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ABSTRACT

The zonal-mean atmospheric flow of an idealized terrestrial planet is investigated using both numerical

simulations and zonally symmetric theories, focusing largely on the limit of low planetary rotation rate. Two

versions of a zonally symmetric theory are considered, the standard Held–Hou model, which features a

discontinuous zonal wind at the edge of the Hadley cell, and a variant with continuous zonal wind but dis-

continuous temperature. The two models have different scalings for the boundary latitude and zonal wind.

Numerical simulations are found to have smoother temperature profiles than either model, with no tem-

perature or velocity discontinuities even in zonally symmetric simulations. Continuity is achieved in part by

the presence of an overturning circulation poleward of the point of maximum zonal wind, which allows the

zonal velocity profile to be smoother than the original theory without the temperature discontinuities of the

variant theory. Zonally symmetric simulations generally fall between the two sets of theoretical scalings, and

have a faster polar zonal flow than either set. Three-dimensional simulations, which allow for the eddymotion

that is missing from both models, fall closer to the scalings of the variant model. At very low rotation rates the

maximum zonal wind falls with falling planetary rotation rate, and is zero at zero rotation. The low-rotation

limit of the overturning circulation, however, is strong enough to drive the temperature profile close to a state

of nearly constant potential temperature.

1. Introduction

The theory of the Hadley cell has long been an ob-

ject of study. Of both historical and scientific note is

the famous paper by Hadley on the trade winds over

250 years ago (Hadley 1735), and the work a century or

so later by Ferrel (1859) and Thomson (1892). Ferrel

introduced the notion of a second cell (now called the

Ferrel cell), but none of these authors were able to

give a proper explanation of the limited latitudinal

extent of the Hadley cell, which they generally envi-

sioned to extend to the pole. Baroclinic instability

was implicitly considered to be a limiting factor in the

Hadley cell extent in the discussion of Lorenz (1967),

but even without that instability an ideal Hadley cell

cannot extend to the pole. The reason for that comes

from the conservation of angular momentum in the

poleward-moving branch of the Hadley cell, as noted

by Schneider (1977), which in the absence of fric-

tional effects leads to the development of very strong

zonal winds. Noting that result, Held and Hou (1980,

hereafter HH) developed a zonally symmetric theory

in which, neglecting eddies and any time dependence,

they posited a circulation at low latitudes in which the

total zonal specific angular momentum is conserved by

the flow, and a purely zonal flow at high latitudes in

thermal wind balance with the specified forcing. Match-

ing conditions are applied at the boundary between the

low- and high-latitude regions, and the satisfaction of

these determines the boundary latitude uH . Their model

may be regarded as a theory for an ‘‘ideal’’ axisymmetric

Hadley circulation, and one of its main contributions was

to show that even in the absence of baroclinic instability

the Hadley cell would not reach the pole, at least on a

rapidly rotating planet like Earth.

HH expressed their theory in fairly general terms,

but focused on the limit uH � 1, which corresponds to

high planetary rotation rate V. The low-V limit of the

theory was then specifically considered by Hou (1984),

with Covey et al. (1986) and Mitchell and Vallis (2010)

performing a number of related simulations, looking at

superrotation in particular and motivated in part by

Titan. Various extensions to the theory relevant to Earth

have also taken place. For example, Lindzen andHou (1988)

and Plumb and Hou (1992) considered hemispherically
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asymmetric forcing, and Caballero et al. (2008) ex-

tended the zonally symmetric theory, a Boussinesq

model originally, to compressible atmospheres.

In this paper, motivated partly by Venus (which has

an obliquity of only 38), we revisit the hemispherically

symmetric case, focusing on the matching conditions

between the low- and high-latitude regions, and on the

low-rotation regime. We also perform both zonally

symmetric and three-dimensional simulations using an

idealized GCM. Noting some of the differences be-

tween these simulations and the theory of HH, we are

motivated to evaluate an alternative matching condi-

tion in the zonally symmetric theory, which exchanges

the discontinuity in zonal wind for one in temperature.

We compare the theoretical predictions and obtain scal-

ings for both theories in the low-V limit. In this limit, it is

natural to use the boundary colatitudeuH [p/22 uH � 1.

We go on to compare the simulations with both of the

theories, and discuss how they may be reconciled, in

particular in the polar region, and how this may be able

to effect the elimination of both discontinuities. To

facilitate comparisons between theory and simulation,

we use only a simple forcing in the simulations, that of

Held and Suarez (1994), which is very similar to that of

HH. Both use Newtonian relaxation of the tempera-

ture field toward a specified equilibrium that is maxi-

mum at the equator and minimum at the poles, without

diurnal or seasonal variation.

An outline of the paper follows. Section 2 contains a

summary of the Held–Hou theory, including discussion

of the matching conditions and the general solution.

Section 3 introduces the alternativematching condition

and its consequences. The two theories are compared

further in section 4, and then in section 5 the low-V

limit is considered and various scalings obtained. Sec-

tion 6 describes the numerical modeling and results,

with comparison to theory and consequent discussion. In

section 7 we draw attention to some implications for the

idealized modeling of Venus, but we leave the actual

study of Venus to a later paper. We conclude in section 8.

An appendix provides more detail concerning the con-

version used to compare the theory with the simulations.

2. The Held–Hou theory for zonally symmetric
atmospheres

a. Summary of derivation

We first summarize the theory of HH. Readers who

are familiar with it may wish to skip to section 3, re-

ferring back to this section as needed. HH start from

the Boussinesq version of the hydrostatic primitive

equations on a sphere. [The compressible hydrostatic

primitive equations in pressure coordinates have the

same form as the Boussinesq equations (Vallis 2017),

so the Boussinesq approximation is not as restrictive as

it may seem.] Steady flow (›/›t5 0, where t is time) and

zonal symmetry (›/›f5 0, where f is longitude) are

assumed throughout, and we will only use the equa-

tions in their inviscid approximation. The two hori-

zontal components of the momentum equation are

Du

Dt
2 f y2

uy tanu

a
5 0, (1)

Dy

Dt
1 fu1

u2 tanu

a
52

1

a

›F

›u
, (2)

where u is latitude, z is height above the surface, a is the

planetary radius, v(u, z)5 (u, y, w) is the flow velocity,

f 5 2V sinu is the Coriolis parameter, F is the geo-

potential, and D/Dt5 (y/a)›/›u1w›/›z. The equations

are completed by the incompressibility condition

= � v5 1

a cosu

›(y cosu)

›u
1

›w

›z
5 0, (3)

hydrostasy

›F

›z
5
gQ

Q
0

, (4)

where g is the acceleration due to gravity and Q is po-

tential temperature, and the thermodynamic equation

DQ

Dt
52

(Q2Q
E
)

t
. (5)

Radiative–convective equilibration is represented by

the thermal forcing term on the right-hand side that

relaxes the potential temperature toward a specified

equilibrium QE [see (12) below] with a specified time t.

At the top of the atmosphere z5H we takew5 0, and

(1) may then be written

y(z1 f )5 0, (6)

where

z52
1

a

›u

›u
1
u tanu

a
(7)

is (the vertical component of) the relative vorticity. Equa-

tion (6) may be satisfied in two ways: (i) y5 0 (identically),

which by (3) implies w5 0, self-consistently; we will call

v5 (u, 0, 0) a circulation-free solution; or (ii) total vor-

ticity z1 f 5 0, that is,

2
1

a

›u

›u
1 f 1

u tanu

a
52

1

a2 cosu

›M

›u
5 0, (8)
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conserving the total zonal specific angular momentum

M[ (u1Va cosu)a cosu; this has solution

u5u
M
(u)1

u(0)

cosu
, (9)

where

u
M
[

Va sin2u

cosu
. (10)

The alternatives (i) and (ii) will be applied to high- and

low-latitude regions respectively [note that (10) would

diverge at the pole], with matching conditions at the

boundary latitude uH , which is the edge of the Hadley

cell. [In some monsoon contexts the alternatives may

both apply at low latitudes but in different regimes, as

in Geen et al. (2018).]

The remaining dynamical equations may be com-

bined by cross differentiating—assuming that the ad-

vective term v � =y in (2), which is zero in case (i), is

also small in case (ii)—to produce an equation for thermal

gradient wind balance, and integrating in z—assuming that

u is small in the boundary layer—to get at z 5 H:

fu1
u2 tanu

a
52

gH

aQ
0

›Q

›u
, (11)

where the overbar denotes the vertical averageH21
Ð H
0 dz.

The first and second terms on the left-hand side corre-

spond to the geostrophic and cyclostrophic thermal wind

gradients respectively.

In the circulation-free case (i), we now use the ther-

modynamic equation, (5), to conclude that Q5QE.

Equation (11) must then be solved for u[ uE given

Q5QE, which is specified as

Q
E

Q
0

5 12
2

3
D
H
P

2
(sinu) , (12)

where P2(x)5 (3x2 2 1)/2 and Q0 and DH are parame-

ters. The solution is

u
E
5Va cosu (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R1 1

p
2 1), (13)

where R[DHgH/V2a2, as in HH. We note that this

uE corresponds to global rigid-body rotation about

the planetary axis, that is, constant angular velocity

uE/a cosu5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R1 1

p
2 1. This is a consequence of the

specified form of (12).

In the angular-momentum-conserving case (ii), u is

given by (9), and (11) becomes an equation to be solved

forQ. Equivalently, in this case (11)may bewritten in the

form of a conserved energy: first multiply (8) by u to get

1

2a

›

›u
(u2)5 fu1

u2 tanu

a
, (14)

and hence

›

›u

�
1

2
u2 1

gHQ

Q
0

�
5 0, (15)

which consists of a zonal kinetic energy term and a

thermal term. The solution is

Q(0)2Q

Q
0

5
u2 2 u(0)2

2gH
. (16)

This immediately implies a finite upper bound on

u, since Q. 0. Specializing to the case u(0)5 0,1 (16)

becomes

Q(0)2Q

Q
0

5
u2
M

2gH
5

V2a2 sin4u

2gH cos2u
, (17)

which is (12) of HH.

b. Matching conditions

HH proposed the following two matching conditions:

continuity of temperature,

Q(u
H
2)5Q

E
(u

H
1) , (18)

and the closure of the energy budget over the Hadley

cell, integrating (5) and using v � =Q5= � (vQ), implied

by (3), to obtain

ðuH
0

Q cosudu5

ðuH
0

Q
E
cosudu . (19)

SinceQ5QE in the high-latitude region, this regionmay

be added to the integral to write

ðp/2
0

(Q2Q
E
) cosu du5 0: (20)

The second matching condition implies Q;QE ;Q0

and hence that the upper bound on u;
ffiffiffiffiffiffiffi
gH

p
.

c. General solution

HH focused mainly on the low-R limit, and we will

focus mainly on the high-R limit considered by Hou

(1984). However, we first describe the general solution.

1 This eliminates both equatorial superrotation, u(0). 0, in ac-

cordance with Hide (1969), and nonequatorial extrema inQ, which

occur where u5 0 if u(0), 0.
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The zonal wind u is already given on either side of uH by

(10) and (13), but uH is still to be determined;Q is given

on either side of uH by (12) and (17), in which the only

other unknown is Q (0). These may be substituted into

the second matching condition (19) which upon in-

tegration gives

Q(0)

Q
0

5 11D
H

�
1

3
2

1

3
x2H

�
11

1

2R

�
2

1

2R

1
1

4Rx
H

ln

�
11 x

H

12 x
H

��
, (21)

where xH [ sinuH . The first matching condition may be

used to eliminate Q(0) and obtain the expression

R5
3

4

�
1

3
1

1

x2H
1

x2H
12 x2H

2
1

2x3H
ln

�
11 x

H

12 x
H

��
, (22)

which is implicit in (17) of HH and may be inverted nu-

merically, that is, solved for xH given R. Q(0) and hence

Q generally is then determined.

Figure 1 shows a sketch of the solutions for (Fig. 1a)

u and (Fig. 1b) Q, and how they vary with V. The dash–

dotted lines show uE and QE respectively. For each V
(each color), the solid lines show the angular-momentum-

conserving solutions (which both diverge at the pole), the

thick lines are the combined HH solutions, and the

vertical dashed lines mark uH—where the temperature

curves cross, by the first matching condition. The sec-

ond matching condition sets the equatorial intercept

of temperature such that the areas under the Q and QE

curves are equal, or equivalently that the net area

between the curves is zero, when weighted by cosu.

[Note however that this cosu weighting factor, from

(19) or (20), is not incorporated into the sketched

curves. It has the same functional form as uE.] A no-

table feature of the HH theory is that u is discontinuous

at uH . This corresponds, via thermal wind balance, to

the discontinuous gradient in Q, even though Q itself

is continuous.

As V decreases (red then black then blue), both u

andQ flatten in the Hadley cell region, by (10) and (17)

respectively, and uH moves poleward. To preserve the

equal-area constraint, the low-latitude temperature is

reduced. Although uM is also reduced at any given u,

the discontinuity in u at uH is increased. This fact, in

part, motivates us to suggest an alternative matching

condition, which we consider in the next section. In

section 5 we will develop the low-V scalings of the two

theories quantitatively.

Finally we note that, at the boundary xH , the ratio of

gradients u0
M/u

0
E diverges ;22/R as R/ 0; both u0

M/u
0
M

and uM/uE diverge ;22
ffiffiffiffiffiffi
2R

p
/3 as R/‘.

3. An alternative matching condition

We will see below that the discontinuity in u at uH
(shown as the red curve in Fig. 3b) is of the same order as

u itself (on the equatorward side of higher u—and also,

in the low-rotation limit, is much larger than u on the

poleward side). We will also see (in section 6) that our

numerical simulations of a primitive equation model,

even in the zonally symmetric case and in the inviscid

limit, do not seem to reach a steady-state velocity

profile with a strong discontinuity. This is associated

with both temporal fluctuations and a weak over-

turning circulation on the poleward side of the maxi-

mum u. However, we first consider an alternative

theoretical model that would allow us to avoid the

FIG. 1. Sketch of the Held–Hou model (cf. Figs. 1 and 3 of HH)

for three different planetary rotation ratesV, indicated by different

colors. (a) Zonal wind vs latitude. The solid line shows the angular-

momentum-conserving zonal wind uM, which diverges at the pole.

The dash–dotted line shows the zonal wind uE that is in thermal

wind balance with QE. (b) Potential temperature. The solid line

shows the temperatureQ in thermal wind balance with uM; this too

diverges at the pole. The dash–dotted line shows the forcing tem-

perature QE. The original HH matching conditions determine the

latitude (vertical dashed lines in both panels) at which one solution

crosses over to the other, where Q is continuous but u is discon-

tinuous (thick solid lines).
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zonal-wind discontinuity without relaxing the assump-

tions made in either the equatorward or the poleward

region. Namely, we could change the first matching con-

dition to specify that u itself be continuous at the

boundary latitude:

u
M
(u

H
2)5 u

E
(u

H
1) . (23)

Using (10) and (13), this gives the boundary latitude

directly:

cos2u
H
5 12 x2H 5

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R1 1

p . (24)

These two equations replace (18) and (22). Equations (19)

and (20) are essentially a consequence of the dynamics,

and have not been changed; (21) was deliberately written

in a form that is independent of the first matching condi-

tion, so Q(0) is determined as before. The consequence,

unsurprisingly, is that there is now a discontinuity in Q
instead of u. We will return to discuss this trade-off later.

The significance of the crossover point between the

uM and uE curves was already pointed out by Held and

Hoskins (1985). In a simple model similar to that of HH,

but with a linear damping term retained in (6), they show

that u# uM, and therefore the Hadley cell must extend

from the equator at least as far as this crossover point

before it can switch to the uE branch. Thus, our alter-

native matching condition here corresponds to attaining

this lower bound on the crossover latitude; the extension

beyond this bound in the original HH theory has a

different physical origin, captured by their matching

condition, which may be differently affected by any

modifications to the poleward region.

Figure 2 shows a sketch similar to Fig. 1 but for

the new matching condition. The underlying uM and

uE curves are all as before, but now the boundary lat-

itude is set by where they—and not the temperature

curves—cross. The boundary still moves poleward as

V is decreased, but for all values of V the boundary is

equatorward of the original boundary. The tempera-

ture discontinuity at the new boundary is evident. It

is given by adding (12) to (17), using (21), and (24) to

eliminate R:

Q(x
H
2)2Q

E
(x

H
1)

Q
0

5
D
H

(22 x2H)

"
5

3
2

1

x2H

1
(12 x2H)

2

2x3H
ln

�
11 x

H

12 x
H

�#
.

(25)

Again the discontinuity (but now in temperature) be-

comes larger asV is reduced. The temperature gradients

on either side of the discontinuity are equal, by thermal

wind balance. In order still to satisfy the secondmatching

condition with the new boundary, the equatorial tem-

perature is shifted slightly higher (relative to Fig. 1, for a

givenV), to maintain the equal areas. However, this shift

is always small (and actually vanishes in both the low- and

high-rotation limits), as seen in Fig. 3e below.

With the new matching condition, the ratio of u gra-

dients at the boundary is

u0
M

u0
M

����
xH

52

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R1 1

p
1 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2R1 1
p

2 1

!
, (26)

which has the limit 21 (unlike the divergence with the

original matching condition) as R/‘; it still diverges
;22/R as R/ 0.

4. Comparison of the two variants

Figure 3 shows a quantitative comparison of various

other aspects of the two theories. Note that at high V

FIG. 2. As in Fig. 1, but for the model with modified matching

conditions that determine the latitude (vertical dotted lines in both

panels) at which one solution crosses over to the other, where u is

continuous but Q is not (thick solid lines).
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FIG. 3. Theoretical solutions of the HH and continuous-u theories. Parameters appropriate for Earth have been

used, so that these plots match Fig. 7, and the variable planetary rotation rate V has been normalized to Earth’s

rotation rate VE. In all panels, dashed lines correspond to the HH theory, dotted lines to the continuous-u theory,

and dash–dotted lines to both. (a) Hadley cell boundary latitude uH , (b) boundary zonal wind uH , (c) boundary

colatitude uH [p/22 uH , (d) boundary zonal wind as an angular velocity around the planetary axis vH [
uH /(a cosuH), (e) equatorial temperature Q(0), and (f) boundary temperature QH . The red curves in (b), (d), and

(f) show the discontinuity (difference) at the boundary, between the appropriate pair. The solid magenta curve in

(a) shows the difference between the two theories. Gray straight lines indicate the low-V asymptotes derived in the

text and also shown in Fig. 7.
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(low R), which is the limit originally considered by HH,

all of the power-law scalings shown are the same for

both theories; they differ only by an order-unity pre-

factor. Furthermore, the boundary latitude uH is close

across the whole range of V (differing by no more than

;108), as is the equatorial temperature Q(0). However,

different scalings are obtained from the two theories at

low V (high R), including for the boundary colatitude

uH . The alternative boundary condition is therefore

mainly of interest in this limit, in which it is natural to use

the colatitude u[p/22 u instead of u. In the following

section we derive the low-V scalings indicated by the gray

lines in Fig. 3, and then in section 6we compare themwith

numerical simulation results from a GCM code.

5. The low-rotation limit and colatitude scalings

a. General

We now turn to the limitV/ 0. In the Hadley cell we

see immediately from (17) that, except near the poles,

Q(0)2Q

Q
0

5
V2a2 sin4u

2gH cos2u
/ 0,

and so Q/Q(0)5 const. This result was pointed out

by Hou (1984). As mentioned above, it means that the

temperature is flattened (relative to the forcing tem-

perature) within the Hadley cell. This flattening is il-

lustrated in Figs. 1 and 2. Toward the (north) pole it is

natural to make the small-angle approximation for the

colatitude u[p/22 u, whence

Q(0)2Q

Q
0

;
V2a2

2gHu2
. (27)

For the circulation-free solution at the pole itself, (12)

gives

Q
E

Q
0

5 12
2

3
D
H
1D

H
u2 1O(u4) , (28)

which again is constant to leading order, and the second

matching condition becomes simply

Q(0)5Q
0
. (29)

From (10), the zonal wind toward the poleward edge

of the Hadley cell is

u
M
(u);

Va

u
. (30)

On the poleward side of the boundary, we have

cyclostrophic balance; taking the large-R limit of (13),

u
E
(u)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D

H
gH

q
u . (31)

That uE }u in this limit means the polar vortex rotates

like a rigid body with angular velocity

u
E

au
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D

H
gH

p
a

, (32)

which is independent of V (at fixed DHgH—not at

fixed R). We noted the rigid-body rotation for this

global QE earlier. In the present limit it depends only

on the vanishing u and nonvanishing u2 terms in the

polar expansion, (28). The polar vorticity (both relative

and absolute) is 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DHgH

p
/a in this limit.

b. Low-rotation solutions with original HH
matching conditions

We impose (18) to determine the transition colatitude

uH [p/22 uH . Using (27), (28), and (29) we get, to

leading order,

12
V2a2

2gHu2
H

5 12
2

3
D
H
, (33)

and hence

u
H
5

ffiffiffi
3

p
Va

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D
H
gH

p 5

ffiffiffiffiffiffi
3

4R

r
. (34)

This last result was also given implicitly by Hou (1984)

as part of his (34).

From (30), the maximum zonal wind, at the poleward

edge of the Hadley cell, is therefore

u
M
(u

H
)5

Va

u
H

5
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D
H
gH

p ffiffiffi
3

p , (35)

which like the polar vorticity is independent of V, as

noted by Covey et al. (1986), and is consistent with

the form of the upper bound on umentioned earlier. At

the edge of the polar vortex, from (31),

u
E
(u

H
)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D

H
gH

q
u
H
5

ffiffiffi
3

2

r
Va . (36)

Thus, the Hadley cell extends with constant Q almost

to the pole; at its edge, the maximum zonal wind is in-

dependent of V, and beyond there is a polar vortex

with rigid-body rotation whose angular velocity is

independent of V.

The dimensionless parameterR is similar to a thermal

Rossby number, at least in the limit R � 1, which cor-

responds to high V [and to the geostrophic limit of (11),
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in which only the first term appears on the left-hand

side]. In this limit, R; uE/Va, and in the Hadley cell

region R; uM/Va.

In the opposite limit here (the cyclostrophic limit),

R � 1, and
ffiffiffiffi
R

p
; uM/Va, whereas in the polar region

uE/Va is of order unity; in fact, using (35) and (36), in

the cyclostrophic limit uM(uH)/uE(uH)5 2
ffiffiffiffiffiffi
2R

p
/3 � 1.

This is the large discontinuity in u already discussed: of

the same order as uM, and in the low-V limit large com-

pared to uE and Va. Figure 1 is necessarily drawn for

finite V but so as to be suggestive of this limit.

c. Low-rotation solutions with continuous u

In the low-V limit, (24) gives

u
H
5

�
1

2R

�1/4

5

ffiffiffiffiffiffiffi
Va

p

(2D
H
gH)1/4

, (37)

and hence, using (30) or (31),

u(u
H
)5

ffiffiffiffiffiffiffi
Va

p
(2D

H
gH)1/4 . (38)

The uH given by (37), although larger than that given

by (34), is still small; both approach the pole asymp-

totically as V/ 0. In this limit, the closure integral,

(20), is unaffected by the tiny polar region.We will return

to this point when we discuss the numerical results below.

Note that the continuous-u behavior circumvents a

problematic issue in the original theory—namely that

the maximum u, given by (35), remains nonzero even as

V/ 0. In the continuous-u theory, the maximum u is

given by (38), and, although the polar vorticity stays

constant, because the polar vortex shrinks, its bound-

ary zonal velocity decreases to zero. One might in-

tuitively expect to get u5 0 for a stationary planet,2

although the temperature forcing still produces a zonally

symmetric and circulation-generating global structure

even without rotation: the planetary axis is no longer

an axis of rotation, but the poles and the equator are

still extrema of the forcing in this model. In the original

theory, V5 0 is a singular point in parameter space; on

either side of it, the maximum juj approaches the value

given by (35), with the sign given by the sign of V, and

there is therefore a discontinuity in parameter space at

V5 0. This is not a paradox in the strict sense, but one

would expect the model to break down for sufficiently

small V in reality (for example because the shear ›u/›u

grows without limit as V/ 0), whereas the variant

theory does not have this particular problem.

6. Numerical modeling

a. Simulation setup

We performed simulations using Isca (Vallis et al.

2018), a code based on the Flexible Modeling System

from the Geophysical Fluid Dynamics Laboratory (GFDL;

Princeton). We integrate the hydrostatic primitive equa-

tions using a spectral dynamical core, at horizontal reso-

lutions ranging from T42 to T341.3 The parameter values

used (for atmospheric mass, gas constants, etc.) are those

of Earth, except for rotation rate V where noted.

Thermal forcing and Rayleigh damping terms are as

specified by Held and Suarez (1994), with additional

horizontal =8 hyperdiffusion (for both temperature

and velocity), whose coefficient (the hyperdiffusivity)

is chosen to give a damping time of 0.1 day at the

horizontal grid scale. This hyperdiffusion is intended to

regularize the simulations while approximating the

inviscid limit as closely as possible given the available

resolution. Reducing the coefficient below this value

can sometimes lead to model crashes. We have also

verified in one case that doubling the horizontal resolu-

tion while keeping the physical hyperdiffusivity (instead

of the gridscale damping time) fixed produces only a

small change in results, and no further change when it is

doubled again; this gives us adequate confidence that in

our results which follow, with fixed gridscale damping

time, when we obtain convergence as resolution is

increased, we have converged to the inviscid limit.

Our simulations all use 30 vertical levels, unevenly

spaced in s[ p/ps, where p is the pressure and ps the

surface pressure. No vertical damping is added.We have

performed spot checks with different numbers of levels,

and found that the only noticeable effect is on strato-

spheric wave activity (oscillations with vertical wave-

number at the grid scale), not the main tropospheric

circulation with which we are concerned here (traces of

such activity may be seen in the high-altitude stream-

function contours of Fig. 5k).

Several variants of the HH forcing have been used

in idealized studies. In particular, static stability

against small-scale convection may be introduced via a

2We, in fact, find this to be the case in our numerical simulations

described below. Although we do not show as many results for

these V5 0 simulations, they are included as the hollow points on

the vertical axis of Fig. 7a.

3 For our zonally symmetric simulations, the T for ‘‘triangular’’ is

strictly inappropriate, because only the m 5 0 modes are present.

However, rather than define a new and unfamiliar notation for our

different spectral grids, we prefer to specify the corresponding base

horizontal resolution first, and then state any further truncation

to a reduced range of zonal modes.
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latitude-dependent term, as by Held and Suarez (1994),

or via a modified adiabatic index in the exponent re-

lating temperature to potential temperature, as by

Mitchell and Vallis (2010). Such functional forms would

replace the z-dependent term in (2) of HH: but although

this does determine the magnitude of the overturning

circulation, it has played no role in our scaling analysis

for the boundary latitude and zonal wind; it disappeared

when vertically averaged to obtain our (12). In principle,

more general forms would modify the above theory, but

in practice the effect is small. In the simulations that we

report here, we treatHeld–Suarez forcing as effectively the

same as HH. For more details, please see the appendix.

b. Results

Figure 4 shows simulations at four different rotation

rates (left to right columns): Earth’s VE, VE/5, VE/20,

and VE/100. Each panel shows the zonal wind (as color

shading) and the temperature (as solid contour lines).

Figure 4a is the Earthlike case. The rows correspond

to fully 3D simulations (top row), reduced simulations

truncated to zonal wavenumbers m5 f0, 1, 2g only

(middle row, denoted W2), and zonally symmetric (ZS)

simulations truncated to zonal wavenumber m5 0 only

(bottom row). These last are the simulations closest to

the Held–Hou model.

The physical picture in terms of angular momentum,

underlying the theory discussed above, is made more

manifest in Fig. 5. This shows the same zonal-wind data as

Fig. 4, but u has been converted into the total zonal spe-

cific angular momentum M5 (u1Va cosu)a cosu, and

plotted as M/Va2 2 1, where Va2 is the planetary specific

angular momentum at the equator. This figure also shows

contours of the overturning mass streamfunction.

FIG. 4. Zonal means against latitude u and model-level pressure spref (hPa) (only the bottom decade is shown), where pref 5 103 hPa:

zonal wind u (m s21; shading); temperature T (solid contour lines; at 205K and above in 20-K intervals); forcing temperature Teq (dotted

contour line; at 205K only); and the point of maximum u within the Northern Hemisphere (NH) and the plotted pressure range (yellow

plus sign). (a)–(d) Full 3D simulations, labeled by planetary rotation rateV; (e)–(h) reduced simulations truncated to zonal wavenumbers

m5 f0, 1, 2g only, for the same V values; and (i)–(l) zonally symmetric simulations truncated to zonal wavenumber m5 0 only, for

the same V values. VE 5 7:33 1025 s21 is the rotation rate of Earth. For each case, the highest available resolution (cf. Fig. 7) is used:

(a)–(d) T42, (e)–(i) T170, and (j)–(l) T341.
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Several trends are evident in these two figures. First,

consistent with the above theory, the Hadley cell cir-

culation pattern widens (and strengthens) as the plane-

tary rotation reduces, eventually spanning almost the

entire planet; the temperature flattens, and (consistent

with thermal wind balance) the midlatitude zonal jets

also move poleward. These observations are true not

only for the zonally symmetric simulations but for all

three rows. The white region in each panel of Fig. 5 is the

region within which the zonal angular momentum is

close to its equatorial surface value, that is, has been

approximately conserved by the circulation. The red

regions show superrotation. Notwithstanding the dif-

ferences between the panels in this second figure, it is

striking how simple the zonal wind appears when shown

as M, compared with the complex structure of u in the

first figure. The additional structure in u is purely geo-

metric, as the expression for M(u) makes clear.

Second, as the planetary rotation rate decreases, the

zonal wind at first increases and then decreases, not only

in themidlatitude jets but also at low latitudes for the 3D

simulations, transitioning from retrograde equatorial

winds in Fig. 5a to prograde winds in Fig. 5d, which

features a wide superrotating layer. Figure 5c is similar

to Titan, in which context such behavior has been

studied by Mitchell and Vallis (2010) and later workers,

who found that the superrotation is driven by nonlinear

interactions between eddies (i.e., modes with nonzero

zonal wavenumber m). Consistent with this, super-

rotation is absent in the corresponding zonally sym-

metric simulations. However, below the superrotating

layer, the similarity between the 3D and the zonally

symmetric simulations appears to become closer as the

rotation rate reduces.

The simulations that include zonal modesm5 f0, 1, 2g
only, shown on the middle row of each figure, are even

FIG. 5. As in Fig. 4, but with u converted to the total zonal specific angular momentum M5 (u1Va cosu)a cosu normalized to the

equatorial planetary specific angular momentum Va2, where a5 6:43 106 m is the radius of Earth. Also shown is the mass stream-

function of the overturning circulation c5 2pa cosu
Ð
y dp/g (contour lines; interval: 13 1011 kg s21; equivalently, 22 levels between

61:053 1012 kg s21 inclusive; negative values are dashed). The cyan curves show the predicted Hadley cell height as a function of

boundary latitude, as explained in the appendix—dashed and dotted lines correspond respectively to the theory with HH matching

condition and the variant with continuous u.
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closer to the full 3D simulations, and in particular are

able to produce superrotating flow (although weaker

than the corresponding 3D cases, at the lowest rota-

tion rates). We use such reduced simulations to ac-

cess higher resolutions than would be computationally

feasible for fully 3D simulations, as discussed further

in section 6c. The most obvious discrepancy between

the theoretical model and these results—and again this

applies to all three rows—is that the temperature does

not reduce sharply to the forcing temperature at

the edge of the Hadley cell. In each panel of Fig. 4,

the lowest temperature contour shown is the 205-K

contour, and the 205-K forcing contour is shown

dotted. They only overlay at all in Fig. 4i, in which they

overlay everywhere because the overturning circulation

is so weak.

It is also clear in the simulation results that the zonal

wind does not suddenly jump to a smaller value at the

Hadley cell edge. Figure 6 shows horizontal profiles of

the zonal wind u (top row) at a single selected model

level near the top of the overturning circulation. The

zonal velocity u does track uM (marked by the solid gray

line) well in the Hadley cell region, especially in the

zonally symmetric cases (green and red curves) and

at the lowest rotation rate (rightmost column). How-

ever, it does not discontinuously jump to the equilibrium

FIG. 6. Horizontal profiles of zonal means of (top to bottom) zonal velocity u, horizontal wind speed, zonal velocity expressed as an

angular velocity around the planetary axis, relative vorticity z, and vertically averaged temperature T, respectively, at model pressure

level spref 5 311 hPa. Columns are labeled by planetary rotation rateV. Colors match the corresponding datasets shown in Fig. 7: blue

for 3D (T42), brown for W2 (T170), and green or red for ZS (T170 or T341, respectively). Thin gray curves indicate the angular-

momentum-conserving solution (solid) and the solution corresponding to thermal wind balance with the forcing temperature

(dash–dotted), as explained in the appendix. To expand the polar regions smoothly, the horizontal axis is nonlinear in u but linear inffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9082jujp

(in each hemisphere).
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thermal wind (marked by the dash–dotted gray line) in

the poleward region. There is a sharper change in its

gradient ›u/›u, but the gradient on either side of the

maximum is of similar magnitude (unlike in Fig. 1 at

the dashed vertical lines); see the final paragraph of

section 2 and of section 3. So it appears that both the

zonal wind varies more smoothly than in the original

theory, and the temperature varies more smoothly than

in either theory.

The new matching condition may appear to be even

more unphysical than the first, because a discontinuity in

Q is problematic for thermal wind balance, even with

equal gradients Q0 on either side. We might attempt to

fix this in the theoretical model by adding a constant to

Q in the polar region to close the discontinuity, which

does not change the zonal wind (since thermal wind

balance involves only the gradient), but such a fix does

mean that Q5QE no longer holds there. Hence, from

(5), the polar region is no longer circulation free in

steady state. The closure condition, (20), will now

include a contribution from the polar region; however,

as mentioned at the end of section 5, in the low-V limit

its contribution will be negligible, both because the

boundary latitude is close to u5p/2 and because the

weighting factor cosu is small. In other words, a tiny

adjustment to the Hadley cell covering the rest of the

planet would bring the system back into global energy

balance.

More generally, any adjustment to the temperature

would make a negligible contribution to (20) in the

low-V limit. The adjustment would not, however, re-

produce the same uE, and hence would not in gen-

eral leave the boundary latitude or the polar vorticity

unaffected. Since a generalized model of this form is

underdetermined in the absence of any additional

principles, a more comprehensive understanding of

the polar region is needed. Before addressing this is-

sue further in section 6d, we compare the simula-

tion results with the theoretical low-V scalings more

quantitatively.

c. Testing the theoretical scalings

We now compare the theoretical scalings for the HH

theory and the continuous-u variant with our numerical

results; the comparison is shown in Fig. 7. The data

points plotted includemanymore runs than those shown

in Figs. 4 and 5. Figure 7 includes intermediate and lower

rotation rates, and also different horizontal resolutions

(indicated by different marker sizes) for the reduced

(W2:m# 2 only) and ZS (m5 0 only) datasets. It can be

seen (where the green and red discs coincide) that the

zonally symmetric runs are converged in horizontal

resolution, which corresponds to the inviscid limit, down

to approximately V5VE/100. We discuss convergence

further in section 6e below.

Our simulations use a hydrostatic primitive model

rather than a Boussinesq model. Caballero et al. (2008)

developed the Held–Hou theory for a compressible at-

mosphere with a more sophisticated radiative model,

and found similar scaling behavior (but did not focus

on low rotation rates). Here we take DHgH/DTyRd,

where DTy 5 60K is the Held–Suarez equator–pole

temperature difference at the surface4 and Rd 5
287 J kg21 K21 is the gas constant for dry air. (Since the

panels of Fig. 7 are log–log plots, this value sets the in-

tercepts only; it does not affect the slopes.)

The Held–Suarez forcing also features a strato-

spheric cap temperature of 200K, below which the

forcing does not drop at higher altitudes. We have

not needed to take additional account of this; it effec-

tively sets the tropopause height at about the pressure

scale height (for Earth). A general theory for other

planets will need to pay more attention to this dis-

tinction; on Venus for example there are several scale

heights between the tropopause and the surface.

Figures 4 and 5 mark with a plus sign in each panel

the Northern Hemisphere maximum of u. In the zon-

ally symmetric theories discussed above, the maximum

u occurs at the boundary between the low- and high-

latitude regions, and so we take this maximum to define

the boundary (co)latitude in our simulations.

We tested these theories by performing a scan in V
and plotting the boundary colatitude uH ; the maximum

zonal wind uH ; and the maximum zonal wind ex-

pressed as an angular velocity around the planetary

axis, vH [uH /a sinuH . These are shown in Figs. 7b–d,

along with the predicted low-V scalings from section 5,

also shown as gray lines in the same panels of Fig. 3.

In general we see that the simulations fall between

the predictions of the two sets of scalings. In Fig. 7c, the

boundary colatitude follows the HH scaling quite well

in the low-rotation limit for the ZS simulations, pro-

vided sufficient resolution is used (higher T number).

The 3D simulations appear closer to the continuous-u

prediction, but this result is not conclusive because of

their limited resolution. Figures 7b and 7d tend to

corroborate this story to some degree; in all simulations

the maximum zonal wind does eventually decrease as

rotation rate decreases, but it is sustained at a higher

level, which is especially clear when viewed as an an-

gular velocity in Fig. 7d, for the zonally symmetric

simulations at high resolution. We cannot be certain

that the runs at the lowest nonzero rotation rate,

4DTy (in K) is called ‘‘delh’’ in the code.
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V5VE/1000, are converged in resolution even for the

highest resolution shown here, so we include these

points for completeness only. It is interesting that at the

next lowest rotation rate, V5VE/200, the W2 runs do

appear to be very well converged in resolution (pink

square overlaying brown square), and much closer to

the continuous-u theory. It is a question for further

work to determine if this is indeed representative of

fully 3D (and thus much more expensive) runs that are

converged in resolution.

d. Further discussion

Figure 7a shows the magnitude of the overturning

circulation in the Hadley cell cmax, where c is the mass

FIG. 7. (a) The magnitude of the hemispheric overturning circulation, as given by the maximum of the mass

streamfunction c, vs planetary rotation rate V. (b) Maximum (in latitude) of the zonal wind uH . (c) Hadley cell

boundary colatitude uH . (d) Maximum zonal wind as an angular velocity around the planetary axis vH [ uH /a sinuH .

The boundary colatitude is defined to be the colatitude of the point ofmaximumzonal wind, indicated by the plus signs

in Figs. 4 and 5. Various datasets are plotted, as indicated in the legend of (a): fully 3D simulations, at T42 resolution

(3D; pentagons); simulations truncated to zonal wavenumbersm5 f0, 1, 2g only (W2; squares), at various resolutions

(differentiated by marker size); and zonally symmetric simulations truncated to zonal wavenumber m5 0 only

(ZS; discs), again at various resolutions. In (a) the limiting value fromW2 and ZS simulations at exactlyV5 0 is

shown (hollow points on the vertical axis). The dashed lines show the low-V limit of the original HH theory. In

(b) there are two such lines corresponding to the discontinuity in u: the upper line is on the equatorward side and

the lower line is on the poleward side. The dotted lines show the low-V limit of the modified theory with the

alternative continuous-u matching condition. In (d), the lower dashed line and the dotted line coincide and are

shown as a dash–dotted line.
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streamfunction. On this panel are also shown, as (two

coincident) hollow points on the vertical axis, the re-

sults from W2 and ZS simulations at exactly V5 0.

These simulations have u5 0 everywhere, so they do

not appear on the other three panels of Fig. 7. Figure 7a

supports the point made earlier, that the overturning

circulation is in good agreement between all three sets

of runs (3D, W2, and ZS), with this agreement im-

proved at low rotation rates and converging to a non-

zero value at V5 0.

Estimates of the overturning time may be obtained

frommH /cmax, wheremH is the mass of the Hadley cell,

or auH /y, or H/w. In the low-V limit, these are all of

similar order to the Held–Suarez damping time scale

(which is 40 days in the bulk of the atmosphere). Thus,

in this limit the circulation is not in the very weak

regime considered by HH; it is strong enough to drive

the temperature toward the dry adiabatic lapse rate

of constant potential temperature, as is demonstrated

by Fig. 8.

We noted above that more general modifications to

the polar temperature may be possible within the same

theoretical framework, but would change the form of

uE and hence the polar vorticity. Figure 6 does suggest

that the continuous-u theory may have some validity: it

is especially evident in Fig. 6b that j›u/›uj is similar on

either side of the maximum u. Figure 7d clearly shows

the boundary angular velocity to be sustained within an

order of magnitude of VE, and therefore many orders

of magnitude above low values ofV. However, while in

some cases there is a distinct plateau in the angular

velocity and the vorticity (third and fourth rows of

Fig. 6) on the poleward side of the point of maximum u,

for example, where indicated by the arrow, Fig. 6 ex-

hibits only limited support for rigid-body rotation

across the whole of the polar region, which is a feature

common to both of the zonally symmetric theories

considered here (and indicated by the gray dash–

dotted straight line in the middle row). One may sur-

mise that in the zonally symmetric cases (green and

red), the temperature that was raised on the poleward

side to achieve continuity at the boundary is then re-

quired to return toward the equilibrium temperature at

the pole, and is thus steepened, resulting in the even

higher angular velocities and vorticities observed

poleward. In the zonally symmetric case there can be

no cross-pole flow. In the 3D and W2 cases, however,

there can be, and so the temperature is not as con-

strained to steepen, and the poleward vorticity can

remain close to the boundary value. The relative

FIG. 8. As in Fig. 4, but for potential temperature Q (solid contour lines, 260–380K in 10K intervals).
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steepening of the temperature profile in the ZS cases

can be seen in the middle columns of Fig. 4, as well as in

the bottom row of Fig. 6, in which the vertical average

T5
Ð
ps
Td(lnp)/

Ð
ps
d(lnp) [cf. (A2) in the appendix] is

plotted. The cross-pole flow in the 3D and W2 cases can

be seen in the wind speed profiles in the second row of

Fig. 6 (blue and brown curves), which do not go to

zero at the poles while the u profiles do. For all the runs,

Fig. 9a shows the angular velocity at the point of maxi-

mum zonal wind taken over the single model level

shown in Fig. 6, and Fig. 9b shows the vorticity evaluated

at the north pole itself (in equivalent units). In the higher-

resolution ZS cases (green and red discs), the polar

vorticity is elevated close to the level corresponding to

rigid-body rotation at the equatorward boundary value

from the HH theory (dashed line), whereas the other cases

are closer to thepredictedpolewardvalue (dash–dotted line).

Neither zonally symmetric theory could apply exactly

to a full GCM simulation, in which one would not expect

actual discontinuities to be maintained. Since eddies

may in general play a role in removing discontinuities

(or opposing their creation), via turbulent diffusion for

example, but such a mechanism is not possible in a

zonally symmetric simulation, some other mechanism

must operate in this case—and may or may not also be

the dominant mechanism operating in 3D simulations.

Here, we see that the ZS simulations do seem to be

distinguished from the other two sets, but it is also

interesting that the apparently underresolved ZS

simulations at T42 are in better agreement with the

3D and W2 cases; so perhaps gridscale numerical

dissipation at low resolutions is mimicking the role of

small-scale eddies. Fang and Tung (1994) have dis-

cussed the relevance of viscous solutions that may

represent a parameterization of eddies in this manner.

(The actual molecular transport coefficients are much

too small for molecular viscosity or heat conduction to

play a role in the ‘‘general’’ circulation, that is to say

on scales that are resolvable in any simulation of the

whole planet.)

As a final note, we observe that the 3D cases exhibit

both u(0), 0 and u(0). 0 on occasion (blue curves for

V5VE and V5VE/5 respectively in Fig. 6).

e. Circulation poleward of the zonal-wind maximum

We do not have a full understanding of the polar

overturning circulation, but it may be characterized

to some extent by the consideration of additional di-

agnostics. We focus first on the VE/5 case.

The zonal-mean zonal momentum equation for the

numerical model may be written in the form
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1D5 0, (39)

where the overbar and prime indicate mean and fluctu-

ating quantities respectively (u5 u1 u0 etc.), v[Dp/Dt

FIG. 9. As in Fig. 7, but considering only the model pressure level spref 5 311hPa. (a) The maximum zonal wind

as an angular velocity around the planetary axis vH . (b) The relative vorticity at the north pole zN , normalized to

give an angular velocity in the same units ofVE. The dashed line again represents the angular velocity in the low-V
limit of theHH theory on the equatorward side of theHadley cell boundary, which is not equal to the vorticity there

in the HH theory (z52f ), and the pole is on the other side of the boundary, so there is no dashed line in (b).
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is the vertical pressure velocity, kf is the Rayleigh

damping coefficient, and D represents the spectral

damping (hyperviscosity). The bracketed terms, when

time averaged, correspond to panels of Fig. 10 (W2)

and Fig. 11 (ZS): (b) includes the Coriolis term 2f y

and the mean-flow contribution to the meridional ad-

vection and metric terms; (c) is the corresponding

fluctuation contributions, and (a) [ (b) 1 (c). These

are all labeled ‘‘horizontal’’ terms. The vertical ad-

vection is taken together as (d), that is, v›u/›p; (e) is

the Rayleigh friction; and the residual (f) accounts for

spectral damping and any numerical errors.

The dichotomy (6) is equivalent to (a)5 (b)5 (c)5 0,

since there are neither spatial nor temporal fluctuations

in a zonally symmetric steady state. Looking first at

Fig. 11, our zonally symmetric case, we see that this di-

chotomy holds well in the Hadley cell region (center),

but is violated in the region poleward of the Hadley cell.

Of course there are no eddies in a zonally symmetric

model, but here we define the mean indicated by over-

bar to be a time mean as well as a zonal mean; then the

fluctuating terms consist of the time-varying contribu-

tions, and we can see that the total (a) is dominated

by these fluctuations (c). The nonvanishing horizontal

terms are balanced by the vertical advection (d), and by

Rayleigh friction in the surface layer.

The dichotomy is an exact result in steady state for

the zonally symmetric shallow-water model of Adam

and Paldor (2009), who drew attention to the existence

of an unsteady layer between the two regions satisfying

(6), and to the fact that while in principle this layer

narrows with time, the process may be too slow to

follow (or presumably to matter relative to other pro-

cesses, such as the seasonal time scale, in a real-world

context; cf. Fang and Tung 1999). Here, we may be

seeing a related phenomenon in three dimensions. We

find no evidence that the fluctuation level decreases,

even slowly, in the statistically steady state. The fluc-

tuations span a significant fraction of the latitude range,

and this is consistent with the deviation of the profiles

in Fig. 6 from the equilibrium solution across the whole

poleward region. Figure 12 shows the fluctuation range

in time at a single model pressure level. It can also be

seen in this figure that, while increasing the horizontal

resolution allows the peak in the time-averaged u to be

resolved more sharply,5 the deviation in the poleward

region from the circulation-free equilibrium (which is

indicated by the dash–dotted gray curve) appears to be

converged.

FIG. 10. Zonal- and time-mean contributions to the evolution of the zonal wind u in the VE/5 case W2 (T170) against latitude u and

model-level pressure (hPa). See section 6e for an explanation of the various panels.

5 Low resolution may artificially widen a narrow ‘‘inner viscous’’

boundary layer discussed by Fang and Tung (1996). Adam and

Paldor (2009) point out that the nature of any jump depends on the

details of the numerical scheme, and our spectral scheme will

prevent any exact discontinuity, even in the gradient. However,

regardless of the numerical scheme and the spatial resolution, it is

unsurprising that the discontinuity of the steady-state theory is

smoothed out in the time average of the fluctuations.
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In the W2 case, Fig. 10, again the overall balance

is between the horizontal and vertical terms, and by

Rayleigh friction in the surface layer; again the di-

chotomy holds well in the Hadley cell region when the

total (a) is considered. In this case, however, the fluc-

tuations are due essentially in their entirety to spatial

eddies (so that defining the overbar to be just the zonal

mean makes no visible difference to the figure), and

there is a large cancellation between the mean flow (b)

and the eddies (c), in the region where the reversed

overturning circulation is visible in the streamfunction

contours of Fig. 5f. Some cancellation also occurs in the

Hadley cell region.

The violation of (6) in the horizontal terms and the

balancing vertical advection implies an overturning

circulation,6 which is not obvious outside theHadley cell

region in the zonally symmetric case, Fig. 5j. We there-

fore include an additional figure showing the stream-

function in much more detail, and highlighting the

low-value contours: this is Fig. 13b. The extension of

the direct cell into the poleward region at low altitude is

clear, as is a weak reversed circulation aloft. For com-

parison, in Fig. 13a, we show the transformed Eulerian

mean (TEM) streamfunction for the W2 case. (Both

panels in fact show the TEM streamfunction, since

the TEM and the usual Eulerian mean are identical

for the ZS case.)

The meridional overturning mass streamfunction used

for the numerical results in this paper is

c5
2pa cosu

g

ð
y dp . (40)

The corresponding TEM mass streamfunction is

given by7

c*5c2
2pa cosu

g

y0Q
0

›Q/›p
. (41)

Here the overbar indicates the zonal mean, but in

Fig. 13a the time mean has also been taken, in order to

smooth out noise in the denominator.

In the W2 case, the reversed mean-flow overturning

circulation is clear in Fig. 5f, but the TEM framework

FIG. 11. As in Fig. 10, but for ZS (T341). In this case there are no spatial eddies (the zonal mean captures everything), but (a) the horizontal

total is partitioned into the contributions from (b) the time mean and from (c) the fluctuations (in time).

6 Vertical motion is necessarily associated with nonzero hori-

zontal divergence, by mass conservation. The divergent part of

the meridional wind can be unambiguously attributed to a merid-

ional overturning circulation: compare with (4) of Zhang and

Wang (2013).

7 The TEM formulation for the primitive equations on a sphere

is taken from appendix A of chapter 15 of Vallis (2017). Here we

have converted from log-pressure to pressure coordinates. In both

(40) and (41) we incorporate the geometric prefactor appropriate

for the mass streamfunction: 2pa cosu is the circumference of the

latitude circle across which y flows. The meridional mass flux cir-

culating between two zonally symmetric toroidal c surfaces is then

simply the difference between the two c values.
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gives a better indication of the overall transport in-

cluding the contribution due to eddies, and this is again

direct at low altitude and reversed at high altitude in

the region around 608 latitude. The correspondence

between the two panels of Fig. 13 is remarkable, but it

should perhaps not be too surprising that the transport

represented by the TEM streamfunction in the W2 and

ZS cases is similar—that the zonal-mean flow in the

latter case accomplishes some of what is done by the

eddies in the former case—since this transport is ulti-

mately driven by the external forcing, which is the same

in both cases. We emphasize however that the form

of this circulation is not a trivial consequence of the

forcing: a Held–Hou-type solution with no overturning

poleward of the zonal-wind maximum (despite the con-

tinuing horizontal temperature gradient) would have no

streamfunction variation there at all, and so would not

look like either of the panels of Fig. 13. The boundary

of the direct circulation in both panels is close to the

forcing tropopause at 200K; the adjacent 205-K con-

tour is shown dotted (as in Fig. 4). There is clearly

scope for further work here to investigate the role of

the vertical structure, in particular the static stability

[which is highlighted by Held and Hoskins (1985)], in

determining the detailed structure of the circulation.

At lower rotation rates, further details of the mean-

flow circulation near the pole are brought out by contour

plots of the vertical pressure velocity v, in Fig. 14. The

reversed overturning circulation noted atV5VE/5 is no

longer evident in the 3D and W2 cases at V5VE/100 in

Figs. 5d and 5h. In Fig. 14, the upward vertical wind on

the poleward side of such a reversed circulation would

show as blue (v, 0). For the W2 cases, a trace of it can

still just be seen at V5VE/50 in Fig. 14a, but not at

V5VE/100 in Fig. 14b, and at V5VE/200 in Fig. 14c

the downward Hadley circulation (v. 0; red) extends

all the way poleward.However, for theZS cases (bottom

row of Fig. 14), a reversed poleward circulation persists,

and further structure is evident especially in Fig. 14e.

The distinction between the W2 and ZS cases here may

be due to the cross-pole circulation for W2 only,

mentioned earlier. Note that since all of the features

discussed here occur only within the troposphere (the

upper part of all the panels is white), they are distin-

guished from the ‘‘deep’’ stratosphere-encompassing

circulation observed by Caballero et al. (2008).

The dichotomy (6) and the thermal wind balance (11)

were derived assuming the smallness of the meridional

and vertical advection. The thermal wind equation is

what relates the zonal wind and potential temperature

profiles in the HH theory; it is used on both sides of the

Hadley cell boundary, whichever set of matching con-

ditions is adopted.Wehave seen in the present subsection

that, unlike in the Hadley cell region, the overturning

advection is not negligible and in fact these terms domi-

nate the mean zonal momentum equation in the region

poleward of the Hadley cell boundary. It is not then

surprising that the continuity properties at the bound-

ary, as well as the solution in the bulk of the poleward

region, differ from the theoretical predictions.

It is possible that a new, simple, and physically moti-

vated choice of flow field in the poleward region would

lead to a new, simple theory in better agreement with the

numerical results and perhaps with nicer continuity

properties. The full specification of such a theory re-

mains for further work, but we note that to take into

account the temporal fluctuations successfully it may

also be necessary to revisit the second matching condi-

tion, the integral constraint, which here corresponds to

closure of the energy budget in steady state.

7. Implications for modeling Venus

Although we do not study Venus specifically in this

paper, we wish to point out a couple of relevant

FIG. 12. Horizontal profiles of the time-mean zonal velocity u at

model pressure level spref 5 311 hPa forV5VE/5, averaged (left)

over the final day in the Southern Hemisphere and (right) over

1050 days in the Northern Hemisphere, for ZS runs at the in-

dicated resolutions. The gray curve and thick red curve (right

panel) are as in the top panel of Fig. 6b, although a linear latitude

scale is used here. The spatial grid points are marked on each

thick curve to give an indication of horizontal resolution, al-

though it should be noted that the number of points exceeds the

maximum wavenumber (usually denoted ‘, as in Ym
‘ for the

spherical harmonic) by about 50% (e.g., there are 64 points at

T42). This is done to avoid aliasing in the nonlinear evolution.

The shading in the right panel shows the fluctuation range in time

(5th–95th-percentile range) during the 1050-day window.
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implications. First, in these simulations (which are all at

Earth’s surface pressure—that of Venus is two orders of

magnitude higher), by the time V has decreased to

VE/100, which is still a faster rotation rate than Venus,

the maximum zonal wind is already considerably lower

than for Earth, even for the 3D simulations, whereas in

reality Venus is observed to have faster zonal winds

than Earth [e.g., in Venus Express data analyzed by

Sánchez-Lavega et al. (2008)]. We find the same effect

with higher surface pressures too (not included here).

Some other mechanism is required in order to sustain

the zonal winds on Venus, for example diurnal and

semidiurnal thermal tides (e.g., Fels and Lindzen

1974), or effects arising from a better treatment of

radiative forcing.

Our results may, however, contain clues to an expla-

nation of Venus’s strong polar vortex, and of its ‘‘cold

collar’’ (e.g., Ando et al. 2016), which is a minimum in

temperature (at a given altitude) at a latitude below the

pole. In Fig. 4, at the highest rotation rates (left) the

temperature decreases poleward, as does the forcing

temperature, whereas at the lowest rotation rates (right)

it is flattened across most of the planet and increases

poleward aloft at very high latitude.Although our present

results contain no strong examples of temperature first

decreasing and then increasing poleward in the same

case, it seems plausible that that may occur due partly to

the type of transition seen here.

8. Conclusions

In this paper we have studied the zonally symmetric

theory of HH and Hou (1984), and a variant with con-

tinuous zonal wind as its boundary matching condition,

focusing mainly on the limit of low planetary rotation

rate. We find that the original theory and this variant

FIG. 13. The TEM mass streamfunction c* against latitude u and model-level pressure

(hPa), for V5VE/5 for cases (a) W2 and (b) ZS. In the ZS case, this is simply the usual

Eulerian mean mass streamfunction c, and the shaded contour levels are chosen to high-

light the low-value wings of the circulation in this case. The white contour lines indicate

larger values, equally log spaced with 12 contour lines per decade. The thicker white lines

mark the653 1010 kg s21 level, which is the lowest level shown in Fig. 5 (negative contours

are dashed). The thin dotted line shows the 205-K forcing contour, as in Fig. 4.
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have different scalings for the boundary colatitude and

boundary zonal wind, as well as the different continuity

properties. Simulations using a GCM are found to have

smoother temperature profiles than either theory, and

also feature an overturning circulation poleward of the

point of maximum zonal wind, which is absent in both

theories. It is the presence of this overturning circula-

tion in the polar region (which occurs in both three-

dimensional and zonally symmetric simulations) that

allows the zonal velocity profile to be smoother than

the original theory, and removes the temperature dis-

continuities of the variant theory, without the need for

viscous or diffusive smoothing. Resolved zonally sym-

metric simulations fall between the two sets of theo-

retical scalings, and have a faster polar zonal flow than

both theories, consistent with a steepened polar tem-

perature profile. While accepting that both theories are

zonally symmetric by construction, they may still be

informative for the three-dimensional case (Held and

Hoskins 1985). The three-dimensional simulations fall

closer to the predictions of the variant theory and the

theoretical polar zonal flow, perhaps because allowed

cross-polar flow removes the requirement to steepen

the polar temperature profile to the same extent. Even

in the zonally symmetric simulations, the maximum u

falls with falling V at rotation rates below VE/10. This

is easier to reconcile with the u5 0, V5 0 case than

the low-V limit of the original theory (which retains

nonzero u), and indicates that something further would

be required to sustain strong zonal winds at very low

planetary rotation rates, such as are actually seen on

Venus. The magnitude of the overturning circulation in

the Hadley cell increases to a finite maximum asV/ 0,

and this is insensitive to whether zonally symmetric or

not. The maximum overturning circulation is strong, in

the sense that it drives the temperature profile close

to a state of constant potential temperature.

More generally, our results show that the zonally sym-

metric theory is able to predict the qualitative behavior of

the Hadley cell, and the associated zonal wind, as the

planetary rotation rate is varied over quite a wide range

(at least two orders of magnitude) below that of Earth.

Both the original theory and its variant have quantitative

shortcomings. Zonally symmetric numerical simulations

(which is what the theories are constructed to describe) do

not show a discontinuity in either zonal wind or temper-

ature, at either low or high rotation rates, nor even a

particularly fast variation of either quantity that might

have been indicative of a discontinuity smoothed away by

viscosity or diffusion. The reason for the smoothness

seems to be that the region poleward of the edge of the

Hadley cell is not in radiative equilibrium; rather, it has a

nonzero circulation that enables the temperature to blend

continuously with that in the Hadley cell region.

The three-dimensional simulations further differ

from the theoretical predictions in two main ways.

FIG. 14. The vertical pressure velocity v (color shading) against latitude u and model-level pressure (hPa) for a different set

of planetary rotation rates V (see panel titles). The yellow plus signs mark the maximum u, and contour lines indicate the mass

streamfunction c, as in Fig. 5. The nonlinear latitude scale of Fig. 6 is used. These examples are all at T170 resolution for cases

(a)–(c) W2 and (d)–(f) ZS.
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First, at high rotation rates, baroclinic eddies extract

momentum (and heat) from the low-latitude Hadley

cell, and the zonal wind does not quantitatively fol-

low the angular-momentum-conserving profile, as

is well known. Second, at low rotation rates, the

three-dimensional simulations (even with the zonal

structure limited to wavenumbers 1 and 2) produce

superrotation.

Superrotation aside, the zonally symmetric theory is a

better model of the three-dimensional circulation at low

rotation rates than at high, because the lack of baroclinic

eddies allows angular momentum to be better conserved.

However, the reduction of the zonal wind at very low

rotation rates is neither exactly predicted nor com-

pletely understood.
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APPENDIX

Choice of H for Comparison with Numerical
Simulations

In section 6c we make the correspondence DHgH/
DTyRd to go from the theory to the numerical model.

In this appendix we obtain a more precise correspon-

dence. We start from the following equation for ther-

mal wind gradient balance in the numerical model:

›

› lnp

�
fu1

u2 tanu

a

�
5

R
d

a

›T

›u
. (A1)

Integrating from the surface, where p5 ps and u5 0,

gives at pressure level p,

fu1
u2 tanu

a
5
R

d

a

›

›u

ðp
ps

Td(lnp) . (A2)

To obtain the equilibrium zonal wind (equivalent

to uE in the main paper) we evaluate the right-hand

side using T5Teq, the Held–Suarez forcing (Held and

Suarez 1994). Ignoring both the stratospheric cap tem-

perature and the small term in ln (p/p0), this is

T
eq
5 (315K2DT

y
sin2u)

�
p

p
0

�k

, (A3)

where p0 5 1000 hPa and k5 2/7. With ps 5 p0, we then

obtain the same solution as (13), with the correspondence

D
H
gH/

1

k

�
12

�
p

p
0

�k�
DT

y
R

d
. (A4)

Conveniently, the pressure at which this extra prefactor

(1/k)[12 (p/p0)
k] is equal tounity,p/p0 5 (5/7)7/2 5 0:308,

is a good choice for a representative tropopause pres-

sure (the actual level of maximum u differs between

runs, as indicated by the yellow plus signs in the fig-

ures), and the closest model level to this has been se-

lected for Figs. 6 and 9. Justifying the simplifications

leading to (A3), there is good agreement between the

green curve and the dash–dotted curve in the top-left

panel of Fig. 6, as expected from the correspondence

between T and Teq in Fig. 4i.

The cyan curves in Figs. 5 and 14 are generated us-

ing (22) or (24) as appropriate, with R dependent on

H according to (A4). The fact that the boundary of

the angular-momentum-conserving region (in Fig. 5)

approximately follows these curves, means that the

particular choice of model level selected for compari-

son is not too critical. Solutions with similar boundaries

were found by Fang and Tung (1996) to a slightly dif-

ferent problem, in which the vertical temperature profile

was specified at a particular latitude to model convection

at the intertropical convergence zone (ITCZ). This rela-

tive freedom to chooseH is likely connected with the lack

of explicit vertical diffusion in ourmodeling.We intend to

address the role of vertical diffusion further in later work.
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