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Abstract 

 

Lampinen (2016) suggested that proponents of ROC analysis may prefer that approach to the 

diagnosticity ratio because they are under the impression that it provides a theoretical measure of 

underlying discriminability (d'). In truth, we and others prefer ROC analysis for applied purposes 

because it provides an atheoretical measure of empirical discriminability (namely, partial area-

under-the-curve, or pAUC). The issue of underlying theoretical discriminability only arises when 

theoreticians seek to explain why one eyewitness identification procedure yields a higher pAUC 

than another. Lampinen (2016) also argued that favoring the procedure that yields a higher 

pAUC can lead to an irrational decision outcome. However, his argument depends on needlessly 

restricting which points from two ROCs can be compared. As a general rule, the maximum-

utility point will fall somewhere on the higher ROC, underscoring the need for ROC analysis. 

Thus, Lampinen’s (2016) arguments against the usefulness of ROC analysis are unfounded.  
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ROC Analysis in Theory and Practice 

In recent work, we and others have used receiver operating characteristic (ROC) analysis 

to measure how well eyewitnesses can distinguish between innocent and guilty suspects using 

simultaneous lineups, sequential lineups, or showups (Colloff, Wade, & Strange, 2016; Seale-

Carlisle & Mickes, 2016; Carlson & Carlson, 2014; Dobolyi & Dodson, 2013; Gronlund et al., 

2012; Mickes, Flowe, & Wixted, 2012; Neuschatz, Wetmore, Key, Cash, Gronlund, & Goodsell, 

2016). The preferred dependent measure is partial area under the ROC curve (pAUC) because its 

interpretation is unambiguous and is not dependent on any theory. Except under rare conditions 

(such as when ROCs from two conditions cross over), the diagnostic procedure that yields the 

highest pAUC is the one that eyewitnesses can use to most accurately classify innocent suspects 

and guilty suspects into their true categories. Stated differently, the procedure that yields a higher 

pAUC can be used to achieve both a higher correct ID rate and a lower false ID rate than a 

competing procedure. The fact that pAUC provides that kind of objective, theory-free 

information about the ability of eyewitnesses to discriminate the innocent from the guilty is why 

we and others judge it to be an improvement over a measure like the diagnosticity ratio (National 

Research Council, 2014; Rotello, Heit & Dube, 2014).  

Contrary to this view, Lampinen (2016) argued that ROC analysis is not the superior 

methodology it has been made out to be. For example, he considered the possibility that 

proponents of ROC analysis favor it because they are under the impression that pAUC provides a 

pure measure of underlying (i.e., theoretical) discriminability.1 Using a simulation, he presented 

evidence against that idea by showing that a theoretical measure of underlying discriminability 

(d') can be held constant across two conditions that differ in pAUC. However, Lampinen is 

                                                
1 Specifically, Lampinen (2016) speculated that "One possibility is that ROC analyses provide a pure measure of 
underlying discriminability and thus, the proponents argue, should be the preferred method of measuring lineup 
performance" (p. 31). 
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wrong to suggest that pAUC has been judged to be superior to the diagnosticity ratio because it 

is thought to provide a pure measure of underlying discriminability. As noted above, pAUC has 

been judged to be superior to the diagnosticity ratio because it provides an objective measure of 

empirical discriminability, not because it provides a theoretical measure of underlying 

discriminability. Still, we consider his argument in some detail because it has been interpreted as 

providing “…strong additional evidence that ROC analyses on lineups are not measures of 

discriminability” (Wells, Smalarz, & Smith, 2015, p. 316).  

Separately, Lampinen argued that ROC analysis, when used for applied purposes, may 

not properly take into account the costs of decision-making errors (e.g., the cost of false IDs) and 

can therefore result in an irrational preference for the procedure that ROC analysis deems to be 

superior (namely, the one that yields a higher pAUC). However, Lampinen erred in this analysis 

by proposing that there are restrictions on the points from two ROCs that can be legitimately 

compared to each other. No such restrictions exist, and once that fact is appreciated, it becomes 

clear that utility can be maximized by using the procedure that yields the highest pAUC. In the 

two main sections that follow, we critically evaluate the theoretical and applied arguments that 

were advanced by Lampinen in his effort to discredit ROC analysis. 

Theoretical considerations 

Does pAUC provide a pure measure of underlying discriminability? We have never 

suggested that it does, and there is no way that it could. Underlying discriminability (d') is a 

theoretical concept that does not exist independent of a specific quantitative model, one that 

specifies the mathematical shapes of the underlying memory strength distributions as well as the 

decision rule that eyewitnesses are assumed to use. By contrast, empirical discriminability 
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(pAUC) is measured without reference to any theory. It is simply a measure of the area under the 

empirically obtained ROC points.  

For a given set of ROC data, there is only one estimate of pAUC, and this is the objective 

measure that policymakers should care about. By contrast, there is no end to the number of 

different theoretical d' estimates that could be obtained from those same ROC data. In fact, the 

number of different theoretical d' estimates that could be obtained from a given set of ROC data 

is limited only by the number of different signal detection models one is willing to entertain. 

That being the case, pAUC cannot invariably serve as a pure substitute for d'. This is not to 

suggest that the two measures are likely to be unrelated. Because pAUC and d' are both 

computed from the same set of ROC data, it seems reasonable to suppose that they will often be 

correlated with each other, and indeed they are (Mickes, Moreland, Clark & Wixted, 2014). 

However, they are not mathematically identical measures, so it must be the case that they will 

sometimes disagree. As described next, Lampinen's simulations simply confirmed that 

uncontroversial fact. 

Lampinen specified one particular quantitative signal detection model characterized by 

the following specific (and, in our view, reasonable) assumptions: (1) underlying memory 

strength was represented by Gaussian distributions; (2) the decision rule consisted of basing a 

decision solely on the strength of the most familiar face in the lineup (without regard for the 

other faces in the lineup); and (3) the decision criteria were assumed to be fixed across 

participants (with the implicit assumption that any difference in criterion variability that might 

exist across conditions was sufficiently small that it could be safely ignored). Using that 

particular model, he generated simulated ROC data from showups and lineups that were equated 

in terms of underlying d' as defined by that model. Even so, the two procedures yielded different 



ROC ANALYSIS IN THEORY AND PRACTICE        6 

simulated empirical ROCs and (therefore) different pAUCs. The fact that the two measures can 

disagree in this way proves only that the mathematics underlying the computation of pAUC and 

d' are not identical, which must be true given that one measure (pAUC) reflects area under the 

ROC points and the other measure (underlying d') is derived from a specific signal detection 

model and would likely differ if another signal detection model were employed. However, 

Lampinen instead took this result to mean that "pAUC analyses do not provide a valid way of 

comparing identification procedures in terms of the effect they have on underlying memory 

discriminability" (p. 26).  

Although a simulation study like the one that Lampinen performed does not support that 

conclusion, it does underscore a potential problem for any theory that has been advanced to 

explain an observed difference in pAUC across two conditions in terms of a corresponding 

difference in underlying discriminability. To illustrate the potential problem, we follow 

Lampinen (see his section on "Underlying Discriminability," p. 24) and consider this issue in 

relation to our own diagnostic feature detection theory (Wixted & Mickes, 2014). Here is a brief 

summary of how we have previously interpreted pAUC differences in terms of their applied 

implications and, separately, in terms of our theory: 

 

1. In 2012, an unexplained empirical phenomenon was observed. Specifically, ROC 

studies reported that pAUC for simultaneous lineups was greater than pAUC for 

sequential lineups (Gronlund et al., 2012; Mickes et al., 2012). Other work showed 

that, in addition, pAUC for simultaneous lineups was greater than pAUC for showups 

(Gronlund et al., 2012). These pAUC results were taken to mean that simultaneous 

lineups can be used to achieve both a higher correct ID rate and a lower false ID rate 
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(i.e., they can be used to achieve higher empirical discriminability) than alternative 

procedures. Note that the results were not interpreted to mean that pAUC provides a 

pure measure of underlying discriminability. 

 

2. In 2014, the diagnostic feature-detection theory was advanced to explain those 

empirical pAUC results (Wixted & Mickes, 2014). This theory assumes that 

simultaneous lineups help witnesses to discount non-diagnostic facial features, and it 

predicts (1) that simultaneous lineups will yield higher discriminability than both 

sequential lineups and showups and (2) that fair lineups will yield higher 

discriminability than unfair lineups. The diagnostic feature-detection theory does 

claim that the observed pAUC differences across conditions reflect corresponding 

differences in underlying discriminability. However, it does not also claim that pAUC 

provides a pure measure of underlying discriminability, which is the claim that 

Lampinen sought to disprove.  

 

Although Lampinen's simulation study addressed a claim that, to our knowledge, no one 

has made, it nevertheless does raise the following legitimate concern: Conditions that differ in 

terms of pAUC (e.g., simultaneous and sequential lineups), which the diagnostic feature-

detection theory explains in terms of a corresponding difference in underlying discriminability, 

may not actually differ in terms of underlying d' as measured by a specific signal detection 

model. After all, Lampinen's simulations show that, in one particular circumstance, at least, a 

difference in pAUC can arise even when underlying d' is equated across conditions. If the same 
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is true of actual data, not just those simulated data, then a model like ours, which relies on a 

difference in underlying discriminability to explain a difference in pAUC, might be in error.  

Note that the diagnostic feature-detection theory is not itself a quantitative model that can 

be used to measure underlying d'. It is instead a conceptual theory about the discounting of 

shared facial features under certain conditions. Still, the theory does assume that if one specified 

a viable signal detection model and used it to quantify underlying discriminability across 

conditions, then the observed differences in pAUC would be reflected in corresponding 

differences in underlying d'. 

How can that assumption be tested? There is only one way to do so that we know of, and 

it is not the approach that Lampinen used. Step 1 is to specify a quantitative signal detection 

model. As noted above, this is an essential step because the concept of underlying 

discriminability exists only in relation to a specific quantitative model, and it is the proposed 

quantitative model that makes it possible to measure d'. Step 2 is to compute both pAUC and, 

using that proposed quantitative measurement model, d' from the ROC data that a theory like the 

diagnostic feature-detection theory purports to explain.  

Critically, one obtains the model's estimate of underlying d' for each of two conditions 

being compared by fitting the specified signal detection model to the empirical ROC data from 

each condition using an optimization procedure – not by conducting a simulation. Separately, 

one also obtains an atheoretical estimate of pAUC from the same two conditions using pROC 

software (Gronlund, Mickes & Wixted, 2014; Robin et al., 2011). To the extent that pAUC and 

d' agree about which condition is associated with higher discriminability, it increases confidence 

in the validity of the assumption that the observed pAUC differences reflect corresponding 

differences in underlying discriminability (as assumed by the diagnostic feature-detection 
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theory). To the extent that they disagree, it reduces confidence in that assumption – although it 

could instead mean that the specific signal detection model that was used to compute d' is wrong.  

The model that Lampinen used for his simulations is a reasonable candidate for Step 1. 

Therefore, to estimate underlying d' from conditions that differ in pAUC, we used his signal 

detection model and fit it to empirical ROC data obtained from several studies that compared (1) 

showups vs. lineups, (2) fair lineups vs. unfair lineups, (3) simultaneous vs. sequential lineups, 

and (4) simultaneous lineups vs. 9-member sequential video lineups (i.e., US vs. UK lineups). In 

each of these studies, a significant pAUC difference between conditions has been reported – a 

difference that the diagnostic feature-detection theory explains in terms of a difference in 

underlying discriminability. The key question is whether, using Lampinen's own measurement 

model, a difference in underlying discriminability (d') is also observed between those conditions. 

The details of the model-fitting procedure are presented in the appendix. Keep in mind that the 

issue being addressed here has to do with the validity of a theory that has been proposed to 

explain pAUC differences between, for example, simultaneous and sequential lineups. It has 

nothing at all to do with which procedure is, empirically, diagnostically superior to the other. The 

pAUC measure already provides that information. 

Do the two measures (d' and pAUC) agree? Indeed they do. As shown in Table 1, for 

each of the 7 comparisons taken from 5 published studies performed by multiple independent 

labs, the theory-based estimate of underlying discriminability, d', agrees with the theory-free 

measure, pAUC. Note that the pAUC results from all of these comparisons are consistent with 

the predictions of the diagnostic feature-detection theory. Thus, if the signal detection model 

used by Lampinen in his simulations is assumed to provide valid estimates of d', then the 



ROC ANALYSIS IN THEORY AND PRACTICE        10 

observed differences in pAUC reflect differences in underlying discriminability, as assumed by 

the diagnostic feature-detection theory.  

Although these findings support the interpretation provided by the diagnostic feature-

detection theory, they do not deny what Lampinen showed with his simulation, which is that it is 

possible to identify a circumstance where the two measures disagree. That can certainly happen 

because pAUC and d' are not mathematically identical measures. Lampinen's mistake was to 

conclude that because the two measures can disagree, then any effort to explain a difference in 

pAUC in terms of underlying discriminability is invalid. The results summarized in Table 1 

show that such a conclusion is unwarranted. 

Our own conclusion that pAUC and d' generally agree is based on extant data, but there 

is no way to know what future studies will show. Moreover, the agreement between pAUC and 

d' shown in Table 1 might change if a different signal detection model were used to estimate 

underlying d'. Our point is simply that the way to test the assumption that differences in pAUC 

reflect differences in underlying discriminability is to follow the steps illustrated here, including 

the indispensable step of actually fitting the specified signal detection measurement model to 

empirical ROC data instead of performing a simulation showing that a hypothetical circumstance 

can be found where the two measures disagree. A simulation like that only serves to test the 

claim that the two measures always agree (i.e., that one measure is a pure substitute for the 

other), which is a claim that no one has made.  

Again, these considerations, while relevant to theory development, have no bearing on 

the applied question of which eyewitness identification procedure is diagnostically superior in 

actual practice. Instead, these considerations are of concern to theoreticians only. For applied 

purposes, pAUC is the only measure that matters because (rare exceptions notwithstanding, such 
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as crossover ROCs) the procedure that yields a higher pAUC can be used to achieve both a 

higher correct ID rate and a lower false ID rate than a competing procedure.  

Applied Considerations 

In addition to raising the theoretical issues discussed above, Lampinen also argued 

against the applied value of ROC analysis. In so doing, he introduced a pivotal idea that we have 

not previously encountered and that seems entirely incorrect to us. The crux of his argument is 

that certain considerations constrain the comparison of a point from one ROC to a point on a 

different ROC. In Lampinen's view, the failure to appreciate those constraints can create the 

impression that the procedure associated with a higher pAUC is diagnostically superior to a 

procedure associated with a lower pAUC even when it is actually the other way around. He 

illustrated this argument using "utility" (i.e., overall value) computed for the hypothetical ROC 

points shown in his Figure 6. We consider this argument after first describing the putative 

constraint on which his conclusions depend.   

A Constraint on ROC Analysis. Unlike the pAUC measure, which is based on all of the 

ROC points for a given identification procedure, utility is computed separately for each point on 

the ROC. Lampinen's argument is that a measure associated with a particular point on the ROC 

for one procedure (Procedure A) can be legitimately compared only to the corresponding point 

on the ROC for another procedure (Procedure B). Corresponding points are those that are based 

on IDs made with the same level of confidence. For example, both the rightmost point on the 

ROC for Procedure A and the rightmost point on the ROC for Procedure B are computed using 

all suspect IDs regardless of the level of confidence (these are the overall correct and false ID 

rates). In Lampinen's view, because they were computed in the same way, a measure associated 

with those two points (e.g., their utility measures) can be legitimately compared to each other but 
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not to any other ROC point. Similarly, the next point to the left on each ROC is computed using 

IDs that were made with all but the lowest level of confidence, so they, too, can be legitimately 

compared to each other but not to any other point (and so on). According to Lampinen, not 

constraining comparisons across two ROCs in this way "…is not a reasonable or scientifically 

valid way to compare two conditions" (p. 28). The basis for that claim was not explained, and no 

source was cited. We believe that no source could be cited because this idea is incorrect, has no 

precedent, and loses sight of the primary advantage of ROC analysis. Every point on the ROC is 

achievable (if not, the points could not be plotted in the first place). Therefore, any point on one 

ROC can be legitimately compared to any point on the other ROC when the goal is to determine 

the most valued (achievable) outcome. In other words, there is no constraint on which of two 

ROC points can be legitimately compared to each other. Moreover, as we explain next, 

Lampinen's claim that a procedure associated with a lower pAUC can have greater utility than a 

procedure associated with a higher pAUC is dependent on the presumed necessity of this (in 

truth, inappropriate) constraint. 

Maximizing Utility. Consider the hypothetical data from the two eyewitness identification 

procedures (Procedure A and Procedure B) shown in Figure 1, which were reproduced from 

Lampinen's Figure 6. Obviously, Procedure A yields a higher pAUC than Procedure B, but 

Lampinen made the case that once utility is computed, Procedure B might be diagnostically 

superior nonetheless.  

A utility analysis involves taking into consideration subjective values, so we will 

illustrate his argument as well as our rebuttal by assigning specific subjective values to the four 

possible decision outcomes.2 The four possible outcomes are as follows: a correct suspect ID, 

                                                
2 In this example, we focus solely on whether or not a suspect ID was made from a target-present or target-absent 
lineup because suspect IDs are clearly consequential, whereas filler IDs are much less consequential (i.e., their 
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also known as a hit (the guilty suspect was correctly identified from a target-present lineup), a 

miss (the suspect was not identified from a target-present lineup because the lineup was rejected 

or a filler was incorrectly identified), a correct rejection (the innocent suspect was not identified 

from a target-absent lineup because the lineup was rejected or a filler was incorrectly identified), 

and a false ID, also known as a false alarm (the suspect was incorrectly identified from a target-

absent lineup). Using arbitrary units, shows hypothetical subjective values that might be assigned 

to each decision outcome. In this example, the cost of a false alarm (-10) is ten times the cost of a 

miss (-1). The benefit of a hit (+5) is five times the benefit of a correct rejection (+1). Note that 

this is just an example. The point we make here would apply even if different non-zero values 

were used for the positive and negative outcomes so long as correct decisions (hits and correct 

rejections) are assigned higher value than incorrect decisions (misses and false alarms).   

 Assuming equal base rates of target-present and target-absent lineups for the sake of 

simplicity, the overall utility of each ROC point can be calculated once the subjective values 

associated with the different decision outcomes are specified. The equation for computing utility 

is as follows (see Equation 1.14 in Green & Swets, 1966, p. 22, for the full equation that allows 

for unequal base rates): 

Utility = HR*VHR + M*VM + CR*VCR + FA*VFA 

where HR is the hit rate, M is the miss rate (equal to 1 – HR), CR is the correct rejection rate, FA 

is the false alarm rate (equal to 1 – CR), and, for this concrete example, VHR = +5, VM = -1, VCR = 

+1, and VFA = -10.  

The utility values shown next to each ROC point in Figure 2 were computed using this 

equation. Thus, for example, the correct and false ID rates for the rightmost ROC point for 

                                                                                                                                                       
utility is assumed to be negligible by comparison). However, as noted by Mickes et al. (2012), to the extent that one 
attaches utility to filler IDs, those considerations could easily be factored in as well (but they would not likely affect 
any conclusions for fair lineups). 
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Procedure A are .95 and .35, respectively. For that point, HR = .95, M = 1 - .95 = .05, CR = 1 - 

.35 = .65, and FA = .35. Using the decision-outcome values shown in Table 1, the utility of that 

ROC point is equal to .95 * (+5) + .05 * (-1) + .65 * (+1) + .35 * (-10) = 1.81. The same 

approach was followed to compute the utility values for each ROC point in Figure 2. 

Note that the utility of the rightmost ROC point in Figure 2 is higher for Procedure B 

(2.96) than it is for Procedure A (1.81), just as in Lampinen's example in which he argued that, 

under conditions like these, it might be a mistake to prefer Procedure A (because of its higher 

ROC) to Procedure B. In fact, he went so far as to imply that it would be irrational to prefer 

Procedure A under these circumstances by pointing out that: "A basic tenant [sic] of rational 

choice theory, is that rational choices are associated with selecting the alternative with greatest 

utility (von Neumann & Morgenstern, 1944). But as this example shows, ROC analyses will 

sometimes lead to selecting the alternative with the lowest expected utility" (p. 29). 

 When will ROC analysis lead to selecting the alternative with the lowest expected utility? 

It will do so when an analytical constraint is unnecessarily imposed according to which a 

decision about which procedure is diagnostically superior is limited to a comparison between a 

single point on one ROC (such as the rightmost point) and the corresponding point on the other 

ROC, as if the other points do not exist or are otherwise unachievable. Imposing that constraint is 

the only way to make an argument that the procedure associated with the lower ROC should be 

preferred to the procedure associated with the higher ROC. However, imposing that constraint is 

itself inconsistent with the rational goal of maximizing utility because doing so results in 

selecting an outcome with lower utility than can otherwise be achieved. We agree with 

Lampinen that it can be considered irrational to choose the alternative with lower expected 

utility. However, look again at the utility values shown next to each ROC point in Figure 1. The 
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highest utility is found on the higher ROC (that point is circled), as will almost always be true. 

The fact that the maximum-utility point will generally be found on the higher ROC is precisely 

why ROC analysis is essential for determining the diagnostically superior procedure. 

The key consideration is that each point on both ROCs represents an achievable outcome, 

and each point on both ROCs is associated with a specific utility. It therefore follows that the 

optimal decision strategy is to choose the achievable point that maximizes utility, without 

worrying about any other point on either ROC. Because the maximum-utility point will be found 

on the higher ROC (except in unusual circumstances, such as when ROCs cross over), 

maximizing utility requires first identifying and then making use of the procedure that yields a 

higher ROC (i.e., the one with the higher pAUC).  

Conclusion 

Lampinen erred with regard to his main point about the relationship between theory and 

ROC analysis. His mistake was to assume that proponents of ROC analysis favor that approach 

because they believe that pAUC provides a pure measure of underlying discriminability. Instead, 

proponents of ROC analysis favor that approach because pAUC (a measure computed from 

empirical ROC data) indicates which procedure can achieve both a higher correct ID rate and a 

lower false ID rate than a competing procedure.  

In an effort to explain certain findings based on the pAUC measure (e.g., simultaneous 

lineups yield a higher pAUC than sequential lineups), Wixted and Mickes (2014) proposed the 

diagnostic feature-detection theory. This theory is based on several assumptions, one of which is 

that differences in pAUC across conditions reflect differences in underlying discriminability 

across conditions. Lampinen showed that underlying d' can remain constant across two 

conditions that nevertheless yield different pAUCs, raising the possibility that the assumed 
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correspondence between pAUC and underlying discriminability is incorrect. However, if 

Lampinen had fit the same signal detection model that he used for his simulations to the relevant 

ROC data, he would have discovered what we report here in Table 1: pAUC and d' agree with 

respect to the ROC data that the diagnostic feature-detection theory purports to explain. It did not 

have to turn out that way, and future results may tell a different story, but the available evidence 

supports the assumption that differences in pAUC reflect differences in underlying 

discriminability (which is not to say that pAUC provides a pure measure of discriminability in 

every conceivable circumstance). 

Lampinen also erred in his diagnostic utility analysis of ROC data comparing different 

lineup procedures. His key mistake was to suggest that it makes sense to compare ROC points 

only from two different procedures that are equated in terms of expressed confidence. In truth, 

when used for applied purposes, the goal is to find the ROC point that maximizes utility without 

worrying about the other ROC points. Rare exceptions notwithstanding, the ROC point that 

maximizes utility will be found on the higher ROC. That is precisely why ROC analysis should 

be performed when comparing eyewitness identification procedures (i.e., to find out which 

procedure yields the higher ROC).  
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Table 1. A comparison of pAUC and d' estimated from the same ROC data from different 
conditions in five recent studies. 

 

 

 

 

 

 

 

 

  

Study Procedure pAUC d'
Lineup 0.09 1.33
Showup 0.04 0.72
p-value <.001 <.001

Fair	Lineup 0.06 1.68
Biased	Lineup 0.03 1.19

p-value <.01 <.001
Fair	Lineup 0.016 0.83

Biased	Lineup 0.008 0.54
p-value <.001 <.001

Simultaneous 0.13 1.85
Sequential 0.09 1.32
p-value <.05 <.001

Simultaneous 0.034 2.05
Sequential 0.028 1.81
p-value <.001 0.032

Simultaneous 0.044 2.52
Sequential 0.037 2.18
p-value <.001 0.007
US 0.17 1.07
UK 0.10 0.41

p-value 0.006 <.001
Seale-Carlisle	&	Mickes	(2016)

Wetmore	et	al.	(2015)

Wetmore	et	al.	(2015)

Colloff	et	al.	(2016)

Mickes	et	al.	(2012)

Dobolyi	&	Dodson	(2013)
[2	repetitions]

Dobolyi	&	Dodson	(2013)
[4	repetitions]
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Suspect ID No ID or
Filler ID

Target
Present +5 -1

Target
Absent -10 +1

Decision Outcome

Lineup 
Status

Table 2. Example of possible subjective decision outcome values assigned to the 4 decision 
outcomes with respect to suspects in lineups or showups.  
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Figure 1. Hypothetical ROC data from two conditions (Procedure A and Procedure B). The data 
were estimated from Lampinen's Figure 6. The values adjacent to each ROC points are its utility 
computed using the subjective decision outcome values in Table 2. The encircled point is the 
point with the highest utility. 
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Appendix 

 

The diagnostic feature detection theory explains empirical trends in pAUC data by 

assuming that underlying discriminability differs in the same way as pAUC does across 

conditions. There is only one way to find out if that assumption is valid, and that is to compute 

both pAUC and d' from the relevant data to see how often they actually do lead to different 

conclusions. Any conclusion about whether or not they do agree depends on the validity of the 

model that is used to estimate d'. We estimate underlying d' here by fitting the signal-detection 

model that Lampinen used to perform his simulations to actual empirical data from studies 

comparing (1) showups vs. lineups, (2) fair lineups vs. unfair lineups, (3) simultaneous vs. 

sequential lineups, and (4) simultaneous lineups vs. 9-member PROMAT sequential video 

lineups (US vs. UK, respectively). The results of the analyses described below are presented in 

Table 1 of the main article. 

The showup vs. lineup data come from Wetmore et al. (2015), as do the data for one of 

the fair vs. biased lineup comparisons. In both cases, we analyzed the data collapsed across their 

delay manipulation (immediate vs. delay) and used the innocentweak target-absent data. The 

innocentstrong data were not used for either comparison because, even in the "fair" 

innocentstrong lineup condition, the innocent suspect was misidentified from a target-absent 

lineup much more often than a filler was (i.e., that condition was not actually fair in that the 

innocent suspect stood out from the fillers). 

The other fair vs. biased lineup results shown in Table 1 of the main article came from 

Colloff et al. (2016). Because they reported both pAUC and d' values, we simply reproduced in 

our Table 1 the values they reported in their article and supplemental material (i.e., we did not 
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perform any fits to their data). In reporting the results from their fair lineup data, we collapsed 

the relevant measures (pAUC and d') across their 3 (very similar) fair conditions.  

The simultaneous vs. sequential data come from Experiment 1a of Mickes et al. (2012, 

see their Figure 6A) and from Dobolyi and Dodson (2013, see their Figure 1). Dobolyi and 

Dodson (2013) had two learning conditions (2 repetitions and 4 repetitions of the target stimuli 

during encoding), so their data provide two opportunities to compare pAUC and d'.  Finally, the 

US vs. UK data come from Seale-Carlisle and Mickes (2016, see their Figure 1). 

As noted above, the d' values were estimated by fitting the signal-detection process 

model that Lampinen used for his simulations to the ROC data from these studies. To estimate d', 

an equal-variance version of the model was fit to the data by minimizing the chi-square 

goodness-of-fit statistic. Separately, pAUC values were computed using the statistical package 

pROC (Robin et al., 2011). This program estimates pAUC over a partial range without resorting 

to any theoretical model. Thus, for each condition, we computed both pAUC and d' from the 

ROC data. 

According to the simple signal-detection model that Lampinen used, memory strength 

values for fillers, innocent suspects and guilty suspects are distributed according to Gaussian 

distributions with means of µFiller, µInnocent, and µGuilty, respectively. A 6-member target-present 

lineup is conceptualized as 5 random draws from the Filler distribution and 1 random draw from 

the Guilty distribution; a 6-member target-absent lineup is conceptualized as 5 random draws 

from the Filler distribution and 1 random draw from the Innocent distribution. If a fair target-

absent lineup is used, as is true of most of our fits, then µFiller = µInnocent, in which case the model 

reduces to a 2-distribution model (and a target-absent lineup is conceptualized as 6 random 

draws from the Filler distribution).  
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Of primary interest is the ability of eyewitnesses to collectively discriminate between 

innocent and guilty suspects, and that ability is represented by the distance between the means of 

the µInnocent and µGuilty distributions. That distance is the d' measure of interest, and it is the value 

reported in Table 1. To estimate d', we fit this model to the following data sets: 

 

1. Showup vs. lineup: Wetmore et al. (2015, Perpetrator and Innocentweak conditions in 

their Tables 1 and 2, collapsed across delay) 

2. Fair vs. biased lineups: Wetmore et al. (2015, again, Perpetrator and Innocentweak 

conditions in their Tables 1 and 2, collapsed across delay) 

3. Simultaneous vs. Sequential: Experiment 1a of Mickes et al. (2012, Figure 6A) 

4. Simultaneous vs. Sequential: Dobolyi and Dodson (2013, separately for their 2-

repetition and 4-repetition conditions) 

5. US vs. UK: Seale-Carlisle & Mickes (2016) 

 

To fit the model, we first collapsed some data sets to a 3-point scale. For the Wetmore et 

al. (2015) data, this was accomplished by combining confidence ratings of 6 and 7 (high 

confidence), 3, 4 and 5 (medium confidence), and 1 and 2 (low confidence). For the Mickes et al. 

(2012) data, this was accomplished by combining confidence ratings of 90 to 100 (high 

confidence), 70-80 (medium confidence), and 0-60 (low confidence). We collapsed the data in 

this manner to keep the number of parameters to be estimated reasonably low.  

With µInnocent always set to 0 as a reference point and the standard deviations for all three 

distributions always set to 1 for the sake of simplicity, the basic model has nc + 1 parameters, 

where nc is the number of confidence levels. Thus, for example, if the confidence data are 
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collapsed to a 3-point scale (low, medium and high), there would be 4 parameters to estimate 

from the ROC data of a given condition (µGuilty, cLow, cMedium, and cHigh), where µGuilty, is the mean 

of the guilty suspect distribution, and cLow, cMedium, and cHigh are the decision criteria. If the lineup 

is fair, then µFiller = µInnocent = 0, so no additional parameter is needed to estimate those means. 

Note that for the equal-variance model we used, µGuilty, is the standardized difference between 

µGuilty and µInnocent (i.e., µGuilty = d'). If the lineup is unfair, then µFiller ≠µInnocent, and another 

parameter (µFiller) has to be estimated. Because µInnocent = 0, for an unfair lineup, the estimated 

value of µFiller will be negative (i.e., the fillers will seem less like the guilty perpetrator than the 

innocent suspect does).  

For a given fit, the degrees of freedom equal the degrees of freedom in the data minus the 

number of parameters estimated from the data. As an example, consider the fair vs. biased fit of 

the Wetmore et al. (2015) data. For the target-present lineup data, there are 6 degrees of freedom: 

3 levels of confidence for suspect IDs plus 3 levels of confidence for filler IDs (the observed 

number of no IDs is fully constrained once those other 6 values are known and so does not add 

another degree of freedom). Similarly, for target-absent lineup data involving an innocent 

suspect, there are 6 degrees of freedom: 3 levels of confidence for suspect IDs plus 3 levels of 

confidence for filler IDs. Thus, there are 12 degrees of freedom in the biased data. In a fair 

target-absent lineup, the innocent suspect can be treated as another filler (which is the 

approached we used), so the target-absent lineup provides only 3 degrees of freedom (namely, 

the observed number of filler IDs, counting IDs to the innocent suspect, across 3 levels of 

confidence). The total degrees of freedom in the biased and fair data added together comes to 12 

+ 9 = 21. A total of 9 parameters are estimated when the model is fit to the ROC data from these 

two conditions (µGuilty, cLow, cMedium, and cHigh for both conditions, yielding 8 estimated 
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parameters in all, plus an estimate of µFiller for the biased condition). Therefore, when the full 

model is simultaneously fit to the fair and biased data, the degrees of freedom associated with 

that fit is equal to 21 degrees of freedom in the data – 9 estimated parameters = 12 remaining 

degrees of freedom.  

The parameters were estimated by adjusting them until the chi-square goodness-of-fit 

statistic comparing observed and predicted observations was minimized. For each of the d' 

comparisons, the model was fit twice: once allowing d' to differ across conditions and once again 

constraining d' to be equal across conditions (i.e., full vs. reduced models, respectively). The 

other parameters were allowed to differ across conditions. The question of interest was whether 

the chi-square goodness-of-fit statistic would be significantly worse for the constrained fits, in 

which case one would conclude that d' differed across conditions.  

Tables A1 through A6 show the fits of the full model (allowing d' to differ across 

conditions) and constrained model (requiring that d' be equal across conditions) for the showup 

vs. lineup, fair vs. biased lineups, simultaneous vs. sequential lineups, and US vs. UK lineups. 

As shown in Table 1 of the main article, in each case, the pAUC difference across conditions is 

significant. Is the same true of d'? The answer is given by the difference in the chi-square 

goodness of fit statistics between the two fits, which is itself a chi-square with 1 degree of 

freedom. In all cases, the chi-square was significant: 

1. Showup vs. lineup (Wetmore et al., 2015): χ2
Reduced - χ2

Full = 61.9, p < .001. 

2. Fair vs. unfair lineups (Wetmore et al., 2015): χ2
Reduced - χ2

Full = 10.9, p < .001. 

3. Simultaneous vs. Sequential (Mickes et al., 2012): χ2
Reduced - χ2

Full = 12.6, p < .001. 

4. Simultaneous vs. Sequential (Dobolyi & Dodson, 2013, 2-rep): χ2
Reduced - χ2

Full = 4.6, p 

= .032. 
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5. Simultaneous vs. Sequential (Dobolyi & Dodson, 2013, 4-rep): χ2
Reduced - χ2

Full = 7.2, p 

= .007. 

6. US vs. UK (Seale-Carlisle & Mickes, 2016): χ2
Reduced - χ2

Full = 62.7, p < .001. 

These findings indicate that the results accord with conclusions based on pAUC and that they 

also accord with the predictions about underlying d' made by the diagnostic feature-detection 

theory. Still, as noted earlier, any conclusion about whether or not pAUC and d' agree depends 

on the validity of the model that is used to estimate d'. It would be easy to specify a different 

signal detection model that holds d' constant across all of the conditions compared in Table 1 

despite the pAUC difference that is observed in each case. One could, for example, hypothesize 

that criterion variability (which reduces pAUC even without changing underlying d') is greater in 

each of the conditions in which pAUC is reduced compared to the other condition. We know of 

no principled reason for proposing such a model, but the point is that it could explain the pAUC 

results without assuming a d' difference across conditions. No simulation is needed to prove it. 

Nevertheless, using Lampinen's (reasonable) model, d' and pAUC agree.  
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Table A1. Showup vs. lineup fits to data (collapsed across retention interval and excluding 

Innocentstrong) from Wetmore et al. (2015). 

 

 

 

 

  

Full Model Reduced Model 

estimate Showup Lineup estimate Showup Lineup
µ Guilty  (d') 0.47 1.69 µ Guilty  (d') 1.19 1.19

c Low 0.23 1.10 c Low 0.51 1.01
c Medium 0.47 1.51 c Medium 0.74 1.40
c High 1.30 2.45 c High 1.58 2.26

χ2 χ2

df df
p p

20.9
7

0.004

82.8
8

<.001
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Table A2. Fair vs. Biased lineup to data (collapsed across retention interval and excluding 
Innocentstrong) from Wetmore et al. (2015). 

 

 

 

 

 

 

 

 

 

  

Full Model Reduced Model 

estimate Fair Biased estimate Fair Biased
µ Guilty  (d') 1.69 1.15 µ Guilty  (d') 1.48 1.48
µ Innocent 0.00 0.00 µ Innocent 0.00 0.00
µ Filler-TA 0.00 -1.01 µ Filler-TA 0.00 -0.89

c Low 1.10 1.39 c Low 1.47 1.73
c Medium 1.51 1.70 c Medium 2.38 2.50
c High 2.45 2.46 c High 1.89 1.76

χ2 χ2

df df
p p

33.7 44.6
12 13
0.001 <.001
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Table A3. Simultaneous vs. Sequential lineup fits for data from Experiment 1a of Mickes et al. 
(2012). 

 

 

 

 

  

Full Model Reduced Model 

estimate SIM SEQ estimate SIM SEQ
µ Guilty  (d') 1.87 1.33 µ Guilty  (d') 1.60 1.60

c Low 1.49 1.59 c Low 1.42 1.65
c Medium 2.00 2.09 c Medium 1.92 2.17
c High 2.78 2.64 c High 2.69 2.73

χ2 χ2

df df
p p

18.7 31.3
10 11

0.044 <.001
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Table A4. Simultaneous vs. Sequential lineup fits for data from Dobolyi and Dodson (2013, 2-

repetition condition). 

 
 
 
 
 
 
 
 
 
  

estimate SIM SEQ estimate SIM SEQ
µ Guilty  (d') 2.05 1.81 µ Guilty  (d') 1.92 1.92

c 1 1.46 1.52 c 1 1.45 1.52
c 2 1.49 1.54 c 2 1.49 1.54
c3 1.68 1.63 c3 1.66 1.63
c4 1.98 1.86 c4 1.95 1.87
c5 2.29 2.20 c5 2.25 2.23
c6 2.83 2.73 c6 2.76 2.79
χ2 χ2

df df
p p

33.1 37.7
22 23
0.061 0.028

Full Model Reduced Model 



ROC ANALYSIS IN THEORY AND PRACTICE        33 

Table A5. Simultaneous vs. Sequential lineup fits for data from Dobolyi and Dodson (2013, 4-

repetition condition). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Full Model Reduced Model 

estimate SIM SEQ estimate SIM SEQ
µ Guilty  (d') 2.52 2.18 µ Guilty  (d') 2.34 2.34

c 1 1.54 1.59 c 1 1.53 1.62
c 2 1.56 1.61 c 2 1.55 1.65
c3 1.72 1.67 c3 1.69 1.71
c4 2.01 1.87 c4 1.96 1.92
c5 2.37 2.25 c5 2.29 2.32
c6 2.80 2.81 c6 2.69 2.91
χ2 χ2

df df
p p

35.3 42.5
22 23
0.036 0.008
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Table A6. US vs.UK lineup fits for data from Seale-Carlisle & Mickes (2016). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

estimate US UK estimate US UK
µ Guilty  (d') 1.07 0.41 µ Guilty  (d') 0.78 0.78

c Low 1.19 0.95 c Low 1.13 1.00
c Medium 1.85 1.53 c Medium 1.78 1.59
c High 2.53 2.16 c High 2.45 2.21

χ2 χ2

df df
p p

21.3 83.9
10 11
0.019 <.001

Full Model Reduced Model 


