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We study a multi-period network revenue management problem where a seller sells multiple products, made
from multiple resources with finite capacity, in an environment where the underlying demand function is
a priori unknown (in the nonparametric sense). The objective of the seller is to simultaneously learn the
unknown demand function and dynamically price his products to minimize the expected revenue loss. For
the problem where the number of selling periods and initial capacity are scaled by k > 0, it is known that
the expected revenue loss of any non-anticipating pricing policy is Ω(

√
k). However, there is a considerable

gap between this theoretical lower bound and the performance bound of the best known heuristic control in
the literature. In this paper, we propose a Nonparametric Self-adjusting Control and show that its expected
revenue loss is O(k1/2+ε logk) for any arbitrarily small ε > 0, provided that the underlying demand function
is sufficiently smooth. This is the tightest bound of its kind for the problem setting that we consider in this
paper and it significantly improves the performance bound of existing heuristic controls in the literature;
in addition, our intermediate results on the large deviation bounds for spline estimation and nonparametric
stability analysis of constrained optimization are of independent interest and are potentially useful for other
applications.
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analysis
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1. Introduction. Revenue management (RM), which was first implemented in the 1960s by

legacy airline companies to maintain their edge in the competitive airline market, has recently

become widespread in many industries such as hospitality, fashion goods, and car rentals ([29],

[27]). The sellers in these industries face the common challenge of allocating a fixed capacity of

perishable resources (e.g., seats in a jet, rooms in a hotel, etc.) to satisfy volatile demand of products

or services. If the seller fails to satisfy demand appropriately, a considerable amount of profit is at

stake either due to the zero salvage value of unused capacity or the loss of potential revenue. (For

example, in the airline industry, it is known that the benefit of using RM is roughly comparable to

the airline’s annual margin, which is about 4-5% of total revenue [29].) Given this, RM is aimed

at helping the sellers to make optimal decisions such that the right product is sold to the right

customer at the right time and at the right price. One type of operational leverage often employed

by the sellers is dynamic pricing : By adjusting the prices over time, the seller can effectively control

the rate at which demand arrives so he can better match demand with available resources.
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Despite its known benefits [29], the efficacy of dynamic pricing hinges upon the seller’s knowledge
of market’s response to different prices, i.e., the underlying demand function. Unfortunately, in
most (if not all) real-life applications, this underlying demand function is not easily accessible to
the sellers. Although many sellers have adopted sophisticated statistical methods, the estimated
demand function is inevitably subject to estimation error, which in turn affects the quality of the
sellers’ pricing decisions. The negative impact of inaccurate demand estimation is further magnified
in practice because typical RM industries tend to have a large sales volume; thus, even small
errors can lead to a significant revenue loss in absolute term. Given this limitation, one pressing
issue faced by RM practitioners is how to dynamically price their products when the underlying
demand function is unknown a priori. This paper studies joint learning and pricing problem in
a general network RM setting with multiple products and multiple capacitated resources for the
nonparametric demand case. (By nonparametric, we mean the case where the seller does not even
know the functional form of demand. This is in contrast to the so-called parametric case where the
seller a priori knows the form of demand function (e.g., linear, exponential, logit, etc.) and he only
needs to estimate the unknown parameters (e.g., the intercept and the slope of a linear demand
function).) In this paper, we construct a heuristic control that is not only easy to implement for
large-scale problems but also has a provable analytical performance bound. Our bound significantly
improves the performance bound of existing heuristic controls in the literature.

Literature review. A large body of RM literature has investigated the canonical dynamic
pricing problem where the seller knows the underlying demand function. The prevailing view is that,
even in the case where learning is not in play, computing an optimal control is already challenging to
do. This is so because the common technique for solving sequential decision problems, the so-called
Dynamic Programming (DP), suffers from the well-known curse of dimensionality. This curse of
dimensionality is exacerbated in many RM industries because the sellers typically have to manage
the price of at least thousands of products on a daily basis. To illustrate, a typical major US airline
operates more than a thousand flights daily, each of which has more than ten different booking
classes that are characterized by different combinations of service level and purchase restriction.
Since passengers book tickets in advance, the airline needs to price not only the tickets for the
same-day flights but also those with departure dates several months in the future. All these factors
put together can easily translate into a daily pricing decision for millions of itineraries. Due to this
challenge, instead of finding the optimal pricing control, a considerable body of existing literature
has focused on developing computationally implementable heuristic controls with provably good
performance guarantee. (See Bitran and Caldentey [9] and Elmaghraby and Keskinocak [15] for a
comprehensive review of the literature.)

Within the canonical RM literature, some works have focused on developing heuristic controls
based on the solution of a deterministic pricing problem, i.e., the deterministic counterpart of the
original stochastic control problem, which is computationally much easier to solve than the DP.
This approach was first proposed by [18]. They develop a static price control by first solving a
convex optimization problem at the beginning of the selling season and then using its optimal
solution as static price throughout the selling season, subject to available resources. Although the
proposed heuristic control is easy to implement, its drawback is obvious: It ignores the observed
demand realizations, which leaves room for further improvement. One intuitively appealing idea
that has been studied in the literature involves frequent re-optimization of the deterministic pricing
problem throughout the selling season. Maglaras and Meissner [26] show that the re-optimized
static price control (RSC) cannot perform worse than static price control without re-optimization
(in asymptotic sense). However, it is not immediately clear from their analysis alone whether re-
optimization actually guarantees a better performance (and if so, by how much). A recent work by
Jasin [21] answers this question in the affirmative by showing that RSC does significantly improve
the performance of static price control (again, in asymptotic sense). While existing literature has
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shown frequent re-optimization to be beneficial, its implementation can be very time-consuming
especially when applied to large-scale problems that often arise in practice; this has motivated the
development for computationally much easier yet equally effective heuristic controls. For example,
motivated by the optimal structure of the diffusion control problem of the continuous-time dynamic
pricing problem, Atar and Reiman [1] develop a re-optimization-free bridge pricing control that
guarantees the same asymptotic performance as RSC. An equally effective heuristic control is also
obtained in Jasin [21]. Motivated by the structure of the re-optimized prices under RSC, Jasin [21]
proposes a real-time control, called Linear Rate Correction (LRC), that has a similar structure
as the bridge control and does not require any re-optimization at all. To be precise, LRC only
requires a single optimization at the beginning of the selling season and automatically adjusts the
price according to a pre-specified update rule throughout the remaining selling season. Inspired
by the strong performance of bridge pricing control and LRC in the setting with known demand
function, in this paper, we construct a nonparametric self-adjusting control akin to LRC and show
that its asymptotic performance is very close to the theoretical lower bound on the performance of
any feasible pricing control in the setting with unknown demand function. Below, we discuss the
literature on joint learning and pricing.

There is a growing literature that studies joint demand learning and pricing problem. Most
existing works have combined a particular statistical learning procedure (e.g., Maximum Likelihood,
Least Squares, etc.) with a certain dynamic pricing control (most notably, the static price control).
A central highlight in this literature is the trade-off between the cost of learning the demand
function (exploration) and the reward of using the “optimal” price computed using the estimated
demand function (exploitation). The longer the time the seller spends on learning the demand
function, the less opportunity there is to exploit the knowledge of the newly estimated demand
function. On the flip side, if the exploration time is too short, it will result in a poor estimation,
which yields highly sub-optimal prices. What is the best performance that any non-anticipating
pricing control can achieve in the setting with unknown demand function? Suppose that we scale
the length of the selling season and the initial resource capacity by a factor of k > 0. (The constant
k can be interpreted as the size of the problem. See §2.5 for more discussions on this.) One way
to measure the performance of a feasible control is to study the order of expected revenue loss
which is defined as the order (with respect to k) of the gap between the total expected revenue
earned under this control and a well-established deterministic upper bound. (See §2.4 for more
details on this performance metric.) It is widely known in the literature that the expected revenue
loss of any feasible pricing control in general is Ω(

√
k) (e.g., Besbes and Zeevi [6], Broder and

Rusmevichientong [11], Keskin and Zeevi [23]). For the case of uncapacitated RM, where there
is no limit on the number of resources that can be used, this lower bound has been repeatedly
shown to be tight (e.g., Broder and Rusmevichientong [11], Keskin and Zeevi [23]). As for the
case of capacitated RM, most existing literature has primarily focused on the setting of a single-
product and single-resource RM (often called single-leg RM due to the early application of RM
in airline industry). Besbes and Zeevi [6] is among the first to investigate this problem under
both parametric and nonparametric cases. Their proposed heuristic control for the parametric
case yields an expected revenue loss of O(k2/3 log0.5 k) whereas their proposed heuristic control for
the nonparametric case guarantees an expected revenue loss of O(k3/4 log0.5 k). This suggests that
there is a considerable gap between the performance of parametric and nonparametric approaches.
Recent works by Wang et al. [30] and Lei et al. [25] have managed to significantly shrink this
gap; they develop sophisticated nonparametric heuristic controls that guarantee a O(

√
k log4.5 k)

and O(
√
k) expected revenue loss, respectively. Thus, for the case of capacitated RM in single-leg

setting, existing works in the literature have managed to not only completely close the gap between
the performance of parametric and nonparametric approaches, at least in the asymptotic sense,
but also show that the theoretical lower bound of Ω(

√
k) is indeed tight.
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The general network RM problem with multiple products and multiple limited resources is more
difficult to analyze than the single-leg RM. (In §4, we will explain why the proofs and the arguments
in the uncapacitated setting cannot be applied to the capacitated setting. Moreover, the arguments
in Wang et al. [30] and Lei et al. [25] for the single-leg capacitated RM also cannot be applied to
the more general network RM setting. This is so because both Wang et al. [30] and Lei et al. [25]
heavily exploit the special structure in the single-leg RM. Unfortunately, no analogous structure is
known for the network RM.) To the best of our knowledge, the only paper that addresses the joint
learning and pricing problem for general network RM is Besbes and Zeevi [7]. They consider the
nonparametric case only and show that the performance bound of their proposed heuristic control
(i.e., so-called Algorithm 2 in their paper) is O(k(n+2)/(n+3) log0.5 k), where n is the number of
products. Note that the fraction (n+2)/(n+3) in the bound highlights the curse of dimensionality
for network RM since the performance bound quickly deteriorates as the number of products n
increases. If, however, the true demand function is sufficiently smooth (e.g., infinitely differentiable),
this bound can be reduced; they propose another nonparametric heuristic control (Algorithm 3)
that guarantees a O(k2/3+ε log0.5 k) expected revenue loss for some ε > 0 that can be arbitrarily
small. As one can see, there is still a considerable gap between the lower bound of Ω(

√
k) and the

performance bound of O(k2/3+ε log0.5 k). Our proposed heuristic control in this paper significantly
reduces this gap from k2/3+ε to k1/2+ε (up to logarithmic terms).

We would like to note here that all the results discussed above for the joint learning and pricing
problem are derived for the setting where the seller can use a continuum of prices drawn from a
certain convex and compact set. This distinction is crucial as the complexity of the problem changes
as we switch from a continuum setting to the setting where the set of feasible prices is finite. Besbes
and Zeevi [7] have also considered this finite set setting and proposed a heuristic control (Algorithm
1) with a performance bound of O(k2/3 log0.5 k). A recent work by Ferreira et al. [16] improves this
bound to O(

√
k logk log logk) by using a Thompson sampling-based heuristic control. Note that

although the best known performance bound that we are aware of for the network RM with finite
price set setting is already close to

√
k, it is not clear that the theoretical lower bound for this

setting is still Ω(
√
k). In fact, a recent work by Flajolet and Jaillet [17] show that the UCB-Simplex

control they propose attains a logarithmic performance bound in a simpler setting where there is
only one capacity constraint (besides time). This seems to suggest that the lower bound of the
general network RM with finite price set setting could be as small as logarithmic. Finally, we want
to point out that, in order to derive the order of performance bound discussed above, the heuristic
controls developed for finite price setting are typically compared with a revenue upper bound
benchmark under the finite price setting while the heuristic controls developed for the continuum
price setting are compared with a larger revenue upper bound benchmark under the continuum
setting. Since the two upper bound benchmarks are different, with the former being smaller than
the latter, the heuristic controls developed under the two settings are not easily comparable by
simply looking at the order of their performance bounds as a function of k. Moreover, one also
cannot simply extend existing heuristic controls developed in finite price setting to continuum price
setting since the performance bounds of these heuristic controls (e.g., [16]) deteriorate quickly as
the number of the feasible prices increases. This is so because these heuristic controls do not exploit
existing relationship between expected demand value at different price points and need to learn the
expected demand value at most price points separately, which is not very efficient if the number
of price points is large.

More broadly, the joint learning and pricing problem is closely related to the literature on bandit
problems (e.g., [24], [2], etc.). This stream of literature had not considered the inter-temporal
constraints on actions over time (such as the capacity constraint in the network RM setting) until
only very recently (e.g., [4], [5], [14], etc.). Badanidiyuru et al. [4] is among the first to consider
the so-called bandit with knapsack (BwK) problem. In BwK, a decision maker has a fixed amount
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of resources and needs to accumulate rewards by sequentially selecting from a finite set of arms
whose reward distributions are unknown. Pulling each arm stochastically depletes those resources
according to an unknown consumption distribution of that arm, and the decision maker stops
collecting rewards when he runs out of resources. Note that the general RM with finite price set
and unknown demand fits into the BwK framework by treating each feasible price vector as a
bandit and viewing time as a resource with deterministic depletion rate. Badanidiyuru et al. [5]
show that the performance lower bound of BwK is Ω(

√
k) and propose two heuristic controls that

match this lower bound up to logarithmic factors. While the network RM with finite number of
feasible prices is a special case of the BwK problem, we would like to point out that the bounds
derived in Badanidiyuru et al. [5] cannot be directly compared to the bounds derived in all the RM
papers discussed above since the quantification orders used in evaluating the asymptotic bounds
are different. To be precise, Badanidiyuru et al. [5] allow the underlying demand distribution to
vary in k while existing RM works assume that the underlying demand distribution does not vary
as k scales; hence, both the lower and upper bounds in Badanidiyuru et al. [5] have weakly larger
asymptotic order. (This phenomena is not unique to Badanidiyuru et al. [5] alone. For example,
the gap in performance bounds due to the use of different quantification orders also arises in the
traditional bandit setting such as in the logarithmic bounds of Auer et al. [2] versus the square-root
bounds of Auer et al. [3]—see page 50 in Auer et al. [3] for more discussions.) As an extension,
Badanidiyuru et al. [5] also consider the case where the decision maker has a continuum of arms
(this corresponds to the setting we study where the seller has a continuum of feasible prices) and
derive a revenue loss bound in the order of O(k2/3). While we study a similar setting, our revenue
loss bound is sharper due to two reasons: (1) following the paradigm in RM literature, we do not
allow the underlying demand distribution to vary as k scales; (2) our result relies on smoothness
assumptions on the underlying demand function whereas Badanidiyuru et al. [5] does not require
this assumption. Hence, while the setting in Badanidiyuru et al. [5] is closely related to our setting,
the bounds they derive are not directly comparable to ours. Combes et al. [14] also study a related
setting where the seller has a finite number of arms and the seller is faced with sample-path
dependent budget constraints on how many times each arm can be pulled. The constraints they
consider are separable in the sense that pulling an arm only affects its own budget but not the
budgets of other arms. Our setting is different from theirs along at least two dimensions: First,
we consider a continuum of feasible actions rather than a finite number of actions; secondly, the
resource constraints in our setting are not separable because the consumption of a product could
affect the capacity/inventory levels of multiple resources.

Apart from the RM and joint learning and optimization literature, our work is also closely related
to Spline Regression in the statistics literature. A typical problem in statistics is to estimate the
mean response as a function of some input variables. (The demand learning aspect of our problem
is one such problem: our goal is to estimate the mean demand of each product as a function of the
prices of all products.) Spline Regression generates an estimate in the form of a linear combination
of spline basis functions (originally studied in Applied Mathematics to approximate deterministic
functions) and uses Least Squares criterion to compute the corresponding coefficients. (See Gyorfi
et al. [20] for more details on Spline Regression.) To the best of our knowledge, most existing
literature on Spline Regression is mostly concerned with the estimation accuracy of the response
function; thus, the typical convergence result for Spline Regression is limited to only the estimation
error of the response function itself. In our problem, estimation and optimization are intertwined
and it is crucial to understand how the estimation error affects the subsequent optimization. This
requires results on bounds of the error between higher order partial derivatives of the response
function and its spline estimate. To derive these bounds, deviating from the Spline Regression
approach, we generate our spline estimate by using a specific linear operator (i.e., L defined in Step
3 of Technical Details for Spline Approximation part (b) in §3.1) instead of using Least Squares
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criterion. (We call our estimation method Spline Estimation to differentiate our approach from
Spline Regression. For more details on Spline Estimation, see §3.1. We want to emphasize here
that although we choose Spline Estimation in combination with our optimization, this is only for
the purpose of mathematical analysis. In general, we suspect that the seller can also use other
estimation schemes such as Spline Regression, local polynomial approximation, etc. in lieu of Spline
Estimation in our proposed heuristic control and still enjoys a strong performance.) This linear
operator, also known as a quasi-interpolant in Schumaker [28], is originally devised to analyze the
error of using spline functions to approximate a deterministic function. We generalize the analysis of
spline approximation for deterministic functions in Schumaker [28] to estimating response functions
using spline functions. We manage to not only derive large deviation bounds of the estimation error
of the demand function itself but also its partial derivatives, which are very useful in analyzing our
proposed heuristic control.

Our contributions and the organization of the paper. Our contributions in this paper
can be summarized in the following two points:

1. We develop a nonparametric control called Nonparametric Self-adjusting Control (NSC) that
can be applied to the general network RM setting with multiple products and multiple limited
resources. We show that if the underlying demand function is sufficiently smooth, the expected
revenue loss of NSC is O(k1/2+ε logk) for some ε > 0 that can be arbitrarily small (see Theorem 1
in §4). This is the tightest bound of its kind for the setting that we are considering (i.e., the
continuum price setting): It significantly improves the O(k2/3+ε log0.5 k) bound of Besbes and Zeevi
[7] and is only slightly worse than the theoretical lower bound of Ω(

√
k). In a nutshell, NSC is a

combination of four elements: (1) Spline Estimation of the underlying demand function, (2) linear
approximation of the estimated demand function, (3) quadratic approximation of the estimated
revenue function, and (4) approximate self-adjusting control akin to the one developed in Jasin
[21]. In this paper, we show that although each of these elements introduces its own error (and
some of them are not even unbiased), under properly selected tuning parameters, the cumulative
impact of these errors is asymptotically only slightly larger than Θ(

√
k). This makes it possible

to prove the strong performance guarantee of NSC. Note that, per our discussions above, the first
element (i.e., using Spline Estimation to estimate the underlying demand function) is only for the
purpose of the analysis; in practice, the seller can still use other estimation schemes in combination
with the other three elements. Although the proper selection of the tuning parameters will depend
on the specific estimation scheme being used, we suspect that the resulting heuristic control still
enjoys a similar strong performance guarantee.

2. In addition to contributing to the RM literature, our intermediate results in this paper also
contribute to the more general statistics and optimization literature. For the nonparametric esti-
mation, we generalize the analysis of spline approximation for deterministic functions in Schumaker
[28] to the setting with noisy observations and derive large deviation bounds for the estimation
error of the function itself and its higher order partial derivatives (see Lemma 1 in §3). These
bounds seem to be new—although spline functions have been used in statistics, we are not aware
of existing large deviation bound for higher order partial derivatives of the estimate—and are
particularly useful for our analysis because the resulting spline estimate is ultimately used in the
subsequent optimization phase in our heuristic control. Moreover, the bound for partial deriva-
tives also facilitates the stability analysis of the optimal solution. Aside from the statistical error
bound, for the analysis of NSC, we also need to derive a nonparametric Lipschitz-type stability
result for the optimal solution of a perturbed optimization problem (see Lemma 2 in §3). This
result also seems to be new—although parametric stability analysis of optimization problem has
been intensively studied in the literature (see Bonnans and Shapiro [10]), nonparametric stability
analysis is very rare. As of the writing of this paper, we are not aware of any existing result on
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nonparametric stability analysis that can be directly used for our purpose. Aside from its use in
the analysis of NSC, our stability result is of independent interest and is potentially applicable to
other optimization problems.

The reminder of this paper is organized as follows. We first formulate the problem in §2. Our
nonparametric approach is discussed in §3-§5. In particular, §3 provides some preliminaries on
spline approximation and nonparametric stability analysis; §4 describes the proposed NSC and its
performance bound (Theorem 1); §5 provides the proof of Theorem 1. Finally, we conclude the
paper in §6. Unless otherwise noted, all the extra details of the proofs can be found in the appendix
at the end of this paper.

2. Problem formulation. In this section we describe the problem setting, modeling assump-
tions, and the asymptotic regime.

2.1. Notation. The following notation will be used throughout the paper. (Additional nota-
tion will be introduced when necessary.) We denote by R, R+, and R++ the set of real, non-
negative real, and positive real numbers respectively. For column vectors a= (a1; . . . ;an)∈Rn, b=
(b1; . . . ; bn)∈Rn, we denote by a� b if ai ≥ bi for all i, and by a� b if ai > bi for all i. Similarly, we
denote by Z, Z+, and Z++ the set of integers, non-negative integers, and positive integers respec-
tively. For any a, b∈Z with a≤ b, let [a, b] := {a,a+1, . . . , b−1, b}. We denote by · the inner product
of two vectors and by ⊗ the tensor product of sets or function spaces. We use a prime to denote the
transpose of a vector or a matrix, an I to denote an identity matrix with a proper dimension, and
an e to denote a vector of ones with a proper dimension. Following the standard notation, for any
real matrix M = [Mij] ∈ Rm×n, we use ||M ||1 := max1≤j≤n

∑m

i=1 |Mij|, ||M ||2 := the largest eigen-

value of M ′M , ||M ||∞ := max1≤i≤m
∑n

j=1 |Mij|), and ||M ||F :=
√∑m

i=1

∑n

j=1 |Mij|2 to denote the

induced 1-norm, induced 2-norm, induced ∞-norm, and Frobenius norm of M respectively. (Note
that ||M ||1 = ||M ′||∞.) For any function f :X →Y, we denote by ||f(.)||∞ := supx∈X ||f(x)||∞ the
infinity-norm of f . We use ∇ to denote the usual derivative operator and a subscript to indicate
the variables with respect to which this operation is being applied to. (No subscript ∇ means that
the derivative is applied to all variables.) If f :Rn→R, then ∇xf = ( ∂f

∂x1
; . . . ; ∂f

∂xn
); if, on the other

hand, f = (f1; . . . ;fn) :Rn→Rn, then

∇xf =


∂f1
∂x1
· · · ∂fn

∂x1
...

. . .
...

∂f1
∂xn
· · · ∂fn

∂xn

 .
We denote by Cs(S) the set of functions whose first sth order partial derivatives are continuous

on its domain S, and by Ps([a, b]) the set of single variate polynomial functions with degree s on
an interval [a, b]⊆R, e.g., P1([0,1]) is the set of all linear functions on the interval [0,1].

2.2. The model. We consider the setting of a monopolist selling his products to incoming
customers during a finite selling season, aiming to maximize his total expected revenue. There are
n types of products, each of which is made up of a combination of a subset of m types of resources.
For example, in the airline setting, a product refers to a multi-flight itinerary and a resource refers
to a seat in a jet of a single-leg flight; in the hotel setting, a product refers to a multi-day stay
and a resource refers to a one-night stay at a particular room. We denote by A = [Aij] ∈ Rm×n
the resource consumption matrix, which characterizes the types and amounts of resources needed
by each product (i.e., a single unit of product j requires Aij units of resource i). Without loss
of generality, we assume that the matrix A has full row rank. (If this is not the case, then we
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can first apply the standard row elimination procedure to delete the redundant rows. See Jasin
[21].) We denote by C ∈Rm the vector of initial capacity levels of all resources at the beginning of
the selling season. Since, in many industries (e.g., hotels and airlines), replenishment of resources
during the selling season is either too costly or simply not feasible, following the standard model
in the literature [19], we will assume that the seller has no opportunity to procure additional units
of resources during the selling season. In addition, we also assume without loss of generality that
the remaining resources at the end of the selling season have zero salvage value.

The selling season is divided into T discrete periods, indexed by t= 1,2, ..., T . At the beginning
of period t, the seller first decides the price pt = (pt,1; . . . ;pt,n) for his products, where pt is chosen
from a convex and compact set P =⊗nl=1[p

l
, p̄l]⊆Rn of feasible price vectors. The posted price pt,

in turn, induces a demand, or sale, for one of the products with a certain probability. Here, we
implicitly assume that at most one sale for one product occurs in each period. (We have made
this assumption and chosen to focus on discrete time model to simplify the presentation of the
analysis. Our analysis can be easily extended to either a discrete-time model with bounded demand
arrivals in each period or continuous-time model with compound Poisson process (see Chen et al.
[13] for more details).) Let ∆n−1 := {(x1; . . . ;xn) ∈ Rn|

∑n

i=1 xi ≤ 1, and xi ≥ 0 for all i} denote
the standard (n− 1)-simplex. Let λ∗(.) : P →∆n−1 denote the induced demand rate or purchase
probability vector; we also call λ∗(.) the underlying demand function. Contrary to most existing RM
literature where it is assumed that the seller knows λ∗(.) a priori, in this paper, we simply assume
that this function can be estimated using statistical learning procedures. Let Λλ∗ := {λ∗(p) : p∈P}
denote the convex and compact set of feasible demand rates and let Dt(pt) = (Dt,1(pt); . . . ;Dt,n(pt))
denote the vector of realized demand in period t under price pt. It should be noted that, although
demands for different products in the same period are not necessarily independent, demands over
different periods are assumed to be independent (i.e., Dt only depends on the posted price pt
in period t). By definition, we have Dt(pt) ∈ D := {D :

∑n

j=1Dj ≤ 1,Dj ∈ {0,1} for all j} and
E [Dt(pt)] = λ∗(pt). This allows us to write Dt(pt) = λ∗(pt) + ∆t(pt), where ∆t(pt) is a zero-mean
random vector. For notational simplicity, whenever it is clear from the context which price pt is
being used, we will simply write Dt(pt) and ∆t(pt) as Dt and ∆t respectively. The sequence {∆t}Tt=1

will play an important role in our analysis later. Define the revenue function r∗(p) := p · λ∗(p) to
be the one-period expected revenue that the seller can earn under price p. It is typically assumed
in the literature that λ∗(.) is invertible (see the regularity assumptions below). We can then write
r∗(p) = p ·λ∗(p) = p∗(λ) ·λ= r∗λ(λ) to emphasize the dependency of revenue on demand rate instead
of on price. We make the following regularity assumptions on λ∗(.), r∗(.) and r∗λ(.):

Regularity Assumptions. There exists positive constants r̄, v < v̄ such that:
R1. λ∗(.) : P → Λλ∗ is in C2(P) with Lipschitz continuous second order partial derivatives, and

it has an inverse function p∗(.) : Λλ∗→P that is in C2(Λλ∗);
R2. There exists a set of turn-off prices p∞j ∈ [p

j
, p̄j] for j = 1, . . . , n such that for any p =

(p1; . . . ;pn), pj = p∞j implies that λ∗j (p) = 0.
R3. ||r∗λ(.)||∞ ≤ r̄, r∗λ(.) is strongly concave, and all the eigenvalues of ∇2r∗λ(λ) are between −v̄

and −v for all λ∈Λλ∗.

Assumption R1 is fairly natural and is easily satisfied by many popular demand functions such
as linear, logit, and exponential functions. Assumption R2 is common in the literature. (See Besbes
and Zeevi [6] and Wang et al. [30] for similar assumptions.) Its purpose is to allow the seller to
effectively shut down the demand for any product whenever needed, e.g., in the case of stock-
out. (The existence of such turn-off prices follows naturally when we consider truncated demand
functions. It is also possible to consider an unbounded set of feasible prices instead of the compact
set we assume above, with a potentially infinite turn-off price; in such setting, our results still
hold.) As for Assumption R3, the boundedness of r∗λ(.) follows from the compactness of Λλ∗ and
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the continuity of r∗λ(.). The strong concavity of r∗λ(.) is a standard assumption in the literature
and is satisfied by many commonly used demand functions such as linear, exponential, and logit
functions. It should be noted that although some of these functions, such as logit, do not naturally
correspond to a concave revenue function when viewed as a function of p, they are nevertheless
concave when viewed as a function of λ. This highlights the benefit of treating revenue as a function
of demand rate instead of as a function of price.

In addition, following Besbes and Zeevi [7] and the literature on nonparametric estimation, we
will assume that the function λ∗(.) has a certain level of smoothness. Let s̄ denote the largest integer
such that

∣∣∂a1,...,anλ∗j (p)/∂p
a1
1 . . . ∂pann

∣∣ is uniformly bounded for all j ∈ [1, n] and 0≤ a1, . . . , an ≤ s̄.
We call s̄ the smoothness index. We make the following smoothness assumptions:

Nonparametric Function Smoothness Assumptions.
N1. s̄≥ 2.
N2. There exists a constant W > 0 such that for all j ∈ [1, n] and p ∈ P and integers 0 ≤

a1, . . . , an ≤ s̄, we have
∣∣∣∂a1,...,anλ∗j (p)

∂p
a1
1 ...∂pann

∣∣∣≤W .

The above assumptions are fairly mild and are satisfied by most commonly used demand func-
tions, including linear, polynomial with higher degree, logit, and exponential with a bounded
domain of feasible prices. We note that very similar assumptions are also made in Besbes and Zeevi
[7]. More broadly, this type of smoothness assumptions are commonly made in the nonparametric
estimation literature in statistics (see, for example, [20]). The smoothness index s̄ indicates the
level of difficulty in estimating the corresponding demand function: The larger the value of s̄, the
smoother the demand function, and the easier it is to estimate its shape because its value cannot
have a drastic local change.

2.3. Admissible controls and the induced probability measures. Let D1:t := (D1,D2,
. . . ,Dt) and p1:t := (p1, p2, . . . , pt) denote respectively the observed vectors of demand and price
realizations up to and including period t. Let Ht denote the σ-field generated by D1:t and p1:t. We
define a control π as a sequence of functions π = (π1, π2, . . . , πT ), where πt is a Ht−1-measurable
mapping that maps the history D1:t−1 and p1:t−1 to a distribution of price vectors on ⊗nj=1[p

j
, p̄j],

and the price to be used in period t under policy π is drawn from this distribution πt(Ht−1). This
class of controls is referred to as non-anticipating controls because the decision in each period
depends only on the accumulated information up to the beginning of the period. Under control
π, the seller sets the price in period t equal to pπt = πt(D1:t−1, p1:t−1). Let Π denote the set of all
admissible controls. That is,

Π :=

{
π :

T∑
t=1

ADt(p
π
t )�C a.s., and pπt = πt(Ht−1)

}
.

Note that, even though the seller does not know the underlying demand function, the existence
of turn-off prices p∞1 , . . . , p

∞
n guarantees that the capacity constraints can be satisfied if the seller

applies p∞j for product j as soon as the remaining capacity is not sufficient to produce one more
unit of product j. Let Pπλ∗,t denote the induced probability measure under an admissible control
π ∈Π, i.e.,

Pπλ∗,t(d1:t) = Pπλ∗,t(D1:t = d1:t) =
t∏

s=1

(1−
n∑
j=1

λ∗j (p
π
s )

)(1−
∑n
j=1 ds,j) n∏

j=1

λ∗j (p
π
s )ds,j

 ,
where pπs = πs(d1:s−1, p1:s−1) and ds = [ds,j] ∈ D for all s = 1, . . . , t. (By definition, the term 1 −∑n

j=1 λ
∗
j (p

π
s ) can be interpreted as the probability of no-purchase in period s under price pπs .)
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For notational simplicity, we will simply write Pπλ∗,T as Pπλ∗ and denote by Eπλ∗ the expectation
with respect to the probability measure Pπλ∗ . The total expected revenue under π ∈ Π is Rπ =
Eπλ∗ [

∑T

t=1 p
π
t ·Dt(p

π
t )].

2.4. The deterministic formulation and performance metric. The following optimiza-
tion is the deterministic analog of the original stochastic pricing problem:

JD := max
pt∈P

{
T∑
t=1

r∗(pt) :
T∑
t=1

Aλ∗(pt) � C

}
,

or equivalently, JD := max
λt∈Λλ∗

{
T∑
t=1

r∗λ(λt) :
T∑
t=1

Aλt � C

}
.

By assumption R3, the second optimization above is a convex program and can be efficiently
solved. (To avoid triviality, we assume that both optimizations are feasible.) It can be shown that
JD is in fact an upper bound for the total expected revenue under any admissible control. That
is, Rπ ≤ JD for all π ∈ Π. (See Besbes and Zeevi [7] for more details.) This allows us to use JD

as a benchmark to quantify the performance of any admissible pricing control. In this paper, we
follow the standard convention and define the expected revenue loss of an admissible control π ∈Π
as ρπ := JD −Rπ. Since r∗λ(.) is strongly concave, by Jensen’s inequality, it can be shown that the
optimal solutions of JD are static, i.e., pt = pD and λt = λD for all t, where pD and λD can be
obtained by solving the following “one-period” optimizations, respectively:

(P) rD := max
p∈P

{
r∗(p) : Aλ∗(p) � C

T

}
,

and, (Pλ) rD := max
λ∈Λλ∗

{
r∗λ(λ) : Aλ � C

T

}
.

Note that pD = p∗(λD) and TrD = JD. Moreover, the optimal dual variables that correspond to
the capacity constraints in P are the same as the optimal dual variables that correspond to the
capacity constraints in Pλ; we denote these dual variables as µD. Let Ball(x, r) denote a closed
Euclidean ball centered at x with radius r. We state our fourth regularity assumption below:

R4. (Interior Assumption) There exists φ> 0 such that Ball(pD, φ)⊆P.

Assumption R4 is sufficiently mild. Intuitively, it states that the static price should neither be
too low that it attracts too much demand nor too high that it induces no demand. A similar interior
assumption has also been made in Jasin [21] and Chen et al. [12].

2.5. Asymptotic setting. Following the standard convention in the literature (e.g., Besbes
and Zeevi [6] and Wang et al. [30]), in this paper, we will consider a sequence of increasing problems
where the length of the selling season and the initial resource capacity are scaled by a factor of
k > 0. To be precise, in the kth problem, the length of the selling season and the initial capacity are
given by kT and kC, respectively. (One can interpret k as the size of the problem. For example,
in single-leg setting, C = 1 and k = 50 could correspond to a small jet with capacity 50 seats
and k = 500 could correspond to a large jet with capacity 500 seats.) The optimal solutions for
P and Pλ in the kth problem are still pD and λD; the optimal dual solution corresponding to
the capacity constraints in P and Pλ is still µD. But, the deterministic upper bound becomes
JD(k) = kTrD = kJD. Let ρπ(k) denote the expected revenue loss under an admissible control
π ∈Π for the problem with scaling factor k. We are primarily interested in identifying the order
of ρπ(k) for large k. (Intuitively, one would expect that a better heuristic control will have an
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expected revenue loss that grows more slowly with respect to k.) The following notations will be

used throughout the remainder of the paper. For any two functions f :Z++→R and g :Z++→R+,

we write f(k) = Ω(g(k)) if there exists M > 0 independent of k such that f(k)≥Mg(k). Similarly,

we write f(k) =O(g(k)) if there exists K > 0 independent of k such that f(k)≤Kg(k).

3. Supporting technical results. In this section, we present some technical results on spline

estimation and nonparametric stability analysis of a perturbed optimization problem, and we will

also introduce a quadratic programming approximation of P. We will use these technical results

in the analysis of NSC in §4. As noted in §1, many of these results are of independent interest and

can potentially be used in different application areas.

3.1. Spline approximation. We first describe the problem of approximating a determinis-

tic function from noiseless observations using spline approximation and then we will discuss the

problem of estimating a function from noisy observations. Spline functions have been widely used

in engineering to approximate complicated functions, and their popularity is primarily due to their

flexibility in effectively approximating complex curve shapes [28]. This flexibility lies in the piece-

wise nature of spline functions—a spline function is constructed by attaching piecewise polynomial

functions with a certain degree, and the coefficients of these polynomials are computed in such a

way that a sufficiently high degree of smoothness is ensured in the places where the polynomials

are connected. More formally, for all l ∈ [1, n], let p
l
= xl,0 <xl,1 · · ·<xl,d <xl,d+1 = p̄l be a partition

that divides [p
l
, p̄l] into d+ 1 sub-intervals of equal length where d ∈ Z++. Let G :=⊗nl=1Gl denote

a set of grid points, where Gl = {xl,i}d+1
i=0 . We define the function space of tensor-product polyno-

mial splines of order (s; . . . ;s) ∈ Rn with a set of grid points G as S(G, s) := ⊗nl=1Sl(Gl, s), where

Sl(Gl, s) := {f ∈ Cs−2([p
l
, p̄l]) : f is a single-variate polynomial of degree s− 1 on each sub-interval

[xl,i, xl,i+1), for all i∈ [0, d− 1] and [xl,d, xl,d+1]}. One of the key questions that spline approximation

theory addresses is the following: Given an arbitrary function f that satisfies N1-N2, find a spline

function g∗ ∈ S(G, s) that approximates f well. Among the various approaches, one of the most

popular approximations is using the so-called tensor-product B-Spline basis functions [28]. This

approach is based on the key observation that S(G, s) is actually a linear space of dimension (s+d)n.

This means that there exists a set of (s+d)n basis functions (this set is not necessarily unique) such

that any function in S(G, s) can be represented by a linear combination of these basis functions. We

choose to use tensor-product B-Spline basis functions, denoted by {Ni1,...,in(x1, . . . , xn)}s+d,...,s+di1=1,...,in=1,

as the set of basis functions. These functions are defined formally in the Technical Details part (a)

below. Given the basis functions, for any spline function g ∈ S(G, s), there exists a set of coefficients
{ci1,...,in}

s+d,...,s+d
i1=1,...,in=1 such that g(x) =

∑s+d

i1=1 · · ·
∑s+d

in=1 ci1,...,inNi1,...,in(x) for all x∈P. Therefore, the

problem of finding g∗ is reduced to the problem of computing the coefficients for representing g∗,

which we address below in the Technical Details part (b). For a more comprehensive discussion of

this approach, see Schumaker [28].

Technical Details for Spline Approximation: The B-Spline Approach

(a) Tensor-product B-Spline Basis Functions.

Step 1: For each l ∈ [1, n], define an extended partition Gel := {yl,i}2s+di=1 , where

yl,1 = · · ·= yl,s = xl,0, yl,s+1 = xl,1, . . . , yl,s+d = xl,d, yl,s+d+1 = · · ·= yl,2s+d = xl,d+1.
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Step 2: For il ∈ [1, s+ d], l ∈ [1, n], define the tensor-product B-Spline basis function as
Ni1,...,in(x1, . . . , xn) =

∏n

l=1N
s
l,il

(xl), where

N s
l,i(xl) =

 (−1)s(yl,i+s− yl,i)[yl,i, . . . , yl,i+s](xl− y)s−1
+ , if yl,i ≤ xl < yl,i+s

0, otherwise

for all xl ∈ [p
l
, p̄l] for all l ∈ [1, n] and for all i∈ [1, s+ d], where (xl− y)+ = max{0, xl− y}, and

[t1, . . . , tr+1]f(y) is the rth order divided difference of a single variate real function f over the
points t1 < t2 < · · ·< tr < tr+1 defined as follows (see Definition 2.49 and Theorem 2.50 in
Schumaker [28] for more discussion):

[t1, . . . , tr+1]f(y) :=
r+1∑
i=1

f(ti)∏r+1

j=1,j 6=i(ti− tj)
.

(b) Calculating the Linear Coefficients.

Step 1: For l ∈ [1, n], i∈ [1, s+ d], let

τl,i,j = yl,i + (yl,i+s− yl,i)
j− 1

s− 1
and βl,i,j =

j∑
v=1

(−1)v−1

(s− 1)!
φ

(s−v)
l,i,s (0)ψ

(v−1)
l,i,j (0), for j ∈ [1, s],

where φl,i,s(t) =
∏s−1

r=1(t− yl,i+r), ψl,i,j(t) =
∏j−1

r=1(t− τl,i,r),ψl,i,1(t)≡ 1.

Step 2: For any f ∈ C0(P), define a set of linear functionals {γl,i : C0([p
l
, p̄l])→R}n,s+dl=1,i=1 as:

γl,if :=
s∑
j=1

βl,i,j[τl,i,1, . . . , τl,i,j]f =
s∑
j=1

βl,i,j

j∑
r=1

f(x1, . . . , xl−1, τl,i,r, xl+1, . . . , xn)∏j

s=1,s6=r(τl,i,r− τl,i,s)
,

where f is viewed as a single variate function of xl here, and the second equality follows by
Theorem 2.50 in Schumaker [28] (note that for any given l and i, τl,i,1, . . . , τl,i,s are pairwise
distinct). Define another set of linear functionals {γi1,...,in}

s+d,...,s+d
i1=1,...,in=1 such that

γi1,...,inf = γ1,i1 ◦ γ2,i2 · · · ◦ γn,inf,

where γl,il is understood as being applied to f as a function of xl. By the construction of γl,il ,
basic algebra yields:

γi1,...,inf =
s∑

j1=1

j1∑
r1=1

· · ·
s∑

jn=1

jn∑
rn=1

f(τ1,i1,r1 , . . . , τn,in,rn)
∏n

l=1 βl,il,jl∏n

l=1

∏jl
sl=1,sl 6=rl

(τl,il,rl − τl,il,sl)
.

Step 3: Define a linear operator Ll : C0([p
l
, p̄l])→ Sl(Gl, s) as Llf(xl) =

∑s+d

i=1 (γl,if)N s
l,i(xl), for all

l ∈ [1, n]. Similarly, define a linear operator L : C0(P)→ S(G, s) as

Lf(x1, . . . , xn) =
s+d∑
i1=1

· · ·
s+d∑
in=1

(γi1,...,inf)Ni1,...,in(x1, . . . , xn).

Note that L=L1 ◦L2 ◦ · · · ◦ Ln, where this composition of linear operators is understood as Ll
being applied to a function of xl.

Step 4: Set g∗ =Lf .
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Spline approximation with noisy observations. We now discuss the estimation of demand
function λ∗(.) using spline approximation under noisy observations. Let G̃ := {(τ1,i1,j1 ; . . . ; τn,in,jn) :
il ∈ [1, s+ d], jl ∈ [1, s] for all l ∈ [1, n]}. Note that the constants {γi1,...,inλ∗j}

s+d,...,s+d
i1=1,...,in=1 depend on

λ∗j (.) only via λ∗j (p), p∈ G̃. So, if the seller could observe the demand rate of product j under prices

in G̃, he could construct an approximation of λ∗j (.) using a linear combination of tensor-product

B-splines. In our problem, the seller cannot observe λ∗j (p) for p∈ G̃, but only its noisy observation
Dj(p) = λ∗j (p) + ∆j. To address this, we use empirical mean as a surrogate for λ∗j (p) and propose
the following Spline Estimation algorithm to estimate the demand.

Spline Estimation

Input Parameters: L0, n, s; Tuning Parameter: d
Algorithm:

Step 1: Estimate λ∗(p) at points p∈ G̃. For each p∈ G̃
a. Apply price p L0 times
b. Let λ̃(p) be the sample mean of the L0 observations.

Step 2: Construct spline approximation.
a. For all j ∈ [1, n] and il ∈ [1, s+ d], l ∈ [1, n], calculate coefficients cji1,...,in as:

cji1,...,in =
s∑

j1=1

j1∑
r1=1

· · ·
s∑

jn=1

jn∑
rn=1

λ̃j(τ1,i1,r1 , . . . , τn,in,rn)
∏n

l=1 βl,il,jl∏n

l=1

∏jl
sl=1,sl 6=rl

(τl,il,rl − τl,il,sl)
.

b. Construct a tensor-product spline function λ̃(p) = (λ̃1(p); . . . ; λ̃n(p)), where

λ̃j(p) =
s+d∑
i1=1

· · ·
s+d∑
in=1

cji1,...,inNi1,...,in(p).

Note that the algorithm above conducts L̃0 :=L0(s+d)nsn samples. The idea of Spline Estima-
tion is as follows. In Step 1, we apply each p ∈ G̃ as many as L0 times and calculate its empirical
mean λ̃(p). In Step 2, we approximate the underlying demand function λ∗(.) using a spline function.
In particular, we use a modified version of B-Spline approach by replacing the actual function value
λ∗(p) (p∈ G̃) with its empirical mean λ̃(p). Note that our estimation approach is different from the
so-called Spline Regression (see Gyorfi et al. [20]). While Spline Regression uses Least Squares to
compute the linear coefficients for each of the spline basis function, we use the empirical means at
sample points and a specific linear operator (originally devised and analyzed in the deterministic
approximation theory of spline functions, see Schumaker [28]) to compute the linear coefficients.
We choose to use Spline Estimation in our heuristic instead of Spline Regression because it allows
us to use existing results on Spline Approximation Theory to derive the large deviation bounds
for Spline Estimation in Lemma 1. We suspect that similar results also hold for Spline Regression.
Let a∧ b= min{a, b}. The following lemma shows how well λ̃(.) approximates λ∗(.).

Lemma 1. Set d = d(L1/2
0 / logk)1/(s+n/2)e and let L0 ≥ log3 k be a positive integer that may

depend on k. Suppose that s≥ 2. There exist positive constants Ψr for each r ∈ [0, (s− 2)∧ s̄] and
K independent of k ≥ 1 such that for all j ∈ [1, n] and rl ∈ Z+, l ∈ [1, n] satisfying

∑n

l=1 rl = r we
have:

Pπ
(∣∣∣∣∣
∣∣∣∣∣∂r(λ∗j (.)− λ̃j(.))∂pr11 . . . ∂prnn

∣∣∣∣∣
∣∣∣∣∣
∞

≥Ψr

(
logk√
L0

) s∧s̄−r
s+n/2

)
≤ K exp(− log2 k). (1)
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Proof: See Appendix A. �

The condition L0 ≥ log3 k implies (logk/
√
L0)

s∧s̄−r
s+n/2 → 0 as k→∞. This means that the difference

between the rth order partial derivatives of the underlying demand function and the spline approx-
imation is uniformly small with a high probability for large k. When r= 0, our bound becomes a
large deviation bound for the function estimate itself and is similar to the known bound for Spline
Regression. (Suppose we set s= s̄ and re-write our bound in a Hoeffding-type form, see Remark 1
below. Integrating the right hand side with respect to x over R+, we obtain the ∞-risk of Spline

Estimation which is of order (1/
√
L̃0)2s̄/(2s̄+n). This is to be compared with the well-known 2-risk

of Spline Regression which is of order (
√

log L̃0/L̃0)2s̄/(2s̄+n), see Corollary 15.1 in Gyorfi et al. [20].)
We want to stress that the large deviation bound for the function estimate itself is not sufficient
for our purpose. Specifically, we need additional large deviation bounds for the first and second
order partial derivatives of the estimated demand function, as in Lemma 1, in order to conduct a
stability analysis of the deterministic optimization problem (P) in our analysis later.

Remark 1 (Interpreting (1) as a Hoeffding-type Error Bound). Hoeffding-type error
bounds commonly appear in statistical estimations. Informally, they relate a measure of estimation
error (e.g., 2-norm of the parameter estimation error in parametric models) with the number of
samples L0 in the following way:

P(Error≥ x)≤C1 exp(−C2L0x
2) ,

for some constants C1 and C2 that are independent of x and L0. Note that, in Hoeffding-type of
inequality, the right hand side converges to zero as x tends to zero and the variable x shows up as
a quadratic term in the exponent. In contrast, when we write (1) into a similar form, we obtain

Pπ
(∣∣∣∣∣
∣∣∣∣∣∂r(λ∗j (.)− λ̃j(.))∂pr11 . . . ∂prnn

∣∣∣∣∣
∣∣∣∣∣
∞

≥ x

)
≤ K exp(−Ψ̄rL0x

2s+n
s∧s̄−r ) ,

where Ψ̄r = Ψ
− 2s+n
s∧s̄−r

r . Due to the well-known curse of dimensionality in nonparametric function
estimation, the right hand side of our inequality does not tend to zero as fast as a typical Hoeffding-
type inequality (i.e., x2 >x

2s+n
s∧s̄−r when x is small). Moreover, the convergence rate on the right hand

side also depends on model parameters. In particular, it is decreasing in n and r, and is increasing
in s̄. This makes intuitive sense: as the problem dimension n increases, estimation becomes more
difficult; as the order of derivative r decreases or as the smoothness index s̄ increases, the underlying
demand function (or the partial derivative of the underlying demand function) becomes smoother
and is easier to estimate. The convergence rate is increasing in s when s≤ s̄ because higher s allows
more flexibility in spline approximation. Interestingly, when s > s̄, the convergence rate actually
decreases in s. This is possibly due to the fact that, when s is higher than smoothness index s̄,
the extra flexibility introduces unnecessary complexity (i.e., redundant linear coefficients to be
estimated), which leads to more sampling.

3.2. Stability analysis. In this subsection, we first present a nonparametric stability result
for a class of optimization problems, and then apply this result to the perturbation analysis of our
deterministic optimization P. Consider the following non-linear optimization problems:

(NP) max
x∈X

{f(x) : Ug(x)� V } and (ÑP(δ)) max
x∈X

{
f̃(x) : Ug̃(x)� V − δ

}
.

where X is a convex compact subset of Rn, f :X →R and g :X →Rn are both twice continuously
differentiable functions, f̃ : X →R and g̃ : X →Rn are continuously differentiable approximations
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of f and g, δ ∈Rm, V ∈Rm, and U is an m by n non-negative matrix that has full row rank. Let
x∗ and x̃δ denote the optimal solution of NP and ÑP(δ) respectively (i.e., if they are feasible).
We state a useful stability result.

Proposition 1. Suppose that the following conditions hold:
(i) g(.) has a twice continuously differentiable inverse function g−1(.) :Y →X where Y := g(X )

is a convex compact subset of Rn;
(ii) f(g−1(.)) :Y →Rn is strongly concave;
(iii) NP is feasible;
(iv) x∗ is in the interior of X .

Then, there exist δ̄ > 0 and K > 0 such that for all δ, f̃(.) and g̃(.) satisfying ||Ug(.)−Ug̃(.) +
δ||∞ ≤ δ̄, ÑP(δ) is feasible and

||x∗− x̃δ||2 ≤ K
(
||(∇f(.)−∇f̃(.))′||∞+ ||g(.)− g̃(.)||∞+ ||δ||∞

)
.

Proof: See Appendix B. �

The above result can be viewed as a Lipschitz-type stability result for a family of nonparametric
optimization problems. Per our discussions in §1, although stability analysis of parametric opti-
mization problems has been intensively studied in the literature (e.g., Bonnans and Shapiro [10]),
stability results for nonparametric optimization problems are very rare. (See Remark 2 for a brief
discussion on the relationship between Proposition 1 and existing results on parametric stability
analysis.) In our case, since the original unperturbed optimization can be transformed into a convex
optimization, we can use a convexity argument to establish Proposition 1.

We now apply Proposition 1 to our deterministic optimization problem P. Using the spline
approximate λ̃(p) derived in §3.1, we can formulate an approximate optimization of P as follows:

(P̃) r̃D := max
p∈P

{
r̃(p) : Aλ̃(p)� C

T

}
where r̃(p) = p · λ̃(p). Let p̃D denote an optimal solution of P̃ if it is feasible and let λ̃D = λ̃(p̃D).
The following lemma follows directly from Proposition 1 and provides a characterization of p̃D.

Lemma 2. Suppose that s≥ 3. Then, there exist constants δ̄ > 0 and K > 0 such that if ||λ∗(.)−
λ̃(.)||∞ ≤ δ̄, P̃ is feasible and ||pD− p̃D||2 ≤K(||λ∗(.)− λ̃(.)||∞+ ||(∇λ∗(.)−∇λ̃(.))′||∞).

Proof: See Appendix C. �

Lemma 2 tells us that if demand estimation error is small, P̃ is feasible and its optimal solution
p̃D lies in close proximity of pD. This observation is crucial for our analysis later.

Remark 2 (On Proposition 1 and Existing Parametric Stability Result). The exist-
ing Lipschitz stability result of the optimal solution of a parameterized optimization problem (e.g.,
Theorem 5.53 part (a) in Bonnans and Shapiro [10]) can be viewed as a special case of our non-
parametric Lipschitz-type stability result in Proposition 1. Let U ⊆ Rq, q ∈ Z++, be a compact
parameter set. Suppose that the objective functions f and f̃ come from a family of parame-
terized functions {f(.;u)}u∈U where f(.) = f(.;u0) and f̃(.) = f(.;v) for u0, v ∈ U . Also, suppose
that the constraint functions g and g̃ come from a family of parameterized functions {g(.;u)}u∈U
where g(.) = g(.;u0) and g̃(.) = g(.;v) for u0, v ∈ U . For simplicity, assume δ = 0. In the perturba-
tion analysis of parametric optimization problems, f(.; .) and g(.; .) are typically assumed to be
twice continuously differentiable, which means that ||(∇f(.;u0)−∇f(.;v))′||∞ =O(||u0−v||∞) and
||g(.;u0)− g(. : v)||∞ = O(||u0 − v||∞). Applying Proposition 1 to this setting immediately yields
Theorem 5.53 part (a) in Bonnans and Shapiro [10].
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3.3. An approximate quadratic program. In this subsection, we introduce a quadratic
program approximation of P. (This will be useful when we discuss our heuristic in §4.) The idea is
simple: We approximate the objective of P with a quadratic function and its constraints with linear
functions. Our objective here is to show that if the parameters of the quadratic and linear functions
are correctly chosen, the resulting quadratic program will have the same optimal solution as P and
it will possess some very useful stability properties. To begin with, we first linearize the constraints
of P. Since the capacity constraints form an affine transformation of the demand function, we will
simply linearize the demand function. For any a ∈ Rn,B ∈ Rn×n, let B1, . . . ,Bn be the columns
of B and define θι = (a;B1; . . . ;Bn) ∈ Rn2+n, where the subscript ι stands for linear demand. We
denote a linear demand function by λ(p;θι) = a+B′p. Next, we discuss a quadratic approximation
for the objective of P. For any E ∈ R,F ∈ Rn,G ∈ Rn×n, let G1, . . . ,Gn denote the columns of G
and define θo = (E;F ;G1; . . . ;Gn)∈Rn2+n+1 where the subscript o stands for objective. We denote
the resulting quadratic function by q(p;θo) =E+F ′p+ 1

2
p′Gp. Finally, let θ= (θo;θι)∈R2n2+2n+1.

For any θ ∈R2n2+2n+1, δ ∈Rm, we can define a quadratic program QP(θ; δ) as follows:

(QP(θ; δ)) max
p∈P

{
q(p;θo) : Aλ(p;θι)�

C

T
− δ
}
.

If we choose the parameters θ and δ carefully, QP(θ; δ) can be a very good approximation of P.
Specifically, let θ∗ι = (a∗;B∗1 ; . . . ;B∗n), where B∗ :=∇λ∗(pD) and a∗ := λD− (B∗)′pD. Define an n by
n symmetric matrix H∗ :=B∗∇2r∗λ(λD)(B∗)′−B∗− (B∗)′. Then, one can verify that

H∗ij =−(u∗ij)
′(B∗)−1λD, where u∗ij =

[
∂2λ∗1(pD)

∂pi∂pj
; . . . ;

∂2λ∗n(pD)

∂pi∂pj

]
. (2)

(See Appendix D for derivation.) Let θ∗o = (E∗;F ∗;G∗1; . . . ;G∗n) where

E∗ :=
1

2
(pD)′H∗pD, F ∗ := a∗−H∗pD, G∗ :=B∗+ (B∗)′+H∗,

and let θ∗ := (θ∗o ;θ
∗
ι ). Note that QP(θ∗;0) is a very intuitive approximation of P since the function

λ(p;θ∗ι ) = a∗+ (B∗)′p= λD + (B∗)′(p− pD) can be viewed as a linearization of λ∗(.) at pD. (Since
∇λ∗(pD) is invertible as implied by R1 and R4, we can write p(λ;θ∗ι ) = pD+((B∗)′)−1(λ−λD) as the
inverse demand function). Note also that the gradients of the objective function and the constraints
in QP(θ∗;0) at pD coincide with those in P. By Karush-Kuhn-Tucker (KKT) optimality conditions,
it can be shown that the optimal solution of QP(θ∗;0) is the same as the optimal solution of P.
We formally state these results in Lemma 3 below. Let pDδ (θ) and µDδ (θ) denote the optimal primal
and dual solutions of QP(θ; δ) respectively (if they exist), and let λDδ (θ) = λ(pDδ (θ);θι).

Lemma 3. There exist constants κ > 0, ω > 0 and δ̄ > 0 such that, for all θι ∈ Ball(θ∗ι , δ̄), θo ∈
Ball(θ∗o , δ̄) and δ ∈Ball(0, δ̄), the following results hold:

(a) B is invertible and ||(B′)−1||2 ≤ ω;
(b) For all p ∈ P and for all i, j ∈ [1, n], ||λ(p;θι)− λ(p;θ∗ι )||2 ≤ ω||θι − θ∗ι ||2 and |∂λj

∂pi
(p;θι)−

∂λj
∂pi

(p;θ∗ι )| ≤ ω||θι− θ∗ι ||2;
(c) For all λ,λ′ ∈ λ(P;θι), ||p(λ;θι)− p(λ′;θι)||2 ≤ ω||λ−λ′||2;
(d) q(p(.;θι);θo) is strongly concave.
(e) pD = pD0 (θ∗), λD = λD0 (θ∗), µD = µD0 (θ∗);
(f) QP(θ; δ) is feasible and has a unique optimal solution. Moreover, pDδ (θ)∈Ball(pD0 (θ∗), φ/2),

Ball(pDδ (θ), φ/2)⊆P, ||pD0 (θ∗)− pDδ (θ)||2 ≤ κ(||θ∗− θ||2 + ||δ||2), ||λD0 (θ∗)−λDδ (θ)||2 ≤ κ(||θ∗− θ||2 +
||δ||2), and the constraints of QP(θ; δ) that correspond to the rows {i : µD0,i(θ

∗)> 0} are binding.
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Note that Lemma 3 part (f) not only establishes Lipschitz continuity of the optimal solution, but
also provides additional results regarding the properties of the capacity constraints at the optimal
solution. These play an important role in deriving a sharp performance bound of our heuristic.

Remark 3 (On the Quadratic Revenue Function Approximation). Note that, as the
equation below shows, q(p;θ∗o) can be viewed as the revenue function under the approximate linear
demand function plus an additional correction term:

q(p;θ∗o) =
1

2
(pD)′H∗pD + p′(a∗−H∗pD) +

1

2
p′(B∗+ (B∗)′+H∗)p

= p′(a∗+ (B∗)′p) +
1

2
(p− pD)′H∗(p− pD)

= r(p;θ∗ι ) +
1

2
(p− pD)′H∗(p− pD),

where r(p;θ∗ι ) := p · λ(p;θ∗ι ) is the natural revenue function under the approximate linear demand
function. We add a correction term above in order to ensure that if we do a change of variables
p= p(λ;θ∗ι ) to change the pricing decision to demand rate decision, the resulting objective function
is actually the second order Taylor’s expansion of r∗λ:

q(p(λ;θ∗ι );θ
∗
o)

= r(p(λ;θ∗ι );θ
∗
ι ) +

1

2
(p(λ;θ∗ι )− pD)′H∗(p(λ;θ∗ι )− pD)

= λ′(pD + ((B∗)′)−1(λ−λD)) +
1

2
(λ−λD)′(B∗)−1H∗((B∗)′)−1(λ−λD)

= λ′(pD + ((B∗)′)−1(λ−λD))− (λ−λD)′((B∗)′)−1(λ−λD) +
1

2
(λ−λD)′∇2r∗λ(λD)(λ−λD)

= λ′pD + (λ−λD)′(B∗)−1λD +
1

2
(λ−λD)′∇2r∗λ(λD)(λ−λD)

= r∗λ(λD) + (λ−λD)′(pD + (B∗)−1λD) +
1

2
(λ−λD)′∇2r∗λ(λD)(λ−λD)

= r∗λ(λD) +∇r∗λ(λD)′(λ−λD) +
1

2
(λ−λD)′∇2r∗λ(λD)(λ−λD). (3)

Hence, in light of R3, q(p(λ;θ∗ι );θ
∗
o) is strongly concave in λ. This observation is important because

it allows us to use the general result in Proposition 1 to derive perturbation result for the optimal
primal and dual solutions of QP(θ; δ) (see condition (ii) in Proposition 1).

4. Main result. We are now ready to describe Nonparametric Self-adjusting Control (NSC)
and discuss its asymptotic performance; the proof of this result is given in §5. NSC consists of an
exploration procedure and an exploitation procedure. The exploration procedure uses the Spline
Estimation algorithm discussed in §3.1 to construct a spline approximation λ̃(.) of the underlying
demand function λ∗(.). This function λ̃(.) is then used to construct a linear function λ(.; θ̂ι) that
closely approximates λ(.;θ∗ι ) in the neighborhood of pD and a quadratic program that closely
approximates P. During the exploitation phase, we use the optimal solution of the approximate
quadratic program as baseline control and automatically adjust the price according to a pre-
determined price update rule. Further detail will be provided below. Recall that L̃0 is the duration
of the Spline Estimation algorithm. Let Ct denote the remaining capacity at the end of period t.
Let θ̂ := (θ̂o; θ̂ι), where θ̂ι := (â; B̂1; . . . ; B̂n), θ̂o := (Ê; F̂ ; Ĝ1; . . . ; Ĝn) for

B̂ :=∇λ̃(p̃D), â := λ̃− B̂′p̃D, Ê := 1
2
(p̃D)′Ĥp̃D, F̂ := â− Ĥp̃D,

Ĝ := B̂+ B̂′+ Ĥ, and Ĥ = [Ĥij] where Ĥij :=−û′ijB̂−1λ̃D and ûij :=

[
∂2λ̃1(p̃D)

∂pi∂pj
; . . . ;

∂2λ̃n(p̃D)

∂pi∂pj

]
.

(From §3.2, p̃D is an optimal solution of P̃.) Our proposed NSC heuristic is given below.
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Nonparametric Self-adjusting Control (NSC)

Input parameters: n, s, Tuning Parameters: d,L0

Stage 1 (Exploration Phase 1 - Spline Estimation)
a. For t= 1 to L̃0 ∧T :

- If Ct−1 ≺Aj for some j = 1, . . . , n, set pt,j = p∞j for all j = 1, . . . , n.
- Otherwise, follow Step 1 in Spline Estimation algorithm.

b. At the end of period L̃0 ∧T , do:
- If L̃0 ≥ T , terminate NSC.
- If L̃0 <T and CL̃0

≺Aj for some j = 1, . . . , n:

- For all t > L̃0, set pt,j = p∞j for all j = 1, . . . , n.
- Terminate NSC.

- If L̃0 <T and CL̃0
�Aj for all j = 1, . . . , n:

- Follow Step 2 in Spline Estimation algorithm to get λ̃(.).
- Go to Stage 2 below.

Stage 2 (Exploration Phase 2 - Function Approximation)
a. Solve P̃ and obtain the optimizer p̃D.
b. Let δ :=C/T −CL̃0

/(T − L̃0).

c. Compute â, B̂, Ê, F̂ , Ĝ, Ĥ and θ̂= (θ̂o; θ̂ι).
- If B̂ is invertible, go to Stage 2(d) below.
- Otherwise, for t= L̃0 + 1 to T :

- If Ct−1 �Aj for j = 1, . . . , n, apply pt = p̃D.
- Otherwise, for product j = 1 to n, do:

- If Ct−1 ≺Aj, set pt,j = p∞j .
- Otherwise, set pt,j = pt−1,j.

d. Solve QP(θ̂; δ) for its static price pDδ (θ̂).

Stage 3 (Exploitation)
For t= L̃0 + 1 to T :

- Compute: p̂t = pDδ (θ̂)−∇λp(λDδ (θ̂); θ̂ι) ·
∑t−1

s=L̃0+1
∆̃s
T−s , where ∆̃t :=Dt−λ(pt; θ̂ι).

- If p̂t ∈P and Ct−1 �Aj for j = 1, . . . , n, apply pt = p̂t.
- Otherwise, for product j = 1 to n, do:

- If Ct−1 ≺Aj, set pt,j = p∞j .
- Otherwise, set pt,j = pt−1,j.

We now explain the main ideas behind NSC. The exploitation part (Stage 3) of NSC is motivated
by LRC heuristic developed in Jasin [21], which (roughly) uses

pt = p∗

(
λD−

t−1∑
s=1

∆s

T − s

)
, where ∆t =Dt(pt)−λ∗(pt)

and has a strong performance guarantee in the setting of known demand function. In our setting,
the demand function λ∗(.) is unknown (hence, the inverse demand function p∗(.) is also unknown)
and the sequence {∆t}Tt=1 is not observable. If we still wish to use LRC, an intuitive fix is to
replace λ∗(.) and {∆t}Tt=1 with their best estimates. This motivates the use of Spline Estimation in
Stage 1 to compute an approximate demand function λ̃(.). However, although λ̃(.) can approximate
λ∗(.) well by tapping into the smoothness of λ∗(.), the piece-wise nature of spline functions and
the shape of the spline basis functions imply that λ̃(.) may not be invertible, i.e., λ̃(.) may not
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admit a well-defined inverse demand function. But, this is crucial since LRC uses p∗(.) to adjust
the prices. This motivates us to use demand linearization in Stage 2. The objective of Stage 2
is to construct a linear function that closely approximates the linearization of the true demand
function λ∗(.) around pD and construct a quadratic program that closely approximates P around its
optimal solution pD. We choose to use linear approximation of the demand function and quadratic
approximation of the revenue function because, by Lemma 3 part (e), the optimal solution of
the constructed approximate quadratic program coincides with the optimal solution of P if the
parameters are chosen to be (θ∗,0) (see §3.3 for more discussions). Although θ∗ is unknown to
the seller, we can utilize the spline approximation λ̃(.) to construct parameters θ̂ that closely
approximate θ∗. To see why this is so, note that if L0 is carefully selected, the spline estimation
procedure yields a spline function λ̃(.) that closely approximates λ∗(.), together with its first and
second order partial derivatives (by Lemma 1), with a very high probability; this in turn indicates
that any optimizer p̃D of P̃ lies in a close proximity of pD (by Lemma 2). Since θ∗ (resp. θ̂) can
essentially be viewed as a function of pD (resp. p̃D), λ∗(pD) (resp. λ̃(p̃D)) and its first and second
order derivatives evaluated at pD (resp. p̃D), this suggests that θ̂= (θ̂o; θ̂ι) is a good approximation
of θ∗ = (θ∗o ;θ

∗
ι ). It is worth stressing that Spline Estimation is crucial for determining reasonably

good linear demand and quadratic revenue function approximations. As mentioned above, among
all possible approximate linear demand functions, only those that are linearized at a point close to
pD are effective. (Similarly for the revenue functions.) To find a point that is close to pD (i.e., p̃D

in our NSC) via optimizing the approximate deterministic pricing problem, we need to use Spline
Estimation to get an approximate function that uniformly approximates the underlying demand
function well.

Finally, after obtaining λ(.; θ̂ι), we replace p∗(.) and ∆t in LRC with p(.; θ̂ι) and ∆̃t. This leads
to the price update formula in Stage 3:

p̂t = pDδ (θ̂)−∇λp(λDδ (θ̂); θ̂ι) ·
t−1∑

s=L̃0+1

∆̃s

T − s
.

It is natural to expect that if λ(.; θ̂) approximates λ∗(.) well, then NSC should retain the strong
performance of LRC, this intuition is not immediately obvious and requires a mathematical justi-
fication. Note that, in addition to demand randomness, there are at least three sources of errors
that affect the performance of NSC: (1) errors from functional estimation (i.e., due to estimating
λ∗(.) with λ̃(.)), (2) errors from function approximation (i.e., due to demand linearization and
quadratic approximation), and (3) errors from systematic biases due to the terms {∆̃t}Tt=1. (In
LRC, the perturbation term

∑t−1

s=1 ∆s/(T −s) is unbiased because Eπλ∗ [∆t] = 0. In contrast, in NSC,
the perturbation term

∑t−1

s=L̃0+1 ∆̃s/(T − s) is biased because Eπλ∗ [∆̃t] 6= 0. This means that we are
systematically introducing new biases in each period. It is not a priori clear what kind of impact
these biases will have on revenue performance.) Thus, despite the strong performance of LRC in
the known demand function setting, it is not a priori clear whether self-adjusting alone, without
re-optimizations and without re-estimations during Stage 3, is sufficient to reduce the impact of
these errors on expected revenue loss. Interestingly, the following result states that the performance
of NSC is close to the best achievable (asymptotic) performance bound.

Theorem 1. Suppose that we use s ≥ 4, L0 = d(kT )(s+n/2)/(2s+n−2)(log(kT ))(2s+n−4)/(2s+n−2)e
and d= d(L1/2

0 / log(kT ))1/(s+n/2)e. There exists a constant M1 > 0 independent of k > 3 such that
for all s≥ 4, we have

ρNSC(k) ≤ M1k
1
2 +ε(n,s,s̄) logk, where ε(n, s, s̄) = 1

2

(
2s−2(s∧s̄)+n+2

2s+n−2

)
.
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Some comments are in order. First, unlike the heuristic control proposed in Besbes and Zeevi [7],
which requires the knowledge of s̄, NSC does not require the knowledge of the smoothness index
s̄. This is practically appealing because it is usually difficult to guess the smoothness index of a
function when the function itself is unknown. Second, since most commonly used demand functions
such as polynomial with arbitrary degree, logit, and exponential are infinitely differentiable (i.e., s̄
can be arbitrarily large), for any fixed ε > 0, we can select integers s≥ (n+2)/(4ε)− (n−2)/2 such
that the performance under NSC is O(k1/2+ε logk). Theoretically, this means that the asymptotic
performance of NSC is very close to the best achievable performance lower bound of Ω(

√
k). Third,

despite the systematic biases it introduces, self-adjusting control in Stage 3 (surprisingly) plays a
vital role in guaranteeing the stated performance bound; specifically, compared to a static pricing
control, self-adjusting control has the ability to reduce the negative impact of systematic biases
on revenue. To illustrate, consider the case where s̄ is arbitrarily large. Suppose that we only
apply static price pt = pDδ (θ̂) throughout Stage 3, subject to capacity constraints. Then, under the
optimally tuned L0 and s, one can show that the resulting expected revenue loss is O(k2/3+ε logk),
which is significantly worse than the bound in Theorem 1. This underscores the importance of self-
adjusting price update in reducing the expected revenue loss from O(k2/3+ε logk) to O(k1/2+ε logk).
(Note that NSC’s ability to reduce the negative impact of systematic biases on revenue is also
observed in the re-optimized PAC heuristic developed in Jasin [22] for the quantity-based network
RM problem with unknown demand arrival rates. The re-optimizations in Jasin [22] create a
negative feedback mechanism which is similar to the self-adjusting pricing rule studied here.)
Finally, to further validate the theoretical result in Theorem 1, we conduct a simple numerical
study with two types of products and two types of resources. Table 1 shows that NSC performs well:
For problems with a wide range of k, its relative revenue loss (i.e., ρπ(k)/JD(k)) is about 3 - 8%
lower than the relative revenue loss of Algorithm 3 in Besbes and Zeevi [7]. To implement NSC for
large-scale problems, the main computational burden lies in solving the nonlinear optimization P̃
because λ̃(p) is stitched together by many (not necessarily concave) multinomial function. (In fact,
Algorithm 3 in Besbes and Zeevi [7] also suffers from this computational complexity. Moreover, we
would also like to point out that, in contrast to local polynomial approximation used in Algorithm 3
in Besbes and Zeevi (2012), our spline approximation is globally differentiable and is more amenable
to optimizations.) Thus, for problems with many different types of products and resources, one
may want to optimize an approximation of P̃ that is computationally more tractable. The question
of which approximation should be used is an important and practically relevant one; however, it
is beyond the scope of the current paper and we leave it for future research pursuit.

Remark 4 (On the analysis of uncapacitated vs. capacitated RM). Per our discus-
sions in §1, most existing literature on joint learning and pricing focus on the setting of uncapaci-
tated RM where there is no limit on the number of resources that can be used. In such setting, it
has been repeatedly shown in the literature that the Ω(

√
k) lower bound is actually tight for both

single product and multiple products settings (see [6], [11], [23]). The presence of capacity con-
straints makes the problem significantly more challenging. To see this, note that, if we mis-calculate
pD by ε (i.e., we use p̃D = pD + ε), by the strong concavity of r∗λ(.) and Lipschitz property of
demand, r∗(pD)− r∗(p̃D) is approximately on the order of ε2 in the uncapacitated setting (because
∇r∗(pD) = 0 due to pD being the unconstrained optimizer of r∗(p)). Thus, the expected revenue
loss during T periods is O(Tε2). In contrast, in the capacitated setting, ∇r∗(pD) 6= 0 in general.
This means that r∗(pD)− r∗(p̃D) is on the order of ε, which implies that the expected revenue loss
during T periods is O(Tε). This is the reason why the analysis in uncapacitated RM is not directly
applicable to capacitated RM.

Remark 5 (Applying NSC in deterministic demand arrival case). Although NSC is
designed for the stochastic demand case, it can be readily adapted and applied in the deterministic
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Table 1. Revenue loss of Algorithm 3 in Besbes and Zeevi [7] and NSC

Algorithm 3 in Besbes and Zeevi [7] NSC

k Revenue loss Stdev Relative revenue loss(%) Revenue loss Stdev Relative revenue loss(%)

500 5331 53 52.6 4681 11 46.2
1000 10490 114 51.8 8823 46 43.5
2000 20307 214 50.1 17320 85 42.7
3000 30074 300 49.5 26647 240 43.8
4000 39167 392 48.3 34421 289 42.5
5000 48922 466 48.3 40796 307 40.3
6000 57804 522 47.5 49578 477 40.8
7000 65459 594 46.1 57310 605 40.4
8000 74990 688 46.3 62319 640 38.4
9000 82891 721 45.4 70797 800 38.8
10000 89703 734 44.3 75179 814 37.1
100000 500623 2972 24.7 426665 8173 21.1
1000000 3173343 17856 15.7 1829065 40502 9.0
10000000 20342474 68912 10.0 8105010 26139 4.0

In this numerical example, we set n= 2,m= 2, A= [1,1; 0,2],C = [0.1; 0.1]. The true demand function is a logit
function, and [λ1(p1, p2);λ2(p1, p2)] = (1+exp(0.4−0.015p1)+exp(0.8−0.02p2))−1 [exp(0.4−0.015p1); exp(0.8−
0.02p2)]. For ease of performance comparison, we use s= 4 for both Algorithm 3 in Besbes and Zeevi [7] and
NSC. We vary k from 500 (a capacity level of 50 for each resource) to 10000000 (a capacity level of 1000000 for
each resource) and run 1000 trials for each k. The fourth and the seventh columns correspond to the relative
revenue loss for the corresponding heuristic π defined as ρπ(k)/JD(k). (The Matlab code of our numerical
example can be found at https://sites.google.com/a/umich.edu/georgeqc/research.)

demand case as well. In this case, there is no random noise in demand observations, so one can
simply set L0 = 1 in the Spline Estimation subroutine. The other tuning parameter d needs to
be adjusted accordingly. Specifically, given L0 = 1, for any s ≥ 4 and d, the estimation error of
the demand function and its first order partial derivatives are in the order of ε := O(d−(s∧s̄−1))
by a similar analysis as in Step 1 in the proof of Lemma 1. The expected revenue loss during
the exploration stages is in the order of the number of prices being tested, i.e., O(dn), while the
expected revenue loss during the exploitation stage is O(ε2k). Hence, the expected revenue loss

throughout the selling season is O(ε−
n

s∧s̄−1 + ε2k), which is minimized at ε= k
− s∧s̄−1

2(s∧s̄)+n−2 . Thus, by

setting d= k
1

2(s∧s̄)+n−2 , the performance bound of NSC for deterministic demand is O(k
n

2(s∧s̄)+n−2 ).
This means that when the demand function is sufficiently smooth (i.e., s̄=∞), for any ε > 0, we
can choose s large enough so that the performance of NSC in the deterministic demand setting
is O(kε). This highlights the fact that stochastic and deterministic demand cases have different
complexities.

Remark 6 (On our demand linearization approach). Although the estimated spline
function is not used in the exploitation stage once the function approximations (i.e., linear demand
approximation and quadratic revenue approximation) are conducted, we would like to re-iterate
that Spline Estimation is crucial in NSC as it ensures that the demand function is linearized at a
point that is sufficiently close to pD so that the resulting function approximations are reasonably
good. Other demand linearization approaches have been proposed in the literature as well. For
example, in the single product without capacity constraint setting, by using the simple structure
of the optimal price λ(p∗) + p∗λ′(p∗) = 0, Besbes and Zeevi [8] propose a simpler and more direct
demand linearization approach that works well in their setting. This approach is unlikely to work
in our multiple products with multiple capacity constraints setting because the optimal solution
pD does not permit the same simple structure anymore; instead, it is characterized by the KKT
conditions (i.e., one needs to compare a combinatorial number of KKT points to find pD).
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Remark 7 (Finding the tuning parameters for implementation). To implement NSC
in practice, a seller needs to find the tuning parameters L0 and d which depend on k; but k is an
asymptotic scaling factor and does not have a physical meaning in the original problem. How should
a seller implement NSC? Note that L0 and d only depend on k via kT which can be interpreted
as the aggregated potential market size, i.e., the total number of customers who would potentially
purchase a product the seller offers during the whole selling season. Estimating this aggregated
number is not very difficult; a firm may be able to get a ballpark estimate from its own experience
in the industry, or from market analysis research conducted by consulting companies. Then, the
seller can divide the whole selling season into kT decision periods, compute L0 and d accordingly,
and apply NSC. Note that the estimate of kT does not need to be perfect; as long as this estimate
is of the same order as the true aggregated market size, the corresponding tuning parameters will
have the appropriate order of magnitude.

5. Proof of Theorem 1. In this section, we provide a complete proof of Theorem 1. We first
discuss an outline of the proof, together with the key ideas and key lemmas, in §5.1 and then we
fill in the remaining details in §5.2 - 5.4. Throughout this section, we fix π= NSC and assume that
T = 1 (this is without lost of generality).

5.1. Key ideas and outline of the proof. The proof of Theorem 1 uses a combination of
large deviation arguments, stability analysis, and stopping time arguments. Below, we divide the
proof into three parts.

Part 1

In this part, we argue that, if k is large, ||θ∗− θ̂||2 is small with a very high probability. This result
allows us to use the perturbation result in Lemma 3 when analyzing the revenue loss later (in Part
3). Let ε(L0) = (logk/

√
L0)((s∧s̄)−2)/(s+n/2) and define E := {||θ∗− θ̂||2 ≤M2ε(L0)}, where M2 is as

defined in Lemma 4 below.

Lemma 4. There exist constants M2,M3 > 0 independent of k ≥ 1 and L0 such that if L0 ≥
log3 k and s≥ 4, then Pπλ∗(||θ∗− θ̂||2 >M2ε(L0)) ≤ M3/k.

The complete proof of Lemma 4 is given in §5.2. Here, we simply provide some basic intuition
behind the proof. The proof uses Lemma 1 and Lemma 2. In particular, recall that Lemma 1
indicates that, with a very high probability, the spline function λ̃(.) closely approximates the
underlying demand function λ∗(.) both in terms of the function value and its first and second order
partial derivatives when s≥ 4 and s̄≥ 2. This result together with the nonparametric perturbation
result in Lemma 2 establishes that p̃D is very close to pD with very high probability. But then, the
first and second order derivatives of λ̃(.) evaluated at p̃D also closely approximate those of λ∗(.)
evaluated at pD. Note that by construction, θ∗ (resp. θ̂) can essentially be viewed as a function
of pD (resp. p̃D), λ∗(pD) (resp. λ̃(p̃D)) and its first and second order derivatives evaluated at pD

(resp. p̃D). Hence, θ̂ closely approximates θ∗ with a very high probability.
In the remainder of this part, we first discuss some observations that follow from Lemma 4 and

then use these observations to define a constant Ω1, which will be used in Parts 2 and 3. (As will be
clear later, the problem behaves nicely and the prerequisite of Lemma 3 is satisfied when k ≥Ω1.
This sets the stage for the analysis in Parts 2 and 3.) Four observations are in order. First, note
that, as k becomes large, the probability of E tends to one. Second, ε(L0)→ 0 as k→∞ under
the condition that L0 > log3 k, and this condition is satisfied for all sufficiently large k because our
selection of L0 implies

k
s+n/2

2s+n−2 (logk)
2s+n−4
2s+n−2 ≤L0 ≤ 2k

s+n/2
2s+n−2 (logk)

2s+n−4
2s+n−2 , (4)
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and log3 k is smaller than the left hand side of (4) for large k. In light of Lemma 4, this observation
means that if k is large, θ∗ and θ̂ can be arbitrarily close with a very high probability. By (4), we
have the following bounds for ε(L0) as well:

2−
s∧s̄−2
2s+n

(
logk√
k

) s∧s̄−2
2s+n−2

≤ ε(L0)≤
(

logk√
k

) s∧s̄−2
2s+n−2

. (5)

Third, by definition of L̃0 and our choice of d in Theorem 1, we can bound

L̃0 = sn(s+ d)nL0 ≤ sn(s+ 1)ndnL0 ≤ sn(s+ 1)n2n+2k
s+n

2s+n−2 (logk)
2(s−2)

2s+n−2 , (6)

where the second inequality follows because, by (4) and the definition of d in Theorem 1,

dnL0 ≤ [2(
√
L0/ logk)

1
s+n/2 ]nL0 = 2n(logk)

− n
s+n/2L

s+n
s+n/2

0

≤ 2n(logk)
− n
s+n/2 2

s+n
s+n/2k

s+n
2s+n−2 (logk)

2s+n−4
2s+n−2

s+n
s+n/2

≤ 2n+2k
s+n

2s+n−2 (logk)
2s+n−4
2s+n−2

s+n
s+n/2

− n
s+n/2 = 2n+2k

s+n
2s+n−2 (logk)

2(s−2)
2s+n−2 .

Note that (6) implies that L̃0/k→ 0 as k→∞. So, there exists a constant Ω0 > 0 such that for all
k >Ω0, we have L̃0 ≤ k/2. Fourth, there exists a constant M4 > 0 independent of k≥Ω0 such that
for all k≥Ω0,

||δ||2 =

∣∣∣∣∣∣∣∣C − CL̃0

k− L̃0

∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣(kC − L̃0C)− (kC −A

∑L̃0

s=1Ds)

k− L̃0

∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣A
∑L̃0

s=1Ds− L̃0C

k− L̃0

∣∣∣∣∣
∣∣∣∣∣
2

≤ 2 (||Ae||2 + ||C||2)
L̃0

k
≤ 2 (||Ae||2 + ||C||2)sn(s+ 1)n2n+2(logk/

√
k)

2(s−2)
2s+n−2

≤ 2 (||Ae||2 + ||C||2)sn(s+ 1)n2n+2(logk/
√
k)

2(s∧s̄−2)
2s+n−2 ≤ M4ε(L0)2

where the first inequality follows because L̃0 ≤ k/2 for k≥Ω0 and we have at most one arrival per
period, the second inequality follows from (6), and the last inequality follows from (5).

Let δ̄ be defined as in Lemma 3. Putting together the four observations above, we conclude that
there exists a constant Ω1 > 0 independent of k such that for all k≥Ω1 the following holds:

Pπλ∗(E) ≥ 1−M3/k ≥ 1/2; (7)
Conditioning on E , ||θ∗− θ̂||2 ≤M2ε(L0)≤ δ̄; (8)
||δ||2 ≤M4ε(L0)2 ≤ δ̄. (9)

Inequality (7) indicates that we only need to focus on the revenue loss on the event E . Inequalities
(8) and (9) are crucial; they ensure that, for k≥Ω1, conditioning on E , the prerequisite of Lemma 3
is satisfied and the perturbation bounds therein can be used to analyze the performance of NSC.

Part 2

In this part, we define a stopping time τ and analyze its properties. This will be crucial for our
analysis in Part 3. In particular, it helps us to quantify the amount of revenue loss under NSC
during the exploitation phase. (Stopping time argument is also used in Jasin [21]. However, unlike
the arguments in Jasin [21], which assume known demand function, here we also need to deal with
estimation errors, approximation errors, and systematic biases.) We first define τ and state its
properties in Lemmas 5 and 6. For clarity, we delay the complete proof of these two lemmas in
§5.3 and only discuss the intuition here. Let τ be the minimum of k and the first time t≥ L̃0 + 1
such that the following condition (†) is violated:

(†) ψ >S(t), where ψ :=
√
ε(L0), S(k) :=∞ and ∀t∈ [1, k− 1],

S(t) :=
∣∣∣∣∣∣∑t

s=L̃0+1
∆̃s
k−s

∣∣∣∣∣∣
2

+ 1
k−t .
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(Recall that ∆̃s = ∆s +λ∗(ps)−λ(ps; θ̂ι).) The purpose of condition (†) is to guarantee that p̂t is
not too far way from pDδ (θ̂) (see the pricing formula in Stage 3 of NSC) before τ and the cumulative
deviation of the actual demand realizations from the target average demand is not too large before
τ . Let Ω1 and E be as defined in Part 1. We state two lemmas.

Lemma 5. Suppose that L0 ≥ log3 k. There exists a constant Ω2 >Ω1 independent of k≥ 1 such
that for all k ≥ Ω2 and all sample paths on E, p̂t ∈ P (i.e., pt = p̂t) and Ct � Aj for all j ∈ [1, n]

and t∈ [L̃0 + 1, τ − 1].

Lemma 6. There exists a constant M5 > 0 independent of k ≥ 1 such that, for all k ≥ Ω2, we
have Eπλ∗ [k− τ |E ]≤M5(ε(L0)2k+ ε(L0)−1 logk+ ε(L0)−2).

Lemma 5 essentially says that, when k is sufficiently large, everything behaves “nicely” before
the stopping time τ on E . As will be clear in Part 3, this enables us to explicitly characterize the
cumulative revenue loss under NSC before τ . After τ , NSC may end up charging the turn-off prices
(i.e., due to stock-out) and the characterization of pt becomes less tractable. Fortunately, Lemma 6
tells us that Eπλ∗ [k− τ ] is small for large k (i.e., τ is large). So, by regularity condition R3, we can
simply bound the per period revenue loss after τ with r̄.

The complete proof of Lemma 6 is deferred to §5.3. For now, we provide the main intuition
and highlight how our argument differs from that in Jasin [21]. Note that, since Eπλ∗ [k − τ |E ] =∑k−1

t=1 Pπλ∗(τ ≤ t|E), the proof of Lemma 6 boils down to computing a bound (for each t) for the
conditional probability Pπλ∗(τ ≤ t|E). Roughly speaking, this is equivalent to analyzing the proba-
bility that S(s) is smaller than the threshold ψ for L̃0 + 1≤ s≤ t. Note that S(t) can be bounded
as follows:

S(t) ≤

∣∣∣∣∣∣
∣∣∣∣∣∣

t∑
s=L̃0+1

∆s

k− s

∣∣∣∣∣∣
∣∣∣∣∣∣
2︸ ︷︷ ︸

random noise

+

∣∣∣∣∣∣
∣∣∣∣∣∣

t∑
s=L̃0+1

λ∗(ps)−λ(ps; θ̂ι)

k− s

∣∣∣∣∣∣
∣∣∣∣∣∣
2︸ ︷︷ ︸

systematic biases

+
1

k− t
,

where the random noise comes from the stochasticity of demand and the systematic bias comes
from the estimation error due to Spline Estimation and demand linearization. The systematic biases
term does not appear in Jasin [21]; here, it is the primary driving force of the order of Eπλ∗ [k− τ |E ].
In the proof, we use Markov’s inequality and integration inequality to bound that term. Note that
in order to derive a tight bound using Markov’s inequality, we need to make sure that the order
of ||λ∗(ps)− λ(ps; θ̂ι)||2 is small enough. It turns out that, for all s < τ , the definitions of τ and ψ
ensure that ps is very close to pD; moreover, since λ(.;θ∗ι ) is a good approximation of λ∗(.) in the
neighborhood of pD, λ(ps;θ

∗
ι ) is very close to λ∗(ps) as well. This observation together with Lemma 4

further implies that, conditioning on E , for all s < τ , the order of ||λ∗(ps)−λ(ps; θ̂ι)||2 =O(ε(L0))
(see derivation in (44) for more details) is sufficiently small. However, for s≥ τ , ps is not guaranteed
to be sufficiently close to pD and the order of ||λ∗(ps)−λ(ps; θ̂ι)||2 could be as large as Θ(1), which
will blow up the Markov’s bound we derive. (Although the spline estimate λ̃(.) is uniformly close
to λ∗(.), its linear approximation λ(.; θ̂ι) is not always close to λ∗(.), except for prices that are
sufficiently close to pD, see (44).) This means that we cannot use Markov’s inequality directly on
τ as it is defined in (†). The culprit here is the term S(t) which, by definition of ∆̃s, includes the
summation of many systematic biases terms that may turn out to be very large. To address this,
we introduce another stopping time τ̃ as the minimum of k and the first time t≥ L̃0 + 1 such that
the following condition (††) is violated:

(††) ψ > S̃(t), where S̃(k) :=∞ and ∀t∈ [1, k− 1],

S̃(t) :=
∣∣∣∣∣∣∑t

s=L̃0+1
∆s
k−s +

∑t

s=L̃0+1
λ∗(ps)−λ(ps;θ̂ι)

k−s 1{s≤τ}

∣∣∣∣∣∣
2

+ 1
k−t .
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We prove in Lemma 6 (see §5.3) that τ̃ actually equals τ on every sample path, but τ̃ is easier to
work with because the term S̃(t) in the stopping criterion only involves one systematic bias term
that may be large (i.e., (λ∗(pτ )− λ(pτ ; θ̂ι))/(k − τ)). The desired result can then be attained by
Markov’s inequality and integration inequality.

Part 3

Finally, we analyze the revenue loss of NSC as a function of k. Here, we collect the results from
Parts 1 and 2 and use standard arguments to “count” the revenue loss incurred throughout the
selling season (see, for example, Jasin [21]). If k = O(1), the revenue loss can be bounded by a
constant; if k is large, all the useful properties of τ and E derived above (Lemmas 4 - 6) hold and
we can use them to analyze the revenue loss of NSC. We break down the revenue loss of NSC into
three parts: (i) revenue loss incurred during the exploration stage, (ii) revenue loss incurred during
the exploitation stage before τ , and (iii) revenue loss incurred during the exploitation stage after
τ . Since the length of the exploration stage is L̃0, by R3, we can bound (i) with L̃0r̄. As for (ii)
and (iii), we derive an upper bound by conditioning on E and Ec. Since Pπλ∗(Ec) is very small for
large k, the majority of the revenue loss comes from the expected revenue loss conditioning on E .
This means that, roughly speaking, (iii) can be bounded by r̄Eπλ∗ [k− τ |E ]. The remaining work is
to carefully bound (ii) conditioning on E using Taylor’s expansion.

Let Ω := max{Ω1,Ω2,Ω3}, where Ω1 is as defined in Part 1, Ω2 is as defined in Lemma 5, and
Ω3 is a constant independent of k such that ε(L0)< 1 for all k ≥Ω3. If k <Ω, ρπ(k)< r̄Ω =O(1).
So, we can focus on the case k ≥ Ω. Let Rπ

t denote the revenue earned in period t under policy
π, and let R̂π

λ∗(k) :=
∑k

t=L̃0+1R
π
t denote the revenue earned during the exploitation stage. For

notational brevity, we will simply write λt = λ∗(pt). Let ∆̄t :=Rπ
t − r∗(λt). Note that {∆̄t}k−1

t=L̃0+1
is

a martingale difference sequence with respect to filtration {Ht}k−1

t=L̃0+1
. Thus, by R3 and Optional

Stopping Time Theorem, we have −Eπλ∗ [
∑τ−1

t=L̃0+1 ∆̄t] =−Eπλ∗ [
∑τ

t=L̃0+1 ∆̄t]+Eπλ∗ [∆̄τ ] =Eπλ∗ [∆̄τ ]≤ r̄.
Therefore, for k≥Ω, ρπ(k) can be bounded as follows:

ρπ(k) = Eπλ∗

 L̃0∑
t=1

(
rD−Rπ

t

)
+

τ−1∑
t=L̃0+1

(
rD− r∗λ(λt)− ∆̄t

)
+

k∑
t=τ

(
rD−Rπ

t

)
≤ r̄L̃0 + r̄+Eπλ∗

 τ−1∑
t=L̃0+1

(
rD− r∗λ(λt)

)
+

k∑
t=τ

(
rD−Rπ

t

)
= r̄(1 + L̃0) +Eπλ∗

 τ−1∑
t=L̃0+1

(
rD− r∗λ(λt)

)
+

k∑
t=τ

(
rD−Rπ

t

) ∣∣∣∣∣∣ Ec
Pπλ∗(Ec)

+Eπλ∗

 τ−1∑
t=L̃0+1

(
rD− r∗λ(λt)

)
+

k∑
t=τ

(
rD−Rπ

t

) ∣∣∣∣∣∣ E
Pπλ∗(E)

≤ r̄(1 + L̃0) + r̄kPπλ∗(Ec) +Eπλ∗

 τ−1∑
t=L̃0+1

(
rD− r∗λ(λt)

)
+

k∑
t=τ

(
rD−Rπ

t

) ∣∣∣∣∣∣ E


≤ r̄(1 + L̃0) + r̄kPπλ∗(Ec) +Eπλ∗

 τ−1∑
t=L̃0+1

(
rD− r∗λ(λt)

) ∣∣∣∣∣∣ E
+ r̄Eπλ∗ [k− τ + 1 | E ]

≤ r̄
(

2 +M3 + L̃0 +Eπλ∗ [k− τ | E ]
)

+Eπλ∗

 τ−1∑
t=L̃0+1

(
rD− r∗λ(λt)

)∣∣∣∣∣∣E
 , (10)
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where the last inequality follows because kPπλ∗(Ec)≤M3 by Lemma 4. To bound the second term
in (10), we use Taylor’s expansion. Note that, by R3,

rD− r∗λ(λt) = r∗λ(λD)− r∗λ(λt)≤∇r∗λ(λD) · (λD−λt) +
v̄

2
||λD−λt||22.

We will show in §5.4 that there exist constants M6,M7 > 0 independent of k≥Ω such that

Eπλ∗

 τ−1∑
t=L̃0+1

∇r∗λ(λD) · (λD−λt)

∣∣∣∣∣∣ E
≤M6

(
1 + ε(L0)2k+ ε(L0)−1 logk+ ε(L0)−2

)
; (11)

v̄

2
Eπλ∗

 τ−1∑
t=L̃0+1

||λD−λt||22

∣∣∣∣∣∣ E
≤M7

(
logk+ ε(L0)2k

)
. (12)

Combining (5)-(6) and (10)-(12) with Lemma 6, we conclude that there exist constants M8,M9 >
0 independent of k >Ω such that for all k >Ω, we have:

ρπ(k) ≤ M8

(
ε(L0)2k+ ε(L0)−1 logk+ ε(L0)−2 + r̄L̃0

)
≤ M8

k( log2 k

k

) s∧s̄−2
2s+n−2

+ 2
s∧s̄−2
2s+n logk

( √
k

logk

) s∧s̄−2
2s+n−2

+ 2
2(s∧s̄−2)

2s+n

(
k

log2 k

) s∧s̄−2
2s+n−2


+M8

[
r̄sn(s+ 1)n2n+2k

s+n
2s+n−2 (logk)

2(s−2)
2s+n−2

]
≤M9k

2s−s∧s̄+n
2s+n−2 logk.

Letting M1 =M9 + r̄Ω completes the proof of Theorem 1.

5.2. Part 1: Proof of Lemma 4. Define F :=F1 ∩F2, where

F1 :=
{
||pD− p̃D||2 ≤C0ε(L0)

}
,

F2 :=
{∣∣∣∣∣∣∂r(λ∗j (.)−λ̃j(.))

∂p
r1
1 ...∂prnn

∣∣∣∣∣∣
∞
<C1ε(L0),∀j ∈ [1, n], r ∈ [0,2], rl ∈Z+, l ∈ [1, n],

∑n

l=1 rl = r
}
,

C0 is a positive constant to be chosen later and C1 := max{Ψ0,Ψ1,Ψ2} (recall that Ψ0,Ψ1,Ψ2 are
the constants discussed in Lemma 1). Let Φ := max{Φ1,Φ2}, where Φ1 > 3,Φ2 > 3 are constants to
be chosen later. We first derive an upper bound for ||θ∗− θ̂||2 conditioning on F for k≥Φ. (Unless
otherwise noted, in what follows, we will simply assume that F is satisfied and k≥Φ.)

By R1 (i.e., Lipschitz continuity of the second order partial derivatives of λ∗(.)), the compactness
of P, and the continuity of λ̃(.) (note that s≥ 4> 2 implies λ̃(.) ∈ C(P)), there exists a constant
C2 > 0 such that, conditioning on F , for all r ∈ [0,2], rl ∈Z+, l ∈ [1, n] satisfying

∑n

l=1 rl = r, p∈P,
and j ∈ [1, n], we have:∣∣∣∣∂r(λ∗j (pD)−λ∗j (p̃D))

∂pr11 . . . ∂prnn

∣∣∣∣≤C2||pD− p̃D||2 ≤C2C0ε(L0) and |λ̃j(p)| ≤C2. (13)

So, the following two inequalities hold:

||λ∗(pD)−λ∗(p̃D)||2 ≤
√
n ||λ∗(pD)−λ∗(p̃D)||∞

=
√
n max
j=1,...,n

|λ∗j (pD)−λ∗j (p̃D)| ≤
√
nC2C0ε(L0), (14)



Chen, Jasin, and Duenyas: Nonparametric Self-Adjusting Control
Article submitted to Mathematics of Operations Research; manuscript no. MOR-2015-179.R2 27

where the last inequality follows by applying r= 0 to (13), and

||u∗ij − ûij||2 =

√√√√ n∑
l=1

∣∣∣∣∣∂2λ∗l (p
D)

∂pi∂pj
− ∂

2λ∗l (p̃
D)

∂pi∂pj
+
∂2λ∗l (p̃

D)

∂pi∂pj
− ∂

2λ̃l(p̃D)

∂pi∂pj

∣∣∣∣∣
2

≤

√√√√ n∑
l=1

2

∣∣∣∣∂2λ∗l (p
D)

∂pi∂pj
− ∂

2λ∗l (p̃
D)

∂pi∂pj

∣∣∣∣2 +
n∑
l=1

2

∣∣∣∣∣
∣∣∣∣∣∂2λ∗l (.)

∂pi∂pj
− ∂

2λ̃l(.)

∂pi∂pj

∣∣∣∣∣
∣∣∣∣∣
2

∞

≤
√

2nC2
0C

2
2ε(L0)2 + 2nC2

1ε(L0)2 = ε(L0)
√

2nC2
0C

2
2 + 2nC2

1 . (15)

By similar arguments as above, there exists a constant C3 > 0 independent of k such that:

||B∗− B̂||F =

√√√√ n∑
i=1

n∑
j=1

∣∣∣∣∣∂λ∗i (pD)

∂pj
− ∂λ

∗
i (p̃

D)

∂pj
+
∂λ∗i (p̃

D)

∂pj
− ∂λ̃i(p̃

D)

∂pj

∣∣∣∣∣
2

≤

√√√√ n∑
i=1

n∑
j=1

2

∣∣∣∣∂λ∗i (pD)

∂pj
− ∂λ

∗
i (p̃

D)

∂pj

∣∣∣∣2 +
n∑
i=1

n∑
j=1

2

∣∣∣∣∣
∣∣∣∣∣∂λ∗i (.)∂pj

− ∂λ̃i(.)
∂pj

∣∣∣∣∣
∣∣∣∣∣
2

∞

≤
√

2n2C2
2C

2
0ε(L0)2 + 2n2C2

1ε(L0)2 ≤C3ε(L0). (16)

We now derive a bound for ||H∗ − Ĥ||2. To do this, we need to first find a bound for ||B̂−1||2.
Let σmax(X) and σmin(X) denote the maximum and the minimum eigenvalues of a symmetric
real matrix X, respectively. Since B∗ = ∇λ∗(pD) is invertible, B∗(B∗)′ is positive definite; so,
σ̄∗ := σmax(B∗(B∗)′)> 0 and σ∗ := σmin(B∗(B∗)′)> 0. Moreover, since C3ε(L0)→ 0 as k→∞, by
(16), there exists Φ1 > 0 such that, for all k >Φ1, ||B∗− B̂||2 ≤ ||B∗− B̂||F ≤C3ε(L0)≤ σ∗/(4

√
σ̄∗).

Therefore, for all v ∈Rn with ||v||2 = 1,

v′B̂′B̂v = v′(B̂−B∗+B∗)′(B̂−B∗+B∗)v
= v′(B∗)′B∗v+ v′(B∗)′(B̂−B∗)v+ v′(B̂−B∗)′B∗v+ v′(B̂−B∗)′(B̂−B∗)v
≥ σ∗− 2||v||22||B∗||2||B̂−B∗||2 ≥ σ∗− 2

√
σ̄∗σ∗/(4

√
σ̄∗) = σ∗/2.

This means that σmin(B̂′B̂)≥ σ∗/2> 0. Since (B̂′B̂)−1 = B̂−1(B̂−1)′,

||B̂−1||2 =

√
σmax(B̂−1(B̂−1)′) =

√
σmin(B̂′B̂)−1 ≤

√
2/σ∗. (17)

By telescoping, we can bound

|H∗ij − Ĥij| = |(u∗ij)′(B∗)−1λ∗(pD)− û′ijB̂−1λ̃(p̃D)|
≤ |(u∗ij)′(B∗)−1λ∗(pD)− (u∗ij)

′(B∗)−1λ̃(p̃D)|
+ |(u∗ij)′(B∗)−1λ̃(p̃D)− (u∗ij)

′B̂−1λ̃(p̃D)|+ |(u∗ij)′B̂−1λ̃(p̃D)− û′ijB̂−1λ̃(p̃D)|
≤ ||u∗ij||2 ||(B∗)−1||2 ||λ∗(pD)− λ̃(p̃D)||2

+ ||u∗ij||2 ||(B∗)−1||2 ||B∗− B̂||2 ||B̂−1||2 ||λ̃(p̃D)||2
+ ||u∗ij − ûij||2 ||B̂−1||2 ||λ̃(p̃D)||2 (18)

where the last inequality follows because (B∗)−1− B̂−1 = (B∗)−1(B̂−B∗)B̂−1. We now bound the
three terms on the right hand side of (18) one by one. For the first term of (18), by (14) and the
definition of F2, we have:

||u∗ij||2||(B∗)−1||2||λ∗(pD)− λ̃(p̃D)||2 ≤ ||u∗ij||2||(B∗)−1||2(||λ∗(pD)−λ∗(p̃D)||2 + ||λ∗(p̃D)− λ̃(p̃D)||2)

≤ ||u∗ij||2||(B∗)−1||2(
√
nC2C0ε(L0) +

√
n max
j=1,...,n

{||λ∗j (.)− λ̃j(.)||∞})
≤ ||u∗ij||2||(B∗)−1||2(

√
nC2C0ε(L0) +

√
nC1ε(L0)) =O(ε(L0)).
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For the second term of (18), by (13), (16) and (17),

||u∗ij||2||(B∗)−1||2||B∗− B̂||2||B̂−1||2||λ̃(p̃D)||2 ≤ ||u∗ij||2||(B∗)−1||2C3ε(L0)
√

2/σ∗
√
nC2 =O(ε(L0)).

For the last term of (18), by (13), (15) and (17),

||u∗ij − ûij||2||B̂−1||2||λ̃(p̃D)||2 ≤ ε(L0)
√

2nC2
0C

2
2 + 2nC2

1

√
2/σ∗

√
nC2 =O(ε(L0)).

So, |H∗ij − Ĥij|=O(ε(L0)) and there exists a constant C4 > 0 independent of k≥ 1 such that

||H∗− Ĥ||2 ≤ ||H∗− Ĥ||F =
√∑n

i=1

∑n

j=1 |H∗ij − Ĥij|2 ≤C4ε(L0). (19)

Using similar arguments as above, by telescoping and (14) - (19), there exist constants C5,C6,C7,
C8 > 0 independent of k≥ 1 such that on F we have

||a∗− â||2 ≤ ||λ∗(pD)− λ̃(p̃D)||2 + ||(B∗)′pD− B̂′p̃D||2
≤ ||λ∗(pD)−λ∗(p̃D)||2 + ||λ∗(p̃D)− λ̃(p̃D)||2 + ||B∗||2||pD− p̃D||2 + ||p̃D||2||B∗− B̂||2
≤
√
nC2C0ε(L0) +

√
nC1ε(L0) + ||B∗||2C0ε(L0) + (

∑n

l=1 p̄
2
l )

1/2C3ε(L0) =C5ε(L0), (20)

||E∗− Ê||2 ≤ || 12(pD− p̃D)′H∗pD||2 + || 1
2
(p̃D)′H∗(pD− p̃D)||2 + || 1

2
(p̃D)′(H∗− Ĥ)p̃D||2

≤ (
∑n

l=1 p̄
2
l )

1/2||H∗||2C0ε(L0) + 1
2
(
∑n

l=1 p̄
2
l )C4ε(L0) =C6ε(L0), (21)

||F ∗− F̂ ||2 ≤ ||a∗− â||2 + ||H∗||2||pD− p̃D||2 + ||H∗− Ĥ||2||p̃D||2
≤ C5ε(L0) + ||H∗||2C0ε(L0) + (

∑n

l=1 p̄
2
l )

1/2C4ε(L0) =C7ε(L0), (22)

||G∗− Ĝ||F ≤ 2||B∗− B̂||F + ||H∗− Ĥ||F ≤ 2C3ε(L0) +C4ε(L0) =C8ε(L0). (23)

Putting (16) and (20) - (23) together, for all k≥Φ, we obtain:

||θ∗− θ̂||2 ≤ ||a∗− â||2 + ||B∗− B̂||F + ||E∗− Ê||2 + ||F ∗− F̂ ||2 + ||G∗− Ĝ||F ≤C9ε(L0) (24)

where C9 :=C3 +C5 +C6 +C7 +C8. Let M2 =C9 + 1. Since F implies E (i.e., because ||θ∗− θ̂||2 <
M2ε(L0) on F), we can bound:

Pπλ∗(Ec) ≤ Pπλ∗(F c) ≤ Pπλ∗(F c1) +Pπλ∗(F c2). (25)

We will now bound each Pπλ∗(F c1) and Pπλ∗(F c2) separately. Note that

Pπλ∗(F c2) ≤
n∑
j=1

2∑
r=0

∑
rl≥0,

∑n
l=1 rl=r

Pπλ∗

(∣∣∣∣∣
∣∣∣∣∣∂r(λ∗j (.)− λ̃j(.))∂pr11 . . . ∂prnn

∣∣∣∣∣
∣∣∣∣∣
∞

≥C1ε(L0)

)

≤
n∑
j=1

2∑
r=0

∑
rl≥0,

∑n
l=1 rl=r

Pπλ∗

(∣∣∣∣∣
∣∣∣∣∣∂r(λ∗j (.)− λ̃j(.))∂pr11 . . . ∂prnn

∣∣∣∣∣
∣∣∣∣∣
∞

≥Ψr

(
logk√
L0

) s∧s̄−r
s+n/2

)

≤ n(n+ 1)(n+ 2)

2

K

k
, (26)

where the first inequality follows by the definition of F2 and the union bound, the second inequality
follows by the definition of C1 and ε(L0), and the last inequality follows by Lemma 1. To compute
a bound for Pπλ∗(F c1), first note that

Pπλ∗(F c1) = Pπλ∗(F c1 |F2)Pπλ∗(F2) +Pπλ∗(F c1 |F c2)Pπλ∗(F c2)≤ Pπλ∗(F c1 ∩F2) +Pπλ∗(F c2). (27)
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So, it suffices that we find a bound for Pπλ∗(F c1 ∩F2). By Lemma 2, there exist constants δ̄,C10 > 0
independent of k≥ 1 such that if ||λ∗(.)− λ̃(.)||∞ ≤ δ̄, then

||pD− p̃D||2 ≤ C10(||λ∗(.)− λ̃(.)||∞+ ||(∇λ∗(.)−∇λ̃(.))′||∞)

= C10 sup
p∈P
||λ∗(p)− λ̃(p)||∞+C10 sup

p∈P
||(∇λ∗(p)−∇λ̃(p))′||∞

= C10 sup
p∈P

max
j=1,...,n

|λ∗j (p)− λ̃j(p)|+C10 sup
p∈P

max
i=1,...,n

n∑
j=1

∣∣∣∣∣∂λ∗i (p)∂pj
− ∂λ̃i(p)

∂pj

∣∣∣∣∣
≤ C10 max

j=1,...,n
||λ∗j (.)− λ̃j(.)||∞+C10 max

i=1,...,n

n∑
j=1

∣∣∣∣∣
∣∣∣∣∣∂λ∗i (.)∂pj

− ∂λ̃i(.)
∂pj

∣∣∣∣∣
∣∣∣∣∣
∞

≤ C10 max
j=1,...,n

||λ∗j (.)− λ̃j(.)||∞+C10

n∑
j=1

max
i=1,...,n

∣∣∣∣∣
∣∣∣∣∣∂λ∗i (.)∂pj

− ∂λ̃i(.)
∂pj

∣∣∣∣∣
∣∣∣∣∣
∞

. (28)

Since C1ε(L0)→ 0 as k→∞, there exists a constant Φ2 > 0 such that, conditioning on F2, for
all k ≥ Φ ≥ Φ2, ||λ∗(.)− λ̃(.)||∞ = maxj=1,...,n ||λ∗j (.)− λ̃j(.)||∞ ≤ C1ε(L0) ≤ δ̄; so, (28) holds. Let
C0 =C10C1(1 +n). Then, for all k≥Φ,

Pπλ∗(F c1 ∩F2) = Pπλ∗({||pD− p̃D||2 >C0ε(L0)}∩F2)

≤ Pπλ∗

(
C10 max

j=1,...,n

{
||λ∗j (.)− λ̃j(.)||∞

}
+C10

n∑
j=1

max
i=1,...,n

{∣∣∣∣∣
∣∣∣∣∣∂λ∗i (.)∂pj

− ∂λ̃i(.)
∂pj

∣∣∣∣∣
∣∣∣∣∣
∞

}
>C10C1(1 +n)ε(L0)

)

≤ Pπλ∗
(

max
j=1,...,n

{
||λ∗j (.)− λ̃j(.)||∞

}
>C1ε(L0)

)
+

n∑
j=1

Pπλ∗

(
max
i=1,...,n

{∣∣∣∣∣
∣∣∣∣∣∂λ∗i (.)∂pj

− ∂λ̃i(.)
∂pj

∣∣∣∣∣
∣∣∣∣∣
∞

>C1ε(L0)

})

≤
n∑
j=1

Pπλ∗

(
||λ∗j (.)− λ̃j(.)||∞ >Ψ0

(
logk√
L0

) s∧s̄
s+n/2

)
+

n∑
j=1

n∑
i=1

Pπλ∗

(∣∣∣∣∣
∣∣∣∣∣∂λ∗i (.)∂pj

− ∂λ̃i(.)
∂pj

∣∣∣∣∣
∣∣∣∣∣
∞

>Ψ1

(
logk√
L0

) s∧s̄−1
s+n/2

)
≤ n(n+ 1)K/k,

where the first inequality follows from (28), the third inequality follows since logk/
√
L0 ≤ 1 for

L0 ≥ log3 k and k≥Φ≥ 3, the last inequality follows by Lemma 1.
Let M3 = max{Φ, n(n+ 1)(n+ 3)K}. Putting all the bounds together, for k≥Φ, we have

Pπλ∗(Ec)≤ n(n+ 1)K/k+n(n+ 1)(n+ 2)K/k= n(n+ 1)(n+ 3)K/k≤M3/k.

As for k≤Φ, by definition of M3, Pπλ∗(Ec)≤ 1≤Φ/k≤M3/k. This completes the proof. �

5.3. Part 2: Proofs of Lemma 5 and Lemma 6. Let λt := λ∗(pt) and λ̂t := λ(pt; θ̂ι). We
prove Lemmas 5 and 6 in turn.

Proof of Lemma 5: Let Ω2 = max{Ω1,K1,K2,K3}, where Ω1 is as defined in the last paragraph
of Part 1 in §5.1 and K1,K2,K3 are positive constants to be defined later. Throughout the proof,
we will implicitly assume that E is satisfied. We first highlight four inequalities (see (29) - (32))
that will be useful for the proof. Let δ̄, κ,ω be as defined in Lemma 3 and φ as defined in R4. First,
recall that ||θ̂ι − θ∗ι ||2 ≤ ||θ̂− θ∗||2 ≤ δ̄ and ||θ̂o − θ∗o ||2 ≤ ||θ̂− θ∗||2 ≤ δ̄ by (8), and ||δ||2 ≤ δ̄ by (9).
Thus, in light of part (f) of Lemma 3,

||pD0 (θ∗)− pDδ (θ̂)||2 ≤ φ/2. (29)
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Second, since ωψ= ω
√
ε(L0)→ 0 as k→∞ (recall that logk/

√
L0 ≤ 1 for k≥ 3 since L0 ≥ log3 k),

there exists a constant K1 > 0 such that, for all k≥K1,

ωψ≤ φ/4. (30)

Third, note that R4 implies λD � λLe� 0 for some λL ∈R. Hence, there exits a constant K2 > 0
such that, for all k≥K2, ψ≤ λL (because ψ :=

√
ε(L0)→ 0 as k→∞) and

λDδ (θ̂) = λD−λD0 (θ∗) +λDδ (θ̂) � λD− ||λDδ (θ̂)−λD0 (θ∗)||2e
� λD−κ(||θ∗− θ̂||2 + ||δ||2)e � λD−κM2ε(L0)e−κM4ε(L0)2e � λLe, (31)

where the first equality and the second inequality follow by part (e) and (f) of Lemma 3 respectively,
and the last inequality follows by (9) and the definition of E .

Finally, L̃0/k→ 0 as k→∞. So, there exists a constant K3 > 0 such that, for all k≥K3,

CL̃0
� kC − L̃0Ae � Ae. (32)

The rest of the proof follows by induction. Fix some k ≥ Ω2. If τ ≤ L̃0 + 1, there is nothing
to prove. Suppose that τ > L̃0 + 1. Note that pL̃0+1 = p̂L̃0+1 because CL̃0

� Ae (by (32)) and

p̂L̃0+1 = pDδ (θ̂)∈Ball(pD, φ/2)⊆P (by (29)). Hence,

CL̃0+1 = CL̃0
−ADL̃0+1 =CL̃0

−AλDδ (θ̂)−A∆̃L̃0+1 � (k− L̃0− 1)A

(
λDδ (θ̂)−

∆̃
L̃0+1

k−L̃0−1

)
� (k− L̃0− 1)Ae

(
λL−

∣∣∣∣∣∣∣∣ ∆̃
L̃0+1

k−L̃0−1

∣∣∣∣∣∣∣∣
2

)
� (k− L̃0− 1)Ae

(
ψ−

∣∣∣∣∣∣∣∣ ∆̃
L̃0+1

k−L̃0−1

∣∣∣∣∣∣∣∣
2

)
�Ae, (33)

where the first inequality follows since AλDδ (θ̂) � kC/k − δ = CL̃0
/(k − L̃0) (recall that λDδ (θ̂) is

feasible to QP(θ̂; δ)), the second inequality follows by (31), the third inequality follows from the
fact that ψ ≤ λL for k ≥ Ω2 ≥K2, and the fourth inequality follows by the definition of τ in (†).
Since A is non-negative, CL̃0+1 �Ae�Aj for all j ∈ [1, n]. This is our induction base case. Now,

suppose that Cs �Aj and p̂s ∈P for all j = 1, . . . , n for all s∈ [L̃0 + 1, t− 1] and t− 1< τ . If t≥ τ ,
we have finished the induction. Otherwise,

∣∣∣∣∣∣p̂t− pDδ (θ̂))
∣∣∣∣∣∣

2
=

∣∣∣∣∣∣
∣∣∣∣∣∣(B̂′)−1

t−1∑
s=L̃0+1

∆̃s

k− s

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ ω

∣∣∣∣∣∣
∣∣∣∣∣∣

t−1∑
s=L̃0+1

∆̃s

k− s

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ ωψ ≤ φ

4
, (34)

where the first equality follows because by the definition of p(., θ̂ι) we have ∇λp(λ; θ̂ι)
′ = (B̂′)−1 for

all λ, the first inequality follows by Lemma 3 part (a), the second inequality follows by (†), and
the last inequality follows by (30). Combining (29) and (34), we have p̂t ∈ Ball(pD,3φ/4)⊆P. By
the same arguments as in (33),

Ct = CL̃0
−
∑t

s=L̃0+1ADs =CL̃0
−
∑t

s=L̃0+1A(λ̂s + ∆̃s)

= CL̃0
−

t∑
s=L̃0+1

A

λDδ (θ̂)−
s−1∑

v=L̃0+1

∆̃v

k− v
+ ∆̃s

� k∑
s=t+1

AλDδ (θ̂)−
t∑

s=L̃0+1

A∆̃s−
s−1∑

v=L̃0+1

A∆̃v
k−v


=

k∑
s=t+1

AλDδ (θ̂)−
t∑

s=L̃0+1

(k− t)A∆̃s

k− s
� (k− t)Ae

λL−
∣∣∣∣∣∣
∣∣∣∣∣∣

t∑
s=L̃0+1

∆̃s

k− s

∣∣∣∣∣∣
∣∣∣∣∣∣
2

 � Ae � Aj,

for all j ∈ [1, n]. This completes the induction. �
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Proof of Lemma 6: Fix k ≥Ω2. Recall that we have defined at the end of Part 2 in §5.1 an
auxiliary stopping time τ̃ as the minimum of k and the first time t≥ L̃0 +1 such that the following
condition (††) is violated:

(††) ψ > S̃(t), where S̃(k) :=∞ and ∀t∈ [1, k− 1],

S̃(t) :=

∣∣∣∣∣∣
∣∣∣∣∣∣

t∑
s=L̃0+1

∆s

k− s
+

t∑
s=L̃0+1

(λs− λ̂s)
k− s

1{s≤τ}

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+
1

k− t
.

where ψ is as defined in the definition of τ in (†). We first show that τ = τ̃ almost surely. If
τ = t′ <k, by definition of τ , ψ≤ S(t′) and ψ >S(t) for all t < t′. So,

S̃(t) =

∣∣∣∣∣∣
∣∣∣∣∣∣

t∑
s=L̃0+1

∆s

k− s
+

t∑
s=L̃0+1

(λs− λ̂s)
k− s

1{s≤τ}

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+
1

k− t

=

∣∣∣∣∣∣
∣∣∣∣∣∣

t∑
s=L̃0+1

∆s

k− s
+

t∑
s=L̃0+1

(λs− λ̂s)
k− s

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+
1

k− t
= S(t).

for all t≤t′. But, this implies ψ≤ S̃(t′) and ψ > S̃(t) for all t < t′, which means that τ̃ = t′. If τ = k,
immediately we have S̃(t) = S(t) for all t < k. Moreover, since, ψ > S(t) = S̃(t) for t < k, we must
have τ̃ = k= τ . Define the following two terms:

S̃r(t) =

∣∣∣∣∣∣
∣∣∣∣∣∣

t∑
s=L̃0+1

∆s

k− s

∣∣∣∣∣∣
∣∣∣∣∣∣
2

and S̃s(t) =
t∑

s=L̃0+1

||λs− λ̂s||2
k− s

1{s≤τ}.

Since S̃(t)≤ S̃r(t) + S̃s(t) + (k− t)−1 and τ̃ is non-negative, we have:

Eπλ∗ [k− τ |E ] = Eπλ∗ [k− τ̃ |E ] =
k−1∑
t=1

Pπλ∗(τ̃ ≤ t|E) ≤
k−1∑
t=1

Pπλ∗
(

max
L̃0+1≤s≤t

{S̃r(s)} ≥
ψ

4

∣∣∣∣E)
+

k−1∑
t=1

Pπλ∗
(

max
L̃0+1≤s≤t

{S̃s(s)} ≥
ψ

2

∣∣∣∣E)+
k−1∑
t=1

Pπλ∗
(

1

k− t
≥ ψ

4

∣∣∣∣E) . (35)

Note that {S̃r(t)2}k−1

t=L̃0+1
is a submartingale with respect to {Ht}k−1

t=L̃0+1
. So, we can bound the

first term after inequality in (35) as follows. For t≤ k− 1,

Pπλ∗
(

max
L̃0+1≤s≤t

{S̃r(s)} ≥
ψ

4

∣∣∣∣E)= Pπλ∗
(

max
L̃0+1≤s≤t

{S̃r(s)2} ≥ ψ2

16

∣∣∣∣E)≤ 1

Pπλ∗(E)
Pπλ∗

(
max

L̃0+1≤s≤t
{S̃r(s)2} ≥ ψ2

16

)
≤ 32

ψ2
Eπλ∗

[
S̃r(t)

2
]
≤ 32

ψ2
Eπλ∗

[
t∑

s=1

||∆s||22
(k− s)2

]
≤ 32

ψ2

[
2

(k− t)2
+

2

k− t

]
≤ 128

ψ2(k− t)
, (36)

where the second inequality follows by Doob’s submartingale inequality and (7), the third inequality
follows beacuse Eπλ∗ [∆′s∆t] = 0 if s 6= t, the fourth inequality follows by integral comparison and the
fact that ||∆t||22 ≤ 2, and the last inequality follows because k − t ≥ 1. Thus, there exists K5 > 0
independent of k≥Ω2 such that

k−1∑
t=1

Pπλ∗
(

max
L̃0+1≤s≤t

{S̃r(s)} ≥
ψ

4

∣∣∣∣E)≤ 128

ψ2

k−1∑
t=1

1

k− t
≤K5ψ

−2 logk=K5ε(L0)−1 logk,
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where the equality follows by the definition of ψ in (†). We now bound the second term in (35).
By Lemma 3 part (b) and (8), there exists a constant K4 > 0 independent of k such that, for all
k≥Ω2 ≥Ω1, we have:

||λs− λ̂s||2 = ||λ∗(ps)−λ(ps; θ̂ι)||2
≤ ||λ∗(ps)||2 + ||λ(ps;θ

∗
ι )||2 + ||λ(ps;θ

∗
ι )−λ(ps; θ̂ι)||2

≤
√
n||λ∗(.)||∞+

√
n||λ(.;θ∗ι )||∞+ωδ̄ ≤ K4, (37)

Conditioning on E , for s < τ , we can derive a sharper bound, i.e., ||λs− λ̂s||2 ≤ ω0ε(L0) for some
constant ω0 independent of k (see (44) for the derivation). Now, observe that the following holds:

Pπλ∗
(

max
L̃0+1≤s≤t

{S̃s(s)} ≥
ψ

2

∣∣∣∣E)= Pπλ∗
(
S̃s(t)≥

ψ

2

∣∣∣∣E) ≤ 16

ψ4
Eπλ∗

[
S̃s(t)

4
∣∣∣E]

=
16

ψ4
Eπλ∗

 t∑
s=L̃0+1

||λs− λ̂s||21{s<τ}
k− s

+
t∑

s=L̃0+1

||λs− λ̂s||21{s=τ}
k− s

4∣∣∣∣∣∣E


≤ 128

ψ4
Eπλ∗

 t∑
s=L̃0+1

||λs− λ̂s||21{s<τ}
k− s

4∣∣∣∣∣∣E
+

128

ψ4
Eπλ∗

 t∑
s=L̃0+1

||λs− λ̂s||21{s=τ}
k− s

4∣∣∣∣∣∣E


≤ 128ω4
0ε(L0)4

ψ4
log4

(
k

k− t

)
+

128

ψ4

(
K4

k− t

)4

= 128ω4
0ε(L0)2 log4

(
k

k− t

)
+ 128K4

4ε(L0)−2

(
1

k− t

)4

(38)

where the first equality follows by the monotonicity of S̃s(t), the first inequality follows by Markov’s
inequality, the second inequality follows since (a+ b)4 ≤ 8a4 + 8b4, the third inequality follows by
(37) and (44), and the last equality follows since ψ =

√
ε(L0). So, there exists a constant K6 > 0

independent of k≥Ω2 such that:

k−1∑
t=1

Pπλ∗
(

max
L̃0+1≤s≤t

{S̃s(t)} ≥
ψ

2

∣∣∣∣E) ≤ k−1∑
t=1

128ω4
0ε(L0)2 log4

(
k

k− t

)
+ 128K4

4ε(L0)−2

k−1∑
t=1

(
1

k− t

)4

≤ K6

(
ε(L0)2k+ ε(L0)−2

)
,

where the last inequality follows from the following claim:

Claim 1. For any s∈Z++,
∑k−1

t=1 logs( k
k−t)≤ s!k.

Proof: Note that by integral inequality
∑k−1

t=1 logs( k
k−t) ≤

∫ k−1

0
logs( k

k−t)dt =
∫ k

1
logs(k

t
)dt. Then

the proof follows by an induction argument. When s = 1,
∫ k

1
log(k

t
)dt =

∫ k
1

logkdt−
∫ k

1
log tdt =

(k− 1) logk− (k logk− (k− 1))≤ k. Suppose for all s≤ n− 1,
∫ k

1
logs(k

t
)dt≤ s!k, then∫ k

1

logn
(
k

t

)
dt = logk

∫ k

1

logn−1

(
k

t

)
dt−

∫ k

1

logn−1

(
k

t

)
log tdt

≤ (n− 1)!k logk−

[
t log t logn−1

(
k

t

)∣∣∣∣k
t=1

−
∫ k

1

(
logn−1

(
k

t

)
− (n− 1) logn−2

(
k

t

)
log t

)
dt

]
= (n− 1)!k logk+

∫ k

1

logn−1

(
k

t

)
dt−

∫ k

1

(n− 1) logn−2

(
k

t

)
(log t− logk+ logk)dt

= (n− 1)!(k logk+ k) + (n− 1)

∫ k

1

logn−1

(
k

t

)
dt− logk(n− 1)

∫ k

1

logn−2

(
k

t

)
dt

= (n− 1)!(k logk+ k) + (n− 1)(n− 1)!k− (n− 1)!k logk= n!k.
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This completes the proof of Claim 1. �

The third term of (35) can be bounded as follows:

k−1∑
t=1

Pπλ∗
(

1

k− t
≥ ψ

4

∣∣∣∣ E) =
k−1∑
t=1

Pπλ∗
(

1

k− t
≥ ψ

4

)
= 4/ψ = 4ε(L0)−1/2.

Putting the bounds for the three terms in (35) together, we conclude that there exists a constant
M5 > 0 such that, for all k≥Ω2, we have Eπλ∗ [k−τ |E ] =Eπλ∗ [k− τ̃ |E ]≤K5ε(L0)−1 logk+K6ε(L0)2k+
K6ε(L0)−2 + 4ε(L0)−1/2 ≤M5(ε(L0)2k+ ε(L0)−1 logk+ ε(L0)−2). �

5.4. Part 3: Derivation of (11) and (12). For simplicity, we suppress the dependency of
ε(L0) on L0 and simply write ε(L0) as ε throughout this section. Recall that we define λt := λ∗(pt)
and λ̂t := λ(pt; θ̂ι) in §5.3. Also, by Lemma 5, for all k≥Ω2 and all sample paths on E ,

λ̂t = λ(p̂t; θ̂ι) = λDδ (θ̂)−
t−1∑

s=L̃0+1

∆̃s

k− s
for all t < τ. (39)

These will be used multiple times in the derivation of (11) and (12).

Derivation of inequality (11). Note that ∇r∗λ(λD) =∇λq(p(λD;θ∗ι );θ
∗
o) by (3) and λD0 (θ∗) =

λD by Lemma 3 part (e). So, we can write: ∇r∗λ(λD) · (λD−λt) =∇λq(p(λD0 (θ∗);θ∗ι );θ
∗
o) · (λD0 (θ∗)−

λt) = µD0 (θ∗)′A(λD0 (θ∗) − λDδ (θ̂) + λDδ (θ̂) − λ̂t + λ̂t − λt), where the last equality follows by the
Karush-Kuhn-Tucker(KKT) optimality condition. Therefore, for all k ≥ Ω, the first term of (11)
can be broken into two parts:

Eπλ∗
[∑τ−1

t=L̃0+1∇r∗λ(λD) · (λD−λt)
∣∣∣E]

=Eπλ∗
[∑τ−1

t=L̃0+1 µ
D
0 (θ∗)′(AλD0 (θ∗)−AλDδ (θ̂))

∣∣∣E]
+Eπλ∗

[∑τ−1

t=L̃0+1 µ
D
0 (θ∗)′A(λDδ (θ̂)− λ̂t + λ̂t−λt)

∣∣∣E] (40)

By Lemma 3 part (f), for all sample paths on E , the set of constraints of QP(θ∗;0) that have non-
zero optimal dual variables are binding at the optimal solution λDδ (θ̂) in QP(θ̂; δ). This implies that
the first expectation after the equality in (40) is zero because, for all i, either we have µD0,i(θ

∗) = 0

or (AλD0 (θ∗))i− (AλDδ (θ̂))i = 0. As for the second expectation, by (39) and the definition of ∆̃t (i.e.,
∆̃t = ∆t +λt− λ̂t), we can write:

Eπλ∗
[∑τ−1

t=L̃0+1 µ
D
0 (θ∗)′A(λDδ (θ̂)− λ̂t + λ̂t−λt)

∣∣∣E]
=Eπλ∗

 τ−1∑
t=L̃0+1

µD0 (θ∗)′

 t−1∑
s=L̃0+1

A∆̃s

k− s
+A∆t−A∆̃t

∣∣∣∣∣∣E


= Eπλ∗

 τ−1∑
t=L̃0+1

µD0 (θ∗)′A∆t

∣∣∣∣∣∣E
+Eπλ∗

 τ−1∑
t=L̃0+1

(
τ − t− 1

k− t
− 1

)
µD0 (θ∗)′A∆̃t

∣∣∣∣∣∣E
 . (41)

Since {∆t}k−1

t=L̃0+1
is a martingale difference sequence with respect to {Ht}k−1

t=L̃0+1
, we can bound:

Eπλ∗
[∑τ−1

t=L̃0+1 µ
D
0 (θ∗)′A∆t

∣∣∣E]=
µD0 (θ∗)′A

Pπλ∗(E)

{
Eπλ∗

[∑τ−1

t=L̃0+1 ∆t

]
−Eπλ∗

[∑τ−1

t=L̃0+1 ∆t

∣∣∣Ec]Pπλ∗(Ec)}
≤ µD0 (θ∗)′Ae

1 + kPπλ∗(Ec)
Pπλ∗(E)

≤ 2(1 +M3)µD0 (θ∗)′Ae, (42)
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where the first inequality follows from Eπλ∗ [
∑τ−1

t=L+1 ∆t] = Eπλ∗ [
∑τ

t=L+1 ∆t]− Eπλ∗ [∆τ ] (by Optional
Stopping Time Theorem) and the fact that |∆t| ≺ e, and the second inequality follows by Lemma 4
and (7). The second term of (41) can be bounded as follows:

Eπλ∗

 τ−1∑
t=L̃0+1

(
τ − t− 1

k− t
− 1

)
µD0 (θ∗)′A∆̃t

∣∣∣∣∣∣ E
 ≤ Eπλ∗

(k− τ + 1)

∣∣∣∣∣∣µD0 (θ∗)′
τ−1∑

t=L̃0+1

A∆̃t

k− t

∣∣∣∣∣∣
∣∣∣∣∣∣ E


≤ Eπλ∗

(k− τ + 1)
∣∣∣∣µD0 (θ∗)

∣∣∣∣
2
||A||2

∣∣∣∣∣∣
∣∣∣∣∣∣

τ−1∑
t=L̃0+1

∆̃t

k− t

∣∣∣∣∣∣
∣∣∣∣∣∣
2

∣∣∣∣∣∣ E


≤ ψ
∣∣∣∣µD0 (θ∗)

∣∣∣∣
2
||A||2 (Eπλ∗ [k− τ | E ] + 1)

≤ ||µD0 (θ∗)||2||A||2[M5(ε2k+ ε−1 logk+ ε−2) + 1]. (43)

where the third inequality follows by (†), and the fourth inequality follows by Lemma 6 and the
fact that ψ=

√
ε(L0)< 1 for k≥Ω≥Ω3. Putting together (40) - (43) yields

Eπλ∗
[∑τ−1

t=L̃0+1∇r∗λ(λD) · (λD−λt)
∣∣∣E] ≤ M6(1 + ε2k+ ε−1 logk+ ε−2)

where M6 = 2(1 +M3)µD0 (θ∗)′Ae + ||µD0 (θ∗)||2||A||2(1 +M5).

Derivation of inequality (12). By definition, λ(pt;θ
∗
ι ) = λ∗(pD)+(∇λ∗(pD))′(pt−pD). Since

λ∗(pt) = λ∗(pD) +∇λ∗(pD)′(pt−pD) + (pt−pD)′∇2λ∗(ξ)(pt−pD) for some ξ ∈P and supξ̂∈P ||(pt−
pD)′∇2λ∗(ξ̂)(pt− pD)||2 ≤ κ0||pt− pD||22 for some κ0 > 0 (by R1 and the compactness of P),

||λ∗(pt)−λ(pt;θ
∗
ι )||2 ≤ κ0||pt− pD||22.

So, conditioning on E , for all t < τ , we have:

||λt− λ̂t||2 = ||λ∗(pt)−λ(pt; θ̂ι)||2
≤ ||λ∗(pt)−λ(pt;θ

∗
ι )||2 + ||λ(pt;θ

∗
ι )−λ(pt; θ̂ι)||2

≤ κ0||pt− pD||22 +ωM2ε
= κ0||pt− pDδ (θ̂) + pDδ (θ̂)− pD0 (θ∗)||22 +ωM2ε
≤ 2κ0||pt− pDδ (θ̂)||22 + 2κ0||pDδ (θ̂)− pD0 (θ∗)||22 +ωM2ε
≤ 2κ0||p̂t− pDδ (θ̂)||22 + 2κ0κ

2(||δ||2 + ||θ̂− θ∗||2)2 +ωM2ε
≤ 2κ0ω

2ψ2 + 2κ0κ
2(M4ε

2 +M2ε)
2 +ωM2ε ≤ ω0ε (44)

where the second inequality follows by Lemma 3 part (b) and the definition of E , the fourth
inequality follows by Lemma 5 (i.e., pt = p̂t for t < τ) and Lemma 3 part (f), and the fifth inequality
follows by (9), (34) and the definition of E . Now,

1

2
Eπλ∗

 τ−1∑
t=L̃0+1

||λDδ (θ̂)−λt||22

∣∣∣∣∣∣E
≤Eπλ∗

 τ−1∑
t=L̃0+1

||λDδ (θ̂)− λ̂t||22

∣∣∣∣∣∣E
+Eπλ∗

 τ−1∑
t=L̃0+1

||λ̂t−λt||22

∣∣∣∣∣∣E


=Eπλ∗

 τ−1∑
t=L̃0+1

∣∣∣∣∣∣
∣∣∣∣∣∣

t−1∑
s=L̃0+1

∆̃s

k− s

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

∣∣∣∣∣∣E
+Eπλ∗

 τ−1∑
t=L̃0+1

||λ̂t−λt||22

∣∣∣∣∣∣E


≤ 2Eπλ∗

 τ−1∑
t=L̃0+1

∣∣∣∣∣∣
∣∣∣∣∣∣

t−1∑
s=L̃0+1

∆s

k− s

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

+

 t−1∑
s=L̃0+1

||λs− λ̂s||2
k− s

2∣∣∣∣∣∣E
+Eπλ∗

 τ−1∑
t=L̃0+1

||λ̂t−λt||22

∣∣∣∣∣∣E


≤ 2

Pπλ∗(E)
Eπλ∗

τ−1∑
t=1

∣∣∣∣∣
∣∣∣∣∣
t−1∑
s=1

∆s

k− s

∣∣∣∣∣
∣∣∣∣∣
2

2

+ 2Eπλ∗

 τ−1∑
t=1

(
t−1∑
s=1

ω0ε

k− s

)2
∣∣∣∣∣∣E
+ω2

0kε
2
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≤ 4
k−1∑
t=1

t−1∑
s=1

Eπλ∗ [||∆s||22]

(k− s)2
+ 2ω2

0ε
2

k−1∑
t=1

(
t−1∑
s=1

1

k− s

)2

+ω2
0kε

2

≤ 8
k−1∑
t=1

t−1∑
s=1

1

(k− s)2
+ 2ω2

0ε
2

k−1∑
t=1

log2

(
k

k− t

)
+ω2

0ε
2k≤ 8 logk+ 5ω2

0ε
2k=M10(logk+ ε2k), (45)

where M10 := 8 + 5ω2
0, the third inequality follows from (44), the fourth inequality follows by (7)

and the fact that Eπλ∗ [∆′s∆t] = 0 if s 6= t, and the last two inequalities follows by integral comparison

and the fact that
∑k−1

t=1 logs( k
k−t)≤

∫ k
1

logs( k
k−t)dt≤ s!k.

The derivation of inequality (12) is completed by noting that

v̄

2
Eπλ∗

 τ−1∑
t=L̃0+1

∣∣∣∣λD0 (θ∗)−λt)
∣∣∣∣2

2

∣∣∣∣∣∣E
≤ v̄Eπλ∗

 τ−1∑
t=L̃0+1

(
||λD0 (θ∗)−λDδ (θ̂)||22 + ||λDδ (θ̂)−λt||22

)∣∣∣∣∣∣E


≤ v̄kEπλ∗
[(
κ||θ∗− θ̂||2 +κ||δ||2

)2
∣∣∣∣E]+ v̄Eπλ∗

 τ−1∑
t=L̃0+1

||λDδ (θ̂)−λt||22

∣∣∣∣∣∣E


≤ 2v̄k
(
κ2M 2

2 ε
2 +κ2M 2

4 ε
4
)

+ 2v̄M10(logk+ ε2k)
≤ 2v̄M10 logk+ (2v̄M10 + 2v̄κ2M 2

4 + 2v̄κ2M 2
2 )ε2k=M7(logk+ ε2k)

where M7 := 4v̄M10 + 2v̄κ2M 2
4 + 2v̄κ2M 2

2 . The second inequality follows by Lemma 3 part (f), the
third inequality follows by the definition of E , (9) and (45), and the fourth inequality follows by
the fact that ε < 1 for k≥Ω≥Ω3.

To summarize, the proofs of Lemma 4 in §5.2, Lemma 5 and Lemma 6 in §5.3, and the derivation
of (11) and (12) in §5.4 fill in the gaps in the outline in §5.1. This completes the proof of Theorem 1.

6. Closing remarks. We study the problem of joint learning and pricing in a general capac-
itated network RM problem with multiple products and multiple limited resources. We develop
a heuristic called NSC that combines Spline Estimation, linear approximation of the estimated
demand function, quadratic approximation of the estimated revenue function, and self-adjusting
price updates. We show analytically that if the underlying demand function is sufficiently smooth,
the revenue loss under NSC is O(k1/2+ε logk) for any fixed ε > 0. This is the tightest bound of
its kind and is very close to the known theoretical lower bound of Ω(

√
k). Our result suggests

the applicability of self-adjusting controls in dynamic pricing problems. Moreover, in proving our
main result, we derive large deviation bounds for spline estimation and prove a nonparametric
stability result of the optimal solution of a constrained optimization problem. These results are of
independent interest and are potentially useful for other application areas.
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Appendix A: Proof of Lemma 1
Let δ̄l := (p̄l− pl)/(d+ 1). The proof of Lemma 1 depends on two important lemmas, which we

first state and prove later:

Lemma A1. Define X := ⊗nl=1[0, x̄l] where 0 < x̄l ≤ 1 for all l ∈ [1, n]. Let f : X → R be a
function that satisfies N1-N2. Let s be a positive integer and s̄ be as defined in N1. There exists g ∈
⊗nl=1P

(s∧s̄)−1([0, x̄l]) such that for any r ∈ [0, s∧ s̄], and any rl ∈Z+, l ∈ [1, n] satisfying
∑n

l=1 rl = r,
the following holds ∣∣∣∣∣∣∣∣ ∂r(f − g)(.)

∂xr11 . . . ∂xrnn

∣∣∣∣∣∣∣∣
∞
≤Cn,rW

[
max
l=1,...,n

{x̄l}
]s∧s̄−r

,

where Cn,r > 0 only depends on n, r and W is as defined in N2.

Lemma A2. Suppose s≥ 2. Let L, {yl,i}n,2s+dl=1,i=1, {βl,i,j}n,s+d,sl=1,i=1,j=1 and {Ni1,...,in(.)}s+d,...,s+di1=1,...,in=1 be
as defined in the Technical Details for Spline Approximations in §3.1. The following properties
hold:

a. Lf = f,∀f ∈⊗nl=1P
s−1([p

l
, p̄l]).

b. For all l ∈ [1, n], i∈ [1, s+ d], j ∈ [1, s], we have |βl,i,j| ≤ (yl,i+s− yl,i)j−1 ≤ (sδ̄l)
j−1.

c. For all il ∈ [1, s+ d], l ∈ [1, n], any r ∈ [0, s− 2] and any rl ∈Z+, l ∈ [1, n] satisfying
∑n

l=1 rl = r,
Ni1,...,in(.) is nonnegative and ∂rNi1,...,in(p)/(∂pr11 . . . ∂prnn ) = 0 for all p /∈⊗nl=1(yl,il , yl,il+s).

d.
∑s+d

i1=1 · · ·
∑s+d

in=1 |Ni1,...,in(p)|= 1 for all p∈P.

e. Fix any r ∈ [0, s− 2] and any rl ∈Z+, l ∈ [1, n] satisfying
∑n

l=1 rl = r,∣∣∣∣∣∣∣∣∂rNi1,...,in(.)

∂pr11 . . . ∂prnn

∣∣∣∣∣∣∣∣
∞
≤Cr,s

[
min

l=1,...,n
{δ̄l}

]−r
where Cr,s > 0 is a constant that only depends on r and s.

We first discuss the meaning of the two lemmas above. Since a spline function is essentially a
sequence of local polynomial functions attached together, to understand its approximation accu-
racy, we need to first answer the following question: Suppose that we use a polynomial function
g to approximate a deterministic function f on a small region, how does the approximation error
depend on the smoothness index of f , the degree of g, and the size of the region? Lemma A1
derives a bound for approximation error as a function of these factors. Lemma A2 summarizes

1
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some useful properties of the spline function constructed using the B-Spline approach (see §3.1 for
more details). We now proceed to prove Lemma 1.

Let K ′ = max{K1,K2,K3} where the constants K1 is defined below and K2,K3 are defined later
in Step 3 (below (A12)). Let K = exp(log2K ′). Since L0 ≥ log3 k, d→∞ as k→∞. So there exists
a constant K1 ≥ 3 such that for all k ≥K1 and for all l ∈ [1, n], 2sδ̄l ≤ 1. This observation allows
us to invoke Lemma A1 later. Note that for k≤K ′, the desired result holds because for any x> 0,

P

(∣∣∣∣∣
∣∣∣∣∣∂r(λ∗j (p)− λ̃j(p))∂pr11 . . . ∂prnn

∣∣∣∣∣
∣∣∣∣∣
∞

≥ x

)
≤ 1 =K exp(− log2K ′).

Hence, in the remaining of the proof, we will focus only on the case when k >K ′. We proceed in
several steps:

Step 1

Our objective in this step is to compute an upper bound for∣∣∣∣∣
∣∣∣∣∣∂r(λ∗j (.)− λ̃j(.))∂pr11 . . . ∂prnn

∣∣∣∣∣
∣∣∣∣∣
∞

.

Fix some ĩl ∈ [s, s+ d] for all l ∈ [1, n], j ∈ [1, n] and r ∈ [0, (s− 2)∧ s̄]. Define two hypercubes
Hĩ1,...,̃in

:=⊗nl=1[yl,̃il , yl,̃il+1] and H̃ĩ1,...,̃in
:=⊗nl=1[yl,̃il−s+1, yl,̃il+s]. For any p ∈Hĩ1,...,̃in

, and any rl ∈
Z+, l ∈ [1, n] satisfying

∑n

l=1 rl = r, we have:∣∣∣∣∣∂r(λ∗j (p)− λ̃j(p))∂pr11 . . . ∂prnn

∣∣∣∣∣≤
∣∣∣∣∂r(λ∗j (p)−Lλ∗j (p))∂pr11 . . . ∂prnn

∣∣∣∣+
∣∣∣∣∣∂r(Lλ∗j (p)− λ̃j(p))∂pr11 . . . ∂prnn

∣∣∣∣∣ . (A1)

We now bound the terms after the inequality separately.

Bounding the first term in (A1). Let X = H̃ĩ1,...̃in
. Since 2sδ̄l ≤ 1 for k≥K ′ ≥K1, by Lemma A1,

there exists g ∈⊗nl=1P
(s∧s̄)−1 ([p

l
, p̄l]) such that for all p∈ H̃ĩ1,...,̃in

and r ∈ [0, (s− 2)∧s̄],∣∣∣∣∂r(λ∗j (p)− g(p))

∂pr11 . . . ∂prnn

∣∣∣∣ ≤ Cn,rW

[
max
l=1,...,n

{2sδ̄l}
]s∧s̄−r

≤Cn,rW (2s)s∧s̄−r
[

max
l=1,...,n

{
p̄l− pl
d

}]s∧s̄−r
,(A2)

where Cn,r is a positive constant that only depends on n and r. Note that for all il ∈ [̃il− s+ 1, ĩl]
and for all rl ∈ [1, s], l ∈ [1, n], we have (τ1,i1,r1 , . . . , τn,in,rn)∈ H̃ĩ1,...,̃in

. Thus, there exists a constant

C0 independent of k such that for any il ∈ [̃il− s+ 1, ĩl], l ∈ [1, n], the following holds:∣∣γi1,...,inλ∗j − γi1,...,ing∣∣
≤

s∑
j1=1

j1∑
r1=1

· · ·
s∑

jn=1

jn∑
rn=1

(∏n

l=1 βl,il,jl
)
|λ∗j (τ1,i1,r1 , . . . , τn,in,rn)− g(τ1,i1,r1 , . . . , τn,in,rn)|∣∣∣∏n

l=1

∏jl
sl=1,sl 6=rl

(τl,il,rl − τl,il,sl)
∣∣∣

≤
s∑

j1=1

j1∑
r1=1

· · ·
s∑

jn=1

jn∑
rn=1

∏n

l=1(δ̄ls)
jl−1∏n

l=1(δ̄l/s)jl−1
|λ∗j (τ1,i1,r1 , . . . , τn,in,rn)− g(τ1,i1,r1 , . . . , τn,in,rn)|

=
s∑

j1=1

j1∑
r1=1

· · ·
s∑

jn=1

jn∑
rn=1

s2(
∑n
l=1 jl−n)|λ∗j (τ1,i1,r1 , . . . , τn,in,rn)− g(τ1,i1,r1 , . . . , τn,in,rn)|

≤
(
s+ s2

2

)n
s2(ns−n)Cn,0W (2s)s∧s̄

[
max
l=1,...,n

{
p̄l− pl
d

}]s∧s̄
≤ C0

ds∧s̄
, (A3)
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where the first inequality follows by the definition of γi1,...,in , the second inequality follows by
Lemma A2 part (b), and the third inequality follows by (A2). Then, for any p∈Hĩ1,...,̃in

, we have:∣∣∣∣∂r(Lλ∗j (p)−Lg(p))

∂pr11 . . . ∂prnn

∣∣∣∣ ≤ s+d∑
i1=1

· · ·
s+d∑
in=1

∣∣γi1,...,inλ∗j − γi1,...,ing∣∣ ∣∣∣∣∂rNi1,...,in(p)

∂pr11 . . . ∂prnn

∣∣∣∣
=

ĩ1∑
i1=ĩ1−s+1

· · ·
ĩn∑

in=ĩn−s+1

∣∣γi1,...,inλ∗j − γi1,...,ing∣∣ ∣∣∣∣∂rNi1,...,in(p)

∂pr11 . . . ∂prnn

∣∣∣∣
≤ sn

C0

ds∧s̄
Cr,s

[
min

l=1,...,n
{δ̄l}

]−r
≤ snC0Cr,s

ds∧s̄

[
min

l=1,...,n

{
p̄l− pl

2d

}]−r
≤ 2rsnC0Cr,s

[
min

l=1,...,n

{
p̄l− pl

}]−r
dr−s∧s̄, (A4)

where the equality follows because, by Lemma A2 part (c), ∂rNi1,...,in(p)/(∂pr11 . . . ∂prnn ) = 0 for p
/∈ ⊗nl=1(yl,il , yl,il+s), the second inequality follows by (A3) and Lemma A2 part (e), and the third
inequality follows since d+ 1≤ 2d.

Putting things together, by Lemma A2 part (a) (note that s∧ s̄≤ s), (A2) and (A4), we have
the following inequality for all p∈Hĩ1,...,̃in

:∣∣∣∣∂r(λ∗j (p)−Lλ∗j (p))∂pr11 . . . ∂prnn

∣∣∣∣ ≤ ∣∣∣∣∂r(λ∗j (p)− g(p))

∂pr11 . . . ∂prnn

∣∣∣∣+ ∣∣∣∣∂r(g(p)−Lg(p))

∂pr11 . . . ∂prnn

∣∣∣∣+ ∣∣∣∣∂r(Lg(p)−Lλ∗j (p))
∂pr11 . . . ∂prnn

∣∣∣∣
≤

[
Cn,rW

[
2s max

1≤l≤n
{p̄l− pl}

]s∧s̄−r
+ 2rsnC0Cr,s

[
min

l=1,...,n

{
p̄l− pl

}]−r] 1

ds∧s̄−r

≤ C1

ds∧s̄−r
, (A5)

for some C1 independent of k. Since the right hand side of (A5) does not depend on ĩ1, . . . , ĩn, the
inequality holds uniformly for all p∈P.

Bounding the second term in (A1). Define ξji1,...,in := max1≤r1,...,rn≤s{|λ∗j (τ1,i1,r1 , . . . , τn,in,rn) −
λ̃j(τ1,i1,r1 , . . . , τn,in,rn)|} and ξj := max1≤i1,...,in≤s+d{ξ

j
i1,...,in

}. For any il ∈ [̃il− s+ 1, ĩl], l ∈ [1, n], by
similar argument as in (A3), we have:

∣∣γi1,...,inλ∗j − cji1,...,in∣∣ ≤ s∑
j1=1

j1∑
r1=1

· · ·
s∑

jn=1

jn∑
rn=1

(∏n

l=1 βl,il,jl
)
|λ∗j (τ1,i1,r1 , . . . , τn,in,rn)− λ̃j(τ1,i1,r1 , . . . , τn,in,rn)|∣∣∣∏n

l=1

∏jl
sl=1,sl 6=rl

(τl,il,rl − τl,il,sl)
∣∣∣

≤
s∑

j1=1

j1∑
r1=1

· · ·
s∑

jn=1

jn∑
rn=1

s2(
∑n
l=1 jl−n)|λ∗j (τ1,i1,r1 , . . . , τn,in,rn)− λ̃j(τ1,i1,r1 , . . . , τn,in,rn)|

≤
(
s+ s2

2

)n
s2(ns−n) ξji1,...,in .

So, for all p∈Hĩ1,...,̃in
, there exists constant C2 > 0 independent of k and ĩ1, . . . , ĩn such that∣∣∣∣∣∂r(Lλ∗j (p)− λ̃j(p))∂pr11 . . . ∂prnn

∣∣∣∣∣ ≤
s+d∑
i1=1

· · ·
s+d∑
in=1

∣∣γi1,...,inλ∗j − cji1,...,in∣∣ ∣∣∣∣∂rNi1,...,in(p)

∂pr11 . . . ∂prnn

∣∣∣∣
=

ĩ1∑
i1=ĩ1−s+1

· · ·
ĩn∑

in=ĩn−s+1

∣∣γi1,...,inλ∗j − cji1,...,in∣∣ ∣∣∣∣∂rNi1,...,in(p)

∂pr11 . . . ∂prnn

∣∣∣∣
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≤ sn
(
s+ s2

2

)n
s2(ns−n)ξjCr,s

[
min

l=1,...,n
{δ̄l}

]−r
≤
(

1 + s

2

)n
s2nsξjCr,s

[
min

l=1,...,n

{
p̄l− pl

2d

}]−r
= 2r−nCr,s (1 + s)

n
s2ns

[
min

l=1,...,n

{
p̄l− pl

}]−r
ξjdr =C2ξ

jdr, (A6)

where the second inequality follows by Lemma A2 part (e) and Cr,s only depends on r and s, the
third inequality follows since d+ 1≤ 2d.

Note that the right hand side of (A6) does not depend on ĩ1, . . . , ĩn, (A6) holds uniformly for all
p∈P. So, by (A1), (A5) and (A6), we conclude that there exists C3 independent of k such that∣∣∣∣∣
∣∣∣∣∣∂r(λ∗j (.)− λ̃j(.))∂pr11 . . . ∂prnn

∣∣∣∣∣
∣∣∣∣∣
∞

= sup
p∈P

∣∣∣∣∣∂r(λ∗j (p)− λ̃j(p))∂pr11 . . . ∂prnn

∣∣∣∣∣
≤ max

s≤ĩ1,...,̃in≤s+d

{
sup

p∈H
ĩ1,...,̃in

{∣∣∣∣∂r(λ∗j (p)−Lλ∗j (p))∂pr11 . . . ∂prnn

∣∣∣∣+
∣∣∣∣∣∂r(Lλ∗j (p)− λ̃j(p))∂pr11 . . . ∂prnn

∣∣∣∣∣
}}

≤
(

C1

ds∧s̄−r
+C2ξ

jdr
)
≤ C3

(
1

ds∧s̄−r
+ ξjdr

)
. (A7)

Step 2

We now analyze the term ξj. Note that ξj = maxp∈G̃ |λ∗j (p)− λ̃j(p)| where G̃ := {(τ1,i1,j1 ; . . . ; τn,in,jn) :

il ∈ [1, s+ d], jl ∈ [1, s],∀l ∈ [1, n]} is as defined in §3.1. So, for all x≥ 0, we can bound

P
(

max
p∈G̃
|λ∗j (p)− λ̃j(p)| ≥ x

)
≤ P

(
max
p∈G̃
{λ̃j(p)−λ∗j (p)} ≥ x

)
+P

(
max
p∈G̃
{λ∗j (p)− λ̃j(p)} ≥ x

)
.(A8)

We now bound the two terms after the inequality separately. For x ≥ 0 and t > 0, since |G̃| =
sn(s+ d)n, the following holds:

P
(

max
p∈G̃
{λ̃j(p)−λ∗j (p)} ≥ x

)
= P

(
tmax
p∈G̃
{λ̃j(p)−λ∗j (p)} ≥ tx

)
≤ exp(−tx)E

[
exp

(
tmax
p∈G̃
{λ̃j(p)−λ∗j (p)}

)]
≤ exp(−tx)

∑
p∈G̃

E
[
exp

(
t(λ̃j(p)−λ∗j (p))

)]
≤ exp(−tx)sn(s+ d)nmax

p∈G̃

{
E
[
exp

(
t(λ̃j(p)−λ∗j (p))

)]}
. (A9)

Note that there exists a p∗ ∈ G̃ such that the expectation E
[
exp

(
t(λ̃j(p)−λ∗j (p))

)]
in (A9) attains

its maximum. So, for all 0< t≤L0,

max
p∈G̃

{
E
[
exp

(
t(λ̃j(p)−λ∗j (p))

)]}
= E

[
exp

(
t(λ̃j(p

∗)−λ∗j (p∗))
)]

= exp(−tλ∗j (p∗))
{
E
[
exp

(
t

L0

Bernoulli(λ∗j (p
∗))

)]}L0

= exp(−tλ∗j (p∗))
{

1−λ∗j (p∗) +λ∗j (p
∗) exp

(
t

L0

)}L0
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≤ exp(−tλ∗j (p∗))
{

exp

(
λ∗j (p

∗)

[
exp

(
t

L0

)
− 1

])}L0

= exp(−tλ∗j (p∗)) exp

(
λ∗j (p

∗)L0

∞∑
j=1

1

j!

(
t

L0

)j)

= exp

(
λ∗j (p

∗)L0

∞∑
j=2

1

j!

(
t

L0

)j)
≤ exp

(
λ∗j (p

∗)t2/L0

)
≤ exp(t2/L0), (A10)

where the second equality follows because λ̃j(p
∗) is the average of L0 independent Bernoulli ran-

dom variables with success probability λ∗j (p
∗) and the last inequality follows from the fact that∑∞

j=2(j!)−1 (t/L0)
j ≤ (t/L0)

2∑∞
j=2[j(j− 1)]−1 ≤ (t/L0)

2
. Hence, by (A9) and (A10), for all 0< t≤

L0,

P
(

max
p∈G̃
{λ̃j(p)−λ∗j (p)} ≥ x

)
≤ exp(t2/L0− tx+ log(sn(s+ d)n)). (A11)

Following similar arguments, for all 0< t≤L0, there exists some q∗ ∈ G̃ such that

P
(

max
p∈G̃
{λ∗j (p)− λ̃j(p)} ≥ x

)
≤ exp(−tx)

[
max
p∈G̃

{
E
[
exp

(
t(λ∗j (p)− λ̃j(p))

)]}]
sn(s+ d)n

≤ exp(−tx)

[
exp(tλ∗j (q

∗)) exp

(
λ∗j (q

∗)L0

∞∑
j=1

(−1)j

j!

(
t

L0

)j)]
sn(s+ d)n

≤ exp(λ∗j (q
∗)t2/L0− tx)sn(s+ d)n

≤ exp(t2/L0− tx+ log(sn(s+ d)n)). (A12)

Pick x= 4L
−1/2
0 (s+ d)n/2sn/2 logk and t=L0x/2. We now show that under this choice of x and t,

the inequalities (A11) and (A12) hold for large k, i.e., t≤L0 when k is large. Recall that we have
set d = d(L1/2

0 / logk)1/(s+n/2)e. Since L0 ≥ log3 k, for k ≥ 3, we have L
1/2
0 / logk ≥ 1. This implies

that

(L
1/2
0 / logk)1/(s+n/2) ≤ d≤ 2(L

1/2
0 / logk)1/(s+n/2). (A13)

We then have that for all k≥ 3, the following holds

x =
4 logk√
L0

(s+ d)
n
2 s

n
2 ≤ 4 logk√

L0

(s+ 1)
n
2 s

n
2 d

n
2 ≤ 4(s+ 1)

n
2 s

n
2 2

n
2

(
logk√
L0

) s
s+n/2

→ 0, as k→∞.

Hence, there exists a constant K2 ≥ 3 such that for all k ≥ K2 ≥ 3, we have x ≤ 2 and hence
t=L0x/2≤L0. The following inequality holds for k≥K2:

P
(
ξj ≥ 4L

−1/2
0 d

n
2 (s+ s2)

n
2 logk

)
≤ P

(
ξj ≥ 4L

−1/2
0 s

n
2 (s+ d)

n
2 logk

)
= P

(
max
p∈G̃
|λ̃j(p)−λ∗j (p)| ≥ 4L

−1/2
0 s

n
2 (s+ d)

n
2 logk

)
≤ 2exp

(
−x

2L0

4

)
sn(s+ d)n = 2sn(s+ d)n exp

(
−4sn(s+ d)n log2 k

)
≤ 2sn(s+ d)n exp (−2sn(s+ d)n) exp

(
− log2 k

)
≤ K3 exp

(
− log2 k

)
, (A14)
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where K3 = supx≥0{x exp(−x)} is a positive constant, the first inequality follows since s + d ≤
(s + 1)d for d ≥ 1, the second inequality follows by (A8), (A11) and (A12). Let Ψr = C3(1 +
2n/2+r+2(s+ s2)n/2) which is independent of k (C3 is defined in (A7)), then

Ψr

(
logk√
L0

) s∧s̄−r
s+n/2

≥ C3

[(
logk√
L0

) s∧s̄−r
s+n/2

+ 2
n
2 +r+2(s+ s2)

n
2

(
logk√
L0

) s−r
s+n/2

]
≥ C3

(
1

ds∧s̄−r
+

4 logk√
L0

(s+ s2)
n
2 d

n
2 +r

)
, (A15)

where the first inequality follows since logk/L
1/2
0 ≤ 1 and the second inequality follows by (A13).

So,

P

(∣∣∣∣∣
∣∣∣∣∣∂r(λ∗j (p)− λ̃j(p))∂pr11 . . . ∂prnn

∣∣∣∣∣
∣∣∣∣∣
∞

≥Ψr

(
logk√
L0

) s∧s̄−r
s+n/2

)

≤ P

(∣∣∣∣∣
∣∣∣∣∣∂r(λ∗j (p)− λ̃j(p))∂pr11 . . . ∂prnn

∣∣∣∣∣
∣∣∣∣∣
∞

≥C3

(
1

ds∧s̄−r
+

4 logk√
L0

(s+ s2)
n
2 d

n
2 +r

))
≤ P

(
C3

(
1

ds∧s̄−r
+ ξjdr

)
≥C3

(
1

ds∧s̄−r
+

4 logk√
L0

(s+ s2)
n
2 d

n
2 +r

))
≤ P

(
ξj ≥ 4 logk√

L0

d
n
2 (s+ s2)

n
2

)
≤K3 exp(− log2 k)≤K exp(− log2 k),

where the first inequality follows by (A15), the second inequality follows by (A7) and the fourth
inequality follows by (A14). This completes the proof. �

Proof of Lemma A1: For k ∈ Z++, define Ik := {a = (a1; . . . ;an) : al ∈ [0, k], for all l ∈ [1, n],

and
∑n

l=1 al = k}. Define g(x) =
∑(s∧s̄)−1

k=0

∑
a∈Ik hf (x,0, a) for all x∈X where

hf (x, y, a) :=
∂a1+···+anf(y)

∂xa1
1 . . . ∂xann

n∏
l=1

(xl− yl)al
al!

, ∀y ∈X .

It is straightforward to verify that g(.) ∈ ⊗nl=1P
s∧s̄−1([0, x̄l]). For some k ∈ [0, s∧ s̄], consider any

a= (a1; . . . ;an)∈ Ik, any x, y ∈X , any r ∈ [0, k], and any rl ∈Z+, l ∈ [1, n] satisfying
∑n

l=1 rl = r. If
al < rl for some l ∈ [1, n], ∂rhf (x, y, a)/(∂xr11 . . . ∂xrnn ) = 0. Hence, the following hold:∣∣∣∣∂rhf (x, y, a)

∂xr11 . . . ∂xrnn

∣∣∣∣ =


0, if al < rl, for some l ∈ [1, n];∣∣∣∂a1+···+anf(y)

∂x
a1
1 ...∂xann

∏n

l=1
(xl−yl)al−rl

(al−rl)!

∣∣∣≤ W∏n
l=1(al−rl)!

[
max
l=1,...,n

{x̄l}
]k−r

, otherwise,
(A16)

where the inequality follows by N2, x̄l ≤ 1 and al− rl ≥ 0 for all l ∈ [1, n], and
∑n

l=1(al− rl) = k− r.
So, for any r ∈ [0, s∧ s̄] and for any rl ∈Z+, l ∈ [1, n] satisfying

∑n

l=1 rl = r,∣∣∣∣∣∣∣∣ ∂r(f − g)(.)

∂xr11 . . . ∂xrnn

∣∣∣∣∣∣∣∣
∞

= sup
x∈X

∣∣∣∣∂r(f − g)(x)

∂xr11 . . . ∂xrnn

∣∣∣∣≤ ∑
a∈Is∧s̄

sup
x,y∈X

∣∣∣∣∂rhf (x, y, a)

∂xr11 . . . ∂xrnn

∣∣∣∣
≤ W

[
max
l=1,...,n

{x̄l}
]s∧s̄−r ∑

∑n
l=1 al=s∧s̄

al≥rl,∀l∈[1,n]

1∏n

l=1(al− rl)!

= W

[
max
l=1,...,n

{x̄l}
]s∧s̄−r

1

(s∧ s̄− r)!
∑

∑n
l=1wl=s∧s̄−r

wl∈Z+,∀l∈[1,n]

(s∧ s̄− r)!∏n

l=1wl!

= W

[
max
l=1,...,n

{x̄l}
]s∧s̄−r

ns∧s̄−r

(s∧ s̄− r)!
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where the first inequality follows by the Lagrangian remainder formula, the second inequality
follows by (A16), and the last equality follows by the multinomial theorem. The result follows by
letting Cn,r = supk≥r n

k−r/(k− r)!≤ nn/n!<∞. �

Proof of Lemma A2: Recall that N s
l,il

(.) are defined in §3.1 as the building blocks of the tensor-
product B-Spline basis functions. Let Dσ,Dσ

+,D
σ
− respectively denote the σth order derivative, right

derivative, left derivative of a single variate real function. We first state some known results of
spline functions that will be used to prove Lemma A2.

Theorem A1. (Theorem 6.18 in Schumaker [1]) For any l ∈ [1, n], we have Llf = f for
all f ∈ Ps−1([p

l
, p̄l]).

Theorem A2. (Lemma 6.19 in Schumaker [1]) For all l ∈ [1, n], i ∈ [1, s+ d], j ∈ [1, s], we
have |βl,i,j| ≤ (yl,i+s− yl,i)j−1 ≤ (s δ̄l)

j−1.

Theorem A3. (Theorem 4.17 in Schumaker [1]) Let s > 1. Fix l ∈ [1, n] and il ∈ [1, s+ d].
Suppose yl,il < yl,il+s. Then N s

l,il
(pl) > 0 when pl ∈ (yl,il , yl,il+s), and N s

l,il
(pl) = 0 when pl /∈

[yl,il , yl,il+s]. At the end points of (yl,il , yl,il+s), we have

(−1)k+s−µl,ilDk
+N

s
l,il

(yl,il) = 0 k= 0,1, . . . , s− 1−µl,il
(−1)s−νl,il+sDk

−N
s
l,il

(yl,il+s) = 0 k= 0,1, . . . , s− 1− νl,il+s

where µl,il = max{j : yl,il =, . . . ,= yl,il+j−1} and νl,il+s = max{j : yl,il+s =, . . . ,= yl,il+s−j+1}.

Theorem A4. (Theorem 4.20 in Schumaker [1]) Fix l ∈ [1, n] and il ∈ [s, s+ d]. For all
pl ∈ [yl,il , yl,il+1),

∑il
vl=il+1−sN

s
l,vl

(pl) = 1.

Theorem A5. (Theorem 4.22 in Schumaker [1]) Fix l ∈ [1, n]. Suppose that k and pl are
such that yl,k ≤ pl < yl,k+1, and define δl,il,k,j = min{(yl,v+j−yl,v) : yl,il ≤ yl,v ≤ yl,k < yl,k+1 ≤ yl,v+j ≤
yl,il+s}, for j ∈ [1, s]. Suppose σ > 0 and δl,il,k,s−σ+1 > 0. Then |Dσ

+N
s
l,il

(pl)| ≤ Γs,σ/(
∏σ

q=1 δl,il,k,s−q)

where Γs,σ = (s−1)!

(s−σ−1)!

(
σ
bσ/2c

)
≤ 2σ (s−1)!

(s−σ−1)!
.

We now proceed to prove each part in Lemma A2 one by one.

Proof of part (a)

Note that L=L1 ◦L2 ◦ · · · ◦Ln. For any f ∈⊗nl=1P
s−1[p

l
, p̄l], we can apply Theorem A1 iteratively n

times to obtain Lf =L1 ◦ · · · ◦Lnf =L1 ◦ · · · ◦Ln−1f = · · ·= f , where Llf is understood as applying
Ll to f which is viewed a single variate function of pl.

Proof of part (b)

This follows directly from Theorem A2.

Proof of part (c)

By our definition of {yl,i}n,2s+dl=1,i=1, µl,il = νl,il+s = 1 for all l ∈ [1, n] and il ∈ [1, s+ d]. Hence, by Theo-

rem A3, for any l ∈ [1, n], il ∈ [1, s+ d] and rl ∈ [0, s− 2], N s
l,il

(.) is nonnegative and DrlN s
l,il

(pl) = 0
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for all pl /∈ (yl,il , yl,il+s). Hence Ni1,...,in is nonnegative and, for any r ∈ [0, s− 2] and any rl ∈Z+, l ∈
[1, n] satisfying

∑n

l=1 rl = r,

∂rNi1,...,in(p)

∂pr11 . . . ∂prnn
=

n∏
l=1

DrlN s
l,il

(pl) = 0

for all p /∈⊗nl=1(yl,il , yl,il+s), where the second equality follows since rl ≤ r≤ s− 2.

Proof of part (d)

Let Hi1,...,in = ⊗nl=1[yl,il , yl,il+1] for any il ∈ [s, s+ d], l ∈ [1, n]. By Theorem A4 and the fact

that {Ni1,...,in(.)}s+d,...,s+di1=1,...,in=1 are all continuous functions (because s ≥ 2), we have
∑i1

v1=i1+1−s · · ·∑in
vn=in+1−sNv1,...,vn(p) = 1 for p ∈ Hi1,...,in . Moreover, by Lemma A2 part (c), Ni1,...,in(.) is

nonnegative and Ni1,...,in(p) = 0 for p = (p1; . . . ;pn) /∈ ⊗nl=1(yl,il , yl,il+s). Fix some ĩl ∈ [s, s+ d],

l ∈ [1, n]. For all p ∈ Hĩ1,...,̃in
,
∑s+d

i1=1 · · ·
∑s+d

in=1 |Ni1,...,in(p)| =
∑s+d

i1=1 · · ·
∑s+d

in=1Ni1,...,in(p) =∑ĩ1
v1=ĩ1+1−s · · ·

∑ĩn
vn=ĩn+1−sNv1,...,vn(p) = 1. The result follows since the equality holds for all ĩl ∈

[s, s+ d], l ∈ [1, n], and P =∪s+d,...,s+d
ĩ1=s,...,̃in=s

Hĩ1,...,̃in
.

Proof of part (e)

Fix r ∈ [0, s− 2], and consider any rl ∈ Z+, l ∈ [1, n] satisfying
∑n

l=1 rl = r. Since N s
l,il

(.) ∈
Cs−2([p

l
, p̄l]) and rl ≤ r ≤ s − 2, D

rl
+N

s
l,il

(pl) = D
rl
−N

s
l,il

(pl) = DrlN s
l,il

(pl) for all pl ∈ [p
l
, p̄l]. Fix

some il ∈ [s, s+ d] for all l ∈ [1, n]. Suppose that pl ∈ [yl,il , yl,il+1). Then, if rl = 0, |DrlN s
l,il

(pl)|=
|N s

l,il
(pl)| ≤ 1 = 20 (s−1)!

(s−0−1)!
δ̄0
l where the inequality follows by Lemma A2 part (d). Otherwise, rl ≥ 1,

and s− rl ≥ s− r ≥ 2> 1. So δl,il,k,s−q ≥ δ̄l > 0 for all q = 1, . . . , rl (recall that δl,il,k,j is as defined

in Theorem A5). Then, by Theorem A5, |DrlN s
l,il

(pl)| ≤ 2rl (s−1)!

(s−rl−1)!
δ̄
−rl
l .

Now, for any p= (p1; . . . ;pn)∈P, if pl ∈ (yl,il , yl,il+s) for all l ∈ [1, n], the following holds,∣∣∣∣∂rNi1,...,in(p)

∂pr11 . . . ∂prnn

∣∣∣∣ =
n∏
l=1

∣∣DrlN s
l,il

(pl)
∣∣≤ n∏

l=1

2rl
(s− 1)!

(s− rl− 1)!
δ̄
−rl
l ≤ 2r

[
(s− 1)!

(s− r− 1)!

]n [
min

l=1,...,n
{δ̄l}

]−r
.

Otherwise, there exists some l0 such that pl0 /∈ (yl0,il0 , yl0,il0+s). By Lemma A2 part (c),∣∣∣∣∂rNi1,...,in(p)

∂pr11 . . . ∂prnn

∣∣∣∣ = 0≤ 2r
[

(s− 1)!

(s− r− 1)!

]n [
min

l=1,...,n
{δ̄l}

]−r
.

So the result follows by letting Cr,s = 2r[(s− 1)!/(s− r− 1)!]n. �

Appendix B: Proof of Proposition 1
We first show the feasibility of ÑP(δ). Define h̃(.) = f̃(g−1(.)) : Y → Rn and h(.) = f(g−1(.)) :

Y →Rn. By condition (ii), h(.) is strongly concave. Also, define δ̃(y) := g̃(g−1(y))−y. Consider the
following two optimization problems:

(NPy) max
y∈Y
{h(y) : Uy� V } and (ÑPy(δ)) max

y∈Y

{
h̃(y) : Uy+Uδ̃(y)� V − δ

}
.

Note that NPy is equivalent to NP and ÑPy(δ) is equivalent to ÑP(δ). Thus, y∗ := g(x∗) is
the optimal solution to NPy and Uy∗ � V . Since g−1(.) is continuous by condition (i) and x∗ is
in the interior of X by condition (iv), y∗ is in the interior of Y and there exists a constant φ̄ > 0
such that y∗ − φ̄e⊆ Y. Let δ̄ = mini{φ̄(Ue)i} (note that since U does not have zero rows and all
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its components are non-negative, δ̄ > 0). We claim that if ||Ug(.)−Ug̃(.) + δ||∞ ≤ δ̄, then y∗− φ̄e
is a feasible solution of ÑPy(δ). To see this, simply note that

||Uδ̃(.) + δ||∞ = sup
y∈Y
||Ug̃(g−1(y))−Uy+ δ||∞ = sup

y∈Y
||Ug̃(g−1(y))−Ug(g−1(y)) + δ||∞

= sup
x∈X
||Ug̃(x)−Ug(x) + δ||∞ = ||Ug(.)−Ug̃(.) + δ||∞.

So, U(y∗− φ̄e)+Uδ̃(y∗− φ̄e)+δ�Uy∗− φ̄Ue+ ||Uδ̃(.)+δ||∞e�Uy∗+ δ̄e− φ̄Ue� V, where the
last inequality follows by the definition of δ̄ and the fact that y∗ is feasible to NPy. This proves that
ÑPy(δ) is feasible. Thus, ÑP(δ) is feasible. Since the feasible region of ÑPy(δ) is compact and
h̃(.) is continuous, ÑPy(δ) has an optimal solution. Let ỹδ denote an optimal solution of ÑPy(δ)
(note that ỹδ may not be unique).

We now proceed to derive a bound of ||y∗− ỹδ||2, which will be used later to obtain the desired
bound for ||x∗ − x̃δ||2. To bound ||y∗ − ỹδ||2, we will use the optimal solution of an auxiliary
optimization problem below:

(ÑP
ax

y (δ)) max
y∈Y

{
h(y) : Uy+Uδ̃(y)� V − δ

}
.

The above problem has the same feasible region as ÑPy(δ), so it is feasible. Let yaxδ denote an
optimal solution of ÑP

ax

y (δ). Since ||y∗ − ỹδ||2 ≤ ||y∗ − yaxδ ||2 + ||yaxδ − ỹδ||2, to bound ||y∗ − ỹδ||2,
we only need to bound ||y∗− yaxδ ||2 and ||yaxδ − ỹδ||2. To derive an upper bound of ||y∗− yaxδ ||2, we
need to use the following lemma (the proof is given later).

Lemma A3. Consider the family of perturbed optimization problems below:

(NPy(ε)) max
y∈Y
{h(y) : Uy� V + ε} .

Suppose that h(.) is strongly concave and twice continuously differentiable, Y is a convex compact
set, U is a non-negative matrix and has full row rank, and the optimal solution of NPy(0) lies in
the interior of Y. If y∗(ε) is an optimal solution for NPy(ε), then ||y∗(0)− y∗(ε)||2 ≤K||ε||∞ for
some K > 0 independent of ε.

Note that the assumptions of Lemma A3 hold (i.e., h(.) = f(g−1(.)) is twice continuously differ-
entiable because f(.) and g−1(.) are both twice continuously differentiable. Also, as shown earlier,
the optimal solution of NPy(0), y∗(0) = y∗, is in the interior of Y). By the strong concavity of
h(.), yaxδ is the unique optimal solution of NPy(−δ−Uδ̃(yaxδ )). Thus, by Lemma A3, there exists
a constant K1 > 0 independent of f̃ , g̃, δ such that

||y∗− yaxδ ||2 ≤ K1||Uδ̃(yaxδ ) + δ||∞ ≤ K1(||U ||∞||g(.)− g̃(.)||∞+ ||δ||∞). (A17)

We now derive a bound for ||ỹδ − yaxδ ||2. Since ÑP
ax

y (δ) and ÑPy(δ) have the same constraints,

ỹδ is feasible for ÑP
ax

y (δ) and yaxδ is feasible for ÑPy(δ). By the strong concavity of h(.), there
exists a constant v > 0 depending only on h(.) such that

h(ỹδ) ≤ h(yaxδ ) +∇h(yaxδ ) · (ỹδ − yaxδ )− v
2
||ỹδ − yaxδ ||22 ≤ h(yaxδ )− v

2
||ỹδ − yaxδ ||22, (A18)

where the last inequality follows because ∇h(yaxδ ) · (ỹδ − yaxδ ) ≤ 0 (otherwise, yaxδ cannot be the
optimal solution of ÑP

ax

y (δ)). Note also that h̃(yaxδ )≤ h̃(ỹδ). Combining this with (A18), by Mean
Value Theorem, we have

v

2
||ỹδ − yaxδ ||22 ≤ [h(yaxδ )− h̃(yaxδ )]− [h(ỹδ)− h̃(ỹδ)] ≤ (∇h(ξ)−∇h̃(ξ))′(yaxδ − ỹδ)

≤ ||(∇h(.)−∇h̃(.))′||∞||ỹδ − yaxδ ||∞ ≤ ||(∇h(.)−∇h̃(.))′||∞||ỹδ − yaxδ ||2,
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for some ξ ∈Y. This means that ||ỹδ− yaxδ ||2 ≤ 2
v
||(∇h(.)−∇h̃(.))′||∞. Combining this with (A17),

||y∗− ỹδ||2 ≤ ||y∗− yaxδ ||2 + ||yaxδ − ỹδ||2
≤ K1||U ||∞||g(.)− g̃(.)||∞+K1||δ||∞+

2

v
||(∇h(.)−∇h̃(.))′||∞

≤ K1||U ||∞||g(.)− g̃(.)||∞+K1||δ||∞+
2

v
||(∇g−1(.))′||∞||(∇f(.)−∇f̃(.))′||∞,(A19)

where the last inequality holds because ∇h(y)−∇h̃(y) =∇g−1(y)[∇f(g−1(y))−∇f̃(g−1(y))] for
all y ∈Y. This means that the following inequality also holds:

||x∗− x̃δ||2
≤
√
n||g−1(y∗)− g−1(ỹδ)||∞ ≤

√
n||(∇g−1(.))′||∞||y∗− ỹδ||∞ ≤

√
n||(∇g−1(.))′||∞||y∗− ỹδ||2

≤
√
n||(∇g−1(.))′||∞

(
K1||U ||∞||g(.)− g̃(.)||∞+K1||δ||∞+

2

v
||(∇g−1(.))′||∞||(∇f(.)−∇f̃(.))′||∞

)
≤K(||(∇f(.)−∇f̃(.))′||∞+ ||g(.)− g̃(.)||∞+ ||δ||∞),

where K =
√
n||(∇g−1(.))′||∞(K1||U ||∞+K1 + 2

v
||(∇g−1(.))′||∞). This completes the proof. �

Proof of Lemma A3. We claim that there exists ε̄ := min{ε̄1, ε̄2} > 0, where ε̄1, ε̄2 are strictly
positive constants to be defined later, such that, for all ||ε||∞ ≤ ε̄, ||y∗(0)− y∗(ε)||2 ≤K1||ε||∞ for
some K1 > 0 independent of ε. Note that, if this claim is true, Lemma A3 can be proven as follows.
Define l := supy1,y2∈Y ||y1− y2||2 and let K2 = l/ε̄. Then, for all ε with ||ε||∞ > ε̄, ||y∗(ε)− y∗(0)||2 ≤
l=K2ε̄≤K2||ε||∞. So, Lemma A3 follows by letting K = max{K1,K2}. We now prove our claim.

We first introduce two optimization problems whose optimal solutions are closely related to y∗(0)
and y∗(ε). The first optimization problem is almost identical to NPy(0) except that the domain is
Rn instead of Y:

(N̄Py) max
y∈Rn
{h(y) : Uy� V } .

To define our second optimization problem, first note that, since U has full row rank, there exists
an n by m matrix H such that UH = I. For any ε ∈Rm, by a change of variables y = z+Hε, we
can transform NPy(ε) into an equivalent optimization problem below:

(NPz(ε)) max
z∈Y−Hε

{hε(z) : Uz � V } ,

where hε(z) := h(z +Hε). Two important observations are in order. The first observation relates
y∗(0) to the first optimization problem N̄Py whereas the second observation relates y∗(ε) to the
second optimization problem NPz(ε).

Observation 1: y∗(0) is the unique optimal solution to N̄Py.

Suppose that this is not true, i.e., there exists an optimal solution of N̄Py, which we denote
by ỹ, and ỹ 6= y∗(0). Then h(ỹ) ≥ h(y∗(0)) and yα = αy∗(0) + (1− α)ỹ (∀α ∈ [0,1]) is a feasible
solution. By strong concavity, h(yα)> αh(y∗(0)) + (1− α)h(ỹ)≥ h(y∗(0)) for all α ∈ (0,1). Since
y∗(0) is in the interior of Y, so is yα if α is sufficiently small, which contradicts with the fact that
y∗(0) maximizes NPy(0).

Observation 2: There exists ε̄1 > 0 such that for all ε with ||ε||∞ ≤ ε̄1, NPy(ε) has a unique optimal
solution y∗(ε) and z∗(ε) := y∗(ε)−Hε is the unique optimal solution of NPz(ε).

We now prove Observation 2. Since y∗(0) lies in the interior of Y, there exists a constant φ̄ > 0
such that {x : ||x− y∗(0)||∞ ≤ φ̄} ⊆ Y. Let ε̄1 := mini{φ̄(Ue)i}. Note that ε̄1 > 0 since U is non-
negative and has full row rank. Moreover, for all ε with ||ε||∞ ≤ ε̄≤ ε̄1, y∗(0)− φ̄e∈Y is a feasible
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solution of NPy(ε) because U(y∗(0)− φ̄e)� V − φ̄Ue� V − ε̄1e� V + ε. This means that NPy(ε)
has a unique optimal solution y∗(ε) (because its feasible region is convex, compact, not empty, and
its objective function h(.) is strongly concave). Hence, by definition of NPz(ε), z

∗(ε) is its unique
optimal solution. So, Observation 2 holds.

To bound ||y∗(0) − y∗(ε)||2, we first derive a bound for ||y∗(0) − z∗(ε)||2. Let ε̄2 := φ̄/||H||∞.
Then, for all ε with ||ε||∞ ≤ ε̄ ≤ ε̄2, since ||y∗(0) + Hε − y∗(0)||∞ = ||Hε||∞ ≤ ||H||∞||ε||∞ ≤ φ̄,
y∗(0) +Hε∈Y. This means that y∗(0) is feasible for NPz(ε) and hε(y

∗(0))≤ hε(z∗(ε)). Note that
z∗(ε)∈Rn is also feasible for N̄Py, so

h(z∗(ε)) ≤ h(y∗(0)) +∇h(y∗(0)) · (z∗(ε)− y∗(0))− v
2
||z∗(ε)− y∗(0)||22

≤ h(y∗(0))− v
2
||z∗(ε)− y∗(0)||22 (A20)

for some v > 0 that only depends on h(.). The first inequality follows by the strong concavity of h(.)
and the second inequality follows because ∇h(y∗(0)) · (z∗(ε)− y∗(0))≤ 0 (otherwise, y∗(0) cannot
be the optimal solution of N̄Py). Note also that, for all ε with ||ε||∞ ≤ ε̄, the following holds

v

2
||z∗(ε)− y∗(0)||22 ≤ h(y∗(0))−h(z∗(ε))−hε(y∗(0)) +hε(z

∗(ε))

= (∇h(ξ1)−∇hε(ξ1)) · (y∗(0)− z∗(ε))
≤ ||∇h(ξ1)−∇hε(ξ1)||∞||y∗(0)− z∗(ε)||∞
≤ ||∇h(ξ1)−∇h(ξ1 +Hε)||∞||y∗(0)− z∗(ε)||2
= ||∇2h(ξ2)Hε||∞||y∗(0)− z∗(ε)||2
≤ K0||H||∞||ε||∞||y∗(0)− z∗(ε)||2 (A21)

for some ξ1 ∈ Z, ξ2 ∈ Z̄ where Z := {z : ||z − y||∞ ≤ φ̄ for some y ∈Y} and Z̄ := {z : ||z − x||∞ ≤
φ̄ for some x∈Z} are both compact and convex, and K0 := supz∈Z̄ ||∇2h(z)||∞ only depends on
h(.). The first inequality of (A21) follows by (A20) and hε(y

∗(0)) ≤ hε(z∗(ε)). The first equality
of (A21) follows by the Mean Value Theorem and the fact that y∗(0) ∈ Z and z∗(ε) ∈ Z (the
latter inclusion holds because, since z∗(ε)∈Y −Hε, there exists a y ∈Y such that ||z∗(ε)− y||∞ =
||Hε||∞ ≤ ||H||∞ε̄ ≤ ||H||∞ε̄2 = φ̄). Similarly, the second equality also follows by the Mean Value
Theorem and the fact that ξ1 ∈Z ⊆ Z̄ and ξ1 +Hε∈ Z̄ (the latter inclusion holds since ξ1 ∈Z and
||ξ1 +Hε− ξ1||∞ ≤ ||H||∞ε̄ ≤ ||H||∞ε̄2 = φ̄). Note that (A21) is equivalent to ||z∗(ε)− y∗(0)||2 ≤
2v−1K0||H||∞||ε||∞. Let K1 = 2v−1K0||H||∞ + ||H||2

√
n. Then, for all ε with ||ε||∞ ≤ ε̄, we can

bound:

||y∗(ε)− y∗(0)||2 = ||z∗(ε) +Hε− y∗(0)||2 ≤ ||z∗(ε)− y∗(0)||2 + ||H||2||ε||2
≤ 2v−1K0||H||∞||ε||∞+ ||H||2||ε||2 ≤K1||ε||∞.

This proves the claim we stated at the beginning and completes the proof of Lemma A3. �

Appendix C: Proof of Lemma 2
We now prove Lemma 2 using Proposition 1. Let g(.) = λ∗(.), g̃(.) = λ̃(.), f(.) = r∗(.), f̃(.) =

r̃(.),U =A,V =C/T, δ = 0,X = P,Y = Λλ∗ . Note that r∗(.), λ∗(.) are twice continuously differen-
tiable by R1 and r̃(.), λ̃(.) are continuously differentiable since λ̃(.) ∈ Cs−2(P) and s− 2≥ 1. Also
P is convex and A is nonnegative with full row rank. We first verify the conditions (i) - (iv) in
Proposition 1. By R1, λ∗(.) has a twice continuously differentiable inverse function p∗(.), and Λλ∗

is assumed to be convex, so (i) holds. By R3, r∗λ(.) := r∗(p∗(.)) is strongly concave, so (ii) holds. By
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R4, P is feasible and its optimal solution pD lies in the interior of P, so both (iii) and (iv) hold.
For any p∈P, we have

||(∇r∗(p)−∇r̃(p))′||∞ = ||(λ∗(p) +∇λ∗(p)p− λ̃(p)−∇λ̃(p)p)′||∞
≤ ||(λ∗(p)− λ̃(p))′||∞+ ||p′(∇λ∗(p)−∇λ̃(p))′||∞
≤ n||λ∗(p)− λ̃(p)||∞+ ||p′||∞||(∇λ∗(p)−∇λ̃(p))′||∞
≤ n||λ∗(.)− λ̃(.)||∞+ (

∑n

l=1 p̄l)||(∇λ∗(.)−∇λ̃(.))′||∞.

Therefore, by Proposition 1, there exists δ̄1 > 0 and K1 > 0 such that for all λ̃(.) satisfying ||Aλ(.)−
Aλ̃(.)||∞ ≤ δ̄1, P̃ is feasible and

||pD− p̃D||2 ≤ K1(||Aλ∗(.)−Aλ̃(.)||∞+ ||(∇r∗(.)−∇r̃(.))′||∞)
≤ K1[(n+ ||A||∞)||λ∗(.)− λ̃(.)||∞+ (

∑n

l=1 p̄l)||(∇λ∗(.)−∇λ̃(.))′||∞]
≤ K(||λ∗(.)− λ̃(.)||∞+ ||(∇λ∗(.)−∇λ̃(.))′||∞)

whereK =K1(n+ ||A||∞+
∑n

l=1 p̄l) is independent of λ̃(.). Let δ̄ := δ̄1/||A||∞. Since ||λ(.)−λ̃(.)||∞ ≤
δ̄ means that ||Aλ(.)−Aλ̃(.)||∞ ≤ ||A||∞δ̄= δ̄1, the result follows. �

Appendix D: Derivation of the equality (2)

Recall that u∗ij := [
∂2λ∗1(pD)

∂pi∂pj
; . . . ; ∂

2λ∗n(pD)

∂pi∂pj
]. Note that the following identity holds:

H∗ij =
[
B∗∇2r∗λ(λD)(B∗)′

]
ij
− [B∗+ (B∗)′]ij

=
n∑
l=1

n∑
k=1

∂λ∗k(p
D)

∂pi

∂2r∗λ(λD)

∂λk∂λl

∂λ∗l (p
D)

∂pj
−
[
∂λ∗i (p

D)

∂pj
+
∂λ∗j (p

D)

∂pi

]
. (A22)

Note also that r∗(p) = r∗λ(λ∗(p)) = p′λ∗(p); taking the second order derivative,

∂2r∗(pD)

∂pi∂pj
=

n∑
l=1

n∑
k=1

∂λ∗k(p
D)

∂pi

∂2r∗λ(λD)

∂λk∂λl

∂λ∗l (p
D)

∂pj
+

n∑
l=1

∂r∗λ(λD)

∂λl

∂2λ∗l (p
D)

∂pi∂pj

=
∂λ∗i (p

D)

∂pj
+
∂λ∗j (p

D)

∂pi
+

n∑
l=1

pDl
∂2λ∗l (p

D)

∂pi∂pj
. (A23)

Hence, combining (A23) with (A22), we have H∗ij =
∑n

l=1(pDl −
∂r∗λ(λD)

∂λl
)
∂2λ∗l (pD)

∂pi∂pj
= (u∗ij)

′(pD −
∇r∗λ(λD)). Note that λ∗(pD) + ∇λ∗(pD)pD = ∇r∗(pD) = ∇λ∗(pD)∇r∗λ(λD), so pD − ∇r∗λ(λD) =
−∇λ∗(pD)−1λ∗(pD) =−(B∗)−1λD. Hence, H∗ij =−(u∗ij)

′(B∗)−1λD.

Appendix E: Proof of Lemma 3
We will prove each part of the lemma in turn. Let δ̄ = min{δ̄1, δ̄2, δ̄3, δ̄4, δ̄5}, κ= max{κ1, κ2},

where δ̄1, . . . , δ̄5 and κ1, κ2 are strictly positive constants to be defined shortly.

Proof of Parts (a)-(c)

Let σmax(X) and σmin(X) denote the maximum and minimum eigenvalues of a symmetric real
matrix X, respectively. Since B∗ = ∇λ∗(pD) is invertible, B∗(B∗)′ is positive definite; so, σ̄∗ :=
σmax(B∗(B∗)′) > 0 and σ∗ := σmin(B∗(B∗)′) > 0. Define δ̄1 = σ∗/(4

√
σ̄∗) > 0. Note that, for all

θι ∈ Ball(θ∗ι , δ̄), ||B −B∗||2 ≤ ||B −B∗||F ≤ ||θι − θ∗ι ||2 ≤ δ̄ ≤ δ̄1. Therefore, for all v ∈ Rn such that
||v||2 = 1, we have:

v′B′Bv = v′(B−B∗+B∗)′(B−B∗+B∗)v
= v′(B∗)′B∗v+ v′(B∗)′(B−B∗)v+ v′(B−B∗)′B∗v+ v′(B−B∗)′(B−B∗)v
≥ σ∗− 2||v||22||(B∗)′||2||B−B∗||2 ≥ σ∗− 2

√
σ̄∗ σ∗/(4

√
σ̄∗) = σ∗/2.
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This means that σmin(B′B)≥ σ∗/2> 0 and B is invertible. Since (B′B)−1 =B−1(B−1)′,

||(B′)−1||2 =
√
σmax(B−1(B−1)′) =

√
σmin(B′B)−1 ≤

√
2/σ∗.

By definition, λ(p;θι) = a+B′p,λ(p;θ∗ι ) = a∗+ (B∗)′p,
∂λj
∂pi

(p;θι) =Bij,
∂λj
∂pi

(p;θ∗ι ) =B∗ij for all i, j ∈
[1, n], and p(λ;θι) =−(B′)−1a+ (B′)−1λ (recall that B is invertible). So, for all p ∈ P and λ,λ′ ∈
λ(P;θι),

||λ(p;θι)−λ(p;θ∗ι )||2 ≤ ||a− a∗||2 + ||(B−B∗)′||2||p||2

≤ ||a− a∗||2 + ||(B−B∗)′||F

(
n∑
l=1

p̄2
l

) 1
2

≤

1 +

(
n∑
l=1

p̄2
l

) 1
2

 ||θι− θ∗ι ||2,∣∣∣∣∂λj∂pi
(p;θι)−

∂λj
∂pi

(p;θ∗ι )

∣∣∣∣ = |Bij −B∗ij| ≤ ||θι− θ∗ι ||2, and

||p(λ;θι)− p(λ′;θι)||2 = ||(B′)−1(λ−λ′)||2 ≤ ||(B′)−1||2||λ−λ′||2 ≤
√

2/σ∗||λ−λ′||2.

The results follow by letting ω= max{1 + (
∑n

l=1 p̄
2
l )

1
2 ,
√

2/σ∗}.

Proof of part (d)

To prove that q(p(.;θι);θo) is strongly concave, we need to show that its Hessian, B−1G(B′)−1, is
negative definite. Let δ̄2 = ||G∗||2. For all θo ∈Ball(θ∗o , δ̄), ||θo− θ∗o ||2 ≤ δ̄≤ δ̄2, so

||B∗−B||2 ≤ ||B∗−B||F ≤ δ̄ (A24)
||G∗−G||2 ≤ ||G∗−G||F ≤ δ̄ (A25)

||G||2 ≤ ||G∗||2 + ||G−G∗||2 ≤ ||G∗||2 + δ̄2 = 2||G∗||2. (A26)

Recall that, by Lemma 3 part (a), B is invertible and ||B−1||2 = ||(B′)−1||2 ≤ ω. So,

||(B∗)−1G∗((B∗)′)−1−B−1G(B′)−1||2
= ||((B∗)−1−B−1)G∗((B∗)′)−1 +B−1(G∗−G)((B∗)′)−1 +B−1G(((B∗)′)−1− (B′)−1)||2
≤ ||(B∗)−1−B−1||2||G∗||2||((B∗)′)−1||2 + ||B−1||2||G∗−G||2||((B∗)′)−1||2

+||B−1||2||G||2||((B∗)′)−1− (B′)−1||2
≤ ||(B∗)−1||2||B∗−B||2||B−1||2||G∗||2||((B∗)′)−1||2 + ||B−1||2||G∗−G||2||((B∗)′)−1||2

+||B−1||2||G||2||(B∗)−1||2||B∗−B||2||B−1||2
≤ ||B−1||2||(B∗)−1||2(||(B∗)−1||2||G∗||2 + 1 + 2||G∗||2||B−1||2)δ̄
≤ ω||(B∗)−1||2(||(B∗)−1||2||G∗||2 + 1 + 2||G∗||2ω)δ̄
≤Cδ̄,

for some C > 0 that only depends on θ∗ and ω. The second inequality above holds because (B∗)−1−
B−1 = (B∗)−1(B−B∗)B−1 and the third inequality follows from (A24)-(A26).

By (3), (B∗)−1G∗((B∗)′)−1 = ∇2r∗λ(λD). So, σmax((B∗)−1G∗((B∗)′)−1) ≤ −v by R3. Let δ̄3 =
v/(2C). Then, for all v such that ||v||2 = 1,

v′(B−1G(B′)−1)v = v′((B∗)−1G∗((B∗)′)−1)v+ v′(B−1G(B′)−1− (B∗)−1G∗((B∗)′)−1)v
≤ σmax((B∗)−1G∗((B∗)′)−1) + ||B−1G(B′)−1− (B∗)−1G∗((B∗)′)−1||2
≤ −v+Cδ̄ ≤ −v+Cδ̄3 = −v/2.

This means that B−1G(B′)−1 is negative definite and, thus, q(p(.;θι);θo) is strongly concave.
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Proof of part (e)

Consider the following optimization problem:

(QPλ(θ; δ)) max
λ∈λ(P;θι)

{
q(p(λ;θι);θo) : Aλ� C

T
− δ
}
.

This problem is equivalent to QP(θ; δ), except that it optimizes over λ instead of p. Recall that,
by Lemma 3 part (d), q(p(.;θι);θo) is strongly concave; so, QPλ(θ; δ) is a convex program and, if
it is feasible, it has a unique optimal solution that is characterized by the KKT condition. Since
Pλ is a convex program and has a unique optimal solution λD ∈Λλ∗ , by the KKT conditions, we
have:  ∇r

∗
λ(λD) =A′µD

(AλD− C
T

)′µD = 0
µD � 0,AλD � C

T

which, by (3), implies

∇λq(p(λ
D;θ∗ι );θ

∗
o) =A′µD

(AλD− C
T

)′µD = 0
µD � 0,AλD � C

T

Since λD = λ(pD;θ∗ι ) ∈ λ(P;θ∗ι ) is feasible to QPλ(θ∗;0), by the sufficiency of KKT conditions for
optimality in a strongly convex program, λD and µD are also the unique optimal primal and dual
solution of QPλ(θ∗;0). Hence, pD = p(λD;θ∗ι ) is also the unique optimal solution of QP(θ∗;0).
This proves that λD = λD0 (θ∗), µD = µD0 (θ∗) and pD = pD0 (θ∗).

Proof of part (f)

The proof relies on Proposition 1. Let g(.) = λ(.;θ∗ι ), g̃(.) = λ(.;θι), f(.) = q(.;θ∗o), f̃(.) = q(.;θo),U =
A,V =C/T,X =P,Y = λ(P;θ∗ι ). We first verify conditions (i)-(iv) of Proposition 1. Since λ(.;θ∗ι )
is linear and B∗ =∇λ∗(pD) is invertible, it has an inverse function p(.;θ∗ι ) that is linear and, hence,
twice continuously differentiable. Moreover, the set λ(P;θ∗ι ) is convex because P is convex and
convexity is preserved under affine transformation. So, (i) holds. By (3) and the fact that r∗λ(.)
is strongly concave, q(p(.;θ∗ι );θ

∗
o) is strongly concave, so (ii) holds. As shown earlier, pD is the

optimal solution of QP(θ∗;0) and it is in the interior of P, so (iii) and (iv) hold. Therefore, by
Proposition 1, there exists some constant δ̃ > 0 such that if ||Aλ(.;θ∗ι )−Aλ(.;θι) + δ||∞ ≤ δ̃, then
QP(θ; δ) is feasible and there exists some constant K independent of θ such that the unique optimal
solution of QP(θ; δ) (i.e., pDδ (θ)) satisfies the following:

||pD0 (θ∗)− pDδ (θ)||2 ≤ K (||(∇q(.;θ∗o)−∇q(.;θo))′||∞+ ||λ(.;θ∗ι )−λ(.;θι)||∞+ ||δ||∞)

= K

(
sup
p∈P
{||(F ∗+ p′G∗−F − p′G)′||∞}+ sup

p∈P
{||λ(p;θ∗ι )−λ(p;θι)||∞}+ ||δ||∞

)
≤ K

(
sup
p∈P
{||(F ∗+ p′G∗−F − p′G)′||2}+ sup

p∈P
{||λ(p;θ∗ι )−λ(p;θι)||2}+ ||δ||∞

)
≤ K

(
||F ∗−F ||2 + sup

p∈P
{||p′||2}||G∗−G||2 +ω||θ∗ι − θι||2 + ||δ||2

)
≤ K

(
||F ∗−F ||2 + (

∑n

l=1 p̄
2
l )

1/2||G∗−G||F +ω||θ∗ι − θι||2 + ||δ||2
)

≤ K
(
1 + (

∑n

l=1 p̄
2
l )

1/2
)
||θ∗o − θo||2 +Kω||θ∗ι − θι||2 +K||δ||2

≤ κ1 (||θ∗− θ||2 + ||δ||2)
≤ κ(||θ∗− θ||2 + ||δ||2),

where κ1 = K(2 + (
∑n

l=1 p̄
2
l )

1/2 + ω). Let δ̄4 = min{δ̃/2, δ̃/(2ω||A||2), φ/(6κ)}. Then, for θι ∈
Ball(θ∗ι , δ̄) and δ ∈Ball(0, δ̄), we have

||Aλ(.;θ∗ι )−Aλ(.;θι) + δ||∞ ≤ sup
p∈P
||Aλ(p;θ∗ι )−Aλ(p;θι)||∞+ ||δ||∞

≤ sup
p∈P
||Aλ(p;θ∗ι )−Aλ(p;θι)||2 + ||δ||2 ≤ ω||A||2||θ∗ι − θι||2 + ||δ||2

≤ ω||A||2δ̄+ δ̄ ≤ ω||A||2δ̄4 + δ̄4 ≤ ω||A||2
δ̃

2ω||A||2
+
δ̃

2
= δ̃.
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Moreover, pDδ (θ)∈Ball(pD0 (θ∗), φ/2) because

||pD0 (θ∗)− pDδ (θ)||2 ≤ κ(||θ∗− θ||2 + ||δ||2) ≤ κ(||θ∗ι − θι||2 + ||θ∗o − θo||2 + ||δ||2)
≤ 3κδ̄ ≤ 3κδ̄4 ≤ 2κφ/(6κ) = φ/3< φ/2.

Since Ball(pD0 (θ∗), φ)⊆P (by R4 and pD0 (θ∗) = pD), Ball(pDδ (θ), φ/2)⊆P. Let κ2 = 2κ1||B∗||2 + ω.
We have:

||λD0 (θ∗)−λDδ (θ)||2 = ||λ(pD0 (θ∗);θ∗ι )−λ(pDδ (θ);θι)||2
≤ ||λ(pD0 (θ∗);θ∗ι )−λ(pDδ (θ);θ∗ι )||2 + ||λ(pDδ (θ);θ∗ι )−λ(pDδ (θ);θι)||2
≤ ||B∗||2||pD0 (θ∗)− pDδ (θ)||2 +ω||θ∗− θ||2
≤ (κ1||B∗||2 +ω)||θ∗− θ||2 +κ1||B∗||2||δ||2
= κ2(||θ∗− θ||2 + ||δ||2)
≤ κ(||θ∗− θ||2 + ||δ||2).

We will now show that the constraints of QP(θ; δ) that correspond to rows {i : µD0,i(θ
∗)> 0} are

binding. Since QPλ(θ; δ) is a feasible convex program, by KKT condition, ∇λq(p(λDδ (θ);θι);θo) =
A′µDδ (θ). By our assumption, A has full row rank. So, there exists some m by n matrix Ā such that
µDδ (θ) = Ā∇λq(p(λDδ (θ);θι);θo). Since the right hand side is jointly continuous in (θ; δ) at (θ∗;0),
µDδ (θ) must also be continuous in (θ; δ) at (θ∗;0). Let µ := min1≤i≤n{µD0,i(θ∗) : µD0,i(θ

∗) > 0}. By
continuity, there exists δ̄5 > 0 such that ||µDδ (θ)−µD0 (θ∗)||2 <µ for all θ = (θo;θι) and δ satisfying
||θι − θ∗ι ||2 ≤ δ̄5, ||θo − θ∗o ||2 ≤ δ̄5 and ||δ||2 ≤ δ̄5. Since, by definition, δ̄ ≤ δ̄5, for all θ = (θo;θι) and
δ satisfying ||θι − θ∗ι ||2 ≤ δ̄, ||θo − θ∗o ||2 ≤ δ̄ and ||δ||2 ≤ δ̄, we have µDδ,i(θ) > 0 whenever µD0,i(θ

∗) >
0; so, the corresponding constraints in QPλ(θ; δ) are binding due to the KKT condition that
(AλDδ (θ)− C

T
)′µDδ (θ) = 0. �
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