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Abstract: This paper applies a multi-factor, stochastic latent moment model to predicting the 

imbalance volumes in the Austrian zone of the German/Austrian electricity market. This provides 

a density forecast whose shape is determined by the flexible skew-t distribution, the first three 

moments of which are estimated as linear functions of lagged imbalance and forecast errors for load, 

wind and solar production. The evaluation of this density predictor is compared to an expected 

value obtained from OLS regression model, using the same regressors, through an out-of-sample 

backtest of a flexible generator seeking to optimize its imbalance positions on the intraday market. 

This research contributes to forecasting methodology and imbalance prediction, and most 

significantly it provides a case study in the evaluation of density forecasts through decision-making 

performance. The main finding is that the use of the density forecasts substantially increased trading 

profitability and reduced risk compared to the more conventional use of mean value regressions. 

Keywords: electricity; forecasting; imbalances; density forecasts; trading 

 

1. Introduction 

Motivated by the requirements for accurate risk management, forecasting the density functions 

for electricity prices and loads is attracting an increased amount of research into new methodologies. 

Substantial overviews on the related literature are given in references [1,2]. For example, Jónsson et 

al. [3] applied exponential smoothing approaches for prediction in real-time electricity markets, Bello 

et al. [4] analyzed Parametric Density Recalibration of a Fundamental Market Model to Forecast 

Electricity Prices, Chan and Grant [5] compared energy price dynamics with GARCH and stochastic 

volatility models, Jiang et al. [6] forecasted day-ahead electricity prices based on a hybrid model 

applying particle swarm optimization and core mapping with fuzzy logic and model selection, 

Uniejewski et al. [7] show how variance stabilizing transformations can improve electricity spot price 

forecasting and Hagfors et al. [8] used quantile regressions to forecast UK electricity prices. Most 

recently, techniques from the field of artificial intelligence have been evaluated with success. Thus, 

Lago et al. [9] used various deep learning approaches and compared them to traditional 

algorithms/forecasting methods, Singh & Yassine and Gajowniczek & Ząbkowski [10,11] applied big 

data mining and machine learning algorithms to load forecasting and Wang et al. [12] applied a deep 

learning algorithm based on the assembly approach to forecast probabilistic wind power production 

using quantile regression. In references [13,14], the authors developed hybrid models combining 

ARIMA, kernel-based extreme learning machine and neural networks to forecast day and week 

ahead electricity prices. 
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However, as Weron [2] observes, most of this work has taken the form of point or interval 

forecasting, e.g., with quantile regressions, as in reference [8,12] or [15], rather than through fully 

parametric density representations, and almost all of it has been in the context of short-term, day-

ahead modeling. Of the parametric representations for hourly prices, Panagiotelis and Smith [16] 

applied a skew-t distribution, Serinaldi [17] used the JSU, while Gianfreda and Bunn [18] found that 

the skew-t was preferable to the JSU. However, an enduring question with density forecasting has 

been how to evaluate its benefits. Generally, the in-sample fits and the out-of-sample forecasts are 

assessed through conversion of the densities to intervals and then testing the intervals for calibration, 

as in [18]. Some researchers have implemented the average log predictive score or the average 

continuous ranked probability score (CRPS), as in reference [19]. However, more commonly used in 

practice is the value-at-risk backtesting procedure, whereby for example the 5%, 95% quantile 

predictions are expected to cover 5% and 95% of the outcomes ex post (see the coverage tests and 

references [20,21]).  

Nevertheless, while such tests of calibration are useful for comparing the specification of 

different densities, the overall question of the usefulness of the full density representation, compared 

to expected values, remains under-researched in the context of short-term electricity decision-making. 

This paper therefore seeks to provide new empirical evidence for the value of density forecasting, 

through assessing intraday trading performance with and without full density specifications. In 

doing so, we approximate the full density with 21 quantiles, aware that this is a limitation with 

respect to the whole 99 percentiles; for a deeper discussion on the topic see references [1,22]. The main 

objective of this research is therefore to evaluate quantile forecasts by means of trading payoffs.  

Surprisingly, while there is an extensive research literature on the relative merits of different 

measures of forecast accuracy, evaluating electricity price forecasts in general, from the perspective 

of decision-making effectiveness has rarely been undertaken. Slightly more has appeared with 

respect to loads and production, than for predicting prices. Thus, Kraas et al. [23] show the economic 

value of short-term electricity trading using a forecasting system for solar production compared to a 

naïve heuristic, and Barthelmie, Murray and Pryor [24] demonstrate similar benefits to the operators 

of wind farms who use more accurate wind speed predictors. Zareipour et al. [25] studied the 

economic impact of electricity market price forecast inaccuracies to short-term operation scheduling 

for two industrial loads using point forecasts. With respect to the more focused question of using a 

mean-value predictor versus a density function, the intuition has always been that it is context-

dependent and, in particular, it relates to whether the recourse costs of the forecast errors are 

symmetric.  

This paper therefore provides two contributions:  

• Firstly, the value of forecasting with densities, compared to mean-values, is shown, through 

back-testing real-time trading strategies on the Austrian balancing zone of the German/Austrian 

electricity market,  

• Secondly, a new density modeling technique, previously only applied to prices, is extended 

successfully to forecasting the imbalance volumes at 15 min resolution, and outperforms a more 

conventional benchmark.  

The paper is organized as follows: the next section describes the application context, followed 

by the predictive methodology in Section 3. Section 4 presents the optimal imbalance positions, 

whereas the results on backtesting the optimal trading strategies are described in Section 5. Finally, 

Section 6 concludes. 

2. The Austrian Balancing Market 

The German/Austrian intraday power exchange is operated by EPEX Spot SE and the power 

market area comprises 5 delivery zones managed by 5 Transmission System Operators (TSOs), one 

of which is the Austrian Power Grid (APG). Intraday trading occurs continuously 7 days a week and 

the five delivery zones are traded from one order book. The basic intraday delivery period is 15 min, 

which can be traded until 30 min before delivery begins. For the Austrian delivery zone, internal 
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schedule changes (within the zone) are allowed up to 15 min before delivery (but international flows 

require 45 min notice). APG publishes the preliminary estimate of system imbalance every 15 min, 

with a lag of 10 min. A detailed description of the information flow is presented in [26]. APG is part 

of the synchronized European grid and follows the standard process of acquiring control power to 

ensure the frequency stability and operational security. Primary and Secondary control power is 

deployed automatically within 30 s and 5 min, respectively, while Tertiary is activated by the TSO on 

a 15 min basis to replace the Secondary reserves.  

Austria has a single price, imbalance settlement design. Unlike its coupled neighbor, Germany, 

where despite a single price balancing market, the parties responsible for balancing are contractually 

obliged to keep schedules in balance, the Austrian market rules do not prohibit deliberate short or 

long positions in the real-time balancing market. Similar to in Britain, and for physical players in 

Belgium, participants can take out-of-balance positions if they expect to make a profit, and in so doing 

benefit the system as well. The Imbalance (imb) of the system for a delivery period is the deficit or 

surplus of load compared to the aggregate nominated values by the market participants. The 

Austrian Balancing Group Coordinator APCS is responsible for setting up and clearing the balancing 

system in Austria. The balancing price 𝑝𝐵𝐴 for these imbalances is determined from a “basis price” 

and a “transfer function”. The basis price 𝑝𝐵𝑎𝑠𝑖𝑠 is 

𝑝𝐵𝑎𝑠𝑖𝑠

{
 
 

 
 

 min(ptert,pID, pDA)   for imb < 0 and activated tertiary     

min(pID, pDA)   for imb < 0 and no tertiary                       

max(ptert,pID, pDA)   for imb > 0 and activated tertiary     

max(pID, pDA)   for imb > 0 and no tertiary                        

 (1) 

where 𝑝𝐼𝐷 is the hourly average intraday price for that 15 min period as traded previously on the 

wholesale power exchange (EPEX Spot), 𝑝𝐷𝐴  is the previous relevant hourly day-ahead auction 

price (administered by EXAA) and 𝑝𝑡𝑒𝑟𝑡  is the volume-weighted average price for any activated 

tertiary control power in that 15 min delivery period. The “transfer function” is defined as  

𝑇 = min (𝑈𝑚𝑖𝑛 +
𝑈𝑚𝑎𝑥 − 𝑈𝑚𝑖𝑛
𝑖𝑚𝑏𝑚𝑎𝑥

2
×  𝑖𝑚𝑏²; 𝑈𝑚𝑎𝑥) (2) 

where Umax = 40 €/MWh and Umin = 3 €/MWh, being the fixed maximum and minimum parameter 

values of the transfer function 𝑇 for the monthly data in our analysis. These values are set by the 

Energy Regulatory Authority (ERA) and are adapted from time to time. The ex post balancing price 

is then:  

𝑝𝐵𝐴 =  𝑝𝐵𝑎𝑠𝑖𝑠  ±  𝑇 (3) 

Figure 1 shows graphically the principle of the price mechanism. Depending on the state of the 

imbalance, the balancing price function follows a quadratic term within the range ±𝑖𝑚𝑏𝑚𝑎𝑥 and is 

constant for the outer ranges |𝑖𝑚𝑏|  ≥ 𝑖𝑚𝑏𝑚𝑎𝑥 = 70 MWh, with this threshold again being set by the 

ERA. The transfer function is positive if the imbalance of the system is positive, and vice versa for 

negative.  

 

Figure 1. Balancing price formation (source: APCS, 2018, [26]). 

𝑝𝐵𝐴  

𝑝 𝐵𝑎𝑠𝑖𝑠  

System long System short 

imb 
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In addition, and for the aim of the paper, the wind and solar forecast errors (fwind and fsolar, 

respectively) together with the load forecast error (fload) are considered, and calculated as the 

difference between the day ahead forecasts and the latest values measured. Wind and solar day-

ahead forecasts and outcome data was retrieved from Zentralanstalt für Meteorologie und 

Geodynamik ZAMG. Imbalance and load data was downloaded from the Austrian TSO APG. 

Forecast data is only available in hourly resolution while realization values are in 10 min resolution, 

and so the values were linearly interpolated into 15 min intervals covering the full year 2015, for a 

total of 35,040 observations.  

The trading opportunity offered in Austria is for market participants to anticipate whether the 

balancing market will be long or short, and then optimize a physical position of going out of balance 

in the opposite direction. Thus, if a generator spills power (produces more than nominated) when 

the system is short, it will receive the Imbalance price for the volume spilled, which will be higher 

than if it had previously sold that volume in the power exchange. Whether the regulatory codes 

permit this deliberate imbalancing varies by jurisdiction: in Austria, Belgium, the Netherlands and 

the UK, it is permitted, but not so in Germany and France. Thus, in the Austrian case, participants 

may find it opportunistic, and to take advantage, they will need an adequate predictive method for 

the imbalance volumes. 

Assuming a player is seeking to maximize the expected value according to a spillage or shortage 

strategy, it is crucial to have relevant predictive information about the probability. In this way, the 

optimal player’s decision will depend on the imbalance estimates and on the anticipated price 

responses. Thus, the 15 min imbalance data were firstly analyzed over 2015 to elucidate statistical 

properties and distributional features, and then a range of possible predictive factors for the expected 

imbalance variable at time t, 𝑖𝑚𝑏̂𝑡 , were considered.  

3. Data Analysis and Predictive Methodology  

Descriptive statistics for observed imbalances are reported in Table 1, where minimum and 

maximum values are reported together with sample mean, standard deviation, skewness, kurtosis, 

and the Jarque-Bera JB statistics under the normality assumption. It is possible to observe that the 

maximum short system position was about 320 MWh, whereas the maximum long system position 

was about 150 MWh. More importantly, these imbalance series do not follow a normal distribution 

(given that the null is always rejected). Therefore, the 15 min imbalance data is examined in order to 

find the best fitting distribution. 

Table 1. Descriptive statistics for imbalance data over 2015 and calendar seasons. 

 Whole Year 
Winter Spring Summer Autumn 

(Dec.–Feb.) (Mar.–May) (Jun.–Aug.) (Sept.–Nov.) 

Average 0.131 −0.629 −4.877 0.316 5.753 

Maximum 151.146 131.480 138.899 151.146 140.798 

Minimum −320.021 −205.058 −197.641 −320.021 −230.439 

Standard Deviation 33.525 31.638 36.503 33.325 31.482 

Skewness −0.834 −0.637 −0.566 −1.631 −0.387 

Kurtosis 6.904 5.151 4.644 12.186 5.757 

JB statistics 26311 2250 1466 34967 2986 

The first class of distribution considered were the 4-parameter distributions: the Johnson’s SU (in 

its alternative parametrization as in reference [27], JSU), the sinh-arcsinh (as in reference [28], see 

SHASHo and SHASHo2), the skew-t (as in references [29–31], respectively ST1, ST2 and ST5). The 

second class is a 3-parameter family represented by the skew-normal distributions, specifically the 

skew normal ‘type 1’ (SN1), which is a special case of the skew exponential power with τ = 2. Thirdly, 

selected as a baseline, the 2-parameter normal distribution (NO) as this is often used for simplicity in 

operational models. Figure 2 presents the density fits for best fitting distributions, after the time series 



Energies 2018, 11, 2658 5 of 13 

 

for imbalances have been seasonally adjusted for daily frequency (by using dummy variables for 

days of the week, from Monday to Saturdays, and holidays).  

 

Figure 2. Comparisons of density fits for JSU, ST, SN and NO distributions. 

On the balance of fit, both the Skew-t and the Johnson’s SU (JSU) distributions seem to be the 

most appropriate to the series of imbalances. For this purpose, three measures for assessing the 

goodness-of-fit have been considered, specifically: the Kolmogorov-Smirnov (KS), the Cramér–von 

Mises (CVM), and the Anderson–Darling (AD). The Anderson–Darling and Cramér–von Mises 

statistics belong to the class of quadratic statistics, using the squared and the weighted squared 

differences between the empirical distribution function and the cumulative distribution function of 

the supposed reference distribution. Hence, both statistics place more weight on observations in the 

tails of the distribution, with weights being larger for the AD than for the CVM. On the contrary, the 

Kolmogorov–Smirnov statistic quantifies the absolute maximum distance between the empirical 

distribution function and the cumulative distribution function of the supposed reference distribution. 

Therefore, given the observed statistical properties of imbalances series with almost zero asymmetry 

and moderate kurtosis (especially compared to electricity prices), the latter measure should be 

preferred. According to results reported in Table 2, the general superiority of the JSU and the skew 

student-t distributions (specifically ST2) is observed (note that computational difficulties can emerge, 

as with infinite values for the SHASHo distribution), consistent with Hagfors et al. [8] for hourly 

electricity prices.  

Table 2. Goodness-of-fit statistics for selected distributions. 

 SHASHo SHASHo2 JSU ST1 ST2 ST5 SN1 NO 

AD Infinity 4208.7000 0.2900 315.9700 297.4300 6654.8900 244.5600 244.5600 

CVM 7474.8600 860.8500 0.0307 51.7100 45.8900 1296.4100 40.5800 40.5800 

KS 0.6600 0.2700 0.0020 0.0590 0.0520 0.3570 0.0550 0.0550 

Furthermore, given that the skew-t had previously also been used for hourly Australian prices 

in reference [6], while reference [7] used the Johnson’s SU distribution for Californian and Italian 

electricity price densities, both distributions have been retained to test their forecasting performances.  

However, although the JSU appears to fit slightly better, the backtesting trading results out-of-

sample reported later showed better performance for the ST2. Therefore, only the ST2 estimation is 

described in detail. 

Regarding the skew-t variants, comparing their performances, the second skew-t has been 

selected. The pdf of the skew-t type 2 distribution is denoted by ST2 (µ, σ, υ, τ), conditional on its first 

four moments. Analytically it can be represented as 

𝑓𝑌(𝑦|𝜇, 𝜎, 𝜐, 𝜏) =
2

𝜎
𝑓𝑍1(𝑧)𝐹𝑍2(𝜔) for −∞ < 𝑦 < +∞ 

(4) 
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where −∞ < 𝜇 < +∞ , 𝜎 > 0 , −∞ < 𝜐 < +∞  and 𝜏 > 0 , and where 𝑧 =
𝑦−𝜇

𝜎
, 𝜔 = 𝜐𝜆

1

2𝑧 , 𝜆 =
𝜏+1

𝜏+𝑧2
 

and 𝑓𝑍1 is the pdf of 𝑍1~𝑇𝐹(0,1, 𝜏), which is a t distribution with 𝜏 > 0 degrees of freedom treated 

as a continuous parameter, and 𝐹𝑍2 is the cdf of 𝑍2~𝑇𝐹(0,1, 𝜏 + 1). 

Turning to the predictive factors for the expected imbalance, it is important to recall the actual 

timing and information flow to simulate predictive decision-making under real operational 

conditions. The TSO publishes the latest information on imbalance 10 min after the previous delivery 

period. Based on that information and the latest load, wind and solar forecast errors, the flexible 

market player can make a decision to up- or down-regulate. Therefore, a minimum information time 

delay of 30 min is (conservatively) assumed, i.e., a rational expectation lags by two periods t − 2 

(including the delivery period itself).  

The predictive variables proved to be statistically significant were: 

• 𝑖𝑚𝑏𝑡−2  is the imbalance variable with a time lag of 2,  

• 𝑓𝑤𝑖𝑛𝑑𝑡−2 is the wind forecast error, calculated as the difference between the day-ahead forecast 

and the latest value measured at (t − 2),  

• 𝑓𝑙𝑜𝑎𝑑𝑡−2 is the load forecast error, calculated as the difference between the day-ahead forecast 

and the latest value measured at (t − 2), and 

• 𝑓𝑠𝑜𝑙𝑎𝑟𝑡−2 is the solar forecast error, calculated as the difference between the day-ahead forecast 

and the latest value measured at (t − 2).  

The 15 min electricity imbalance is formulated as an ST2 density function whose first three 

moments (and hence its shape) vary according to these exogenous factors.  

A similar methodology applied to the German hourly electricity prices has shown that the 

density shapes are indeed affected by fundamental factors, including wind and solar forecasts. 

Specifically, [18] showed that forecasted demand, wind and solar PV generation, together with other 

drivers, were observed to act as “shape-shifters”. More importantly, they provide evidence that 

modeling all four moments produced marginal and trivial gains in terms of model fitting and out-of-

sample forecasting was better without the estimation error of the fourth parameter. Therefore, based 

on these results, a response variable to the exogenous factors is presented as a skew-t density with 

the mean, µ, standard deviation, σ, and skewness, υ, modeled as multifactor linear functions as 

follows (with kurtosis, τ, being kept constant). 

Formally, the dynamic multi-factor skew-t model in its autoregressive formulation over the first 

three moments (AR-MFST-3) has a time-varying latent mean, dispersion and skewness, estimated 

dynamically as follows: 

𝜇𝑡 = 𝛼1 + 𝛾1𝜇𝑡−1 + 𝛽11𝑖𝑚𝑏𝑡−2 + 𝛽12𝑓𝑙𝑜𝑎𝑑𝑡−2 + 𝛽13𝑓𝑤𝑖𝑛𝑑𝑡−2 + 𝛽14𝑓𝑠𝑜𝑙𝑎𝑟𝑡−2 (5) 

log (𝜎𝑡) = 𝛼2 + 𝛾2𝜎𝑡−1 + 𝛽21𝑖𝑚𝑏𝑡−2 + 𝛽22𝑓𝑙𝑜𝑎𝑑𝑡−2 + 𝛽23𝑓𝑤𝑖𝑛𝑑𝑡−2 + 𝛽24𝑓𝑠𝑜𝑙𝑎𝑟𝑡−2 (6) 

𝜐𝑡 = 𝛼3 + 𝛾3𝜐𝑡−1 + 𝛽31𝑖𝑚𝑏𝑡−2 + 𝛽32𝑓𝑙𝑜𝑎𝑑𝑡−2 + 𝛽33𝑓𝑤𝑖𝑛𝑑𝑡−2 + 𝛽34𝑓𝑠𝑜𝑙𝑎𝑟𝑡−2 (7) 

The fourth moment, kurtosis τ, is kept constant for robustness out-of-sample. Adopting a two-

stage approach, all moment equations are first estimated on the full sample as specified in Equations 

(4)–(6) without the autoregressive terms. Then, the lagged filtered series were used to initialize the 

autoregressive terms, which were later used and updated in the one-step-ahead forecasting process 

through a rolling procedure with a window size of one week (that is 672 observations as for 4 quarter-

hours × 24 hours × 7 days). The filtered values for the constant kurtosis were used to compute the 

values of the probability density function for both ST2 and JSU. Evidently, the estimated values are 

constant over the window, but they do change over the rolled windows. These forecasts were 

subsequently used firstly to compute the ST (and JSU) density function values over a sequence of 200 

values for imbalances, constrained between ±500 MW (supported by the observed statistics) with a 

step of 5 MW. Hence, 34,366 forecasted densities (computed from the original series length of 35,040 

observations, excluding the two time lags and subtracting the rolling window size of 672 

observations) were approximated, one for each 15 min period included in our sample. The gamlss R 
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package has been used for the estimation and forecasting. For further details and algorithms settings 

see reference [6]; also [16] and [17]. 

Secondly, to assess the precision of both predictive distributions (that is, the “sharpness”, as well 

as the “calibration”), the “pinball loss” was computed, as suggested by reference [32]. Precisely, the 

following sequence was considered from the 1st to the 99th percentile, with a step of 0.05: 0.01, 0.05, 

0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 0.99. 

Thus, having 21 time series of forecasted quantiles, 34,366* pinball values were computed over the 

‘rolling ahead’ forecast horizon (that is, the full sample minus the first 674 observations) and averaged 

over the forecasting sample. The computation of quantiles from densities simulated according to the 

forecasted parameters of the JSU distribution led to several unavailable or infinite values: over 34366 

forecasts, 330 computational errors were detected for the 1st percentile; 336 for the 5th; 361 for the 

10th; 388 for the 15th; 452 for the 20th; 527 for the 25th; 591 for the 30th; 677 for the 35th; 747 for the 

40th; 849 for the 45th; and finally, 1024 for all remaining percentiles. Hence, the averages were 

computed accordingly. Whereas similar problems were not encountered with the ST2 forecasted 

parameters. Their mean values for each quantile are reported for both distributions in Table 3, and 

also reported are their overall averages, computed across all percentiles. In addition, following [32], 

the pinball scores have been used to denote the estimated forecasting errors 𝜀𝑑̂𝑖𝑠𝑡,𝑡,𝑞𝑖  for both 

distributions (dist = ST2; JSU), across all points in time t and quantiles qi = 1, 5, 10, …, 99 for i = 1, …, 

21. Then, the values of these series have been used in the Diebold and Mariano (DM) test with the 

null hypothesis of equal performance versus the alternative one that JSU is less accurate than ST2; 

adjusting for missing values and with the differential loss function defined as Δ𝑆𝑇2,𝐽𝑆𝑈,𝑡,𝑞𝑖 = 𝜀𝑆̂𝑇2,𝑡,𝑞𝑖 −

 𝜀𝐽̂𝑆𝑈,𝑡,𝑞𝑖 ; in practice, nominal values instead of absolute ones are used for the estimated forecasting 

errors, given that the pinball scores are always positive. Results of the DM test show that the null of 

equal performance is always rejected (in favor of the alternative of JSU being less precise than ST2 at 

the 1%, and also at the more common 5%, level of significance). Altogether, these results show the 

forecasting superiority of the ST2 distribution over the JSU.  

Finally, to backtest the optimal trading decisions, two representative months were considered: 

one in summer and another one in winter, as distinct periods for low/high demand and high/low 

solar PV generation. This gave a total of 5664 out-of-sample trading periods for assessment. 

Table 3. Pinball scores for tested distributions. 

 Percentiles 
 1 5 10 15 20 25 30 35 40 45 50 

JSU 1.1105 3.1324 4.9126 6.2800 7.3589 8.2189 8.8851 9.3779 9.7175 9.9177 9.9832 

ST2 0.9817 2.9732 4.7045 6.0299 7.0642 7.8750 8.4990 8.9629 9.2725 9.4502 9.4893 
 Percentiles 
 55 60 65 70 75 80 85 90 95 99 Average  

JSU 9.9163 9.6987 9.3224 8.7776 8.0552 7.1444 6.0174 4.6109 2.8202 0.8550 6.9577 

ST2 9.3875 9.1468 8.7631 8.2270 7.5387 6.6794 5.6191 4.3038 2.6368 0.7693 6.5892 

4. Optimal Imbalance Positions 

Balancing markets have been receiving increasing attention among researchers looking at 

strategic behavior, optimal positions and market design issues. For example, Weber [33] investigated 

the incentives of market participants (statistical arbitrage potential) in the German electricity 

balancing mechanism, Ding et al. [34] proposed a two-stage stochastic model for an integrated 

strategy of day-ahead offering and real-time operation policies to maximize their overall profit, and 

in reference [35], bidding strategies for storage owners in the day-ahead and real-time market were 

analyzed. In reference [36], a risk-constrained trading strategy using logistic regression forecasts is 

presented, and in reference [37], a general methodology for optimal bidding strategies based on 

probabilistic wind generation was formulated. None of these develop the strategies based upon latent 

moment density forecasts as presented here.  
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Given forecast 𝑖𝑚𝑏̂ for the imbalance of the system, and if a participant deliberately intends to 

have an imbalance of x, then following Equations (2) and (3), the participant would be able to 

calculate a conditional balancing price expectation 𝑝̂|x, 𝑖𝑚𝑏̂ based on 

𝑇̂(𝑥) = min (𝑈𝑚𝑖𝑛 +
𝑈𝑚𝑎𝑥 − 𝑈𝑚𝑖𝑛
𝑖𝑚𝑏𝑚𝑎𝑥

2
× (𝑖𝑚𝑏̂ +  𝑥)2 ;  𝑈𝑚𝑎𝑥) 

𝑝̂|x, 𝑖𝑚𝑏̂  = 𝑝̂𝐵𝑎𝑠𝑖𝑠  ±  𝑇̂(𝑥) 

(8) 

Referring to Equation (1), for a particular delivery period t, the EPEX spot reported average 

intraday price 𝑝̂𝑡
𝐼𝐷 shortly before gate closure and the day-ahead price 𝑝𝑡

𝐷𝐴 from day-ahead auctions 

are used to compute the 𝑝̂t
Basis. Since tertiary control is hard for market participants to predict and 

was activated in less than 0.5% of our 15-min periods, it is assumed pragmatically that agents may 

generally not seek to anticipate its effect in their conditional price expectations. Therefore, ptert was 

omitted in the computation of the basis price.  

A physical market player with flexible generation capacity is considered to respond optimally 

in a risk-neutral way to the expected price spreads. If the spread between marginal costs 𝑚𝑐 and the 

expected balancing energy price is positive, 𝑝̂|𝑥, 𝑖𝑚𝑏̂ > 𝑚𝑐, it is beneficial for the market participant 

to take a long position (“spill”) and reduce system imbalance, and vice versa for a negative spread. 

Then, the player’s pay-off function can be written as: 

𝑣 = (𝑝̂|𝑥, 𝑖𝑚𝑏̂ − 𝑚𝑐) × 𝑥  (9) 

With regard to the marginal costs in Equation (8), we consider a part-loaded thermal player who 

has nominated a production schedule before gate closure and who is able to adapt production output 

(up-regulation and down-regulation) with short-run marginal costs, 𝑚𝑐 . A simple characteristic 

model of a gas turbine with efficiency η = 0.5 and market prices for the gas are assumed. 

For overproduction, i.e., long position (spillage), the payoff value is determined by the price 

difference of the expected imbalance price 𝑝̂|𝑥, 𝑖𝑚𝑏̂ and the marginal costs, 

𝑚𝑐gaslong =
pgaslong + pCO2 + pgrid + ptaxes

𝜂
 

(10) 

where pgaslong is the price of balancing gas, pCO2  is the price of carbon in the EU ETS, pgrid is the 

use of transmission system charge and ptaxes are the taxes, that are the various levies on production. 

If p̂|x, 𝑖𝑚𝑏̂ > 𝑚𝑐𝑔𝑎𝑠𝑙𝑜𝑛𝑔  the physical player is incentivized to spill x with payoff:  

𝑣𝑙𝑜𝑛𝑔 = (𝑝̂|𝑥, 𝑖𝑚𝑏̂ − 𝑚𝑐𝑔𝑎𝑠𝑙𝑜𝑛𝑔) ×  𝑥  (11) 

The marginal costs in case of underproduction (curtail/shortage) are influenced by the costs for 

production locked in on the day-ahead market, 

𝑚𝑐DA =
(pgasDA + pCO2 + pgrid)

𝜂
 

(12) 

and the costs for selling balancing gas, 

pgasshort =
pgasshort

𝜂
 

(13) 

In Austria, a two-price system for balancing gas is in place, and the gas imbalance settlement 

costs have a mark-up of ±3% on day-ahead gas prices, or in case of higher imbalances, on a volume-

weighted mean value for gas balancing costs. If 𝑝̂|𝑥, 𝑖𝑚𝑏̂ < 𝑚𝑐𝐷𝐴- 𝑝𝑔𝑎𝑠𝑠ℎ𝑜𝑟𝑡 , the physical player is 

incentivized to take a short position with pay-off: 

𝑣𝑠ℎ𝑜𝑟𝑡 = (𝑚𝑐𝐷𝐴−𝑝𝑔𝑎𝑠𝑠ℎ𝑜𝑟𝑡 − 𝑝̂|𝑥, 𝑖𝑚𝑏̂) ×  𝑥 (14) 

Assuming a risk-neutral player seeking to maximize expected value, and letting the probability 

density function of imbalances at time interval 𝑡 ∈ {1, . . . , 𝑇} be 𝑓(𝑖𝑚𝑏𝑡), the decision variable 𝑥𝑘 is 

a discretization of the possible positions x (deliberate spillage/shortage decisions) in MWh that can 

be taken by the market player. Then, for every time interval 𝑡 ∈ {1, . . . , 𝑇} a spillage or shortage 

decision 𝑥𝑡
∗ which maximizes expected outcomes is chosen. The optimal decision 𝑥𝑡

∗ is dependent 

on the imbalance estimates for every time interval 𝑡,  𝑖𝑚𝑏̂𝑡  ,  and the anticipated price 

response to 𝑥𝑘 , 𝑝̂(𝑥𝑘 , 𝑖𝑚𝑏)̂
𝑡,𝑘. The corresponding payoff value is therefore: 

𝑣𝑡,𝑘 = (  𝑝̂(𝑥𝑘 , 𝑖𝑚𝑏)̂
𝑡,𝑘 −𝑚𝑐𝑡,𝑘) × 𝑥𝑘  (15) 

Hence the optimal expected value action is:  

xt
∗ = max

k
(∫ 𝑣t,k × 𝑓(𝑖𝑚𝑏t) d𝑖𝑚𝑏

∞

−∞

)
t

 
(16) 



Energies 2018, 11, 2658 9 of 13 

 

To undertake a backtesting analysis, the months of February and August 2015 were evaluated 

as out-of-sample backtests for this optimal trading algorithm.  

5. Backtesting 

The out-of-sample backtests are evaluated by profit and risk parameters. Profit per traded MWh 

is shown in Figure 3 and indicates the average profitability per trade. Evidently, the density ST2 

model increases profitability by about a third in winter and almost twice as much in summer. The 

JSU model outperforms the OLS as well but profits per traded MWh are slightly lower than the profits 

from the ST2 model. 

 

Figure 3. Profit per traded MWh. 

Traded volume (Figure 4) was significantly higher for the OLS model. The OLS model traded 

5617 (3415) MWh in winter (summer) compared to 3620 (2305) MWh traded by the ST2 model and 

4390 (2615) by the JSU model. Evidently, the density function predictor caused the traders to be more 

selective compared to mean value (OLS), and this is further demonstrated in Figure 5, where the 

maximum losses for the OLS are much higher, as well. 

 

Figure 4. Traded volume. 
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Figure 5. Maximum loss. 

The same analysis was also undertaken using the JSU distribution instead of the ST2. Although 

Figure 2 indicated that the JSU fitted rather better in-sample, undertaking the full predictive 

modeling and backtesting revealed less attractive performance out-of-sample. Figure 6 shows the 

observed imbalance (without trading) and compares it with the backtested imbalance from the ST2, 

JSU and OLS model in 15 min resolution. The OLS-based decision rule shows higher trading volumes. 

This causes more frequent overreactions and imbalance sign flips in the backtest. For example, at 5:30 

on the 20th February 2015, the OLS model caused a sign flip from −16 MWh in the observed data to 

+11 MWh (a trading volume of 27 MWh), which led to losses due to the single price system. The 

ST2/JSU model traded only 8/12 MWh (from −16 MWh to −8/−4 MWh) and was therefore still 

profitable. 

 

Figure 6. Illustrative imbalances with/without trading in backtesting. 
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is consistent with the comparison between skew-t and JSU for day ahead German hourly price 

predictions in [6]. 

6. Conclusions 

It has been demonstrated that using a density function predictor as a basis for trading imbalances 

on the Austrian electricity market can be much more profitable and financially less risky than relying 

upon mean value, regression-based estimates. This evaluation was based upon detailed out-of-

sample backtesting and is one of the few examples to assess forecasting within realistic decision-

making processes. Trading with the ST2 density model was 33% more profitable in winter and 94% 

more profitable in summer. This appeared to have been achieved by a more selective approach to 

trading, thereby limiting the maximum losses quite considerably. A risk-neutral, flexible generator 

has been assumed. Evidently, with risk aversion, the attraction of the density model would be even 

greater. 

This research is also unusual in looking at forecasting the volume required to be managed by 

the system operator in a real-time balancing market. These results show that imbalance volumes are 

predictable by market participants acting on the Austrian market. The key predictive variables were 

lagged imbalances and forecast errors in load, wind and solar generation, made available to the 

market two periods beforehand. The analysis in this research is based upon incremental activities, 

and if it were to become more widespread, as with most arbitrage-based trading, the benefits would 

be reduced through greater participation. 

Finally, this research provides further documentation of the stochastic latent moment approach 

to density forecasting in an electricity market context. By estimating the first three moments of a 

flexible density such as the skew-t, as linear functions of exogenous factors, the key driving factors 

can be modeled in a way that not only influences the expectation, but also the variance and skewness, 

so that the whole predictive density shape is driven by these factors. Estimating the first three 

moments in terms of factors is found to be sufficient, even though the skew-t is a four-parameter 

density. Finally, it can also be concluded that it is better to identify the most appropriate density 

function in the context of out-of-sample prediction and backtesting, rather than simply looking at in-

sample fit to the empirical data. 
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