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Abstract 

Pioneering work in Drosophila uncovered the building blocks of the molecular clock, 

consisting of transcription-translation feedback loops (TTFLs). Subsequent 

experimental work demonstrated that the mammalian TTFL is localized in cells and 

tissues throughout the brain and body. Further research established that neuronal 

activity forms an essential aspect of clock function. However, how the membrane 

electrical activity of clock neurons of the suprachiasmatic nucleus collaborate with the 

TTFL to drive circadian behaviors remains mostly unknown. Intercellular 

communication synchronizes the individual circadian oscillators to produce a precise 

and coherent circadian output. Here, we briefly review significant research that is 

increasing our understanding of the critical interactions between the TTFL and 

neuronal and glial activity in the generation of circadian timing signals. 

 

TTFL and membrane signaling 

Individual neurons in the suprachiasmatic nucleus (SCN) contain molecular circadian 

clocks, consisting of the Period1/2 (Per1/2), Cryptochrome1/2 (Cry1/2), Clock and 

Bmal1 genes. The molecular circadian signal is translated into a circadian pattern of 

action potential firing and, in some SCN neurons, electrical silencing by hyper- 

and hypo-excitation [1], which is required for the generation of circadian behaviors. 

The interaction between SCN neuron electrical activity and the molecular clock, 

however, is more complicated than just a driven rhythm.  

  

Inhibiting action potential firing in the SCN with tetrodotoxin (TTX) abolishes behavioral 

circadian rhythmicity but does not affect the timing of the circadian clock [2]. Therefore, 

SCN action potential firing is an output of the circadian clock required to drive circadian 

behaviors, but pacemaker timing persists in the absence of action potential activity at 

the single cell level. However, TTX application to SCN brain slices for an extended 

period of time produces a rundown of the molecular clock amplitude [3]. This suggests 

that for proper clock functioning the membrane electrical excitability feeds back onto 

the molecular clock machinery to support and maintain circadian oscillations [3]. Two 

essential and unresolved experimental questions in circadian biology are how the 

molecular clock communicates with the membrane ion channels that regulate 

membrane excitability, and how the membrane electrical activity signals to the 

molecular circadian clock. Knowledge of these mechanisms will provide insights into 
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how the molecular clock appropriately synchronizes its activity across the SCN 

network and outputs its collective phase to downstream targets. In addition, this 

information will provide a mechanistic understanding of how environmental and 

internal physiological signals influence the timing precision in SCN clock cells (Figure 

1). Indeed, an ingenious study in flies has unequivocally shown that the membrane 

activity feeds back to impose time-of-day stamps onto the molecular clock programs 

[4]. In mammals, the Fbxl3Afh mutation delays the degradation of CRY1/2 and 

increases the circadian period [5]. The disrupted molecular clock alters the 

membrane excitability and GABA neurotransmission of the SCN neurons. 

 

Recent work has provided new insights into possible signaling pathways regulating 

the circadian rhythm in SCN neuronal activity. It had been postulated that the 

excitable states represent a balance between the depolarizing activity of voltage-

gated sodium channels and hyperpolarizing potassium channels [6-8]. Recently, a 

voltage-independent sodium conductance, mediated by the NA/NALCN ion channel, 

has been shown to depolarize SCN neurons [9]. This current is driven by the rhythmic 

expression of NCA Localization Factor-1, providing an example of signaling pathway 

linking the molecular clock to ion channel function [9]. This channel pathway is a new 

addition to the families of cation channels that provide depolarizing forces to SCN 

neurons during the day, elevating their resting membrane potential and increasing 

firing rate [10-12]. The L-type calcium channel is another key cation channel involved 

in sustaining excitation in SCN neurons [1,8]. Recently, L-type calcium channel activity 

has also been shown to be under the direct control of the TTFL component REV-ERBα 

[13], a negative feedback loop in the molecular circadian clock. This provides yet 

another example of a pathway where the TTFL can influence ion channel activity. 

Some potassium channels may reduce their conductivity to support such 

depolarization during the day [10-12]. For example, a reduction in the activity of the 

small-conductance calcium-activated potassium channels transits a proportion of 

daytime SCN neurons into hyperexcitation and depolarization blockade states, where 

they ceased firing [1,14].  

  

In the evening, the activity of a number of potassium currents peaks to hyperpolarize 

and silence clock neurons [10-12]. Reduction of Per1 activity by antisense 

oligonucleotides suppressed firing of SCN neurons by reducing intracellular calcium 
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levels and the conductance of the large calcium-activated potassium currents (BK; 

[15]). Indeed, the pharmacological blockade of BK channels mimicked the effects of 

the antisense on SCN firing rate [15]. Circadian clock regulation of BK channels and 

their biophysical properties, particularly the rate of inactivation, alters the subthreshold 

membrane properties contributing to the day-night firing rhythm [16,17]. This permits 

SCN neurons to readily fire action potentials during the day and make them less likely 

to spike at night. Additional evidence for this inactivation has also been provided for 

the fast-delayed rectifier potassium channels [18].  

  

One of the significant challenges facing circadian biologists is that SCN neurons are 

exceedingly heterogeneous. Indeed, with this diversity comes complexity and the 

daunting task of categorizing and cataloguing neurons based on their intrinsic 

excitability [19]. That is, grouping neurons that show similar firing patterns when 

manually presented with depolarizing stimuli in the absence of synaptic 

communication. This measure will naturally be aided by targeted recordings in 

identified SCN neuronal populations, using animals expressing appropriate 

genetic fluorescence reporters. For example, previous work in the SCN 

indicated that when presented with a depolarizing pulse, Per1-EGFP positive 

neurons (presumed clock neurons) show firing characteristics that are broadly 

different from neurons in which EGFP could not be detected (presumed non-

clock cells) [1]. This form of neuronal targeting can be used in new models, such 

as the Per1-Venus mouse [20], and animals in which the SCN’s peptidergic 

populations can also be labelled. It is noteworthy, however, that recent work 

suggests that Per1- and Per2-containing neurons in the SCN form different but 

overlapping neuronal population, adding complexity to analysis [21].  

Nevertheless, we now also understand that similar classes of neurons can generate 

comparable action potential firing patterns using different complements of ion 

channels [22]. Ion channel expression is regulated by homeostatic mechanisms 

that couple channel expression to specific neuronal activity patterns [22]. 

Therefore, even similar types of SCN neurons may recruit subtly different ionic 

mechanisms in order to regulate the circadian activity, and these ion channel activity 

patterns may show day-night expression patterns. 
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Cell to cell signaling 

Indeed, the governing principle in SCN circadian rhythm generation is the 

maintenance of synchrony and appropriate phase among its neurons. GABAergic 

neurotransmission is a fundamental component of the SCN neural network, and 

virtually all SCN neurons communicate using GABA [23,24]. GABA regulates many 

functions in the SCN, including light-induced phase shifts, synchronization of the 

dorsal and ventral SCN, and the sensitivity of the circadian clock to light-entraining 

signals. The specific role of GABA neurotransmission in maintaining cellular synchrony 

remains controversial (see recent reviews by [23-25]). GABA acts on synaptic GABAA 

receptors to mediate fast “phasic” signaling between SCN neurons, and extrasynaptic 

GABAA receptor activation provides SCN cells with a “tonic” GABAA current [26]. As a 

network, activity signaling by the tonic GABA-GABAA receptor current is a strong 

candidate to regulate the coupling strength between individual SCN neuronal 

oscillators [27,28]. Modulation of the intracellular chloride concentration ([Cl-]i) 

regulates the strength of the GABA currents by altering the magnitude of the current 

flowing through open GABA-activated channels at a given membrane potential [29]. 

In the adult SCN, GABA acts both as an inhibitory or excitatory neurotransmitter 

depending on the postsynaptic [Cl-]i concentration and the time-of-day [29-33]. 

Excitatory GABA neurotransmission is more prevalent in the dorsal SCN compared to 

the ventral SCN, and the overall consensus is that there is more excitatory GABA 

transmission during the night than during the day [29-33]. The regional differences in 

GABA activity may reflect different intracellular Cl- regulation in arginine vasopressin 

(AVP)- and vasoactive intestinal polypeptide (VIP)-expressing SCN neurons [34]. 

Computer simulations and physiological recordings suggest that this inhibitory-

excitatory switch in GABA action is an essential component of the SCN network 

activity, regulating period length and photoperiod encoding [27,28,35]. 

 

Glia 

Astrocytes in the SCN also express a molecular TTFL circadian clock and play an 

essential role in regulating activity and entrainment of the SCN clock [36-38]. There is 

one astrocyte for every three SCN neurons, and these glial cells have a soma and a 

large number of fine processes that encase the neurons and synapses [39,40]. These 

fine processes allow a single astrocyte to influence the activity of a significant number 

of synapses (Figure 1). Modulation of astrocyte activity can alter the timing of the 
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circadian clock. In Drosophila, inhibition of intracellular calcium signaling in astrocytes 

disrupts functional circadian rhythms [41,42]. Genetic deletion of BMAL1 in astrocytes 

lengthens the circadian period and represses the rhythmic expression of VIP and 

several clock genes [37,38,43]. 

  

Astrocytes modify neuronal activity and neurotransmission through a number of 

mechanisms including the release of transmitter substances (gliotransmitters), such 

as adenosine triphosphate (ATP) and glutamate [44]. ATP is released by astrocytes 

in a circadian pattern with the maximum concentration observed in the middle of the 

night [45-47]. ATP can activate ionotropic P2X receptors to potentiate GABA release 

from SCN synapses and metabotropic P2Y receptors to inhibit GABA release [48,49]. 

Enzymatic conversion of ATP to adenosine leads to activation of presynaptic 

adenosine A1 receptors located on terminals of the retinohypothalamic tract (RHT). 

This reduces light-induced phase changes by decreasing glutamate release by the 

RHT [50,51]. These data indicate that the role of glial-released ATP depends on the 

location and timing of its release. SCN astrocytes also release glutamate in a circadian 

manner, with higher concentrations reported during the subjective night [37]. The 

glutamate may act on presynaptic NMDA receptors containing NR2C subunits to 

facilitate GABA release [37].  

 

Conclusion and perspectives 

Emerging work in the circadian field is revealing a collaborative, but intricate and 

complex relationship between the molecular clockwork and the electrical activity in 

SCN neurons. Progress in understanding the mechanistic nature of this relationship is 

slow because despite our vast understanding of the cell-autonomous processes 

causing daily oscillations in clock gene expression, our knowledge of how the 

molecular clockwork interacts with the membrane to regulate the excitability of SCN 

neurons is severely lacking. Feedback cues from the environment and internal 

physiology signal to SCN neurons. However, here too, the mechanisms involved in 

this electrical-genetic interaction remain elusive. Despite these knowledge gaps, the 

intracellular calcium level and the activity of its associated signaling pathways are 

known to play important roles. Here, a critical observation is that both the intracellular 

and extracellular sources of calcium are important for circadian rhythm generation and 

communication in the SCN [52-55]. 
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Indeed, evidence in mammals and Drosophila supports the concept that the plasma 

membrane is not merely the proximal target of the molecular clock, but its excitability 

is integral to clock function. Across this partnership also lies the glial circadian clock. 

As in neurons, the relationship between the molecular clock and glio-physiology 

remains poorly understood. Uncovering the signaling pathways and mechanisms 

involved are daunting challenges, but a necessary task if we are to understand how 

circadian rhythms are generated and communicated in the SCN and across the brain. 
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