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Abstract: Mass drug administration (MDA) is the current mainstay to interrupt the transmission of
lymphatic filariasis. To monitor whether MDA is effective and transmission of lymphatic filariasis
indeed has been interrupted, rigorous surveillance is required. Assessment of transmission by
programme managers is usually done via serology. New research suggests that xenomonitoring
holds promise for determining the success of lymphatic filariasis interventions. The objective of
this study was to assess Wuchereria bancrofti infection in mosquitoes as a post-MDA surveillance
tool using xenomonitoring. The study was carried out in four districts of Ghana; Ahanta West,
Mpohor, Kassena Nankana West and Bongo. A suite of mosquito sampling methods was employed,
including human landing collections, pyrethrum spray catches and window exit traps. Infection of W.
bancrofti in mosquitoes was determined using dissection, conventional and real-time polymerase chain
reaction and loop mediated isothermal amplification assays. Aedes, Anopheles coustani, An. gambiae,
An. pharoensis, Culex and Mansonia mosquitoes were sampled in each of the four study districts.
The dissected mosquitoes were positive for filarial infection using molecular assays. Dissected
An. melas mosquitoes from Ahanta West district were the only species found positive for filarial
parasites. We conclude that whilst samples extracted with Trizol reagent did not show any
positives, molecular methods should still be considered for monitoring and surveillance of lymphatic
filariasis transmission.

Keywords: Anopheles melas; Ghana; lymphatic filariasis; post-mass drug administration surveillance;
Wuchereria bancrofti; xenomonitoring
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1. Introduction

Lymphatic filariasis is a disease that occurs in tropical and subtropical parts of the world.
The aim of the Global Programme to Eliminate Lymphatic Filariasis (GPELF), launched by the
World Health Organization (WHO) in 2000, is to interrupt the transmission of lymphatic filariasis
caused by Wuchereria bancrofti and Brugia species, and to manage morbidity and disability in affected
individuals [1,2]. By 2011, guidelines had been developed and mass drug administration (MDA) was
scaled up in 53 of the 73 lymphatic filariasis endemic countries [3], including Ghana. The Ghana
Filariasis Elimination Programme (GFEP) was established in 2000 [4]. The inception was governed
by preliminary data, indicating that lymphatic filariasis was endemic in 49 out of 110 districts.
Microfilariae (mf) and immunochromatographic test (ICT) prevalence ranged between 19.8% and 29.6%
and between 33.1% and 45.4%, respectively [4]. This led to the commencement of MDA in 2001 in
10 districts and the subsequent scaling up to the remaining endemic districts by 2006 [4,5]. Monitoring
and evaluation (M&E) of the impact of MDA usually does not involve the detection of filarial larvae in
mosquito vectors. Hence, xenomonitoring has not been officially part of WHO recommendations for
lymphatic filariasis surveillance.

WHO put forth rigorous procedures for documenting interruption of lymphatic filariasis
transmission in endemic countries [1]. These include mapping for the identification of endemic regions,
followed by at least five rounds of annual MDA with periodic M&E. A transmission assessment
survey (TAS) is conducted after the cessation of MDA and a 5-year post-validation to confirm that
no recrudescence of lymphatic filariasis occurred [6]. Measuring progress of any lymphatic filariasis
control programme is, however, dependent on the effectiveness of M&E post-MDA [7,8], among other
issues. Monitoring of lymphatic filariasis transmission by programme managers mainly involves mf
assays and antigen tests in the human populations. A challenge with this monitoring approach is the
reluctance of individuals to provide samples [9] and its inability to provide a “real-time” estimate of
the disease [3,7]. Xenomonitoring, which detects infection in vectors, could serve as a complementary
diagnostic tool to serology. Xenomonitoring is convenient, non-invasive [7,9] and can be used to assess
the progress of lymphatic filariasis control activities [3,10,11]. Dorkenoo and colleagues, in a study in
Togo, demonstrated the possibility of using molecular xenomonitoring for post-lymphatic filariasis
validation surveillance [6]. In their study, the feasibility of using large-scale xenomonitoring was
demonstrated. Furthermore, the absence of W. bancrofti infections in Anopheles gambiae was observed
during a post-validation molecular xenomonitoring survey in Togo. In the southern part of Ghana,
a recent study revealed 0.9% W. bancrofti infection and 0.5% infectivity rates in An. gambiae following
several rounds of MDA in endemic districts [12].

The purpose of the current study was to evaluate lymphatic filariasis transmission in vectors using
dissection and molecular xenomonitoring as diagnostic tools. The study was implemented in four
districts; two districts in northern Ghana and two districts in southern Ghana. The results complement
existing information on W. bancrofti infections in vector mosquitoes, and provide additional evidence of
the feasibility of using xenomonitoring for M&E and surveillance activities post-MDA.

2. Materials and Methods

2.1. Study Sites

The study was conducted in eight communities, selected from four districts in the Western and
Upper East regions of Ghana. Two communities were selected from each district. In the Upper East
region, Badunu and Navio Central were selected from Kassena Nankana West district, and Atampiisi
Bongo and Balungu Nabiisi from the Bongo district. In the Western region, Antseambua and Asemkow
were selected from Ahanta West district, while Ampeasem and Obrayebona were selected from
Mpohor district. A map showing the study districts has been published elsewhere [13]. These sites
were selected based on lymphatic filariasis prevalence data stemming from monitoring activities by
the Ghana National Neglected Tropical Disease Programme unit of the Ghana Health Service (Table 1).
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Table 1. Number of mass drug administration (MDA) rounds and prevalence of microfilariae in the
four districts of Ghana where the current study was conducted between July 2015 and July 2016.

District Community
Number of

MDA
Rounds

Microfilariae
Prevalence
in 2000 (%)

Microfilariae
Prevalence
in 2014 (%)

Number of
An. gambiae

Dissected

Ahanta West Asemkow
Antseambua 16 19.5 2.7 320

Mpohor Obrayebona
Ampeasem 11 0.0 0.0 368

Kassena
Nankana West

Navio Central
Badunu 15 29.4 1.3 217

Bongo Atampiisi Bongo
Balungu Nabiisi 13 16.7 0.0 211

2.2. Mosquito Collection and Identification

Mosquito sampling spanning both the dry and rainy seasons was done for 13 months (from July
2015 to July 2016) in the four study districts. A detailed explanation of the three mosquito sampling
methods (i.e., human landing collections, pyrethrum spray catches and window exit traps) used by
community vector collectors (CVCs) has been described by Pi-Bansa et al. [14]. Mosquitoes sampled
were morphologically and molecularly identified. In short, morphological identification of mosquitoes
involved the observation of mosquitoes under a microscope and separation into various genera [15,16].
Deoxyribonucleic acid (DNA) extracted from the legs of An. gambiae was used for the identification of
sibling species [17] and molecular forms within the An. gambiae complex [18,19].

2.3. Mosquito Dissection

The sample size of An. gambiae mosquitoes for dissection was specifically calculated for the
various districts, as described by Naing et al. [20]. Mosquitoes were placed on a glass slide. A pair of
dissecting pins was used to separate the head, thorax and abdomen. Then, a drop of normal saline was
added to each segment. Dissection of mosquitoes and identification of the W. bancrofti larval stages
was done under a microscope [21].

2.4. Extraction and Detection of W. bancrofti in Dissected Mosquitoes

All W. bancrofti negative and positive mosquitoes were scraped into Eppendorf tubes, pending
further molecular analyses. The various mosquito species were grouped into pools ranging from
1–25. DNA was extracted from pooled mosquitoes using the Qiagen DNeasy tissue kit (Qiagen CA)
extraction method, adhering to the manufacturer’s instructions. Extraction was followed by
identification of parasite DNA in pooled mosquitoes using a loop-mediated isothermal amplification
(LAMP) assay [11,22], conventional polymerase chain reaction (PCR) [23] and real-time (RT)-PCR [24].
These assays were performed using standard protocols described elsewhere [11,22–24]. Positive and
negative controls were included in all reactions.

2.5. Extraction of Nucleic Acids from Pooled Mosquitoes with a TRIzol Reagent

Mosquitoes were randomly selected for the extraction of DNA and RNA using a TRIzol reagent
(Life Technologies; Carlsbad, CA, USA). In order to estimate an infection rate of 1% with a power of 0.80,
the estimated total number of mosquitoes required for each district was 2000 [6,25]. The protocol for
determining infectivity required that samples were stored in RNAlater so as to enable RNA extraction
from mosquitoes. An. gambiae, Mansonia and Culex species sampled by human landing catches
and stored in RNAlater reagent (Life Technologies; Carlsbad, CA, USA) were pooled (range: 5–20).
The determination of the number of mosquitoes in a pool was based on prior research pursued by
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Boakye et al., which tested different mosquito pool sizes (i.e., 25, 50, 100 and 200) [26]. Several
additional studies had pools of mosquitoes of up to 30 specimens [9,11,27]. Extraction of DNA
and RNA on pooled mosquitoes was done to assess both W. bancrofti infection and infectivity rates,
respectively [27]. Detection of both infection and infectivity in pooled mosquitoes followed the
protocols of Rao et al. [24] and Laney et al. [27]. Furthermore, quality control was done for the
detection of infection in An. gambiae complex by extracting DNA from pooled Kisumu mosquitoes
(laboratory reared susceptible An. gambiae strains, n = 20) spiked with 5–20 µL of W. bancrofti mf
positive blood samples (57 mf/mL), which showed amplification for the parasite. The extraction
protocol was replicated for this study (see Supplementary File).

2.6. Statistical Analysis

Data were entered into Microsoft Excel (Microsoft Corporation; Redmond, WA, USA).
The Poolscreen 2.0 software (University of Alabama; Birmingham, USA) was used to calculate the
maximum likelihood estimate of infection in the vector populations, along with the 95% confidence
interval (CI) [28]. The various entomological indices assessed included vector biting density, infection
and infectivity rates, annual/monthly transmission potentials and worm load in mosquitoes [29,30].

2.7. Ethical Approval

This study was approved by the institutional review board of the Noguchi Memorial Institute
for Medical Research (Accra, Ghana; reference no. CPN 077/13-14, 7 May 2014) and the institutional
research commission of the Swiss Tropical and Public Health Institute (Basel, Switzerland; reference
no. FK 122a, 24 November 2015). All CVCs consented orally to participate in the study. Albendazole
and ivermectin were administered to CVCs before mosquito sampling commenced. Arrangement was
also made with the nurses at the community-based health planning and services compound to provide
treatment for CVCs who reported at their facility and tested positive for malaria.

3. Results

3.1. Mosquito Abundance and Composition

A total of 31,064 mosquitoes were collected during the 13-month study period: 27,739 (89.3%) by
human landing catches, 2687 (8.7%) by pyrethrum spray collections and 638 (2.1%) by window exit
traps. The numbers of mosquitoes sampled from all districts using the various sampling techniques are
summarised in Table 2. An. gambiae sensu lato (s.l.) (n = 23,102; 83.3%), the main lymphatic filariasis
vector in Ghana, had the highest number collected using human landing catches. Other species
collected included Mansonia spp. (n = 2474; 8.9%), Culex spp. (n = 2056; 7.4%), Aedes spp. (n = 92; 0.3%),
An. coustani (n = 11; 0.04%) and An. pharoensis (n = 4; 0.01%). For pyrethrum spray collections,
1884 (70.1%) An. gambiae, 720 (26.8%) Culex spp., 40 (1.5%) An. pharoensis, 26 (1.0%) Mansonia spp.,
10 An. coustani and 7 Aedes spp. were collected. A total of 562, 10, 3 and 1 mosquitoes were reported for
An. gambiae, An. pharoensis, Aedes spp. and An. coustani, respectively, using window exit traps. Culex
and Mansonia spp. had the same number (n = 31) sampled for window exit traps.

3.2. Molecular Identification of An. gambiae and W. bancrofti

A total of 320, 368, 217 and 211 An. gambiae s.l. from Ahanta West, Mpohor, Kassena Nankana
West and Bongo districts, respectively, were identified at the molecular level. Results shown in Table 3
indicate high numbers of the sibling species An. melas in Ahanta West district. Relatively high
numbers of An. coluzzii, formerly known as M form of the An. gambiae complex, were obtained from
Mpohor, Kassena Nankana West and Bongo districts. Eight mosquitoes observed to be infected with
W. bancrofti by dissection tested positive when pool screened using PCR.
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Table 2. Mosquitoes sampled using three different sampling methods from four study districts in Ghana during a 13-month sampling period between July 2015 and
July 2016.

Method Community District An. gambiae Culex species Mansonia
species Aedes species An. pharoensis An. coustani Total

Collected

Human
landing
catches

Asemkow
Antseambua Ahanta West 18,213 1200 2386 8 0 4

Obrayebona
Ampeasem Mpohor 4109 66 72 6 0 3

Badunu
Navio Central

Kassena
Nankana West 426 489 11 42 2 4

Atampiisi Bongo
Balungu Nabiisi Bongo 354 301 5 36 2 0

Pyrethrum
spray catches

Asemkow
Antseambua Ahanta West 271 4 19 1 36 0

Obrayebona
Ampeasem Mpohor 375 14 7 0 1 0

Badunu
Navio Central

Kassena
Nankana West 801 384 0 1 1 9

Atampiisi Bongo
Balungu Nabiisi Bongo 437 318 0 5 2 1

Window
exit trap

Asemkow
Antseambua Ahanta West 396 17 29 0 0 0

Obrayebona
Ampeasem Mpohor 119 1 1 1 9 0

Badunu
Navio Central

Kassena
Nankana West 12 6 1 1 1 0

Atampiisi Bongo
Balungu Nabiisi Bongo 35 7 0 1 0 1

Total 25,548 2807 2531 102 54 22 31,064
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Table 3. Distribution of members of the An. gambiae complex in four study districts, Ghana, collected
between July 2015 and July 2016.

District
Sibling Species of the Anopheles gambiae Complex

An. gambiae s. s. An. arabiensis An. melas An. coluzzii

n % n % n % n %

Ahanta West 3 0.9 11 3.4 275 85.9 12 3.8
Mpohor 226 61.4 0 0 1 0.3 122 33.2

Kassena Nankana West 57 26.3 25 11.5 0 0 124 57.1
Bongo 54 25.6 0 0 0 0 142 67.3

3.3. Transmission Indices of An. gambiae Complex from Ahanta West District

The average vector biting density for An. gambiae, sampled using human landing collections
from Ahanta West, Mpohor, Kassena Nankana West and Bongo districts, were 43.8, 9.9, 1.0 and
0.8 bites/person/night, respectively. W. bancrofti infections were reported only in An. melas, a sibling
species within the An. gambiae complex from Ahanta West district for this study. Eight An. melas
mosquitoes were found infected (harbouring any of the developmental stage(s) of the parasite: mf,
larval stages 1 (L1), 2 (L2) or 3 (L3), of which two mosquitoes were infective, harbouring only L3,
as shown in Figure 1. The total numbers of L1, L2 and L3 counted from all the slides were 10, 2 and 2,
respectively. The monthly infective biting rates (MIBR) and the annual infective biting rate (AIBR)
were 8.0 and 95.9 infective bites/person, respectively. The annual transmission potential (ATP) due to
An. gambiae in the Ahanta West district was 7.4 (Table 4).
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3.4. Detection of W. bancrofti Using Molecular Techniques

A total of 2000 An. gambiae s.l. from Ahanta West and Mpohor districts, 253 from Kassena
Nankana West and 225 from Bongo districts were screened for W. bancrofti infections and infectivity
using RT-PCR. None of the 4478 An. gambiae processed in 214 pools from all study districts were found
positive for W. bancrofti. Screening was also done for both Mansonia and Culex species from the four
districts, though very few numbers were sampled from Mpohor, Kassena Nankana West and Bongo,
compared to Ahanta West. Both Mansonia and Culex species were found negative for W. bancrofti in all
districts (Table 5). All dissected mosquitoes from the four districts that were negative for W. bancrofti
parasite and further screened by LAMP, conventional PCR and RT-PCR tested negative.
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Table 4. Entomological indices showing relevant parameters for the estimation of the annual transmission potential (ATP).

District

Average
Number of

An. gambiae
Sampled

per Month

Vector
Biting

Density
(MBR)

Annual
Biting
Rate

(ABR)

Average
Number of

An. gambiae
Dissected
per Month

Average
Infection

per Month

Average
Infectivity
per Month

Infection
Rate (%)

Infectivity
Rate (%)

Annual
Infective

Biting
Rate

(AIBR)

Average
Worm

Load per
Month

Annual
Transmission

Potential
(ATP)

Ahanta West 1401 43.8 15,987 25 0.620 0.150 0.025 (2.5) 0.006 (0.6) 95.922 0.077 7.386

Mpohor 316 9.9 3614 28 0 0 0 0 0 0 0

Kassena Nankana West 33 1.0 365 17 0 0 0 0 0 0 0

Bongo 27 0.8 292 16 0 0 0 0 0 0 0

Table 5. Number of mosquito pools processed per study district from July 2015 to July 2016.

Species District Number of Pools Average Pool Size
Number of
Mosquitoes
Processed

Positive
(Infection/Infectivity) 95% CI

An. gambiae

Ahanta West 97 20.6 2000 0 0–0.00095
Mpohor 91 22.0 2000 0 0–0.00095

Kassena Nankana West 13 19.5 253 0 0–0.00756
Bongo 13 17.3 225 0 0–0.00849

Mansonia species

Ahanta West 83 21.1 1754 0 0–0.00109
Mpohor 2 25.0 50 0 0–0.03767

Kassena Nankana West 1 14.0 14 0 0–0.12815
Bongo 1 5.0 5 0 0–3.18868

Culex species

Ahanta West 63 20.0 1261 0 0–0.00152
Mpohor 2 19.0 38 0 0–0.04927

Kassena Nankana West 19 19.4 369 0 0–0.00518
Bongo 8 16.3 133 0 0–0.01433
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4. Discussion

Rigorous monitoring of W. bancrofti infections in mosquito vectors after several rounds of MDA is
recommended to provide information on the progress of control and elimination activities. Indeed,
such monitoring activities are necessary for making programmatic decisions that will eventually
lead to certification of lymphatic filariasis elimination in previously endemic regions [26]. The current
study, which was part of an operational research project to determine reasons for persistent lymphatic
filariasis transmission in selected districts of Ghana after more than 10 rounds of MDA, investigated
the feasibility and usefulness of a xenomonitoring approach for post-MDA surveillance to assess
filarial infections in vectors [22,31]. Our study also provides information on the lymphatic filariasis
infection status in vectors after multiple rounds of MDA in previously endemic districts.

The sampling methods used for this study included human landing collections, pyrethrum
spray catches and window exit traps. These collection methods have been used before for sampling
mosquitoes for xenomonitoring activities [14,32–34]. Recently, the Ifakara tent trap has been reported
as an alternative to human landing collections and it was emphasised that it exhibits an improved
ethical profile [35,36]. However, at the time our study was implemented, we did not have access to the
Ifakara tent trap. Results from our study revealed high numbers of An. gambiae complex, the primary
lymphatic filariasis vector in Ghana [9,37], in all four districts. The highest density was observed in
Ahanta West district. The high densities of vectors and observed infections (L1, L2 and L3) in Ahanta
West district might explain the presence of W. bancrofti infection in the An. gambiae complex from this
district. A relatively higher density of An. gambiae was recorded in Kassena Nankana West district,
compared to Bongo district. Both districts are in the dry Guinea savannah ecological zone [29], whilst
the Ahanta West and Mpohor districts are situated in the rain forest ecological zone [38]. In the year
2000, high baseline mf prevalences of 19.5% and 29.4% were reported in Ahanta West and Kassena
Nankana West districts, while considerably lower mf prevalences were observed in 2014; 2.7% and
1.3%, respectively (Table 1), after multiple rounds of MDA. The present study recorded W. bancrofti
infection rates of 0.025 and nil for Ahanta West and Kassena Nankana West districts, respectively
(Table 4). These very low infection rates observed in mosquitoes from this study correspondingly reflect
the low lymphatic filariasis prevalence rates in the human population. Moreover, the availability of
efficient vectors (An. melas and/or Mansonia spp.) in all four study districts can lead to picking up
W. bancrofti infections, even at low parasitaemia, as seen in the Ahanta West district. Despite the
large numbers of efficient vectors in a given district, the very low rates or the absence of W. bancrofti
infections in the human population is likely to result in the absence of infections in vectors. Hence, there
should be enough W. bancrofti parasites in the blood of human population for vectors to successfully
ingest after a blood meal, since at very low mf levels, vectors are unlikely to ingest parasites. This may
explain the absence of infections in the large number of An. gambiae vectors collected and examined in
Kassena Nankana West, Mpohor and Bongo districts.

Furthermore, results from molecular species identification of the An. gambiae complex showed a
high proportion of An. coluzzii (formally the M form of An. gambiae complex) in almost all districts
(Table 3). This could be associated with the fact that An. coluzzii, which prefer breeding in ephemeral
sites like run-off and flood water, are mostly found in the northern and coastal savannah areas of
Ghana where this study was conducted [39]. Kassena Nankana West district recording the highest
number of An. arabiensis could possibly be due to its location in the northern part of Ghana where
the climate is arid, which represents the preferred breeding condition for this mosquito species [19].
An. melas, which is a sibling species within the An. gambiae complex, was mostly found in the Ahanta
West district, corroborating previous findings by Dunyo et al. [40]. Anopheles mosquitoes are known
to exhibit “facilitation”, which makes it possible for these mosquito species to pick up W. bancrofti
parasites at high mf rates in the human population and develop them to the infective stage [41–43].
However, An. melas exhibits “limitation”, and hence this species can ingest and develop mf to the
infective stage, even at low parasite densities [42,43]. In view of the high numbers of An. melas recorded
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in Ahanta West district, it is conceivable that this species is responsible for the observed W. bancrofti
parasites (L1, L2 and L3).

The ABR for An. gambiae complex was highest in the Ahanta West district (15,987 bites/person/year).
Finding W. bancrofti infections in Ahanta West district may be due to the high number of lymphatic
filariasis vectors, specifically from the An. gambiae complex with a reported prevalence of 2.7% in this
district. In the Kassena Nankana West district, before the commencement of our study, the reported
prevalence of 1.3% was indicative of low persistent lymphatic filariasis transmission. A possible
reason for the absence of infections in Kassena Nankana West is the relatively low level of infection in
the human population. Another factor is the lower ABR (376.3 bites/person/year) in this district.
There were no W. bancrofti infections recorded in the Mpohor and Bongo districts. This may have
been due to the zero mf prevalence reported for these two districts (Table 1) before the onset of this
study. In a previous study, Appawu et al. [29] investigated the entomological role played by the two
lymphatic filariasis vectors An. gambiae and An. funestus at irrigation project sites in the Upper East
region of Ghana. The authors recorded W. bancrofti infections in all study districts. Their results
indicated that for irrigated communities like Tono and Vea, higher vector densities resulted in more
infective feeds compared to Azoka, a non-irrigated community. The 7.4 ATP of An. gambiae in the
Ahanta West district was due to the observed L3 in An. melas and reported mf-positive individuals
from this district. The ATP value of An. gambiae obtained in spite of the low infectivity rate might
be explained by the large number of An. gambiae collected in this district. In our study, the vector
observed having W. bancrofti infections (L1, L2 and L3) was only An. melas belonging to the An. gambiae
complex. Additionally, identification of Mansonia species in Ahanta West district suggests that
these vectors could take up mf and successfully develop them to the infective stage, even at low
parasitaemia [12,44].

Mosquito vector control activities reduce vector densities and human-vector contact [45,46].
This in turn decreases the likelihood of vectors picking up W. bancrofti parasites in endemic areas that
have undergone several rounds of MDA. We found considerably higher bednet usage in Mpohor and
Bongo districts, compared to Ahanta West and Kassena Nankana West districts. Hence, there was
higher human–vector contact in the latter two districts. This could have contributed to the high ABR
recorded for Ahanta West leading to W. bancrofti infections in the vectors due to infections in the
human population. Though Mpohor district had recorded a relatively high ABR (3604), the reported
prevalence of zero may explain the absence of infections in this district.

Additionally, mosquito species previously considered as non-vectors might be acting as
vectors of lymphatic filariasis as in the case of Mansonia in Ghana [47] and Culex in Nigeria [48,49].
This observation, together with the fact that parasite DNA can be detected in both vector and non-vector
mosquitoes [6], led to the investigation of both species in this study. No positive result was recorded
for culicines using molecular assays. Furthermore, molecular assays run on DNA and RNA extracted
from selected An. gambiae complex from the various districts was negative for filarial infections.
The absence of infections in An. gambiae complex could have been as a result of PCR inhibition due to
the masking of parasite DNA by mosquito DNA due to extraction of pooled mosquito samples.

5. Conclusions

Our study, employing xenomonitoring as a post-MDA surveillance tool, revealed that, at low
parasitaemia, infections are usually found and sustained in vectors that exhibit limitation as seen in
Ahanta West district. Additionally, An. melas emerges as an important vector for xenomonitoring
along the coastal communities of the Western region in the southern part of Ghana. Moreover, effective
vector control activities like high coverage of bednets can decrease ABR values in any endemic foci.
As revealed in our previous work, vector control activities (bednet usage) in Mpohor and Bongo
districts were relatively high. The reported zero prevalence of human infections and reduction in
the human vector contact due to bednet usage might be responsible for the absence of infections
in mosquito vectors from these districts. Presently in Ghana, only little emphasis is placed on the
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inclusion of xenomonitoring in decision-making processes during lymphatic filariasis programmatic
activities. As shown here, data from xenomonitoring could be used by programme managers and other
stakeholders to support decisions of stopping or continuing MDA. Additionally, complementing vector
control activities with MDA during lymphatic filariasis control activities could reduce W. bancrofti
infections in mosquitoes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2414-6366/4/1/49/
s1, Figure S1. Amplification of Wuchereria bancrofti DNA from pooled laboratory reared susceptible Kisumu
mosquitoes. The diagram shows amplification curves for four different pools (n = 20) of susceptible Kisumu
mosquitoes and a positive control. The four pools were spiked with 5–20 µL of Wuchereria bancrofti microfilariae
positive blood having a concentration of 57 mf/mL.
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