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Abstract 18 

The vast size of oil palm (Elaeis guineensis) plantations has led to lightweight unmanned aerial vehicles 19 

(UAVs) being identified as cost effective tools to generate inventories for improved plantation 20 

management, with proximal aerial data capable of resolving single palm canopies at potentially, 21 

centimetric resolution. If acquired with sufficient overlap, aerial data from UAVs can be processed 22 

within structure-from-motion (SfM) photogrammetry workflows to yield volumetric point cloud 23 

representations of the scene. Point cloud-derived structural information on individual palms 24 

can benefit not only plantation management but is also of great environmental research interest, given 25 

the potential to deliver spatially contiguous quantifications of aboveground biomass, from which 26 

carbon can be accounted. Using lightweight UAVs we captured data over plantation plots of varying 27 

ages (2, 7 and 10 years) at peat soil sites in Sarawak, Malaysia, and we explored the impact of changing 28 

spatial resolution and image overlap on spatially variable uncertainties in SfM derived point clouds for 29 

the ten year old plot. Point cloud precisions were found to be in the decimetre range (mean of 26.7 30 

cm) for a 10 year old plantation plot surveyed at 100 m flight altitude and >75% image overlap. Derived 31 

canopy height models were used and evaluated for automated palm identification using local height 32 

maxima.  Metrics such as maximum canopy height and stem height, derived from segmented single 33 

palm point clouds were tested relative to ground validation data. Local maximum identification 34 

performed best  for palms which were taller than surrounding undergrowth but whose fronds did not 35 

overlap significantly (98.2% mapping accuracy for 7 year old plot of 776 palms). Stem heights could be 36 

predicted from point cloud derived metrics with root-mean-square errors (RMSEs) of 0.27 m (R2= 0.63) 37 

for 7 year old and 0.45 m (R2=0.69) for 10 year old palms. It was also found that an acquisition designed 38 

to yield the minimal required overlap between images (60%) performed almost as well as higher 39 

overlap acquisitions (>75%) for palm identification and basic height metrics which is promising for 40 

operational implementations seeking to maximise spatial coverage and minimise processing costs. We 41 

conclude that UAV-based SfM can provide reliable data not only for oil palm inventory generation but 42 

allows the retrieval of basic structural parameters which may enable per-palm above-ground biomass 43 

estimations. 44 

 45 

1 Introduction 46 

The oil palm (Elaeis guineensis Jacq.) can yield considerably more oil per hectare than any other crop, 47 

which explains its large-scale expansion over the last century, to meet the global demand for food and 48 

biofuel (Corley and Tinker 2016). As a result the conversion of forest ecosystems to oil palm plantations 49 

has been the topic of much international research and also controversy due to concerns regarding its 50 

impact on biodiversity, carbon storage and ecosystem services (Fitzherbert et al. 2008; Butler and 51 

Laurance 2009; Carlson et al. 2012; Germer and Sauerborn 2008; Koh and Wilcove 2008).   52 

The global demand for oil palm products means that plantations now cover large tracts of land in the 53 

tropics – for example, in Malaysia 58,100 km2 is taken up by commercial oil palm plantations (as of 1 54 

December 2017, Malaysian Palm Oil Board (MPOB) statistics retrieved from http://bepi.mpob.gov.my). 55 



   

Both at national and plantation block scale, remote sensing is a valuable tool both for stakeholders and 56 

researchers. To provide an example, remote sensing data offers a means by which plantation 57 

management can be performed in a more profitable and arguably more sustainable manner because 58 

plantation inventories can be generated to inform targeted fertiliser and pesticide application (Chong 59 

et al. 2017). Beyond the commercial sector, remote sensing data have been applied on a state-wide 60 

scale to monitor and quantify the impact of the land-use change due to the establishment of new 61 

plantations. These analyses are predominantly based on satellite data, and various studies have 62 

utilised optical, and radio detection and ranging (RADAR) capabilities to differentiate oil palm from 63 

other land cover classes (Morel et al. 2011; L. Li et al. 2015; Koh et al. 2011; Cheng et al. 2018). The 64 

challenge with using readily available satellite data for oil palm science is the limited spatial and/or 65 

temporal resolution of such data. The demand for finer spatial  resolution data is motivated by the 66 

ability to resolve individual palm canopies, which can be used as reference data to improve land-cover 67 

classifications (Nomura and Mitchard 2018) and allows for automated identification and parameter 68 

retrieval to provide information about palm structure and status. These parameters are not only of 69 

interest for plantation management but are central to the estimation of plantation carbon stocks, e.g. 70 

through the use of allometric equations (Corley and Tinker 2016). Such work is critical from a scientific 71 

perspective if the carbon implications of forest conversion to oil palm are to be quantified accurately 72 

(Morel et al. 2011), and yet, there are missing examples of such methods in the literature. Furthermore, 73 

patterns relating to local soil nutrient deficiency or disease could also be better identified (Shafri and 74 

Hamdan 2009).  75 

For inventory generation, fine spatial resolution satellite data (e.g. WorldView 4 at 0.31 m spatial 76 

resolution) provides fine resolution information, while enabling monitoring over a broad spatial extent 77 

and has been successfully used for palm identification (Weijia Li et al. 2016; Srestasathiern and 78 

Rakwatin 2014), but is not suitable for estimating structural parameters. For practical considerations, 79 

fine spatial resolution satellite data have known limitations, for example – they are financially costly 80 

and for countries with frequent cloud cover, acquiring a cloud-free acquisition at the desired time can 81 

be challenging. Improved accessibility, low operating costs, and ease of use has recently led to 82 

lightweight drone platforms (often called unmanned aerial vehicles or systems (UAV/UAS)) being 83 

identified as a useful tool in oil palm plantation management, with major commercial oil palm 84 

companies establishing dedicated UAV-teams for the routine acquisition of aerial imagery (pers. comm. 85 

Sarawak Oil Palms Berhad, 2018).  86 

Currently the primary application of UAV data in oil palm management is the generation of 87 

photographic-based orthomosaics for inventory purposes (Rokhmana 2015). Manual identification 88 

based on spatial data products is still considered the most accurate and cost-effective method to 89 

generate inventories in commercial applications and the selection of training data in recent scientific 90 

applications (e.g. Nomura and Mitchard 2018). There are however promising first demonstrations of 91 

machine learning techniques on both fine spatial resolution satellite and UAV image data of oil palms 92 

and date palms respectively (Weijia Li et al. 2016; Malek et al. 2014) as well as software packages for 93 

the operational implementation of object-based segmentation (eCognition, Trimble, California, USA) 94 

for palm identification. 95 

In these workflows, the third spatial dimension (i.e. height) has to date been completely disregarded 96 

for oil palm, however, its inclusion opens up many scientific and operational management possibilities 97 

at low opportunity cost. The acquisition of overlapping images from UAV platforms allows the 98 

application of a photogrammetric method which automatically solves for the geometry of the scene, 99 

camera positions and orientations, known as structure-from-motion (SfM) photogrammetry (Westoby 100 

et al. 2012). SfM can be used to generate fine spatial resolution orthomosaics, and point clouds 101 

representing the height structure of the scene (Dandois and Ellis 2013). Coupled with precise 102 



   

georeferencing information, resultant point clouds can be used to spatially separate objects and 103 

determine their spatial and volumetric dimensions, in much the same way that light detection and 104 

ranging (LiDAR) data permit, but at lower acquisition costs. Such methods are now being used 105 

extensively to derive canopy metrics of individual vegetation canopies of varying sizes and structure 106 

(Puliti et al. 2015; Cunliffe, Brazier, and Anderson 2016; Zarco-Tejada et al. 2014), so it is a natural step 107 

to consider the utility of such approaches for oil palm inventory. Doing so would deliver new 108 

understanding of the volumetric characteristics of oil palm plantations, which would prove particularly 109 

useful for spatial carbon evaluations. Currently such aspects of oil palm plantations lack sufficient data 110 

from which to quantify the environmental effects of tropical forest conversion (Kho and Jepsen 2015). 111 

Information on palm height and its distribution is desirable as it can be an indicator of palm age and 112 

localised growing conditions. Variations due to re-planting of missing palms are expected to be small 113 

as this does generally not occur past the first year (Corley and Tinker 2016). More spatially contiguous 114 

variations can be the result of unequal fertiliser application or other variations, e.g. in soil nutrient 115 

availability. In previous work, UAV based photogrammetry derived top-of-canopy height metrics in 116 

other ecosystems were found to be comparable with LiDAR derived heights (Wallace et al. 2016; Thiel 117 

and Schmullius 2017), with data acquisition being comparably, more affordable (relying only on 118 

consumer grade sensors and platforms) and easy to deploy (so long as the aircraft and payload are 119 

lighter than the low weight categories defined by civil aviation classifications (Duffy et al. 2017)). First 120 

efforts in applying the UAV-based SfM methodology to palm plantations have demonstrated the 121 

potential for palm identification and retrieval of structural parameters (Kattenborn et al. 2014), 122 

however further investigation into uncertainties within generated products as well as the influence of 123 

acquisition schemes which allow to cover greater area at the cost of data quality is required for the 124 

operational implementation of these workflows.  125 

Presented in this study is the first investigation of UAV and SfM-derived point clouds for oil palm 126 

plantation physical assessment. This application of UAV data extends beyond identification and 127 

counting of individual palms and presents a novel workflow for the segmentation of individual palm 128 

objects from point clouds to explore their application for retrieving height-related structural 129 

parameters, as well as quantify spatially-variable uncertainties. Specific aims of this study are: 130 

a) To demonstrate a workflow for the retrieval of single palm canopies from SfM point clouds.  131 

b) To quantify the uncertainties introduced by the acquisition scheme and steps in the SfM-based 132 

workflow as well as in the retrieved metrics. 133 

c) To derive and assess top-frond-height (TFH) and stem height metrics from single palm SfM 134 

point clouds. 135 

Aim b) is key to understanding the potential and limitations of our methodology for oil palm science. 136 

This is especially important when considering the possible further usage of the retrieved structural 137 

parameters (aim c)) to inform larger scale models, as has been successfully demonstrated for forestry 138 

(Puliti et al. 2017), to quantify error propagation. Aim c) provides an important step towards deriving  139 

per-palm above-ground biomass (AGB) (Corley and Tinker 2016; Thenkabail et al. 2004). 140 

2 Materials and Methods 141 

2.1 Study site 142 

The study sites were located in the state of Sarawak, Malaysian Borneo, on the Sarawak Oil Palms 143 

Berhad plantations of Sabaju (3°09'40.1"N 113°25'09.1"E) and Sebungan (3°09'58.1"N 113°21'20.2"E). 144 

The majority of the plantation area was planted on tropical peat with smaller areas on clay dominated 145 

mineral soil. Three peat soil plantation sub-plots of 2, 7 and 10 years of age and covering approx. 4, 6 146 

and 6 ha respectively were selected for this study. Plot sizes were chosen based on the maximal area 147 

which could be safely covered with one flight battery whilst also fulfilling the desired image acquisition 148 



   

parameters (see section 2.2.2). The locations of the survey plots are depicted in 149 

150 
Figure 1. These locations were selected to contain two 1 ha carbon sampling plots which are 151 

periodically measured by researchers associated with the MPOB. The peat soil plantations possess only 152 

slightly varying topography (e.g. <1 m vertically over 100 m horizontal distance). The 2 year old palms 153 

consisted mainly of fronds with the above-ground stems being negligible. Besides the young palms, 154 

the 2 year old plot also contained stacking rows of woody material which were overgrown by 155 

vegetation and were higher than the TFH of the palms. The 7 year old plot contained significant 156 

undergrowth and the same heaped rows of timber between every other palm row, though here the 157 

palms had grown higher than this topographic variation. In the 10 year old plot there was significantly 158 

less undergrowth, likely due to light limitation as the fronds of neighbouring palms begin to overlap, 159 

as well as a very high water table due to a difference in local topography. Undergrowth here occurred 160 

mainly along drainage channels dug between every other palm row. 161 



   

162 
Figure 1: Top: The state of Sarawak in Malaysian Borneo with a star marking the location of the studied plantation (shapefiles 163 
from www.diva-gis.org). Bottom: Satellite imagery with the location, extent and age in years of the studied plots (Google 164 
Earth). 165 

 166 

2.2 Data acquisition 167 

2.2.1 Field sampling 168 

 169 

Measurements in the field were conducted on a per-palm basis. Within the boundaries of the existing 170 

1 ha carbon sampling plots, palms were sampled in a grid pattern in accordance with the subdivided 171 

squares of the plot. Outside of carbon plots, palms were sampled following a random sampling scheme. 172 

33, 22 and 37 palms were selected for measurement in the 2, 7 and 10 year old plots respectively, with 173 

the number of samples varying due to sampling time constraints and accessibility of the plots. TFH as 174 

a metric representing canopy height was measured as the distance between the apex of the highest 175 

frond and ground level, to provide a validation for SfM photogrammetry derived heights. The stem 176 

height was also measured as the distance between the petiole base of the lowest intact frond and 177 

ground level (see Morel, Fisher, and Malhi 2012). Due to the size of the older palms, both heights were 178 

consistently measured using a laser rangefinder in all plots. These systems typically possess decimetre 179 

accuracy.  180 

2.2.2 UAV flights and GPS data 181 

 182 

The UAV used for this study was a 3DR Solo quadcopter containing a pixhawk 2.0 flight controller. 183 

Including payloads it weighs under 2 kg and is capable of approximately 15 minutes flying time on a 184 

single battery. The system was selected due to its ease of use and flexibility. Flights were programmed 185 



   

in the ArduPilot Mission Planner software by drawing a polygon per plot that was reused for all flights. 186 

Flights were conducted at an altitude of 100 m and a speed of 5 m s-1. The minimum frontal and side 187 

overlap was defined as 75%. For the 10 year old plot, a replicate was flown using identical flight 188 

parameters to enable an independent assessment of the photogrammetric reconstruction and derived 189 

parameters as done in previous studies (Dandois et al. 2017). UAV flights were conducted close to solar 190 

noon for all acquisitions when lighting conditions are optimal for later photogrammetric 191 

reconstruction (Dandois, Olano, and Ellis 2015), and wind speeds at ground level were below 4.5 m s-192 
1. Flight details are summarised in Table 1. 193 

The sensor mounted on the UAV was a consumer-grade RGB camera (Ricoh GRII). The ground sampling 194 

distance (GSD) at 100 m altitude was 2.52 cm. The camera was triggered by intervalometer every 2 195 

seconds during the flight – chosen since the flight planning software suggested that this would ensure 196 

the desired 75% front and sidelap (with higher effective frontal overlap of 82%), close to the optimal 197 

overlap of 80% recommended by Dandois et al., (2015) for vegetation SfM photogrammetry workflows. 198 

The focus was set to infinity, white balance to automatic and exposure time (1/1250 s – 1/1600 s) as 199 

well as aperture (f2.8-f3.2) and ISO (100-200) were varied based on the illumination conditions and 200 

site characteristics (direct/diffuse and amount of shadow) but kept constant throughout each flight, 201 

following recommendations from previous studies (Cunliffe, Brazier, and Anderson 2016; O’Connor, 202 

Smith, and James 2017). 203 

For georeferencing, a total of 10-15 ground control points (GCPs) and >10 height validation points were 204 

surveyed per site using a Trimble Geo 7x GNSS system coupled with a Zephyr Model 2 antenna and 205 

were post-processed using RINEX data acquired from the Department of Survey and Mapping Malaysia 206 

(JUPEM) to yield 3 cm horizontal and 5 cm vertical precision. These measurements allow SfM 207 

photogrammetry generated digital surface models to be adequately constrained (Tonkin and Midgley 208 

2016) and can be used to validate georeferencing accuracies utilising unused GCPs as check-points. 209 

GCP distribution followed recommendations from previous work on UAV SfM survey accuracies (James 210 

et al. 2017) by ensuring placements around the boundaries of the region of interest as well as close to 211 

the centre of each plot.   212 

In addition to the main data acquisition described above, an additional RGB image dataset covering 213 

the entirety of the studied 10 year old plantation block was acquired by the Mapping Unit of Sarawak 214 

Oil Palms Berhad. The system used was a DJI Phantom 4 with integrated camera, flying at 150 m and 215 

11 m s-1 resulting in a GSD of 3.93 cm pixel-1. The programmed flight plan was aimed at acquiring image 216 

data with 60% frontal and side overlap. This acquisition plan allowed for coverage of one entire 217 

plantation block using a single DJI flight battery.  218 

 219 

 220 

 221 

Table 1: List of UAV flights used in this study, referred to by an identifier throughout the remainder of the manuscript and 222 
indicating the flight parameters, the palm age plot site (including the replicate for the 10 year old plot) and date of 223 
acquisition. 224 

Identifier System Sensor Altitude (m 

above 

ground 

level) 

Speed 

(m s-1) 

Overlap  Site Date 

HO_2yr 3DR Solo Ricoh GRII 100  5  >75% 2 year 30 January 2018 



   

HO_7yr 3DR Solo Ricoh GRII 100  5  >75% 7 year 9 February 2018 

HO1_10yr 3DR Solo Ricoh GRII 100  5  >75% 10 

year 

2 February 2018 

HO2_10yr 

(replicate) 

3DR Solo Ricoh GRII 100 5  >75% 10 

year  

2 February 2018 

LO_10yr DJI 

Phantom 

4 

Integrated 

camera 

150 11 60% 10 

year 

5 February 2018 

 225 

2.3 Photogrammetric processing 226 

 227 

The photogrammetric processing of UAV-acquired images was performed in Agisoft Photoscan 228 

Professional V1.4.2 (St. Petersburg, Russia). There are a number of software options available for 229 

photogrammetric processing and Photoscan was selected here due to its successful use in similar 230 

applications such as forest inventories (Dandois and Ellis 2013; Puliti et al. 2015), and the ability to use 231 

previously developed Python scripts for spatial uncertainty estimation (James, Robson, and Smith 232 

2017). Palms differ considerably from coniferous or broadleaf trees, however no inter-comparison of 233 

software options and algorithms exists for this canopy type. Images per flight and plot were input into 234 

the software, upon which tie-points within images are identified and used for image matching 235 

(algorithms used are proprietary, but a similar method is the scale invariant feature transform (SIFT) 236 

algorithm (Lowe 2004)). An automatic aerial triangulation followed by a bundle block adjustment is 237 

then performed, reconstructing scene geometry while accounting for camera orientation and 238 

distortion. The resulting sparse point cloud representing the tie-points in 3D space is used to generate 239 

a rough mesh of the scene. After this initial processing, GCP coordinates are imported and their 240 

position manually identified within the images. To evaluate the geometric accuracy of the resulting 241 

model, ≈25% of measured GCPs per site were omitted from the photogrammetric processing and used 242 

as independent check points. The initial processing was re-run on the highest setting (with key point 243 

limit: 80’000, tie point limit: 8000), followed by depth-map and dense point cloud generation on high 244 

settings. Depth filtering was disabled as even mild depth filtering appeared to remove points of vertical 245 

palm fronds. 246 

While geometric uncertainties of the resulting model are reported by the software (see supplementary 247 

information for examples), these only represent errors in relation to the measured GCPs and check 248 

points at ground level, which are clearly identifiable within the image. At the top of the canopy, errors 249 

can be expected to be considerably larger, as the z dimension cannot be adequately constrained by 250 

the measured GCPs and values are more heavily dependent on the non-reproducible tie point 251 

identification. To quantify the precision of the photogrammetric processing as outlined in aim b), which 252 

is impacted by varying camera geometry and GCP uncertainties, we utilised a Monte Carlo (MC) 253 

method developed by (James, Robson, and Smith 2017) to derive point precisions representing the 254 

expected one standard deviation in x, y and z directions by running many simulations of the sparse 255 

point cloud generation including GCP information while randomly varying parameters within reported 256 

accuracy thresholds. Precision estimation is performed based on the sparse point cloud as the dense 257 

matching does not optimise the image network and, while it can introduce additional smaller errors, 258 

does therefore not affect the underlying precision (James, Robson, and Smith 2017). This method was 259 

primarily developed for the assessment of SfM based surveys of non-vegetated landforms but the 260 



   

precision estimates it generates, we argue, can also prove useful for vegetation focused studies. The 261 

algorithm was originally designed by (James, Robson, and Smith 2017) for time-series change analysis 262 

that accounts for survey-to-survey uncertainties, but can be used stand-alone on single surveys to 263 

highlight areas of higher and lower point precision, in 3 dimensions. 1000 simulations proved sufficient, 264 

assessed by the difference between the MC means and the initial error free values. Per-point precision 265 

estimates in each dimension were generated based on the simulations, using the ‘sfm-georef’ software 266 

(James and Robson 2012). 267 

 268 

2.4 Point cloud processing and parameter retrieval  269 

 270 

The processing workflow for oil palm segmentation and derivation of TFH and stem height is 271 

demonstrated in 272 

273 
Figure 2. After generating the dense point cloud representing the volumetric structure of the scene, a 274 

statistical outlier filtering was performed (CloudCompare, V2.9.1), removing points far above or below 275 

the scene which are considered as noise, likely attributed to movements of palm fronds between 276 

images. As most scenes contained water, either as standing water or in drainage channels, this caused 277 

errors in the photogrammetric processing due to reflections and larger negative outlying point clusters 278 

were found, an effect also described by Duffy et al., (2017). The majority of these outliers were 279 

removed by eliminating points below a feasible threshold, informed by GCP heights.  A minimal 280 

amount of manual clipping of the point cloud in CloudCompare (V2.9.1) was therefore required. 281 

Due to the lack of detailed topographical data of the sites, the digital terrain model (DTM) had to be 282 

derived from the SfM point cloud. Ground points in each plot were classified by excluding the 283 

vegetation through a morphological filtering procedure, originally developed for airborne laser 284 

scanning (Zhang et al. 2003) and implemented in the R lidR package (Roussel and Auty 2018). This 285 

method has previously been applied for SfM-based DTM generation (Dandois and Ellis 2013) and was 286 

selected as it provided more control over the filtering process. It appeared to perform better for sparse 287 

ground points as opposed to PhotoScan’s own implementation of ground classification which has been 288 

used for DTM generation in more recent SfM based studies where more ground information was 289 

available (e.g. Cunliffe, Brazier, & Anderson, 2016). It did however require the point cloud to be 290 

subsampled with a 0.1 m distance constraint between points for efficient processing. The parameters 291 

for morphological filtering had to be adjusted for each plot due to the varying height and density of 292 



   

palm crowns. The classified ground points were interpolated using k-nearest-neighbour inverse 293 

distance weighting. The noise filtered original point clouds were normalised using the derived DTM, 294 

yielding height above ground for the remaining vegetation points and canopy height model (CHM). For 295 

palm identification, the CHM was first smoothed using a mean filter after which local-maximum 296 

filtering was applied with a window size informed by the known planting distance between palms 297 

(approx. 9 m, an established planting pattern for oil palm (Chong et al. 2017)). Individual palms were 298 

then segmented from the point cloud using a crown delineation method by Silva et al., (2016) and 299 

adjusted by Roussel and Auty, (2018), using the identified palm points as centroids and the CHM as 300 

input. This particular delineation method was selected due to its suitability for the simple circular 301 

footprint of oil palm crowns and as the impact of overlapping fronds can be reduced by constraining 302 

the buffer radius used. Other methods based on watershed analysis or region-growing (Dalponte and 303 

Coomes 2016) proved to have issues where overlap occurred.   304 

The TFH values for each segmented palm were retrieved by selecting the maximum point within the 305 

cloud, the sensitivity to erroneous outliers reduced by the previous statistical outlier filtering. Derived 306 

TFH is assessed against field measured TFH for measured palms. To test the consistency of TFH for two 307 

independent builds, TFH was also derived from a replicate dataset over the 10 year old plot and the 308 

values compared for the same palms. 309 

310 
Figure 2: Processing workflow for deriving per-palm height metrics from UAV data.  311 

Using linear regression, the correlations of different height percentiles (30 to 90% in 10% steps), and 312 

the mean and maximum point height with field measured stem height were assessed for the samples 313 

of the 7 and 10 year old plantation. For the 2 year old palms, the bases of the lowest intact fronds were 314 

at ground level and therefore no stem was measured. Due to a limited number of samples, prediction 315 

accuracy was assessed using leave-one-out cross validation (LOOCV) as used in similar studies (Wang 316 

Li et al. 2016). Two separate models depending on plot age were assessed as the relationship between 317 

point cloud metrics and stem heights can be expected to differ slightly between palms of different age 318 

classes. This does not avoid the issue of younger, re-planted palms within the same plots. The 319 

relationships with highest coefficient of determination (R2) were then applied to all identified palm 320 

point clouds to derive stem heights.  321 

 322 

3 Results 323 



   

3.1 Photogrammetric dense clouds 324 

 325 

UAV image data averaged around 350 images per plot and acquisition, from which dense point clouds 326 

were generated for each plot through photogrammetric processing. For the 10 year old plot, a replicate 327 

dataset using the same acquisition parameters was generated (HO2_10yr), as well as a coarser 328 

resolution sparser dataset for the entire plantation block (LO_10yr).     329 

Subsets of the point clouds from the three different aged plots are displayed in Figure 3. Initial visual 330 

inspections of the generated dense point clouds per plot show reconstructions of individual palm 331 

fronds. Noise increased for higher, more vertically-oriented fronds. The point density decreased 332 

towards the apical stem as fronds overlapped more. No information on the trunk was captured as it 333 

was entirely obscured by fronds in all images. The 10 year old plot contained fewer points from the 334 

ground and bottom fronds due to the high canopy density. 335 

 336 

Figure 3: RGB dense point cloud subsets (33x33 m) of the 2, 7 and 10 year old plantation datasets, resulting from the 337 
HO_2yr, HO_7yr and HO1_10yr flights. 338 

The geometric accuracies of the scene reconstructions, assessed by check points which were not used 339 

for the photogrammetric processing (≈25% of total GCPs per site), were high with mean horizontal 340 

errors (x, y) of 2.29 cm and mean vertical errors (z) of 3.4 cm (see supplementary information for 341 

individual processing reports).  342 

The LO_10yr dataset showed significantly lower point density (a 1 ha square extracted from the dense 343 

clouds contained 10.26 Mio points for HO1_10yr and 1.69 Mio points for LO_10yr) but still appeared 344 

to represent finer details and individual fronds of single palms. At the higher altitude and speed of this 345 

flight, surface points were imaged 8 times and the ground resolution was 3.93 cm per pixel (for 346 

HO1_10yr, points were imaged 44 times on average at 2.52 cm per pixel). The average of 8 images per 347 

ground point indicates that the overlap lies slightly below the targeted 60% recommended for 348 

photogrammetric surveys (Dandois, Olano, and Ellis 2015). This may have been due to acquisition 349 

conditions on the day of the flight, or imperfect flight planning.  350 

Geometric accuracies reported by check points for LO_10yr were lower than the other flights with 351 

horizontal error (x, y) of 12.9 cm and vertical error (z) of 39.1 cm.  352 

For the generation of maps from the sparse point cloud precision estimates, values were interpolated 353 

for the dense point locations using nearest-neighbour inverse distance weighting. It should be noted 354 

that due to the reduced overlap for LO_10yr, there were considerably fewer tie points within the 355 

sparse point cloud (Table 2, see supplementary information for visual representations). The resulting 356 

map therefore includes a higher amount of interpolation and the precision estimates are more poorly 357 

resolved spatially. Derived statistics should be treated with caution as there can be expected to be a 358 

bias depending on the 3D location of tie points identified during processing, such as a lesser proportion 359 

of points found inside the vegetation canopy. 360 



   

The mean precisions do not exhibit large differences between low and high overlap acquisitions. 361 

Horizontal precisions in x and y were very slightly larger for HO1_10yr, while vertical precisions (z) are 362 

slightly lower on average (Table 2). When displaying point precisions spatially 363 

(364 

365 
Figure 4: Maps of interpolated point precisions in x, y and z direction for the 10 year old palm plot. Top 366 

row: Acquisition with 3.93 cm pixel-1 GSD and 60% nominal overlap (LO_10yr). Bottom row: Acquisition 367 

with 2.52 cm pixel-1 GSD and 75% nominal overlap (HO1_10yr).368 

369 
Figure 4), it is apparent that precisions are higher for the flat ground surface on which GCPs were 370 

placed as opposed to points located vertically above the ground, within the vegetation canopy. 371 



   

LO_10yr displays larger patches of lower precision, due to the sparser tie points. Such patches of low 372 

precision may influence the reliability of the derived DTM. For HO1_10yr, precisions are higher for 373 

resolved ground points. Vertical precisions appear lower but more uniform for the vegetation canopy, 374 

with some edge effects at the north-eastern border.  375 

 376 

 377 

Table 2: Parameters for the two different acquisitions over the 10 year old plot along with mean precision estimates in x, y 378 
and z directions. 379 

Acquisition 

overlap 

GSD (cm  

pixel-1) 

Tie point 

density 

(points m-2) 

Mean x 

precision (mm) 

Mean y 

precision (mm) 

Mean z 

precision (mm) 

<60% 3.93  0.05 77.35 89.86  247.90 

>75% 2.52  10.28 68.34 80.29  267.39 

 380 

 381 

382 
Figure 4: Maps of interpolated point precisions in x, y and z direction for the 10 year old palm plot. Top row: Acquisition with 383 
3.93 cm pixel-1 GSD and 60% nominal overlap (LO_10yr). Bottom row: Acquisition with 2.52 cm pixel-1 GSD and 75% nominal 384 
overlap (HO1_10yr).  385 

 386 

3.2 Digital terrain models 387 

 388 

After filtering out non-ground points the remaining points were interpolated to derive a DTM per site. 389 

The DTM accuracy was assessed using height validation points measured between palms in the field 390 



   

with reported mean measurement horizontal precisions of 3.23 cm and vertical precisions of 5.74 cm. 391 

Mean vertical absolute errors assessed for height validation points were 9.1 cm for the 2 year old 392 

(HO_2yr), 12.4 cm for the 7 year old (HO_7yr) and 12.12 cm for the 10 year old plot (HO1_10yr). 393 

LO_10yr resulted in errors of 31.62 cm. The increase in errors from the 2 year old to the older plots is 394 

due to less visible ground within the imagery and thus non-uniformly distributed ground points within 395 

the dense cloud. For the 2 and 7 year old plots, DTM heights were generally over-estimated (Figure 5). 396 

This overestimation is assumed to be related to undergrowth which obscures the ground beneath. 397 

While there is very little undergrowth present in the 10 year old plot, the reason for the 398 

underestimation of ground height is unclear but likely due to interpolation related uncertainties as 399 

well as the larger amount of drainage channels in this plot.  400 

 401 

    402 

 403 

3.3 Palm identification 404 

 405 

The local maximum palm identification algorithm performed relatively well for the 7 and 10 year old 406 

palm plots (containing 776 and 654 palms total), with a mapping accuracy (MA: correctly 407 

identified/(true total + commissions)) of 98.2% and 94.9% respectively. The identified palm locations 408 

for the 10 year old plot derived from HO1_10yr are illustrated in 409 

Figure 5: Interpolated DTM heights above mean sea-level versus GPS measured reference ground heights. (a): 2 year old plot, 
(b): 7 year old plot, (c): 10 year old plot. 



   

410 
Figure 6, along with a subset showing an example of omitted palms. For the 2 year old plot, this method 411 

caused a large amount of omission and commission errors in the vicinity of the overgrown stacks of 412 

woody material between the palm rows, as the vegetation here was higher than the palm canopies. 413 

Neglecting these stacks and immediately adjacent palms, the method showed a MA of 80.4% for 238 414 

palms total.  415 

The MA for the same region of the 10 year old plot using LO_10yr is 94.0%. 416 

417 
Figure 6: Left: Resulting palm locations (yellow points) for the 10 year old plot and subset location (white rectangle), right: 418 
Subset illustrating omitted palms (red circles). 419 

3.4 Height metrics 420 

 421 

Maximum values of the individual palm point clouds were assessed against the TFH measured in the 422 

field. Results showed relatively large deviations between TFH measurements and maximum point 423 

cloud values with mean absolute errors of 0.383 m for HO_2yr, 0.968 m for HO_7yr and 1.246 m for 424 



   

HO1_10yr, which represented 18.9%, 13.7% and 11.7% of the mean measured heights respectively 425 

(Figure 7). LO_10yr showed lower mean absolute errors of 1.099 m for TFH of the 10 year old plot.  426 

When comparing the maximum values between the replicates HO1_10yr and HO2_10yr for the field 427 

measured palms (Error! Reference source not found.), this resulted in a mean absolute error of 0.199 428 

m. Deviations between the values appear independent of field-measured height. One obvious outlier 429 

is visible, caused by overlap resulting in a different segmentation of the palm. The magnitude of this 430 

deviation between replicates is consistent with values generated by the MC point precision analysis on 431 

the sparse point cloud (Table 2). 432 

To establish the optimal metrics for deriving stem height from the point cloud it was necessary to 433 

establish separate linear relationships between basic point cloud height metrics of the segmented 434 

palm point clouds and the structural metric of stem height using LOOCV for different age stands (Table 435 

3). For the 2 year old plot, the stem height above ground was negligible and so is not analysed. The 436 

strongest relationships (according to R2 values) with stem heights of the 7 year old plot was shown by 437 

the maximum value (R2 = 0.63; Table 3), while for the 10 year old plot the 80th percentile of elevations 438 

performed better (R2 = 0.69; Table 3). The MAEs represent 12.2% and 30.9% of mean stem heights 439 

respectively. Results for the low overlap acquisition showed overall lower R2 values compared to the 440 

high overlap dataset, but was consistent in showing the best relationship for the 80th elevation 441 

percentile (R2 = 0.59). 442 

Using these linear models to derive stem heights from the extent of each plot (i.e. using heights derived 443 

from the UAV-SfM derived point clouds) for the 7 and 10 year old plots yields the distributions in Figure 444 

9. For the 7 year old plot, negative values for predicted stem heights were constrained to 0 which 445 

results in high counts for this bin. Despite the errors introduced, these models coupled with the 446 

segmented point cloud represent an efficient method for the mapping of stem height and thus 447 

provides necessary information for spatially differentiated AGB and carbon retrieval. Fine-grained 448 

remotely sensed data thus enables single palm based estimates over spatial extents which would 449 

require immense efforts of field-based sampling.  450 

  451 

  452 

 453 



   

 454 

Figure 8: Maximum point cloud height compared for the same 455 
palms between replicates of the 10 year old plot. 456 

 457 

Table 3: Linear stem height model strength, root-mean-square errors (RMSE) and mean absolute errors (MAE) for the 30th -458 
90th point cloud height percentiles as well as the maximum and mean values. Reported for the 7 year old plot and the 10 459 
year old plot with high and low overlap acquisitions. The highlighted rows show the models with the highest R2 values 460 
which are used subsequently for stem height estimation. 461 

 462 

 463 

Figure 9: Histograms of estimated stem heights for the 7 year old plot (a) and 10 year old plot (b). 464 

4 Discussion 465 

This manuscript has presented an operational processing workflow for deriving per-palm height 466 

metrics from UAV image data while quantifying method-inherent uncertainties introduced at different 467 

stages. As demonstrated, it is possible to successfully segment single palms from fine-grained, UAV-468 

derived SfM based datasets and derive TFH and stem height from point-cloud-derived products. 469 

Subsequent sections of this discussion will address precision estimates and accuracies of the generated 470 

results, and their implications for the application of this method in management and research of oil 471 

palm plantations. 472 

 473 

 HO_7yr, n = 22 HO1_10yr, n = 37 LO_10yr, n = 37 

Percentile R2 
RMSE 
(m) 

MAE 
(m) 

R2 RMSE (m) MAE (m) R2 RMSE (m) MAE (m) 

30% 0.56 0.30 0.24 0.64 0.48 0.40 0.52 0.50 0.42 

40% 0.62 0.28 0.21 0.64 0.48 0.40 0.54 0.49 0.41 

50% 0.61 0.28 0.21 0.64 0.48 0.39 0.55 0.48 0.39 

60% 0.60 0.29 0.21 0.66 0.47 0.38 0.55 0.49 0.38 

70% 0.58 0.29 0.21 0.68 0.45 0.36 0.54 0.49 0.38 

80% 0.58 0.29 0.22 0.69 0.45 0.34 0.59 0.46 0.37 

90% 0.57 0.30 0.22 0.68 0.45 0.34 0.57 0.47 0.38 

Max 0.63 0.27 0.22 0.52 0.55 0.39 0.41 0.56 0.45 

Mean 0.61 0.28 0.21 0.48 0.58 0.43 0.54 0.49 0.39 

Figure 7: Maximum point cloud heights plotted against 
field measured TFHs for 2 year, 7 year and 10 year old 
palms.  



   

4.1 Uncertainties within resulting SfM point clouds 474 

 475 

Uncertainties resulting from SfM processing were estimated using a method which has not previously 476 

been applied to a vegetation focused study. If correctly parameterised, this method may reduce the 477 

need for time consuming replicates from independent acquisitions which are commonly advocated in 478 

SfM based studies (Dandois et al. 2017; Dandois, Olano, and Ellis 2015). Overall, the precision maps 479 

provide a better spatial indication of the SfM method’s inherent uncertainties than relying exclusively 480 

on values reported by GCPs and check points as a measure of reconstruction quality, which due to the 481 

limited number of surveyed GCPs and the lack of GCPs at canopy level cannot adequately represent 482 

uncertainties across the scene. However, it must be noted that these precision maps can’t account for 483 

some systematic errors (e.g. doming) and do not represent accuracy, which can only be assessed using 484 

check points (James, Robson, and Smith 2017). Sparse point precisions at ground level were higher 485 

(<10 cm) than for the vegetation canopy (20-50 cm). The contrast between precisions of the lower 486 

(60%) versus higher (>75%) overlap acquisition highlighted that ground information resulting from 487 

higher overlap flights appears more reliable, an observation which has previously been made for 488 

forested areas (Dandois, Olano, and Ellis 2015). These uncertainties were confirmed at the dense point 489 

cloud level by comparing per palm maximum values from a replicate dataset. 490 

 491 

4.2 Quality of derived DTMs 492 

 493 

Retrieving accurate ground elevations from SfM can introduce considerable uncertainties but doing so 494 

represents an alternative to time consuming manual surveys when lacking LiDAR coverage of the 495 

studied area, for point cloud normalisation and CHM determination. We found that undergrowth 496 

caused an overestimation of the elevation of identified ground points, while dense canopies led to the 497 

absence of information about the ground position. Interpolating between sparse ground points as was 498 

required in this study for the 10 year old plantation was only feasible for regions of very slightly varying 499 

topography as is the case for peat-soil plantations which show very subtle changes in topography at 500 

landscape extents (Ballhorn, Jubanski, and Siegert 2011). Although the MAE of the measured ground 501 

points did not exceed 20 cm for all the studied areas, it can be expected that uncertainties in the DTM 502 

remain a major limiting factor in the quality of resulting canopy height metrics. An increase in DTM 503 

error resulting from fewer ground points was observed for the lower overlap (60%) acquisition, 504 

suggesting that higher overlap is recommended if DTMs must be derived from SfM point clouds alone. 505 

 506 

4.3 CHM-based palm identification 507 

 508 

Local maxima based palm identification informed by planting distance performed very well (98.2% MA) 509 

for palms of intermediate ages (here 7 years), when they were taller than surrounding vegetation and 510 

other topographic variations (e.g. mounds of overgrown timber) and when their fronds did not yet 511 

overlap by more than a few decimetres. This mapping accuracy is identical to that reported by 512 

Kattenborn et al., (2014) for dense palm stands without overlap. The performance of height based 513 

identification of young palms (2 years) was heavily dependent on the plantation structure and 514 

undergrowth. Excluding areas with large local topographic variations our approach performed 515 

moderately well with 80.4% mapping accuracy, influenced predominantly by false positives from tall 516 

undergrowth. In the plot studied here, the application of the method to the entire plot was 517 

complicated by the overgrown stacks of organic material which resulted in false positives and 518 



   

sometimes obscured adjacent young palms. We advise that local maximum methods are not 519 

appropriate for direct application to plantation blocks with such topographic variations. For older 520 

plantations (10 years), the resulting MA of 94.9% was caused by issues with overlap and smaller palms 521 

which are surrounded by taller ones not being identified as local maxima. This could be partly 522 

addressed by decreasing the window size of the local maximum filtering, which would however 523 

introduce more false positives. 524 

 525 

4.4 Assessing maximum point cloud height against TFH 526 

 527 

Comparing the maximum point cloud height with field-measured TFH appeared to show a high 528 

uncertainty but also an apparent negative bias for the UAV-derived metric (Figure 7). The large 529 

deviations between field measurements and point cloud metrics are likely due to biases also in field 530 

measurements – e.g. including the manual identification of the highest frond, selection of its highest 531 

part and a possible x, y discrepancy between the reference point on the ground and the highest 532 

measured frond point. Treating the field validation data as a perfect baseline against which to assess 533 

the SfM result is probably a flawed approach, and both datasets should be considered as uncertain. 534 

This difficulty of validating SfM-derived height metrics for higher vegetation such as trees has also been 535 

encountered in previous studies (Lisein et al. 2013). Here this issue is not solved but addressed by the 536 

generation of tie-point precision estimates which provide further insight into the method-inherent 537 

uncertainties, which we show to be relatively low (e.g.  < 10 cm) for ground points and higher at canopy 538 

level, averaging around 30 cm as visible in 539 

540 
Figure 4.  541 

The negative bias apparent in the results (Figure 7) is expected to be independent of the above 542 

uncertainties and can be partially explained by the effect of undergrowth on the interpolated DTM 543 

surface. For the 10 year old palm plot this is however not consistent with height validation 544 

measurements where the DTM values were below the reference. Further bias may originate from an 545 

inherent smoothing effect of the dense matching process, observed in previous studies where SfM 546 



   

point clouds were compared to LiDAR reference data (Lisein et al. 2013), but this is contradictory to 547 

the fact that LO_10yr produced maximum height values closer to field measured TFH.   548 

Overall, the errors resulting for the TFH (or top-of-canopy height) estimation are very close to those 549 

reported by other studies applying SfM methodologies to vegetated systems of similar height range 550 

(Wallace et al. 2016; Panagiotidis et al. 2017). Better results can be achieved when employing a LiDAR-551 

derived DTM (Lisein et al. 2013; Puliti et al. 2015), though this represents a considerable operational 552 

constraint. The inclusion of convergent imagery at non-nadir angles (e.g. 45°) has also been advocated 553 

as besides strengthening the image network for reconstruction it can result in more ground points 554 

being visible to aid in DTM generation (Cunliffe, Brazier, and Anderson 2016). The latter aspect may be 555 

negligible for dense canopy cover but could yield better results for younger palms. The impact on point 556 

precisions and DTM error would benefit from further study, especially in relation to the cost of 557 

additional acquisitions and processing time.    558 

 559 

4.5 Point cloud height metric based stem height estimation 560 

 561 

Assessing the relationship between different point cloud height metrics and field measured stem 562 

height did not show very large differences between the metrics used. Nevertheless, the strongest 563 

relationship differed between the two different aged plots analysed, which can likely be attributed to 564 

different point cloud characteristics as a result of canopy density. For 7 year old palms where little to 565 

no overlap occurs, a greater portion of the fronds were resolved in the point cloud; while for the 10 566 

year old palms the lower fronds were completely, or partially obscured. When applying the resulting 567 

models to generate estimates of stem height distributions throughout the plots, it is striking that there 568 

were relatively large value ranges for plots of the same age, considerably larger than the resulting 569 

MAEs. For the 7 year old plot, there were however a considerable number of negative values, which 570 

were re-set to zero for the analysis. The two primary causes for this were local DTM errors caused by 571 

undergrowth as well as the fact that younger, later planted replacement palms have significantly 572 

smaller fronds which results in under-estimation of stem height by the linear model. Due to the 573 

amount of palms affected, we advise that a solution should be sought before applying this model for 574 

stem height estimations. Given a large amount of field samples across multiple palm ages, it may be 575 

possible to identify a robust non-linear relationship which accounts for age-dependent differences. 576 

This would allow efficient and accurate retrieval of per-palm trunk biomass from SfM point cloud data 577 

using allometric equations, given assumptions about diameter at breast-height (DBH) (Corley and 578 

Tinker 2016).  579 

 580 

4.6 Implications for oil palm plantation management and research 581 

 582 

The methods for palm identification, TFH and stem height retrieval presented here are applicable to 583 

image data from consumer grade UAV systems, provided such data are acquired with sufficient spatial 584 

overlap.  Our workflow can thus be of relevance to improved plantation management – because it can 585 

deliver maps indicative of plantation status at relatively low financial cost. Repeat acquisitions would 586 

further allow the identification of height increments over time and local variations in height could 587 

possibly be correlated with oil palm yield, for example by influencing the light regime (Corley and 588 

Tinker 2016). The retrieval of height metrics appears to work almost as well for lower resolution, lower 589 

overlap acquisitions (LO_10yr) as they do for acquisitions focused on retrieving a higher quality point 590 

cloud (e.g. HO1_10yr). This is an important insight when seeking to maximise the spatial coverage of 591 



   

survey flights, whilst also reducing the time required for acquisitions and data processing. A 592 

constraining factor regarding both time and cost of UAV acquisitions, following the survey designs 593 

presented here, is the reliance on high precision GCP measurements. If the absolute geographic 594 

locations are not a necessity, an alternative may be the use of a total station to measure distances 595 

between markers. The installation of adequately spaced permanent GCPs would also greatly facilitate 596 

repeat acquisitions. Furthermore, with the ongoing development of UAVs that will, in future, carry on-597 

board real-time kinematic GNSS capabilities, immediate high precision georeferencing of the acquired 598 

data may become an operational option in the future, minimising the need for ground control (Turner, 599 

Lucieer, and Wallace 2014).  600 

The demonstrated usefulness of even low overlap acquisitions to derive height metrics and the 601 

increased application of UAVs for plantation management means that there may be an untapped data 602 

source of interest for research and a potential for a closer collaboration between researchers and 603 

innovative palm oil companies.  Despite similar results for HO1_10yr and LO_10yr it can be assumed 604 

that for deriving information on younger palm canopies and for finer scale structural information such 605 

as frond rachis length and number, utilizing advanced point cloud metrics, higher overlap and finer 606 

resolution are required. The ability to derive advanced metrics with higher reliability may also prove 607 

useful in predicting per palm biomass, given adequate training and validation data derived from 608 

destructive harvesting or estimated AGB derived from allometric measurements of stem height, DBH, 609 

petiole cross-section and frond number in the field (Corley and Tinker 2016). Coupled with further 610 

concurrent field sampling efforts, UAV SfM photogrammetry derived metrics may be robust enough 611 

to provide much needed information to address one aspect of the lack of data for oil palm carbon stock 612 

estimates and the impact of the conversion of different land cover to oil palm plantations (Kho and 613 

Jepsen 2015).  614 

Emerging work by Malek et al. (2014) and Manandhar, Hoegner, and Stilla (2016) indicates the 615 

potential of computer vision and object based detection for automated oil palm identification and 616 

counting.  Further work is needed to develop and demonstrate the robustness of these methods in 617 

complex plots with larger undergrowth. It stands to reason that object based and height based 618 

detection possess a number of contrasting advantages and that a hybrid approach including height 619 

information and image-based segmentation may yield the most accurate solution. As a DSM typically 620 

results from the workflow for orthomosaic generation, no additional data acquisition is required. 621 

Therefore this would be a promising direction for future research aiming at developing palm 622 

identification methods with sufficient accuracy for commercial application. 623 

5 Conclusions 624 

This study demonstrated the use of SfM point clouds derived from UAV imagery for the identification 625 

of single palm canopies and the retrieval of basic structural information based on height metrics from 626 

segmented palms. In plantation plots with flat topography as studied here a DTM interpolated from 627 

classified SfM ground points proved sufficiently accurate (~10 cm for high overlap acquisitions) for 628 

height based studies of oil palm without requiring LiDAR based information, which is key for the 629 

operational implementation at similar sites. Employing an MC approach for generating point cloud 630 

precision estimates allowed a spatially resolved assessment of SfM data quality which can be used to  631 

inform a quantitative assessment of point cloud robustness and suitability for vegetation structure 632 

related studies. Local maximum methods for CHM based palm identification performed best for 633 

intermediate palm ages (7 years) but show more errors where large undergrowth and overlapping 634 

between palm canopies is common. Further it was shown that reliable inventories of the number of 635 

palms per plantation block could be generated with acquisition plans which favour coverage over high 636 



   

overlap, which provides an important benchmark for applying this methodology while maximising the 637 

efficiency of data acquisition. However, more highly resolved per-palm point clouds allowed for better 638 

estimation of stem height using height percentiles, and enabled the generation of stem height 639 

distributions for the studied plots. Due to the amount of detail resolved, it can be assumed that more 640 

complex point cloud based metrics could be identified which correlate with other aspects of palm 641 

structure and therefore warrant further research. These derived per-palm metrics, besides giving 642 

detailed information on plantation status, may prove useful for predicting per-palm AGB and 643 

ultimately mapping oil palm carbon stocks, providing an affordable and widely applicable method for 644 

carbon accounting.  645 

 646 
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