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Abstract

Since the advent of the industrial revolution, atmospheric CO2 has increased from

275 ppm to over 400 ppm, enhancing the associated Greenhouse effect and being

suggested as the main cause of recent climate change. The global ocean sequesters

around a third of the CO2 emitted by human activity, mitigating climate impacts,

with the highest anthropogenic CO2 (Cant) storage per unit area occurring in the

North Atlantic. However, ocean Cant cannot be measured directly, but it is calculated

with published uncertainties that range between ±10 % and ±20 %. Here, we

assess five methods used to estimate Cant, named ∆C*, ΦCT
0, TrOCA, TTD, and

eMLR, by using the outputs of four climate models (CCSM, CM2Mc, OCCAM, and

GFDL-ESM2M) between 1860 and 2100, the most recent observation database (e.g.

GLODAPv2) between 1980 and 2013, and the repeated time series collected along

the 24.5◦N Atlantic transect between 1992 and 2016. We focus on the North Atlantic

upper 1000 m, where the Mode waters store the largest Cant amount. In this layer,

the TTD and ∆C* estimates confine the probable range of Cant concentrations,

therefore we focus on these two methods. For both, we quantify a total (analytical

precisions + methodological assumptions) uncertainty of ±34 %, which is higher

than previously suggested. However, the Cant uncertainties depend on timeframes

and regions: between 1992 and 2010, observations enable us to reliably decrease

these uncertainties to ±13 % (TTD) and ±14 % (∆C*) in the upper 1000 m of

the subtropical North Atlantic (20-30◦N). Here, we estimate with a quasi Monte

Carlo approach that the Mode waters Cant pool increases by 0.5 (TTD) and 0.8

(∆C*) ± 0.2 µmol kg−1 yr−1, thus the estimates diverge over time. We associate

the divergence to unsteady CO2 disequilibrium between the atmosphere and ocean

(0.3 (∆C*) and 0.5 (TTD) ± 0.3 µmol kg−1 yr−1), and biogeochemical changes, as

suggested by the increasing (0.3 ± 0.1 µmol kg−1 yr−1) dissolved inorganic carbon

from remineralised soft tissue: these alterations are unequally captured by the TTD

and ∆C* techniques. Changes in ocean biogeochemistry are further explored using

the output of a CM2Mc pre-industrial ‘control’ simulation over two millennia. Here,

the statistically significant drivers of the enhancement in remineralised soft-tissue

carbon are increasing mean residence time (R2 = 0.86) and acidification (R2 = 0.68).

Feedback mechanisms have the potential to shift the oceanic carbon cycle towards

new equilibria, significantly influencing the future North Atlantic carbon uptake.
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Thesis outline

• Chapter 1 states the work rationale. Anthropogenic influences on the carbon

cycle are explored with respect to past reconstructions, present measurements

and future projections. Predictability is investigated, being of key relevance

to shed light on the imminent scenarios, reducing the overall uncertainty, and

thus allowing for feasible mitigations.

• Chapter 2 summarises the methods and the models adopted in this work.

Total oceanic carbon estimates are detailed within the seawater carbon system

suite of programs. Anthropogenic carbon estimates are discussed exploring the

caveats, challenges, and advantages of each method. Resolutions, components,

and available outputs are also explored for the climate models used.

• Chapter 3 assesses the uncertainty of the anthropogenic carbon estimates for

five different methodologies. We use sensitivity analyses over twenty years of

observations and model outputs.

• Chapter 4 presents the oceanic carbon partitions, data collection, trends, and

variability. Model outputs are discussed with respect to observations.

• Chapter 5 integrates the analyses of chapter 3 within the oceanic carbon cycle

(chapter 4). The results suggest unexpected mechanisms and the emerging

hypotheses are tested using other observations and climate model outputs.

• Chapter 6 provides a summary of all of the key findings and recommendations

for future works.



Chapter 1

Introduction

1.1 Literature review and research aim

Since 1860, anthropogenic emissions have increased the atmospheric carbon dioxide

(CO2) to a current mean mole fraction (xCO2) that is approximately 1.5 times higher

than the pre-industrial value. This increase in atmospheric xCO2 has caused severe

environmental impacts, such as the strengthening of the CO2 absorption of the long-

wave radiations emitted by the Earth surface (Greenhouse (GH) effect). The increase

in CO2 absorption was suggested as the main driver of the recent rise in the Earth

mean Temperature (T; Solomon et al. (2007)), which is named ‘global warming’,

with the CO2 being the most influential of the permanent GH gases (section 1.2).

To better understand the CO2 impact on the mean temperature of the Earth and the

other effects due to changes in the mole fraction of this Greenhouse gas (e.g. ocean

acidification; Garcia-Ibánez et al. (2016); Guallart et al. (2015a)), researchers have

enlarged fieldworks and developed climate models, therefore assessing past, present,

and future responses of natural environments to different economic scenarios (IPCC,

2014; UNFCCC, 2016).

Under this perspective, ocean studies are of key relevance, as the global ocean has

mitigated the GH effect by sequestering approximately a third of the total emitted

CO2 (Ciais et al., 2013; Sabine et al., 2004). We define this anthropogenic Carbon

(Cant) as the increase in Dissolved Inorganic Carbon (DIC) that is caused by rises in

15



Chapter 1. Introduction 16

atmospheric xCO2 when compared to pre-industrial times and a physically driven

ocean CO2 uptake (Friis, 2006; Khatiwala et al., 2013; McNeil and Matear, 2013).

However, accurate Cant estimates are challenging to obtain owing to three aspects.

(1) Cant is a small DIC fraction. (2) The oceanic anthropogenic and natural carbon

pools are involved in complex biological cycles. (3) The ocean circulation leads to

a highly heterogeneous distribution of the anthropogenic carbon. These aspects

propagate analytical and methodological uncertainties combinedly estimated as

±10-20 % (Matsumoto and Gruber, 2005; Vázquez-Rodŕıguez et al., 2009b; Waugh

et al., 2006).

Vázquez-Rodŕıguez et al. (2009b) started the assessment of the Cant uncertainty by

comparing some of the most adopted methods (∆C*, ΦCT
0, and the Transit-Time

Distribution (TTD)) by using the Global Ocean Data Analysis Project (GLODAP;

Key et al. (2004)) data in the eastern Atlantic. Those authors found increasing

divergences in the Cant estimates obtained using different methods from the tropics

to the poles. They recommended additional comparisons between Cant estimates in

observations and model outputs.

More recently, Guallart et al. (2015b) compared the Cant estimates obtained with

the TrOCA (Tracer combining dissolved Oxygen, Carbon, and Alkalinity), TTD,

∆C*, and ΦCT
0 methods in the subtropical North Atlantic. Here, those authors

focused on observations, quantifying Cant increases everywhere over time, with the

highest range of temporal trends estimated in the Mode water. Method agreements

were found in areas of low variability, while Cant differences were estimated in more

dynamical areas, such as the deep western boundary current.

Enlarging the study to an Earth System Model (ESM), Matsumoto and Gruber

(2005) assessed the ∆C* technique comparing observations and outputs from the

PRINCE ESM. Those authors quantified a ∆C* Cant overestimate with respect to

the simulated field and an uncertainty of ±20 % at the scale of a basin. As future

recommendations, Matsumoto and Gruber (2005) suggested the use of repeated

datasets to quantify changes in the measured DIC, rather than extrapolate Cant.

Under a similar approach, Waugh et al. (2006) assessed the TTD method use by

comparing the Cant obtained with this method and a synthetic field. Overall, the
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first matches the second everywhere in the global ocean. The greatest differences

are found in areas of highly variable CO2 disequilibrium (e.g. Southern Ocean),

where Waugh et al. (2006) highlighted discrepancies of ±20 %. As an additional

assessment, the authors compared the TTD and the ∆C* Cant estimates, finding

consistency at global scale, but increasing divergences with depth owing to the

unique time of ventilation (age) assumed by the ∆C* method.

Similarly, Yool et al. (2010) assessed TrOCA by comparing the Cant obtained with

this technique and the ∆C* estimate within GLODAP observations and outputs of

the OCCAM model (Marsh et al., 2005). Their results showed that the definition

of a global TrOCA index is not an achievable goal, propagating a bias of 50 %.

Our work evolves from the results of the papers discussed above. We assess the five

most-adopted Cant techniques (∆C*, ΦCT
0, TrOCA, TTD, extended Multi-Linear

Regression (eMLR)), comparing them as appropriated within each thesis section,

and we explore the ∆C* and TTD Cant estimates in respect to the different pools

of inorganic carbon using the partitioning defined by Williams and Follows (2011).

Over space, we focus mostly on the subtropical North Atlantic, where an on-going

monitoring of the Atlantic Meridional Overturning Circulation (AMOC) and other

key oceanic properties allow us to investigate the North Atlantic circulation and

the total CO2 storage variabilities over two decades. We use the measurements

collected during repeated oceanographic cruises conducted at 24.5◦N, which

provide data for the years 1992 (Millero et al., 2000), 1998 (Peltola et al., 2001),

2004 (Cunningham et al., 2005), and 2010 (King et al., 2012). For the first time,

we add measurements collected on 2016 to this set of data (section 1.4.5 and

appendix A). Over depth, we focus on the North Atlantic Mode Waters (MoW) as

they store the highest Cant in the North Atlantic subtropics, influencing the CO2

uptake with percentages included between 3 % and 10 % (Bates et al., 2002).

Comparative assessments are done in the Antarctic Intermediate Water (AAIW)

mass that stores the highest remineralised carbon pool in the North Atlantic

subtropical upper 1000 m (section 1.4.3). To extend our study over time and test

the mechanisms that influence the CO2 storage variations, we use the most recent

observations from the second version of the GLODAP database (GLODAPv2;
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Lauvset et al. (2016)) between 1980 and 2013, and the outputs of the CM2Mc,

OCCAM, GFDL-ESM2M, and CCSM models between 1860 and 2100.

We assess the uncertainty on each Cant method estimate separating analytical (e.g.

nitrate measurement precision) and methodological (e.g. circulation steady state)

sources (Matsumoto and Gruber, 2005; Vázquez-Rodŕıguez et al., 2009b; Waugh

et al., 2006). These sources of Cant uncertainty are studied by combining one factor

at a time and variance based sensitivity analyses. We evidence that the use of a

single technique is not sufficient to reliably account for Cant estimates, requiring at

least two methods to constrain those values in the probable concentration range.

We suggest that the Cant uncertainty may increase over time as different methods

provide increasingly diverging estimates, such as the TTD and ∆C* at 24.5◦N in

the Atlantic from 1992 to 2010. We underline that the Cant uncertainty depends on

locations and available datasets.

We highlight that the Cant uptake is the most influential driver of ocean DIC rises,

but other components of the inorganic carbon cycle (e.g. soft-tissue Carbon (Csoft);

Williams and Follows (2011)) also affect the sequestration of the total CO2 with

percentages of influence that vary between locations and time intervals. Potential

interactions between carbon components may be significant, with pre-industrial

saturated Carbon (C0
sat) and disequilibrium Carbon (Cdis) influencing the strength

of the air-to-sea fluxes and Cant modifying the remineralisable soft and hard tissues

by changing the pH in addition to variations in the ocean circulation.

Interestingly, we evidence a significant increase in the total pool of North Atlantic

subtropical Csoft from 1992 to 2010, which may influence the divergence between

the TTD and ∆C* Cant. So, we investigate the mechanisms that could have caused

it, exploring changes in meridional and barotropic stream functions, wind stress

curl, mean age, Mixed Layer Depth (MLD), phosphate remineralisation, and pH.

We start our study by highlighting the importance of quantifying reliable Cant and

other ocean carbon pools to deepen the anthropogenic effect on the Earth climate.

We present the Greenhouse effect and the ocean carbon cycle in the next sections.
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1.2 The Greenhouse effect

Figure 1.1: Earth energy balance: fluxes averaged over ten years of observations
and quantified as W m−2. Shortwave and long-wave radiations are reported in
yellow and red, respectively, while the Greenhouse (GH) influence is quantified
as percentage at the top right corner for the carbon dioxide (CO2), methane
(CH4), and nitrous oxide (N2O), using the atmospheric abundances and radiative
efficiencies (adapted from the NASA Earth energy budget poster, https://science-

edu.larc.nasa.gov/energy budget/).

Earth climate changes through time. In the last 800,000 yr, eight cycles of glacial

and interglacial turnover have been detected (Luthi et al., 2008). This change in

the overall climate was mainly due to variations in the Earth orbit and resulting

distribution of solar radiation. However, in the industrial era, an averaged global

T increase, unprecedented in the ice core records, was detected, under the highly

probable influence of anthropogenic activities (Field et al., 2014; Hegerl et al., 1996;

Santer et al., 1996). Accompanying impacts could be significant in the Earth energy

balance (Kiehl and Trenberth, 1997).

In the energetic summary of Kiehl and Trenberth (1997), on average, an incoming

solar shortwave radiation of 340 W m−2 reaches the top of the Earth atmosphere,

being here partially reflected by clouds back to the space, partially absorbed by the
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atmosphere, while 186 W m−2 penetrates to the Earth surface, being here partially

reflected and partially absorbed. The Earth itself emits long-wave radiations of

which 85 % are absorbed by an ensemble of atmospheric gases (mostly water vapour

and CO2) and trapped in the lower atmosphere, originating the GH effect (Fig 1.1).

The comparative influences of the GH gases depend on their radiative efficiencies

and atmospheric abundances, with the CO2 ones discussed in the next paragraph.

CO2 relevance. Among the permanent natural GH gases (CO2, methane (CH4),

and nitrous oxide (N2O)), CO2 is the most abundant, the most rapidly increasing,

and hence the most important for changes to the GH effect. So, the study of its

trend and accompanying anthropogenic influences are critical to our understanding

of the current climate change. CO2 rise has forced the increase in ocean inorganic

carbon named Cant (Friis, 2006; Khatiwala et al., 2013; McNeil and Matear, 2013).

1.2.1 Natural and anthropogenic carbon dioxide

Antarctic ice core data show that atmospheric xCO2 oscillated between 172 ppm

and 300 ppm for approximately 450.000 years (Fig 1.2a; Luthi et al. (2008)), hence

characterising a steady state global carbon cycle (Sarmiento, 2000).

In this steady state, the atmospheric xCO2 fluctuated between glacial (minimum)

and interglacial (maximum) periods, in synchrony with the ocean ice volume and

mean Southern Ocean T variations, suggesting a potential control by this basin on

the long-term natural carbon cycle (Watson et al., 2015).

With the industrial revolution advent in the year 1860, anthropogenic activities

(mainly fossil fuel burning and deforestation) have emitted a rising CO2 amount to

the atmosphere. As a result, this GH gas has increased from an averaged value of 280

ppm in 1860 to over 400 ppm currently (Fig 1.2b), with an observed mean seasonal

oscillation of 5 ppm between May (maximum) and September (minimum, Fig 1.2c),

quantified from the measurements collected at the observatories of the National

Oceanic and Atmospheric Administration (NOAA; Dlugokencky et al. (2017)). As a

consequence, the mean global temperature has also increased by approximately 1◦C

with potentially severe impacts on the natural environment.



Chapter 1. Introduction 21

F
ig
u
r
e
1
.2
:

a
)

E
vo

lu
ti

o
n

o
f

a
tm

o
sp

h
er

ic
T

em
pe

ra
tu

re
va

ri
a
ti

o
n

s
(∆
T

)
a
n

d
ca

rb
o
n

d
io

xi
d
e

(C
O

2
)

pa
rt

ia
l

p
re

ss
u

re
s

(p
C
O

2
)

es
ti

m
a
te

d
fr

o
m

th
e

A
n

ta
rc

ti
c

ic
e

co
re

s.
b,

c)
A

tm
o
sp

h
er

ic
p
C
O

2
m

ea
su

re
m

en
ts

(o
ra

n
ge

d
o
ts

),
tr

en
d

(b
lu

e
li

n
e)

,
a
n

d
se

a
so

n
a
li

ty
h
ig

h
li

gh
te

d
be

tw
ee

n
J

a
n

u
a
ry

2
0
1
5

(2
0
1
5
.0

)
a
n

d
O

ct
o
be

r
2
0
1
6

(2
0
1
6
.8

).
d
)

P
re

d
ic

te
d

a
tm

o
sp

h
er

ic
p
C
O

2
u

si
n

g
se

ve
ra

l
sc

en
a
ri

o
s

o
f

th
e

B
E

R
N

ca
rb

o
n

m
od

el
(B

a
rn

o
la

et
a
l.

,
1
9
8
7
;

D
lu

go
ke

n
ck

y
et

a
l.

,
2
0
1
7
;

F
ie

ld
et

a
l.

,
2
0
1
4
;

IP
C

C
,

2
0
1
4
;

J
oo

s
et

a
l.

,
1
9
9
6
;

J
o
u

ze
l

et
a
l.

,
1
9
8
7
,

1
9
9
6
;

N
O

A
A

,
2
0
1
6
;

P
et

it
et

a
l.

,
1
9
9
9
;

S
ie

ge
n

th
a
le

r
a
n

d
J

oo
s,

1
9
9
2
).



Chapter 1. Introduction 22

In the future (2005-2100), the most scenarios predict that the current trend of rising

atmospheric CO2 will continue due to human activities (England et al., 2015; Field

et al., 2014). This rise will worsen the resulting impacts on the natural environments,

but exact climate change estimates are challenging. In Fig 1.2d, future variations of

atmospheric pCO2 are plotted by using the BERN carbon model (Joos et al., 1996;

Siegenthaler and Joos, 1992) under several socio-economic scenarios (Field et al.,

2014). They differ with respect to the economic growth, technological developments,

and so carbon emissions. All of the projections highlight an atmospheric pCO2 rise,

at various rates, leading to discrepancies of ∼400 ppm in 2100. A quantification of

their reliability is of key importance: projections are studied with model ensembles

under different scenarios, rather than focusing on a single case (Taylor et al., 2012).

1.2.2 Global carbon cycle

The study of the atmospheric CO2 trend and variability needs to be combined with

terrestrial, oceanic and atmospheric processes to better understand the influence of

increasing CO2 on the global carbon cycle. Fig 1.3 summarises the major fluxes and

reservoirs for the anthropogenic (red) and natural (black) carbon cycles.

The atmosphere is a dilute reservoir of natural (589 PgC) and anthropogenic (240 ±

10 PgC) CO2, exchanging them with the land and the ocean at variable scales. On

land, human activities emit Cant while photosynthesis and respiration by vegetation

exchange the main natural carbon fraction. The largest terrestrial carbon reservoirs

are soil and permafrost. In the ocean, most of the natural and anthropogenic carbon

fractions are stored in the intermediate and deep layers (37 x 103 PgC and 155

± 30 PgC, respectively). This CO2 amount is 63 and 18 times higher than the

atmospheric and terrestrial counterparts, leading to an expectation that in the long

term the oceans will dominate CO2 removal (Sarmiento and Gruber, 2006; Watson

et al., 2015). To date, the oceanic uptake has mitigated global warming, having

removed about a third of the emitted Cant (Ciais et al., 2013; Sabine et al., 2004),

particularly in the North Atlantic and Southern Ocean, which are key areas for the

global circulation.
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Figure 1.3: Earth carbon cycle adapted from Ciais et al. (2013) and Heinze
et al. (2015). Averaged fluxes (arrows) and reservoirs (boxes) are reported for the

natural (black) and anthropogenic (red) components.

1.3 Ocean carbon cycle

The ocean total CO2 uptake is important in mitigating the current climate change

rate. This uptake occurs by carbon cycle key processes: air-sea exchange, biological

fixation, water upwelling and down welling, which we now briefly introduce.

Air-sea exchange. At the ocean surface, differences between the atmosphere and

ocean CO2 contents drive fluxes of this gas (Wanninkhof, 1992, 2014). These fluxes

tend to equilibrate lower atmosphere and upper-ocean CO2 concentrations, but the

process is not instantaneous, requiring instead annual timescales (Jones et al., 2014).

Within this timeframe, variations in the gas exchange velocity, MLD, circulation,

primary production, and chemistry of the ocean modify the DIC concentration,

contributing to the maintenance of a disequilibrium at the ocean surface that vary

with longitude. Greatest CO2 sequestrations are found at the poles and there is a

tropical degassing (Takahashi et al., 2009). CO2 fluxes are calculated using the gas
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exchange equation (Eq 1.1).

FCO2 = k α∆pCO2 (1.1)

where α is the solubility coefficient, k is the transfer velocity and ∆pCO2 is the

difference between oceanic and atmospheric CO2 partial pressures.

Excluding the Arctic Ocean and the coastal regions, a mean net flux of total CO2

towards the ocean was recently estimated as 1.4 ± 0.5 PgC yr−1 (Landschützer

et al., 2014), quantifying a carbon uptake between 1998 and 2011 of approximately

1 % and 0.004 % of the anthropogenic and the natural inventories respectively (Fig

1.3). However, the total CO2 flux estimates vary when using different approaches,

increasing the uncertainty (Couldrey et al., 2016; Le Quéré et al., 2000; Rödenbeck

et al., 2014). On the global ocean scale, this uncertainty may be relatively small,

but on a smaller area of study, such as a basin, its influence increases substantially.

Furthermore, the total CO2 net flux has varied over time, reaching 0.8 ± 0.5 PgC

yr−1 in the 1990s and 2.0 ± 0.5 PgC yr−1 in the 2000s (Landschützer et al., 2016).

A concurrent Cant flux of 2.3 ± 0.6 PgC yr−1 (Khatiwala et al., 2009), estimated

using observations in a comparable interval of time, suggests this partition as the

main driver of the total CO2 uptake.

Inorganic chemistry. In the global ocean, most (98 %) of the carbon exists as

DIC, with a small organic fraction (2 %; Sarmiento and Gruber (2006)). The DIC

can be further divided into free aqueous CO2 (1 %), carbonic acid (H2CO3, 0.3 %),

bicarbonate (HCO−
3 , 86.7 %), and carbonate (CO2−

3 , 10 %) ions (Fig 1.5), with

comparative equilibria dependent on pH and T (Zeebe and Wolf-Gladrow, 2000).

The thermodynamic equilibrium constants for the dissociation of carbonic acid to

bicarbonate ions, and bicarbonate to carbonate are well documented, such that

determination of any two variables among the observed pH, pCO2, DIC, and

Alkalinity (Alk) is sufficient to define the concentrations of all the constituents.

Hard-tissue pump. Carbonate is precipitated by some marine organisms with the

formation of calcium carbonate (CaCO3) compounds (mainly calcite and aragonite

(hard tissue)) that sink under the effect of ventilation and gravity. While sinking, the
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Figure 1.4: Contour plot of carbon dioxide (CO2) fluxes at the ocean surface
taken from Takahashi et al. (2009). Values quantified as differences between the
atmospheric and oceanic pCO2 and averaged annually as described by Takahashi

et al. (1993, 2002).

Figure 1.5: Schematic representation of the air-to-sea CO2 exchange and
solubility pump. The overturning includes only the deep-water formation for

simplicity. Credit: V. Byfield, www.rapid.ac.uk/abc/.
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solubility increase enhances the CaCO3 dissolution, particularly below the lysocline,

representing a source of DIC in the ocean interior.

Figure 1.6: Schematic representation of the ocean hard-tissue and soft-tissue
pumps. Living organisms influence the ocean CO2 uptake driving the formation
of compounds that sink under the effect of gravity and ventilation, originating
organic and calcareous sediments or being remineralised along the water column.

Credit: V. Byfield, www.rapid.ac.uk/abc/.

Soft-tissue pump. Living organisms influence further the oceanic carbon uptake

within the so-called soft-tissue pump. This pump is separable in three sequential

steps: photosynthesis, export, and remineralisation.

As with land vegetation, marine primary producers photosynthesise, taking up

CO2 from the surrounding seawater, thus reducing the ocean surface pCO2, and so

enhancing air-to-sea fluxes. These organisms fix the CO2 with inorganic nutrients

and water, forming soft tissue with dissolved oxygen (O2) as waste product. Once

fixed, the soft tissue starts sinking driven by gravity, ventilation, or living organism

migrations. Approximately 2 % of these sinking materials reach the ocean bottom

where they may be stored for millennia, representing a significant fraction of the

global ocean organic sediments. However, the sinking compound majority (98 %) is

remineralised, along the water column, by heterotrophic organisms and converted

back to DIC (Fig 1.6).
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Figure 1.7: Schematic of the Meridional Overturning Circulation (MOC),
modified from Talley (2013). Colours indicate water mass features and processes

of deep-water formations.

Solubility pump. The carbon cycle is also influenced by a system of surface and

deep currents that encircle the global ocean, linking the basins and the surface to

the ocean interior, termed the Meridional Overturning Circulation (MOC).

In a simplified description (Fig 1.7), this system consists of two meridional cells,

describing the Northern Atlantic deep-water convection and Southern Ocean deep-

water formation (Broecker, 1991; Gordon, 1986; Talley, 2013).

Starting from the upper North Atlantic cell, warm and shallow seawater moves from

the tropics northwards. On its way, this seawater exchanges with the atmosphere

and mixes with the surrounding seawater, losing heat, reducing pCO2 and taking up

atmospheric CO2 while increasing density (Takahashi et al., 2009; Talley, 2013). As

a result, the seawater subducts, carrying DIC to the ocean interior where it can be

stored for decades. An adiabatic upwelling that drives seawater back to the surface in

the Southern Ocean closes the cell. Here, similar processes modify seawater, forming

a second area of deep-water formation with comparable effects on the carbon cycle.
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1.3.1 Seawater anthropogenic carbon

Cant is an estimate of key relevance as it quantifies the anthropogenic footprint on

the Earth climate. By definition, Cant is influenced only by oceanic circulation and

CO2 disequilibrium (Friis, 2006; McNeil and Matear, 2013). These drivers confine

the Cant highest pools to the North Atlantic and Southern Ocean (Fig 1.8; Khatiwala

et al. (2009); Sabine et al. (2004)). Accompanying estimates rely on indirect methods

(based on DIC or oceanic transient tracers), as Cant direct quantifications are not

obtainable in the ocean (Chen and Millero, 1979; Poisson and Chen, 1987): Cant is a

small component of the DIC reservoir and it is influenced by complex biogeochemical

cycles and ocean circulation changes, which increase the uncertainty associated to

the indirect method estimates.

Figure 1.8: Global ocean anthropogenic carbon (Cant) column inventory. Data
taken from the GLODAPv2 climatology (Lauvset et al., 2016), where they were

estimated using the TTD method based on CFC-12 observations.

The Cant methods are based on carbon-related observations (e.g. Alk) or transient

tracers, such as Chlorofluorocarbons (CFCs: trichlorofluoromethane (CFC-11),

dichlorodifluoromethane (CFC-12), trichlorotrifluoroethane (CFC-113)), carbon

tetrachloride (CCl4), and sulphur hexafluoride (SF6, Fig 1.9).

Among these indirect methods, the so-called back-calculations (∆C*, ΦCT
0, and

TrOCA) estimate Cant by removing from the DIC a quantification of the surface
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Figure 1.9: Evolution over time of anthropogenic transient tracer (pCFC-11,
pCFC-12, pCFC-113, pCCl4, pSF6) and carbon dioxide (pCO2) partial pressures
in the atmosphere. Data taken from the carbon dioxide information analysis centre
(cdiac.ornl.gov/oceans/; Battle et al. (1996); Bullister and Wisegarver (2008)).

disequilibrium, biological and preformed carbon fractions (Gruber et al., 1996;

Touratier and Goyet, 2004; Vázquez-Rodŕıguez et al., 2009a). The TTD treats

Cant as a transient tracer, inferring it by using other anthropogenic tracers (e.g.

CFCs; Hall et al. (2002); Waugh et al. (2004)). The eMLR quantifies Cant changes

over time as differences between regressed DICs over successive observations

separated in time (Friis et al., 2005): the eMLR method can be used as an

independent test for other Cant techniques reliability over time (chapter 2).

The resulting Cant estimates are comparable over large temporal and spatial scales,

but the combined effect of method assumptions and analytical precisions leads to a

nominal uncertainty range estimated between ±10 % and ±20 % (Matsumoto and

Gruber, 2005; Vázquez-Rodŕıguez et al., 2009b; Waugh et al., 2006). Differences

among Cant values were assessed comparing observations and Earth System Models

(ESMs), hence identifying the North Atlantic (0-65◦N) and regions south of 40◦S as

the areas of greatest Cant disagreements (Khatiwala et al., 2009). Several reasons

lead to this confinement with causes and effects detailed in chapters 4 and 5.
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1.4 North Atlantic basin

The work presented hereafter is based on analyses conducted in the North

Atlantic: the basin is ideal to assess the Cant estimates, caveats, and advantages.

Here, international databases report the highest abundance of observations, the

overturning circulation stores the highest Cant per unit area, and there are several

previous studies (Brown et al., 2010; Guallart et al., 2015b).

1.4.1 North Atlantic bathymetry

The North Atlantic extends from the equator to approximately 65◦N, covering

around a sixth of the global ocean surface (60 x 106 km2) and a tenth of its water

volume (133 x 106 km3).

Clockwise, the North American, West European, and North African coasts confine

the basin, while the mid Atlantic ridge dominates the bathymetry, traversing in a

north-south direction the entire North Atlantic and dividing it into eastern and

western sub basins (Fig 1.10). This ridge constrains the intermediate and deep

circulations to its sides with the exception of natural fracture zones, such as the

Charlie-Gibbs at approximately 52◦N.

1.4.2 North Atlantic circulation

The North Atlantic meridional overturning circulation separates into buoyancy and

wind driven circulations. The former drives subduction mainly in the Labrador Sea

and Nordic Seas (Schmitz, 1996). The latter moves seawater horizontally, defining a

convergent subtropical gyre between 10◦N and 40◦N, and a divergent subpolar gyre

between 40◦N and 65◦N (Hakkinen and Rhines, 2004).

In the North Atlantic upper layer, seawater is transported northwards by the warm

western boundary GS (Fig 1.11). In the subtropical gyre, several branches diverge

from this flow, carrying seawater southwards. At the subpolar edge, the GS separates

into two branches, which carry Atlantic seawater to the Nordic Seas, through the

Norwegian (eastern branch) and Irminger (western branch) currents. In the Nordic
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Figure 1.10: North Atlantic bathymetry derived from the ETOPO1 dataset
(Amante and Eakins, 2009). Major topographic features are highlighted with the

reference depth contour lines at 1000 m (blue) and 3000 m (red).

Seas, seawater subducts owing to a reduction in the buoyancy (mainly due to a

decrease in T) and circulates back to the North Atlantic, originating the Denmark

Strait Overflow Water, between Greenland and Iceland, and the Iceland Scotland

Overflow Water, between Iceland and the UK.

These water masses circulate to the Labrador Sea, mixing here with the Labrador

Sea Water of similar density, locally generated by similar processes, forming proto

North Atlantic Deep Water (NADW) that flows southwards in the deep western

boundary current (Schmitz and McCartney, 1993; Stanford et al., 2011). Beneath

this layer, in both eastern and western basins, Antarctic Bottom Water (AABW)

moves northwards (Fig 1.12).

1.4.3 North Atlantic water masses

Seawater properties (e.g. potential temperature (Θ1)) modify after exchanges with

the atmosphere or confining water parcels. Assuming these tracers are conservative

in the ocean interior, one can track their paths using the T and Salinity (S) ranges

1The potential temperature is the hypothetical seawater temperature after an adiabatic motion
of the studied parcel to a pressure of 10 dB.
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Figure 1.11: Schematic representation of the North Atlantic surface circulation
taken from Stanford et al. (2011). Major currents highlighted as coloured arrows.

measured in the formation areas, characterising fixed property parcels called water

masses. The main North Atlantic water masses are summarised in Tab 1.1 and

represented graphically using a trans Atlantic salinity distribution in Fig 1.13. Their

density intervals are calculated with the Gibbs seawater toolbox (McDougall et al.,

2010) and superimposed as isopycnal contour lines.

At the surface, the MoW are water masses characterised by nearly homogenous

vertical features due to the deep winter convection (Hanawa and Talley, 2001).

Depending on their neutral density range (γ; Jackett and McDougall (1997)), the

MoW are separated into Subtropical (ST), Madeira (M), and Subpolar (SP) MoW

(Tab 1.1). The STMoW is the most recently ventilated, subducting approximately

offshore of New York after heat loss. In this thesis, we identify the STMoW as the
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Figure 1.12: Same as in Fig 1.11, but for the intermediate and deep circulations.
Arrows and boxes indicate water masses and fluxes in Sverdrup (Sv = 106 m3 s−1).

layer between 0 m and 200 m, thus comprising temperatures higher than 18◦C, and

so not identical to the commonly used definition (McCartney, 1982). Nevertheless,

we refer to the ocean top layer that comprises STMoW and other surface water

masses as STMoW for simplicity. The MMoW subducts in the Madeira Plain (Fig

1.10) due to changes in the MLD. The SPMoW area of formation is confined to the

eastern North Atlantic at approximately 58◦N. Overall, the Mode waters are of key

relevance for our work as changes in their properties are considered good indicators

of AMOC (Joyce et al., 2000) and North Atlantic primary production (Krémur et al.,

2009) variabilities.
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Figure 1.13: Distribution of oceanic Salinity (S) at the 30.5◦W Atlantic
transect. Major water masses (Subtropical Mode Water (STMoW), Madeira MoW
(MMoW), Subpolar MoW (SPMoW), Antarctic Intermediate Water (AAIW),
upper North Atlantic Deep Water (uNADW), lower NADW (lNADW), and
Antarctic Bottom Water (AABW)) are highlighted with isopycnal contours based
on Tab 1.1. Data taken from the GLODAPv2 climatology (Lauvset et al., 2016).

Table 1.1: Table summarising the boundaries (potential temperature (Θ),
Salinity (S), and neutral density (γ)) of the Atlantic major water masses (Guallart
et al. (2015b)1; Rhein et al. (2015)2; Dickson and Brown (1994)3; Hanawa and

Talley (2001)4; Emery (2001)5).

Water mass Θ [◦C] S [psu] γ [kg m−3]

STMoW4 18.7 to 22.0 36.5 to 36.6 < 24.1

MMoW4 15.0 to 18.7 36.6 to 36.7 24.1 to 26.7

SPMoW4 9.0 to 15.0 35.9 to 36.5 26.7 to 27.2

AAIW1,5 4.0 to 9.0 33.8 to 34.8 27.2 to 27.6

uNADW1,2,3,5 2.3 to 4.0 34.9 to 35.0 27.6 to 27.9

lNADW1,2,3,5 2.0 to 2.3 34.8 to 34.9 27.9 to 28.0

AABW1,5 -1.8 to 2.0 34.9 to 35.0 >28.0
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Below the MoW, the Antarctic intermediate water originates in the Southern

Ocean. From there, this water mass follows a depth-varying path, being influenced

by mixing, and so reaching the North Atlantic with modified features.

At greater depth, the NADW originates in the Nordic Seas and flows southwards,

modifying its features by e.g. mixing with the Mediterranean inflow at ∼38◦N. The

NADW is further separable into an upper (uNADW) and lower (lNADW) layers.

Finally, the AABW originates in the Southern Ocean and rapidly drops to the

North Atlantic floor. From there, the AABW flows northwards, being influenced

by mixing and rapidly changing its features.

1.4.4 North Atlantic subtropics

The subtropical North Atlantic is of key relevance for the monitoring of the AMOC

and associated CO2 uptake (Bryden et al., 2014; DeVries et al., 2017; Racapé

et al., 2018). As a result, an hydrographical section at 24.5◦N has been sampled in

1992 (Millero et al., 2000), 1998 (Peltola et al., 2001), 2004 (Cunningham et al.,

2005), 2010 (King et al., 2012), and 2016 (section 1.4.5 and appendix A).

Measurements of T, S, Alk, DIC, dichlorodifluoromethane (CFC-12), O2, inorganic

nitrate (NO3), silicate (Si(OH)4), and phosphate (PO4) were collected at a high

frequency during these 24.5◦N cruises, with the sulphur hexafluoride (SF6) also

measured in 2010 and 2016. The measurements averages (µ), standard deviations

(σ), Precisions (Pre) and amounts (n) are summarised in Tab 1.2.

Overall, the amount of observations increases over time, allowing for more robust

analyses and improving the study of inferred estimates (e.g. Cant). The analytical

precisions remain constant for T and S, whereas improvements are quantifiable for

CFC-12, Si(OH)4, NO3, O2, DIC, and Alk measurements. DIC and Alk for the year

2016 are not yet fully quality controlled, hence not included in this thesis.

1.4.5 North Atlantic transient tracer observations

During my doctoral project, I was involved in a trans Atlantic hydrographic cruise

conducted from Nassau to Las Palmas between December 2015 and January 2016.
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Figure 1.14: Averaged route of the five cruises conducted at the 24.5◦N Atlantic
transect in 1992, 1998, 2004, 2010, and 2016.

The resulting dataset is briefly presented here and assessed in appendix A.

Five transient tracers (CFC-11, CFC-12, CFC-113, CCl4, and SF6) were measured

using a purge-and-trap gas chromatographic instrument mounted in a T-controlled

container. This approach merged the Lamont Doherty Earth observatory CFC and

Plymouth marine laboratory SF6 methods (Law et al., 1994; Smethie et al., 2000).

The sampling procedure resulted from the international guidelines of the Global

Ocean Ship-based Hydrographic Investigations Program (GO-SHIP; Hood et al.

(2010)) that identify the CFCs, CCl4, and SF6 as the first to be sampled from the

rosette owing to high volatility and T dependency (Bullister and Tanhua, 2010). In

this procedure, potential air contamination was avoided by overflowing the sample

container with at least three times its volume. Then, all of the samples were stored

in cool boxes, with the surface ones maintained at ambient temperature, while the

deep ones were stored at a constant ∼5◦C to avoid further degassing.

Prioritising the most relevant samples, the analyses were conducted within hours

after the sampling. Seawater was introduced in the purge-and-trap system forcing

a nitrogen pressure at the sample top, filling calibrated volumes of 27 cm3 and 300

cm3 for the CFCs and SF6. The purge gas was then conveyed through perchlorate

magnesium dryers to remove water vapour and, finally, captured at -100◦C on a
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Unibeads 3S trap for the CFCs, and at -80◦C on a Porapak Q trap for the SF6.

Both traps were submerged into liquid nitrogen vapours.

The traps were then raised and the respective Ts increased to 110◦C and 65◦C for

the CFCs and SF6. A 2 m molecular sieve packed column and a 1 m buffer column

were used to isolate SF6, while the CFCs were treated with a 1 m Porasil B packed

and a 1.5 m Carbograph AC columns. From there, the tracers were carried to two

Agilent 6890N gas chromatographs with electron capture detectors for the

quantifications. Calibrations were based on NOAA gaseous standards.

The final tracer precisions were estimated as ±1.1 %, ±0.7 %, ±0.9 %, ±2.6 %,

and ±3.5 % for the SF6, CFC-12, CFC-11, CFC-113, and CCl4 surface samples.

Below, we quantify ±0.011 fmol kg−1, ±0.002 pmol kg−1, ±0.002 pmol kg−1,

±0.001 pmol kg−1, and ±0.020 pmol kg−1 for the same tracers.

1.5 Synthesis and discussion

The CO2 atmospheric mole fraction has increased by approximately half of its pre-

industrial value since 1860. This pattern is likely to be caused by anthropogenic

activities and it has strengthened the existing Greenhouse effect, being suggested as

the main cause of the recent global warming (increase in the Earth temperature).

Luckily, the increase in atmospheric CO2 has been mitigated by the global ocean,

which has sequestered around a third of the mentioned increment. This sequestration

however has caused the ocean pH to decrease and has altered the carbon chemistry

with consequences on the dissolved inorganic carbon system. As a result, a deeper

understanding of the Cant cycle is essential to evaluate future responses of the natural

environment to anthropogenic activities. In the next chapter, we will investigate the

uncertainty on the ocean Cant estimates and discuss potential influences of changes

in biogenic (e.g. nitrates) or physical (e.g. temperature) factors on the estimates of

this carbon partition. We will also summarise the methods used in this thesis.
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Methods

2.1 Introduction

In the previous chapter, we summarised the thesis general context and aims of our

research, describing the relevant studies done in the literature. Here, we provide an

overview of the methods used in our work. We start describing the techniques used

to infer the Cant in the ocean from the biogeochemical observations, anthropogenic

transient tracers, and regression analyses (section 2.3). The associated uncertainty

was estimated, nominally, between ±10 % and ±20 %, with comparable influences

of analytical precisions and methodological assumptions (Matsumoto and Gruber,

2005; Vázquez-Rodŕıguez et al., 2009b; Waugh et al., 2006). However, the specific

influence of each source of uncertainty is still under discussion. We investigate the

caveats, advantages and errors linked to the sources of intra method uncertainty

by using the time series of measurements collected at the 24.5◦N Atlantic transect

between 1992 and 2010 (section 1.4.4). We also present the use of climate models

(CCSM, GFDL-ESM2M, CM2Mc, OCCAM, section 2.4) and statistical approaches

(e.g. variance based sensitivity analysis, section 2.5) as tools for the assessment and

improvement of these uncertainties, which will be applied in chapter 3.

39
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2.2 The seawater CO2 system calculation

The oceanic inorganic carbon constituents (H2CO3, HCO−
3 , CO3

2−, and CO2) can

be inferred indirectly using a seawater carbon system calculation. For this purpose,

we adopt the ‘co2sys’ suite of programs based on the observations of carbon dioxide

partial pressure (pCO2), pH, Dissolved Inorganic Carbon (DIC), and total Alkalinity

(Alk; Lewis and Wallace (1998); Van Heuven et al. (2011)). Only two of these four

measurements are needed to describe the speciation of inorganic carbon, with their

choice left to researchers, depending on expertise and data availability. To maintain

the overall quality of the measurements, Dickson et al. (2007) summarised the best

practice for oceanic carbon observations, assessing respective techniques and caveats,

with the accompanying uncertainties summarised hereafter. Measurements of pCO2

are used to calculate surface CO2 fluxes (Eq 1.1) and are influenced by Temperature

(T) and Salinity (S) precisions1 with an uncertainty of ±2.0 µatm (approximately

±0.7 % of the background value). The pH measures the seawater amount of free

hydrogen ions (H+), with four potential scales that propagate an overall difference

of ±0.1 pH units (±1.3 %) when compared to the reference free scale (Brown, 2008).

The DIC quantifies the sum of aqueous CO2, H2CO3, HCO3
−, and CO3

2−. Sampling

precision and instrumental accuracy introduce an uncertainty in this measurement

of ±1.5 µmol kg−1 (±0.1 %), when considering single cruises, and ±4.0 µmol kg−1

(±0.1 %), when comparing cruises and laboratories (Dickson et al., 2007). The Alk

estimates the seawater potential to counterbalance additions of H+, maintaining the

overall pH. A formal calculation in terms of seawater composition involves many

ions but the major contributors are HCO3
−, CO3

2−, and B(OH)4
−. Dickson et al.

(2007) suggested an Alk uncertainty of ±4.0 µmol kg−1 (±0.2 %) on single cruises

and ±6.0 µmol kg−1 (±0.3 %) between laboratories and cruises.

Changes in the co2sys constants and coefficients propagate uncertainty in the carbon

estimates, and so stating their values is important (Millero, 1995). We use the pH

1Accuracy and precision are terms often confused. Accuracy quantifies the distance between the
measured and theoretical values, being influenced mainly by systematic errors. Precision estimates
measurement repeatability, being affected and quantifying random errors.
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seawater scale, the CO3
2− dissociation constants from Mehrbach et al. (1973) and

refitted by Dickson and Millero (1987), and the silicate constant from Dickson (1990).

2.3 Methods to infer ocean anthropogenic carbon

The global ocean conveys around a third of the anthropogenic CO2 (Cant) to the

intermediate and deep oceans, but a direct quantification of this quantity is not

possible (section 1.3.1). Estimates are instead inferred using indirect methods based

on biogeochemical observations, statistical analyses, and/or anthropogenic transient

tracers (Chen and Millero, 1979; Gruber et al., 1996; Hall et al., 2002; Poisson and

Chen, 1987; Vázquez-Rodŕıguez et al., 2009a; Waugh et al., 2004). Their parameters

and main assumptions are summarised in Tabs 2.1 and 2.2. In these tables, we also

summarise the influence of the main sources of method-specific uncertainty (e.g.

∆C* estimate of the equilibrium carbon), with the accompanying analyses detailed

in the thesis sections 2.3.1 to 2.3.3. The wider inter-method influence of the assumed

ocean steady state, the constancy in the biogeochemical influence on Cant and in the

surface CO2 disequilibrium over time will be discussed in chapters 3, 4, and 5.

2.3.1 The back-calculations (∆C*, ΦC0
T, and TrOCA)

The back-calculations (∆C*, ΦC0
T, and TrOCA) infer Cant in the ocean from DIC,

Alk, inorganic silicate (Si(OH)4), nitrate (NO3), phosphate (PO4), and dissolved O2

measurements (Gruber et al., 1996; Touratier and Goyet, 2004; Vázquez-Rodŕıguez

et al., 2009a). These methods assume the oceanic ventilation in steady state with

a ‘weak’ mixing influence (Khatiwala, 2009), and constancy in the surface carbon

fluxes and Redfield ratios (RRs; Redfield (1934)).

∆C* method. ∆C* quantifies Cant (Eq 2.1) by subtracting from the measured total

carbon (Ctot or DIC) an estimate of the carbon due to the biological activity (Cbio),

the carbon that the ocean would have in CO2 equilibrium with the atmosphere (Ceq),

and the current surface disequilibrium carbon partition (Cdis).

C∆C?

ant = Ctot − Cbio − Ceq − Cdis (2.1)
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Cbio (Eq 2.2) is quantified as a function of the Apparent Oxygen Utilisation (AOU;

Pytkowicz (1971)) and a preformed Alk (Alkpre) estimate that we base on regression

models (Eq 4.7). For its quantification, we fix the RRC:P as 117, the RRO:P as -170,

and the RRN:P as 16 (Redfield, 1934).

Cbio =
RRC:P

RRO:P

(−AOU) + 0.5

Ç
Alk − Alkpre +

RRN :P

RRO:P

(−AOU)

å
(2.2)

Ceq (Eq 2.3) is regressed on observations of S, potential temperature (Θ), and the

previously regressed Alkpre.

Ceq = 2076.7 − 8.8 (Θ − 9) − 4.5 (S − 35) + 0.8 (Alkpre − 2320) (2.3)

Cdis is calculated as a function of T and S measurements in the upper 100 m of the

Atlantic Ocean using GLODAP data, following the same approach of Gruber et al.

(1996). Below this depth, we assume Cdis to be constant along isopycnal lines, hence

treating it as a water mass property (Gruber et al., 1996).

∆C* uncertainty. The uncertainty in the ∆C* Cant estimates is quantifiable as

±10.0 µmol kg−1 (±20 %), of which ±5.0 µmol kg−1 (±10 %) is due to analytical

precisions and ±5.0 µmol kg−1 to methodological assumptions (Gruber et al., 1996;

Matsumoto and Gruber, 2005). This uncertainty is due to several sources, of which

some are method-specific (e.g. Ceq estimate) and others influence more than a Cant

method (e.g. assumed ocean steady state). In this section, we explore the method-

specific uncertainties, focusing on the effect of the assumed constancy in Cdis and

RRs, and the use of regression models to estimate Alkpre and Ceq.

The assumed temporal constancy in the disequilibrium between the oceanic and

atmospheric CO2 influences the ∆C* Cant. Matsumoto and Gruber (2005) assessed

the influence of this assumption, quantifying an uncertainty of ±1.0 µmol kg−1 (±2

%) on the ∆C* Cant estimates in the global ocean (section 3.3).

Like the other back-calculations, the ∆C* technique assumes constancy in the RRs

over space and time. This RRs assumption adds an uncertainty to the ∆C* Cant that

is difficult to quantify. An estimate can be obtained as difference in the ∆C* Cant
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estimates after varying the reference values (RRN:P = 16 and RRO:P = -170; Redfield

(1934)). For this purpose, we select comparative estimates (RRN:P = 22 and RRO:P

= -163) defined globally by Martiny et al. (2014) with observations over forty years

of analysis (1970-2010). Using the Redfield (1934) and Martiny et al. (2014) ratios

with the data collected at the 24.5◦N Atlantic transect (section 1.4.4), we quantify a

systematic bias in the ∆C* Cant of 1.8 µmol kg−1 (±3.6 %). This bias lies within the

method uncertainty (±10.0 µmol kg−1; Gruber et al. (1996); Matsumoto and Gruber

(2005)), thus reducing the influence on the Cant estimates of potential biogeochemical

changes (Bates, 2001; Bates et al., 2002; Gruber et al., 2002). However, it highlights

the necessity of reliable RRs for the ∆C* Cant estimates.

More generally, the influence of the assumed RRs constancy on the ∆C* Cant can be

estimated by using a One Factor At a Time (OFAT) approach (Morris, 1991). Under

the OFAT assumptions (e.g. absence of factor interactions), we alter the RRN:P and

RRO:P by 1 unit each, using the resulting change in Cant as an estimate of the RR

influence (see section 2.5 for details). By doing so, we determine Cant rises of 0.2 µmol

kg−1 and 0.3 µmol kg−1 by increasing the RRN:P and RRO:P. However, the studies

of Redfield (1934) and Martiny et al. (2014) suggest that the RR variabilities exceed

the unit. Instead, they lie between 15-25 (RRN:P) and 160-170 (RRO:P), leading to

Cant uncertainties of ±1.5 µmol kg−1 (±3 %) and ±3.0 µmol kg−1 (±6 %).

Additional sources of ∆C* Cant uncertainty are the Alkpre and the Ceq regressions.

Their reliability was originally quantified by comparing these estimates with the

Alk and DIC measurements in the Atlantic upper 100 m to avoid anthropogenic

influences on Alk (Gruber et al., 1996). While the Alk comparison is a standardised

regression model evaluation, the estimated Ceq and measured DIC unavoidably differ,

as the last is not in CO2 equilibrium. Nevertheless, we follow the approach of Gruber

et al. (1996), treating separately the water column upper 100 m as this layer accounts

for the definition of the Alkpre and Ceq regression models. The remaining analyses

are conducted in the STMoW, MMoW, and SPMoW, as these water masses carry

the highest Cant amount at 24.5◦N in the Atlantic (Tab 4.2; Guallart et al. (2015b)).

Fig 2.1 shows a comparison between the Alkpre and Alk estimated for repeated

occupations of the 24.5◦N Atlantic section.
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There is an overall consistency, with the greatest R2 estimated above 100 m.

Residuals lie within ±20.0 µmol kg−1, varying between an Alkpre underestimate

above 200 m and an overestimate below this depth.

Similarly, the reliability of the regression models used to infer the Ceq is assessed

versus the measured DIC (Fig 2.2a-d). Residuals (Fig 2.2e-h) show variations over

time (±25.0 µmol kg−1) and depth (±40.0 µmol kg−1), with the highest reliability

quantified above 100 m and the strongest variation estimated in 2010, suggesting

reductions over space and time in the regression model applicability.

As for the RRs, we estimate the Alkpre and Ceq influences on the ∆C* Cant

uncertainty as ±0.2 µmol kg−1 and ±1.0 µmol kg−1 by increasing each factor at a

time by 1.0 µmol kg−1. Then, we combine these influences with the associated

variances quantified by using the standard error of each regression, as comparably

done by Gruber et al. (1996). In the whole 24.5◦N section, changes in the Alkpre

and Ceq lead to ∆C* Cant uncertainties of ±1.3 µmol kg−1 (±3 %) and ±4.3 µmol

kg−1 (±8 %). The values reduce in the upper 1000 m, where the regressions are

more reliable. Overall, the uncertainty due to the Alkpre and Ceq lie within the

∆C* nominal value of ±20 %, but the influences vary with location and in time.

ΦC0
T method. The ΦC0

T technique (Eq 2.4) improves on the ∆C*, introducing a

correction term (Φ) that accounts for Cdis increases over time (Vázquez-Rodŕıguez

et al., 2009a). This Φ term is equal to the ratio between the Cdis rate of variation

and concentration and it is estimated in the ocean subsurface (100 - 200 m) given

that the air-sea CO2 disequilibrium is settled in the column upper layer (0-100 m).

For this reason and to reduce the variability of the estimated Cant, the ΦC0
T

method removes the water column upper 100 m and uses an Optimum Multi

Parameter (OMP; Tomczak (1981)) analysis to correct the ventilation in water

masses with Θ lower than 5◦C.

C
ΦC0

T
ant =

C∆C?

ant (0.03S (0.85 Θ + 46))

1 + Φ |Cdis|
(2.4)

ΦC0
T uncertainty. The reliability of the ΦC0

T Cant estimates depends, mainly, on

assumptions similar to the ∆C* Cant, although the ΦC0
T better constrains them by
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using the factor Φ. Vázquez-Rodŕıguez et al. (2009a) assumed this term constant

away from the equator, which is an upwelling region, and estimated it as 0.6 ± 0.1

by using Eq 2.5. Here, δtCdis estimates the variation in Cdis over time, Csat
ant identifies

the saturated Cant, a correction factor that refers to an atmospheric mole fraction

(xCO2) of 375 ppm, and CDEC
ant is the Decomposition Cant (Eq 4.13).

Φ = − δtCdisC
sat
ant

|Cdis| CDEC
ant

(2.5)

Following the same procedure, we estimate Φ as 0.2 ± 0.1 by using the observations

collected at the 24.5◦N Atlantic transect. This estimate propagates an uncertainty

to the ΦC0
T Cant values of ±0.2 µmol kg−1 (±0.4 %) for changes in Φ of ±0.01.

TrOCA method. The TrOCA method (Eqs 2.6-2.8) was developed by Touratier

and Goyet (2004) and revisited by Touratier et al. (2007). This approach quantifies

an index, named TrOCA, which combines measurements of O2, DIC and Alk. The

index value is determined in the seawater sample and, then, compared to a pre-

industrial reference (TrOCA0), with the difference used as the Cant estimate.

TrOCA = O2 + 1.3DIC − 0.7Alk (2.6)

TrOCA0 = a e
−Θ
b (2.7)

where a and b are coefficients dependent on the method used to estimate TrOCA0

and propagate an uncertainty in the Cant estimate of ±0.1 µmol kg−1 (±0.2 %).

CTRO
ant = TrOCA− TrOCA0 (2.8)

TrOCA uncertainty. The definition of the TrOCA index evolves from the Redfield

stoichiometric relationships between nutrients, carbon, and dissolved oxygen. Under

the assumption that anthropogenically-driven increases in the atmospheric CO2 have

negligible effects on the ocean alkalinity and dissolved oxygen, the TrOCA index can
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be considered as an approximately conservative tracer and differences from its pre-

industrial value used to estimate Cant. Although the assumption was disproved by

Manning and Keeling (2006), one can apply the TrOCA approach and estimate the

tracer pre-industrial value as a function of the potential temperature (Eq 2.7). This

approach relies on the use of transient tracers, such as CFCs, to estimate the time

since the water mass was last ventilated at the ocean surface and therefore to build

a background of water masses with known Cant where one can regress the TrOCA0

function on Θ measurements. By doing so, however, we introduce additional sources

of uncertainty, such that a water mass has no Cant where no CFCs are detectable

(see section 2.3.3 for details).

Yool et al. (2010) started the assessment of the TrOCA Cant, quantifying biases of up

to 50 % when comparing it with the ∆C* estimate. As a result, we consider TrOCA

only for comparison with previous studies (Guallart et al., 2015b). We explore the

influence on the TrOCA Cant estimates of unit changes in Θ, O2, DIC, and Alk under

the OFAT assumptions (Tab 2.2). Overall, the DIC is the most influential factor in

the TrOCA technique, with the associated precision propagating an uncertainty of

±2.1 µmol kg−1 (±4 %). O2 (±3 %) and Alk (±2 %) also contribute, while the Θ

effect is negligible due to the high precision achieved in this measurement.

2.3.2 The extended multi linear regression technique

eMLR method. The extended Multi Linear Regression (eMLR) method quantifies

temporal changes in Cant (δtCant) by regressing two DIC distributions over successive

times of analyses and subtracting these regressions as in Eq 2.9. Under this approach,

the predictive parameter choice is of key relevance: they need to account for the total

carbon variability and their correlation with the DIC should be time independent.

We use observations of Θ, S, Alk, NO3 and O2, as also done by Brown et al. (2010).

δtC
eMLR
ant = (a2 − a1) Θ + (b2 − b1)S + (c2 − c1)Alk +

(d2 − d1)NO3 + (e2 − e1)O2 + (f2 − f1) (2.9)
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Table 2.3: Table summarising the coefficients of the regression models used for
the eMLR δtCant estimates (Eq 2.9).

Year a b c d e f R2

1992 -8.144 14.610 0.461 1.739 -0.421 690.0 0.97

1998 -11.670 45.950 0.249 0.967 -0.624 163.8 0.99

2004 -11.142 41.635 0.292 0.804 -0.623 215.7 0.98

2010 -11.477 38.917 0.284 -0.001 -0.694 366.1 0.98

Figure 2.3: Box plots of eMLR residuals (Res = DIC - DICeMLR) over the four
repeats collected at the 24.5◦N Atlantic transect in 1992, 1998, 2004, and 2010.
Respective data amounts (n) are reported at the bottom right edge of each graph.

where 1 and 2 denote two consequent times and coefficients a to f are shown in Tab

2.3. Residuals are predominantly (between the 25th and 75th percentiles2) included

between ±5.0 µmol kg−1 (±10 % of the Cant maximum), with 98 % of the outliers

confined to the upper 200 m (STMoW) of the water column (Fig 2.3).

eMLR uncertainty. The eMLR δtCant uncertainty was estimated as ±3.0 µmol

kg−1 by Woosley et al. (2016). This value is lower than the uncertainties on Cant

estimated by using other techniques (e.g. ∆C*), being the eMLR based on a reduced

number of assumptions (Friis et al., 2005).

The eMLR δtCant uncertainty is mostly due to the use of regression models that

smooth the overall variability, introducing biases specific to the region and amount

2Box plots are graphical representations of normally distributed functions. All values included
between the 25th and 75th percentiles are schematised as a box with a vertical line identifying the
median. The remainders are reported as lateral bars, with the outliers identified by single cross.
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of observations. An additional source of uncertainty occurs if there are changes in the

sample locations over successive times of analysis. Therefore, statistical techniques

or water mass averages are used before comparing the data. Notwithstanding that,

the eMLR uncertainty increases over time, thus invalidating the use of regression

models for period longer than 20 years from their definition (Goodkin et al., 2011).

Nevertheless, the eMLR is an independent way of measuring δtCant to which other

techniques (e.g. ∆C*) can be compared (section 5.2).

2.3.3 The transit-time distribution technique

TTD method. The Transit-Time Distribution (TTD) technique treats Cant as an

anthropogenic transient tracer (Eq 2.10; Hall et al. (2002); Waugh et al. (2004)).

This method relies on some assumptions in common with the back-calculations (e.g.

steady state of ocean circulation), but takes into account comparable influences of

mixing and advection in the ocean ventilation by using a convolution equation based

on Green’s function (G, Eq 2.11; Khatiwala et al. (2009, 2013)).

CTTD
ant (x, t) =

∫
dx
′
∫ t

1765
CS

ant(x
′
, t
′
) G(x, t|x′ , t′) dt′ (2.10)

where CS
ant quantifies the anthropogenic carbon concentration when the water mass

was last in contact with the Surface, as it is outlined in step 2 below.

G allows for a probabilistic description of the path followed by a water mass from

the surface (at location x’ and time t’) to the ocean interior (at location x and

time t). In the implementation used here, which is based on the work of Waugh

et al. (2004), G is approximated as an inverse Gaussian (Eq 2.11) based on the

mean ventilation time (Γ) and spread (∆). This is a solution to the one-dimensional

advection-diffusion equation within which Γ and ∆ quantifies the first and second

temporal moments of G. Changes in these parameters modify the inverse Gaussian

structure (Fig 2.4) while Γ/∆ quantifies the ratio of mixing to advection influence

included. We use an initial value of one for this ratio, which identifies an identical

influence of mixing and advection, and then we adjust it by comparing the TTD

performance for two tracers (mostly CFC-12 and SF6).
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Figure 2.4: Green’s function (G) for different spread (∆) and ventilation (Γ)
combinations (Eq 2.11). The ratio between these parameters quantifies the fraction
of mixing to advection influence included in the equation. If the ratio is set to zero,
no mixing is included, whereas a ratio of one would identify a case where identical

influences are attributed to mixing and advection on the ocean circulation.

G(t) =

 
Γ

4 π∆2 t3
e
−Γ (t−Γ)2

4 ∆2 t (2.11)

The TTD method is implemented in two steps. In step 1, the water mass path is

traced back in time to the formation area, with the associated time interval named

mean ventilation time (Γ). The estimate relies on G, measurements of atmospheric

CO2 mole fractions, and ocean surface transient tracer concentrations in the area

of formation. These concentrations are not at equilibrium, but they are generally

corrected estimating atmospheric to oceanic transient tracer ratios (saturations).

From these values and an assumed Cdis constancy, it is possible to quantify the

seawater pCO2 at the moment of water mass last contact with the atmosphere, and

so its anthropogenic component (pCO2ant) as a difference between it and 278 ppm

of pre-industrial carbon background (Eq 3.5). In step 2, CS
ant is estimated using

the co2sys suite of programs (Lewis and Wallace, 1998; Van Heuven et al., 2011)

based on the pCO2 and on another descriptor of the carbonate system (e.g. Alk),

following an approach comparable to the one of section 3.3.1. The first and second

TTD steps assume that (1) the transient tracer saturations and associated changes



Chapter 2. Methods 54

over time are quantifiable at the ocean surface; (2) the disequilibrium between the

lower atmosphere and upper-ocean CO2 is equal to zero; (3) the ratio between Γ

and ∆ is known and constant over time (circulation in steady sate).

TTD uncertainty. As for other methods of Cant estimates, the TTD uncertainty

is quantifiable as ±10.0 µmol kg−1 (±20 %; Waugh et al. (2006)). This uncertainty

is due to several sources, such as the estimate of tracer saturations, the implicit

assumption of Cant absence where tracers are undetectable, the use of a specific G

function that is defined by a unique Γ/∆, the time interval between the beginning

of a significant increase in the CO2 and tracer atmospheric histories, the assumed

Cdis equal to zero, and the neglect of lateral mixing between surface water masses.

The use of anthropogenic transient tracers as Cant proxies assumes that these gases

are exchanged at the surface of the ocean with similar processes. However, Cant

was released in the atmosphere around a century before the CFCs, leading to flux

discrepancies generally corrected estimating tracer partial pressures in the Mixed

Layer Depth (MLD) and comparing those estimates to the associated atmospheric

measurements, quantifying the tracer saturations. This propagates an uncertainty

on the TTD Cant: based on the 24.5◦N data collected in 2010, we estimate a rise of

1.0 µmol kg−1 (2 %) in the TTD Cant after reducing the tracer saturation by 1 %.

Implicitly, the TTD assumes there is no Cant in water masses where no transient

tracers are measurable. This assumption leads to the unrealistic conclusion that

water masses older than ∼70 years have no Cant, causing an overall underestimate

of the carbon concentration. To limit the effect of this uncertainty source, different

transient tracers are used in different time intervals, enlarging the period of TTD

reliability. In this work, we use observations of CFC-12, between 1960 and 1990, as

the associated atmospheric history linearly increases in this period (Fig 1.9). In 1989,

CFC-12 was banned from production (UNEP, 2005) with a consequent decrease in

the atmospheric concentration, and so an increasing unreliability in the estimate of

water mass ages younger than 30 years. Since 1990, we replace CFC-12 with the

SF6 observations, as this tracer still increases in the atmosphere (Fig 1.9). CFC-11,

CFC-113, and CCl4 were also measured during our work but were not used because

the first carries information analogous to CFC-12, CFC-113 is rapidly sorbed near
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the surface (Roether et al., 2001), and the last degrades over time.

However, the exact definition of the limits of tracer applicability is challenging,

requiring often ad-hoc analyses. To illustrate this, we discuss a study conducted at

the 24.5◦N transect in 2010. This analysis isolates the layer where the TTD Cant

estimates based on SF6 give more reliable results from the one where the CFC-12

based counterparts are more robust. We apply the methodology defined by Tanhua

et al. (2008), determining differences (∆Cant) between the CFC-12 and SF6 based

TTD Cant estimates and plotting them as a neutral density (γ) function in Fig 2.5.

Here, positive values indicate a higher reliability of the CFC-12 based TTD Cant

estimates, while negative values identify the areas where the TTD Cant estimates

based on the SF6 observations are more reliable. Differences in the two tracer use

are caused by their atmospheric histories, with the SF6 being unreliable in water

masses ventilated before its recent release, and CFC-12 being unreliable in water

masses ventilated after the start of the inversion in its atmospheric history.

This division is statistically significant only where the ∆Cant estimates are higher

than the TTD analytical uncertainty (vertical dot-dashed lines in Fig 2.5). Results

suggest more reliable SF6 based TTD Cant estimates in the upper MoW (uMoW,

γ < 26.7 kg m−3), while the CFC-12 based TTD Cant estimates are more reliable

below this layer. As an additional quality control, we quantify Cant mean values in

the uMoW (STMoW + MMoW) and SPMoW, comparing them to the estimates

obtained by Guallart et al. (2015b) in Fig 2.6. Overall, all calculations agree within

the TTD analytical uncertainty (±5.0 µmol kg−1), with minor differences due to the

use of different saturations (see caption of Fig 2.6), statistical interpolations, and

the removal of the upper 150 m in the work of Guallart et al. (2015b).

Another source of TTD uncertainty is the Γ/∆ ratio estimate necessary to define

the function G. This quantifies the comparative mixing and advection influences

considered in the ocean ventilation: when it is set to zero, no mixing is accounted,

so resulting in a purely advective circulation (comparable to the back calculations

‘weak’ mixing), while greater influence of the ocean mixing is included increasing

the ratio progressively. Waugh et al. (2006) compared several Γ/∆ values with the

TTD Cant estimates, quantifying an uncertainty of ±10.0 µmol kg−1 (±20 %) for
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Figure 2.6: Shaded error plots of TTD Cant estimates versus time in the 24.5◦N
uMoW (STMoW + MMoW) and SPMoW. Red lines show the results obtained
in this work: the CFC-12 is used in 1992, 1998, and 2004 with an increasing
saturation of 80 %, 90 %, and 95 % in the uMoW and 5 % less in the SPMoW;
the SF6 is used in 2010 and 2016 with a saturation of 95 % and 100 %, respectively.
Blue lines show the estimates taken from Guallart et al. (2015b) and based on the

use of CFC-12 observations saturated at 100 %, with no variations over time.

Γ/∆ variations between 0.2 and 0.8, and ±0.5 µmol kg−1 (±1 %) outside it.

Finally, the TTD Cant uncertainty is influenced by ocean eddies. Changes in these

seawater circular currents propagate amplified to tracer concentrations, influencing

the comparison with the atmospheric history and the resulting mean age estimates.

Fine et al. (2017) quantified the uncertainty due to ocean eddies comparing tracer

concentrations obtained within five model simulations where the forcing are kept

identical but each simulation has an independent realisation of the ocean mesoscale

circulation. Those authors found an age variability of ±4.0 yr, which translates into

an uncertainty of ±2.0 µmol kg−1 (±4 %) for the TTD Cant estimates.

Many of the TTD uncertainty sources can be overcome using the Maximum Entropy

Method (MEM; Holzer et al. (2010)). For instance, the MEM no longer requires the

tracer saturation and Γ/∆ estimates, as no oceanic surface divisions and seawater

mass paths are in any way prohibited. However, we decided to avoid the MEM use

in this thesis, focusing on the five most widely adopted Cant techniques.
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Table 2.4: Table summarising the resolution and relevant outputs of the Earth
system and global circulation models used in this work.

Model Horizontal Vertical Temporal Outputs
resolution resolution resolution

CM2Mc 2.5◦ 28 levels 1860 - 2100 DICi, DICc, DICpre,
DICsat, Alk, NO3, Si(OH)4,

PO4, O2, T, and S
GFDL-ESM2M 1◦ 50 levels 1860 - 2100 DICi, DICc,Alk, NO3,

Si(OH)4, PO4,CFC-11,
O2, T, and S

OCCAM 1◦ 66 levels 1860 - 2004 DIC, Alk, O2,
NO3, T, S, and CFC-12

CCSM 1.4◦ - 3.6◦ 25 levels 1860 - 2012 DIC, Alk, NO3,
Si(OH)4, PO4, T,

S, O2, and CFC-12

2.4 Earth system and general circulation models

Earth System (ESM) and General Circulation (GCM) Models are useful test beds for

studies over large temporal and spatial scales. Here, they are used to compare Cant

estimated using different methods with a reference (CMOD
ant , Eq 2.15), which cannot

be calculated from observations (sections 1.1 and 1.3.1). Additionally, they are used

to enlarge the study of the DIC partitions spatial and temporal variabilities to the

North Atlantic and to the industrial era (1860 - 2100). Influencing processes (e.g.

changes in circulation) are studied within model pre-industrial ‘control’ outputs and

consequences evaluated within ‘control’ and ‘industrial’ data. However, unavoidable

internal drifts, components availability, spatial and temporal resolutions influence

the reliability of the model outputs. So, ensembles of two or more models are used

to limit the uncertainty that influences the result of each (Taylor et al., 2012).

Here, we consider four climate models: the CM2Mc, GFDL-ESM2M, OCCAM, and

CCSM. Their outputs, horizontal and vertical resolutions are summarised in Tab

2.4, while their comparative reliabilities are assessed with respect to the GLODAPv2

climatology (Lauvset et al., 2016) in Figs 2.7 and 2.8.

The CM2Mc. The Climate Model 2 Model coordinate (CM2Mc) is a version of

the Geophysical Fluid Dynamics Laboratory (GFDL) ESM with a lower resolution

(Bernardello et al., 2014a,b). This combines the Modular Ocean Model (MOM4p1)
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physics (Griffies et al., 2010), the Biology Light Iron Nutrient and Gas (BLING)

biogeochemistry (Galbraith et al., 2011), the Atmospheric Model version 2 (AM2)

physics (Anderson et al., 2004), the Sea Ice Simulator (SIS; Delworth et al.

(2006)), and the Land Dynamics (LaD) model (Milly and Shmakin, 2002).

We use outputs of four CM2Mc configurations: ‘control’, ‘climate’, ‘oceanic’, and

‘industrial’. In the control, atmospheric CO2 concentration is held at pre-industrial

values, guaranteeing a reference to which anthropogenic impacts may be compared.

Conversely, in the other three configurations, the atmospheric CO2 is simulated,

from reanalyses, between 1860 and 2005, and modelled as for the Representative

Concentration Pathway3 8.5 (RCP8.5; IPCC (2014); Taylor et al. (2012); van

Vuuren et al. (2011)) from 2006 to 2100. In the industrial, the direct increases in

ocean CO2 uptake and indirect climate change (e.g. global warming) effects due to

the atmospheric CO2 rise are simulated, representing the most comprehensive

CM2Mc simulation. In the climate run, the direct CO2 uptake is neglected in the

ocean, but indirect climate influences are maintained. The oceanic run neglects any

anthropogenic CO2 influence on the climate, but simulates the increasing oceanic

carbon uptake. Each CM2Mc run includes prognostic tracers of preformed (Cpre)

and saturated (Csat) carbon fractions, preformed alkalinity (Alkpre), and preformed

phosphate (POpre
4 ). Therefore, it is possible to quantify exactly the ocean carbon

partitions (Eqs 2.12 to 2.14; Bernardello et al. (2014a)), allowing for comparisons

with the Williams and Follows (2011) empirical framework (section 4.2.1).

CCM2Mc
soft = RRC:P (PO4 − POpre

4 ) (2.12)

CCM2Mc
carb = 0.5 (Alk − Alkpre + RRN :P (PO4 − POpre

4 )) (2.13)

CCM2Mc
dis = Cpre − Csat (2.14)

3The representative concentration pathways are four ensembles (2.6, 4.5, 6.0, and 8.5) of possible
GHG emissions to the end of the 21st century. They were use in the fifth IPCC assessment (IPCC,
2014) to constrain model projections and were named after the increase in mean radiative forcing
of 2.6 W m−2, 4.5 W m−2, 6.0 W m−2, and 8.5 W m−2, respectively.
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An exact Cant can be also quantified as the difference between industrial (DICi) and

climate CM2Mc DICs. However, to allow for direct comparisons with the methods

described in section 2.3, we assume negligible climate change influence in the pre-

industrial carbon storage. So, simulated Cant estimates are calculated by subtracting

the industrial and control DICs (DICc, Eq 2.15), as reported by Yool et al. (2010).

CMOD
ant = DICi −DICc (2.15)

A second GFDL implementation is also used in this thesis: the GFDL-ESM2M

(Galbraith et al., 2011). This model differs from the CM2Mc as it has been run at

a higher resolution. Furthermore, the GFDL-ESM2M does not include prognostic

tracers, unlike the CM2Mc, but it simulates the CFC-11, allowing for the use of the

TTD technique (section 3.5.2).

OCCAM. The Ocean Circulation and Climate Advanced Model (OCCAM) is a

GCM developed from the MOM with a configuration based on four repeats of fourty-

eight years each (Webb et al., 1996). Among them, the first one is used as the

model spin-up, while the last three cycles are used as outputs, covering the period

between 1860 and 2004 (Tab 2.4). The lack of Si(OH)4 in the OCCAM outputs is

compensated, in this work, by assuming a 1:1 correlation with the model NO3. This

approach is challenging in reality, as the NO3/Si(OH)4 varies with primary producer

composition changes. However, a model environment is more constrained, with this

ratio frequently based on fixed Redfield stoichiometric ratios. So, our approach can

be applied with negligible effects. The OCCAM model has not been run under a

control configuration, but it explicitly includes a pre-industrial DIC.

The CCSM. The Community Climate System Model (CCSM) was developed at

the National Centre for Atmospheric Research (Graven et al., 2012). This evolves

from the Los Alamos Parallel Ocean Program (POP) model (Smith et al., 2010),

being forced with the Common Ocean-ice Reference Experiments Corrected Normal

Year Forcing (CORE-CNYF; Large and Yeager (2004)). The CCSM is used in this

work under the ‘industrial’ and ‘control’ configurations between 1860 and 2012.
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Model assessment. Overall, climate models struggle to reproduce the carbonate

cycle and biological carbonate precipitation, with more significant differences from

observations in salinity, Alk, and DIC outputs. Also, models assume that seawater

subduction occurs in a more confined and less variable ensemble of areas than it

realistically happens. Depending on their resolution over space, models struggle to

reproduce small-scale eddies and other physical processes, showing differences in the

oceanic carbon cycle (England et al., 2015). We test the reliability of the models used

in this work by comparing their Alk distributions with the GLODAPv2 climatology,

at the North Atlantic surface and at the 24.5◦N transect. This test is relevant for

our purpose as it allows us to separate between differences in Cant estimates that are

due to dissimilarities between model outputs and observations and differences due

to method related challenges (section 3.5).

The simulated Alk distributions at the surface of the ocean are broadly consistent

with observations (Fig 2.7). In the subpolar gyre, the CM2Mc and CCSM models

underestimate this variable, with the smallest differences confined to the eastern

North Atlantic. The GFDL-ESM2M and OCCAM overestimate the observed Alk by

roughly 50.0 µmol kg−1. Nevertheless, all of the models capture consistently the Alk

major patterns, such as the Labrador Sea southern edge minimum. In the subtropical

gyre, the CCSM is the most consistent with the observed Alk distribution, while the

other models overestimate this variable.

Comparing against the 24.5◦N Atlantic transect (Fig 2.8), the CCSM model is still

the most reliable: this model captures the mean Alk, but overestimates its spread.

The other models overestimate the Alk mean value, with a larger spread in the water

masses that originate in the Southern Ocean. Overall, all of the models capture less

ventilation than it realistically happens, therefore overestimating the Alk.



Chapter 2. Methods 62

F
ig
u
r
e
2
.7
:

C
o
n

to
u

r
p
lo

ts
o
f

N
o
rt

h
A

tl
a
n

ti
c

su
rf

a
ce

A
lk

a
li

n
it

y
(A

lk
)

a
n

o
m

a
li

es
in

2
0
0
2
.

D
a
ta

ta
ke

n
fr

o
m

th
e

G
lo

ba
l

O
ce

a
n

D
a
ta

A
n

a
ly

si
s

P
ro

je
ct

ve
rs

io
n

2
d
a
ta

ba
se

(G
L

O
D

A
P

v2
)

cl
im

a
to

lo
gy

(L
a
u

vs
et

et
a
l.

,
2
0
1
6
),

C
M

2
M

c,
C

C
S

M
,

O
C

C
A

M
,

a
n

d
G

F
D

L
-E

S
M

2
M

‘i
n

d
u

st
ri

a
l’

o
u

tp
u

ts
a
n

d
p
lo

tt
ed

a
s

d
iff

er
en

ce
fr

o
m

th
e

fi
rs

t
fo

r
ea

ch
m

od
el

o
u

tp
u

t.
A

ss
oc

ia
te

d
A

lk
a
ve

ra
ge

s
a
n

d
st

a
n

d
a
rd

d
ev

ia
ti

o
n

s
a
re

re
po

rt
ed

a
t

th
e

lo
w

er
ri

gh
t

ed
ge

o
f

ea
ch

pa
n

el
to

qu
a
n

ti
fy

th
e

d
iff

er
en

ce
s.



Chapter 2. Methods 63

F
ig
u
r
e
2
.8
:

S
a
m

e
a
s

in
F

ig
2
.7

,
bu

t
fo

r
th

e
2
4
.5

◦ N
A

tl
a
n

ti
c

tr
a
n

se
ct

.



Chapter 2. Methods 64

2.5 Sensitivity analyses

Sensitivity analysis is a well-established set of methodologies used to quantify the

impacts of one or more independent or interactive factors on a variable of interest.

Here, we adopt the One Factor At a Time (OFAT) and the Variance Based Sensitivity

Analysis (VBSA), as described in the next paragraphs and applied in section 3.2.

These approaches allow for an assessment of the comparative contributions of each

factor in the analytical and methodological uncertainties of the Cant estimates.

One Factor At a Time analysis (OFAT). The OFAT approach assesses the

influence of independent factors when calculating a dependent variable variance

(Morris, 1991). Assuming absence of interactions between factors, each of them is

varied singularly by a known amount, which we term ∆, whilst keeping the others

constant. ∆ is then used as an estimate of the factor influence.

To better describe the OFAT approach, one can consider Eq 2.16 to be a generic

equation, describing Cant as a function of the input factors x1 to xi:

Cant = f(x1, x2, x3, ..., xi) (2.16)

In this equation, one factor, for instance x1, can be varied incrementally (∆x1),

without changing x2 to xi, until Cant varies by a given amount (e.g. ∆Cant):

Cant + ∆Cant = f(x1 + ∆x1, x2, x3, ..., xi) (2.17)

We perform the OFAT approach for each factor until ∆Cant exceeds ±5.0 µmol kg−1

(or ±10 %), which estimates the Cant nominal uncertainty. Each factor influence

(∆xi) is then quantified by defining the Limit Value (LVxi
, Eq 2.18) as the ratio of

∆xi over the measured maximum of the factor (Maxxi
):

LVxi
=

∆xi
Maxxi

(2.18)
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We also defined the Analytical Ratio (ARxi
, Eq 2.19) as the factor Precision (Prexi

)

over Maxxi
:

ARxi
=

Prexi

Maxxi

(2.19)

We divided ∆xi and Prexi
by Maxxi

to obtain values comparable across factors: DIC

observations could vary within 200 µmol kg−1 while T observations may vary within

a maximum of 20◦C. Then, we defined the Propagated Uncertainty (PrUxi
) by:

PrUxi
=
aPrexi

∆xi
(2.20)

where the coefficient a depends on the analysed variation. In this study, we use 0.1

as we examine the factor influence on a 10 % change in the equation result.

Variance Based Sensitivity Analysis (VBSA). The VBSA estimates the

fraction of the equation result variance due to changes in one (independent effect)

or more (interactive effect) input factors (Saltelli et al., 2008; Sobol, 2001). So, the

method improves on the OFAT, accounting for non-linearity and interactions.

Under the VBSA, input ensembles based on a quasi Monte Carlo approach (Kroese

et al., 2014; Metropolis and Ulam, 1949) are used to quantify the ratio between the

factor x and the equation result variances as an estimate of the x influence on the

calculated variable. This is termed the Main Effect (ME, Eq 2.21). Similarly, one

can estimate the influence of the factor x and all interactions due to it quantifying

the Total Effect (TE, Eq 2.22). The fraction of variance due to Interactions (I) can

be inferred as in Eq 2.24. The MEx quantifies the equation result variance decrease

when fixing the factor x, while TEx quantifies the reduction in the same variance

when fixing all factors but the studied x (Saltelli and Annoni, 2010).

In this thesis, ME and TE are calculated with the approach defined in the section

4.6 of Saltelli et al. (2008) and summarised in the next paragraphs. By doing so,

we solve the VBSA equations avoiding multi dimensional integrals and reducing

the computational cost from N2 to N (k + 2), where N is the amount of quasi

Monte Carlo runs (100 < N < 100000) and k is the number of input factors.
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A =



x
(1)
1 x

(1)
2 x

(1)
3 x

(1)
4 ... x

(1)
k

x
(2)
1 x

(2)
2 x

(2)
3 x

(2)
4 ... x

(2)
k

... ... ... ... ... ...

x
(N−1)
1 x

(N−1)
2 x

(N−1)
3 x

(N−1)
4 ... x

(N−1)
k

x
(N)
1 x

(N)
2 x

(N)
3 x

(N)
4 ... x

(N)
k


As a first step, we generate a matrix M of quasi Monte Carlo random values, with

dimensions 2kN. Then, we separate the matrix M into two sub-matrices A and B,

each of which has dimensions kN. From A and B, we build a third matrix Cxk
that

includes all B columns except for the A kth one (e.g. k = 2).

B =



x
(1)
k+1 x

(1)
k+2 x

(1)
k+3 x

(1)
k+4 ... x

(1)
k+k

x
(2)
k+1 x

(2)
k+2 x

(2)
k+3 x

(2)
k+4 ... x

(2)
k+k

... ... ... ... ... ...

x
(N−1)
k+1 x

(N−1)
k+2 x

(N−1)
k+3 x

(N−1)
k+4 ... x

(N−1)
k+k

x
(N)
k+1 x

(N)
k+2 x

(N)
k+3 x

(N)
k+4 ... x

(N)
k+k



Ci =



x
(1)
k+1 x

(1)
2 x

(1)
k+3 x

(1)
k+4 ... x

(1)
k+k

x
(2)
k+1 x

(2)
2 x

(2)
k+3 x

(2)
k+4 ... x

(2)
k+k

... ... ... ... ... ...

x
(N−1)
k+1 x

(N−1)
2 x

(N−1)
k+3 x

(N−1)
k+4 ... x

(N−1)
k+k

x
(N)
k+1 x

(N)
2 x

(N)
k+3 x

(N)
k+4 ... x

(N)
k+k


For all of the described matrices (A, B, Cxk

), we determine the equation output at

each row, defining three vectors of dimensions 1N, named y(A), y(B), and y(Cxk
).

These vectors are used to estimate the main (ME) and total (TE) effects:

MEx =
yA · yCi

− f 2
0

yA · yA − f 2
0

(2.21)

TEx = 1 − yB · yCi
− f 2

0

yA · yA − f 2
0

(2.22)
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f0 =
1

N

N∑
i=1

y
(xi)
A (2.23)

Ix = TEx −MEx (2.24)

where the symbol · indicates the scalar product between vectors.

Saltelli et al. (2008) proved the approach validity. Those authors show that if the

factor resampled in the kth column of Cxk
is influential, the equation results in y(A) or

y(B) preferably multiply by it, increasing the scalar products, and so increasing the

ME and TE estimates. We use the MATLAB toolbox named Sensitivity Analyses

For Everybody (SAFE; Pianosi et al. (2015)) to quantify the ME and TE of the

most commonly used Cant techniques (section 3.2).

2.6 Synthesis and discussion

Multiple caveats limit the reliability of the Cant estimates in the ocean. Within the

∆C* and ΦC0
T techniques, the estimate of the ocean RRs, the regressed Alkpre, the

regressed Ceq, and the assumed Cdis constancy propagate an uncertainty of ±3-6

%, ±4 %, ±5 %, and ±2 %, respectively. The uncertainty of the Cant estimated

with the TrOCA technique is mostly influenced by the DIC, O2, and Alk analytical

precisions with respective propagated uncertainties of ±4 %, ±3 %, and ±2 %. The

eMLR ∆Cant uncertainty is influenced by the regression residuals (±10 %) and NO3

precision (±1 %), while we found that the TTD Cant estimates mainly depend on the

transient tracer saturation reliability (±2 %), with additional influences of the Γ/∆

estimate (±20 % if 0.2 < Γ/∆ < 0.8 or ±1 % elsewhere), the assumed Cdis constancy

(up to±20 %), and the influence of ocean eddies on the tracer concentrations (±4 %).

These method-specific uncertainties will be further assessed in chapter 3, combining

them with additional sources of Cant variability shared between two or more methods.

We will use observations and outputs of GCMs and ESMs, carefully quantifying the

associated degrees of reliability. Several statistical approaches will be used, such as

the VBSA, highlighting key parameters and specific criticalities.
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Sensitivity analyses of

anthropogenic carbon estimates

3.1 Introduction

Oceanic Cant is inferred indirectly with an uncertainty assessed nominally as 10-20

%. In chapter 2, we discussed the method-specific sources of this uncertainty. Here,

we analyse influences of analytical precisions and method underlying assumptions

by using the repeated measurements (1992-2010) collected at the 24.5◦N Atlantic

transect and by applying two statistical techniques, the One Factor At a Time and

the Variance Based Sensitivity Analyses (section 3.2). Factors impacting on Cant

are identified and associated independent and interactive influences are estimated

as fractions of variances. Method assumptions are explored for the ∆C*, TrOCA,

ΦCT
0, and TTD Cant estimates. We use the measurements of the atmospheric CO2

mole fraction collected at the Mauna Loa observatory to investigate the assumed

constancy in the disequilibrium carbon partition (section 3.3). All of the results are

combined in the study of section 3.4. Here, we also quantify the effects propagated on

to derived variables, such as the natural and anthropogenic pH partitions. Finally,

the Cant estimates accuracy is evaluated with three climate models (GFDL-ESM2M,

OCCAM, CCSM), where the difference between the industrial and control DICs is

assumed to be the ‘true’ Cant to which other estimates are assessed (section 3.5).

68
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3.2 Cant uncertainty from analytical precisions

The uncertainty on the Cant estimates is influenced by the analytical precision of

the measurements used to infer them, with values dependent on the chosen data,

location, time interval, and technique, and included within ±5.0 µmol kg−1 (±10 %),

as Matsumoto and Gruber (2005) and Vázquez-Rodŕıguez et al. (2009b) suggested.

Associated assessments were done for single techniques (e.g. TTD; Waugh et al.

(2006)), using synthetic data (Matsumoto and Gruber, 2005), or in confined areas

of the global ocean (e.g. eastern Atlantic; Vázquez-Rodŕıguez et al. (2009b)).

We present a more comprehensive study, considering the nominal uncertainty due to

analytical precisions of ±5.0 µmol kg−1 for each technique and assessing its influence

on the ∆C*, ΦCT
0, TrOCA, and TTD Cant estimates at the 24.5◦N section in 1992,

1998, 2004, and 2010. The eMLR is not used as it quantifies Cant variations in time.

We isolate the water column upper 200 m (Subtropical Mode Water (STMoW))

and two additional Mode Waters (MoW), currently carrying the highest amount of

North Atlantic subtropical Cant: the Madeira (M) and Subpolar (SP) MoW (Fig

1.13). In the STMoW, the ΦCT
0 Cant estimates must be taken with care, as this

technique removes the upper 100 m by definition (section 2.3.1; Vázquez-Rodŕıguez

et al. (2009a)), hence accounting for half of the water mass volume. Nevertheless,

we include it in the uncertainty assessment for completeness. Then, we assess the

Cant analytical uncertainty using the One Factor At a Time (OFAT; Morris (1991))

and Variance Based Sensitivity Analysis (VBSA; Saltelli et al. (2008); Sobol (2001))

approaches. The first methodology estimates each factor influence and its range of

variability that leads to a Cant variation included within ±5.0 µmol kg−1. The VBSA

approach improves on the OFAT results, estimating potential interactions between

factors. We base the OFAT on 282, 855, 1911, and 1286 data points for the 1992,

1998, 2004, and 2010 datasets, respectively, as these amounts represent the greatest

availability of reliable observations (Tab 1.2). The VBSA is applied on ensembles of

quasi Monte Carlo (MC; Kroese et al. (2014); Metropolis and Ulam (1949)) inputs

generated within the measurement ranges and, then, uncertainties (Tab 1.2).
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3.2.1 Cant sensitivity to analytical precisions (OFAT)

Using OFAT (section 2.5), we separately quantify the influence of each factor on the

∆C*, ΦCT
0, TrOCA, and TTD Cant analytical uncertainties, hence treating these

influences as independent from each other. For the TTD, we explore the uncertainty

due to the CFC-12 precision, but we avoid the study of the SF6 owing to the absence

of measurements before 2010.

Under the OFAT assumptions (section 2.5), we increase each factor incrementally

keeping all others constant, then calculating the Cant variations from the unchanged

value. We stop the analysis when the Cant changes exceed ±5.0 µmol kg−1 (nominal

uncertainty), and determine the Limit Value (LV, Eq 2.18), Analytical Ratio (AR,

Eq 2.19), and Propagated Uncertainty (PrU, Eq 2.20). The results are shown in Fig

3.1 where we use a y-logarithmic scale, which aids the interpretation, after increase

each percentage by one to avoid quick changes.

The back-calculations (∆C*, ΦCT
0, and TrOCA) analytical uncertainty depends

on the Dissolved Inorganic Carbon (DIC) and total Alkalinity (Alk) measurement

precisions, since the variations in these factor LVs and ARs are comparable (Fig

3.1). Comparing the DIC and Alk precisions (Tab 1.2) with the estimated PrUs,

we quantify values of ±5.0 µmol kg−1 (±2.3 % of the background concentration)

and ±10.0 µmol kg−1 (±4.3 % of the background concentration), for DIC and Alk

measurements, necessary to maintain the ∆C* Cant analytical uncertainty within

±5.0 µmol kg−1. Comparative precisions are ±5.1 µmol kg−1 (DIC) and ±7.8 µmol

kg−1 (Alk) to obtain the same result for TrOCA, and ±7.5 µmol kg−1 (DIC) and

±13.2 µmol kg−1 (Alk) for ΦCT
0. Therefore, ΦCT

0 is the least sensitive (lower

PrUs) amongst the back-calculations due to the Optimum Multi Parameter (OMP)

constraint. This OMP statistical approach requires highly reliable measurements

of potential temperature (Θ) and Salinity (S), but the precisions achieved on them

counterbalance the effects in the ΦCT
0 equation.
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Overall, the back-calculations PrUs decrease over time, reflecting improvements in

the measurement (Tab 1.2). This pattern mostly emerges for the alkalinity influence

that reduces by roughly 50 %.

For the TTD method, the most influential factor is the CFC-12, with the associated

AR and LV estimates resulting as the closest in the right panels of Fig 3.1. This

influence propagates to the mean age and hence to the surface ocean pCO2 estimates

at the water mass origin. Within the 24.5◦N data, the CFC-12 was measured in 1992

with a precision of ±2.4 x 10−2 pmol kg−1 (±4.0 % of the background level), which

propagates an analytical uncertainty of ±15.8 µmol kg−1 (±31.6 %) in the TTD Cant.

Similarly, we estimate an uncertainty of ±14.5 µmol kg−1, ±9.9 µmol kg−1 and ±6.5

µmol kg−1 due to CFC-12 in 1998, 2004, and 2010, respectively. All measurements

used to estimate the surface Cant from the pCO2 estimate with the co2sys (section

2.3.3) have an influence in the TTD Cant analytical uncertainty ten times lower than

the CFC-12 precision. So, constant values can be considered for these variables with

negligible influences on the TTD Cant uncertainty.

In summary, our OFAT analysis identifies the DIC and CFC-12 precisions as the most

influential factors respectively in the back-calculations and the TTD Cant analytical

uncertainties. However, the OFAT approach excludes interactions between factors,

potentially underestimating or overestimating their influence on the Cant uncertainty.

3.2.2 Cant sensitivity to analytical precisions (VBSA)

To account for potential interactions among factors, we improve on the OFAT using

the VBSA. We explore interactive effects among the factors (DIC, Alk, Θ, S, oxygen

(O2), CFC-12, nitrate (NO3), silicate (Si(OH)4), and phosphate (PO4)) that are

most influential on the Cant estimated by using the ∆C*, ΦCT
0, TrOCA, and TTD.

Under the VBSA assumptions, we link Cant variances with that associated to each

independent factor and the interactions among them. Variable numbers of quasi MC

runs (specified in the captions of Figs 3.2 to 3.6) are used in this analysis, as the

balance between acceptable results and computational costs is different for each Cant
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method. The VBSA result acceptability is investigated after a thousand additional

runs, leading to comparable results, and hence giving confidence to our analyses.

We use maximums and minimums of the most influential Cant factors observed in

the upper 1000 m of the 24.5◦N Atlantic transect in 2010 to confine the quasi MC

probabilistic inputs (panels a in Figs 3.2 to 3.4 and whole Figs 3.5 and 3.6, section

2.5). This approach allows us to quantify the influences of natural variabilities on

the Cant estimates. We also use the VBSA to estimate the uncertainty propagated

by each measurement and possible interactions among them on Cant. This second

approach is based on the same upper-ocean factor averaged values, but it uses their

measurement precisions (Tab 1.2) instead of their standard deviations as estimates

of variability. This second approach is applied here to the back-calculation results in

the panels b of Figs 3.2 to 3.4. We do not apply it however to the TTD calculations

because the mean age estimate remains the dominant source of uncertainty.

Estimates of the Main Effect (ME) and Total Effect (TE) are shown in Figs 3.2 to

3.6 as orange and blue bars, respectively. As established in section 2.5, the ME is

the ratio between each input variable and the variance of the equation result, while

the TE also quantifies non-linear interactions influencing the equation output.

ME estimates identify Θ, DIC, and O2 as the ∆C* most influential factors when

using their observed upper-ocean spreads (Fig 3.2a). They account for 52 %, 31 %,

and 14 % of the ∆C* Cant variance, respectively. Turning attention to the ΦCT
0

method, the Θ and DIC effects remain significant, influencing 43 % and 20 % of

the Cant variance, while the O2 influence drops to a negligible value (Fig 3.3a). The

TrOCA Cant variance is mostly influenced by Θ and DIC changes, in line with the

other back-calculations, with MEs of 47 % and 37 %, respectively (Fig 3.4a).

If we use the measurement precisions instead of the factor standard deviations in

the quasi MC calculations (Figs 3.2b to 3.4b), the influence of variations in Θ drops

to negligible values for all of the back-calculation estimates. This is due to the high

precision achieved in temperature measurements and agrees with the OFAT results

of section 3.2.1. Conversely, the DIC effect approximately doubles for the same Cant

estimates. This suggests that DIC is not only the second most influential factor of

Cant observed variability, but this factor precision is the primary driver of analytical
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Figure 3.2: Variance Based Sensitivity Analysis (VBSA) of ∆C* Cant estimates.
Main (orange) and total (blue) effects are estimated using the Matlab SAFE toolbox
(Pianosi et al., 2015) and measurements collected in 2010 in the upper 1000 m of
the 24.5◦N Atlantic transect. The approach was conducted by varying the region
DIC, Alk, Θ, S, O2, NO3, Si(OH)4, PO4, and CFC-12 mean values within their
standard deviations after 16000 runs (a) and analytical precisions (Tab 1.2) after
91000 evaluations (b). The study in panel (b) required a larger amount of runs
as it reached later an acceptable stability in the Monte Carlo probabilistic results
(see the text for details). The ∆C* Cant estimates variability differs between panel
(a) and (b): the results reported in the figure can be compared for variables of the
same panel but should not be used to infer changes across the two panel results.

Figure 3.3: Same as in Fig 3.2, but for ΦCT
0 Cant estimates after 60000 and

106000 runs for the panels (a) and (b), respectively.
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Figure 3.4: Same as in Fig 3.2, but for TrOCA Cant estimates after 24000 and
80000 runs for the panels (a) and (b), respectively.

Figure 3.5: Same as in Fig 3.2, but for the TTD 2nd step after 54000 runs.
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Figure 3.6: Same as in Fig 3.2, but for the TTD 1st step after 8800 runs.

uncertainty in the back-calculations estimates. Those methods should be applied

only where several and highly precise DIC observations are available.

In the TTD, we find the CFC-12 and mean age to be the most influential factors in

the OFAT (Fig 3.1) and VBSA (Fig 3.5) analyses. The VBSA shows that the mean

age ME accounts for the totality of the TTD Cant variance in the TTD second step.

TE estimates compare to the MEs for the ∆C* technique (within an uncertainty of

±5 %), highlighting a lack of interactions among factors. This result is consistent

with the linearity of the method equations (section 2.3.1). The ΦCT
0 Cant variance

is however influenced by Interactions (I = TE - ME) due to Θ and DIC, with values

of 17 % and 7 %, respectively, when using the observed factor spreads. When using

the factor precisions, the values modify to 5 % (which is negligible) and 15 %, while

an additional 15 % is due to Alk. The TrOCA Cant variance is influenced by factor

interactions only when we consider the factor precisions: an interactive effect of 21

% is visible in the DIC bars, being due partially to Alk (7 %) and partially to O2

(14 %). The TTD second step is not influenced by interactions.

To complete our study, we assess the mean age estimate within the TTD first step

(section 2.3.3), treating this assessment separately as it is not comparable with any

back-calculation analysis. We consider estimates of the transient tracer Saturation

(Sat) and measurements of Θ, S, and CFC-12. Independently (ME), the CFC-12

variance predominantly (76 %) influences the estimate of the TTD mean age, with



Chapter 3. Sensitivity analysis 77

additional contributions due to Θ and Sat. TEs indicate interactive effects mostly

influenced by the CFC-12 variance, but Θ and Sat also contribute. So, we suggest

caution on the TTD use in regions where water mass formations, and Sat, are poorly

known, such as the Southern Ocean (Stöven et al., 2016).

Our VBSA analyses show that observations of Θ, DIC, O2, and water mass mean age

estimates are of key relevance for the Cant uncertainty, independently, with variable

strengths that depend on chosen factors and methods. Interactively, the analysed

factors influence the ΦCT
0, TrOCA, and TTD Cant variances, suggesting caution on

the use of these techniques and associated uncertainties, which are mostly calculated

using the OFAT approach. Negligible interactive effects influence the variance of the

∆C* Cant estimates in agreement with the linearity of this method equations.

3.3 How constant is the CO2 disequilibrium?

3.3.1 Approach

In addition to analytical uncertainties, Cant estimates are influenced by uncertainties

in method assumptions (Matsumoto and Gruber, 2005; Vázquez-Rodŕıguez et al.,

2009b). In section 2.3, we assessed the assumption independent impacts. Here, we

use the 24.5◦N data to assess the methodological uncertainties in terms of a key

method assumption: the assumed CO2 disequilibrium (Cdis) constancy on the Cant

estimated using the TTD, TrOCA, ΦCT
0, and ∆C* techniques. We neglect all other

sources of Cant uncertainty, discussing their impacts in section 3.3.2.

In order to assess the assumed Cdis constancy, we compare the change in seawater

pCO2 that is implied by the calculated Cant in water masses on the 24.5◦N section

in a given interval of time, with the change in atmospheric CO2 that occurred over

that period. This gives an indication of whether the assumptions in the methods

are self-consistent: if the assumptions (of steady state and constant disequilibrium

between atmosphere and surface ocean) are consistent, these two changes should be

equal. We use the observations collected at the 24.5◦N transect between 1992 and

2010, and the CO2 mole fraction (xCO2) collected at the Mauna Loa observatory
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between 1962 and 2010 (Dlugokencky et al., 2017) for this comparison. We do not

use measurements from other observatories, assuming homogeneity over latitude

in the atmospheric xCO2 temporal increase. The assumption is unrealistic, but it

propagates a negligible uncertainty of ±0.03 ppm yr−1 (±0.01 %) on average.

To calculate the change in seawater pCO2 implied by a given increase in Cant, we

follow the method of Woosley et al. (2016). Using co2sys (Lewis and Wallace, 1998;

Van Heuven et al., 2011) we calculate the total pCO2 of a water sample in terms of

DIC, Alk, and other measured parameters:

pCO2tot = f(DIC,Alk, T, S, Si(OH)4, PO4) (3.1)

The DIC in a given sample can be separated into a natural component Cnat (assumed

steady state) and the Cant calculated by a given method:

Cnat = DIC − Cant (3.2)

Using Cnat in Eq 3.1, we calculate a corresponding pCO2nat, which is the pCO2 the

sample would have had pre-industrially, and is constant by assumption:

pCO2nat = f(Cnat, Alk, T, S, Si(OH)4, PO4) (3.3)

The difference between the pCO2tot and this value gives the amount that the pCO2

of the sample has increased (pCO2ant), which should be equal to the increase in the

atmospheric pCO2 since the industrial revolution.

pCO2ant = pCO2tot − pCO2nat (3.4)

Therefore, if pCO2ant is determined in a water mass at two times t1 and t2, the rise

(expressed in µatm) should equal the xCO2 change (in ppm) that occurred during

an equivalent interval of time in the past, lagged by the water mass mean age:

pCO2ant(t2)− pCO2ant(t1) = xCO2(t2 − τ)− xCO2(t1 − τ) (3.5)



Chapter 3. Sensitivity analysis 79

where τ is an estimate of the time since the water was last at the surface.

When Cdis is not constant, the pCO2ant and xCO2 increases differ over comparable

time intervals. We use mean values of this difference to estimate the Cant uncertainty

due to the assumed Cdis constancy. Results are summarised in Tab 3.1 for the water

masses analysed (STMoW, MMoW, SPMoW, and AAIW), the Mode water (MoW)

as a whole, and the upper 1000 m of the 24.5◦N Atlantic section.

Fig 3.7 compares the changes in xCO2, pCO2tot, and pCO2ant estimated as above for

water masses on the 24.5◦N section. We average the data for the STMoW, MMoW,

SPMoW, and AAIW, documenting the change on 6 yr, 12 yr, and 18 yr intervals.

For the parameter τ we use mean ages based on the TTD analysis, respectively of 0

yr, 5 yr, 10 yr, 30 yr for the four water masses (Vázquez-Rodŕıguez et al., 2009b).

3.3.2 Results

There is a general agreement between the pCO2ant rises given by the four techniques,

the pCO2tot rise, and that observed in the atmosphere over the relevant time intervals

(Fig 3.7). The only exception is the SPMoW, where the pCO2tot rise is faster than

the xCO2 and the pCO2ant increases. This suggests changes in Cdis over time, hence

increasing the uncertainty on the steady state assumption in this water mass. The

∆C* and TrOCA pCO2ant estimates lie between the SPMoW xCO2 and pCO2tot

increases, suggesting that these techniques partially capture the changes in Cdis.

Instead, the observed pattern is due to positive biases in both methods linked to

the biogeochemical terms, being also inferable in other water masses where Cdis is

overall constant in time (increases in xCO2 and pCO2tot are comparable). Here,

the discrepancies between the implied pCO2ant and atmospheric xCO2 growth are

larger, and grow with time. The ∆C* and TrOCA methods are based on regression

models generally defined in a confined time interval. So, they struggle to capture

potential changes in Cdis over time. For the TTD and ΦCT
0 methods, the pCO2ant

and xCO2 temporal increases compare. There are reasons however why we might

expect these two methods to perform well on the test.



Chapter 3. Sensitivity analysis 80

F
ig
u
r
e
3
.7
:

T
em

po
ra

l
in

cr
ea

se
s

in
th

e
a
tm

o
sp

h
er

ic
x
C
O

2
(o

ra
n

ge
d
a
sh

ed
li

n
es

),
oc

ea
n

ic
to

ta
l

(p
C
O

2
to
t,

bl
a
ck

d
a
sh

ed
li

n
es

),
a
n

d
a
n

th
ro

po
ge

n
ic

(p
C
O

2
a
n
t,

bl
u

e
d
o
ts

)
p
C
O

2
o
f

th
e

S
T

M
o
W

,
M

M
o
W

,
S

P
M

o
W

,
a
n

d
A

A
IW

o
n

th
e

2
4
.5

◦ N
A

tl
a
n

ti
c

tr
a
n

se
ct

.
W

e
st

u
d
y

th
re

e
ti

m
e

in
te

rv
a
ls

,
w

it
h

th
e

st
a
rt

in
g

(t
1
)

a
n

d
en

d
in

g
(t

2
)

ye
a
rs

o
f

ea
ch

re
po

rt
ed

a
bo

ve
th

e
co

rr
es

po
n

d
in

g
pa

n
el

.
W

e
u

se
th

e
x
C
O

2

m
ea

su
re

m
en

ts
co

ll
ec

te
d

a
t

th
e

M
a
u

n
a

L
oa

o
bs

er
va

to
ry

(D
lu

go
ke

n
ck

y
et

a
l.

,
2
0
1
7
)

a
n

d
fo

u
r
C
a
n
t

te
ch

n
iq

u
es

(T
T

D
,

T
rO

C
A

,
Φ
C
T

0
,

a
n

d
∆

C
*
)

to
es

ti
m

a
te

th
e
p
C
O

2
a
n
t.



Chapter 3. Sensitivity analysis 81

Table 3.1: Table summarising the uncertainties on the TTD, TrOCA, ΦCT
0,

and ∆C* Cant due to the assumed Cdis constancy over time (1992-2010). These
values are calculated by comparing the pCO2ant estimated by each method with the
atmospheric CO2 mole fraction lagged by the TTD water mass mean age (Eq 3.5).
Each uncertainty estimate is presented as concentration and percentage of the
mean Cant maximum (50.0 µmol kg−1) in the 24.5◦N STMoW, MMoW, SPMoW,
AAIW, upper 1000 m, and Mode Waters (MoW). We highlight in bold the highest

result for each layer.

Location Uncertainty TTD TrOCA ΦCT
0 ∆C*

units

STMoW µmol kg−1 ±5.9 ±9.5 ±5.3 ±9.8

% ±12 ±19 ±11 ±20

MMoW µmol kg−1 ±4.4 ±3.8 ±3.9 ±3.5

% ±9 ±8 ±8 ±7

SPMoW µmol kg−1 ±2.8 ±9.2 ±2.6 ±11.3

% ±6 ±18 ±5 ±23

AAIW µmol kg−1 ±2.2 ±1.6 ±1.9 ±10.2

% ±4 ±3 ±4 ±20

Upper µmol kg−1 ±4.0 ±6.0 ±3.5 ±9.0

1000 m % ±8 ±12 ±7 ±18

MoW µmol kg−1 ±4.4 ±7.5 ±4.0 ±8.5

% ±9 ±15 ±8 ±17

The ΦCT
0 includes a parameter Φ that is meant to account for changes in the Cdis

term (Vázquez-Rodŕıguez et al., 2009a). The TTD reconstructs Cant using, mostly,

the atmospheric CO2 increase and estimates of the transit-time distribution, both

of which are also used in this calculation of pCO2ant, which is then not a reliably

independent test of the assumptions in that approach.

We have shown that there are errors associated with the assumptions particularly

of the ∆C* method. Though the errors are quantified in terms of non-constancy

of Cdis, in reality other effects are important and contribute to them. We estimate

uncertainties due to the assumed Cdis constancy of ±7 %, ±8 %, ±12 %, ±18 % on

the ΦCT
0, TTD, TrOCA, and ∆C* Cant estimates in the upper 1000 m of the 24.5◦N
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Atlantic transect between 1992 and 2010. For the ΦCT
0 and TTD methods, these

values are within ±10 %, the uncertainty propagated by analytical precisions on Cant

in a more realistic view (Matsumoto and Gruber, 2005; Vázquez-Rodŕıguez et al.,

2009b). For TrOCA and ∆C*, the estimates exceed the Cant analytical uncertainty.

In the next section more detailed treatment, much of the uncertainty in the ∆C*

method when applied in the 24.5◦N upper 1000 m will be shown to be due to other

effects: the uncertainty due to the assumption of constant Cdis reduces to ±3 %, so

comparing to the value of ±2 % estimated by Matsumoto and Gruber (2005).

3.4 Differences in Cant estimates and uncertainties

3.4.1 Spatial scale dependency of Cant uncertainties

Methodological assumptions and analytical precisions propagate Cant uncertainties,

leading to discrepancies between different technique estimates.

In this thesis section, we compare the ∆C* and TTD Cant, quantifying their total

uncertainties and exploring potential changes due to variations in ocean regions

and data. Other method estimates are not discussed, as the ∆C* and TTD confine

the probable range of Cant concentrations (section 5.2; Iudicone et al. (2016)).

We synthesise the global ocean ∆C* and TTD Cant total uncertainties combining

our OFAT analyses presented in sections 2.3 (method assumptions influence) and

3.2.1 (analytical precisions influence) with the studies of Matsumoto and Gruber

(2005), Waugh et al. (2006), and Fine et al. (2017). As analytical precisions for the

global ocean measurements, we use the guidelines of the Global Ocean Ship-based

Hydrographic Investigations Program (GO-SHIP; Hood et al. (2010)). Then, we

compare our results with the estimates of He et al. (2018), although those authors’

results were based on model studies of the TTD Cant uncertainty only.

To assess potential variations due to ocean regions and data, we replicate the

synthesis of the Cant total uncertainties by using the 24.5◦N data collected in 2010.

As first step, we assess the whole transect estimates. Then, we focus on the upper

1000 m, which stores the largest Cant pool in the water column. In this study, we
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Figure 3.8: Pie charts summarising the contribution of analytical precision (Pre)
and underlying method assumptions to the total uncertainties of the TTD (left)
and ∆C* (right) global ocean Cant estimates. ‘Sat’ and ‘pre’ indicate saturation
and preformed. All values are shown as percentage of the Cant total uncertainty
(±17.0 µmol kg−1). Apices a, b, and c highlight estimates taken from the work
of Waugh et al. (2006), Fine et al. (2017), and Matsumoto and Gruber (2005).

Figure 3.9: Same as in Fig 3.8, but for the 24.5◦N Atlantic section.

use the analytical precisions of the hydrographic cruise report (King et al., 2012).

Results are presented in Figs 3.8, 3.9, and 3.10 for the global ocean, the 24.5◦N

section, and the last upper 1000 m. We quantify the fraction of the uncertainty due

to each source and total value as concentration and percentage to the region Cant

maximum. Results are shown at the bottom of each figure (see also appendix B).
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Figure 3.10: Same as in Fig 3.9, but for the 24.5◦N upper ocean (0-1000 m).

In the global ocean, our TTD and ∆C* Cant total uncertainty estimates agree, both

resulting ±17.0 µmol kg−1. So, a minimum time interval of fifteen years is necessary

to reliably distinguish a change in Cant, which increases by 1.4 ± 0.4 µmol kg−1 yr−1

(adapted from Khatiwala et al. (2009)). The TTD Cant total uncertainty is however

two times bigger than the estimate of He et al. (2018). This apparent disagreement

is due to the fact that those authors studied only model outputs, where analytical

uncertainties are null, and so the TTD Cant total uncertainty approximately halves.

The sources of Cant uncertainty differ between the methods assessed. The TTD Cant

uncertainty mostly depends on the assumed Cdis constancy, the analytical precision

of transient tracers, and the influence of ocean eddies. The Cdis constancy leads to

positive biases mostly confined to the Southern Ocean (Waugh et al., 2006). Here,

deep convections could change Cdis up to 50 %, reducing the validity of the TTD

assumption. Tracer precisions depend on the analytical procedures used during the

data collection. Eddies modify the water mass tracer concentrations, even assuming

ventilation in steady state and known mixing in convection areas (Fine et al., 2017).

This leads to more uncertain estimates of the water mass mean age and TTD Cant.

The ∆C* Cant uncertainty depends on the assumed Redfield ratio constancy, the

equilibrium Carbon (Ceq) estimates, and the analytical precisions of DIC and Alk.

Redfield ratios are used to infer the DIC biological component. They are assumed

constant, but more realistically vary within ten units (range between the estimates of
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Redfield (1934) and Martiny et al. (2014)), decreasing the ∆C* assumption validity:

changes in biological cycles influence the Cant estimated with this method. The Ceq

estimates are based on regression models, which reliability varies with the depth or

the time interval investigated. The DIC and the Alk analytical precisions depend on

data collection procedures, as for the anthropogenic transient tracer counterparts.

At global scale, the TTD and ∆C* Cant uncertainties are equal, depending mostly

on method assumptions and analytical precisions, respectively (Fig 3.8). Improved

descriptions of oceanic processes will improve primarily the TTD reliability, while

more precise observations will improve the back-calculation estimates.

In the subtropical North Atlantic (24.5◦N), we are able to reduce some of the Cant

uncertainty sources (Fig 3.9). Here, the observations amount per unit area increases,

and so does the knowledge of the ocean environment. For the TTD method, the

mixing to advection ratio, estimated by Γ/∆ (section 2.3.3), and tracer saturations

are relatively well known in the 24.5◦N section. We neglect their uncertainties, as in

the work of Guallart et al. (2015b). The 24.5◦N transect is a region with no seawater

fronts, lying in the North Atlantic subtropical gyre. So, the influence of mesoscale

eddies is also negligible (Fine et al., 2017). For ∆C*, the increased knowledge of

the environment allows to neglect the uncertainty due to the assumed constancy in

the Redfield ratios. The uncertainty due to the Alk precision halves, while the DIC

counterpart increases by 50 %. The Ceq and Alkpre uncertainties also increase, and

so does the assumed Cdis constancy influence. We estimate the TTD and ∆C* Cant

total uncertainties as ±10.3 µmol kg−1 (±20.6 %) and ±17.7 µmol kg−1 (±35.4 %) at

the 24.5◦N section. These values reduce to ±8.3 µmol kg−1 and ±10.3 µmol kg−1 in

the upper 1000 m of the transect. Here, we neglect the influence of the assumed Cdis

constancy in the TTD, improving also five of the six ∆C* Cant uncertainty sources

owing to more accurate measurements. The only exception is the DIC analytical

precision that maintains unaltered. See appendix B for additional details.

In summary, several factors influence the uncertainty of ocean Cant estimates, with

values varying with the spatial scale and chosen dataset. The TTD Cant reliability

mainly depends on method assumption validities, improving in well-known regions.

The ∆C* Cant estimates are mostly influenced by analytical precisions, being more



Chapter 3. Sensitivity analysis 86

reliable in regions with more accurate observations. This influences distributions of

Cant estimated by using different methods, as it is investigated in the next section.

3.4.2 Uncertainty influences on Cant distributions

Methodological assumptions and analytical precisions influence not only the Cant

total uncertainty, investigated in the previous section, but also the distribution of

this variable concentration over space, leading to discrepancies between estimates

obtained using different methods. To explore them, we compare the TTD and ∆C*

Cant distributions at the 24.5◦N Atlantic transect using the data collected in 2010.

Results are shown in Fig 3.11 for the TTD (panel a) and ∆C* (panel b) estimates.

We highlight the water masses on the 24.5◦N section using the Tab 1.1 definitions.

The TTD technique treats Cant as a transient tracer, and so the estimates obtained

with this technique highlight features of a physical nature only (e.g. changes in the

deep western boundary current). The ∆C* method includes a mixing influence on

the circulation weaker than the TTD technique by assumption (section 2.3), also

showing a higher variability between samples due to the influence of measurement

analytical precisions. The ∆C* method assumes constancy in the biogeochemical

cycle influences on Cant, while the TTD limits those effects to negligible values. All

of these methodological and analytical challenges influence the final Cant estimates.

The TTD and ∆C* Cant estimates differ in the 24.5◦N upper 1000 m in 2010 (Fig

3.11c). Both methods highlight the variable decrease with depth, although the ∆C*

estimates are higher than the TTD counterparts due to the biogeochemical influence.

Below 1000 m, the TTD method better describes the deep ventilation and mixing

influences on Cant, but it cannot be used to reliably quantify this variable in water

masses with ages equal or higher than 70 years, such as the lower North Atlantic

Deep Water (lNADW) of the section eastern side (45-16◦W). This water mass tracer

concentrations are too low to be distinguishable from the uncertainty.

We conclude that there is agreement between the TTD and ∆C* Cant distributions in

the subtropical North Atlantic. However, discrepancies emerge owing to the different

inclusion of biogeochemical cycle and mixing influences.
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3.4.3 Cant uncertainty influences on anthropogenic pH

Uncertainties in Cant estimates propagate on to variables calculated from them. We

assess variations in the total (pHtot), natural (pHnat), and anthropogenic (pHant) pH

partitions, which quantify the human impact on the ocean carbon cycle referred to

as acidification (Garcia-Ibánez et al., 2016; Ŕıos et al., 2015; Woosley et al., 2016).

Again, we use the data collected at the 24.5◦N section in 2010 and the Cant estimated

by using the TTD and ∆C* methods for this analysis, since these span the probable

range of Cant concentrations (section 5.2; Iudicone et al. (2016)).

The pHtot can be measured with an uncertainty of±0.001 pH units (±0.01 %) mostly

due to the in-situ T (Dickson et al., 2007). More often, the pHtot is calculated from

two of the inorganic carbon observations (e.g. Alk and DIC) using co2sys (Lewis

and Wallace, 1998; Van Heuven et al., 2011). Under this indirect approach, the pH

uncertainty increases to ±0.005 pH units, owing to the DIC and Alk precisions.

Using the second approach, we separate pHtot into pHnat and pHant, as also done for

pCO2tot in section 3.3.1. We estimate pHnat by using Cnat, which is the difference

between the measured DIC and the estimated Cant (Eq 3.2). The pHant is determined

by subtracting pHnat from pHtot. In this pH partitioning, Cant propagates the highest

uncertainty. To constrain its value, we use the TTD and ∆C* estimates, and the

work of Woosley et al. (2016). Those authors linked an uncertainty of ±3.0 µmol

kg−1 in the eMLR Cant to changes of ±0.005 pH units in the pHant. We adjust the

value to our Cant uncertainties (Fig 3.10), quantifying pHant uncertainties of ±0.014

pH units and ±0.017 pH units for the TTD and ∆C* estimates in the 24.5◦N upper

1000 m. We present the TTD and ∆C* pHant and pHnat distributions in Figs 3.12

and 3.13.
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Table 3.2: Table summarising mean values of natural (pHnat) and anthropogenic
(pHant) pH components in pH units. The estimates are quantified using the TTD
and ∆C* Cant at the 24.5◦N Atlantic transect in 2010 and summarised as mean

values in the STMoW, MMoW, SPMoW, AAIW, upper 1000 m and MoW.

Location TTD pHnat TTD pHant ∆C* pHnat ∆C* pHant

STMoW 8.164 -0.096 8.167 -0.098

MMoW 8.113 -0.085 8.134 -0.106

SPMoW 8.020 -0.080 8.039 -0.099

AAIW 7.918 -0.042 7.946 -0.070

Upper 1000 m 8.054 -0.076 8.071 -0.093

MoW 8.099 -0.087 8.113 -0.101

However, the discussion focuses on the upper 1000 m only. In this layer, we separate

the Mode waters (STMoW, MMoW, and SPMoW) that store the highest Cant pool,

and the AAIW that carries the highest amount of remineralised DIC. For each, we

estimate mean pHant and pHnat, reporting them in Tab 3.2.

The TTD and ∆C* estimates of pHant and pHnat agree in the 24.5◦N upper 1000 m,

within ±0.017 pH units. This value compares with the pHant uncertainty, suggesting

that the Cant method choice does not influence significantly the pH partitioning.

Our results overestimate by ∼0.050 pH units the values reported by Rı́os et al. (2015)

and Woosley et al. (2016) in the subtropical North Atlantic. Those authors focused

on latitudinal (N-S) sections, most recently sampled in 2013, while we concentrate

on a longitudinal (E-W) transect sampled in 2010. Over time, Ŕıos et al. (2015) and

Woosley et al. (2016) reported a mean rate of acidification of -0.002 pH units yr−1

in the North Atlantic subtropical upper ocean. According to our calculations, this

trend requires 9 yr of observations to be reliably distinguishable from the uncertainty.

In summary, we partition the ocean pH into pHnat and pHant at the 24.5◦N transect

in 2010. The approach increases the pH uncertainty from ±0.005 pH units to ±0.017

pH units regardless of the Cant technique. So, we suggest caution in the acidification

studies: approximately nine years of observations are necessary to reliably observed

a change in pHant in the subtropical North Atlantic. We will discuss further the pH

partitioning in section 5.3.4.
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3.5 Model based Cant comparisons

Observations limit the assessment of the accuracy of Cant estimated with different

methods owing to the lack of a measurable reference to compare with the indirect

estimates. Ocean models overcome this challenge. Here, the ‘true’ Model (MOD)

Cant can be quantified by subtracting the control from the industrial DICs (Eq 2.15)

and used as reference. The approach assumes negligible natural climate change and

transferability to models of observational Cant equations.

These assumptions are questionable because a fraction of the current climate change

could be due to natural variability and comparisons between observations and model

outputs depends on the model chosen. Notwithstanding that, the approach was used

by Yool et al. (2010) to investigate the TrOCA Cant estimates, by Waugh et al. (2006)

for the TTD method, and by Matsumoto and Gruber (2005) for ∆C*. We compare

the MOD Cant to the TTD, TrOCA, ∆C*, and ΦCT
0 estimates. The assessment

of those Cant estimates depends on the comparability between model outputs and

observations, which is evaluated in section 3.5.1. Also, we use coefficients inferred

from observations for all methods (section 3.5.2) and we compare the Cant results

to the estimates obtained by using coefficients inferred from model outputs (section

3.5.3). By doing so, we estimate the coefficients dependency on the chosen dataset.

3.5.1 Assessment of modelled Cant factors

Differences between Cant estimated from model outputs are caused by differences

between (1) the methods used or (2) the model outputs and observations. Separating

these sources of discrepancy is necessary to assess the accuracy of the Cant estimates.

We investigate the similarities between model outputs and observations in the 24.5◦N

upper 1000 m in 1992, 1998, and 2004. We compare T, DIC, and Alk model outputs

to measurements in Fig 3.14: these variables are the most influential factors in the

Cant estimates (section 3.2). Out of the ocean, Bronselaer et al. (2017) identified the

time interval of atmospheric CO2 increase as an additional source of disagreement

between observed and simulated Cant values. However, we do not explore this source,

assuming it to be comparable across all of the explored model results.
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Temperature is the most reliably simulated variable. The outputs of the CCSM

model do not significantly differ from observations (OBS), whilst the OCCAM and

GFDL-ESM2M fields agree reasonably well with them above 600 m, overestimating

T below this depth. All models underestimate the observed T variability over time.

The DIC and Alk vertical patterns are also broadly captured by all of the models

investigated. However, the OCCAM and GFDL-ESM2M overestimate the variable

concentrations, whilst the CCSM underestimates the DIC below 100 m. Variations

over time are comparable between the modelled and observed DIC and Alk.

In summary, the OCCAM, CCSM, and GFDL-ESM2M data of T, DIC, and Alk are

comparable to observations. Among these variables, T is the most reliably modelled,

suggesting the models better reproduce the oceanic ventilation, while they struggle

with biogeochemistry. As a consequence, we expect the ΦCT
0 and TTD techniques

to perform better than the ∆C* and TrOCA methods on the model platforms.

3.5.2 Comparison of modelled Cant estimates

We compare the TTD, ∆C*, ΦCT
0, and TrOCA estimates with the MOD Cant in the

outputs of the GFDL-ESM2M, CCSM, and OCCAM models by using observations

based coefficients on the Cant equations. This approach highlights challenges in the

Cant methods, identifies the most accurate technique in the models, and it allows us

to estimate the dependency of the Cant method coefficients from the chosen dataset.

We focus on the 24.5◦N upper 1000 m in 1992, 1998, and 2004, as it was done in

sections 3.2 and 3.3, but we base the analysis on model outputs conversely to those

studies, which were based on observations. The TTD mean age is estimated using

the CCSM and the OCCAM CFC-12, and the GFDL-ESM2M CFC-11, all of them

based on a saturation of 100 %.

The OCCAM, CCSM, and GFDL-ESM2M results are presented in Figs 3.15, 3.16,

and 3.17, respectively. We plot standard deviations, Root Mean Square Differences

(RMSD), and Pearson’s correlation coefficients relative to the MOD Cant reference

for the four method estimates by using Taylor diagrams (Taylor, 2001).
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Within OCCAM, the TTD and MOD Cant estimates are the most consistent, being

the nearest in all Taylor diagrams. The ∆C* Cant is the most accurate amongst the

back-calculations, followed by TrOCA. Conversely, the results obtained using ΦCT
0

differ from the other back-calculations potentially due to the OMP constraint in this

technique. The OMP adds bias owing to its dependency on T, S, and nutrient data.

Within CCSM, the TTD and MOD Cant estimates are also the nearest. ΦCT
0 is

the most accurate amongst the back-calculations, with the model outputs being the

most comparable to observations. The lowest confidence is given to TrOCA and an

intermediate reliability is quantified for the ∆C* estimates.

The GFDL-ESM2M results are comparable to the OCCAM investigations. The

TTD values are the closest to the MOD Cant, followed by the ∆C*, TrOCA, and

ΦCT
0 results. As in OCCAM, the GFDL-ESM2M ΦCT

0 Cant differs from the other

back-calculation results owing to biases in the observational OMP application.

In summary, the TTD estimate is the most comparable to the MOD Cant in the

models investigated, followed by ∆C*, ΦCT
0, and TrOCA. We confirm that the

models better reproduce the ocean ventilation on which the TTD and ΦCT
0 are

based, as it was hypothesised at the end of section 3.5.1. Conversely, they struggle

with biogeochemistry, thus increasing the uncertainty in the back-calculations: the

averaged Cant concentration estimated with the ∆C* method in the 24.5◦N upper

1000 m is roughly two times greater than the same value estimated with the TTD.

3.5.3 Reconciling modelled and observed Cant estimates

Back-calculation techniques require the calculation of the equation coefficients for

each dataset on which they are applied: the use of observations based coefficients on

model outputs leads to discrepancies with the MOD Cant estimates (section 3.5.2).

To remove this inaccuracy, we replicate the approach of Gruber et al. (1996) and

redefine the ∆C* equations using outputs of the OCCAM model. We use only this

back-calculation and the OCCAM model outputs for brevity, but a similar approach

can be extended to other techniques and models.
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Figure 3.18: Subtropical North Atlantic preformed (Alkpre) versus total (Alk)
Alkalinity. Data are taken from the OCCAM general circulation model between
1990 and 2004 and averaged in the subtropical North Atlantic upper 100 m between

78-16◦W. Colours identify the latitude, while R2 is 0.99 and p < 0.01.

We estimate Alkpre (Eq 3.6) using model outputs of salinity and preformed phosphate

(POpre
4 ), as it was done by Gruber et al. (1996):

AlkpreOCCAM = 68.4S − 6.1 10−2 POpre
4 − 34.0 (3.6)

We extract the model data in the upper 100 m of the subtropical Atlantic (15-35◦N),

where the Cant increase does not influence Alk owing to the local super saturation

of aragonite and calcite (Gruber et al., 1996; Takahashi et al., 1981). We use the

data to estimate Alkpre and we test the reliability of the approach in Fig 3.18.

We also quantify the COCCAM
eq (Eq 3.7) by using an approach similar to Eq 3.6, but

relying on data of Θ, S, and the newly calculated Alkpre
OCCAM. As COCCAM

eq reference,

we use the model pre-industrial DIC. This approach differs from the study of Gruber

et al. (1996), where the authors used an atmospheric pCO2 of 280 ppm, but it allows

to estimate the oceanic DIC before the beginning of the industrial era. The COCCAM
eq

estimate is assessed in Fig 3.19.

COCCAM
eq = 439.3 − 8.5 Θ + 27.9S + AlkpreOCCAM (3.7)
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Figure 3.19: Same as in Fig 3.18, but for the equilibrium Carbon (Ceq) estimate.
R2 and p are estimated as 0.96 and lower than 0.01 respectively.

Applying our recalculated Alkpre
OCCAM and COCCAM

eq to the model ∆C* Cant, we reduce

its value in the 24.5◦N upper 1000 m from 84.6 µmol kg−1 to 54.5 µmol kg−1. The

last is consistent with the CMOD
ant (49.9 µmol kg−1) and CTTD

ant (52.3 µmol kg−1) within

the method uncertainty: as anticipated at the beginning of this section, the use of

back-calculation techniques requires the recalculation of the equation coefficients for

every change in the dataset used. This result agrees with the implicit assumptions

of Yool et al. (2010), Waugh et al. (2006), and Matsumoto and Gruber (2005).

In summary, we reconcile the TTD and ∆C* Cant estimates in the assessment of the

method accuracies within the OCCAM outputs. This allows us to further explore

the Cant uncertainty by focusing only on those methodologies (chapters 4 and 5).

3.6 Synthesis and discussion

We analyse the Cant sensitivity to observed factor variabilities, analytical precisions

and method assumptions by using the One Factor At a Time and Variance Based

Sensitivity Analysis approaches. Under OFAT, the ∆C* requires a precision in the

DIC, Alk, and O2 measurements of ±4.0 µmol kg−1, ±10.0 µmol kg−1, and ±1.5

µmol kg−1 to keep the Cant analytical uncertainty to ±5.0 µmol kg−1. The TTD

necessitates precisions in the CFC-12 and SF6 measurements of ±0.01 pmol kg−1
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and ±0.03 fmol kg−1 to reach the same goal. Under VBSA, variances in the DIC,

Θ, and O2 measurement influence the ∆C* estimates, while the TTD Cant depends

on the tracer measurements, saturations, temperature, and the interactions among

those factors. Merging our and other authors’ results, we increase the global ocean

Cant total uncertainty from a previously suggested ±20 % to ±34 % for the TTD

and ∆C* estimates. However, in confined and well-sampled regions of the ocean

(e.g. subtropical (24.5◦N) North Atlantic upper 1000 m), this value decreases to

±13 % and ±14 % for the same Cant estimates, respectively. These uncertainties

propagate to the variables that are calculated using Cant (e.g. anthropogenic pH).

Overall, the TTD Cant estimates are influenced by the lowest uncertainty, but

those values do not account for the export from the MLD of biologically fixed CO2.

Conversely, the ∆C* Cant values are affected by a greater uncertainty potentially

due to changes in ocean steady state, biogenic influences on Cant, and correlations

between predictive and predicted factors used by the linear regressions included in

the technique equations. These uncertainty sources enhance the Cant disagreements

in model outputs, requiring a redefinition of the regression coefficients based on the

synthetic dataset. Furthermore they cannot be investigated focusing only on Cant

estimates, but necessitates the study of every dissolved inorganic carbon partition

(Williams and Follows, 2011), as it will be done in the next chapter.



Chapter 4

Measured and simulated carbon

pools, trends, and variabilities

4.1 Introduction

In chapter 3, we found that the TTD and ∆C* Cant estimates differ, being influenced

by different sources of uncertainty. The first isolates the ocean physical CO2 uptake

by using transient tracers, while the second removes a biogenic influence estimate

from the measured Dissolved Inorganic Carbon (DIC). To better assess Cant trends

and variabilities in the North Atlantic, we investigate this variable in conjunction

with the other components of the DIC cycle by using the Williams and Follows (2011)

partitioning (section 4.2). Carbon trends are studied by fitting least square linear fits

to mean concentrations, and they are quantified by using a quasi Monte Carlo (MC)

approach (Kroese et al., 2014; Metropolis and Ulam, 1949), as done by Guallart

et al. (2015b) for Cant. Residuals of the fitted values indicate carbon variabilities,

while we quantify the carbon partition uncertainties by randomly perturbing each

estimate under a second quasi MC analysis. We investigate the repeated time series

(1992-2010) at the 24.5◦N Atlantic section, where we separate thirty-seven subareas

to capture regional and water mass specific carbon trends and variabilities. Then, we

extend the study to the North Atlantic basin (0-65◦N) by using the climatology of the

Global Ocean Data Analysis Project version 2 (GLODAPv2; Lauvset et al. (2016))

102
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and Climate Model two Model coordinate (CM2Mc) Earth System Model (ESM)

outputs (section 4.3). Using simulated data, we also enlarge the analysis over time to

the past (1880-1900), present (1980-2000), and future (2080-2100) projected under

the Representative Concentration Pathway 8.5 (RCP8.5; IPCC (2014); Taylor et al.

(2012); van Vuuren et al. (2011)). We use an ‘industrial’, ‘climate’, and pre-industrial

‘control’ simulations to investigate the interplay between the DIC components.

4.2 Carbon trends and variabilities at 24.5◦N

4.2.1 Dissolved inorganic carbon partitioning

We use the carbon partitioning of Williams and Follows (2011) to study the influence

of surface fluxes, hard tissue, soft tissue, and solubility carbon pumps on the Cant

estimates (Fig 4.1). Under this approach, six DIC (or total inorganic Carbon (Ctot))

partitions are identifiable as proxies for the mentioned processes. These are used to

partition the DIC throughout three complimentary approaches (Eqs 4.1-4.3), which

differ for the separation of the saturated Carbon (Csat) between a pre-industrial and

an anthropogenic components or the inclusion of the last with the disequilibrium

Carbon (Cdis) in the residual value (Goodwin et al., 2008; MacGilchrist et al., 2014).

Ctot = Csat + Cdis + Csoft + Ccarb (4.1)

Ctot = C0
sat + Cant

sat + Cdis + Csoft + Ccarb (4.2)

Ctot = C0
sat + Cres + Csoft + Ccarb (4.3)

• Saturated carbon (Csat). Csat accounts for the DIC the ocean would have

when in CO2 equilibrium with the atmosphere. Csat includes a preindustrial

(C0
sat) and an anthropogenic (Cant

sat ) components, which are due to the natural

CO2 background and human-caused contributions to its atmospheric increase

since 1860. C0
sat is estimated with measurements of Temperature (T), Salinity

(S), dissolved oxygen (O2), preformed inorganic nutrients (nitrate (NO3
pre),

silicate (Si(OH)4
pre), and phosphate (PO4

pre), Eqs 4.4-4.6), a preformed
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Alkalinity (Alkpre) estimate (Eq 4.7) and pre-industrial CO2 partial pressure

(pCO0
2) of 278 ppm. From them, we infer C0

sat (Eq 4.8) using co2sys (section

2.2; Lewis and Wallace (1998); Van Heuven et al. (2011)).

Cant
sat approximates the anthropogenic carbon component, being based on the

atmospheric pCO2 (Dlugokencky et al., 2017) measured when the water mass

was last in contact with the atmosphere by using TTD mean ages.

POpre
4 = PO4 − (−RRO:P (Osat

2 −O2)) (4.4)

NOpre
3 = NO3 −

Ç
−RRO:P

RRN :P

(Osat
2 −O2)

å
(4.5)

Si(OH)pre4 = Si(OH)4 −
Ç
−RRO:P

RRS:P

(Osat
2 −O2)

å
(4.6)

Alkpre = 0.008 (Θ − 20)2 + 0.464 (S − 35)2 − 0.282

Θ + 55.592S + 0.019NOpre
3 + 0.001POpre

4 + 350.54 (4.7)

C0
sat = f(pCO0

2, Alk
pre, T, S, Si(OH)4

pre, PO4
pre) (4.8)

where RR are the Redfield Ratios between phosphate and (1) O2 (RRO:P),

(2) nitrate (RRN:P), and (3) silicate (RRS:P; Redfield (1934)). The preformed

Alkalinity (Eq 4.7) is regressed on potential temperature (Θ), salinity, and

preformed nutrients obtained from the GLODAPv2 data for the North Atlantic

upper 100 m, in line with the work of Gruber et al. (1996) and section 3.5.3.

• Soft-tissue carbon (Csoft). Csoft quantifies the DIC that originates from

the remineralisation of the sinking soft tissue (Fig 1.6; Brewer (1978)). This

partition is approximated (Eq 4.9) by using the Apparent Oxygen Utilisation

(AOU, Eq.4.10; Pytkowicz (1971)) and the Redfield ratio between DIC and O2
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(RRC:O). We test this approximation in section 5.4 by using CM2Mc outputs.

Csoft = − RRC:P

RRO:P

AOU (4.9)

AOU = Osat
2 − O2 (4.10)

where Osat
2 is the saturated O2 and is estimated from T and S measurements.

• Carbonate carbon (Ccarb). Ccarb measures the DIC due to the dissolution

of the sinking carbonate hard tissue (e.g. shells). This partition is estimated

as in Eq 4.11 (Brewer, 1978).

Ccarb = 0.5

Ç
Alk − Alkpre − RRN :P

RRO:P

AOU

å
(4.11)

• Residual carbon (Cres). Cres includes the surface disequilibrium DIC

(Cdis), Cant
sat , and the uncertainty in the carbon partitioning (Eq 4.12). In the

literature, Cres is generally used as a proxy for the Cant
sat signal owing to the

difficulty in the separation between Cant
sat and Cdis (MacGilchrist et al., 2014;

Williams and Follows, 2011). However, we overcome this challenge, as it will

be summarised later in this section and detailed in section 4.2.3.

Cres = Cant
sat + Cdis (4.12)

• Anthropogenic carbon (Cant). Cant (Eq 4.13) is inferred removing C0
sat

from the Csat determined at the time when seawater was last in contact with

the atmosphere (McNeil et al., 2003; Thomas and Ittekkot, 2001). This Cant

is equal to Cant
sat and it allows to directly quantify the most recent changes in

atmospheric CO2 and the ocean uptake caused by the anthropogenic activities.

In this thesis, we name the Cant estimated by using Eq 4.13 as Decomposition

(DEC) Cant (CDEC
ant ) to differentiate its value from the estimates obtained with
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Figure 4.1: Summary of dissolved inorganic carbon partitions and influencing
processes in the lower atmosphere and global ocean (Williams and Follows, 2011).
In addition to the Carbon dioxide (CO2), listed partitions are disequilibrium carbon
(Cdis), pre-industrial saturated carbon (C0

sat), anthropogenic carbon (Cant), soft-
tissue carbon (Csoft), and carbonate carbon (Ccarb). Two grey arrows schematise
physical processes and identify ‘gas exchanges’ where shown and ‘circulation and
mixing’ elsewhere. The blue line isolates processes of CO2 export. The POC and
DOC identify the Particulate and Dissolved Organic Carbon respectively (Fig 1.6).

the methods described in Chapter 2.

CDEC
ant = Csat − C0

sat (4.13)

• Disequilibrium carbon (Cdis). Cdis estimates the difference between the

upper-ocean ocean and low-atmosphere CO2 partial pressures, and therefore

approximates the surface carbon fluxes (Eq 1.1). This carbon partition is

estimated by removing Cant
sat from Cres, being of the same order of magnitude of

them. As a result, Cdis includes the uncertainty of the partitioning approach.

Cdis = Cres − Cant
sat (4.14)
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4.2.2 Data and approach

The repeated observations collected at 24.5◦N in the Atlantic are valuable to assess

DIC partition trends and variabilities. Guallart et al. (2015b) used those datasets

to study Cant from 1992 to 2011, and found that it increases everywhere over time,

with the upper-ocean (0-1000 m) range of Cant trend estimates included between 0.6

± 0.2 µmol kg−1 yr−1 (TTD) and 0.9 ± 0.2 µmol kg−1 yr−1 (∆C*).

We enlarge the Guallart et al. (2015b) study by investigating all of the Williams and

Follows (2011) carbon partitions. These are detailed in section 4.2.1 and are used to

explore physical and biological carbon pump effects, separating atmospheric CO2,

primary productivity, residence time, and sea surface temperature variations. These

processes were discussed in chapter 3 for Cant and they are further investigated here

for each of the DIC partitions at the 24.5◦N Atlantic transect.

In the 24.5◦N hydrographic section, we isolate seven water masses in six longitudinal

areas, as shown in Fig 4.2. These water masses were introduced in Tab 1.1 and are:

water column upper 200 m, referred to as subtropical Mode Water (MoW); Madeira

MoW, subpolar MoW, Antarctic Intermediate Water (AAIW), upper North Atlantic

Deep Water (NADW), lower NADW, and Antarctic bottom water.

Longitudinally, we divide the section at 80◦W, 78◦W, 70◦W, 60◦W, 45◦W, 30◦W,

and 16◦W. We show the resulting thirty-seven subareas in Fig 4.2 for completeness,

but we focus the discussion on the MoW, which contains the highest amount of Cant,

and the AAIW, which includes the highest remineralised carbon pool (mostly Csoft)

in the North Atlantic subtropical upper-ocean (0-1000 m) layer.

Over longitude, we summarise the study by focusing on three regions: (1) the Florida

Strait (FS) with high remineralisation, (2) the highly ventilated Western (W) basin

in comparison with (3) the Eastern (E) basin, which is influenced by a northwards

return circulation of older seawater and a region of upwelling near the African coast.

In these regions, we investigate Cant trends and variabilities over time in conjunction

with the other DIC pools. We separate four Ctot partitions: C0
sat, Csoft, Ccarb, Cres.

We further divide Cres into Cant and Cdis, as Williams and Follows (2011) suggested,

but not yet applied due to the difficulty in this approach (MacGilchrist et al., 2014).
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We overcome this challenge by quantifying each partition uncertainty, improving the

Cant one specifically (chapter 3), and applying a quasi MC approach on those values.

4.2.3 Carbon partition uncertainties and mean ranges

The Williams and Follows (2011) partitioning carries a set of uncertainties, different

for each partition and summarised here. We analyse these uncertainties in the upper

1000 m of the 24.5◦N transect and compare them to the global ocean values. We use

the measurement precisions suggested in the Global Ocean Ship-based Hydrographic

Investigations Program (GO-SHIP) guidelines (Hood et al., 2010), which apply to

the global ocean, and the ones measured and reported in the 24.5◦N cruise reports

(Cunningham et al., 2005; King et al., 2012; Millero et al., 2000; Peltola et al., 2001),

which apply to the subtropical North Atlantic. Results are shown in Tab 4.1.

Total carbon (Ctot). Ctot represents the ocean DIC (section 4.2.1). This partition

and associated uncertainty are directly quantifiable. The last is due to the accuracy

in the DIC measurements and increase from the global scale to the upper 1000 m of

the 24.5◦N transect. This rise is however negligible within the quasi MC estimates.

Pre-industrial saturated carbon (C0
sat). C0

sat quantifies the DIC fraction that

the ocean would have when in carbon dioxide (CO2) equilibrium with the overlying

pre-industrial atmosphere. C0
sat is the largest DIC component and is estimated using

the co2sys set of calculations (Lewis and Wallace, 1998; Van Heuven et al., 2011).

Then, influential sources of uncertainty are the Alk, pCO0
2, T, and nutrient (used

for the Alkpre estimates) accuracies, which lead to uncertainties comparable between

the global ocean and local scales.

Soft-tissue carbon (Csoft). Csoft quantifies the DIC due to the remineralisation

of the sinking soft tissue in the ocean. This partition is inferred from AOU and it is

influenced by T, S, and O2 measurement precisions. Among them, the O2 accuracy

is the most influential, but we sum it with the others, obtaining a Csoft uncertainty

comparable between the two investigated scales (global ocean and subtropics).

Carbonate carbon (Ccarb). Ccarb quantifies the DIC due to the remineralisation

of the sinking hard tissue in the ocean. This partition is calculated from AOU, Alk,
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Table 4.1: Table summarising inorganic carbon partition mean ranges and
uncertainties in the global ocean (Global; Hood et al. (2010)) and 24.5◦N upper
1000 m. Listed partitions are total (Ctot), pre-industrial saturated (C0

sat), soft-
tissue (Csoft), carbonate (Ccarb), anthropogenic (Cant), and disequilibrium (Cdis).
Cant and Cdis are estimated by using the TTD as in the GLODAPv2 climatology
(Lauvset et al., 2016). MC indicates the results of the quasi Monte Carlo analyses
(Kroese et al., 2014; Metropolis and Ulam, 1949), while DT identifies the Decadal

Trend uncertainty, also based on a MC analysis.

Range Uncertainty

Global 24.5◦N Global 24.5◦N MC DT

Units µmol−1 kg−1 µmol−1 kg−1 yr−1

Ctot 1019 to 2403 2032 to 2225 2.0 3.0 1.3 0.1

C0
sat 1129 to 2288 1997 to 2119 4.0 3.0 2.0 0.1

Csoft 0 to 196 0 to 100 2.0 2.0 1.3 0.1

Ccarb 0 to 180 0 to 10 5.0 2.3 1.5 0.1

Cant 0 to 73 9 to 65 17.0 10.0 5.2 0.2

Cdis -334 to 23 -64 to 17 18.4 11.3 6.2 0.3

and Alkpre. So, we sum these variable influences, obtaining a Ccarb uncertainty in

the global ocean that is two times greater than the one applicable in the 24.5◦N

upper 1000 m, where Alk and O2 measurements are more precise (Tab 1.2).

Anthropogenic carbon (Cant). Cant concentrations are estimated with the TTD

method, as explicitly reported in the GLODAPv2 climatology, and would change

using other methods. Despite this source of variability, the Cant uncertainty depends

on locations, data, and intervals of time (section 3.4). Our 24.5◦N range maximum

compares to the highest limit of the interval suggested by Matsumoto and Gruber

(2005), Vázquez-Rodŕıguez et al. (2009b), and Waugh et al. (2006): we use ±10.0

µmol kg−1 and ±17.0 µmol kg−1 as 24.5◦N and global uncertainties (section 3.4.1).

Disequilibrium carbon (Cdis). Cdis quantifies the ocean DIC due to the surface

CO2 disequilibrium with the atmospheric CO2 mole fraction. Here, this component is

inferred removing Cant from Cres: Cdis carries the uncertainty of all carbon partitions.

These uncertainty estimates are randomly distributed and cannot be added linearly.

Instead, we estimate the Cdis uncertainty by quantifying the square root of the sum



Chapter 4. Carbon trends and variabilities 111

of the other partitions uncertainty squares and obtaining values comparable to the

Cant estimates (Tab 4.1). This calculation of the Cdis uncertainty is approximately

two times greater than the one obtained by applying the same approach to Cres (±7.0

µmol kg−1). Therefore, changes in Cres are often used to approximate variations in

the anthropogenic and disequilibrium pools (MacGilchrist et al., 2014; Williams and

Follows, 2011). We use only the TTD method for the estimate of the Cdis uncertainty.

Uncertainties. We apply a quasi MC analysis (Kroese et al., 2014; Metropolis and

Ulam, 1949) on the partition uncertainties, as comparably done by Guallart et al.

(2015b) for Cant. This approach allows us to remove effects of analytical precisions

and underlying method assumptions from each carbon partition uncertainty. Thus,

the MC approach isolates the observed variability, which includes influences on the

CO2 uptake and storage of variations in circulation, wind stress, buoyancy fluxes,

and biological cycles (Henson et al., 2010; McKinley et al., 2017).

Decadal Trends (DTs). Figs 4.3-4.6 and Tabs 4.2-4.5 show estimates of the DTs

and mean values for each of the explored carbon partitions across the 24.5◦N section.

We estimate the partition DTs by replicating the quasi MC analysis on cruise-mean

concentrations, as also done by Guallart et al. (2015b) for Cant. We determine 1000

random alterations for each concentration and method within the carbon partition

nominal uncertainties, and then estimate as many linear regressions over time and

slope coefficients. The average of the resulting slope values is used as partition DT.

The associated uncertainty is quantified with an additional quasi MC analysis, once

more in agreement with the work of Guallart et al. (2015b).

Variabilities. We determine the DT residuals by removing the trend from the mean

estimates, and use them to estimate carbon variabilities. These values are inferable

indirectly in Figs 4.3 to 4.6 by looking at the difference between dots, which quantify

variations between cruise means from 1992, and lines, which estimate DTs.

In summary, we show an improvement in the partition uncertainties from the global

to the 24.5◦N upper 1000 m scales. However, this links to increases in the uncertainty

influences at local scale due to a reduction in the concentration ranges. Ctot is the

only exception, showing a greater uncertainty at local scale. Even so, the Hood et al.

(2010) values, which are used here as global uncertainties, are only recommendations
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to which operational oceanographers should aim. Also, the 24.5◦N Ctot uncertainty

is the only directly calculated value in Tab 4.1, while all of the others are estimates.

4.2.4 Anthropogenic carbon (Cant) pool

Cant carries an uncertainty due to analytical precision and method assumptions,

which causes discrepancies among different method estimates. Here, we focus on the

TTD and ∆C* techniques, as those methods quantify the extremes of the probable

range of Cant concentrations (section 3.4). We investigate TTD and ∆C* Cant trends

and variabilities in each of the 24.5◦N subareas, as anticipated in section 4.2.2 and

shown in Fig 4.3. Cant DTs and 1992 mean values are summarised in Tab 4.2. The

same approach is used for an extended time interval (1992-2016) in appendix A and

for the other DIC partitions in sections 4.2.5 to 4.2.7.

Cant increases over time everywhere in the section, as expected from the atmospheric

CO2 rise (Fig 1.9). We write this increase as δtCant and estimate its greatest values

in the MoW and the ocean interior most recently ventilated western basin.

In the STMoW, the ∆C* Cant DTs are stronger than the TTD counterparts in the

Florida Strait and not statistically different from them in the western and eastern

basins. The only exception is subarea E2, where the TTD DT is stronger.

Cant variabilities (differences between estimated and expected (from DT) increases)

are not significant for both the STMoW TTD and ∆C* Cant, lying within the MC

uncertainty. This result is confirmed in all of the other subareas investigated.

In the MMoW, the mean δtCant decreases with respect to the STMoW estimate, as

expected for this older water mass. The ∆C* and TTD Cant DTs are comparable

in the Florida Strait, but in the western and eastern basins the former exceeds the

latter (Tab 4.2), leading to divergences over time.

In the SPMoW, the ∆C* Cant DTs are stronger than the TTD counterparts, with

differences up to 0.4 ±0.2 µmol kg−1 yr−1, highlighting a Cant divergence over time

weaker than in the comparative MMoW.

In the AAIW, the estimates of the TTD and ∆C* techniques are more comparable

than in the MoW. Discrepancies are measurable, but the values lie within the MC
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uncertainty. The AAIW Cant pool is lower than the MoW counterpart, and so the

influence of the analytical uncertainty on the AAIW δtCant is stronger than above.

We avoid the discussion of the uNADW, lNADW, and AABW Cant estimates, as

anticipated in section 4.2.2. However, the ocean interior water mass estimates are

reported in Fig 4.3 and Tab 4.2 for completeness. The same approach will be used

in appendix A and for the other DIC partitions in sections 4.2.5 to 4.2.7.

Our estimates of the TTD and ∆C* δtCant differ in the 24.5◦N upper 1000 m from

1992 to 2010, as shown by Guallart et al. (2015b). Several reasons could explain

these discrepancies. (1) The TTD assumes equilibrium between atmospheric and

oceanic CO2 (Cdis = 0 and δtCtot = δtC
0
sat + δtCant, section 4.2.7), correcting the

transient tracer concentrations for their known under saturation (section 2.3.3). If

the saturation is overestimated, the TTD quantifies δtCant as being weaker than the

∆C* estimates. (2) Cdis may vary over time, as shown in section 4.2.5. If so, the

∆C* carries an increasing bias between the least and most recent estimates, as the

method assumes Cdis temporal constancy. The TTD also carries a bias, as it assumes

null Cdis, but it limits the influence on Cant when correcting the transient tracer

saturations over time, as done in this thesis. (3) High rates of carbon and nutrients

remineralisation modify the Redfield ratios, leading to differences between the TTD

Cant, which is almost uninfluenced, and the ∆C* estimate, which varies up to ±3.0

µmol kg−1 (±6.0 %), depending on the RR considered. (4) Mixing, temperature,

and biological blooms may also influence the Cant estimates, propagating a bias that

could enhance the inter-method differences (section 4.2.6). We suggest the combined

use of TTD and ∆C* to include more sources of uncertainty, better constraining Cant

(Iudicone et al., 2016; Khatiwala et al., 2013).

4.2.5 Disequilibrium carbon (Cdis) pool

Cdis estimates the distance of the ocean carbon cycle from being in CO2 equilibrium

with the overlying atmosphere. This partition is quantifiable at the ocean surface and

passively transported into the interior, where it may be altered by mixing (Eggleston

and Galbraith, 2017). The transported Cdis reaches the surface again in some ocean
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regions (e.g. Southern Ocean), influencing other components of the CO2 cycle, such

as Csoft (Ito and Follows, 2013). This may alter the carbon storage in water masses

that originate in the Southern Ocean, such as the AAIW.

Cdis is treated as the imbalance between Ctot and the other partitions corrected by

Cant (Cdis = Ctot - C0
sat - Csoft - Ccarb - Cant, section 4.2.1). Consequently, we estimate

Cdis trends and variabilities using the TTD and ∆C*, so highlighting discrepancies

between these two methods. The Cdis DTs and cruise averages are shown in Fig 4.4

and summarised in Tab 4.3. Comparisons with previous estimates are impossible,

as we present the first 24.5◦N Cdis calculation between 1992 and 2010.

In the STMoW, we identify no temporal changes or variabilities in the subarea FS1

Cdis by using the TTD and ∆C* methods. Moving eastwards, the Cdis DTs become

more negative over time in subarea W1. Elsewhere in the STMoW, δtCdis weakens,

hence decreasing the potential for additional CO2 uptake. Excluding subareas FS1

and W1, the TTD and ∆C* δtCdis values are higher than the concentrations expected

from the DTs in 1998 on average. In the same year, the δtCdis values are lower than

the DT estimates in subarea W1 by 44.2 ± 6.2 µmol kg−1. Unrecognised problems in

the 1992 measurements could explain the discrepancies: without this year data, the

δtCdis variabilities would lie in the MC uncertainty, with statistically insignificant

differences from the DT estimates.

Hereafter, we use caution in the analysis of the data when including the 1992 values.

When these are excluded, some partition DTs change significantly (outside the MC

uncertainty). However, our analyses do not support the removal of these data.

In the subsurface (MMoW and SPMoW), the Cdis weakening trends increases with

respect to the STMoW estimates. This pattern emerges particularly in the Florida

Strait, which exhibits Cdis weakening trends of 3.6 ± 0.3 µmol kg−1 yr−1 (MMoW)

and 2.0 ± 0.3 µmol kg−1 yr−1 (SPMoW) on average. In the main section, we see a

divergence between the Cdis DTs estimated by using the two techniques: the TTD

method quantifying the strongest Cdis weakening DTs in the western and eastern

basins. We estimate discrepancies up to 0.7 ± 0.3 µmol kg−1 yr−1 in the subarea E3.

This value is equal to the difference in Cant, because Cant and Cdis are dependent on

each other, with their sum being equal to Cres. The values are also comparable to the
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discrepancy of 0.8 ± 0.2 µatm yr−1 quantified between the ∆C* and TTD estimates

of the MMoW pCO2ant in Fig 3.7, which corresponds to an estimated difference of

0.5 ± 0.3 µmol kg−1 yr−1 between the methods δtCdis. So, differences in the δtCdis

term may be the most influential source of the observed discrepancy between the

TTD and ∆C* Cant estimates (section 5.2). Variabilities in the MMoW and SPMoW

Cdis are significant in the Florida Strait only, where the δtCdis estimates are lower

than the DT values in 1998 and 2004.

In the AAIW, the TTD Cdis values become less negative in the Florida Strait and

less positive in the main section over time. The ∆C* Cdis trends are also negative

in the western and eastern basins, while they are insignificant in the Florida Strait.

To summarise, Cdis estimates tend towards the CO2 saturation (Cdis = 0) in the

24.5◦N upper 1000 m between 1992 and 2010. However, the TTD and ∆C* estimates

differ, with the strongest divergences quantifiable in the STMoW and Florida Strait.

These techniques include differently changes in the disequilibrium, saturated, and

remineralised DIC partitions, as discussed in sections 3.4 and 5.2.

4.2.6 Soft-tissue (Csoft) and carbonate (Ccarb) carbon pools

In addition to the physical uptake (Cant + Cdis + C0
sat), the ocean sequesters

atmospheric CO2 through the biological pump. Ccarb and Csoft depend on this

biogenic influence, accounting for the remineralisation of sinking hard and soft

tissues, respectively (Williams and Follows, 2011). Their 24.5◦N DTs and 1992

mean concentrations are summarised in Fig 4.5 and Tab 4.4. We discuss their

influence on the carbon cycle comparing our results with the estimates obtained by

Williams and Follows (2011) in the area, which were based on data from the 1990s.

Ccarb does not influence the subtropical North Atlantic upper-ocean carbon cycle.

DTs and variabilities of this partition are overall insignificant in the 24.5◦N upper

1000 m. In this layer, we estimate a 2010 Ccarb concentration of 2.3 ± 1.5 µmol kg−1,

which is thus almost indistinguishable to zero, but also compared to the estimate of

3.0 ± 1.5 µmol kg−1 reported by Williams and Follows (2011).
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Conversely, the Csoft influence on the North Atlantic subtropical carbon cycle is

significant. In the STMoW, Csoft decreases over time in the Florida Strait and varies

just outside the quasi MC uncertainty in the main section. These concentrations

are however shown only for completeness, because Csoft estimates could act non-

conservatively in the STMoW due to the high variability in the sources and sinks.

In the MMoW, Csoft increases locally in subareas FS2, W4, and E4. These δtCsoft

estimates suggest changes in the remineralisation, deep western boundary current,

residence time, or primary productivity (section 5.3). In subarea E4, the upwelling

enhances the remineralisation carrying Csoft from the interior to the subsurface, and

also transporting inorganic nutrients towards the surface. This increases the primary

productivity, carbon export and consequent remineralisation (section 5.3).

Elsewhere in the MMoW, Csoft varies within the quasi MC uncertainty. Variabilities

are significant in subareas FS2 and E4. In FS2, the Csoft increases are higher than

the DT values in 1998 and 2004. Here, we suggest unrecognised problems in the 1992

measurements, as also discussed for Cdis in section 4.2.5. In E4, the Csoft increases

are lower and higher than the DT based values in 2004 and 2010, respectively.

In the SPMoW, Csoft increases everywhere, with DTs reaching 0.8 ± 0.1 µmol kg−1

yr−1. Variability is significant in subarea W7, where the Csoft increase is higher than

the DT estimate in 2004. A decrease in circulation in 2010 could explain this result.

In the AAIW, Csoft increases everywhere except in subarea E8, where it does not vary

significantly. By removing the 1992 estimates, however, Csoft increases significantly

in this subarea. Variability is significant in subarea W10, where the δtCsoft estimates

are higher than the DT values in 1998 and 2004, and in subareas W12, E7, and E8,

where the δtCsoft are lower than the DT values in the same years. As anticipated

above, unrecognised problems in the 1992 measurements may explain the observed

patterns in subareas E7 and E8: without this year, the Csoft increases are comparable

to the DT estimates within the MC uncertainty. In W12, we suggest an influence of

a circulation slow-down or a strengthening in the lateral mixing, with the last also

explaining the weakening in the 2010 δtCsoft in the subarea W10.

We quantify a Csoft concentration of 45.7 ± 1.3 µmol kg−1 in the 24.5◦N upper 1000

m in 2010. This estimate is greater than the value of 40.0 ± 1.3 µmol kg−1 reported
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by Williams and Follows (2011) and based on data collected on the 1990s. So, the

24.5◦N upper-ocean Csoft increases from 1992 to 2010 due to potential changes in

organic matter oxidation or seawater transport, increasing the DIC. The strongest

variations are in the Florida Strait and eastern basin, suggesting a predominant

influence of changes in oxidation or in the upwelling near the African coast.

4.2.7 Total (Ctot) and pre-industrial saturated (C0
sat) pools

To complete the study of the 24.5◦N Atlantic section carbon cycle, we assess trends

and variabilities of C0
sat and Ctot. C0

sat decreases in time in the section upper ocean,

except for the AAIW. This trend is driven by the increase in the ocean temperature

and the reduction in the estimated Alkpre and may be due to a decreasing reliability

of the regression model used for the scope (Eq 4.7). However, a decrease in C0
sat in the

subtropical North Atlantic agrees with the work of Bernardello et al. (2014a), where

the authors suggested a conversion from the Csat to the Csoft pools due to increasing

stratification over time. Ctot increases in the MoW, being generally stable beneath

this water mass (Fig 4.6, Tab 4.5).

In the STMoW, C0
sat does not vary significantly in the Florida Strait and decreases

in the main section. The only exception is subarea W1, but problems in the 1992

measurements may have influenced this anomaly, in line with what we discussed for

Cdis in section 4.2.5. The STMoW Ctot increases everywhere.

In the MMoW and SPMoW, C0
sat decreases in the Florida Strait more rapidly than

increases in the main section. This is due to an increase in the temperature of 0.2

◦C, which leads to a C0
sat reduction of -1.4 µmol kg−1. The Alkpre decreases in the

eastern basin, so leading to a δtC
0
sat as large, whereas the western basin C0

sat varies

insignificantly. Ctot increases everywhere in the investigated 24.5◦N subsurface.

In the AAIW, Ctot and C0
sat decrease in subarea FS4 and increase elsewhere.

Variabilities are significant in subareas FS2, FS3, FS4, and E8. Here, the C0
sat rises

are higher than the DT values in 1998 and 2004, while δtCtot follows this pattern in

subareas FS2 and FS4 only. Problems in the 1992 measurements may explain the

results, particularly in subarea FS4, but the influence of other DIC partitions could
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also be relevant (section 4.2.8).

We quantify C0
sat mean concentrations between 2070.4 ± 2.0 µmol kg−1 and 2065.2

± 2.0 µmol kg−1 in the 24.5◦N upper-ocean layer in 1992 and 2010. The estimates

broadly match the concentration of 2060.0 ± 2.0 µmol kg−1 reported by Williams

and Follows (2011) in the area and based on data collected on the 1990s. However,

our estimates reduce in time, in line with the increasing ocean stratification due to

the rising temperature, while the Williams and Follows (2011) mean estimate does

not differ from our most recent C0
sat, suggesting oceanic steady state instead.

In summary, Ctot increases over time everywhere in the 24.5◦N upper 1000 m, while

C0
sat decreases in this region. We quantify the strongest partition DTs at the margins

of the main transit (e.g. subarea W7) and in the Florida Strait. This suggests not

only an influence of changes in circulation or organic matter oxidation, but also an

impact of other carbon partitions, as it will be detailed in the next section.

4.2.8 Summary: carbon partition interplay at 24.5◦N

Ctot increases everywhere in the upper 1000 m of the 24.5◦N Atlantic transect from

1992 to 2010, with a mean DT of 1.0 ± 0.1 µmol kg−1 yr−1. This corresponds to

increases of 0.5 ± 0.2 µmol kg−1 yr−1 and 0.8 ± 0.2 µmol kg−1 yr−1 in the TTD and

∆C* Cant estimates, which are comparable to the values reported by Guallart et al.

(2015b). The same methods quantify comparable changes in Cdis. Csoft increases by

0.3 ± 0.1 µmol kg−1 yr−1, and we observe a decrease by the same amount in C0
sat,

which is the largest carbon pool. So, the increase in Cant is the largest contribution

to the δtCtot, as expected from the increasing atmospheric CO2. However, the Csoft

rise over time is unexpected. This component increases mostly in the Florida Strait,

SPMoW, and upwelling region, suggesting changes in oxidation rates or circulation,

which are investigated in section 5.3. The 24.5◦N Ccarb variations are insignificant.

The North Atlantic subtropical Ctot DTs and variabilities are influenced by climate

change and increasing emissions of anthropogenic CO2. Within the climate change,

we observe a decrease in the 24.5◦N upper-ocean (0-1000 m) C0
sat, mostly evident in

the Florida Strait and eastern basin. This pattern is due to a temperature increase
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and a decrease in Alkpre, which are the independent variables in the C0
sat estimate

(Eq 4.8) that are expected to vary the most over time. In the Florida Strait, the

saturation decrease coincides with an increase in temperature, while Alkpre changes

are insignificant. In the eastern basin however temperature is constant, so we link the

C0
sat reduction to an Alkpre decrease approximately as large. These patterns suggest

an influence of changes in upwelling. Also, the C0
sat reduction links to an aqueous

CO2 increase, which damps the idealised potential for additional carbon uptake, as

confirmed by the weakening in Cdis (Goodwin et al., 2008). Notwithstanding that,

the anthropogenic CO2 rise in the atmosphere exceeds the increase in oceanic CO2

partial pressure (∆pCO2, Eq 1.1), forcing a net carbon uptake and increasing Ctot.

In the next sections, we will investigate where those mechanisms are more likely

to happen and when they are more influential by using GLODAPv2 climatological

data and outputs of three CM2Mc simulations: ‘industrial’, ‘climate’, and ‘control’.

4.3 North Atlantic carbon trends and variabilities

The hydrographic section at 24.5◦N in the Atlantic is of key relevance for the Atlantic

Meridional Overturning Circulation (AMOC) monitoring (Bryden et al., 2014) and

the study of the Mode water influence on the ocean CO2 uptake (Bates et al., 2002).

However, observations on this transect are limited in time and space. Therefore, we

expand the investigation of the interplay among dissolved inorganic carbon partitions

to the full North Atlantic basin (0-65◦N). For this analysis, we use the spatially gap-

filled GLODAPv2 climatology, referenced to the year 2002 (Lauvset et al., 2016),

and the outputs of three CM2Mc ESM simulations (Bernardello et al., 2014a,b).

We use the climatological data to quantify column inventories of carbon partitions in

the North Atlantic basin, hence assessing their variability over space. In appendix C,

we explore these inventories in the North Atlantic upper 1000 m, where we estimate

the highest Cant pool, using the same approach as in sections 4.2.4 to 4.2.8. Here,

we investigate the partition inventories over the entire water column, under a more

comprehensive treatment, comparing GLODAPv2 and modelled estimates to assess

the CM2Mc outputs. In this analysis, Cant is estimated by using the TTD technique
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based on CFC-12 measurements, as explicitly reported in the GLODAPv2 dataset.

We do not use the ∆C* method to simplify the carbon partitions assessment. The

CMOD
ant is quantified as difference between industrial and control DICs (Eq 2.15).

However, the climatological data cannot be used to test the partition variabilities in

time, being referred to a single year. Instead, we investigate outputs of a CM2Mc

‘industrial’ (climate change and oceanic Cant uptake), ‘climate’ (climate change,

but no oceanic Cant uptake), and pre-industrial ‘control’ (no climate change and no

oceanic Cant uptake) simulations between 1860 and 2100. The anthropogenic CO2

uptake is simulated in the CM2Mc model since 1860 and the ‘control’ Cdis at the

ocean surface is modelled as in Fig 4.7. These sources of information are necessary for

the evaluation of the biases in the model carbon cycle (Bronselaer et al., 2017). Also,

a comparison between Fig 4.7 and Fig 4.9, which presents the CM2Mc ‘industrial’

outputs in 2002, shows that the anthropogenically-driven increase of CO2 in the

atmosphere has strengthened the disequilibrium with the ocean in the last 160 years:

more negative Cdis (comparable to the difference between oceanic and atmospheric

pCO2) values are modelled at the surface of the North Atlantic in 2002, suggesting

an increasing carbon uptake (section 4.2.8).

Figure 4.7: Disequilibrium Carbon (Cdis) distribution at the North Atlantic
surface in 1860. Data taken from the CM2Mc pre-industrial ‘control’ run and
calculated as in Eq 2.14. The colour scale is the same as in Fig 4.9 for comparison.
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We examine simulated trends and variabilities over space and time for each carbon

partition, exploring mean values in three intervals of twenty years each: 1880-1900

for the pre-industrial, 1980-2000 for the present, and 2080-2100 for the future oceanic

states. Results are shown as anomalies of the ‘background’ control simulation and

are compared to the 24.5◦N DIC partitions interplay investigated in section 4.2.8.

4.3.1 Observational (GLODAPv2) assessment over space

The study of the full-column carbon partitions interplay based on the GLODAPv2

climatology (Fig 4.8) show a North Atlantic Ctot inventory of 4.2 x 103 ± 0.9 PgC,

with the major contribution due to C0
sat. Other influences are linked to Csoft, Ccarb,

Cant, and Cdis. Csoft is the second largest carbon reservoir in the studied basin, Ccarb

is the lowest, while Cdis and Cant are comparable and included between the other two

estimates. The Cant budget is also comparable to the estimates discussed by Gruber

(1998) when considering this value increases by approximately 0.8 ± 0.6 PgC yr−1.

The relevance of Csoft and Cdis increases when considering the whole North Atlantic

with respect to the basin upper 1000 m (section 4.2.8, appendix C). This is due to

ocean interior water masses (e.g. AABW), which have had more time to accumulate

remineralised soft tissue and less time to reach CO2 equilibrium with the atmosphere,

carrying the highest Csoft pool in the subtropics and the strongest Cdis near the Pole.

Variabilities over space are masked by the North Atlantic bathymetry for the carbon

partitions that have had the time to invade the whole water column, such as C0
sat:

at greater depths corresponds higher concentrations simply because the water mass

volumes are higher. To overcome this difficulty and explore real carbon variabilities,

we examine the depth-averaged value of each carbon partition (graphs not shown).

This shows that the subpolar gyre stores the highest C0
sat and Cant pools and the

strongest Cdis, whilst the North Atlantic subtropics store the highest Ctot, Csoft,

and Ccarb pools. Polewards, the increasing atmospheric CO2 increases the oceanic

potential carbon content (C0
sat) mostly because of the water mass formation that

maintains seawater away from the CO2 saturation (section 1.3).
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Table 4.6: Table summarising North Atlantic budgets of dissolved inorganic
carbon partitions (Figs 4.8-4.9), associated differences, and uncertainties. Carbon
budgets [PgC] are quantified using the GLODAPv2 climatology (Lauvset et al.,
2016) and the CM2Mc “industrial” outputs in 2002. Differences are estimated
as percentages of the climatological carbon budgets. Listed partitions are total
(Ctot), pre-industrial saturated (C0

sat), soft-tissue (Csoft), carbonate (Ccarb),
anthropogenic (Cant), and disequilibrium carbon (Cdis).

Partition Observed Budget Modelled Budget Difference Uncertainty

Ctot 4.2 x 103 4.8 x 103 +14 % 0.9

C0
sat 4.1 x 103 4.8 x 103 +15 % 1.3

Csoft 88.6 87.6 -0.1 % 0.9

Ccarb 13.2 55.1 +317 % 1.7

Cant 33.7 33.3 -1.2 % 3.2

Cdis -38.7 -49.8 -29 % 3.8

This induces a negative Cdis imbalance that is compensated by Cant sequestrations.

The subtropical gyre is characterised by higher concentrations of remineralised

carbon (Csoft + Ccarb) that are due to upwelling, biological cycles, and stronger

stratification. These processes increase Ctot above the thermocline, reducing C0
sat,

weakening Cdis, and so decreasing the potential for Cant uptake.

4.3.2 Modelling (CM2Mc) assessment over space and time

We assess the North Atlantic (0-65◦N) inorganic carbon partition inventories in the

CM2Mc outputs between 1860 and 2100 to study their trends and variabilities over

space and time. As a first step, we replicate the GLODAPv2 analysis, discussed in

the previous thesis section, using Eqs 2.12-2.15 and outputs of a CM2Mc industrial

run in 2002, the climatological reference year. This enables us to investigate the

degree to which CM2Mc replicates the observed carbon distributions. Then, we

explore anomalies of North Atlantic carbon partitions, as anticipated in section 4.3.

Overall, the CM2Mc ESM broadly matches the climatological data, with differences

summarised in Tab 4.6. These discrepancies are however discussed only for Ccarb,

which shows the greatest disagreement due to the simulated alkalinity, comparably
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higher in the model outputs and in the climatological data. Having proved that the

simulated partitions track the observations (excluding Ccarb), we use ‘climate’ and

‘industrial’ CM2Mc outputs to quantify North Atlantic full-column inventories of

Ctot, C0
sat, Csoft, Ccarb, and Cdis. These values are averaged between 1880-1900 (past),

1980-2000 (present), and 2080-2100 (future), and shown in Figs 4.10 and 4.11. From

each carbon integral, we remove the estimate obtained using pre-industrial control

CM2Mc outputs, isolating the anthropogenic and climate anomalies in the total

(anthropogenic and natural) carbon and natural carbon alone.

In the industrial simulation (Fig 4.10), all of the studied partitions increase from

pre-industrial times, except for C0
sat, also varying with space due to potential changes

in circulation over time. The Ctot increase, on this occasion equal to Cant, is 0.6 PgC

yr−1 (value comparable to the observed 0.8 ± 0.6 PgC yr−1).

The simulated Ctot increase is driven by increases in anthropogenic carbon dioxide

in the atmosphere that force negative air-to-sea CO2 fluxes (Fig 1.4). However,

the Ctot increase is in opposition to the influence of the Cdis weakening (tendency

towards air-sea CO2 equilibrium), which drives the Ctot cycle towards saturation

and hence decreases the potential for additional Cant uptake. In pre-industrial times

(1880-1900), the modelled δtCdis matches the Csoft and Ccarb anomalies, suggesting a

predominance of the biological CO2 uptake over the physical counterpart. Between

1980 and 2000, anthropogenic influences emerge, with δtCdis being comparable to

δtCtot. This comparability maintains in the following interval of time (2080-2100),

when the atmospheric CO2 increases and circulation changes further modify Cdis.

Concurrently, the C0
sat anomaly decreases throughout the simulation owing to a

strengthening in the ocean stratification, in agreement with the study of Bernardello

et al. (2014a) and our observational assessments of section 4.2.8.

In the climate simulation (Fig 4.11), where the direct Cant uptake is not modelled,

Csoft and Ccarb maintain the anomalies of the CM2Mc industrial study: these runs

have the same physics and, by definition, any change in the CM2Mc regenerated

carbon can occur only through changes in the ocean circulation. This is potentially

a major limitation of our study because a decrease in the Mixed Layer Depth (MLD)

due to climate change influences the biological carbon pump (Smith and Marotzke,
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2008). Such changes might be a direct response to increasing CO2 levels for example,

which would not be captured by the model. However, we will demonstrate in section

5.3 that North Atlantic subtropical Csoft variations are not always correlated to

changes in the MLD. The simulated C0
sat and Ctot climate anomalies decrease in

time. This is due to the increase in the ocean stratification as well as reductions in

CO2 solubility not compensated for by the ∆pCO2 increase and Cdis strengthening.

To sum up, CM2Mc outputs allow us to investigate the carbon partitions interplay

in the North Atlantic basin between 1860 and 2100. Snapshots of potential climate

change and CO2 uptake weakening, highlighted in the observations (section 4.2.8),

are confirmed by the model and enhanced in the future projections. However, the

CM2Mc simulates compensatory effects of increasing ∆pCO2 at the surface and Csoft

in the twilight zone, overall leading to a continuous CO2 uptake and Ctot increase.

4.4 Synthesis and discussion

We investigate the carbon partitions interplay within the North Atlantic CO2 uptake

and storage. In the 24.5◦N upper 1000 m, we quantify an averaged Ctot rise of 1.0

± 0.1 µmol kg−1 yr−1 from 1992 to 2010. Cant predominantly influences this Ctot

trend, increasing by between 0.5 ± 0.2 µmol kg−1 yr−1 and 0.8 ± 0.2 µmol kg−1 yr−1

using the TTD and ∆C* techniques, respectively. Other contributions may be due

to changes in Cdis, C0
sat, or Csoft. The Cdis trend shows a weakening in this partition

barely distinguishable from the quasi Monte Carlo (MC) uncertainty. C0
sat decreases

over time, reducing Ctot. Csoft may be responsible for the unaccounted Ctot increase.

We estimate the partition variability as difference between cruise-mean changes and

MC trend estimates. Apart for localised changes in Cdis, the Csoft variability is the

only one that is significant. Its values are positive in 2004 and negative in 2010,

suggesting a change in residence time, pH, or productivity, each of which will be

deepened in the next chapter.

We enlarge the study of the partitions interplay to the CM2Mc ESM between 1860

and 2100 after comparing the ESM outputs to GLODAPv2 climatological data and

finding a broad match. We use the CM2Mc outputs to quantify anomalies of North
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Atlantic carbon partitions from 1860 to 2100. Differences between the ‘industrial’

and background ‘control’ data show an increase in the Csoft and Ccarb anomalies

over the studied time interval. This result is confirmed by differences between the

‘climate’ and same background ‘control’ data, suggesting an influence of changes in

the oceanic physics on the remineralised carbon partitions that will be explored in

the next chapter.



Chapter 5

Time-varying influences on Cant of

carbon remineralisation

5.1 Introduction

We continue to investigate discrepancies of Cant Decadal Trends (DTs) at 24.5◦N

in the Atlantic from 1992 to 2010 by comparing the TTD, DEC, ∆C*, and eMLR

estimates. In chapter 3 and section 4.2.4, the discrepancies among Cant calculations

were studied exploring analytical and methodological uncertainties. In this chapter,

we study the influences on the divergence between Cant DTs by temporal changes

(noted as δt) in disequilibrium (Cdis), soft-tissue (Csoft), and pre-industrial saturated

(C0
sat) carbon partitions, and in pH, focusing on the mechanisms that control them.

As an initial step, in section 5.2 we summarise the findings of section 4.2.4 plotting

differences in Cant cruise-means since 1992 and DTs in the upper four water masses

of the 24.5◦N Atlantic section (Subtropical Mode Water (STMoW), Madeira MoW

(MMoW), Subpolar MoW (SPMoW), Antarctic Intermediate Water (AAIW)). We

separate the carbon (∆C* and eMLR) and tracer (TTD and DEC) based methods,

highlighting significant divergences in the estimates obtained with these techniques

and exploring associated potential causes. We investigate differences in the method

inclusions of Cdis temporal changes, as comparably done in section 3.3, and of the

δtCsoft observed from 1992 to 2010 at 24.5◦N in the Atlantic.

138
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In section 5.3, we explore further the unexpected δtCsoft by investigating changes

in Apparent Oxygen Utilisation (AOU), saturated (Osat
2 ), gasex (O∗

2), and no-gasex

(Ongas
2 ) dissolved oxygen estimates. We hypothesise that increases in mean residence

time, productivity, or solubility, or decreases in wind stress curl or pH could have

caused them. So, we correlate the δtCsoft with variations in TTD mean ages, water

volumes, and pH, which are based on observations made in the upper 1000 m of the

24.5◦N hydrographic main section (78-16◦W).

Following in section 5.3, we turn to a climate model in order to draw more robust

conclusions. We use the outputs of a two millennia-long pre-industrial ‘control’ run of

the Climate Model to Model coordinate (CM2Mc) Earth System Model (ESM). We

investigate influences on subtropical Csoft of the meridional and barotropic stream

functions, phosphate remineralisation rate, mixed layer depth, wind stress, water

mass mean age, and pH variations over time. To avoid influences of the model drift

and long-term trends on the processes investigated, we de-trend each signal removing

least squares fitted regressions and approximating it by using discrete Meyer wavelet

transforms. We test the Csoft approximation based on AOU (Eq 4.9) in section 5.4.

5.2 Partition influences on Cant discrepancies

5.2.1 Overview and approach

Cant increases from 1992 to 2010 in the subtropical North Atlantic upper 1000 m,

but its values depend on the technique used for the estimate. In section 4.2.4, we

linked the differences to analytical and methodological uncertainties, investigating

subareas of the 24.5◦N Atlantic transect. Here, we explore the influences of δtC
0
sat,

δtCsoft, and δtCdis on δtCant, and the mechanisms that underlie these changes in the

upper 1000 m of the 24.5◦N main section (78-16◦W).

We present four Cant method estimates, dividing them into two groups: the DEC and

TTD (tracer-based methods) include the CO2 uptake carried by the physical carbon

pump only using transient tracers; the ∆C* and eMLR (carbon-based methods)

separate a biogenic CO2 uptake using AOU, Redfield ratios, and linear regressions,
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therefore including more than the physical pump effect.

For each method, we estimate the Cant increases since 1992 in the upper four water

masses (STMoW, MMoW, SPMoW, AAIW) of the 24.5◦N section, the uncertainty

of Cant DTs based on a quasi Monte Carlo (MC) approach (Kroese et al., 2014;

Metropolis and Ulam, 1949), which uses random values in the range of determined

Cant (details are given in section 4.2.3), and we force the DT least-square fitted lines

to start at zero in 1992 in Fig 5.1, in line with Figs 4.3-4.6.

Results are presented in Fig 5.1, where we plot the Cant increases since 1992 and

DTs for each of the water masses investigated. Cant increases everywhere over time,

as expected from the increasing atmospheric CO2. However, we observe differences

amongst the Cant inferred with different methods and increases of these discrepancies

over time, as it will be now briefly summarised.

In the STMoW, the carbon-based Cant DTs are lower than the tracer-based trends.

Elsewhere in the 24.5◦N upper 1000 m, carbon-based Cant DTs are higher than the

tracer-based counterparts. ∆C* and TTD confine the probable range of Cant trends,

as Iudicone et al. (2016) suggested. The eMLR and DEC DTs lie between the ∆C*

and TTD ones, supporting this suggestion: we explore further the discrepancies over

time between the ∆C* and TTD estimates only, in line with chapter 3 and section

4.2.4 of this thesis. We will investigate the δtCsoft, δtC
0
sat, and δtCdis influences on

the δtCant estimated by using the ∆C* and TTD methods, analysing the underlying

mechanisms and giving a new insight to the study of the divergence between Cant

estimates. δtCtot is assumed to be equally captured by the Cant methods (Eq 5.4),

while δtCcarb is negligible in the 24.5◦N upper ocean.

5.2.2 Time-varying carbon partition influences

The estimated ∆C* and TTD Cant increases diverge between 1992 and 2010 in the

24.5◦N upper 1000 m, with Cant DTs estimated, in this study, as 0.8 ± 0.2 µmol

kg−1 yr−1 and 0.5 ± 0.2 µmol kg−1 yr−1 (Tab 4.2), and, by Guallart et al. (2015b),

as 0.9 ± 0.2 µmol kg−1 yr−1 and 0.6 ± 0.2 µmol kg−1 yr−1.
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Figure 5.1: Anthropogenic carbon (Cant) Decadal Trends (DTs) and cruise-
mean increases since 1992 (δtCant) estimated in the upper four water masses
((a) Subtropical (STMoW), (b) Madeira (MMoW), (c) Subpolar (SPMoW) Mode
Water (MoW), and (d) Antarctic Intermediate Water (AAIW)) of the 24.5◦N
main section (78-16◦W) from 1992 to 2010. The TTD (continuous blue lines,
dots), DEC (dashed blue lines, crosses), eMLR (dashed orange lines, crosses),
and ∆C* (continuous orange lines, dots) increases were determined using absolute
Cant values and are plotted by forcing the 1992 estimates through zero. The DTs
are quantified fitting least-square linear models through Cant increases over time,
within the quasi Monte Carlo (MC) approach (section 4.2.3) and then forcing their
starting point through zero in 1992. Uncertainties were inferred using a second

MC approach and reported in the panels, but are too small to be visible.

We hypothesise that the Cant divergence may be investigated using the Williams and

Follows (2011) carbon partitioning because the TTD and ∆C* may capture carbon

partition changes over time differently. We test our hypothesis comparing the ∆C*

and TTD inclusions of those partitions in Eqs 5.1 and 5.2 and then calculating the

differences of their temporal changes in Eq 5.3. In those equations, the ∆C* C0
sat,

Csoft, and Cant are estimated by using Eqs 2.1-2.3. The TTD Cant is estimated using

Eq 2.10, the TTD C0
sat is approximated using the carbon partition (δtC

0
sat, Eq 4.8)

estimated as by Williams and Follows (2011), and the CTTD
soft and CTTD

carb are zero.

The TTD δtCdis cannot be quantified directly, being indirectly based on transient

tracer saturation estimates (section 2.3.3). Therefore, we avoid the ∆C* Cdis (section

2.3.1) use and we estimate the difference between δtC
∆C∗
dis and δtC

TTD
dis using Eq 5.3.

Here, we include every Ctot partition as potential source of Cant divergence, but we

investigate C0
sat, Csoft, and Cdis only. Ctot is assumed to be equally captured by the
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TTD and ∆C* techniques (Eq 5.4) and Ccarb is negligible in the region investigated.

Results are based on the 24.5◦N data from 1992 to 2010, presented in Tab 5.1, and

discussed hereafter.

C∆C∗
ant = C∆C∗

tot − (C0 ∆C∗
sat + C∆C∗

soft + C∆C∗
carb + C∆C∗

dis ) (5.1)

CTTD
ant = CTTD

tot − (C0TTD
sat + CTTD

soft + CTTD
carb + CTTD

dis ) (5.2)

(δtC
∆C∗
ant − δtC

TTD
ant ) = (δtC

∆C∗
tot − δtC

TTD
tot ) − (δtC

0 ∆C∗
sat − δtC

0TTD
sat ) −

(δtC
∆C∗
soft − δtC

TTD
soft ) − (δtC

∆C∗
carb − δtC

TTD
carb ) − (δtC

∆C∗
dis − δtC

TTD
dis ) (5.3)

δtC
∆C∗
tot − δtC

TTD
tot = 0 (5.4)

Estimates of δtC
0 ∆C∗
sat (equals to equilibrium carbon changes (δtCeq), section 2.3.1)

and δtC
0
sat (here used as a proxy for δtC

0 TTD
sat ) are related, both approximating the

DIC differences that a layer would have when in CO2 equilibrium with the overlying

atmosphere. δtC
0
sat decreases by 0.3 ± 0.1 µmol kg−1 yr−1 (Tab 4.5), suggesting

that δtC
0 ∆C∗
sat decreases three times faster in the upper ocean (0-1000 m) taken as a

whole, being the difference equals to 0.6 ± 0.1 µmol kg−1 yr−1 (Tab 5.1). The δtC
0
sat

inclusion may be one of the main sources of Cant divergence. C0 ∆C∗
sat is based on linear

regressions defined in the upper 100 m and a confined time period (Gruber et al.,

1996). So, uncertainties may emerge at greater depth or different intervals. Instead,

C0
sat is calculated using co2sys (Eq 4.8; Lewis and Wallace (1998); Van Heuven et al.

(2011)), thus constraining the ocean CO2 saturation differently.

The ∆C* and TTD techniques differ also in the inclusion of δtCdis, as suggested in

sections 3.3 and 4.2.5. The ∆C* includes influences from the physical and biological

CO2 uptakes, while the TTD isolates the physical carbon pump, estimating a weaker

δtCdis. Additionally, the results of Tab 4.3 indicate that the TTD Cdis weakens over

time faster than the ∆C* counterpart. However, the ∆C* and TTD methods could
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Table 5.1: Table summarising discrepancies in carbon partition changes over
time (δt) between the ∆C* and TTD estimates in the upper ocean water masses
and top 1000 m of the 24.5◦N main transect between 1992 and 2010. Listed
carbon partitions are the anthropogenic (Cant), pre-industrial saturated (C0

sat),
soft-tissue (Csoft), carbonate (Ccarb), and disequilibrium (Cdis). The discrepancies
in δtCdis are inferred indirectly using Eq 5.3, and we use the C0

sat estimated as
by Williams and Follows (2011) to approximate C0 TTD

sat . We highlight in bold the
highest difference for each carbon partition, also noting that the δtCant and δtCdis

differences in the top 1000 m are different from the water mass means owing to
simplifications in section 4.2.4. The quasi Monte Carlo (MC) uncertainties used

in this thesis for each carbon partition are summarised in Tab 4.1.

Layers STMoW MMoW SPMoW AAIW 1000 m

Units µmol−1 kg−1 yr−1

δtC
∆C∗
ant - δtC

TTD
ant -0.1 +0.5 +0.3 +0.3 +0.3

δtC
0 ∆C∗
sat - δtC

0 TTD
sat 0.0 +0.6 +0.6 -1.0 +0.6

δtC
∆C∗
soft - δtC

TTD
soft +0.2 +0.1 +0.6 +0.3 +0.3

δtC
∆C∗
carb - δtC

TTD
carb ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0

δtC
∆C∗
dis - δtC

TTD
dis -0.3 -0.2 -0.9 +1.0 -0.6

carry an uncertainty on δtCdis estimates due to the use of regression models and the

tracer saturation estimates, respectively. We calculate the overall influence of Cdis

discrepancies on the δtCant divergence indirectly using Eq 5.3.

We estimate insignificant discrepancies between δtC
∆C∗
dis and δtC

TTD
dis in the STMoW

and MMoW. Conversely, the estimates of SPMoW and AAIW δtCdis divergences are

-0.9 ± 0.3 µmol kg−1 yr−1 and 1.0 ± 0.3 µmol kg−1 yr−1 (see Tab 4.1 for details

on the uncertainty). Taken as absolute values, the estimates compare to the section

3.3 results, where we estimated divergences of up to -0.7 µatm yr−1 between the

∆C* and TTD δtpCO2ant in the same water masses and interval of time, which

correspond to δtCdis differences of -0.4 ± 0.3 µmol kg−1 yr−1 under that analysis

assumptions. Additional comparisons could have resulted from the study in section

4.2.5, but none of the estimated δtCdis differences were significant in that occasion.

Potential differences in the δtCdis estimates emerge from the uncertainty only under

the assumption that those values are responsible for all of the unaccountable δtCant

divergence, which is used in sections 3.3, implicitly in the current section analysis,
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but it was not adopted in section 4.2.5. So, changes in δtC
0
sat and δtCdis significantly

influence the δtCant divergence in the 24.5◦N upper 1000 m from 1992 to 2010.

However, this influence is not exhaustive as changes in the biological carbon pump

may also influence the observed divergence between the TTD and ∆C* δtCant. So,

we investigate potential differences on the method inclusions of changes over time in

the biogenic CO2 uptake. The ∆C* method includes a biological carbon partition

(Cbio, section 2.3.1) that is, in this occasion, comparable to Csoft, with Ccarb being

negligible in the 24.5◦N upper 1000 m (section 4.2.6). The TTD isolates the physical

pump uptake, with negligible biogenic influences. So, the estimated positive δtCsoft

(and δtC
∆C∗
soft ) decreases the δtC

∆C∗
ant but alters the δtC

TTD
ant insignificantly.

In summary, discrepancies in the TTD and ∆C∗ inclusions of the δtC
0
sat and δtCdis

strengthen the δtC
∆C∗
ant with respect to the δtC

TTD
ant in the upper 1000 m of the 24.5◦N

main transect from 1992 to 2010. These discrepancies are partially compensated by

a positive δtCbio. This biological carbon variation is negligible in the TTD Cant but is

included by the ∆C* technique, where decreases the estimated δtC
∆C∗
ant . Changes in

the biogenic CO2 pump, estimated by the δtCsoft, are also unexpected, with causes,

mechanisms, and consequences discussed in the next sections.

5.3 Time-increasing remineralised soft tissue

We investigate potential causes and their effects on the unexpected Csoft increase

estimated in the 24.5◦N upper 1000 m from 1992 to 2010. As causes, we explore

changes in circulation, solubility, productivity, wind stress curl, and/or acidification.

Effects are investigated in observations and outputs of the CM2Mc ESM. Among the

last, we use only the data from a pre-industrial ‘control’ simulation to investigate the

processes without the climate change effects (e.g. human-caused changes in surface

temperature and atmospheric CO2). Model biases were studied in section 4.3.2 and

considered negligible for all carbon partitions, with the exception of Ccarb.
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5.3.1 Effects on subtropical North Atlantic Csoft variations

Csoft increases in the 24.5◦N upper 1000 m from 1992 to 2010. This increase is linked

to a decrease in the measured oxygen, an increase in the saturated component (Osat
2 ),

and hence a positive δtAOU (Eq 4.10), as Stendardo and Gruber (2012) also showed

in the North Atlantic basin.

Several processes may have caused these patterns, influencing the biological carbon

pump, which is a key component of the oceanic subtropical systems (Doney, 1997;

Emerson et al., 1997). We investigate the most influential processes, schematising

them in Fig 5.2 as circulation, productivity, acidification, and wind stress influences.

These processes interact (e.g. circulation and wind stress influence the O2 solubility)

and could be all influenced by changes in ocean temperature, which is then not

assessed singularly. For the present study, the variations on these four processes are

reported as changes in the meridional stream function, mixed layer depth chlorophyll,

upper-ocean pH, and wind velocity in the subtropical North Atlantic from 2004 to

2015 in Fig 5.3. These changes suggest increases in Csoft, as it will be investigated.

Circulation effect. Changes in meridional mass transport can modify the velocities

across the 24.5◦N transect, altering the residence time of a seawater parcel. If the

region stores great concentrations of remineralised DIC, increased residence times

cause the parcel to accumulate Csoft with respect to its mean (Parekh et al., 2006).

Productivity effect. Changes in productivity above 200 m are positively correlated

to the amount of Dissolved (DOC) and Particulate (POC) Organic Carbon exported

and remineralised at depth, causing variations in Csoft in the so-called twilight zone,

which extends from 200 m to 1000 m, and potentially below (Parekh et al., 2006). In

this thesis, we do not investigate changes over space and time of the North Atlantic

ratio between primary production and exported organic carbon, but we use CM2Mc

outputs of Phosphate Remineralisation Rate (PRR). The PRR tackles more directly

the Csoft (Eq 2.12) accumulation in the 24.5◦N twilight zone, including also potential

changes in this carbon partition that happen northern than the studied section and

are propagated advectively by the ocean circulation.
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Figure 5.2: Overview of the influences (+ when increases, - when decreases,
and +/- when the influence depends on other variables (e.g. primary producer
species)) on Csoft of the physical (light blue) and biological (green) carbon pumps
(Godbold and Calosi, 2013; Riebesell et al., 2009). This schematic is not
exhaustive, but includes processes and associated consequences discussed in this
thesis chapter. Listed variables are the soft-tissue carbon (Csoft), carbonate
ion (CO2−

3 ), bicarbonate ion (HCO−
3 ), aqueous carbon dioxide (CO2, section

1.3), Dissolved (DOC) and Particulate (POC) Organic Carbon. The scheme
corners isolate effects of changes in circulation (bottom right), wind stress (bottom
left), productivity (upper left), and acidification (upper right). The arrow sizes

approximate the contribution to δCsoft of the investigated processes.

Acidification effect. Changes in CO2 uptake modify pH progressively, causing

potential variations in the inorganic carbon species (CO2, HCO−
3 , and CO2−

3 ) and

shifts of the system towards an aqueous CO2 predominance (Pedersen et al., 2013).

This modifies the carbonate saturation state and amount of remineralisable carbon

(Doney et al., 2009), varies the composition of the primary producers (Godbold and

Calosi, 2013) and alters the efficiency of remineralisation (Kroeker et al., 2013).

Wind stress effect. Wind stress changes can modify the vertical mixing, column

stratification, circulation, associated mean age and residence time, overall leading to

variations in Csoft (Marinov et al., 2008). Changes in gyre circulation and wind driven

coastal upwelling may also alter the nutrients and O2 supplies to the euphotic zone,
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the surface productivity, and the resulting accumulation of Csoft at depth. Brandt

et al. (2015) reported reductions of approximately a third in the subtropical North

Atlantic O2 caused by a mixing weakening in regions of coastal upwelling.

Solubility effect. The O2 concentration (and so AOU and Csoft) is also influenced

by changes in solubility (Stendardo and Gruber, 2012). This parameter is sensitive

to changes in temperature, potentially caused by climate change, which may reduce

the amount of O2 sequestered by the ocean and potential for further uptake (Osat
2 ).

Alterations in the wind stress curl could however increase the O2 solubility, rendering

it difficult to separate the influences of those processes.

5.3.2 Circulation, solubility, and productivity effects on Csoft

The five processes hypothesised in the previous section are strongly interconnected.

However, we consider only circulation, solubility, and productivity effects on Csoft in

this section due to the methodology chosen. Effects of wind stress and acidification

on the upper-ocean soft-tissue are discussed in sections 5.3.3 and 5.3.4, respectively.

We investigate the influence of changes in meridional mass transport, O2 solubility,

and primary productivity on the δtAOU, which is the independent variable in the

δtCsoft estimate (Eq 4.9). These can be investigated by assessing separately Osat
2 and

O2, from which AOU is calculated (Eq 4.10; Pytkowicz (1971)). Osat
2 is a function of

temperature and salinity measurements, thus accounting for solubility changes, in

agreement with C0
sat. O2 is also influenced by changes in solubility, but this effect can

be removed by difference with the Osat
2 study. Doing so, we estimate the combined

influence on AOU of variations in circulation and remineralisation.

Alternatively, we could investigate changes into a gas exchange (gasex) O2 (O∗
2, Eq

5.5; Gruber et al. (2001)) and a no-gasex O2 (Ongas
2 , Eq 5.6; Stendardo and Gruber

(2012)). Temporal changes in O∗
2 reflect O2 gains and losses in the mixed layer depth

regardless of the causal processes. δtO
ngas
2 approximates changes in the ocean interior

O2, being then primarily influenced by variations in circulation and remineralisation.

O2 = O∗
2 + Ongas

2 (5.5)
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Ongas
2 = −RRO:P (PO4 − POpre

4 ) (5.6)

where RRO:P is the Redfield ratio between O2 and PO4 (Redfield, 1934). The method

can be applied in the North Atlantic, as successfully done by Gruber et al. (2001),

but it may be challenging elsewhere due to the POpre
4 estimate.

We show temporal changes of cruise-mean AOU, Osat
2 , O∗

2, and Ongas
2 in Tab 5.2.

Here, we study the 24.5◦N STMoW, MMoW, SPMoW, AAIW, and upper-ocean

(0-1000 m) layer for four time intervals: 1992-1998, 1998-2004, 2004-2010, and 1992-

2010. We estimate the uncertainties that are due to the observed variability by using

a quasi MC approach (Kroese et al., 2014; Metropolis and Ulam, 1949).

Between 1992 and 2010, AOU increases in the 24.5◦N upper 1000 m by 5.9 ± 1.3

µmol kg−1. The majority of this increase is caused by an Ongas
2 decrease, while Osat

2

changes by 0.2 ± 0.002 µmol kg−1 and O∗
2 varies insignificantly: a change in the O2

biological consumption over time seems to be the main cause of our findings.

At a smaller spatial scale, seasonality and non-conservativeness may influence the

STMoW δtAOU, requiring care on its analysis. Even so, we note changes over time

in the STMoW δtO
∗
2, the variations of which roughly halve after 2004. This suggests

an O2 loss, but the most influential cause is not directly identifiable. The gradual

strengthening in the δtO
sat
2 suggests that changes in the O2 saturation of the studied

water mass are also influential on the STMoW δtAOU. This result agrees with the

variations estimated between 1992 and 2010. Changes in δtO
ngas
2 are not significant.

In the MMoW, we quantify a significant increment in time in all of the investigated

O2 from 2004 to 2010, which is a time interval characterised by a slow-down in

the AMOC (Smeed et al., 2014): the observed AOU increase may have been due

to a circulation weakening, which is the only causal effect that influences all of

the investigated variables. The result agrees with the longer time interval analysis:

between 1992 and 2010 Osat
2 and Ongas

2 changes are predominant, while O∗
2 varies

within the associated uncertainty.

In the SPMoW, the investigated variables vary within the uncertainty from 2004 to

2010. However, Ongas
2 and Osat

2 increase between 1998 and 2004, suggesting a shift

over time with respect to the MMoW. Between 1992 and 2010, a change in Ongas
2
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Table 5.2: Table summarising differences over time (δt) in Apparent Oxygen
Utilisation (AOU, Eq 4.10), saturated (Osat

2 ), gasex (O∗
2), and no-gasex (Ongas

2 )
dissolved oxygen in the upper water masses (Subtropical Mode Water (STMoW),
Madeira MoW (MMoW), Subpolar MoW (SPMoW), and Antarctic Intermediate
Water (AAIW)) and top 1000 m of the 24.5◦N Atlantic main section (78-16◦W).
Changes over time in the listed O2 approximate the effects on AOU of solubility,
gas exchanges, and ocean interior variations, respectively. All estimates are
reported in µmol kg−1, with the uncertainties listed in the last column. We

highlight in bold the greatest variations over time that exceed the uncertainty.

STMoW 1992-1998 1998-2004 2004-2010 1992-2010 Uncertainty

AOU +9.5 -10.3 +10.0 +9.2 ± 1.3

Osat
2 -3.5 +4.8 -6.1 -4.7 ± 0.002

O∗
2 +3.5 -3.6 +1.7 +1.7 ± 1.4

Ongas
2 -2.5 +1.9 -2.2 -2.8 ± 2.7

MMoW 1992-1998 1998-2004 2004-2010 1992-2010 Uncertainty

AOU -1.7 +1.4 +4.6 +4.3 ± 1.3

Osat
2 -2.7 -0.1 +5.1 +2.3 ± 0.002

O∗
2 -0.5 -1.3 +2.5 +0.7 ± 1.4

Ongas
2 +3.9 -2.6 -7.2 -5.9 ± 2.7

SPMoW 1992-1998 1998-2004 2004-2010 1992-2010 Uncertainty

AOU +3.8 +7.4 +1.9 +13.1 ± 1.3

Osat
2 +1.1 +5.6 -2.1 +4.5 ± 0.002

O∗
2 0.0 +1.9 -0.1 +1.7 ± 1.4

Ongas
2 -4.9 -11.1 +0.1 -15.9 ± 2.7

AAIW 1992-1998 1998-2004 2004-2010 1992-2010 Uncertainty

AOU -8.4 -1.2 +6.2 -3.4 ± 1.3

Osat
2 +5.0 +1.1 -7.2 -1.1 ± 0.002

O∗
2 +1.7 +1.7 -2.7 +0.7 ± 1.4

Ongas
2 +5.1 +1.8 -1.7 +5.2 ± 2.7

1000 m 1992-1998 1998-2004 2004-2010 1992-2010 Uncertainty

AOU +0.8 -0.6 +5.7 +5.9 ± 1.3

Osat
2 0.0 +2.8 -2.6 +0.2 ± 0.002

O∗
2 +1.2 -0.3 +0.4 +1.2 ± 1.4

Ongas
2 +0.4 -2.5 -2.7 -4.9 ± 2.7
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is the main forcing of AOU variations, suggesting that changes in remineralisation

and circulation were more influential than solubility effects in that interval of time.

The concurrent positive δtO
sat
2 identifies the circulation variability as predominant.

In the AAIW, changes in δtAOU are also predominantly influenced by changes in

O2 solubility. This agrees with Lauderdale et al. (2013) and Matear et al. (2000).

The assessment of temporal changes in Osat
2 , O∗

2, and Ongas
2 is a powerful approach

to investigate influences on δtAOU and δtCsoft of changes in solubility, circulation,

and remineralisation. However, this approach is treated as preliminary under the

circumstances used in this thesis. Any O2 trend or variation that span for less than

three decades may be affected by North Atlantic Oscillations (NAO) or other sources

of long-term variability (Stendardo and Gruber, 2012), but it cannot be detected.

Changes in the TTD age. To streamline the effect of changes in circulation, we

compare Csoft and TTD age cruise means in the STMoW, MMoW, SPMoW, and

AAIW of the 24.5◦N main transect between 1992 and 2010 (Fig 5.4).

In the STMoW, estimates of TTD mean ages and Csoft are not correlated. The last

significantly varies in time, but its oscillating pattern is likely to be due to seasonality,

being the data collected alternatively in late and in early spring (Cunningham et al.,

2005; King et al., 2012; Millero et al., 2000; Peltola et al., 2001).

In the MMoW, the age and Csoft are not correlated. The squared Pearson’s coefficient

is 0.56 but p = 0.25 owing to the low amount of observations. From 1998 to 2004,

we see an anomalous age increase, but the Csoft is not different from the 1998 mean

value. From 1992 to 2010, the age and Csoft increase significantly, potentially owing

to the mentioned circulation slow-down in 2010 (Bryden et al., 2014).

In the SPMoW, the TTD mean age and Csoft are correlated (R2 = 0.80), although

p = 0.10 owing to the limited number of observations. The water mass mean age

and the remineralised soft tissue increase in the studied time interval.

In the AAIW, the TTD mean age and Csoft do not correlate, with R2 being 0.54 and

p = 0.27 owing to the limited number of observations.

In summary, Csoft increases in the 24.5◦N twilight zone (200-1000 m) from 1992 to

2010, with a peak in 2004. This suggests a decrease in ventilation but we cannot
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Figure 5.4: Soft-tissue carbon partition (Csoft) versus TTD mean age in the
(a) Subtropical (STMoW), (b) Madeira (MMoW), (c) Subpolar (SPMoW) Mode
Water (MoW), and (d) Antarctic Intermediate Water (AAIW). Variables are
quantified at the 24.5◦N main section (78-16◦W) and reported in 1992 (black),
1998 (purple), 2004 (blue), and 2010 (orange). Uncertainties are quantified using
a quasi Monte Carlo (MC) technique (Kroese et al., 2014; Metropolis and Ulam,
1949) and result as ±1.3 µmol kg−1 and ±1.2 yr for the Csoft and TTD age,
respectively. R2 and the p values are reported to evaluate the reliability of the

investigated correlations.

quantify potential influences of primary productivity, wind stress curl, acidification,

or solubility changes using the TTD mean age only.

5.3.3 Wind stress curl effect on Csoft

In the previous section, we explored correlations between TTD mean age and Csoft

to assess the ventilation effect on Csoft in the subtropical North Atlantic.

However, TTD mean age and Csoft could correlate owing to an external forcing that

influences both estimates. For instance, a weakening in wind stress curl would cause

a decrease in mixing, which increases subsurface water mass volumes and reduces

ages and Csoft. To account for this process, we study correlations between the cruise-

mean TTD age, Csoft, and volume in the 24.5◦N STMoW, MMoW, SPMoW, and

AAIW between 1992 and 2010 (Figs 5.5 and 5.6). The STMoW (or surface layer)

is defined as the seawater volume above 200 m (section 1.4.3), hence has a constant

volume and no correlation with Csoft or TTD age (Figs 5.5a, 5.6a).



Chapter 5. Time-varying influences on Cant of carbon remineralisation 153

Figure 5.5: Same as in Fig 5.4, but for the water mass ages and volumes. The
last values are calculated by using a N-S dimension of one degree and the water
mass area along the 24.5◦N main transect (78-16◦W). The STMoW volumes do
not vary over time, with the water mass being defined on the fixed isodepth of 200

m, but they are included for completeness.

Figure 5.6: Same as in Fig 5.5, but for the water mass Csoft and volumes.

In the MMoW, a third of the TTD mean age rise (R2 = 0.31, Fig 5.5b) seems to be

influenced by the water volume increase, but the associated p value invalidates this

hypothesis, whilst changes in the water mass volume do not influence Csoft between

1992 and 2010, being R2 lower than 0.05 and p = 0.97 (Fig 5.6b).

In line with the MMoW, the increasing SPMoW volumes do not influence the water

mass TTD age and Csoft. The AAIW analyses also agree with the MoW above it.
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We evidence anomalous changes in the water mass volumes of the 24.5◦N twilight

zone in 2004 and 2010. However, neither the TTD mean ages nor Csoft estimates are

affected by them, thus excluding the hypothesised wind stress curl or the consequent

mixing influences on the unexpected Csoft increase.

5.3.4 Acidification effect on Csoft

In the previous thesis sections, we explored the influence of changes in circulation,

solubility, wind stress curl, and remineralisation on the upper ocean Csoft, implicitly

assuming negligible impacts of variations in pH. This assumption was necessary to

isolate other mechanisms causing δtCsoft, but it is unrealistic when we consider that

the pH decreases by 0.002 pH units yr−1 from 2004 to 2015 in the subtropical North

Atlantic (Fig 5.3), as also shown by Guallart et al. (2015a) between 1992 and 2011.

We explore potential links between changes in pH and Csoft in the subtropical North

Atlantic upper ocean between 1992 and 2010. In section 3.4.3, we separated the pH

into an anthropogenic (pHant) and natural (pHnat) components by using the method

of Woosley et al. (2016) and estimated the uncertainties using a quasi MC approach

(Kroese et al., 2014; Metropolis and Ulam, 1949). Here, we explore the interactions

between pHant, pHnat and Csoft estimates, focusing on the mechanisms that modify

their values and on the consequences for the ocean CO2 cycle.

We investigate correlations between cruise-mean estimates in the 24.5◦N STMoW,

MMoW, SPMoW, and AAIW. Here, we estimate the pHant and pHnat using the ∆C*

and TTD methods as in the study of section 3.4.3. Results are presented in Fig 5.7,

while the squared Pearson’s coefficients (R2) and p values associated to the panel

x-y correlations of this figure are presented in Tab 5.3.

Overall, temporal changes in natural and anthropogenic pH components correlate

to changes in the 24.5◦N Csoft below the STMoW, which is expected as all of the

investigated components participate in the carbon cycle. In the STMoW, however,

we calculate insignificant correlations, most probably due to seasonal effects on Csoft.

Comparing the results of the TTD and ∆C∗ methods below the STMoW, changes

in the latter estimates are more strongly correlated to the Csoft increases than the
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Table 5.3: Table summarising squared Pearson’s coefficients (R2) and p values of
correlations among subtropical North Atlantic soft-tissue carbon (Csoft), natural,
and anthropogenic pH estimates (see also Fig 5.7). The pH estimates are
obtained by using the TTD and ∆C* approaches, as also shown in Fig 5.7 and
discussed in the main text. Data reported for the four upper ocean water masses:
Subtropical (ST), Madeira (M), Subpolar (SP) Mode Water (MoW), and Antarctic

Intermediate Water (AAIW).

Anthropogenic pH (pHant) Natural pH (pHnat)

TTD analyses ∆C* analyses TTD analyses ∆C* analyses

Water mass R2 p value R2 p value R2 p value R2 p value

STMoW 0.16 0.60 0.07 0.74 0.09 0.67 0.31 0.44

MMoW 0.79 0.11 0.68 0.18 0.88 0.02 0.89 0.06

SPMoW 0.92 0.04 0.96 0.02 0.92 0.04 0.96 0.02

AAIW 0.72 0.15 0.81 0.10 0.84 0.08 0.18 0.44

TTD results. This is due to the partial inclusion in the ∆C∗ of O2 changes, which

are tightly linked to acidification (Guallart et al., 2015a).

In summary, differences in the inclusion of biogeochemical temporal changes lead

to disagreements between pHant and pHnat estimated by the TTD and ∆C*. This

discrepancy influences the study of the correlations among pH components and Csoft,

resulting in different R2 and p values. Notwithstanding that, the analyses done so

far in this chapter are based on observations and are therefore limited in space and

time. We will obtain a wider coverage using the CM2Mc ESM hereafter.

5.3.5 From observations to climate models

We investigated how circulation, productivity, wind stress curl, and acidification

contribute to the observed Csoft accumulation in the subtropical North Atlantic

(24.5◦N) upper ocean (0-1000 m) from 1992 to 2010. However, we cannot assess the

role of changes in these processes over spatial and temporal scales greater than the

observational window. As a consequence, we turn to a climate model: the CM2Mc

ESM (section 2.4). This model platform is not the real world, but represents a useful

test bed, offering more variables with a better coverage over space and time.
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5.3.6 Long-term assessment of Csoft variations

We observed a Csoft rise in the subtropical North Atlantic from 2004 to 2010, a time

interval characterised by a suggested AMOC slow-down (Smeed et al., 2014). This

decrease was attributed to natural variability (Jackson et al., 2016), although its

causes are still under debate (Bryden et al., 2014; Haine, 2016; Robson et al., 2016).

Whichever is the exact cause, we study Csoft variations over time, comparing them

with changes in meridional and barotropic mass Stream functions (Str and Strbar),

Wind stress curl (hereafter named Wind), Mixed Layer Depth (MLD), water mass

mean Age (hereafter named Age), Phosphate Remineralisation Rate (PRR1), and

pH by using outputs from a 2000 yr-long CM2Mc pre-industrial ‘control’ simulation

(section 2.4). The control run isolates the mass transport influence on Csoft, but it

simplifies the real world, not including patterns that may be relevant for our study

(e.g. long-term AMOC slow-down). We use the ESM outputs to test five hypotheses.

(1) A weakening in the ocean circulation increases the Age, accounting also for a

remineralisation accumulation in the same water parcel. (2) A Wind strengthening

reduces the Age by increasing the Strbar (Moat et al., 2016), so decreasing Csoft with

respect to the mean value. (3) A weakening in Wind and surface transport decrease

the mixing, MLD, and water mass volume, therefore increasing the Age and Csoft.

(4) An increasing primary productivity leads to higher carbon export, consumption

of O2, and nutrients remineralisation, accumulating Csoft. (5) Decreases in pH over

time alter the primary productivity rate, carbon export, and so Csoft accumulation.

To investigate our hypotheses, we correlate simulated Wind, MLD, Age, PRR, Str,

STRbar, pH, and Csoft, assuming that R2 values infer the independent variable (e.g.

Str) influence on the dependent estimate (e.g. Csoft), in line with the work of Yang

and Hoskins (2016). All variables are extracted or calculated at the 24.5◦N transect

and in an interval between 78-16◦W, so excluding the Florida Strait and focusing on

the southwards transport only. MLD, Wind, and Strbar are averaged at the 24.5◦N

surface, while the other variables are calculated in the twilight zone (200-1000 m) to

1To assess the biological influence on the simulated Csoft, we use the simulated PRR: this is
more directly related to the production of Csoft than the surface chlorophyll averaged concentration
used for the overall assessment in section 5.3.1. The PRR is calculated, in the CM2Mc model, as
the variation over time in the PO4 sources integral for the layer considered.
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Table 5.4: Table summarising squared Pearson’s coefficients (R2) quantified by
comparing Meyer approximations (Fig 5.8) of de-trended CM2Mc simulated data.
We study correlations between the soft-tissue carbon (Csoft), meridional Stream
function (Str), barotropic Str (Strbar), Wind stress curl (Wind), water mass mean
Age (Age), Mixed Layer Depth (MLD), Phosphate Remineralisation Rate (PRR),

and pH. R2 values greater or equal than 0.20 are highlighted in bold.

Csoft Str Strbar Wind Age MLD PRR pH

Csoft 1.00

Str 0.22 1.00

Strbar <0.05 <0.05 1.00

Wind 0.13 <0.05 <0.05 1.00

Age 0.86 0.20 <0.05 0.23 1.00

MLD <0.05 <0.05 <0.05 0.09 <0.05 1.00

PRR 0.18 <0.05 <0.05 0.29 0.21 <0.05 1.00

pH 0.68 0.05 <0.05 0.17 0.59 <0.05 0.26 1.00

match the investigated observational layer. Csoft and Str are taken as inventory and

upper-ocean maximum, while PRR, pH, and Age are calculated as layer averages.

All of the correlations could vary at different periodicities, being also influenced by

long-term trends2. We remove least squares fitted linear regression from the signals

(linear de-trending), and then approximate the curves using discrete Meyer wavelet

transforms (Meyer, 1993; Meyers et al., 1993). For this, we use a frequency of 20 yr,

periodicity comparable with the observational time frame (1992-2010) and AMOC

oscillations (Dong and Sutton, 2005). We present our results in Figs 5.8 and 5.9 for

the wavelet transforms and the details3, respectively. We calculate R2 and p values

for each variable couple, reporting them on Tab 5.4.

Hypothesis (5): the simulated Csoft and pH are significantly correlated (Tab 5.4),

following the processes summarised in section 5.3.1, and this correlation is negative,

as can be deduced in Fig 5.8g. This leads to a positive feedback, which causes further

changes in pH and so in Csoft, until the CO2 system reaches a new equilibrium.

2We expect the temporal drifts to be almost negligible after 5000 years of CM2Mc spin-up.
3By using the wavelet transform method, the original signal is decomposed in a transform of a

specific frequency and a curve generally called detail.
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So, the process could modify the North Atlantic subtropical CO2 uptake, increasing

the DIC and limiting the imminent climate change influence.

Hypothesis (4): using a twenty years frequency, the PRR accounts for approximately

a fifth of the changes in the DIC from remineralised soft tissue. This pattern links

to a strengthening of the productivity, carbon and oxygen exports above 200 m, and

therefore a Csoft accumulation in the twilight zone.

Hypotheses (3) and (2): Wind, Strbar, MLD, and upwelling variations influence

the subtropical Csoft insignificantly, with the values of squared Pearson’s coefficients

being equal or lower than 0.10. These results agree with the study of section 5.3.3.

Hypothesis (1): changes in Str however affect significantly the twilight zone Csoft.

This effect may be caused by increases in residence time and in remineralisation.

However, Csoft could increase also due to a strengthening in the horizontal transport

of biologically produced carbon, remineralised and exported northern than 24.5◦N.

By streamlining the residence time effect, we determine a R2 of 0.86 between the

simulated Age and Csoft, with a p value lower than 0.01 (Tab 5.4).

In summary, the observed 24.5◦N Csoft increase could have happened as a result of

an AMOC slow-down, an increase in residence time, acidification, and/or inorganic

nutrients supply to the sunlit ocean. This result confirms our hypotheses 1, 4, and 5,

and proves hypotheses 2 and 3 to be not valid in the CM2Mc ESM outputs. These

simulated data show that an increase in the local phosphate remineralisation rate, a

decrease in pH, and a slow-down in the meridional mass stream function increase the

24.5◦N twilight zone Csoft inventory by 18 %, 68 %, and 22 %, respectively. An Age

strengthening further increases the subtropical Csoft by 86 %. Interactions between

these processes are possible, but are outside the scope of this thesis.

5.4 Comparison of Csoft approximations

In the previous sections we explored the Csoft influence on the comparison between

the TTD and the ∆C* Cant estimates and the effect on Csoft of variations in wind

stress curl, MLD, stream function, primary productivity, remineralisation, and pH

using CM2Mc ‘climate’ outputs. This study relied on the implicit assumption that
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Figure 5.10: Plots of North Atlantic soft-tissue Carbon (Csoft) estimated using
Eq 4.9, which is based on Apparent Oxygen Utilisation (AOU), and Eq 2.12, which
is based on total and preformed phosphate (PO4) concentrations. We show the
layer at 1000 m in the North Atlantic basin as it includes the highest Csoft in the
upper ocean and it shows the greatest variation over latitude. Data are taken from
a CM2Mc ‘industrial’ simulation in 2010 with the difference between the two Csoft

estimates shown to evaluate the AOU approximation.

Csoft estimates based on Eq 4.9 and observations are equivalent to the ones based on

Eq 2.12 and model outputs. However, changes in O2 and AOU, on which Eq 4.9 is

based, are not necessarily correlated with PO4 variations (Eq 2.12). Furthermore, it

has been shown that water masses may leave the ocean surface without reaching the

O2 equilibrium with the atmosphere, hence leading to an under saturation in this

gas and therefore an overestimation of the respiration in the ocean interior (Duteil

et al., 2013; Ito et al., 2004). This causes discrepancies with the PO4 approximation.

To evaluate the assumption influence and associated differences between the Csoft

approximations, we use the outputs of the CM2Mc ‘industrial’ and pre-industrial

‘control’ simulations already used in sections 4.3.2 and 5.3.6 respectively and

calculate the saturated oxygen from the model temperature and salinity data.

We extract simulated data in the North Atlantic at a depth of 1000 m and evaluate

the Csoft spatial distributions and approximation differences in 2010 in Fig 5.10.

Then, we concentrate on the subtropical North Atlantic (24-26◦N) between 78◦W

and 16◦W, evaluating the Csoft temporal evolutions in the upper 1000 m of the basin

within a time interval of two millennia (Fig 5.11).
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As already discussed in section 4.3.1, Csoft is not homogeneous in the North Atlantic,

but reaches a maximum in the eastern equatorial basin, owing to the local upwelling,

and a minimum in the subpolar basin where the water masses are younger and hence

less remineralised (Fig 5.10a). Overall, the AOU and PO4 approximations capture

the Csoft pattern, but differences exist and vary with latitude. These differences are

greater in the subpolar basin (±50.0 %), where water masses are undersaturated in

O2 due to subduction, while decrease in the North Atlantic subtropics (±0.5 %).

Over time, the AOU (Eq 4.9) and the PO4 (Eq 2.12) Csoft approximations capture

similar trends and variabilities (Fig 5.11). Limited discrepancies exist in the time

interval investigated, but are likely to be caused by the model internal variability:

the AOU and PO4 approximations agree, with R2 being 0.96 and p is less than 0.01.

In summary, we tested the AOU approximation of Csoft in the North Atlantic upper

ocean. By comparing it to model values obtained with prognostic tracers, we showed

disagreements in the subpolar basin of up to 50 % but negligible differences in the

subtropical North Atlantic over space (±0.05 %) and time (R2 = 0.98).

5.5 Synthesis and discussion

Quantifying anthropogenic impacts on the ocean CO2 uptake and storage depends

on the reliability of the Cant estimates. Between 1992 and 2010, we find significant

disagreements between the TTD and ∆C* Cant decadal trends in the upper 1000 m

of the 24.5◦N Atlantic transect. These methods differ in the inclusion/exclusion of

temporal changes in C0
sat, Cdis, and Csoft, leading to the observed δtCant divergence.

Influences of changes in C0
sat and Cdis are expected, comparable, and opposite in

sign. The subtropical North Atlantic Csoft increase from 1992 to 2010 is unexpected,

influencing the uncertainty in the regression model used by the ∆C* method, and

impacting on the ∆C* and TTD Cant estimate disagreements. This Csoft increase

could have resulted from an AMOC slow-down, between 2004 and 2010, or a wind

stress weakening in the same period, which may have increased the residence time,

the surface primary productivity, and the remineralisation. After being de-trended

and approximated by using Meyer wavelet transforms, simulated oscillations of age,
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meridional mass stream function, and phosphate remineralisation rate correlate with

the Csoft modelled in the 24.5◦N twilight zone (200-1000 m). We estimate respective

squared Pearson’s coefficients of 0.86, 0.22, and 0.18. The 68 % of the modelled Csoft

oscillations are also influenced by acidification, with a shift towards new equilibria,

and hence carbon uptakes potentially stronger than previously thought.



Chapter 6

Conclusions and future works

6.1 Conclusions

• The global ocean has sequestered around a third of the human-emitted CO2

(anthropogenic carbon (Cant)), mitigating its Greenhouse effect and the increasing

impacts on the Earth climate. However, direct Cant estimates cannot be obtained

in the ocean, requiring indirect techniques such as the tracer-based Transit-Time

Distribution (TTD) or the carbon-based ∆C*. Methodological assumptions and

analytical precisions influence these Cant estimates, with an uncertainty nominally

estimated as ±20 % (Matsumoto and Gruber, 2005; Vázquez-Rodŕıguez et al.,

2009b; Waugh et al., 2006). We investigate further the Cant total (analytical +

methodological) uncertainty using statistical approaches, such as a variance based

sensitivity analysis, on repeated measurements at 24.5◦N in the Atlantic between

1992 and 2010, on GFDL-ESM2M, OCCAM, CCSM outputs, and then linking our

results to the studies of Fine et al. (2017), Matsumoto and Gruber (2005), and

Waugh et al. (2006). We estimate the Cant total uncertainty to be ±34 % in the

global ocean, thus resulting higher than the previously suggested ±20 %.

• Despite this newly estimated total uncertainty of ±34 %, the reliability of the

Cant estimates depends on (1) definitions, (2) locations, and (3) intervals of time.

(1: definitions) In this thesis and elsewhere, Cant is defined as the excess amount of

166
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dissolved inorganic carbon present in the ocean owing to an increasing atmospheric

CO2 compared to the pre-industrial state and a physically driven uptake (Friis,

2006; Khatiwala et al., 2013; McNeil and Matear, 2013). In this instance, the

uncertainty on the Cant estimates is influenced by air-to-sea fluxes, circulation, and

their variability, while other sources of uncertainty (e.g. changes in Redfield ratios)

could be neglected. Under the Cant definition of this paragraph, the TTD is the

most applicable method, treating Cant as a transient tracer, and hence reducing

biological influences. Conversely, ∆C* overestimates Cant, as it includes effects due

to the physical and biological carbon pumps.

Alternatively, Cant could be defined as the disturbance in the natural carbon cycle

due to human activities (Field et al., 2014), impacting the physical and biological

carbon pumps and being influenced by these processes of CO2 uptake. Potential

alterations in ocean biogeochemistry, such as changes in Redfield ratios, are then

relevant to the Cant estimates, with the ∆C* method being the most applicable.

The TTD method struggles to capture these changes, hence underestimating Cant.

(2: locations, 3: intervals) Over time and space, the Cant uncertainty is influenced

by the amount and accuracy of the observations. If the observational coverage is

sparse or highly uncertain (e.g. Indian Ocean), all sources of Cant uncertainty must

be taken into account. As a result, Cant variations that lie within ±17.0 µmol kg−1

(±34 %) are not significantly different from zero. Data spanning a minimum of one

and a half decade are necessary for any analysis: Cant increases by 1.4 ± 0.4 µmol

kg−1 yr−1 (adapted from Khatiwala et al. (2009)), requiring 15 yr to emerge from

the estimated uncertainty. Notwithstanding that, in the North Atlantic subtropical

upper ocean (0-1000 m) observations are sufficiently accurate and dense to reliably

reduce some sources of Cant uncertainty. In this region, the TTD and ∆C* Cant

uncertainties can be reduced to ±8.3 µmol kg−1 and ±10.3 µmol kg−1.

Simply put, the reliability of the Cant estimates depends on the maintenance of the

observational network and its enlargement in crucial regions (e.g. Indian Ocean).

• To include both of the Cant definitions discussed above in this chapter and the

associated main sources of uncertainty, we suggest the combined use of the TTD
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and ∆C* techniques, which confine the Cant concentrations range. However, these

estimates can diverge in time, rising the uncertainty on Cant studies. This is due to

CO2 disequilibrium, saturation, and/or remineralisation variations over time (δt)

unequally captured by the ∆C* and the TTD techniques. δtCdis and δtC
0
sat are

regressed on temperature, salinity, and total alkalinity measurements in the ∆C*,

while the TTD indirectly accounts for them using time-varying tracer saturations.

δtCsoft is entirely included by the ∆C* method only. From 1992 to 2010, we

observe discrepancies in the δtCdis, δtC
0
sat and δtCsoft terms of the TTD and ∆C*

equations. Although those terms reduce each other influence, they lead to small

but significant divergences between the ∆C* and TTD Cant estimates in some

water masses. In the 24.5◦N upper 1000 m taken as a whole, they cause a Cant

disagreement of 0.3 ± 0.2 µmol kg−1 yr−1.

As a result, we note that changes in Cant should not be investigated singularly, but

requires the assessment of the dissolved inorganic carbon cycle taken as a whole.

So, we apply the partitioning defined by Williams and Follows (2011) in this thesis.

• Analysing further the ocean carbon cycle, we investigate natural variabilities and

decadal trends of anthropogenic carbon in conjunction with other inorganic carbon

partitions, focusing again on the 24.5◦N upper 1000 m between 1992 and 2010. As

expected, Cant increases over time by 0.5-0.8 ± 0.2 µmol kg−1 yr−1, owing to rises

in the atmospheric CO2 and air-to-sea fluxes. This pattern causes two thirds of the

Ctot increment, which disagrees with the influences of the C0
sat decrease and Cdis

tendency towards CO2 saturation that suggest climate change. Surprisingly, Ctot

increases also owing to a Csoft rise of 0.3 ± 0.1 µmol kg−1 yr−1. This unexpected

increment in the remineralised soft tissue may be due to productivity, acidification,

circulation or wind stress curl changes. Similar conclusions can be drawn from the

study of carbon partition anomalies in the CM2Mc ESM outputs. Csoft and Ccarb

increases from 1860 to 2100 when comparing the ‘industrial’ and pre-industrial

‘control’ data. These results maintain when comparing the same ‘control’ with the

‘climate’ data, suggesting a predominance of the physical effect on the oceanic Csoft

variations.
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• We investigate the unexpected increase in the 24.5◦N Csoft exploring connections

with changes in the mentioned processes. We correlate Csoft with the water mass

volume, mean age, anthropogenic, and natural pH in the Antarctic intermediate,

subpolar, and Madeira Mode water masses in 1992, 1998, 2004, and 2010. Results

suggest that three quarters of the δtCsoft may be due to increments in residence

time and acidification. The remainder is presumably due to a strengthening in the

surface productivity (chlorophyll increases by 2 µg m−3 yr−1), carbon export, and

subsurface remineralisation, although our data do not support this hypothesis test.

Decreases in the wind stress curl and mixing are not influential, being the water

volume variations not correlated with the age or Csoft estimates. The slow-down in

the Atlantic meridional overturning circulation, suggested by Smeed et al. (2014)

from 2004 to 2012, could explain our findings. However, the observations are not

sufficiently dense in time and space to support this hypothesis.

• We enlarge the assessment of the subtropical North Atlantic Csoft increase to the

outputs of a 2 kyr-long CM2Mc pre-industrial control simulation. With these data,

we evaluate the role of changes in the Wind stress curl (Wind), Mixed Layer Depth

(MLD), local Phosphate Remineralisation Rate (PRR), meridional and barotropic

Stream functions (Str and Strbar), pH, and water mass mean Age (Age) within the

subtropical North Atlantic twilight zone (200-1000 m). MLD and Strbar changes do

not influence Csoft, while a PRR rise, a pH reduction, and a Str decrease increase

Csoft by 18 %, 68 %, and 22 %. Streamlining the Age effect, a strengthening in the

residence time accounts for 86 % of the Csoft increment. The results broadly agree

with our observational studies. Disagreements are likely to be due to the use of

AOU and PO4 to approximate Csoft in the observations and model outputs,

respectively, but are confined to the subpolar basin.

We could have investigated the ratio between the surface primary productivity and

associated export of organic carbon in the model, but we decided to focus on the

PRR to maintain the study to the subtropical North Atlantic.
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6.2 Final remarks

This thesis results improve on the on-going understanding of the human footprint

on the Earth and oceanic carbon cycle. Cant estimates result more uncertain than

previously thought by a factor of 1.5 (uncertainty increases from ±20 % to ±34

%), but the assessment of Cant variabilities and trends can be done over large time

intervals and/or spatially confined ocean regions.

In the subtropical North Atlantic, our estimates agree with the previously reported

Cant increases, but highlight significant divergences due to the method chosen: ocean

circulation and biogeochemical cycles are not in steady state, as all of the Cant

methods assume, propagating an uncertainty that varies with the technique used.

So, we suggest the use of two or more independent estimates to capture the probable

range of oceanic Cant and increase the reliability of the associated studies.

6.3 Future works

Unfortunately, due to the complexity of the work done in this thesis and the short

time-life of the doctoral project, we have not concluded analyses that may improve

the assessment of the ocean CO2 cycle. Here, we discuss ‘snapshots’ of them based

on the Massachusetts Institute of Technology general circulation model (MITgcm;

Marshall et al. (1997a,b)), Transport Matrix (TMM; Khatiwala (2007); Khatiwala

et al. (2005)), and Maximum Entropy (MEM; Holzer et al. (2010)) Methods.

• Our sensitivity analysis of the Cant total uncertainty is a step forward towards an

improved estimate of the last value. However, much of the work done in this thesis

is based on observations, limiting our conclusions to the 24.5◦N section from 1992

to 2010. Enlargements will be essential, but possible only at sparse hydrographic

sections (e.g. Labrador Sea edge) when using observations. More comprehensive

results are achievable using climate models, which are useful test beds for process

analyses. We run the MITgcm with a horizontal resolution of 2.8◦ and 15 vertical

layers. The run lasts from 1980 to 2014, after thousand years of spin-up, and was
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forced using ocean surface salinity, temperature, heat and fresh water fluxes from

the NOAA gridded climate data. We aim to replicate the observational assessment

of the Cant uncertainty done in section 3.4 by altering one MITgcm input at a time

and quantify its independent/interactive influence on the simulated Cant.

• Concurrently, we aim to investigate the Cant estimates and uncertainties by using

the TMM. This method allows to estimate the independent and interactive factor

(excluding temperature and salinity) influences on Cant on large temporal (e.g.

centuries) and spatial (global ocean) scales, limiting the necessary computational

resources with respect to a GCM. The TMM relies on physical outputs from

previously run models to build the implicit and explicit matrices, which describe

ocean ventilation and mixing. Other variables (e.g. dissolved inorganic carbon)

require initial conditions, which could be altered at each simulation, then

quantifying the associated influence on Cant.

• The MEM improves on the TTD estimates of mean age and Cant. So, it could be

used as an additional term in our analyses to which other method estimates can be

compared. Also, the MEM may be used to partition a water mass of interest with

respect to the locations where it was last ventilated, highlighting changes over time

in ventilation and mixing (Holzer et al., 2010).



Appendix A

Extended (1992-2016) subtropical

TTD Cant trends and variability

In this appendix, we use observations of transient tracers and O2 collected during the

DY040 cruise (section 1.4.5) to extend for the first time to 2016 the study of the TTD

Cant temporal increases (δt), Decadal Trends (DTs), and variabilities investigated

at the 24.5◦N Atlantic transect between 1992 and 2010 in section 4.2.4. We avoid

the use of other Cant methods, as the DY040 DIC and Alk are not yet fully quality

controlled. Results are presented in Fig A.1, where we show DTs and cruise-mean

differences since 1992 to 1998, 2004, 2010, 2016, and summarised in Tab A.1. As for

previous analyses, the DTs are estimated using a quasi Monte Carlo (MC) approach

(Kroese et al., 2014; Metropolis and Ulam, 1949), which is based on random values

(section 4.2.3). The same is true for the Cant variabilities, but these values are not

directly reported, being instead inferred as difference between points (cruise-mean

differences) and lines (Cant DTs) in Fig A.1.

Including the 2016 measurements in the study, the TTD Cant (TTD (2016) in Tab

A.1) continues to increase everywhere in the 24.5◦N section, as expected from the

atmospheric CO2 increase. The DTs seem higher (by approximately 30 %) than the

estimates limited to 2010 (TTD (2010) in Tab A.1), but none of these differences is

statistically significant. The TTD Cant observed variability is also included within

the quasi MC uncertainty (±5.2 µmol kg−1).

172



Appendix A. Extended Cant assessment 173

F
ig
u
r
e
A
.1
:

A
n

th
ro

po
ge

n
ic

ca
rb

o
n

(C
a
n
t)

cr
u

is
e-

m
ea

n
d
iff

er
en

ce
s

si
n

ce
1
9
9
2

(δ
t)

.
D

a
ta

a
re

es
ti

m
a
te

d
u

si
n

g
th

e
T

T
D

te
ch

n
iq

u
e,

be
tw

ee
n

1
9
9
2

a
n

d
2
0
1
6
,

in
ea

ch
o
f

th
e

2
4
.5

◦ N
A

tl
a
n

ti
c

tr
a
n

se
ct

su
ba

re
a
s

d
efi

n
ed

in
F

ig
4
.2

.
U

n
ce

rt
a
in

ti
es

d
u

e
to

th
e

o
bs

er
ve

d
va

ri
a
bi

li
ty

a
re

qu
a
n

ti
fi

ed
by

ra
n

d
o
m

ly
pe

rt
u

rb
in

g
1
0
0
0

ti
m

es
ea

ch
es

ti
m

a
te

,
w

it
h
in

a
qu

a
si

M
o
n

te
C

a
rl

o
a
p
p
ro

a
ch

,
a
n

d
o
bt

a
in

in
g

±
5
.2
µ
m
ol
k
g
−

1
.

D
ec

a
d
a
l

tr
en

d
s

a
re

a
d
d
ed

a
s

le
a
st

sq
u

a
re

s
fi

tt
ed

li
n

es
fo

rc
ed

th
ro

u
gh

ze
ro

.



Appendix A. Extended Cant assessment 174
T
a
b
l
e
A
.1
:

T
a
bl

e
su

m
m

a
ri

si
n

g
th

e
D

ec
a
d
a
l

T
re

n
d
s

(D
T

s)
fr

o
m

1
9
9
2

to
2
0
1
6

(T
T

D
(2

0
1
6
))

a
n

d
1
9
9
2

cr
u

is
e-

m
ea

n
va

lu
es

(µ
)

o
f

th
e

T
T

D
a
n
th

ro
p

o
g
e
n

ic
c
a
rb

o
n

(C
a
n
t
)

es
ti

m
a
te

d
fo

r
ea

ch
su

ba
re

a
o
f

th
e

2
4
.5

◦ N
A

tl
a
n

ti
c

se
ct

io
n

(F
ig

4
.2

),
w

it
h

th
e

D
T

s
fr

o
m

1
9
9
2

to
2
0
1
0

(T
T

D
(2

0
1
0
))

a
ls

o
re

po
rt

ed
fo

r
co

m
pa

ri
so

n
(T

a
b

4
.2

).
T

h
e

re
sp

ec
ti

ve
u

n
ce

rt
a
in

ti
es

(±
0
.2
µ
m
ol
k
g
−

1
y
r−

1
a
n

d
±

5
.2

µ
m
ol
k
g
−

1
)

a
re

a
p
p
ro

xi
m

a
te

d
by

ra
n

d
o
m

ly
pe

rt
u

rb
in

g
th

e
m

ea
n

ca
rb

o
n

co
n

ce
n

tr
a
ti

o
n

s
a
n

d
d
et

er
m

in
in

g
se

ts
o
f

li
n

ea
r

re
gr

es
si

o
n

s
fo

r
ea

ch
su

ba
re

a
u

si
n

g
a

qu
a
si

M
o
n

te
C

a
rl

o
(M

C
)

a
p
p
ro

a
ch

.
‘S

ec
ti

o
n’

re
fe

rs
to

th
e

a
ve

ra
ge

d
D

T
a
lo

n
g

th
e

w
h
o
le

tr
a
n

se
ct

,
a
n

d
‘1

0
0
0

m
’

to
th

e
m

ea
n

va
lu

es
in

th
e

co
lu

m
n

u
p
pe

r
1
0
0
0

m
.

W
e

h
ig

h
li

gh
t

in
bo

ld
th

e
h
ig

h
es

t
D

T
s

fo
r

ea
ch

o
f

th
e

se
ve

n
w

a
te

r
m

a
ss

es
st

u
d
ie

d
(S

u
bt

ro
p
ic

a
l

M
od

e
W

a
te

r
(S

T
M

o
W

),
M

a
d
ei

ra
M

o
W

(M
M

o
W

),
S

u
bp

o
la

r
M

o
W

(S
P

M
o
W

),
A

n
ta

rc
ti

c
In

te
rm

ed
ia

te
W

a
te

r
(A

A
IW

),
u

p
pe

r
N

o
rt

h
A

tl
a
n

ti
c

D
ee

p
W

a
te

r
(u

N
A

D
W

),
lo

w
er

N
A

D
W

(l
N

A
D

W
),

a
n

d
A

n
ta

rc
ti

c
B

o
tt

o
m

W
a
te

r
(A

A
B

W
))

.
W

e
a
ls

o
h
ig

h
li

gh
t

in
re

d
th

e
a
ve

ra
ge

va
lu

es
in

th
e

u
p
pe

r
1
0
0
0

m
,

in
li

n
e

w
it

h
T

a
b

4
.2

.
S
T

M
oW

F
S
1(

D
T

)
F

S
1(
µ

)
W

1(
D

T
)

W
1(
µ

)
W

2(
D

T
)

W
2(
µ

)
W

3(
D

T
)

W
3(
µ

)
E

1(
D

T
)

E
1(
µ

)
E

2(
D

T
)

E
2(
µ

)
S
ec

ti
on

T
T

D
(2

01
6)

0.
9

48
.6

0.
9

47
.7

1
.2

47
.9

1.
0

48
.0

1.
0

49
.2

0.
8

48
.8

1.
0

T
T

D
(2

01
0)

0.
7

48
.6

0.
9

47
.7

1
.2

47
.9

1
.2

48
.0

1.
0

49
.2

1.
0

48
.8

1.
0

M
M

oW
F

S
2(

D
T

)
F

S
2(
µ

)
W

4(
D

T
)

W
4(
µ

)
W

5(
D

T
)

W
5(
µ

)
W

6(
D

T
)

W
6(
µ

)
E

3(
D

T
)

E
3(
µ

)
E

4(
D

T
)

E
4(
µ

)
S
ec

ti
on

T
T

D
(2

01
6)

0
.8

41
.5

0.
5

40
.2

0.
7

40
.2

0
.8

38
.8

0.
6

41
.6

0.
7

42
.1

0.
7

T
T

D
(2

01
0)

0
.7

41
.5

0.
4

40
.2

0.
4

40
.2

0.
6

38
.8

0.
4

41
.6

0.
4

42
.1

0.
5

S
P

M
oW

F
S
3(

D
T

)
F

S
3(
µ

)
W

7(
D

T
)

W
7(
µ

)
W

8(
D

T
)

W
8(
µ

)
W

9(
D

T
)

W
9(
µ

)
E

5(
D

T
)

E
5(
µ

)
E

6(
D

T
)

E
6(
µ

)
S
ec

ti
on

T
T

D
(2

01
6)

0.
3

24
.0

0.
4

25
.3

0.
4

27
.6

0.
6

29
.6

0
.8

35
.5

0.
7

29
.0

0.
5

T
T

D
(2

01
0)

0.
2

24
.0

0.
4

25
.3

0.
2

27
.6

0.
5

29
.6

0
.6

35
.5

0.
5

29
.0

0.
4

A
A

IW
F

S
4(

D
T

)
F

S
4(
µ

)
W

10
(D

T
)

W
10

(µ
)

W
11

(D
T

)
W

11
(µ

)
W

12
(D

T
)

W
12

(µ
)

E
7(

D
T

)
E

7(
µ

)
E

8(
D

T
)

E
8(
µ

)
S
ec

ti
on

T
T

D
(2

01
6)

0.
3

9.
9

0.
3

11
.4

0
.5

12
.8

0
.5

10
.0

0.
3

9.
2

0.
3

8.
5

0.
4

T
T

D
(2

01
0)

0.
1

9.
9

0.
1

11
.4

0
.5

12
.8

0.
1

10
.0

0.
3

9.
2

0.
3

8.
5

0.
2

10
00

m
D

T
µ

D
T

µ
D

T
µ

D
T

µ
D

T
µ

D
T

µ
S
ec

ti
on

T
T

D
(2

01
0)

0.
6

31
.0

0.
5

31
.2

0.
7

32
.1

0.
7

31
.6

0.
7

33
.9

0.
6

32
.1

0.
7

T
T

D
(2

01
6)

0.
4

31
.0

0.
5

31
.2

0.
6

32
.1

0.
6

31
.6

0.
6

33
.9

0.
6

32
.1

0.
5

U
N

A
D

W
W

13
(D

T
)

W
13

(µ
)

W
14

(D
T

)
W

14
(µ

)
W

15
(D

T
)

W
15

(µ
)

E
9(

D
T

)
E

9(
µ

)
E

10
(D

T
)

E
10

(µ
)

S
ec

ti
on

T
T

D
(2

01
6)

0
.5

15
.2

0
.5

16
.1

0.
3

9.
2

0.
2

5.
1

0.
3

3.
6

0.
4

T
T

D
(2

01
0)

0
.4

15
.2

0.
3

16
.1

0.
2

9.
2

0.
1

5.
1

0.
2

3.
6

0.
2

lN
A

D
W

W
16

(D
T

)
W

16
(µ

)
W

17
(D

T
)

W
17

(µ
)

W
18

(D
T

)
W

18
(µ

)
E

11
(D

T
)

E
11

(µ
)

E
12

(D
T

)
E

12
(µ

)
S
ec

ti
on

T
T

D
(2

01
6)

0
.5

6.
2

0.
4

13
.5

0.
2

5.
9

0.
1

4.
6

0.
1

2.
7

0.
3

T
T

D
(2

01
0)

0
.4

6.
2

0.
2

13
.5

0.
1

5.
9

0.
1

4.
6

0.
1

2.
7

0.
2

A
A

B
W

W
16

(D
T

)
W

16
(µ

)
W

17
(D

T
)

W
17

(µ
)

W
18

(D
T

)
W

18
(µ

)
S
ec

ti
on

T
T

D
(2

01
6)

0
.3

5.
4

0.
2

6.
5

0.
1

4.
9

0.
2

T
T

D
(2

01
0)

0.
2

5.
4

0
.3

6.
5

0.
0

4.
9

0.
2



Appendix A. Extended Cant assessment 175

However, we could neglect the TTD Cant quasi MC uncertainty for the sake of the

analysis. This approach allows investigating changes in the oceanic circulation that

could have altered the TTD δtCant estimates, as also suggested in chapter 5. These

changes are then compared, in the same water mass and time interval, to the ones

in the soft-tissue carbon partition (Csoft), a second proxy for circulation temporal

changes. The last variable is less uncertain than Cant (section 4.2.3).

Overall, the TTD δtCant estimated between 1992 and 2010 lies below the DT, while

the subsequent estimate between 1992 and 2016 exceeds this value in the MMoW,

SPMoW, and in subareas E1 and E2. These results suggest a potential decrease

in the oceanic circulation, and hence in the ventilation of these water masses, from

2004 to 2010 followed by a recovery in 2016, in line with our analyses in chapter 5

and the study of Jackson et al. (2016). Confirmations arise from the δtCsoft estimates

(not reported for brevity), which exceed the MMoW and SPMoW DTs in 2010 and

are below the DT values in 2016.



Appendix B

Detailed assessment of the TTD

and ∆C* Cant total uncertainties

We continue to investigate the TTD and ∆C* Cant uncertainties due to the combined

influences of methodological assumptions and analytical precisions. In section 3.4.1

of this thesis, we synthesised the most influential sources of Cant uncertainty at the

scale of the global ocean, 24.5◦N Atlantic section, and upper 1000 m of this transect.

Here, we deepen the study investigating each source of Cant uncertainty, in the same

areas, and evaluating approaches that can be used to reduce them.

We combine our studies of sections 2.3 and 3.2.1 based on the One Factor At a

Time (OFAT) approach with the analyses of Fine et al. (2017), Matsumoto and

Gruber (2005), and Waugh et al. (2006). We use the guidelines of the Global Ocean

Ship-based Hydrographic Investigations Program (GO-SHIP; Hood et al. (2010))

to estimate the global measurement analytical precisions, whereas we use the 2010

cruise report (King et al., 2012) for the subtropical North Atlantic. We select this

year occupation as it includes the greatest amount of reliable observations (Tab 1.2).

Tabs B.1 and B.2 summarise the sources of the TTD and ∆C* Cant uncertainties,

respectively. They include Measurement (M) precision and method Assumption (A)

influences, which are estimated as concentrations, percentages Relative (%R) to the

area-mean Cant maximum, and percentages to the Total (%T ) Cant uncertainty.
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Despite their inclusion in the TTD and ∆C* equations, potential temperature (Θ),

Salinity (S), and inorganic nutrient precisions do not influence the Cant uncertainty.

This is due to the high accuracy in the first two measurements, which compensates

their influences. The inorganic nutrient precisions are effectively not influential, as

proved in section 3.2.1. On the contrary, analytical precisions of Dissolved Inorganic

Carbon (DIC), total Alkalinity (Alk), and dissolved oxygen (O2) influence the ∆C*

Cant uncertainty, with percentages up to 29 %. The transient tracer (e.g. CFC-12)

accuracies are the most influential on the TTD Cant uncertainty, being responsible for

the totality of it in the 24.5◦N upper 1000 m. Overall, the tracer-based technique is

influenced by an analytical precisions number lower than the carbon-based method:

an improved observational accuracy would reduce more the ∆C* Cant uncertainty.

Turning attention to the Cant method assumptions, the assumed spatial constancy

in Redfield Ratios (RRs) influences approximately a third of the ∆C* Cant total

uncertainty globally. However, we neglect this uncertainty source in the subtropical

North Atlantic, in agreement with the canonical approach of Redfield (1934) and the

implicit assumption of Guallart et al. (2015b). Estimates of preformed Alk (Alkpre)

and equilibrium carbon (Ceq) also influence the ∆C* Cant total uncertainty. These

variables are based on regression models, as detailed in section 2.3.1, and so their

influence reduces from the global ocean scale to the 24.5◦N upper 1000 m, in line with

the rise in observational accuracy. Changes in the disequilibrium carbon component

(Cdis) influence both the TTD and ∆C* Cant total uncertainties. These impacts have

been discussed in sections 2.3.1 and 3.3. Variations over time and space in tracer

saturations and Γ/∆ ratio influence the TTD Cant total uncertainty, mostly where

water mass formations are poorly known (e.g. Southern Ocean; Stöven et al. (2016)).

However, they are relatively well known in the subtropical North Atlantic, and so

their influence can be neglected. Ocean eddies also influence the TTD Cant estimates

(Fine et al., 2017), modifying the mixing ratio and so mean age estimate. However,

this source of uncertainty is negligible in the North Atlantic subtropics, where no

seawater fronts are detectable (section 3.4.1). Overall, the TTD quantifications are

the most influenced by methodological uncertainties. An ocean improved knowledge

would be more beneficial for them rather than for the ∆C* estimates.



Appendix C

Inorganic carbon inventories in

the North Atlantic upper 1000 m

We investigate the inorganic carbon partition inventories and spatial variabilities in

the North Atlantic upper ocean. In sections 4.2.4 to 4.2.8, we applied this analysis

to the same layer at the 24.5◦N transect between 1992 and 2010. Here, we enlarge

the study to North Atlantic upper-ocean inventories of total (Ctot), pre-industrial

saturated (C0
sat), soft-tissue (Csoft), carbonate (Ccarb), disequilibrium (Cdis), and

anthropogenic (Cant) carbon partitions by using the Williams and Follows (2011)

partitioning. We explore the variability of each component over space, highlighting

interactions among them and suggesting causing mechanisms, as in section 4.2.8.

We use the Global Ocean Data Analysis Project version 2 (GLODAPv2; Lauvset

et al. (2016)) gap-filled climatology. These data refer to the year 2002, including a

Cant distribution estimated using the TTD based on CFC-12 measurements. Results

are presented in Fig C.1, which reports also the North Atlantic upper-ocean budget

for each of the partitions investigated.

The upper ocean circulation is the main driver of North Atlantic carbon variability

above 1000 m. Over latitude, we distinguish three dynamical zones: the equatorial

(0-20◦N), subtropical (20-40◦N) and subpolar (40-65◦N). A secondary effect is also

evident over longitude, with the greatest remineralised carbon (Csoft + Ccarb) stored

in the western equatorial region (far from areas of water mass formations).
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In the subpolar zone, the atmospheric CO2 increase due to anthropogenic activities

induces the highest inventories of C0
sat, which is the ocean potential equilibrium

carbon. This pattern instantaneously makes Cdis more negative in the mixed layer

depth, where biogenic effects are negligible. As a result, air-to-sea CO2 fluxes try to

compensate this imbalance, taking up the highest amount of Cant.

In the subtropical zone, the carbon partition distributions are broadly comparable

to the ones near the Pole. Despite this similarity, the Cdis inventories are more

negative in this region. This is due to a reduction in CO2 uptake, which decreases

the compensation of the Cdis imbalance, leading also to the lowest upper-ocean Ctot.

In the equatorial zone, the remineralised carbon increase dominates the interplay,

being influenced by the seawater upwelling, which originates nearby the African

coast. This seawater motion carries high concentrations of soft-tissue and carbonates

from the ocean interior to the surface. As a result, the North Atlantic upper-ocean

Ctot increases in the region, reducing the amount of potential carbon (C0
sat). This

induces Cdis to become more positive and reduces further CO2 uptake. However, it is

also possible that these observed patterns are due to climate change, as suggested in

section 4.2.8 for the 24.5◦N transect. High values of sea-surface temperature induce

ocean stratification, increasing Ctot and strengthening the conversion from C0
sat to

Csoft (Bernardello et al., 2014a).
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