
CryptoCache: Network Caching with Confidentiality
Jérémie Leguay⇤, Georgios S. Paschos⇤, Elizabeth A. Quaglia†, Ben Smyth⇤

⇤Mathematical and Algorithmic Sciences Lab, France Research Center, Huawei Technologies Co. Ltd.
†Royal Holloway, University of London

Abstract—End-to-end encryption seemingly signifies the death

of caching, because current methods ensure that no two sessions

are alike. In this paper, we show that servers can reuse encrypted

content between sessions, thereby rejuvenating caching. The main

idea of our technique is to allow interim nodes to cache content

based on pseudo-identifiers instead of real file identities. This

enables caching of reusable pseudo-identifiers, whilst maintaining

content confidentiality, i.e., ensuring that only the client and the

server know the actual identity of the requested file. Furthermore,

we provide an extension that prevents client linkability, i.e.,

ensuring it is impossible to tell if two clients are viewing the

same content. Finally, we formally analyse the balance between

security and the hit probability performance of the cache.

Index Terms—Caching, Security, All-Encrypted Web, TLS.

I. INTRODUCTION

Network caching is the act of intelligently replicating
reusable content inside the network in order to improve latency
and reduce network bandwidth usage. In the last decade,
Content Delivery Network (CDN) providers have played a
significant role in the proliferation of the Internet by replicat-
ing origin servers’ content at edge caches, thereby reducing
congestion. The leading CDN provider, Akamai, has deployed
over 170,000 edge caches in more than 1,300 networks in
102 countries [1]. Such caches are typically deployed in
wired networks, and deployment in wireless networks can
further improve latency and reduce bandwidth [2]–[6]. In the
next five years, network traffic will be dominated by video
content, which is estimated to account for more than 60%
of all traffic [7]. And caching will be necessary to ensure
sustainability of networks. Indeed, estimates suggest CDNs
will deliver 72% of video traffic by 2019 [7].

Amidst growing security concerns [8], we are currently
observing a trend towards end-to-end encryption. Indeed,
content originating from web giants – including Facebook,
Google, Netflix, and Yahoo – is encrypted by default.1 Indeed,
Cisco predict hyper-growth in encrypted network traffic [7].
And, more concretely, Sandvine predict that 66% of North
American Internet traffic will be encrypted by the end of
2016 [8]. End-to-end encryption (e.g., HTTPS/TLS) provides
security, but encrypted traffic cannot be reused by the network,
because encryption ensures each session is distinct. And,
more generally, any operation that requires observation of
(unencrypted) content is precluded. (Such operations include
collecting statistics about popularity [9], for instance.)

Content and CDN providers bypass the problem of en-
crypted traffic by defining edge caches as end points [10]. This
requires content providers to share content and cryptographic
keys with edge caches, thereby allowing caches to establish

server

untrusted cache

encrypted communications

user trusted cache

Fig. 1: End-to-end encryption precludes untrusted caches, and limits caching
to trusted entities. This paper proposes a new security protocol to enable
caching encrypted content and encourage the operation of untrusted caches.

end-to-end encryption with users and distribute content over
encrypted connections, on behalf of content providers. This
inevitably weakens security guarantees. In particular, no secu-
rity is offered against a compromised edge cache. Thus, edge
caches are assumed to be trusted, and untrusted edge caches
cannot perform such a function (Fig. 1). Hence, the problem
is assumed away for trusted edge caches.
Contribution. We propose CryptoCache, a security protocol
that enables caching of encrypted content, without trusting the
cache. Our protocol instructs content providers to associate
content with pseudo-identifiers and to symmetrically encrypt
content. Pseudo-identifiers and symmetrically encrypted con-
tent remain constant across client requests, enabling reuse.
Nevertheless, the use of symmetric encryption ensures confi-
dentiality. Since confidentiality is the main security concern
in content delivery, CryptoCache combines the seemingly
contradictory benefits of both security and network efficiency.
Finally, we formally analyse the balance between security and
caching performance.

II. CRYPTOCACHE

We consider scenarios in which a client requests content
from a server and edge caches are used to improve efficiency,
whilst ensuring the following property:

Confidentiality. A client’s request and a server’s response
are only revealed to the client and the server.

Confidentiality should hold even when edge caches are oper-
ated by an adversary.

A. Protocol description

We propose a security protocol to enable caching of en-
crypted content that satisfies confidentiality. More specifically,
the protocol requires the origin server to associate each item of
content file with an identifier id, a pseudo-identifier pid, and

1. https://www.eff.org/encrypt-the-web-report.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/189357585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A E S

SEncsA (id)

pid, SEncsA (kid)

pid

SEnckid(file)

SEncsA (kid), SEnckid(file)

C
ac

he
m

is
s

B E S

SEncsB (id)

pid, SEncsB (kid)

SEncsB (kid), SEnckid(file)

C
ac

he
hi

t

Fig. 2: CryptoCache: A protocol for caching encrypted traffic.

an encryption key kid. And edge caches to associate pseudo-
identifiers with encrypted content, e.g., an edge cache might
associate pid with SEnckid(file).2 The protocol is as follows:

• Setup. The protocol assumes a client establishes a secret
session key s with a server prior to each run of the
protocol. (Such keys can be established using a TLS
handshake, for instance.)

• Request. To request content file, client C encrypts the
content’s identifier id with secret key s and sends the
resulting ciphertext SEncs(id) to server S, i.e.,

– C �! S: SEncs(id)
• Response. To respond to a request, server S decrypts

ciphertext SEncs(id) using session key s to recover
identifier id, retrieves the corresponding pseudo-identifier
pid and corresponding encryption key kid, encrypts kid
with s, and sends the resulting ciphertext SEncs(kid)
coupled with pid to edge cache E. Namely,

– S �! E: pid,SEncs(kid)
If edge cache E does not hold an association between
pseudo-identifier pid and some encrypted content (i.e.,
a cache miss occurs), then E sends pid to server S,
the server responds with ciphertext SEnckid(file), and E
associates the pseudo-identifier and ciphertext, where pid
is associated with content file and encryption key kid.
That is,

– If cache miss, then
⇤ E �! S: pid
⇤ S �! E: SEnckid(file)

Once edge cache E has an association between pseudo-
identifier pid and encrypted content SEnckid(file), the
edge cache sends the encrypted content along with the
encrypted encryption key to client C. Namely,

– E �! C: SEncs(kid),SEnckid(file)
Upon receipt, client C decrypts ciphertext SEncs(kid)
using session key s to recover encryption key kid and

uses kid to decrypt ciphertext SEnckid(file) to recover
content file, thereby concluding a run of the protocol.

Fig. 2 depicts an instance of CryptoCache in which: client
A and server S share a secret key sA, A requests id; a cache
miss occurs at edge cache E, thus, the edge cache requests the
encrypted content from server S and forwards the encrypted
content to A; subsequently, client B and server S share a
secret key sB , B requests the same content; and edge cache
E responds to B directly. Thereby demonstrating that the
protocol enables encrypted content to be cached.

B. Informal security analysis

We conduct an informal security analysis of CryptoCache
instantiated with a secure encryption scheme. Recall that con-
fidentiality demands “a client’s request and a server’s response
are only revealed to the client and the server.” Our protocol
transmits SEncs(id), i.e., the client’s request encrypted by
the secret session key s established between the client and
server. Thus, the security of the encryption scheme underlying
our protocol ensures that the requested content identifier is
only revealed to the client and the server. Our protocol also
transmits SEncs(kid) and SEnckid(file), i.e., the encryption
key associated with id encrypted by secret session key s and
the content encrypted with kid. Since s is the secret session
key in a protocol run, kid is only known to the client and the
server. And since the server’s response is encrypted by kid,
the encrypted content file is only revealed to the client and
server.

C. Possible implementation over HTTP

CryptoCache can be implemented over HTTP. In this set-
ting, the client establishes a connection with the content server.
And, to discover the cache, the server might provide the
client with the URL of an external resource from which the
encrypted content can be downloaded. The server may use
application messages or the “out-of-band” content encoding
HTTP option [12] to provide the client with all the necessary
information: URL of the cache, pseudo-identifier of the con-
tent, and any other details. The external resource can either be
a particular cache if it is known to the origin server or the one
of a complete CDN. In the former case, requests are redirected
by the CDN to reach the closest cache using traditional DNS
mechanisms. As a consequence, CryptoCache does not require
any modifications of web standards and can be implemented
as an application library inside origin servers and caches.

III. CRYPTOCACHE EXTENSION FOR UNLINKABILITY

CryptoCache (§II) enables caching of encrypted content in
an efficient manner, whilst ensuring confidentiality. However,
the protocol permits linkability between clients requesting the
same content, because the corresponding pseudo-identifier and
encrypted content remain constant across requests. A higher
degree of security can be obtained by satisfying the following:

2. We denote the symmetric encryption of m with key k as SEnck(m), and
refer the reader to Katz & Lindell [11, §3] for a formal definition.

Unlinkability. Requests for the same content cannot be
detected as such, except by the edge cache.

Unlinkability permits edge caches to detect when the same
content is requested by one or more clients. This exception is
necessary for edge caches to perform their task.

A. Protocol description

We now adapt our protocol to satisfy confidentiality and
unlinkability. As per the original description, we require
servers to associate each piece of content with a identifier,
a pseudo-identifier, and an encryption key. And edge caches
associate pseudo-identifiers with encrypted content. The pro-
tocol proceeds as follows:

• Setup. As per Section II.
• Request. As per Section II.
• Response. To respond to a request, server S decrypts

ciphertext SEncs(id) using session key s to recover
identifier id, retrieves the corresponding pseudo-identifier
pid and encryption key kid, generates a symmetric key
t, symmetrically encrypts the concatenation of kid and t
with s, asymmetrically encrypts the concatenation of pid
and t with the edge cache’s public key pkE , and sends
the resulting ciphertexts to the edge cache. Namely,3

– S �! E: AEncpkE (pidkt),SEncs(kidkt)
Edge cache E decrypts ciphertext AEncpkE (pidkt) using
its private key skE to recover pid and symmetric key t.
If a cache miss occurs, then E generates a symmetric
key t0, encrypts the concatenation of pid and t0 with
the server’s public key pkS , and sends the resulting
ciphertext to server S, which the server decrypts with
private key skS to recover pid and t0, and responds
with ciphertext SEnct0(SEnckid(file)), finally, edge cache
E decrypts that ciphertext with t0 and associates the
pseudo-identifier with the recovered encrypted content
SEnckid(file), where pid is associated with content file
and encryption key kid. That is,

– If cache miss, then
⇤ E �! S: AEncpkS (pidkt0)
⇤ S �! E: SEnct0(SEnckid(file))

Once edge cache E has an association between pseudo-
identifier pid and encrypted content SEnckid(file),
the edge cache symmetrically encrypts ciphertext
SEnckid(file) with symmetric key t, and sends the re-
sulting ciphertext coupled with ciphertext SEncs(kidkt)
to client C. Namely,

E �! C: SEncs(kidkt),SEnct(SEnckid(file)).
Upon receipt, client C decrypts ciphertext SEncs(kidkt)
using session key s to recover encryption key kid
and symmetric key t, uses t to decrypt ciphertext
SEnct(SEnckid(file)) to recover ciphertext SEnckid(file),
which it decrypts using kid to recover content file, thereby
concluding a run of the protocol.

Fig. 3 depicts an instance of the protocol in which: client
A requests id; a cache miss occurs at edge cache E, thus,

A E S

SEncsA (id)

AEncpkE (pid||t), SEncsA (kid||t)

AEncpkS (pid||t’)

SEnct0 (SEnckid(file))

SEncsA (kid||t), SEnct(SEnckid(file))

C
ac

he
m

is
s

B E S

SEncsB (id)

AEncpkE (pid||t”), SEncsB (kid||t”)

SEncsB (kid||t”), SEnct00 (SEnckid(file))

C
ac

he
hi

t

Fig. 3: Extension of CryptoCache to prevent linkability.

the edge cache requests the encrypted content from server S
and forwards the encrypted content to A; subsequently, client
B requests the same request; and edge cache E responds to
B directly. Thereby demonstrating that the protocol enables
encrypted content to be cached.

The number of messages exchanged is the same as for the
first version of CryptoCache and it achieves identical caching
performance. However, extra encryptions are required, which
increases computational complexity.

B. Informal security analysis

When instantiated with a secure symmetric encryption
scheme and a secure asymmetric encryption scheme, our ex-
tension to CryptoCache satisfies confidentiality due to reasons
similar to those presented in Section II-B. Furthermore, unlink-
ability is satisfied, because pseudo-identifiers are asymmetri-
cally encrypted, thus, cannot be linked. Moreover, encrypted
content is distinct between sessions due to nested encryption.
In particular, requests by edge caches for encrypted content
cannot be linked, nor can requests by clients.

Our protocol could be easily extended to satisfy authenti-
cation and integrity. Authentication can be achieved by the
user authenticating the server during the establishment of the
secret session key in the setup phase. Thus, authentication can
be provided in a standard way, e.g., public-key certificates.
Integrity can also be achieved in a standard way, e.g., using
message authentication codes.

IV. BALANCING CACHING PERFORMANCE AND SECURITY

To perform their task, edge caches necessarily link pseudo-
identifiers with encrypted content, between client requests.
Consequently, it is possible for an edge cache to exhaustively
search a server’s identifier space to map identifiers to pseudo-
identifiers and encrypted content. (The edge cache might
conduct an exhaustive search by sending messages directly to

3. We write mkn for the concatenation of messages m and n. And denote
the assymmetric encryption of m with public key pk as AEncpk(m).

time slot 1 2 3 4 5 6 7

search for file n 0 0 1 0 0 0 0
update pseudo-identifier of file n 0 0 0 0 1 0 1
pid of file n a a a a b b c

kid of file n â â â â b̂ b̂ ĉ

output of process X(n, t) 0 0 1 1 0 0 0

TABLE I: Exemplar evolution of process X(n, t).

the server, or by colluding with one or more users to do so.)
Thus, edge caches might learn which content clients request.
Servers can invalidate such mappings, simply by updating
pseudo-identifiers and encryption keys. For instance, servers
might update pseudo-identifiers and keys after every request.
However, updates have repercussions on caching performance:
if a file exists in the cache with an obsolete pseudo-identifier,
a request for this file will be a miss. Hence, frequent updates
decrease hit rate. In this section, we balance this trade-
off by answering the following question: how often should
updates occur whilst keeping an acceptable hit probability
performance? We use a Stackelberg security game to answer
this question. More precisely, given a cache hit probability
target, we establish an update strategy which minimizes the
probability of a successful search, i.e., a search that suc-
cessfully maps content identifiers to pseudo-identifiers and
encrypted content.

A. Search and update strategies

We consider slotted time using slots t = 1, 2, . . . corre-
sponding to time intervals [0, T], [T, 2T], . . . , where T is the
slot size. We suppose requests for N files are made with a
discretized Independent Reference Model (IRM) [13]. At each
slot, exactly one request for a file is made.4 The request is for
file n with probability pn.

Consider a stochastic process X that inputs a file n and a
time slot t, and outputs 1 if the pseudo-identifier associated
with n has been revealed and outputs 0 otherwise. We remark
that after updating a pseudo-identifier, X will output zero. We
exemplify the evolution of the stochastic process in Table I.

We define the successful search event A as follows: we
let time grow t ! 1 and consider the confidentiality of
an arbitrary request Y , where P(Y = n) = pn. The search
is successful if Y ’s pseudo-identifier is revealed, i.e., if
X(Y,1) = 1. Formally, the probability of a successful search
is defined as follows:

A = lim sup

t!1
Y [X(Y, t) = 1]

= lim sup

t!1

X

n

pnP(X(n, t) = 1) .

Henceforth, we restrict ourselves to randomized up-
date/search strategies. Let t be a slot, let dn 2 [0, 1] be the
probability to update the pseudo-identifier of file n, and let
an 2 [0, 1] be the probability to search for file n. Moreover,
let d,a be the corresponding vectors of probabilities. In this
context, process X(n, t) is a binary Markov chain with state
transition probabilities p

01

= an(1 � dn) and p
10

= dn.

Fig. 4: Binary Markov chain modelling the evolution of the stochastic process
X(n, t).

(Fig. 4), and we compute the stationary probability as follows:

P(X(n,1) = 1) =

(
0 if an = 0 or dn = 1

an

an+
dn

1�dn

otherwise.

Hence, A reduces as follows:

A(d,a) =
X

n=1..N
n:dn<1

pn
an

an +

dn
1�dn

.

The update strategy d should be chosen to minimize A, while
the search strategy a to maximize it. Hence, performance is
ultimately characterized by a two-player zero-sum game.

Consider the following realistic setting. The search strat-
egy’s impact on X(n, t) is naturally not observable by the
update strategy. On the contrary, it is reasonable to assume that
the update strategy is fixed and advertized (e.g. standardized),
and hence known to the entity that decides a (here assumed
to be the edge cache). Indeed, the server should be a priori
designed to withstand the worst-case search strategy. In this
context, characterizing the performance of A(d,a) falls into
the classical framework of Stackelberg security games [14].
Such games can be solved as follows. The optimal update
strategy d⇤ is given by

d⇤
2 argmin

d
A(d, BRa(d)),

where BRa(d) is the best response search strategy for d.
Thus, the optimal search strategy is BRa(d⇤

). The pair of
strategies (d⇤, BRa(d⇤

)) is called a Strong Stackelberg Equi-
librium (SSE), and is known to coincide with the following
optimization [14], [15]:

min

0dn1

g1(d)0

max

0an1

g2(a)0

X

n=1..N
n:dn<1

pn
an

an +

dn
1�dn

. (1)

We proceed to clarify the constraints g
1

, g
2

in our application.
The hit probability performance is directly affected by the

updates of pseudo-identifiers. Let hn(d) be the hit probability
of file n with respect to update strategy d. Probability hn(d)
depends on the used caching policy, here we consider the
cache the most popular files policy.5 We have

hn(d) =

⇢
(1� dn), n = 1, . . . , C
0, n = C + 1, . . . , N.

4. If we generate requests for files with probability � 2 [0, 1] and let the
slot size T be arbitrarily small, our model approaches the classical continuous
time IRM with rate �/T . Here we drop � since it is a mere scaling factor
that does not affect our analysis.

5. The computation of hn(d) for other policies (e.g., LRU and LFU) is a
possible direction for future work.

Note that term (1 � dn) equals the probability that a request
for a cached file is missed due to the pseudo-identifier update.
We let

g
1

(d) = h
min

�

CX

n=1

pn(1� dn) =
CX

k=1

pkdk � (hC � h
min

)

where hC =

PC
n=1

pn is the hit probability of “cache the
most popular” without updates. The constraint g

1

(d) 0

establishes that the modified hit probability due to the updates
which is

PC
n=1

pn(1� dn) is more than h
min

, the desired hit
probability. Note that if we do not require achieving a positive
hit probability, we may set h

min

= 0 and then the optimal
update strategy is to update all pids continuously: dn = 1, for
all n.

Typically, there is a budget A
max

for searches per slot. If
A

max

= N , all files are requested at each slot. However, such
an extreme intensity of requests can be detected by traffic
analysis and then neutralized. Hence, to avoid detectability
practical search strategies would limit A

max

. Thus,

g
2

(a) =
NX

n=1

an �A
max

,

hence g
2

(a) 0 implies the search is less than the budget
A

max

. Note that if A
max

= N , the optimal search strategy is
an = 1, for all n.

B. Upper bound on successful search
We derive the worst-case caching performance by solving

the Stackelberg game under the assumption that the update
strategy is designed for A

max

= N , i.e., the largest possible
search budget. This will provide a performance bound because
the update strategy could be improved if we could know
a priori the actual budget of the search, which is possibly
A

max

< N .
When A

max

= N , the search strategy is trivially found to be
a⇤

= 1, irrespective of the update strategy, hence, the optimal
update d⇤ is presented in the following lemma.

Lemma 1 (Unlimited budget SSE): Best response update
strategy d⇤

= BRd(1) for search a⇤
= 1 is

d⇤n =

⇢
1�

hmin
hC

1 n C
1 C + 1 n N.

Moreover, the pair of strategies (BRd(1),1) is a Strong
Stackelberg Equilibrium when A

max

= N .
Proof of Lemma 1: With the largest budget, the search
strategy is trivially derived as a⇤n = 1, for all n. Hence, (1)
becomes

min

0dn1PC
k=1 pkdk�hC�hmin

X

n=1..N
n:dn<1

pn
1

1 +

dn
1�dn

which is the best response update strategy for a⇤
= 1. This is

equivalent to maximizing
P

n=1..N
n:dn<1

pndn, subject to the above
constraints. And this problem can be solved by Karush-Kuhn-
Tucker conditions to yield the result.

Optimal update for unlimited budget (design time)

Best search (limited budget)

Fig. 5: Optimal update strategy BRd(1) for an unlimited search budget
(top) and best response search strategy BRa(BRd(1)) for a limited budget
(bottom).

It might seem surprising that the update strategy treats all
files equally (Fig. 5), and does not update popular files more
frequently. This is attributed to the fact that popular files also
yield big hit probabilities, hence if updated frequently, more
cache misses will occur, which quickly consumes h

min

. Thus,
the update strategy treats all files equally.

Having fixed the update strategy, we proceed to clarify a
realistic search strategy with budget A

max

< N . This is given
by a⇤

= BRa(d⇤
) and can be obtained using the first-order

optimality condition of convex optimization, which leads to a
“waterfilling” algorithm that incrementally assigns resource in
steps to the file n⇤ with dn⇤ < 1 that maximizes the partial
derivative

@ pnan

an+�n(d)

@an
=

pn�n(d)

(an + �n(d))2
,

where �n(d) =

dn
1�dn

, and while respecting the box and
simplex constraints. Fig. 5 showcases the result. The search
strategy reasonably assigns more resources to popular files
since in this case we have A

max

< N .
Performance is ultimately determined by successful search

probability A, which is a function on the popularity dis-
tribution [pn], the cache size C, the minimum hit probabil-
ity requirement h

min

, and the budget A
max

. Below we fix
N = 1000, C = 100 (corresponding to caching 10% of
files), and popularity distribution pn / n�s, where the power
law exponent s = 0.8, as typically measured in Internet
applications with user-generated content (e.g., YouTube) [16].
The resulting A is shown in Fig. 6 for different values of
h
min

, and A
max

(given as the fraction of the catalogue N
searched at each slot).

Fig. 6: Probability of successful search (y-axis) for search rate (x-axis) and hit
probabilities hmin 2 {0.1, 0.2, 0.3, 0.4, 0.51}, with simulation parameters
s = 0.8, N = 1000, and C = 100. We mention that the maximum hit
probability in this case is hC = 0.52.

For low hit probability requirements such as h
min

= 0.1,
A is always smaller than 5%. Moreover, the successful search

probability is small if A
max

< 0.001, that is, the search
happens on the same time scale as the requests.

V. RELATED WORK

The problem of encrypted traffic can be assumed away
for caches that are trusted with content providers’ content
and cryptographic keys (Section I). Traditional CDN solu-
tions [10] deliver SSL content to end-users on behalf of
producers. Similarly, Naylor et al. [17] propose multi-context
TLS (mcTLS), a modified version of TLS which supports
trusted edge caches. In contrast with previous work, we assume
caches are untrusted. Thus, content providers’ content and
cryptographic keys cannot be shared with caches. Indeed, this
violates our confidentiality requirement, i.e., client requests
and server responses (including content) are only revealed to
clients and servers. In contrast with previous work, we assume
caches are untrusted. Thus, content providers’ content and
cryptographic keys cannot be shared with caches. Indeed, this
violates our confidentiality requirement, i.e., client requests
and server responses (including content) are only revealed to
clients and servers.

Content producers such as Netflix share encrypted content
with caches and clients request encrypted content from those
caches,6 thus a client’s request is revealed to the cache, whilst
the content is not. Wood & Uzun [18] use a similar technique
that additionally asymmetrically encrypts the symmetric keys
used to encrypt content and uses proxy re-encryption to dis-
tribute those asymmetrically encrypted keys to clients. These
approaches assume caches are trusted not to reveal requests.

In parallel with our work, a technical report describing an
application layer protocol for caching encrypted traffic has
been released [19]. By comparison, we propose a protocol
that is independent of the OSI stack. In addition, we identify
a limitation on the confidentiality that can be assured when
caching encrypted traffic and propose a methodology to opti-
mise confidentiality, whereas parallel work does not.

VI. CONCLUSION

We have proposed CryptoCache, a security protocol to
enable caching of encrypted content. It allows caches to
store encrypted content with reusable pseudo-identifiers while
maintaining confidentiality. The protocol provides a solution
to caching in the all-encrypted web. Furthermore, we have
presented an extension to prevent the linkability of user
requests. Finally, we have formally analyzed the trade-off
between security and the effectiveness of caching.

REFERENCES

[1] B. M. Maggs and R. K. Sitaraman, “Algorithmic nuggets in content
delivery,” ACM SIGCOMM CCR, vol. 45, no. 3, 2015.

[2] G. Paschos, E. Bastug, I. Land, G. Caire, and M. Debbah, “Wireless
caching: technical misconceptions and business barriers,” IEEE Com-
munications Magazine, vol. 54, no. 8, pp. 16–22, 2016.

[3] S. Gitzenis, G. S. Paschos, and L. Tassiulas, “Asymptotic laws for joint
content replication and delivery in wireless networks,” IEEE Trans. Inf.
Theory, vol. 59, no. 5, pp. 2760–2776, 2013.

[4] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, 2014.

[5] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching in
wireless d2d networks,” IEEE Trans. Inf. Theory, vol. 62, no. 2, pp.
849–869, 2016.

[6] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless content delivery through distributed
caching helpers,” IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 8402–
8413, 2013.

[7] Cisco, “Cisco visual networking index: Global mobile data traffic
forecast update 2014-2019,” 2015.

[8] “Sandvine, report on global internet phenomena spotlight: Encrypted
internet traffic. white paper.” 2016.

[9] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia,
M. Munafò, K. Papagiannaki, and P. Steenkiste, “The cost of the ”s” in
https,” in ACM CoNext, 2014.

[10] A. van Kesteren, Secure Content Delivery Network. Akamai Whitepa-
per., 2014.

[11] J. Katz and Y. Lindell, Introduction to Modern Cryptography. Chapman
and Hall/CRC Press, 2007.

[12] J. Reschke and S. Loreto, “Out-Of-Band Content Coding for HTTP,”
Draft. Out-Of-Band Content Coding for HTTP, 2015.

[13] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate approx-
imation for LRU cache performance,” CoRR, vol. abs/1202.3974, 2012.

[14] D. Korzhyk, Z. Yin, C. Kiekintveld, V. Conitzer, and M. Tambe,
“Stackelberg vs. nash in security games: An extended investigation
of interchangeability, equivalence, and uniqueness,” J. Artif. Int. Res.,
vol. 41, no. 2, 2011.

[15] A. Ghosh and S. Boyd, “Minimax and convex-concave games,” Tech.
Rep., 2003.

[16] S.-E. Elayoubi and J. Roberts, “Performance and cost effectiveness of
caching in mobile access networks,” in ACM-ICN, 2015.

[17] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis, J. Blackburn, D. R.
López, K. Papagiannaki, P. Rodriguez Rodriguez, and P. Steenkiste,
“Multi-Context TLS (mcTLS): Enabling Secure In-Network Function-
ality in TLS,” SIGCOMM CCR, vol. 45, no. 4, 2015.

[18] C. A. Wood and E. Uzun, “Flexible end-to-end content security in CCN,”
in IEEE CCNC, 2014.

[19] G. Eriksson, J. Mattsson, N. Mitra, and Z. Sarker, Blind cache: a solution
to content delivery challenges in an all-encrypted web. Ericsson white
paper., 2016.

6. https://pomelollc.wordpress.com/2009/04/15/
on-netflixs-video-streaming-security-framework/

