (π
∗(i) + 1)

=
1 + 

|I∗
π∗(i)+1|

·


j∈I∗
π∗(i)+1

λj

≤ (1 + ) · λi .

The first inequality follows from the accuracy of the guessing procedure (see inequality (2)),

while the last inequality holds given that λ1 ≥ · · · ≥ λn and that the ranking i is located at the
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left of the interval I∗
π∗(i)+1 (since i ∈ I∗

π∗(i)).

B.3 Proof of Lemma 4.2

Let p ≥ p′ be the unique integers for which d ∈ Dα
p and d′ ∈ Dα

p′ . We consider three cases,

depending on the relation between p and p′.

• p′ ≤ p − 2. In this case,

λsmooth
sg,α (d′)

λsmooth
sg,α (d)

≤ λ1

λn
≤ n ≤ n2(d′/d−1) ,

where the last inequality holds since d′/d ≥ (minDα
p′)/(maxDα

p ) = 2p−p′−1 ≥ 2.

• p′ = p − 1. In this case, letting d = γ · δp/2 and d′ = γ′ · δp−1/2, we obtain

λsmooth
sg,α (d′)

λsmooth
sg,α (d)

= η2−γ
p · ηγ

′−1
p−1 ≤ n(γ′−1+γ·(2/γ−1)) ≤ n2(γ′−1+2/γ−1) ≤ n2(2γ′/γ−1) = n2(d′/d−1) .

Here, the first inequality is due to max{ηp, ηp−1} ≤ n, and the second inequality holds

since γ ≤ 2. The third inequality proceeds from observing that γ′ ≥ 1 and 2/γ ≥ 1,

thus γ′ · (2/γ) − 1 ≥ (γ′ − 1) + (2/γ − 1). Finally, the last equality holds since d′/d =

(γ′ · δp−1)/(γ · δp) = 2γ′/γ.

• p′ = p. Letting d = γ · δp/2 and d′ = γ′ · δp/2, we have

λsmooth
sg,α (d′)

λsmooth
sg,α (d)

= ηγ
′−γ

p = ηγ·(d
′/d−1)

p ≤ n2(d′/d−1) ,

where the last inequality holds since ηp ≤ n and γ ≤ 2.
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