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Abstract

Background: Domestication and centuries of selective breeding have changed genomes of sheep breeds to respond
to environmental challenges and human needs. The genomes of local breeds, therefore, are valuable sources of
genomic variants to be used to understand mechanisms of response to adaptation and artificial selection. As a step
toward this we performed a high-density genotyping and comprehensive scans for signatures of selection in the
genomes from 15 local sheep breeds reared across Russia.

Results: Results demonstrated that the genomes of Russian sheep breeds contain multiple regions under putative
selection. More than 50% of these regions matched with intervals identified in previous scans for selective sweeps in
sheep genomes. These regions contain well-known candidate genes related to morphology, adaptation, and
domestication (e.g., KITLG, KIT, MITF, and MC1R), wool quality and quantity (e.g., DSG@, DSC@, and KRT@),
growth and feed intake (e.g., HOXA@, HOXC@, LCORL, NCAPG, LAP3, and CCSER1), reproduction (e.g., CMTM6,
HTRA1, GNAQ, UBQLN1, and IFT88), and milk-related traits (e.g., ABCG2, SPP1, ACSS1, and ACSS2). In addition,
multiple genes that are putatively related to environmental adaptations were top-ranked in selected intervals
(e.g., EGFR, HSPH1, NMUR1, EDNRB, PRL, TSHR, and ADAMTS5). Moreover, we observed that multiple key genes
involved in human hereditary sensory and autonomic neuropathies, and genetic disorders accompanied with
an inability to feel pain and environmental temperatures, were top-ranked in multiple or individual sheep
breeds from Russia pointing to a possible mechanism of adaptation to harsh climatic conditions.
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Conclusions: Our work represents the first comprehensive scan for signatures of selection in genomes of
local sheep breeds from the Russian Federation of both European and Asian origins. We confirmed that the
genomes of Russian sheep contain previously identified signatures of selection, demonstrating the robustness
of our integrative approach. Multiple novel signatures of selection were found near genes which could be
related to adaptation to the harsh environments of Russia. Our study forms a basis for future work on using
Russian sheep genomes to spot specific genetic variants or haplotypes to be used in efforts on developing
next-generation highly productive breeds, better suited to diverse Eurasian environments.
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Background
The domestication and selective breeding of livestock
species has led to changes in their genomes to meet the
needs of humans and adapting livestock to various envi-
ronments [1]. Many centuries of artificial selection
shaped the genomes of contemporary sheep breeds by
selective sweeps, which are associated with a variety of
economically important traits, such as quality and quan-
tity of wool, milk and meat. On the other hand, the his-
tory and development of these breeds is associated with
the history of human migrations [2, 3]. After domestica-
tion about 9000–11,000 years ago on the territory of
modern Iran [4], sheep have been spread worldwide,
accompanying human migrations, e.g., the nomad’s
expansion [2–4]. Thus, both artificial selection and
acclimatization to various environments have contrib-
uted to the diversity of local breeds, expressing distinct
and sometimes contrasting phenotypes (e.g., polled and
horned breeds, black and white fleece, breeds adapted to
the hot temperatures in Africa and the cold climates of
Siberia). Therefore, domestic sheep should be considered
as a valuable model species to study genome reaction to
both environmental adaptation and artificial selection.
Searches for genome intervals, genes and polymor-

phisms which determine performance for economically
important traits in sheep have resulted in revealing sig-
natures of selection likely associated with coat colour
[5–7], tail fat deposition [8], muscle growth [9], milk
yield [10], reproductive traits [6, 11], wool [12], resist-
ance to parasites [13], presence/absence of horns [6, 11],
etc. These chromosome regions contain markers (genes
or regulatory sequences) which should be the focus of
future efforts on the improvement of local and multi-
national breeds using the rapidly-developing plethora of
contemporary genetics tools.
Sheep have been successfully bred in different environ-

ments including some harsh ones, suggesting that the
process of extreme acclimation could also lead to select-
ive sweeps in the genomes of local breeds. Environment-
influenced adaptations are complex, effecting multiple
biochemical processes; therefore signatures of selection

would be expected in genes from different pathways
[14]. Thus, adaptation to high altitudes is an essential
feature for the sheep breeding industry in countries with
a predominating mountain terrain. Genomic studies of
Tibetan sheep identified several candidate genes, associ-
ated with tolerance to hypoxia (e.g., EPAS1, CRYAA,
LONP1, NF1, DPP4, SOD1, PPARG, and SOCS2). It was
proposed that a key gene for adaptation to hypoxia is
the EPAS1, which effects the mean corpuscular haemoglo-
bin concentration and mean corpuscular volume [15]. A
study of sheep breeds from a different region, the Hima-
layas, suggests that the FGF-7 is a candidate for protection
against pulmonary injuries and affects efficiency of lungs
in sheep that inhabit high-altitude areas [16].
Temperature regime is one of the key climate factors

that influence survival and successful breeding of live-
stock species. Multiple genes and gene networks are af-
fected in different environments. For instance, Kim et al.
(2016) shows that in the genomes of Egyptian indigen-
ous sheep, there are changes in multiple genes that in-
fluence adaptation to hot arid environments including
genes involved in melanogenesis, body size and develop-
ment, energy and digestive metabolism, as well as in ner-
vous and autoimmune response [17]. Furthermore, Lv
and co-workers (2014) identified 17 genes putatively as-
sociated with climate-driven selection when they looked
at a set of native sheep populations from a worldwide
range of geographic areas [18]. Nine of the genes were
directly involved in energy and regulation activities (e.g.,
TBC1D12 and FBXO8) or encoded enzyme activators
(e.g., THY1), while eight additional genes were involved
in endocrine and autoimmune processes (e.g., EDNRB,
NMUR1, PRL, IL12RB1, and ACVR2A). Signatures of ad-
aptations, caused by temperature and sunlight, were
linked to the TBC1D12 [18]. Comparative genomics pro-
vides additional evidence for links between genes and
acclimation. For instance, TRPM8 (transient receptor po-
tential cation channel subfamily M member 8) plays a
role in thermal sensation in mice [19]. The same gene
was linked to cold tolerance in sheep [6, 7, 11]. These
examples demonstrate that different genes could be
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affected by selection to similar environments, suggesting
that studies of multiple breeds adapted to a variety of
conditions could help revealing a full set of genomic re-
gions affected during the process of adaptation.
As a step toward this goal, we present the scan for sig-

natures of selection in a set of 15 Russian local sheep
breeds. For our current analysis we chose a subset of
genetically different breeds and breeds adapted to cold
climates of Siberia based on results of our previous study
focused on the phylogenetic history of 25 Russian sheep
breeds, performed using a medium-density ovine SNP
array [20]. We added one additional breed from Siberia
(putatively adapted to cold climate), to extend the data-
set of cold-adapted breeds. Due to its large area and geo-
graphical position, Russia comprises a variety of diverse
climatic zones present in Eurasia. Nevertheless, about
three quarters of Russia is represented by territories in a
continental climate with occasionally extremely low win-
ter temperatures (- 30 °C and below). Because of adapta-
tion to the diverse environments of Russia, we expect
that the analysis of Russian native breeds will: a) confirm
the previously reported signatures of selection, and b)
point to new regions not found in other studies, which
could be important for the local adaptations especially in
the northern regions. We used a combination of two
powerful approaches to identify signatures of selection,
one based on differences in frequencies of haplotypes in
sets of related breeds (hapFLK), and the second one
combining various breed-specific selection statistics into
a single integrated framework (DCMS). Together these
methods provide a complimentary way of finding signa-
tures of selection in the set of 15 Russian sheep breeds,
which we genotyped on a high-density SNP array. We
analysed a minimum of 40 autosomes per breed (20 in-
dividuals) to ensure detection of the most common sig-
natures of selection by both methods. Our data
represent the first comprehensive analysis of selective
sweeps in the genomes of Russian local sheep breeds.
Our results could be used by the international commu-
nity to better understand genetic mechanisms of adapta-
tion to various environments, and by breeders looking to
develop new breeds that are better adapted to local con-
ditions or to improve adaptation in extant breeds.

Results
Breed groups
The Admixture and Principal Component Analysis
(PCA; PC1) suggested the presence of two well-
differentiated clusters of breeds in our dataset (Fig. 1):
Buubei, Lezgin, Karachaev, Karakul, Tuva, Edilbai,
Romanov (GROUP1) and the Russian Longhaired, Altai
Mountain, Groznensk, Salsk, Volgograd, Krasnoyarsk,
Baikal, and Kulundin (GROUP2). Although the Rom-
anov breed demonstrated a substantial differentiation

from the rest of the breeds we assigned it to GROUP1
because it had a higher GROUP1 component in the AD-
MIXTURE (K = 2) analysis, clustered with other
GROUP1 breeds based on the PCA PC1 results, and
additionally represents a coarse wool breed (as all other
breeds from the GROUP1). In total, 312 animals from
15 Russian local sheep breeds with a mean number of 21
individuals per breed were used in these analyses
(Table 1).
The de-correlated composite of multiple signals

(DCMS) and hapFLK statistics for individual breeds and
groups of breeds overlapped to some extent: 546
DCMS-detected regions, covering 100.8 Mbp of the
sheep genome sequence were found in shared intervals,
providing independent support for selected regions
(Fig. 2, see Additional file 1). However, because the
hapFLK statistic detects signatures of selection within
groups of breeds and the DCMS in our study was used
to combine statistics within a breed, the hapFLK results
could not be added to the DCMS framework. The
hapFLK revealed additional selective sweeps within
groups of breeds missed by the DCMS, while the DCMS
was efficient in detecting narrower selective sweeps
often attributed to individual breeds.

Composite measure of selection
DCMS statistics were calculated for each single nucleo-
tide polymorphism (SNP) for each breed. After fitting
for normal distribution, calculation of p-values and cor-
rection for multiple testing, we obtained from 134 to
238 genomic intervals under putative selection per breed
(q-value < 0.01) with a total of 3069 regions detected
across all breeds (with some overlaps between breeds;
Fig. 2, see Additional file 2). The size of the genomic re-
gions putatively under selection varied from 1 bp to
3,510,819 bp, with the average size equal to 120,924 bp.
The total number of genes across all selected regions per
breed ranged from 146 to 366.

HapFLK
The total number of selected regions identified by the
hapFLK analysis (122; Fig. 3, see Additional file 2) was
lower than found by the DCMS method. The largest
number of hapFLK-detected regions was observed in the
GROUP1 set of breeds (62), followed by the all-breed
(33) and the GROUP2 (27) sets. The GROUP1 and
GROUP2 shared five common hapFLK intervals. One
region was found on ovine chromosome (OAR) 6 (34.6–
37.5Mbp) containing multiple genes with known effects
on economically important traits such as milk produc-
tion and growth. Three overlapping regions were de-
tected on this chromosome: one near the UFM1 gene
involved in brain development and abnormalities in
humans [21]; the second, near neurobeachin (NBEA), a
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gene previously associated with autism in humans [22]
and wool production traits in sheep [23]; and the last,
near RXFP2, involved in formation of horns in sheep
[24] and cattle [25]. The last overlapping region was
found on OAR13 and contained BMP2, the only com-
mon gene between the groups in this region. BMP2 is
associated with the body size and developmental traits
in sheep [17]. Sizes of the hapFLK putatively selected re-
gions ranged from 70 Kbp to 5.7 Mbp with an average
size of 667.7 Kbp.

Candidate genes for adaptation of the Russian sheep
breeds to environmental and climate challenges
In the regions under putative selection we looked for
genes that could be related to adaption of Russian sheep
breeds to local environments (Table 2). We noticed that
five breeds: Karachaev, Krasnoyarsk, Lezgin, Salsk, and
Altai Mountain had a common signature of selection re-
ported by the DCMS method near the ZFHX2 (zinc fin-
ger homeobox 2), a gene which was shown to be

responsible for an inability to feel pain in humans (in-
cluding low and high temperatures) [26]. The same au-
thors report that ZFHX2 knock-out mice had
significantly higher acute thermal pain thresholds [26].
Interestingly, several other genes directly involved in
hereditary sensory and autonomic neuropathies [27]
often accompanied with inability to feel pain and cold
temperatures in humans were found top-ranked in se-
lected regions in the Russian sheep breeds. Among them
were the SCN9A [28], reported for Buubei, WNK1 [29]
reported for Salsk, HARS [30] reported for Karakul and
Kulundin breeds, TECPR2 [31] reported for Tuva sheep,
GAN [27] for Karachaev, and EGR2 [27] for GROUP1.
We also found several genes that were previously pro-

posed to be related to thermal adaptations [14]. Among
them was the EGFR, a membrane receptor for epidermal
growth factors and a top DCMS candidate in a 33 Kbp
region on OAR19 reported for the Altai Mountain sheep
breed from Siberia. According to Wollenberg Valero and
co-workers (2014) EGFR could represent a functional

Fig. 1 PCA (a) and ADMIXTURE (b) analysis indicate clear separation of the two major sheep groups. The GROUP1 includes Edilbai, Tuva, Karakul,
Karachaev, Lezgin, Buubei, Romanov breeds and the GROUP2 includes Russian Longhaired, Altai Mountain, Groznensk, Volgograd, Baikal,
Krasnoyarsk, Salsk, and Kulundin breeds
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hub for the relay of thermal signalling [14]. Another
gene involved in adaptation to hot/cold environment
was the heatshock protein H1 (HSPH1) [14], the
top-ranked gene found in a DCMS-reported region on
OAR10 for the Baikal sheep. Several genes linked to cli-
mate adaptation through their interaction with the
POMC (pro-opiomelanocorin receptor), shown to be in-
volved in energy homeostasis, melanocyte stimulation
and immune response [14], were top-ranked in selected
regions of Russian sheep breeds. Among them are mela-
nocortin receptors: MC1R, MC2R, and MC5R. The
MC1R was the top gene in a hapFLK reported region on
OAR14 for GROUP1 and in a DCMS reported region
for Altai Mountain sheep. The MC2R was the top gene
for a DCMS-reported region on OAR23 found in Baikal
breed. The MC5R was the top gene in region found by
the DCMS method in the Salsk sheep. The melanocortin
receptors are involved in the movement and positioning
of melanocytes, suggesting their possible contribution to
adaptation to different light regimes [14], however these
genes could also be involved in formation of coat col-
ours, suggesting their contribution to economically im-
portant traits [32]. Another gene, functionally linked to
POMC [14] was the MMRN1 with SNPs associated with
winter duration in 54 human populations [33]. It was
the top ranked gene in a hapFLK reported region on
OAR6 for the all-breed analysis, and in the regions
found by the DCMS method for Volgograd and Krasno-
yarsk sheep.
We further found genes previously identified in a

genome-wide scan for climate-mediated selective pres-
sures in sheep [18] in the DCMS or hapFLK-reported

regions. These included the NMUR1, EDNRB, and PRL
all being the top genes in the DCMS/hapFLK reported
intervals for the Romanov, GROUP1, and Volgograd
breeds, respectively. The hapFLK method reported an-
other region under putative selection for GROUP1 with
PDGFRA found near the most significant SNP. Under
cold stress, proliferation of endothelial cells and intersti-
tial cells expressing PDGFRA increases 3-4 fold in brown
adipose tissue; it is a key gene involved in cold-induced
adipogenesis in mice [34]. Also, the adipocyte determin-
ation and differentiation-dependent factor 1 (ADD1)
known to be involved in cold adaptation through brown
adipocytes [35] was top-ranked for a region on OAR6
reported in GROUP2 by hapFLK. Consistent with the
expected role of brown adipose tissue in adaptation to
cold climate sheep breeds from Siberia: Kulundin, Altai
Mountain, and Baikal all had a strong signature of selec-
tion (q-value ranges from 10− 5 to10− 7; DCMS) near the
ADAMTS5, shown to be involved in the adiposity and
metabolic health. Enhanced thermogenesis through
the browning of white adipose tissue was reported in
ADAMTS5 knock out mice upon cold exposure [36,
37]. In accordance with the previous findings in
Chinese native sheep [11] and indigenous Sunite
sheep [38] we detected a signature of selection by
DCMS near TSHR in Karakul and Lezgin breeds.
TSHR was previously associated with metabolic regu-
lation and photoperiod control or reproduction in
vertebrates [11].

Morphological traits and adaptations
Of the 3191 genomic intervals (3069 from DCMS and
122 from hapFLK analyses) under putative selection,
50.6% overlapped with regions previously predicted to
have been under selection in sheep in different studies
[1, 7, 11, 39] (see Additional file 2). Among these previ-
ously detected regions, strong signals of differentiation
were obtained in the regions containing well known can-
didate genes related to morphology, adaptation, and do-
mestication (e.g., KITLG, KIT, MITF, and MC1R), wool
quality and quantity (e.g., DSG@, DSC@, and KRT@)
growth and feed intake (HOXA@, HOXC@, LCORL,
NCAPG, LAP3, and CCSER1), reproduction (CMTM6,
HTRA1, GNAQ, UBQLN1, and IFT88), and milk traits
(ABCG2, SPP1, ACSS1, and ACSS2; Fig. 2, Table 2).

Fleece related traits
Quantity and quality of wool is one of the most econom-
ically important traits in sheep. Consistent with this, the
hapFLK analysis shows a strong signature of selection
(q-value < 10− 5) in the group of all Russian breeds
on OAR23 in the region containing a cluster of
seven desmosomal genes (DSG@ and DSC@). This
selection signal becomes much stronger for GROUP1

Table 1 Breeds and breed groups

Breed No. samples Wool type Reference Breed group

Buubei 20 coarse [20] GROUP1

Lezgin 21 coarse [20] GROUP1

Karachaev 21 coarse [20] GROUP1

Karakul 21 coarse [20] GROUP1

Tuva 20 coarse [20] GROUP1

Edilbai 21 coarse [20] GROUP1

Romanov 24 coarse [20] GROUP1

Russian Longhaired 21 semi-fine [20] GROUP2

Altai Mountain 20 semi-fine [20] GROUP2

Groznensk 21 fine [20] GROUP2

Salsk 21 fine [20] GROUP2

Volgograd 21 fine [20] GROUP2

Krasnoyarsk 20 fine [107] GROUP2

Baikal 20 fine [20] GROUP2

Kulundin 20 fine [20] GROUP2

Average/Total 21/312 – – –
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(q-value < 10− 23), but the region is narrower and
contains only the DSG@ genes. DSMC splits this
interval in two regions for the Russian Longhaired
breed, suggesting separate selection sweeps near the
DSG and DSC gene clusters. The Altai Mountain
breed, however, exhibits the wider selection signal
covering both clusters. The DSG4 (desmoglein 4) is a
known candidate for wool length and crimp in sheep [40],
likely to be related to white and black coat colour in goats
[41] and is a known cause of the recessive hairless pheno-
type in rats [42]. The DSG1 and DSG3 are associated with
hair growth and follicle structure and the DSC2 with
woolly/straight hair phenotype in sheep [43, 44]. The
DSMC method reports another strong selection signal
(q-value < 10− 7) near the keratin gene cluster (KTR@) on
OAR3 for the fine fleeced breeds: Baikal, Kulundin, Salsk,
Krasnoyarsk, Groznensk, and Volgograd. For five out
of the six breeds the selection intervals are relatively
wide (> 100 Kbp) and contain multiple keratin genes
while the Volgograd breed contains a narrower interval
(~ 50 Kbp) with the KRT72 gene only. Multiple members
of the keratin cluster were shown to be related to fleece
development. KRT5 is related to fleece development and
function [45], while KRT71 is associated with the curly
hair phenotype in sheep [46].

Coat colour
We identified a large group of known candidate genes
related to coat colour, a trait of economic importance,
also related to domestication and historical breed forma-
tion [47]. As expected, strong signatures of selection
were found in the regions containing the genes KIT on
OAR6, and KITLG on OAR3. The KIT proto-oncogene
receptor tyrosine kinase (KIT) is associated with coat
colour in various sheep breeds [5] and other species
[48]. In our study, hapFLK identified the chromosomal
interval containing this gene to be under strong selec-
tion in the set of all Russian breeds and GROUP1.
KITLG is associated with pigmentation in sheep [49],
roan coat phenotype in goats [50], and cattle [51]. The
DCMS method reported this gene to be the top-ranked
candidate in the selected regions of the Buubei and roan
Edilbai breeds. Another gene found in a region of puta-
tive positive selection, the melanocortin 1 receptor
(MC1R), was top-ranked in the hapFLK-reported region
in GROUP1 and in the DCMS interval identified in the
Altai Mountain breed. MC1R has a pleiotropic effect,
known, among other traits, to influence coat colour in
sheep [52] and cattle [53]. The microphthalmia tran-
scription factor (MITF) is a regulator of melanocyte de-
velopment, and is associated with coat colour in mouse

Fig. 2 Circus plot of the relative density of selected regions along the ovine genome. DCMS statistics corresponding to GROUP1 is in dark red, to
GROUP2 in dark blue, and hapFLK statistics for all breeds shown in green

Yurchenko et al. BMC Genomics 2019, 20(Suppl 3):294 Page 6 of 19



[54], dog [55], and other species. A strong signature of
selection (q-value < 10− 6) was reported by hapFLK for
GROUP1 in a ~ 350 Kbp interval on OAR19 containing
MITF, and by DCMS for the Karakul breed. We identi-
fied an additional 20 genes in selected regions of Russian
sheep breeds, reported by either hapFLK or DCMS (or
both) methods that could be related to coat colour,
fleece and other phenotypes in Russian sheep breeds
(see Additional file 3).

Milk and lactation-related traits
The hapFLK method reported a large, ~ 5.7 Mbp region
on OAR6 (34.63–40.33 Mbp) containing multiple candi-
date genes associated with milk production, growth, and
feed efficiency (MEPE, IBSP, SPP1, PKD2, ABCG2,
LAP3, NCAPG, LCORL, FAM13A, FAM184B, DCAF16,
HERC6, and SNCA) for the GROUP2 set of breeds. A
part of this region (37.25–37.45 Mbp) was also reported
for GROUP1, including candidate genes NCAPG,
DCAF16, FAM184B. A strong positive selection around
the ABCG2, SPP1, LAP3, NCAPG, LCORL, PKD2, IBSP,
and MEPE genes has been reported in domestic sheep
including most European [1] and Chinese indigenous
breeds [39]. A major milk-related trait gene, the ATP-
binding cassette, sub-family G (white), member 2
(ABCG2 [56]) was found in intervals reported by DCMS

for multiple Russian breeds but was not top-ranked in
any of them. On the other hand, the region containing
three genes ABCG2, SPP1, and PKD2 was under selec-
tion in the Baikal sheep with SPP1 (osteopontin) reported
as the top-ranked gene by DCMS. SPP1 is associated
with milk protein percentage, milk yield, milk protein
yield, and lactation regulation in dairy cattle [57]. Signa-
tures of selection near the SNCA, potentially related to
milk protein and fat traits in dairy cattle [58] were re-
ported by DSMC for the Kulundin, Volgograd, Krasno-
yarsk, and Baikal breeds. Two family members, the
ACSS1 and ACSS2 previously associated with the mam-
mary gland function and milk fatty acid composition in
sheep [59, 60], cattle [61], and yaks [62] were the
top-ranked genes in positively selected regions reported
by DCMS. The ACSS1 gene was reported for the Volgo-
grad, Groznensk, and Altai Mountain, and ACSS2 for
the Romanov breeds. Another gene related to the mam-
mary gland function was the ATM on OAR15, found in
a DCMS-reported region for the Salsk, Baikal, and Groz-
nensk breeds. The ATM contributes to mammary gland
homeostasis and its knockout leads to a progressive
lactation defect in mice [63]. In addition, we found
VPS13B, a known candidate gene for milk-related traits
in buffalo [64], in the interval reported by hapFLK for
GROUP1. The DCMS analysis further reported this

Fig. 3 Manhattan plots of the hapFLK statistics for two groups of Russian sheep breeds. The shared signatures of selection between the two groups
are highlighted in red and the candidate genes names are indicated. Blue and red horizontal lines indicate suggestive (q-value< 0.05) and significant
(q-value< 0.01) FDR thresholds, respectively
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Table 2 Selective sweeps and candidate genes related to acclimation and economically important traits found in genomes of
Russian sheep breeds

OAR Start (Mbp) End (Mbp) q-value Breed/
Group

Method No. genes Candidate genes (rank) Trait

1 119.12 119.49 1.90E-09 Karachaev DCMS 6 KCNE2 (1) growth

1 119.09 119.49 7.67E-05 Karakul DCMS 6 KCNE2 (1) growth

1 119.23 119.45 0.001775722 Tuva DCMS 5 KCNE2 (1) growth

1 127.64 127.75 0.000366751 Altai
Mountain

DCMS 1 ADAMTS5 (1) acclimation

1 127.63 127.74 0.000199884 Baikal DCMS 1 ADAMTS5 (1) acclimation

1 127.63 127.69 0.007036415 Kulundin DCMS 1 ADAMTS5 (1) acclimation

2 35.41 36.06 0.000153169 GROUP1 hapFLK 6 UBQLN1 (5) reproduction

2 35.87 35.92 0.004399798 Salsk DCMS 1 UBQLN1 (1) reproduction

2 58.59 58.75 0.000834252 Edillbai DCMS 1 GNAQ (1) reproduction

2 58.62 58.74 0.002702535 Lezgin DCMS 1 GNAQ (1) reproduction

2 58.64 58.71 0.008858869 Karakul DCMS 1 GNAQ (1) reproduction

2 142.19 142.30 2.19E-05 Buubei DCMS 1 SCN9A (1) temperature sensation

2 232.36 232.41 0.00631797 Romanov DCMS 1 NMUR1 (1) acclimation

3 124.57 124.69 0.000275686 Edillbai DCMS 1 KITLG (1) coat colour/
domestication

3 124.55 124.68 8.86E-05 Buubei DCMS 1 KITLG (1) coat colour/
domestication

3 132.24 132.94 9.65E-05 GROUP1 hapFLK 16 HOXC@ (1–7, 9) growth

3 132.26 132.53 6.51E-07 Lezgin DCMS 9 HOXC@ (1–6, 8,9) growth

3 132.31 132.51 0.000416517 Karakul DCMS 9 HOXC@ (1–6,8,9) growth

3 132.31 132.42 0.008497984 Edillbai DCMS 7 HOXC@ (1–6) growth

3 133.58 133.77 9.72E-13 Salsk DCMS 8 KRT@ (1–8) wool

3 133.59 133.76 1.36E-07 Krasnoyarsk DCMS 7 KRT@ (1–7) wool

3 133.60 133.75 3.73E-07 Groznensk DCMS 6 KRT@ (1–6) wool

3 133.56 133.75 3.24E-10 Baikal DCMS 6 KRT@ (1–6) wool

3 133.57 133.72 1.35E-08 Kulundin DCMS 5 KRT@ (1–5) wool

3 133.61 133.66 0.005739761 Volgograd DCMS 1 KRT72 (1) wool

3 211.49 211.62 0.000569719 Salsk DCMS 1 WNK1 (1) temperature sensation

4 68.29 69.18 4.31E-08 GROUP1 hapFLK 12 HOXA@ (1–9) growth

4 68.81 69.17 6.70E-06 Karakul DCMS 8 HOXA@ (1–8) growth

4 68.75 69.13 3.56E-08 Buubei DCMS 10 HOXA@ (1–9) growth

4 68.64 68.99 1.25E-06 Russian
Longhaired

DCMS 10 HOXA@ (2–9) growth

4 68.62 68.97 9.34E-14 Karachaev DCMS 10 HOXA@ (1,3–10) growth

4 68.62 68.92 5.18E-05 Kulundin DCMS 4 HOXA@ (2–4) growth

4 85.61 85.75 3.38E-07 Karachaev DCMS 1 CPED1 (1) growth

4 85.66 85.71 0.000339136 Krasnoyarsk DCMS 1 CPED1 (1) growth

4 85.67 85.71 0.002455069 Edillbai DCMS 1 CPED1 (1) growth

4 85.67 85.70 0.002368717 Altai
Mountain

DCMS 1 CPED1 (1) growth

5 49.07 49.38 0.000134196 Karakul DCMS 12 HARS (1) temperature sensation

5 49.19 49.27 0.001308813 Kulundin DCMS 4 HARS (1) temperature sensation

6 24.71 25.01 1.33E-08 Kulundin DCMS 3 DNAJB14 (3) reproduction
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Table 2 Selective sweeps and candidate genes related to acclimation and economically important traits found in genomes of
Russian sheep breeds (Continued)

OAR Start (Mbp) End (Mbp) q-value Breed/
Group

Method No. genes Candidate genes (rank) Trait

6 24.71 25.01 4.37E-09 Baikal DCMS 3 DNAJB14 (1) reproduction

6 24.69 24.98 0.000102818 Salsk DCMS 3 DNAJB14 (1) reproduction

6 24.71 24.97 6.53E-09 Krasnoyarsk DCMS 3 DNAJB14 (1) reproduction

6 24.74 24.95 0.000157066 Altai
Mountain

DCMS 3 DNAJB14 (1) reproduction

6 24.74 24.94 8.54E-05 Lezgin DCMS 3 DNAJB14 (1) reproduction

6 24.75 24.90 0.005804894 Edillbai DCMS 1 DNAJB14 (1) reproduction

6 24.71 24.89 0.000171107 Tuva DCMS 2 DNAJB14 (1) reproduction

6 24.65 24.88 6.15E-06 Buubei DCMS 1 DNAJB14 (1) reproduction

6 24.71 24.88 0.000392132 Karakul DCMS 1 DNAJB14 (1) reproduction

6 24.71 24.86 0.000596432 Karachaev DCMS 1 DNAJB14 (1) reproduction

6 34.63 40.33 0 GROUP2 hapFLK 25 MEPE (1) IBSP (2) SPP1 (3) PKD2 (4) ABCG2
(5) LAP3 (6) MED28 FAM184B (8) NCAPG
(11) HERC6 (12) LCORL (13) FAM13A (19)
SNCA (22)

growth, milk

6 35.67 39.19 8.04E-10 Volgograd DCMS 19 HERC6 (1) ABCG2 (8) PKD2 (10) SPP1 (11)
MEPE (12) IBSP (13) LAP3 (14) FAM184B
(16) NCAPG (18) LCORL (19)

growth, milk

6 34.85 38.82 0 All hapFLK 21 LCORL (1) NCAPG (2) FAM184B (4) LAP3
(6) IBSP (7) MEPE (8) SPP1 (9) PKD2 (10)
ABCG2 (11) HERC6 (13) FAM13A (19)

growth, milk

6 36.40 38.62 3.50E-08 Kulundin DCMS 11 LAP3 (2) FAM184B (3) NCAPG (5) LCORL
(6) IBSP (7) MEPE (8) SPP1 (9) PKD2 (10)
ABCG2 (11)

growth, milk

6 36.87 38.28 3.13E-11 Baikal DCMS 6 LAP3 (1) FAM184B (2) NCAPG (4) LCORL (5) growth

6 36.52 38.24 3.68E-08 Salsk DCMS 10 LAP3 (2) FAM184B (3) NCAPG (5) LCORL
(6) IBSP (7) MEPE (8) SPP1 (9) PKD2 (10)
ABCG2 (11)

growth, milk

6 36.45 37.87 5.07E-07 Krasnoyarsk DCMS 11 PKD2 (1) SPP1 (2) ABCG2 (3) MEPE (4)
IBSP (5) LAP3 (6) FAM184B (7) NCAPG (9)
LCORL (10)

growth, milk

6 37.23 37.63 3.10E-06 Lezgin DCMS 4 LCORL (1) NCAPG (2) FAM184B (4) growth

6 37.36 37.60 0.000701655 Edillbai DCMS 1 LCORL (1) growth

6 37.25 37.45 0.008575203 GROUP1 hapFLK 3 NCAPG (1) FAM184B (3) growth

6 37.35 37.44 0.007856497 Buubei DCMS 1 LCORL (1) growth

6 37.09 37.14 0.009452078 Altai
Mountain

DCMS 2 LAP3 (1) growth

6 36.52 36.80 7.87E-05 Baikal DCMS 3 SPP1 (1) PKD2 (2) ABCG2 (3) milk

6 36.09 36.51 5.45E-05 Karakul DCMS 5 HERC6 (1) growth

6 36.09 36.45 4.06E-07 Lezgin DCMS 6 HERC6 (2) growth

6 36.11 36.40 0.000168675 Kulundin DCMS 4 HERC6 (4) growth

6 36.05 36.33 0.000432111 Krasnoyarsk DCMS 5 HERC6 (4) growth

6 36.23 36.30 0.003706257 Altai
Mountain

DCMS 1 HERC6 (1) growth

6 36.16 36.30 0.000321255 Salsk DCMS 4 HERC6 (4) growth

6 34.87 35.07 1.56E-05 Kulundin DCMS 1 SNCA (1) milk

6 34.87 35.03 0.000133556 Volgograd DCMS 1 SNCA (1) milk

6 34.89 35.02 0.000295081 Krasnoyarsk DCMS 1 SNCA (1) milk
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Table 2 Selective sweeps and candidate genes related to acclimation and economically important traits found in genomes of
Russian sheep breeds (Continued)

OAR Start (Mbp) End (Mbp) q-value Breed/
Group

Method No. genes Candidate genes (rank) Trait

6 34.90 35.02 0.000209331 Baikal DCMS 1 SNCA (1) milk

6 34.29 34.84 0.003646083 All hapFLK 1 MMRN1 (1) acclimation

6 34.72 34.80 0.003960894 Krasnoyarsk DCMS 1 MMRN1 (1) acclimation

6 34.50 34.75 6.39E-06 Volgograd DCMS 1 MMRN1 (1) acclimation

6 33.28 34.60 0.001085822 GROUP2 hapFLK 1 CCSER1 (1) feed intake

6 34.22 34.47 8.89E-05 Volgograd DCMS 1 CCSER1 (1) feed intake

6 33.33 34.26 0.000135783 All hapFLK 1 CCSER1 (1) feed intake

6 59.32 59.45 3.41E-09 Altai
Mountain

DCMS 1 RBM47 (1) growth

6 59.34 59.45 3.26E-06 Groznensk DCMS 1 RBM47 (1) growth

6 59.35 59.42 0.004758624 Kulundin DCMS 1 RBM47 (1) growth

6 59.36 59.41 0.001116515 Krasnoyarsk DCMS 1 RBM47 (1) growth

6 69.84 70.85 5.07E-08 All hapFLK 4 KIT (1) coat colour/
domestication

6 69.66 70.59 0 GROUP1 hapFLK 3 PDGFRA (1) KIT (2) acclimation, coat
colour/domestication

6 115.08 115.56 0.003511895 GROUP2 hapFLK 5 ADD1 (1) acclimation

7 20.98 21.22 2.53E-08 Karachaev DCMS 11 ZFHX2 (1) temperature sensation

7 20.96 21.11 8.00E-05 Buubei DCMS 6 ZFHX2 (4) temperature sensation

7 21.01 21.08 0.005941688 Lezgin DCMS 1 ZFHX2 (1) temperature sensation

7 21.00 21.04 5.71E-05 Krasnoyarsk DCMS 1 ZFHX2 (1) temperature sensation

7 21.01 21.04 0.000126518 Salsk DCMS 1 ZFHX2 (1) temperature sensation

7 21.01 21.04 0.006713729 Altai
Mountain

DCMS 1 ZFHX2 (1) temperature sensation

7 89.24 89.81 2.26E-05 GROUP1 hapFLK 4 TSHR (1) acclimation

7 89.35 89.55 9.23E-08 Lezgin DCMS 2 TSHR (2) acclimation

7 89.39 89.48 0.004845986 Karakul DCMS 1 TSHR (1) acclimation

9 77.25 77.91 1.34E-07 Edillbai DCMS 2 VPS13B (2) milk

9 77.24 77.87 0.000648121 GROUP1 hapFLK 2 VPS13B (1) milk

9 77.07 77.17 0.001546422 Karakul DCMS 1 VPS13B (1) milk

9 77.09 77.13 0.006246497 Salsk DCMS 1 VPS13B (1) milk

10 23.77 24.44 0.000617495 GROUP2 hapFLK 2 UFM1 (1) Domestication

10 23.60 24.42 9.64E-05 All hapFLK 3 UFM1 (1) Domestication

10 23.90 24.31 0.007350694 GROUP1 hapFLK 1 UFM1 (1) Domestication

10 25.16 30.13 0 All hapFLK 18 RXFP2 (1) HSPH1 (4) wool, horns, acclimation

10 28.03 30.10 0 GROUP2 hapFLK 11 RXFP2 (1) HSPH1 (4) horns, acclimation

10 30.06 30.10 0.005654316 Baikal DCMS 1 HSPH1 (1) acclimation

10 28.16 30.00 0 GROUP1 hapFLK 10 RXFP2 (1) horns

10 29.39 29.75 3.78E-12 Edillbai DCMS 1 RXFP2 (1) horns

10 29.36 29.64 2.56E-06 Russian
Longhaired

DCMS 1 RXFP2 (1) horns

10 29.32 29.63 1.23E-06 Romanov DCMS 1 RXFP2 (1) horns

10 29.47 29.63 1.14E-05 Karachaev DCMS 1 RXFP2 (1) horns

10 29.47 29.55 0.002108118 Groznensk DCMS 1 RXFP2 (1) horns
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Table 2 Selective sweeps and candidate genes related to acclimation and economically important traits found in genomes of
Russian sheep breeds (Continued)

OAR Start (Mbp) End (Mbp) q-value Breed/
Group

Method No. genes Candidate genes (rank) Trait

10 29.44 29.49 0.000484163 Altai
Mountain

DCMS 1 RXFP2 (1) horns

10 25.19 28.02 1.42E-07 GROUP2 hapFLK 7 NBEA (1) wool

10 26.17 26.93 0.000427859 GROUP1 hapFLK 1 NBEA (1) wool

10 26.55 26.66 0.001229851 Kulundin DCMS 1 NBEA (1) wool

10 26.30 26.56 0.000110212 Edillbai DCMS 1 NBEA (1) wool

10 26.33 26.41 0.000152487 Groznensk DCMS 1 NBEA (1) wool

10 26.15 26.17 0.001280272 Kulundin DCMS 1 NBEA (1) wool

10 26.15 26.17 0.009743166 Baikal DCMS 1 NBEA (1) wool

10 35.95 36.35 0.000164969 Tuva DCMS 8 IFT88 (6) reproduction

10 36.05 36.25 3.80E-05 Edillbai DCMS 2 IFT88 (2) reproduction

10 35.99 36.12 0.003724073 Romanov DCMS 3 IFT88 (1) reproduction

10 53.47 53.76 0.005873975 GROUP1 hapFLK 1 EDNRB (1) acclimation

11 36.89 37.00 0.00235957 Volgograd DCMS 1 B4GALNT2 (1) reproduction

11 36.92 36.95 0.00700516 Groznensk DCMS 1 B4GALNT2 (1) reproduction

11 36.92 36.95 0.002079112 Karachaev DCMS 1 B4GALNT2 (1) reproduction

11 36.89 36.94 0.008582697 Karakul DCMS 1 B4GALNT2 (1) reproduction

13 41.71 41.86 1.37E-05 Groznensk DCMS 4 ACSS1 (1) milk

13 41.70 41.84 5.56E-07 Volgograd DCMS 4 ACSS1 (1) milk

13 41.72 41.83 7.68E-06 Altai
Mountain

DCMS 3 ACSS1 (1) milk

13 47.98 49.75 7.29E-11 All hapFLK 3 PPP1CC (1) BMP2 (2) body size, reproduction

13 48.34 49.40 1.74E-11 Karachaev DCMS 3 PPP1CC (1) BMP2 (3) body size, reproduction

13 48.43 49.30 9.62E-07 GROUP1 hapFLK 3 PPP1CC (1) BMP2 (3) body size, reproduction

13 48.52 49.30 7.96E-09 Tuva DCMS 2 PPP1CC (1) reproduction

13 48.83 49.17 8.51E-11 Kulundin DCMS 1 PPP1CC (1) reproduction

13 48.80 49.15 3.36E-08 Salsk DCMS 1 PPP1CC (1) reproduction

13 48.84 49.15 5.59E-05 Volgograd DCMS 1 PPP1CC (1) reproduction

13 48.83 49.12 4.19E-05 Russian
Longhaired

DCMS 1 PPP1CC (1) reproduction

13 48.83 49.08 0.003588777 Groznensk DCMS 1 PPP1CC (1) reproduction

13 48.29 48.66 0.005674193 GROUP2 hapFLK 1 BMP2 (1) body size

13 63.47 63.91 3.91E-06 Romanov DCMS 10 ACSS2 (1) milk

14 7.30 7.48 0.000183645 Karachaev DCMS 2 GAN (1) temperature sensation

14 13.59 15.49 0 GROUP1 hapFLK 30 MC1R (1) coat colour/acclimation

14 13.75 14.80 0 All hapFLK 22 MC1R (2) coat colour/acclimation

14 14.15 14.43 2.15E-06 Karachaev DCMS 8 MC1R (3) coat colour/acclimation

14 14.14 14.27 1.18E-05 Karakul DCMS 6 MC1R (3) coat colour/acclimation

14 14.20 14.26 0.003770506 Lezgin DCMS 5 MC1R (3) coat colour/acclimation

14 14.14 14.25 8.10E-05 Tuva DCMS 5 MC1R (4) coat colour/acclimation

14 14.20 14.23 0.002109007 Baikal DCMS 3 MC1R (2) coat colour/acclimation

14 14.21 14.23 0.005865778 Altai
Mountain

DCMS 2 MC1R (1) coat colour/acclimation

14 54.32 54.41 7.27E-07 Volgograd DCMS 3 MAMSTR (1) lipid metabolosm
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region to be under putative selection in the Karakul,
Salsk, and Edilbai sheep.

Growth and feed intake
Two genomic regions containing clusters of HOX genes
were reported by hapFLK for GROUP1. The first cluster
contained the HOXC@ on OAR3 while the second,
HOXA@ on OAR4. These regions were further

confirmed to be under putative positive selection by the
DCMS method. The region containing the HOXC@
could be under selection in the Lezgin, Edilbai, and
Karakul breeds while the HOXA@-containing region, in
the Karachaev, Kulundin, Russian Longhaired, Buubei,
and Karakul breeds. The HOX genes are involved in
regulation of limb development in mammals [65, 66],
with the HOXA@ also being associated with body

Table 2 Selective sweeps and candidate genes related to acclimation and economically important traits found in genomes of
Russian sheep breeds (Continued)

OAR Start (Mbp) End (Mbp) q-value Breed/
Group

Method No. genes Candidate genes (rank) Trait

14 54.33 54.40 2.20E-05 Karachaev DCMS 1 MAMSTR (1) lipid metabolosm

14 54.34 54.40 5.36E-05 Baikal DCMS 2 MAMSTR (1) lipid metabolosm

14 54.31 54.39 0.000163454 Salsk DCMS 4 MAMSTR (4) lipid metabolosm

14 54.35 54.39 0.003248022 Groznensk DCMS 1 MAMSTR (4) lipid metabolosm

14 54.31 54.39 0.001065341 Kulundin DCMS 4 MAMSTR (4) lipid metabolosm

14 54.34 54.39 0.00166944 Altai
Mountain

DCMS 1 MAMSTR (1) lipid metabolosm

14 54.36 54.39 0.001659425 Romanov DCMS 1 MAMSTR (1) lipid metabolosm

15 17.37 17.43 0.001101253 Groznensk DCMS 1 ATM (1) milk

15 17.37 17.42 0.003777078 Baikal DCMS 1 ATM (1) milk

15 17.37 17.41 0.002123085 Salsk DCMS 1 ATM (1) milk

18 65.86 66.20 0.000807705 Tuva DCMS 3 TECPR2 (1) temperature sensation

18 65.89 66.04 0.003657536 Lezgin DCMS 2 TECPR2 (2) temperature sensation

19 0.85 0.89 0.006060865 Altai
Mountain

DCMS 1 EGFR (1) acclimation

19 6.84 6.88 0.002683568 Edillbai DCMS 1 CMTM6 (1) reproduction

19 6.83 6.85 0.006206755 Karakul DCMS 1 CMTM6 (1) reproduction

19 31.51 31.87 1.06E-06 GROUP1 hapFLK 1 MITF (1) coat colour/
domestication

19 31.51 31.86 0.000136197 All hapFLK 1 MITF (1) coat colour/
domestication

19 31.60 31.65 0.002412391 Karakul DCMS 1 MITF (1) coat colour/
domestication

20 34.19 34.23 0.003574509 Volgograd DCMS 1 PRL (1) acclimation

22 41.25 41.33 0.003671941 Buubei DCMS 1 HTRA1 (1) reproduction

22 41.23 41.31 0.00040073 Karakul DCMS 1 HTRA1 (1) reproduction

22 41.25 41.31 0.006635799 Tuva DCMS 1 HTRA1 (1) reproduction

23 25.42 26.46 0 GROUP1 hapFLK 12 DSG@ (1–4), DSC@ (7–9) wool

23 26.20 26.36 1.05E-05 Russian
Longhaired

DCMS 2 DSC@ (1–2) wool

23 25.90 26.34 5.97E-05 All hapFLK 5 DSG@ (1–2), DCG@ (3–5) wool

23 25.90 26.33 8.02E-10 Altai
Mountain

DCMS 6 DSG@ (1–3,5), DSC@ (4,6) wool

23 25.98 26.11 0.002876356 Russian
Longhaired

DCMS 3 DSG@ (−3) wool

23 43.81 44.51 9.44E-06 Salsk DCMS 3 MC5R (1) MC2R (3) acclimation

23 43.75 44.06 0.000654721 Baikal DCMS 3 MC2R (1) MC5R (2) acclimation

25 18.69 18.88 0.001140569 GROUP1 hapFLK 2 EGR2 (1) temperature sensation
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composition and structure in pigs [67] and HOXC@ be-
ing associated with tail fat deposition in sheep [68].
The region containing LAP3, NCAPG, LCORL, and

HERC6 genes on OAR6 is known to be related to
growth traits, carcass composition, body size, weight and
height in sheep [1], horses [69], and cattle [70, 71]. The
results obtained using hapFLK and DCMS showed vary-
ing patterns of selective sweeps near these genes in Rus-
sian sheep breeds. Thus, according to hapFLK, LCORL
was top-ranked for the all-breed analysis. This was fur-
ther supported by DCMS for the Lezgin, Buubei, and
Edilbai breeds while the NCAPG was top-ranked by
hapFLK for the GROUP1 only. The LAP3 from the same
area was top-ranked for the Baikal and Altai Mountain
breeds and the HERC6 for Volgograd, Karakul, and Altai
Mountain implying multiple signatures of selection in
this region. The hapFLK approach reveals a ~ 1 Mbp
interval containing only one gene, the CCSER1, on
OAR6 in the all-breed set as well as in GROUP2, while
DCMS further confirms this signature of selection in
Volgograd, Krasnoyarsk, and Baikal breeds. Variants in
the CCSER1 are associated with the feed efficiency in
beef cattle [72].
Furthermore, the DSMC method reported signatures of

selection in regions near the functional gene candidates
RBM47, KCNE2, CPED1, and MAMSTR in multiple sheep
breeds. These candidate genes are responsible for pro-
cesses related to growth (RBM47 [73]), thyroid hormone
biosynthesis (KCNE2 [74]), development of bone mineral
density (CPED1 [75]), and lipid and glucose metabolism
(MAMSTR [76]).

Reproduction
Both hapFLK and DCMS reported putative positive se-
lection in multiple breeds for genomic regions contain-
ing genes with known effects on reproduction in
mammals, including fertility: DNAJB14 [77], gonad de-
velopment and sperm maturation: GNAQ [78], sperm-
atogenesis: UBQLN1 [79], IFT88 [80], and PPP1CC [81].
The DCMS method detected selection sweeps near
CMTM6 in Karakul and Edilbai sheep and near HTRA1
in Karakul, Tuva, and Buubei sheep. These genes are as-
sociated with off-season reproduction traits, such as
year-around oestrous behavior in sheep (HTRA1 [82]
and the evolution of sperm and the circadian rhythm
systems in mammals (CMTM6 [83]). The DCMS
method further reported narrow selection sweeps for
multiple Russian sheep breeds in the areas of
B4GALNT2 which was proposed as a strong candidate
gene for ewe fertility [84].

Discussion
Here we present the first comprehensive study of signa-
tures of selection in the genomes of 15 native sheep

breeds from the Russian Federation, for most of which we
recently revealed the phylogenetic and population history
in the context of related breeds from other countries [20].
In contrast to our phylogenetic study, based on
moderate-density SNP array genotypes, genotyping for the
present study was performed on a high-density array
required to reveal the majority of selective sweeps. The
analysis of the data was performed using complimentary
approaches: the hapFLK and DCMS, which allowed us
to detect signatures of selection that are putatively
related to adaptation of breeds to local environments
and human needs.
More than 50% of the putatively selected regions

detected in the present study overlap with previously
reported signatures of selection in various sheep breeds
[1, 7, 11, 39], suggesting that our approach is robust
enough to detect the expected signals of selection and
that our dataset is different enough from the previously
published ones to reveal new strong selective sweeps.
The overlap observed between the hapFLK and the
DCMS results point to putatively selected regions that
are detectable using different models. The overlapping
regions mainly contained known targets of selection in
sheep. However, in general, hapFLK detects fewer but
longer selected regions, while DSMC identifies a larger
number of shorter intervals. This indicates that hapFLK
could be more efficient in detecting regions with long
haplotypes under selection, while DCMS can further dis-
sect these intervals and point to specific genes under pu-
tative selection in individual breeds. DCMS is also
capable of detecting shorter intervals, not found by
hapFLK. This is confirmed by the fact that the region on
OAR6, containing multiple genes related to milk pro-
duction and growth traits was reported as a single inter-
val by hapFLK but DCMS reported different regions
within this interval containing different genes to be
under selection in individual breeds. We detected the
strongest signatures of selection shared between two
groups of Russian sheep breeds in the regions of
genes related to brain development, growth, milk pro-
duction, and horned/polled phenotypes. These groups
of genes are likely to be related to the process of do-
mestication and historical breed formation.
In contrast to our recent study on the signatures of se-

lection in Russian native cattle breeds [85] and
high-density analysis of popular commercial breeds from
Zhao and co-workers (2015) [86] we did not observe
breeds where major milk-production related genes (e.g.,
DGAT1 and ABCG2) would be reported as top ranked.
This could be related to the fact that the sheep breeds
used for milk production in the Russian Federation (e.g.,
Lezgin and Karachaev) cannot be considered as strictly
dairy breeds. They are also breed for wool and meat, and
these traits are often more important.
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Consistent with this and our previous publication [20],
the PCA and ADMIXTURE analysis separated the Rus-
sian sheep breeds into two major clusters which follow
wool quality type [20]. The DCMS method further sug-
gested that the cluster of KRT genes on OAR3 is under
positive selection in fine wool breeds, confirming that
the keratin genes could be related to the quality of wool,
as it has been shown in other studies [46]. Interestingly,
the region containing a cluster of desmosomal genes was
under strong selection in coarse wool breeds (GROUP1).
The DCMS approach, however, points to two breeds
from GROUP2, which also had this region under puta-
tive selection. GROUP2 includes breeds with the fine
and semi-fine wool. According to DCMS the desmo-
somal genes were under selection only in the semi-fine
Russian Longhaired and Altai Mountain breeds. Com-
bined with the hapFLK results, this may indicate that se-
lection in desmosomal genes could be related to
‘coarseness’ of the sheep wool but this hypothesis needs
further verification using sequenced genomes from
breeds of all the three types.
Unlike the Yakut cattle [87], domestic sheep cannot be

normally found above the Polar Circle in Russia. How-
ever, the harsh environments of Siberia and other parts
of the Russian Federation still impose significant select-
ive pressure on local sheep breeds. Consistent with this,
multiple genes related to acclimatization were found in
putatively selected regions in Russian sheep breeds. In
another study [85] we found one of the strongest signals
of selection in the Yakut cattle, adapted to survive at −
50 °C, in the area of the gene RETREG1, one of the key
genes involved in the hereditary sensory and autonomic
neuropathy, type II in humans [27]. This disorder in
humans is accompanied by an inability to feel pain and
low temperatures. In the present study, we identified
multiple genes with known key contributions to human
hereditary sensory and autonomic neuropathies (types
I-IV) in selected regions of individual or multiple sheep
breeds. It is tempting to hypothesise that changes within
these genes could be related to adaptation to the harsh
environments of the Russian Federation. For the breeds
from Siberia, changes in these genes could be beneficial
for surviving cold winters, but in other breeds they could
be advantageous for survival in cold mountain climates.
However, a definite answer to this question could only
be obtained after the actual sequences of these genes are
obtained for breeds dwelling in different environments
and the presence and frequencies of missense or regula-
tory variants are compared.
Similar to Russian native cattle breeds, sheep breeds

express signatures of selection in regions of genes re-
lated to brown adipogenesis. Brown adipose tissue is an
important organ involved in in non-shivering thermo-
genesis indicating that these genes could be related to

adaptation to cold climates. However, the adipose tissue
contributes to phenotypic differences between breeds
(fat- and thin-tailed sheep) and to meat quality, which is
an economically important trait. This suggests that more
studies need to be done to distinguish potential adaptive
effects of the genes involved into adipogenesis, from
their contribution to economically important traits in
sheep and cattle.

Conclusions
In conclusion, we identified signatures of selection in
Russian local sheep breeds of European and Asian ori-
gin. These signatures point to known regions related to
economically important traits, domestication and breed
formation as well as to intervals of the sheep genome
that could contribute to adaptation of breeds to their
corresponding local environments. Our results indicate
that a detailed study(ies) of Russian local breeds involv-
ing whole-genome sequencing should focus on identify-
ing causative genetic variants or haplotypes. These
polymorphisms should be in turn the focus of future ef-
forts on the improvement of local breeds, or for select-
ing multinational commercial breeds which would be
better suited for the environments of the Russian Feder-
ation and Northern Eurasia.

Methods
Sample collection
Tissue samples for the Lezgin, Karachaev, Karakul, Edil-
bai, Romanov, Russian Longhaired, Groznensk, Salsk,
and Volgograd breeds and blood samples for the Buubei,
Tuva, Altai Mountain, Krasnoyarsk, Baikal, and Kulun-
din breeds were collected from farms and breeding cen-
tres across Russia. All samples were collected by trained
personnel following strict veterinary regulations. We
studied the pedigrees of animals to avoid sampling of
close relatives (siblings, parents, and offspring). Tissues
and blood were stored at -80 °C until use.

Genotyping of Russian sheep breeds
DNA from tissue samples of nine sheep breeds was ex-
tracted using Nexttec columns (Nexttec Biotechnology
GmbH, Germany) following the manufacturer’s instruc-
tions. DNA from blood samples of six additional sheep
breeds was extracted using cell lysation followed by
phenol-chloroform extraction [88]. DNA samples of all
breeds were genotyped using the Ovine Infinium® HD
SNP BeadChip (600 K SNPs) to produce dense genome
coverage. Genotypes were called using GenomeStudio 2
software (Illumina, San Diego, USA) and samples with
overall calling rate < 95% were removed from further
analyses. The produced files with genotypes (.ped) and
chromosomal positions (.map) were processed using
PLINK v.1.90 whole genome analysis toolkit [89].
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Analysis of groups of populations
Divergence between populations can influence methods
which assume a certain population structure and low level
of genetic differentiation [7]. To reduce the effect of popu-
lation structure on the hapFLK analysis, we performed the
Principal Component Analysis (PCA [90]) and ADMIX-
TURE genetic clustering on all the studied breeds. Prior
to the analyses, to reduce effects of linkage-disequilibrium
between loci we pruned the dataset using the PLINK func-
tion --indep-pairwise 50 10 0.1 using only autosomal ge-
notypes resulting in 95,809 variants for 312 animals. Then
we ran ADMIXTURE for K = 1–20 and calculated
cross-validation error for each run (-cv). The results of the
ADMIXTURE analysis were visualized with PONG soft-
ware [91] the results of PCA analysis were plotted within
the R environment.

Identification of signatures of selection with hapFLK
statistics
We performed a genome scan for selective sweeps
within each group of breeds and for all breeds simultan-
eously to infer regions which were under selection dur-
ing the group/breed formation and in the ancestral
population of all studied breeds using a haplotype-based
statistics hapFLK [92]. Due to the hapFLK model assum-
ing that selection acts on shared ancestral SNP allele fre-
quencies, we excluded rare SNPs with low minor allele
frequencies (MAFs) from each of the breed groups
(MAF < 0.05). We also excluded poorly genotyped indi-
viduals (< 95% of SNPs with genotypes), loci genotyped
in < 99% of samples, SNPs without chromosomal assign-
ments, and SNPs on sex chromosomes in PLINK, using
the commands: --maf 0.05, --mind 0.05, --geno 0.01, and
--chr 1–26 prior to performing the genome selection
scans. This resulted in 506,343 autosomal SNPs for the
all-breed analysis, 492,607 and 499,219 for GROUP1 and
GROUP2, respectively.
The hapFLK method takes the haplotype structure of

the population into account. What was important for
our dataset is that this method can account for popula-
tion bottlenecks and migration. Reynolds distances and
a kinship matrix were calculated by the hapFLK program
v.1.4 [92]. For the hapFLK analysis, the number of
haplotype clusters for each breed group were estimated
with fastPhase [93] and were set as -K 40, 25, 35 for the
all-breed set, GROUP1, and GROUP2, respectively. The
expected maximum number of iterations was set to 30
for three groups. We applied midpoint rooting to all sets
of breeds.

P-value calculation
For hapFLK, the calculation of raw p-values was per-
formed assuming that the selected regions represent only
a small fraction of the genome [7]. The genome-wide

distribution of hapFLK statistics could be modelled rela-
tively well with a normal distribution except for a small
fraction of outliers from potentially selected regions [7].
Robust estimations of the mean and variance of the
hapFLK statistic were obtained using the R MASS package
rlm function to eliminate influence of outlying regions fol-
lowing Biotard and co-workers (2016) [94]. This has been
done for each group (all breeds, GROUP1, and GROUP2).
The hapFLK values were Z-transformed using these par-
ameter estimates, and p-values were calculated from the
normal distribution in R. The R qvalue package was used
to correct p-values for multiple testing [95].

Composite measure of selection (DCMS statistics)
Recent studies demonstrated the high efficiency of com-
posite measures of selection over the single-statistic tests
or their simple meta-analysis [96, 97]. Composite mea-
sures of selection such as de-correlated composite of
multiple signals DCMS [96] allow more pricisely locate
the selection signal and filter out spurious results spe-
cific for some methods. For this study we combined five
well-established genome-wide statististics into a single
DCMS framework [96]. The DCMS works by combining
p-values from different statistics at each locus and cor-
recting for the overall correlation between the statistics
based on the covariance matrix. We aggregated the fol-
lowing statistics in the present work: haplotype homozy-
gosity (H1 [98]), modified haplotype homozygosity
statistics (H12 [98], fixation index (FST [99], Tajima’s D
index [100] and nucleotide diversity (Pi [101]).

Haplotype-based statistics
Autosomal genotypes were phased using SHAPEIT2
software [102] with 400 conditioning states (-states 400)
and effective population size parameter equal to 3000
(-effective-size 3000) as a safe estimate of genetic vari-
ation within our diverse dataset. The recombination rate
along the chromosomes was corrected with a
high-resolution ovine genetic map [103].
To calculate the haplotype-based H1 and H12 statis-

tics the phased VCF file was converted to the format re-
quired by the H12_H2H1.py script (https://github.com/
ngarud/SelectionHapStats) from Garud and co-workers
(2015) [98]. The statistics were calculated for each auto-
some of each breed using overlapping windows of 25
single nucleotide variants (SNVs, -w 25) with the step
size equal to 1 (-j 1) and allowing zero false-positive
SNVs per window (-d 0).

Tajima’s D statistics
To calculate Tajima’s D statistics, we first formed
chromosome intervals based on the output of the H1
statistics and then passed them to the bcftools (view)
software [104] along with the breed-specific gzipped
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VCF file, before being piped to the vcftools -TajimaD
function. The work was performed in a parallel mode
with assistance of GNU PARALLEL [105] to reduce cal-
culation time.

Fixation index (FST)
To quantify the population differentiation for every SNV
we calculated FST index for each breed against the com-
bined pooled sample of all other breeds using the plink
--fst function. Negative FST values were converted into
zeros and the statistic was smoothed for each chromo-
some using R runmed function in windows of 31 SNPs
(k = 31, endrule = “constant”) to reduce noise.

Nucleotide diversity (pi)
Nucleotide diversity was calculated using the vcftools
-site-pi option for each position and breed separately.
To reduce the overall noise the statistic was smoothed
with the R runmed function with a window size of 31
SNPs (k = 31, endrule = “constant”).

De-correlated composite of multiple signals (DCMS)
At the first step, we combined all the calculated statistics
(H12, H1, Pi, Tajima’s D, FST) into a single spreadsheet
based on the SNV name. We then calculated genome-wide
rank-based p-values for each statistic (stat_to_pvalue
MINOTAUR function) using one-tailed tests (Pi and Tajima
D – left-tailed; H1, H12, and FST – right-tailed) of the R
MINOTAUR package [106]. To adjust for the correlation
among the statistics we calculated the covariance matrix
based on 300,000 randomly sampled SNPs using the Cov-
NAMcd function with alpha = 0.75. The matrix was then
used to calculate the DCMS statistic using DCMS function
of the MINOTAUR package. We fitted the resulting DCMS
statistics for each breed into a normal distribution using the
robust fitting of the linear model method implemented in
the rlm R function of the MASS package [94]. The fitted
DCMS statistics were then converted into p-values using
the pnorm function (lower.tail = FALSE, log.p = FALSE) and
the p-values were finally converted to the corresponding
q-values using the qvalue R function [95].

Identification of chromosome intervals under selection
and candidate genes
We downloaded the ovine gene annotations from the
Biomart [107] which correspond to the Oar_v3.1 gen-
ome assembly [108]. Next, we considered chromosome
intervals with SNPs with adjusted p-values < 0.01 to de-
termine putative regions under selection. The boundar-
ies of each interval were defined by the locations of the
first flanking SNPs exhibiting adjusted p-values > 0.1.
Within the selected intervals, genes were identified
within 1σ value from the most significant SNP based on
statistical value (DCMS or hapFLK) distribution similar

to Fariello and co-workers [7]. This approach helps to
balance the number of candidate genes reported be-
tween the “sharp” selection peaks, and intervals with
many SNPs exhibiting similar statistics values where lar-
ger numbers of genes were reported. Finally, the genes
were ranked based on their distance from the SNP with
the highest statistics value in each region with larger
ranks assigned to more distant genes.
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