
UNIVERSITY OF ESSEX

DOCTORAL THESIS

Automating Game-design and

Game-agent Balancing through

Computational Intelligence

Author:

Mihail MOROŞAN

Supervisor:

Prof. Riccardo POLI

A thesis submitted for the degree of Doctor of Philosophy

Department of Computer Science and Electronic Engineering

March 20, 2019

http://www.essex.ac.uk
http://www.morosanmihail.com

iii

Declaration of Authorship

I, Mihail MOROŞAN, declare that this thesis titled, “Automating Game-design and

Game-agent Balancing through Computational Intelligence” and work presented in

it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-

gree at this University.

• Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has been

clearly stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where parts of the thesis are based on work done by myself jointly with others,

I have made clear what was done by others and what I have contributed

myself.

Signed:

Date:

v

Abstract

Mihail MOROŞAN

Automating Game-design and Game-agent Balancing through

Computational Intelligence

Game design has been a staple of human ingenuity and innovation for as long as

games have been around. From sports, such as football, to applying game mechanics

to the real world, such as reward schemes in shops, games have impacted the world

in surprising ways. The process of developing games can, and should, be aided by

automated systems, as machines have proven capable of finding innovative ways of

complementing human intuition and inventiveness. When man and machine coop-

erate, better products are created and the world has only to benefit. This research

seeks to find, test and assess methods of using genetic algorithms to human-led

game balancing tasks. From tweaking difficulty to optimising pacing, to directing

an intelligent agent’s behaviour, all these can benefit from an evolutionary approach

and save a game designer many hours, if not days, of work based on trial and er-

ror. Furthermore, to improve the speed of any developed GAs, predictive models

have been designed to aid the evolutionary process in finding better solutions faster.

While these techniques could be applied on a wider variety of tasks, they have been

tested almost exclusively on game balance problems. The major contributions are in

defining the main challenges of game balance from an academic perspective, propos-

ing solutions for better cooperation between the academic and the industrial side of

games, as well as technical improvements to genetic algorithms applied to these

tasks. Results have been positive, with success found in both academic publications

and industrial cooperation.

vii

Acknowledgements

This work would not be possible without the help and support of many wonderful

people.

Without a doubt, the sage advice, constant push for better experiments, valuable

insight and many well-timed solutions of my supervisor, Prof. Riccardo Poli, facili-

tated the success of most of my research and a great deal of this thesis. Also, having

seen how others receive feedback on their drafts, I consider myself the luckiest stu-

dent in the world. Half the page may be in red, but it’s red that makes the whole

black on white statistically significantly better (citation needed).

The valuable advice and feedback during supervisory boards, as well as sup-

portive words during the early stages of the PhD, when the research topic was sig-

nificantly different, of Dr. Daniel Kudenko from the University of York, were also

greatly welcome.

Jo, Marisa, all the amazing students in the programme, Prof. Jeremy Gow, Dr.

Paul Cairns, Prof. Udo Kruschwitz, Dr. Richard Bartle, are all people that made the

IGGI experience a good one. A wild ride it was.

The friends I made during courses, social events, online games, activity societies

and other miscellaneous places, were invaluable in making the PhD years enjoyable

and relaxing. Also, their patience whenever I would start talking about “the thesis”

or “that conference review” was worth a lot more than they think.

Finally, but by far the most important, none of this would be possible without the

support of my parents. They pushed me towards higher achievements, facilitated

me going further distances, sacrificed their health and time to see me succeed. I hope

to be able to repay even a tiny fragment of all that, or to make you proud wherever

you’re cheering me on from. Thank you!

ix

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Motivations . 2
1.2 Objectives . 3
1.3 Achievements . 4
1.4 List of Publications . 5
1.5 Thesis Outline . 6

2 Literature Review 9
2.1 Game Design . 10

2.1.1 Research on Game Genres and Mechanics 10
2.1.2 Definitions of Balance . 10

2.2 Genetic Algorithms . 12
2.2.1 Genetic Programming . 13
2.2.2 Synthetic Problems . 14

OneMax . 15
Trap Function . 15

2.2.3 Multi-objective Optimisation . 16
2.2.4 Surrogate Models and Fitness Prediction 17

2.3 Machine Learning Algorithms . 18
2.3.1 Neural Networks . 18
2.3.2 Decision Trees . 19
2.3.3 k-Nearest Neigbours . 20

2.4 Games and Computational Intelligence 20
2.4.1 Monte-Carlo Tree Search . 21
2.4.2 Goal Oriented Action Planning 21
2.4.3 Automated Game Design . 22
2.4.4 Solving Games . 23
2.4.5 Believable Agents . 23

2.5 Balance Through the Use of Computational Intelligence 24
2.6 e-Sports . 26
2.7 Code . 27

3 Games Targeted During the Research 29
3.1 Ms. Pac-Man . 29

3.1.1 Introduction . 29
3.1.2 Interfacing with Ms. Pac-Man . 30
3.1.3 Research on Ms. Pac-Man . 30

x

3.2 StarCraft . 31
3.2.1 Introduction . 31
3.2.2 Interfacing with StarCraft . 32
3.2.3 Research on StarCraft . 32

3.3 TORCS . 34
3.3.1 Introduction . 34
3.3.2 Interfacing with TORCS . 34

3.4 ComPet . 35
3.4.1 Introduction . 35
3.4.2 Interfacing with ComPet . 36

3.5 Genesis Dei . 37

4 Balance Specification Language 39
4.1 Introduction . 39
4.2 Describing Elements to be Changed . 40
4.3 Evaluating Success . 41

4.3.1 Available Evaluators . 42
4.3.2 Final Score . 44

4.4 Communicating with the Games . 45
4.5 Extended Backus-Naur Notation . 46

5 Genetic Algorithms for Video Game Parameter Balance 49
5.1 Introduction . 49
5.2 Ms. Pac-Man Experiments . 50

5.2.1 Environment . 50
Fitness Evaluation . 52
Genetic Algorithm . 53
Choosing Weights . 54
Selecting the Number of Games Played 56

5.2.2 Experiments . 57
5.2.3 Results . 58

Exploratory Run . 58
Testing GA Parameter Configurations 61
Testing Different Values for Weights for Fitness Components . . 63

5.3 StarCraft Experiments . 66
5.3.1 Environment . 66

Fitness Evaluation . 67
5.3.2 Experiments . 69
5.3.3 Results . 70

Completely Nullifying the ZZZKBot 70
Preliminary Balancing of the ZZZKBot Strategy 71
Balancing ZZZKBot Using Optimised GA Parameters 74

5.4 TORCS Experiments . 76
5.4.1 Environment . 76

Fitness Evaluation . 77
Genetic Algorithm . 78

5.4.2 Experiment . 79
5.4.3 Results . 79

5.5 Discussion . 83
5.6 Summary . 84

xi

6 Fitness Approximation for Faster GA-Based Game Balancing 85
6.1 Introduction . 85
6.2 Pipeline . 87

6.2.1 Approximator Integration . 87
6.2.2 Neural Network . 89
6.2.3 C4.5 Decision Trees . 91
6.2.4 k-Nearest Neighbours . 92

6.3 Standard Fitness Function Experiments 93
6.3.1 OneMax . 93
6.3.2 Trap . 93
6.3.3 Genetic Algorithm . 93
6.3.4 Neural Network . 94
6.3.5 Experiments . 94
6.3.6 OneMax Results . 95
6.3.7 Trap Results . 96

6.4 Ms. Pac-Man Experiments . 100
6.4.1 Environment . 100

Fitness Evaluation . 100
Genetic Algorithm . 101
Choosing the Approximator’s Accuracy Threshold 102
Choosing the Approximator’s Prediction Acceptance Threshold 102

6.4.2 Experiments . 103
6.4.3 Results . 103

Data . 103
Overview of Runs on Unoptimised GA Configuration 104
Performance of Various Approximators 107
Performance of Using Various Accuracy Thresholds 110
Performance of Using Various Prediction Thresholds 111
Overview of Runs on the Optimised GA Configuration 112
Comparing Approximators on Unoptimised GA Parameter

Set to Optimised GA Parameter Set 113
6.5 TORCS Experiments . 115

6.5.1 Environment . 115
6.5.2 Experiments . 115
6.5.3 Results . 115

Data . 115
Overview of Runs on Unoptimised GA Configuration 115
Performance of Various Approximators 116
Performance of Using Various Accuracy Thresholds 119
Performance of Using Various Prediction Thresholds 120
Overview of Runs on the Optimised GA Configuration 121
Comparing Approximators on Unoptimised GA Parameter

Set to Optimised GA Parameter Set 121
6.6 StarCraft Experiment . 123

6.6.1 Introduction . 123
6.6.2 Results . 123

6.7 Discussion and Conclusion . 125
6.8 Summary . 127

xii

7 Other Applications of Automated Balancing 129
7.1 Introduction . 129
7.2 Commercial Application of Automated Game Balance with ComPet . . 130

7.2.1 Introduction . 130
7.2.2 Environment . 130

Fitness Evaluation . 132
Genetic Algorithm . 133

7.2.3 Experiment . 134
7.2.4 Results . 134

7.3 Evolving Game Agents with Diverse Behaviours 138
7.3.1 Introduction . 138

Motivation . 138
Existing Ms. Pac-Man Agents . 138

7.3.2 Methodology . 140
Pipeline . 140
Neural Network Agent . 140
Genetic Algorithm . 142
Fitness Evaluation . 143
Experiments . 143

7.3.3 Results . 144
Experiment 1: The Strongest Neural Network Evolved 144
Experiment 2: A Balanced Neural Network with High Variance 145
Experiment 3: A Balanced Neural Network with Low Variance 146

7.4 Discussion . 148
7.4.1 Industrial Applications . 148
7.4.2 Evolving Game Agents . 148

7.5 Summary . 150

8 Conclusions and Future Work 151

A ComPet Example Gauntlet 153

B Diplomatic Turn-Based Strategy Games 157
B.1 Introduction . 157
B.2 A Description of DTBG . 157
B.3 Conflicts as a Gameplay Mechanic . 158
B.4 Discussing Potential Player Types . 160

B.4.1 Leaders (Socializers / Achievers) 160
B.4.2 Followers (Explorers) . 161
B.4.3 Diplomats (Socializers / Explorers) 161
B.4.4 Aggressors (Socializers / Killers) 161
B.4.5 Warriors (Killers) . 162
B.4.6 Strategists (Explorers / Achievers) 162

B.5 Game Design Space . 162
B.6 Discussion . 163

C Aggregate Data for Approximator Experiments 165
C.1 Introduction . 165

Bibliography 179

xiii

List of Figures

2.1 Fitness landscape for OneMax. Lower values represent better fitness.
u(X) represents the number of 1 bits present in the individual X 15

2.2 Fitness landscape of Trap for Z = 4000. Lower values are better 16
2.3 Example of a simple decision tree . 20

3.1 Screenshot from a level in a game of Ms. Pac-Man 29
3.2 Screenshot from a game of StarCraft with most UI elements hidden . . 31
3.3 Pipeline of integration with StarCraft . 33
3.4 Screenshot from a game of TORCS . 34
3.5 Screenshot from ComPet presenting one of the available player pets . . 35
3.6 Screenshot from ComPet’s battle mode 36

4.1 Sample of the specification language presenting a list with a single
parameter for TORCS . 40

4.2 Sample of the specification language presenting metrics for TORCS . . 42
4.3 Sample of the specification language presenting a list with a single

evaluator for TORCS . 42
4.4 Sample of JSON data sent by a game describing the requested metrics

after completing play . 45

5.1 Distribution of scores achieved by a rule-based agent in Ms. Pac-Man
(see text). The area highlighted in red represents scores above 1500. . . 51

5.2 A mapping of fitness values depending on the win-rate metric (WR),
which is dependent on the actual simulation, and the Ratio. This
shows how much the ratio impacts the gap between good individuals
(with WR close to 0.5) and bad individuals 56

5.3 Comparison between the standard error of the mean of scores, as cal-
culated mathematically, and the empirical standard error of scores
when looking at actual Ms. Pac-Man scores, relative to the number
of games sampled each time . 57

5.4 Boxplot of best individual fitnesses in each of the 10 Ms. Pac-Man runs 58
5.5 Average best fitness values achieved after a given number of evalua-

tions by the GA runs in the Ms. Pac-Man experiment, when comparing
GA configurations with various rates of mutation 62

5.6 Average best fitness values achieved after a given number of evalua-
tions by the GA runs in the Ms. Pac-Man experiment, when comparing
GA configurations with and without reinitialisation 63

5.7 Average best fitness values achieved after a given number of evalua-
tions by the GA runs in the Ms. Pac-Man experiment, when comparing
different population sizes . 64

xiv

5.8 Average best fitness values achieved after a given number of evalua-
tions by the GA runs in the Ms. Pac-Man experiment, when comparing
various objective weights. Dashed green lines represent the baseline
fitness for each respective value of the weight ratio. Orange ranges
represent the confidence thresholds . 65

5.9 Boxplot of ∆P fitness component for all 10 StarCraft runs 73
5.10 Win-rate % after human play-testing . 74
5.11 Average best fitness values achieved after a given number of evalu-

ations by the GA runs in the StarCraft experiment, when comparing
the results of the exploratory GA parameters to the results of the op-
timised GA parameters. Lower values are better. 75

5.12 Visual representation of the times achieved at various checkpoints by
the unchanged car (Car 1) compared to the best performing car, ac-
cording to the requirements, (Car 2, from run 19) on the dirt track . . . 82

6.1 Pseudo-code for the integration of an approximator in a GA run 88
6.2 Diagram of the predictor logic within the GA individual evaluation . . 90
6.3 Boxplots for number of fitness evaluations required to achieve perfect

fitness in OneMax w/o and w/ an approximator 96
6.4 Total evaluations required to achieve a perfect fitness in OneMax, w/o

and w/ the neural network approximator 97
6.5 Boxplots for number of iterations required to achieve perfect fitness

in Trap without and with a approximator. 98
6.6 Average best fitness values achieved after a given number of genera-

tions by the GAs without and with the C4.5 decision trees approxima-
tor, with AccMin = 0.75 and PredMin = Median(FitnessesGen−1), in the
Ms. Pac-Man experiment . 105

6.7 Average best fitness values achieved after a given number of evalu-
ations by the GAs without and with the neural network approxima-
tor, with AccMin = 0.75 and PredMin = Median(FitnessesGen−1), in
the Ms. Pac-Man experiment. Significance of difference between the
paired results is also plotted. Lower values are better 107

6.8 Average best fitness values achieved after a given number of evalua-
tions by the GAs without and with each of the tested approximators,
with AccMin = 0.75 and PredMin = Median(FitnessesGen−1), in the
Ms. Pac-Man experiment with the optimised GA parameter set. Lower
values are better. 113

6.9 Average best fitness values achieved after a given number of evalua-
tions by the GAs without and with the neural network approximator,
with AccMin = 0.75 and PredMin = Median(FitnessesGen−1), in the
TORCS experiment with the optimised GA parameter set. Lower val-
ues are better. 122

6.10 Average best fitness values achieved after a given number of eval-
uations by the GAs without and with the C4.5 approximator, with
AccMin = 0.75 and PredMin = Median(FitnessesGen−1), in the Star-
Craft experiment. Significance of difference between the paired results
is also plotted. Lower values are better 124

7.1 Similarity map representing the Euclidean distance between the 10
ComPet run parameter change suggestions, with colour-coded clusters
highlighting the 2 main balancing strategies proposed 136

xv

7.2 Structure of the neural network used to score each node 141

B.1 Genesis planet view. Every little tower is a different player 159

xvii

List of Tables

4.1 Extended Backus-Naur Notation for the specification language used
in defining balance tasks. 46

5.1 Ms. Pac-Man parameters to be changed, their displacement ranges and
their decimal accuracy . 51

5.2 Ms. Pac-Man metrics used in evaluation alongside their desired values
and weights . 52

5.3 Genetic algorithm parameter sets tested for Ms. Pac-Man when testing
mutation rates. As a result of crossover, mutation and elitism percent-
ages adding up to 100%, reinitialisation is not used 53

5.4 Genetic algorithm parameter sets tested for Ms. Pac-Man when testing
impact of reinitialisation . 54

5.5 Genetic algorithm parameter sets tested for Ms. Pac-Man when testing
performance variation of population size 54

5.6 Amount by which metrics have to change to increase their respective
fitness objective by 100 in the Ms. Pac-Man game balancing experi-
ment, with respect to several configurations of CW and C∆, as well as
what the fitness of the parameter set of only 0s would be 55

5.7 Ms. Pac-Man experiment results, with the best solution in bold and the
default, unchanged, version at the bottom. Green highlighting repre-
sents big changes by adding to the original value, red highlighting
represents big changes by subtracting from the original value, while
colours in-between represent smaller intensity changes 59

5.8 Wilcoxon Signed Rank test when comparing various mutation rates . . 61
5.9 Original StarCraft parameters . 67
5.10 Parameters chosen and their ranges for StarCraft 68
5.11 StarCraft metrics to be used in evaluation alongside their desired val-

ues and weights . 68
5.12 Suggested changes to StarCraft parameters to minimise ZZZKBot’s

win-rate . 70
5.13 Main StarCraft experiment results, with best individual(s) in bold.

Green highlighting represents big changes by adding to the original
value, red highlighting represents big changes by subtracting from
the original value, while colours in-between represent smaller inten-
sity changes . 72

5.14 Parameters chosen and their original values for TORCS 76
5.15 Parameters chosen and their ranges for TORCS 77
5.16 Times achieved by the vanilla version of the car on each track, along-

side the desired times . 77
5.17 TORCS metrics to be used in evaluation alongside their desired values

and weights . 78

xviii

5.18 Experiment results, with the best solution in bold and the default, un-
changed, version at the bottom. Green highlighting represents big
changes by adding to the original value, red highlighting represents
big changes by subtracting from the original value, while colours in-
between represent smaller intensity changes 81

6.1 The mapping of fitness values to classifier classes 91
6.2 Neural network neuron count per layer 94
6.3 Number of runs that failed to get a perfect solution (out of 30) for Trap 97
6.4 Ms. Pac-Man parameters to be changed, their displacement ranges and

their decimal accuracy . 100
6.5 Ms. Pac-Man metrics to be used in evaluation alongside their desired

values and weights for the approximator experiments 101
6.6 Genetic algorithm parameter sets tested for Ms. Pac-Man approxima-

tor experiments . 102
6.7 Average run times when using each of the 3 machine learning algo-

rithms as approximators, compared to using no approximator, in the
Ms. Pac-Man experiments. 104

6.8 Average number of predictions made by each approximator configu-
ration tested in the Ms. Pac-Man experiments, as well as the average
number of false negatives generated as a result. 106

6.9 Percentage of time that the neural network approximator proved to
be significantly better, or worse, than using no approximator in the
Ms. Pac-Man experiments, based on approximator configuration, fol-
lowed by the segment in which performance proved best. 108

6.10 Percentage of time that the C4.5 decision tree approximator proved
to be significantly better, or worse, than using no approximator in
the Ms. Pac-Man experiments, based on approximator configuration,
followed by the segment in which performance proved best. 108

6.11 Percentage of time that the k-nearest neighbour approximator proved
to be significantly better, or worse, than using no approximator in
the Ms. Pac-Man experiments, based on approximator configuration,
followed by the segment in which performance proved best. 109

6.12 Average proportion of time in which each combination of approxima-
tor and accuracy threshold was statistically significant, regardless of
prediction threshold, in the Ms. Pac-Man experiments. 110

6.13 Average proportion of time in which each combination of approxima-
tor and prediction threshold was statistically significant, regardless of
prediction threshold, in the Ms. Pac-Man experiments, as well as av-
erage predictions computed. 111

6.14 In the Ms. Pac-Man approximator experiments using the optimised
GA parameters: percentage of time that using the approximator re-
sulted in significantly better results; the average number of predic-
tions generated by the approximator each run and the average per-
centage of which were false negatives. 112

6.15 Average run times when using each of the 3 machine learning algo-
rithms as approximators, compared to using no approximator, in the
TORCS experiments. 116

6.16 Average number of predictions made by each approximator configu-
ration tested in the TORCS experiments, as well as the average num-
ber of false negatives generated as a result. 117

xix

6.17 Percentage of time that the neural network approximator proved to
be significantly better, or worse, than using no approximator in the
TORCS experiments, based on approximator configuration, followed
by the segment in which performance proved best. 117

6.18 Percentage of time that the C45 decision tree approximator proved to
be significantly better, or worse, than using no approximator in the
TORCS experiments, based on approximator configuration, followed
by the segment in which performance proved best. 118

6.19 Percentage of time that the k-nearest neighbour approximator proved
to be significantly better, or worse, than using no approximator in the
TORCS experiments, based on approximator configuration, followed
by the segment in which performance proved best. 119

6.20 Average proportion of time in which each combination of approxima-
tor and accuracy threshold was statistically significant, regardless of
prediction threshold, in the TORCS experiments. 120

6.21 Average proportion of time in which each combination of approxima-
tor and prediction threshold was statistically significant, regardless of
prediction threshold, in the TORCS experiments, as well as average
predictions computed. 120

6.22 In the TORCS approximator experiments using the optimised GA pa-
rameters: percentage of time that using the approximator resulted in
significantly better results; the average number of predictions gen-
erated by the approximator each run and the average percentage of
which were false negatives . 121

7.1 ComPet beasts in the experiment gauntlet 131
7.2 ComPet metrics collected on the gauntlet playing the unchanged ver-

sion of the game . 132
7.3 ComPet metrics to be used in evaluation alongside their desired values

and weights . 132
7.4 ComPet parameters to be changed, their displacement ranges, their

decimal accuracy and their weight in the fitness evaluation 133
7.5 Main ComPet experiment results, highlighting the changes recom-

mended by each run. Green highlighting represents big changes by
adding to the original value, red highlighting represents big changes
by subtracting from the original value, while colours in-between rep-
resent smaller intensity changes. Each column (except Run) repre-
sents the displacement to one of the evolved parameters 135

7.6 Main ComPet experiment results, highlighting the individual fitness
objectives and scores achieved by each run. Columns, except Run,
represent the fitness objectives described in Table 7.3. The bolded row
represents the run with the best fitness achieved out of all runs 135

7.7 Average scores, and their standard deviation, achieved by a rule-
based agent and MCTS over 1000 games, as well as the desired values
for the evolved agents . 140

7.8 Features chosen for evaluating each node 142
7.9 Experiment results for the experiment attempting to generate as good

a player as possible given the architecture evolved, with the best per-
forming run in bold . 145

xx

7.10 Experiment results for the second experiment, where an agent is
evolved to fit given the designer requirements of DS = 1750 and
DD = 1000, with the best performing run in bold 146

7.11 Experiment results for the third experiment, where an agent is
evolved to fit a different set of designer requirements of DS = 1750
and DD = 100, with the best performing run in bold 147

C.1 Results when comparing between approximator runs with the unop-
timal GA parameter set and both optimal and unoptimal GA runs, in
the Ms. Pac-Man experiments. Better and worse values represent the
percentage of time that the second configuration proved significantly
better, or worse respectively, than the first configuration 166

C.2 Results when comparing between approximator runs with the unop-
timal GA parameter set and both optimal and unoptimal GA runs, in
the TORCS experiments. Better and worse values represent the per-
centage of time that the second configuration proved significantly bet-
ter, or worse respectively, than the first configuration 172

xxi

List of Abbreviations

GA Genetic Algorithm
PvP Player versus Player
MCTS Monte-Carlo Tree Search
MOO Multi-objective optimisation
ML Machine Learning
KNN K-Nearest Neighbours
GOAP Goal Oriented Action Planning
PvP Player-versus-Player
BCI Brain-Computer Interface

1

Chapter 1

Introduction

There is a lot of value to be gained from games. Their entertainment value, their abil-

ity to make people forget about their day to day problems, their hidden property of

teaching people various skills, both physical and emotional, their community build-

ing traits, all of these can come from games. Video games are a subset of games

available only in digital form. Available for games consoles or for personal comput-

ers, in virtual reality experiences or on a phone, they all share many traits.

A more recent development has found yet another bit of value for video games:

scientific research. Understanding why people are attracted to video games is one

facet of this. Figuring out how to use games to improve other fields is another.

This thesis focuses on a third facet of research: creating tools to improve games

themselves, or, at least simplify the process of developing games.

Game designers and developers spend days, weeks, months, even years on test-

ing and tuning how their games are actually played. The common problem of dream

not matching reality is all too true in video game development as well. Intent and

delivery are two very different elements. While a designer might hope that a new

feature has a certain result, real world usage might prove them wrong.

These designers and their studios must spend time and money on testing the

game for each of the changes they decide to go through with. This, often times,

requires dedicated testing groups, which cost money and take time to return with

feedback. This has the potential to slow down the development process, or, if not

done properly, result in undesirable behaviour in the game.

Unsurprisingly, there has been significant research in understanding game de-

sign, as well as in automating elements of it. It is, however, a field far from tapped

2 Chapter 1. Introduction

of potential.

1.1 Motivations

Game balance, or the art of finding just the right mechanics and numbers to achieve

the dream mentioned previously, is currently still an almost entirely player-driven

area. Teams of game testers are employed to find both bugs in their games, but also

offer feedback on the game design. The research in this thesis focused on finding

ways of optimising at least some elements of game testing and game balance.

The original motivation was the complicated process of balancing a strategy

game developed in the early stages of research. Manual changes proved both cum-

bersome and frustrating to test, as results would only be obvious weeks after their

implementation. Some of the changes, while small, proved outright disastrous.

This prompted a better understanding of game balance, as well as the question of

whether parts of the process could be optimised.

The obvious solution is more money. Hiring a team of game testers is an extra

cost on top of any existing development costs. The longer they have to work on

a single game, the more they cost the company and the later the date before that

game can generate revenue. That is not always a possible avenue. The alternative

solution, which might help with optimising the process of game balance, is the use

of computational intelligence.

A major issue in that regard is the slight disconnect between academia and in-

dustry. A lot of academic research in games is done on old or synthetic games, with

little interest given to its further application in real games. Alternatively, the fast

pace of industry is not always willing to wait for academic research to develop the

solutions they might or might not use. This gap benefits nobody in the long run.

Some compromise and cooperation would very likely immensely benefit both.

In short, the main motivations were:

• There is still much to understand about game balance, from an academic per-

spective

• Game testing is slow and, at times, expensive

1.2. Objectives 3

• There is a gap between academic research in games and industry adoption of

said work

1.2 Objectives

This thesis has the main objective of exploring the problems described previously

and attempts to find solutions for as many of them as possible. If computational

intelligence can aid in any way, it must be explored and documented.

We need a better way of defining game balance in academia. By improving

the way the problem is described, research can bring better results and future re-

searchers can improve the field further.

We need to find ways of automating parts of the testing process. Automated

algorithms could reduce the time and workload required to test various changes to

games. If they simply identify the really bad changes before a tester has to spend

time with them, that is already a great step forward.

Once methods and models for automating game balance are found, these must

take in considerations performance. If they take just as much time as manual testing,

for little benefit, adoption could be much harder. Any resulting algorithms should

be optimised as much as possible.

Finally, industry expectations must be considered. An amazing algorithm used

by nobody outside of the research would, in this case, be wasted time. Game studios

are to offer direct feedback on the use of any resulting algorithms and it should be

reflected in any reported work. Alongside that, the algorithms should already be

applied to real games instead of synthetic models, to prove viability.

In summary the objectives are:

• Define game balance as well as possible, for future academic work in the field

• Explore options of automating the process of game testing

• Develop and test any resulting algorithms on a number of real games

• Optimise the algorithms as much as possible

4 Chapter 1. Introduction

• Develop any other optimisations or improvements that would help in having

them be used outside academia

1.3 Achievements

Genetic algorithms for game balance The biggest focus of this thesis, and its core

contribution, is the use of genetic algorithms for automating the process of game

balance testing.

By defining the task of game balance as the tuning of game parameters until a

set of game metrics fit designer requirements, one can use various algorithms to

explore the solution space. This solution space, based on the game parameters, can

be massive and brute force exploration is not sensible most of the time.

Our approach, using evolutionary algorithms, proved highly successful in a va-

riety of games, with a lot of potential.

Balance specification language One of the immediate consequences of using ge-

netic algorithms for game balance was the need for a better interface between de-

signers and algorithms. A method of defining both parameters and relevant metrics

was developed.

By translating designer goals to a form that is easy to understand by both ma-

chine and game designer, the processes of manual and automated game balance are

greatly aided. The door is then opened for new algorithms to be used in conjunction

with games already using this new specification language, with minimal effort.

This work was the immediate result of cooperating with a commercial games

studio. Their feedback was critical in better understanding industrial requirements

and expectations.

Machine learning for speeding up genetic algorithms One of the games tested,

StarCraft, is extremely slow to balance using the methodology developed. This is

due to us having had no access to the game’s source code, thus having to rely on

several unconventional methods of running the game in place.

1.4. List of Publications 5

The result was a search for methods that could speed up the genetic algorithm.

Given the mapping between parameters and metrics, we made use of online ma-

chine learning algorithms to offer approximations of the desirability of some param-

eter changes, potentially resulting in a faster search.

Tests were done with neural networks, decision trees and k-nearest neighbour

algorithms. Results proved positive, with immense potential for improving un-

optimised genetic algorithm runs, something very likely to be present when used

outside research. Additionally, these improvements are not, at least theoretically,

limited to game balance tasks.

Genetic algorithms for agent balance Finally, one of the fairly accidental achieve-

ments during the writing of this thesis was the realisation that the exact same bal-

ance algorithms described earlier can be used to evolve game agents instead of game

changes.

If the game agent can be represented as an array of numbers, in the way that,

for example, a neural network can be, then the balance algorithms can evolve new

agents that behave in ways defined by the game metrics. This can result in not only

really strong agents that aim to beat the game or get as many points as possible, but

also agents that behave in interesting ways.

We only test this on one scenario, but believe this could be possible for any game

that allows a similar method of representing their agents.

1.4 List of Publications

This thesis is based on a number of publications, as well as on some unpublished

work. The list of publications is presented below.

• M. Morosan and R. Poli, “Automated Game Balancing in Ms PacMan and Star-

Craft using Evolutionary Algorithms”, in Applications of Evolutionary Computa-

tion, G. Squillero and K. Sim, Eds., Springer, Cham, 2017, pp. 377–392, ISBN:

978-3-319-55849-3. DOI: 10.1007/978-3-319-55849-3_25. [Online]. Available:

http://link.springer.com/10.1007/978-3-319-55849-3_25

http://dx.doi.org/10.1007/978-3-319-55849-3_25
http://link.springer.com/10.1007/978-3-319-55849-3_25

6 Chapter 1. Introduction

• M. Morosan and R. Poli, “Speeding Up Genetic Algorithm-based Game Bal-

ancing using Fitness Predictors”, in Proceedings of the Genetic and Evolutionary

Computation Conference Companion, ser. GECCO ’17, New York, NY, USA: ACM,

2017, pp. 91–92, ISBN: 978-1-4503-4939-0. DOI: 10.1145/3067695.3076011.

[Online]. Available: http://doi.acm.org/10.1145/3067695.3076011

• M. Morosan and R. Poli, “Evolving a Designer-Balanced Neural Network for

Ms PacMan”, in 2017 9th Computer Science and Electronic Engineering (CEEC),

Sep. 2017, pp. 100–105. DOI: 10.1109/CEEC.2017.8101607

• M. Morosan and R. Poli, “Online-Trained Fitness Approximators for Real-

World Game Balancing”, in Applications of Evolutionary Computation, K. Sim

and P. Kaufmann, Eds., vol. 10784 LNCS, Cham: Springer International Pub-

lishing, 2018, pp. 292–307, ISBN: 978-3-319-77538-8. DOI: 10.1007/978-3-319-

77538-8_21

• A. Iacob, M. Morosan, F. Sepulveda, et al., “Genetic Optimisation of BCI Sys-

tems for Identifying Games Related Cognitive States”, in Proceedings of the Ge-

netic and Evolutionary Computation Conference Companion, ACM, 2018, pp. 237–

238

• M. Morosan and R. Poli, “Lessons from Testing an Evolutionary Automated

Game Balancer in Industry”, in 2018 IEEE Games, Entertainment, Media Confer-

ence (GEM) (2018 IEEE GEM), Galway, Ireland, Aug. 2018

1.5 Thesis Outline

Chapter 2 presents a comprehensive literature review. It starts by describing a bit of

research on game genres and their mechanics, then goes into detail on the topic of

game balance. It is followed by descriptions of various machine learning algorithms,

such as genetic algorithms, neural networks and a few others. Next it provides a

shallow description of the current state of game research in general, mostly focusing

on topics tangentially related to game design and game artificial intelligence. Finally,

a few more related topics are described, such as agent believability and e-Sports.

http://dx.doi.org/10.1145/3067695.3076011
http://doi.acm.org/10.1145/3067695.3076011
http://dx.doi.org/10.1109/CEEC.2017.8101607
http://dx.doi.org/10.1007/978-3-319-77538-8_21
http://dx.doi.org/10.1007/978-3-319-77538-8_21

1.5. Thesis Outline 7

Chapter 3 goes into detail about the several games used during this research. It

offers a brief presentation of the following games: Ms. Pac-Man, StarCraft, TORCS,

ComPet and Genesis Dei. The goal is to introduce readers to these games and also

present examples of research already done on them.

Chapter 4 introduces the specification language used throughout the entirety of

this research. The reason behind the existence of this language is elaborated on,

while also giving an exhaustive description of its functionality. It is completed by

the presence of the language’s Extended Backus-Naur Notation.

Chapter 5 describes the core of this thesis, the use of genetic algorithms for the

balancing of video games. It explores the problem in depth using Ms. Pac-Man as

the main game, then applies the findings to TORCS and StarCraft. Among the topics

covered are how genetic algorithm parameters affect performance, how game met-

rics could be weighted and the impact that has on the methodology, as well as other

considerations relevant to each game.

Chapter 6 explores and elaborates on the methods used to speed up the genetic

algorithms developed in the previous chapter. These methods, called “approxima-

tors”, are described in detail, alongside the pipeline of seamlessly introducing them

into the genetic algorithm. The impact of various variables within this pipeline is

explored in depth, with final recommendations given as to how this methodology is

best used in general.

Chapter 7 goes on to present alternate ways of using the algorithms described in

Chapter 5. One use case involves their use in an industrial setting, for a commer-

cial video game. A second use case involves evolving the representation of a game

agent itself, instead of the game parameters. As a result the balancing algorithms

presented in previous chapters can be used to generate new game agents with de-

signed behaviour. We apply this to Ms. Pac-Man agents and find that this works very

well and there is great potential for further improvements.

Chapter 8 presents a short series of conclusions, discussing the achievements of

the thesis and potential future work that could be done.

9

Chapter 2

Literature Review

A great amount of research is done in games, however there is a disconnect between

what is valuable to researchers and what is valuable to the industry [7]. After many

conversations with game developers and game designers, one of the main reasons is

the diverging goals of the two parties. Algorithms developed are often only applied

on synthetic problems, with little time from the researchers available for investing in

real games. Similarly, most game professionals do not have the time or resources to

invest in understanding the research and applying it to their games. The exceptions

are usually the large game corporations [8].

We argue that research on video game balancing could greatly benefit the real

world. This is an area where any improvement in the tools created by research can

be relevant to many games, with developers potentially saving tens or hundreds of

hours and a lot of money on design and testing time. By focusing on how to define

balance problems in a simple way for both academics and designers, we believe

more can be achieved by both parties.

Leaving the task of defining the success of an algorithm in the hands of the exper-

iment designer brings both advantages and disadvantages. The immediate advan-

tage is preserving creative freedom, something very valuable to an artistic medium

such as games. Not all games are created equal, and not all games have the same

definitions of “fun” or “engaging”. However, two immediate disadvantages are the

requirement that the algorithm be able to adapt to any and all goals the designer

has put in place, alongside the challenge of presenting the system’s limitations in an

easy to understand manner. Obtuse systems are less likely to be adopted by game

developers.

10 Chapter 2. Literature Review

2.1 Game Design

2.1.1 Research on Game Genres and Mechanics

The video game world has been in constant evolution for the past 42 years, with a

massive number of titles on many different platforms, all over the world. Genres

have come and gone over these many years, each offering its own benefits to the

world.

Cohen [9] described genres as open categories where every new game "alters the

genre by adding, contradicting, or changing constituents, especially those of members most

closely related to it". Clearwater [10] writes “since genres are historically situated, they

should be understood as cultural processes. Genres evolve, morph and transform, sometimes

go dormant and may even enjoy renewed interest from audiences”.

Tychsen [11] does mention a lack of games in the massively multiplayer strategy

genre as one of the reasons behind a lack of research behind this genre, alongside

further complexities brought by the scale. By creating new games and researching

their features, player behaviour within them, as well as possible future expansions

to the concepts, this blank can be filled.

Game mechanics define an interaction between users and the system, to encour-

age exploration and learning of the simulation’s possibilities. Core mechanics, as

defined by Sicart [12], are elements that many, if not most, games share when dis-

cussing how players interact with them.

Apperley [13] argues that strategy requires a manipulation of the simulation “as

it progresses through time, in order to get the result with the most utility”. Tychsen [11]

describes two methods of time resolution: simultaneous and sequential. When con-

sidering sequential time resolution, everyone takes turns one by one. With simulta-

neous time resolution, turns, or time, flow in parallel for all players.

2.1.2 Definitions of Balance

The literature presents different notions of “balance”, perhaps due to how different

games, or even genres, naturally lead to (or need) slightly different versions of the

concept. The most generic definition, supplied by Schreiber [14], is that game bal-

ance “is mostly about figuring out what numbers to use in a game”. Some have

2.1. Game Design 11

argued that a measure of balance can be derived from how interesting, while also

uncertain, a game is during its play [15] [16].

Players will reliably find their own state of balance after investing enough time in

the game. This can involve learning what the best strategies are and what game ele-

ments are strongest. This gives experienced players a clear advantage over novices,

while the best players will have a fair battleground to fight on. Although this is

definitely a state of balance, it is not the same concept as a balanced game, as there

might exist game elements that are not used at all, resulting in wasted design space

and game assets, as well as a potential lack of any strategic breadth.

Game designers can directly impact the strengths and weaknesses of their game’s

entities, but they cannot control player behaviour. By optimising the parameters of

a game, they force players to adapt to the new environment and rediscover the state

of balance described previously.

Defining what is and is not balanced is not an easy task, especially when a math-

ematical representation of the game’s mechanics is unavailable and one has to rely

on statistics and word of mouth [17]. In popular multiplayer games, both designers

and players analyse how often a game entity (e.g., a champion in League of Legends

or a gun in Counter-Strike) has impacted a player’s chance of winning the game.

Sirlin [18] considers game balancing as the iterative task of bringing a game to a

state where the options presented to a player are not only reasonably many, but also

viable.

One way of looking at balance is to see it as a function of many variables, each

representing a different facet of the game, that needs to be optimised [14]. However,

the greater the complexity of the game, the more difficult it is to derive an explicit

formulation for such a function or that the solution currently used in a game is op-

timal. Indeed, optimising game balance is difficult and game designers tend to use

a sort of hill-climbing approach based on small steps where some of their games’

parameters are changed in tiny increments or decrements, hoping the new values

will bring the game closer to their own understanding and definition of balance.

Complex games allow for much variation in play style, decisions to be taken

and different start configurations. Balance is almost impossible and often highly

dependent on player opinion [17]. While some might consider an element of a game

12 Chapter 2. Literature Review

to be imbalanced, there will often be many bringing good arguments towards the

contrary. What is almost consistently true is that, in a competitive game, players

will constantly look for the strongest options and abuse them. This way, they are a

lot more likely to win.

However, people’s understanding of games is highly subjective and designers

have different understandings of what makes their game balanced or not. For the

purpose of this research, the definition used by Beyer et al. is the one that is followed,

as it is the most general available and is reported below [19].

Game balancing is the process of systematically modifying parameters of game com-
ponents and operational rules in order to determine satisfactory configurations re-
garding predefined goals.

Often balance can be dependent on player enjoyment, with a requirement for

“interesting” games. Cincotti et al. [15] argue that uncertainty can create a much

more enjoyable experience. This can be interpreted as the requirement to not have

any dominant strategy and, as a result, no way to crown a winner early in the game,

assuming equally skilled players. By assessing the viability and power of the various

strategies discovered by players, a designer could also aim to keep any and all in

check.

2.2 Genetic Algorithms

Genetic algorithms (GA) are algorithms inspired by nature. They take the phrase

“survival of the fittest” and adapt it to computational tasks. By allowing solutions

to various tasks to be ranked and compared, the most fit among them are able to rise

to the top. Then, similarly to nature, the fit solutions “procreate” and generate new,

potentially even better, offspring.

They were first proposed by Alan Turing [20], with the first practical applications

soon after [21]. The earliest attempt at applying genetic algorithms to games was

done by Barricelli [22]. Popularity of this approach, however, came as a result of

Holland’s book Adaptation in Natural and Artificial Systems [23].

Genetic algorithms usually rely on the ability to assess how good a given solu-

tion is to solving a given problem. By then having an entire population of solutions,

2.2. Genetic Algorithms 13

usually generated randomly, one can rank them all and, at any given time, have ac-

cess to the “best” solution so far. Between the various individuals in the population,

operators are applied in order to generate likely brand new solutions. These opera-

tors can include crossover, where the new individual shares traits with two different

parents from the original population; mutation, where an individual from the orig-

inal population is changed in slight ways, resulting in a new one; or elitism, where

one or more of the very best individuals are kept as they are.

A usual method or representing individuals is as an array of bits or floats [24].

This allows for very simple methods of crossover or mutation. Crossover can be

achieved by recombining the two parents, in this case elements in each array. Muta-

tion is even simpler, as one or more elements in the array can be modified to achieve

the desired result.

For arrays as described previously, there are several types of crossover [25]:

single-point, where parents are split by a single randomly chosen point; two-point,

where two random points are chosen and any values between those points are

swapped to generate the new individuals; uniform, where new bits are chosen inde-

pendently from the parent’s ones, based on given distributions; and more for more

specialised representation models.

Genetic algorithms have evolved a lot over time, with many different variations

appearing to solve different types of problems. They have been used to solve many

problems, in many domains, both academic and industrial [26]. Many uses in games

and other media have emerged, with tracks in major conferences covering their use

in those fields, such as EvoGAMES in EvoStar [27] [28].

2.2.1 Genetic Programming

Genetic programming (GP) makes use of evolutionary algorithms to build solutions

for problems with complex definitions [29]. Simple tasks can include function re-

gression [30], while complex tasks could include entire behaviour trees for survival

strategies [31]. By using methods found in nature, evolutionary algorithms take

many generations of solutions, test them, then discard those deemed not to be good

14 Chapter 2. Literature Review

enough. This results in ever-improving solutions. A naive mathematical simplifica-

tion would be that they are searching an n-dimensional space for local and global

optima.

Due to its stochastic nature, given a different random seed, GP is extremely likely

to offer completely different solutions, as the search space for many tasks is im-

mense. Many have attempted to improve the algorithm over time [32] [33], to min-

imise the generation of weak members from the get-go, but a general solution is not

possible, as each task that GP tries to tackle brings its own complexities and require-

ments to the table. Brandy utilized genetic evolution to search for the best opening

StarCraft 2 strategies (similar to chess openings) to great success [34].

One interesting application is in the evolution of entire neural networks [35][36].

Rather than collecting immense amounts of data for the training of a neural network,

evolution can just search for one that is close enough to the game’s requirements.

This allows for agents that are potentially just as good, but with a lot less effort in

data collection.

Overall, the area of genetic programming is very well researched and docu-

mented, with much written and experimented. Many have attempted to optimise

GA and GP behaviour, for example through controlling bloat [32] or through an em-

pirical evaluation of selection models [37], with varying levels of success. There are

few gaps one could find in literature surrounding this topic.

Evolved behaviour trees are common in games research [38] [39] and offer an

interesting level of flexibility to an agent’s intelligence. There have also been papers

on using GA to optimise various real-world elements [40], which leads me to believe

there must be ways of translating many of their techniques to games themselves.

2.2.2 Synthetic Problems

To test various implementations of GA, synthetic problems have been developed

over time. A couple of simple, but notable ones, are OneMax and Trap.

2.2. Genetic Algorithms 15

OneMax

OneMax is a staple of the genetic algorithm test toolkit [41]. It involves the evolution

of a vector of bits of length N. The fitness of an individual is equal to the number

of times 1 is found in that vector. Alternatively, considering that for this experiment

we count lower fitnesses as better, the fitness of an individual is equal to the number

of times 0 is found in that vector (see Equation 2.1). The highest fitness is achieved

when the vector is completely populated by values of 1.

0 10 20 30 40 50
0

20

40

u(X)

O
ne

M
ax
(X

)

FIGURE 2.1: Fitness landscape for OneMax. Lower values represent
better fitness. u(X) represents the number of 1 bits present in the

individual X

It is a simple task for a GA to solve [42]. It should also be very easy for a neural

network to learn the fitness landscape of OneMax, given its linearity and lack of

epistasis between the inputs.

OneMax(~x) = N −
N

∑
i=1

xi (2.1)

The fitness evaluation of OneMax is extremely cheap computationally, thus might

be valuable as a quick benchmark for other algorithms attempting to solve it.

Trap Function

Trap functions are commonly used in testing genetic algorithms due to their decep-

tive fitness landscape. We have made use of the one defined by Deb and Goldberg

[43] as DECTRAP.

16 Chapter 2. Literature Review

0 1 2 3 4 5 6

·104

0

20

40

60

80

100

Z = 4000

dec(X)

Tr
ap

(X
)

FIGURE 2.2: Fitness landscape of Trap for Z = 4000. Lower values
are better

The evolved vector is N bits in length and represents a binary number. For the

fitness evaluation of Trap, we convert the binary number to decimal (X) and com-

pare it to a value Z. As a result, each individual represents a decimal number from

0 to l, where l = 2N − 1.

Trap(~x) =


a− ((a/Z) ∗ (Z− dec(~x))), if dec(~x) < Z

a− ((b/(l − Z)) ∗ (dec(~x)− Z)), otherwise
(2.2)

In the Trap fitness equation 2.2, dec(~x) is the decimal representation of the binary

vector x.

Concerning the fitness landscape of Trap, the fittest result is when dec(~x) = 0,

located in the peak between 0 and Z. The narrower the range between 0 and Z is,

the harder it is to correctly estimate individuals in that range.

Similarly to OneMax, Trap is a very cheap evaluation and can be considered a

good initial test when checking an algorithm’s ability to adapt to deceptive environ-

ments.

2.2.3 Multi-objective Optimisation

Very often problems have to look at solutions with different objectives, each impor-

tant in its own way, where none of them is obviously better than others. Optimising

one of the objectives can result in worse results for others and vice-versa, creating

a search space where, very likely, there is no objectively best solution. This has led

2.2. Genetic Algorithms 17

to research in multi-objective optimisation (MOO) problems [44], resulting in such

algorithms as the bat algorithm developed by Yang [45] and using unconstrained

elite archives by Fieldsend et al [46].

Some examples of interesting multi-objective problems include optimising the

process of laser beam cutting [47], generating meal plans that fit multiple dietary

and cost requirements [48], as well as better design of biorefineries [49]. All these

problems have the same challenge of presenting multiple suggestions to the experi-

menter, all different, all minimising one or more objectives.

There is no general consensus on the best method to approach optimising such

problems, with Marler et al arguing that most algorithms have advantages and dis-

advantages when applied to engineering tasks [50]. Often, many researchers rely on

generating a Pareto front of solutions and then focusing on better presenting it to

the interested party. One example of such work is Urquhart et al and their work on

EvoFilter [51].

Filtering through the results of a run, while extremely valuable, still presents

what could be a lot of solutions to an interested party. This could prove unintuitive

and, at times, overwhelming.

It can easily be argued that many game balance problems, given their reliance

on predefined goals and expected “best behaviours”, are multi-objective problems.

Without a doubt, algorithms designed to tackle those tasks such could be used to

find solutions that fit a designer’s requirements.

However, after a look over the current state of multi-objective optimisation, as

well as weighing in the willingness of game designers to spend time analysing vari-

ous solutions, we have decided to not focus on how various MOO algorithms would

help game balance. That is not to say that this area is not worth exploring in the fu-

ture.

2.2.4 Surrogate Models and Fitness Prediction

Fitness approximation is an ongoing research area being actively explored [52][53].

Many GA tasks are bottlenecked by expensive fitness evaluations and greatly benefit

from accurate estimations.

18 Chapter 2. Literature Review

Neural networks have been used in the past to simulate actual fitness evalua-

tion. It was applied by Johanson and Poli [54] in their evolution of music using

genetic programming. Their need for neural network predictions came from the

very expensive task of having humans evaluate each individual personally, with no

accurate automated method available and a lot of subjectivity involved.

Later work had researchers employ neural networks to estimate the fitness of

entire clusters of individuals [55]. The clusters were generated by machine learn-

ing techniques, particularly the k-Nearest-neighbour algorithm. Their approach is

tested on several synthetic experiments, but no real-world scenarios.

Decision trees have also been paired with GAs to improve the data mining clas-

sification task in work by Carvalho and Freitas [56]. They used GAs to evolve rules

for a decision tree system, presenting their work on many real-world data sets.

A lot of work has been previously done by researchers on methods to approxi-

mate fitness functions during GA runs [57], or even using GA runs to generate new

approximation models to then be used in subsequent runs [58].

Recently, researchers studying techniques to treat cancer made use of neural net-

works as a surrogate model for fitness evaluations in their goal to optimise Intensity

Modulated Radiotherapy Treatment beam angles [59]. The genetic algorithm they

employ, with the help of the neural network, proves to be successful in finding better

solutions compared to traditional methods used in practice. Their implementation

uses a pre-trained neural network as a surrogate model. Limitations of this approach

is the requirement for expert knowledge and prior data on the subject. Many tasks

do not have the privilege of having access to that.

2.3 Machine Learning Algorithms

2.3.1 Neural Networks

Neural networks are a very popular approach to problem solving at the time of

writing. They are algorithms meant to emulate, to a certain degree, the structure and

functionality of the human brain. Their ability to learn from data and find patterns

that would have been missed otherwise is well documented.

2.3. Machine Learning Algorithms 19

First introduced by Rosenblatt in 1959 with the “perceptron” [60], many varia-

tions have come to exist now, from convolutional neural networks [61] to long short-

term memory neural networks [62] and, now very desirable in both industry and

academia, deep neural networks [63]. Each different neural network structure has

advantages and disadvantages.

One of the disadvantages of most neural networks is the need for significant

amounts of data to train them. This is not always easy, or even possible. Some

fields do not have access to much, if any, data that could be used to train a network.

In those scenarios, the use of neural networks must be well reasoned, as alternate

methods might prove more desirable.

An interesting area of research is the use of genetic algorithms to evolve the pa-

rameters or structure of neural networks. This has been done in the past to great

success and could be valuable for consideration [64] [65].

Alternatively, instead of evolving just the structure of the network, one could

evolve the entire network itself. This has the advantage that it does not require pre-

vious data for training, but it does result in a need for an alternate way of assessing

the accuracy or fitness of any resulting network. Examples of work in this field in-

clude evolving robotic agents [66] and NeuroEvolution of Augmenting Topologies,

or NEAT for short [67], a much more advanced variation of this methodology.

2.3.2 Decision Trees

Decision trees, particularly C4.5 decision trees [68], are a classification algorithm

often used in machine learning due to their transparency. They analyse already clas-

sified training data and build an effective model, in the shape of a tree. Given a

new bit of data, one can traverse the tree, following the logical questions posed by

it, eventually arriving at a classification.

These algorithms are great because they are fairly fast, even with high amounts

of complicated data, but also easy to interpret by both humans and machines. Com-

pared to neural networks, for example, any decisions made on new data by a deci-

sion tree are clearly reasoned and one can backtrack through the tree to see exactly

the questions asked of the input data to reach that result.

20 Chapter 2. Literature Review

Age >= 15
Income
< 25000

Income
>= 25000

Age < 15

Grades
>= 70

Grades
< 70

FIGURE 2.3: Example of a simple decision tree

An example of a very simple decision tree can be seen in Figure 2.3.

2.3.3 k-Nearest Neigbours

Similarly to decision trees mentioned earlier, k-Nearest neighbours is an algorithm

used for classification and regression [69]. By using already correctly classified ex-

amples, the model can approximate any new samples given.

This is a very simple algorithm that, given a value for k, aims to find the closest

individuals in the training set to the new sample. Once that is done, the new sample

is classified as the majority class among the closest k.

2.4 Games and Computational Intelligence

Using AI technologies to improve games at the design stage is not something com-

pletely new, but it is an area that is far from tapped out. Yannakakis and Togelius

named this “AI-assisted game design” [70] and it is potentially the best research

area for the development of better games [71]. The most common applications are

in game level generation [72] [73], with many uses in tools that ease design, such

as SpeedTree [74], an automated procedural tree (and, as a result, forest) generator.

Another, less common, use case is the generation of entire game rulesets [75] [76].

Currently, research on and using games is still in its relative infancy. Many more

sub-fields are being opened for analysis and many techniques from other domains

are being adapted to this new area.

As a result of its lack of maturity, much of the research done has not been given

many chances to shine in industrial applications, however that is rapidly changing.

2.4. Games and Computational Intelligence 21

Many of the experiments done by researchers are done on synthetic problems, or

very old games, as that has allowed them to prototype and test at much higher rates.

This is a problem, as it does not give the medium much credibility.

2.4.1 Monte-Carlo Tree Search

MCTS is a relatively recent contender in the AI world, taking the lead in many AI

competitions out of seemingly nowhere [77]. It attempts to find good “moves” for a

given game state by simulating as many random steps in the future as possible, over

many different paths, then choosing what it believes to be the best course of action.

It began simply enough by solving board games such as Go [78], but soon enough it

established a foothold [79] and got employed for video games as well [80] [81].

One of the algorithm’s main strengths is its flexibility in how much time it needs.

It can end its search after 1 second or after 30 milliseconds. The longer it is left to

calculate, however, the better the solution it can offer. It does however require, at

this time, that there exists a relatively accurate and fast way of simulating what the

player’s various actions would do to the game state, as MCTS requires hundreds

and thousands of moves to be planned in the future, sometimes within 33 ms, or

even less than that. Usually, simulating how a human player would play the game

mechanics is not particularly complicated [82]. Simulating how a human player

would interact diplomatically with other players is [83] [84].

One area where MCTS is still struggling with is games with much unknown in-

formation [85]. This can prove problematic, as many games hide a lot of information

from their players.

2.4.2 Goal Oriented Action Planning

GOAP attempts to use multiple behaviour building blocks (such as the action to

move, the action to attack, the action to build something, etc), each with its own

requirements and potential benefits, to construct an ever-adapting plan that an agent

might follow to achieve success. Given a current world state and a desired world

state, a GOAP-led player will seek a plan of action that changes the given world state

such that it matches its desired one once all actions in the sequence are completed.

22 Chapter 2. Literature Review

GOAP was in use in robotics [86] long before it was considered for commercial

games in the 2005 first-person shooter F.E.A.R. [87]. Given the fact that the plan is

not scripted, but adapts to the ever-changing environment, F.E.A.R. enemies show

signs of intelligence and clear cooperation with one another. GOAP has since been

used in many game-related environments to solve tasks with many agents involved

[88] and tasks where information changes rapidly [89].

When it comes to games that have both short-term plan requirements as well as

long-term plan requirements, GOAP, potentially combined with other techniques,

such as Markov chains [90] or genetic programming, is definitely a leading option

for creating intelligent agents.

2.4.3 Automated Game Design

As mentioned previously, there is a great desire for creating completely new games

through automated means. In a perfect environment, this means generating me-

chanics and rules, combining them to form a coherent ruleset, creating some levels

that fit the given ruleset, then assessing the game’s playability and difficulty. At this

time, there is no system that combines all of these elements together, but bits and

pieces of each one of them exist. Some of these are briefly reviewed below.

For automatic ruleset generation, Nelson et al have defined a formal logic rep-

resentation of mechanics that can be recombined to generate new games, while of-

fering a good method of assessing how possible it is to win the new game [91].

Schaul, for the purpose of generating a plethora of games for use in general video

game research as a result of a common effort from multiple researchers [92], created

a description language that can define a wide variety of 2-dimensional games [93].

This general video game language is actively used to test new entries in the General

Video Game AI competition and is quite successful.

Automated level generation requires, for quick processing, a better understand-

ing of the mechanics behind the game. Maze-like games, for example, would need

the start and exit points to be quite far from each other, yet still accessible through the

mechanics the game presents. Once this understanding is put in place, techniques

to generate levels exist in plenty. The most popular one, also used in-depth in the

2.4. Games and Computational Intelligence 23

industry, is procedural level generation and evolution. Examples include generating

Mario levels [94], content for general platformers [95] and evolving content for the

Galactic Arms Race game [96].

2.4.4 Solving Games

Game AI is an area that is bustling with innovation month after month. One of the

most efficient catalysts of this progress has been the desire to have AI beat the great-

est players of various games, from Checkers, to Chess and StarCraft. Most recently,

AlphaGo, a Go-playing AI, was able to defeat some of the greatest human players

several years before it was expected to be done [97]. Many researchers have made

use of various techniques to make their intelligent agents the best at some games, or

even really good at many games, such as agents highlighted in general video game

AI competitions [98].

Evolutionary algorithms have been applied to game AI as secondary techniques

to optimise a different algorithm, such as neural networks, over a longer period

of time. Fogel made use of evolution in finding a good set of approximately 1700

weights for its checkers-playing neural network Blondie24 [36]. Similar techniques

were later employed by Olesen et al for evolving real-time strategy agents [99]. Ge-

netic programming has also been used thoroughly to generate successful intelligent

agents to beat various games [100].

2.4.5 Believable Agents

Currently, most games AI or decision systems are straightforward and quite pre-

dictable, due to their heavily scripted nature. Games such as Europa Universalis and

Civilization, while showcasing great AI, make use of transparent number crunching

algorithms that add the positives and negatives defined by the programmers to-

gether, then say “yes” or “no”. There is little humanity behind these decisions. As

an example, if an AI agent wants one of your territories, it will, usually, tunnel vision

towards it. More social games, such as Diplomacy, have had bots created for them

[101] to varying success, but limitations do exist.

24 Chapter 2. Literature Review

Creating more “human” artificial agents will create more dynamic and unpre-

dictable (yet still smart) opponents, while opening the way for application in other

research areas, such as real world politics or economics. It is hard enough for hu-

mans to understand how humans should / would behave in various scenarios of

conflict [102], let alone a piece of computer code.

Creating believable agents is something that many researchers, as well as game

developers, strive for. Tests have been created to assess an intelligent agent’s ability

to imitate humans [103], agents have been created to negotiate [83] [84], to assess

threat [89], to communicate with people [104] and much more. Creating one that

would combine all these in a meaningful way is not a simple task, as even the sim-

plest mistake could create confusion not only for the agent, but for the players it

is interacting with as well, not to mention the sheer complexity of assuring clean

information transmission between the various control modules.

2.5 Balance Through the Use of Computational Intelligence

Computational intelligence can be used to aid in many areas, from medical diagno-

sis [105], to improving search results or more efficient antenna designs [106]. This

sparked the question of whether there is potential for use in helping game designers

as well.

“Balance” is a very broad umbrella term for many aspects of game design. The

most generic definition, supplied by Schreiber [14], is that game balance “is mostly

about figuring out what numbers to use in a game”. This can cover procedural

content generation [107], parameter optimisation in games, generating new games

entirely [108], and potentially more.

Balance is extremely important for multiplayer games, as a feeling of fairness

is critical in not only keeping players interested, but also keeping the game enter-

taining [109]. Some of the greatest multiplayer strategy games in history, such as

StarCraft and WarCraft, have benefited from great balancing [110]. Finding ways to

understand balance in the context of players is also interesting. Juul discusses the

concept of zero-player games [111] and finds that games and players are intrinsically

related.

2.5. Balance Through the Use of Computational Intelligence 25

There has been significant research done on using a designer’s requirements for

a balanced game and achieving those goals through the use of computational intel-

ligence.

Mahlmann et al. [16] worked on matching game elements from Dominion, a pop-

ular board game, to create interesting variations of it for players. They successfully

used GAs and AI agents to essentially create new games in the Dominion design

space. There was no information on whether this approach was applied in any com-

mercial manner.

Work has also been done on balancing the mechanics available in a game of Top

Trumps in regards to current literature understanding of fairness and excitement

[112]. The approach can be useful when designers are uncertain as to what they

desire and are willing to accept an academic understanding of “fun”. However it

might fall flat should that understanding of a game’s requirements differ from the

designer’s vision. Similarly to the previous research presented, no information was

given on whether this was adopted by the designers of Top Trumps.

Beyer et al. present an integrated process for game balancing [19], describing

challenges and potential avenues for success, but it comes from the angle of aca-

demic research. It does not go in depth on how important a designer’s input is and

how much can change in the experimentation phase, as well as the structure of both

small and large game studios and their internal pipeline for development. The work

offers great insight on the challenges presented by automated balancing and offers

advice on how such algorithms can be used to facilitate the work of games design-

ers. One very important conclusion from this work is that, at this time, most artificial

agents do not play like humans and so the suggestions offered by an automated sys-

tem based on such agents may or may not work for human players. Thus designers

must always double check what they are doing to their games.

Chen et al. [113] applied GAs to find balanced character skills for role-playing

games. It was done on a very small scale, with a minimal custom game model used

and a simple rules-based agent controlling behaviour. The approach does not con-

sider how their methodology would apply to real games or the presence of noise

generated by humans or AI agents. As a result, it is unclear how it would behave in

a real-world scenario.

26 Chapter 2. Literature Review

Lucas et al. used a simple approach to defining parameters a game can have by

applying hill-climber algorithms to the General Video Game AI framework [114].

They made strong assumptions as to what makes a set of parameters successful,

based on the breadth of agents that can successfully play any given game. This

work, while similar to own work published earlier, does not follow the same goals

of being designer-focused and applicable to real games, instead aiming to automate

the testing of new games. This could be valuable in the process of generating new

games.

GAs are capable of finding interesting, often innovative [115][116][117], ways of

solving given problems. They do not always generate perfect solutions, but not all

tasks require perfect optimality in the first place. Given that games can have many

parameters, each with its own limits as to the values it can have, as well as a wide

variety of relationships between them, the search space is immense. GAs thrive in

these scenarios.

2.6 e-Sports

Competitive video games, also known as e-Sports, are a relatively new endeavour

in the digital world. Games, such as League of Legends, DotA 2, Counter-Strike: Global

Offensive and more have become mainstream entertainment forms, with people not

only playing them, but also becoming spectators for what is the professional scene.

Similar to traditional sports (Football, Tennis, etc), these video game competitions

attract a massive amount of spectators and, as a result, sponsors.

There has been little in-depth research in this area, with most of it focusing on

generating competitive agents [118], a trend shared by a lot of agent research in

games. Some of the works that can be found are purely descriptive [119] [120] [121],

while authors such as Rambusch et al are trying to describe the cultural and eco-

nomical implications of this new world [122]. Some economics researchers are also

attempting to better understand e-Sports as a market [123].

There is virtually no research on considering e-Sports as a potential new grounds

for AI research. This is an area where the best AI technologies would have the hard-

est competition to face, similar to how Chess masters used to be the final hurdle for

2.7. Code 27

AI in the past. There are cases where even tool-assisted players (scripters, players

that cheat to gain an advantage) lose because of their weak overall decision making,

which is an interesting topic for AI research, as players usually have very little time

to decide how to act in the heat of the moment.

Automated game balancing can greatly benefit e-Sports, as an ever shifting state

of balance is what they need to remain both interesting and fair.

2.7 Code

There are many libraries available for implementing the various machine learning

algorithms used throughout this thesis. After some exploration, and accounting

for personal preference, the language used was almost exclusively C#. The Accord

Framework [124] was used for most machine learning requirements (all except GAs)

and for all statistical calculations.

29

Chapter 3

Games Targeted During the

Research

3.1 Ms. Pac-Man

3.1.1 Introduction

Ms. Pac-Man is a single player game played on a 2-dimensional board, where the

player controls the “PacMan” and has the goal of collecting as many points as pos-

sible while navigating a maze-like map. There are four ghosts opposing the player.

An example of the game as it is being started can be seen in Figure 3.1.

Points are received whenever the PacMan eats a pellet or power pill, or when a

“scared” ghost is eaten. Ghosts become scared temporarily after the PacMan eats the

aforementioned power pills.

The ghosts follow predictable strategies, but their movements can be random

FIGURE 3.1: Screenshot from a level in a game of Ms. Pac-Man

30 Chapter 3. Games Targeted During the Research

at times, making for an unpredictable game every time it is played. This means

deterministic AI agents will not always achieve the same score in consecutive games.

The goal when playing Ms. Pac-Man is to survive for as long as possible while

collecting as many points as are available. If all pills from a level are collected, the

game changes levels to a new one, with new geometry, but the same enemies and

goals.

3.1.2 Interfacing with Ms. Pac-Man

To simulate the game, an adaptation of existing code by Shelton was used [125]

which is available on GitHub [126]. This is a faithful recreation of the original game,

with the added ability to be run without any graphical rendering or pause between

frames. As a result, hundreds of games can be simulated every second when quick

agents control it. By having access to the source code, we were able to directly alter

the game’s parameters, bypassing any requirement for editing running memory or

binary files. All agents used had direct access to the game’s state at any point.

3.1.3 Research on Ms. Pac-Man

There are many AI agents available for Ms. Pac-Man. Most of these agents were de-

veloped to ‘beat’ the game, where the most important aim was to get as many points

as possible. The strongest one at the time of writing is based on a hybrid reward

architecture [127], with strong showings from Q-learning [128], Deep Q-Networks

[129] and Monte-Carlo Tree Search [130]. Success has also been had with neural

networks [131] [132] [133].

There has also been some research on generating new levels, of varying diffi-

culty, for the game through procedural content generation [134]. Given the game’s

simplicity, Ms. Pac-Man is a good practice case for algorithms before being attempted

on more complex ones.

3.2. StarCraft 31

FIGURE 3.2: Screenshot from a game of StarCraft with most UI ele-
ments hidden

3.2 StarCraft

3.2.1 Introduction

StarCraft is a real-time strategy game from Blizzard Entertainment, known for its

e-sports environment, but more importantly, its AI development community [135].

The game involves three distinct races, the Terran, the Protoss and the Zerg, each

with its own available units, strategies and strengths. It is played from a top-down

perspective, with the player managing both an economy and an army. An example

of this can be seen in Figure 3.2.

The game is played in real-time, meaning that both players must act with some

degree of urgency in issuing their commands, while paying attention to multiple

areas of the game. These areas can include the workers that gather resources, the

military unit production facilities, the environment and the natural defences offered

by it, such as cliffs or bridges, and access areas through which the enemy might

make an attack. Each player can only see the parts of the map where it has units

or buildings, thus, for most of the game, does not see what their opponents are

doing. This is a very important element of the game, as a player will not know what

strategy their opponent is employing for quite some time and will have minimal

time to adapt to it should it be strong against them.

32 Chapter 3. Games Targeted During the Research

3.2.2 Interfacing with StarCraft

BWAPI [136] is an open-source piece of software that allows third-party applications

to access and interact with StarCraft in real time, resulting in the possibility of cre-

ating AI agents for the game. These agents can either play with game information

supplied by BWAPI, or assess screen information on their own directly. Most agents

developed take advantage of the data supplied to them by BWAPI.

BWAPI required a couple of patches that would allow multiple independent in-

stances of the game to run in parallel, a critical requirement for the computationally

expensive studies described in later chapters.

ChaosLauncher [137] is a tool written in Pascal that injects third-party libraries,

such as BWAPI, into StarCraft’s executable, to facilitate their functionality. Similarly

to BWAPI, changes to the original code were required to allow multiple instances of

StarCraft to run at the same time.

With the changes mentioned above, multiple games of StarCraft can be played in

parallel, each with its own AI agents and different maps.

If changing the game’s parameters is needed, these are sent to a custom C++

application that alters the corresponding variables in the game by adding the dis-

placement to the original value. This is done by replacing several binary values in

the targeted StarCraft map file and repacking it properly, to allow it to be read by the

game. To achieve this, the open source StormLib library [138] was used to unpack

and repack maps, modified with own code for replacing the game’s parameters. The

game itself remains unchanged, but the map file tells it to use the new set of param-

eters rather than the default ones.

A graph of the entire pipeline is presented in Figure 3.3.

3.2.3 Research on StarCraft

Again, the vast majority of research on the game is to generate the best possible

agents for playing the game. However, as opposed to Ms. Pac-Man, there is no one

algorithm that has “solved” the game. Right now, even the best agents are unable

3.2. StarCraft 33

ChaosLauncherMapWriter StarCraft

Tool

BWAPI

1

2 3

4 5

7

6

FIGURE 3.3: Pipeline of integration with StarCraft

34 Chapter 3. Games Targeted During the Research

FIGURE 3.4: Screenshot from a game of TORCS

to compete with most of the high-tier human players [139] [140] [141] [142]. García-

Sánchez et al. [143] were successful at evolving strategies for an AI to play the game

at a higher level than many other artificial agents using GAs.

3.3 TORCS

3.3.1 Introduction

TORCS is an open source racing game simulator [144]. It is extremely configurable,

with almost every element of the game being modifiable without recompiling the

source code. Another interesting element is its lack of stochastic elements. Unless

the driver has random decisions, a race with the same car on the same track will

yield the same lap performances every time. A screenshot of the game can be seen

in Figure 3.4.

Many elements of the game could be considered for changes, from the layout of

the tracks, to the technical specifications of the cars, to way artificial agents drive in

the game.

3.3.2 Interfacing with TORCS

To send and receive data between the game and any algorithms developed, we wrote

a small bridge application to act as an interface. This is later described in Section 4.4.

3.4. ComPet 35

FIGURE 3.5: Screenshot from ComPet presenting one of the available
player pets

All this application does is connect to a message queue server and wait for com-

mands. These commands, queued by the algorithm, contain a specification file com-

plete with values for the enabled parameters. This specification file is one built using

the systems later described in chapter 4. For each of those parameters, the bridge

locates them in the appropriate XML file within the TORCS installation (based on

their name), modifies their values, plays the games as needed, then reports back to

the message queue server (and, by extension, the algorithm) the resulting metrics.

Beyond making temporary changes to the values in the game’s XML files, no

changes are made to the game’s mechanics or binary structure.

3.4 ComPet

3.4.1 Introduction

ComPet is a commercial turn-based strategy game developed by MindArk [145]. It

gives the player control over a roster of characters called pets, each with its own

attributes (such as initiative or endurance), its own experience level and various

combat abilities. An example of such a pet can be seen in Figure 3.5.

The game has two main gameplay loops. The default one is where the player

battles the various beasts in the game’s campaign mode in one-on-one combat with

one of their own pets (see Figure 3.6). This campaign mode is increasingly more

36 Chapter 3. Games Targeted During the Research

FIGURE 3.6: Screenshot from ComPet’s battle mode

difficult and requires the player to adapt to different strategies or even wait until

their pets are strong enough to handle the challenge.

Battling other players in 1-on-1 combat is the second gameplay loop. This mode

has two goals: gathering experience points to strengthen the player’s pets, and be-

coming a better ranked player on the leaderboards.

The combat is turn based, with a statistic called ‘initiative’ deciding which pet

goes first. Each pet is allowed to use an ability each turn, ranging from direct damage

abilities, to healing and skills that improve your statistics or decrease the opponent’s

statistics. Once a pet has reached 0 or fewer health points, the other pet is declared

victorious.

The other interesting element of the game is its campaign mode. Given that

this is a player-versus-player (PvP) experience at its core, the developers want the

players to spend as much time there compared to time spent in the campaign. As a

result, an interesting target of balance is to optimise the difficulty of the game such

that players have to further improve their pets in the PvP arenas before they can

continue through the campaign.

3.4.2 Interfacing with ComPet

For easier experiments, the game’s campaign mode was abstracted into the concept

of a ‘gauntlet’. A gauntlet represents a series of beasts to be fought, as well as a single

3.5. Genesis Dei 37

pet the player starts with. The role of the player is taken by an AI agent developed

by MindArk. An example of a file describing a gauntlet can be found in Appendix A.

This AI agent is rule-based with rules derived from real-world play tactics. It

behaves admirably given the environment and is an acceptable approximation of

human players for the purposes of any experiments.

To simulate actual gameplay, one would start a fight with the first beast in the

series. If victorious, the player’s pet is rewarded with experience points, levelling

them up if enough points were collected. Then, the pet would attempt to fight the

next beast in the series. If unsuccessful in a fight, the player would focus on the most

recently defeated pet (or the first one if that is impossible) for several fights, hoping

to gather enough new abilities and attribute points to try again.

Once the pet successfully defeats the final beast in the series (or a maximum

number of fights has been reached), all the relevant metrics from every single fight

are collected. These metrics can be used either for manual analysis by a designer, or

for automated design methods, such as those presented in future chapters.

3.5 Genesis Dei

During the first year of research, one area of interest was the development of in-

telligent agents for playing diplomatic strategy games. This work resulted in the

development of a game, Genesis Dei.

While the game was under development for several months, the scope of the

research changed and the project was put on indefinite hiatus. The findings from

the final state of that research can be seen in Appendix B.

39

Chapter 4

Balance Specification Language

4.1 Introduction

The literature review (Chapter 2) has highlighted one of the main issues present in

game balance research at the time of writing: there is a gap between industry and

academia in the sense that industry does not use many academic algorithms, while

researchers are often unable to use real world games for their experiments.

In an effort to make a first step towards bridging this gap, in this chapter I de-

scribe a language for game balance specifications, the development of which was

triggered by a cooperation with a commercial games studio, MindArk Sweden.

The language allows designers to define what can be changed in their games by

game-balancing aglorithms, as well as how to evaluate the degree of success of any

changes in their game that an algorithm proposes. This decouples the algorithms

to balance the games from the games themselves, which has the advantage that

once developers have written a specification file for their game, they open it up to

a plethora of search and optimisation algorithms, including any new developments

in academia.

This does require a small amount of extra work from the developers of a game,

as said game needs to understand how to actually apply any changes it is given by

an algorithm. This can be done by having an extra application dedicated to receiving

the proposed changes, applying them to the game, then running the new version to

collect results.

The specification language is, essentially, a structured JSON file, making it really

40 Chapter 4. Balance Specification Language

{
"name " : " F_cars . F_car1−ow1 . f_car1−ow1 . S_Car . A_mass . T_val

" ,
" rangeMin " : −300,
" rangeMax " : 300 ,
" rangeAccuracy " : 1 ,
" minimise " : " minimise " ,
" weight " : 1 ,
" enabled " : t rue

}

FIGURE 4.1: Sample of the specification language presenting a list
with a single parameter for TORCS

easy to read by both humans and software programs, while being easy to manipu-

late.

This language was also partly inspired by work done by groups such as Meta-

heuristics in the Large [146] and work by Swan et al [147].

4.2 Describing Elements to be Changed

A “parameter” is a variable in a game that has been deemed valuable for balancing.

An example of a parameter can be seen in Figure 4.1.

For the designer a parameter’s name is valuable, as it allows easy tracking and

understanding of any changes proposed by the underlying algorithms. The name

could be purely cosmetic, or it could be used to identify deeper elements in a game’s

design. In the given example, a file defining the elements to change for an experi-

ment using TORCS, the name was used to describe the path to the appropriate XML

file in the game’s installation folder, as well as section within said file, where the

value to be changed is located. This is similar to a specialised interpretation of an

XML XPath.

From the point of view of an algorithm, what is being changed in the game is

not important at all. The specification makes the assumption that the order in which

parameters are defined in a parameter list is also the order they will be passed back

to the game. What is important is knowing what values the parameters are allowed

to have. This includes the range of values, “rangeMin” and “rangeMax”, as well as

their arithmetic precision, “rangeAccuracy”.

4.3. Evaluating Success 41

An extra element available to the designer is the “enabled” flag. If the flag is set

to “false”, the parameter is not changed at all and is ignored by the algorithm. If it

is set to ‘true’, the parameter gets changed as normal.

Another option is the possibility of defining a parameter as not just a single

value, but a list of values with a given length, all within the same ranges defined

earlier. Should it be important, the values can be forced to be distinct, as this can

be used to generate permutations. This option is available by setting the “listsize”

property of the parameter.

When making changes to a game, a designer might be interested in making

changes as small as possible. This is possible by setting the “minimise” flag to “min-

imise” and the property “weight” to a non-zero value. This tells the underlying

algorithm to consider the magnitude of parameter values when calculating a final

score for the change set, with an importance value weighted by the weight option

(W∆i).

ScoreParams = ∑
i
|∆i| ×W∆i (4.1)

In the function above, ∆i represents the ith parameter. Also the summation is only

over parameters that were flagged as enabled.

4.3 Evaluating Success

Making changes to a game and then playing the altered game is not enough. Once

the game (or games, should one be not enough to assess success) has ended, the de-

signer should have access to various values defining that play session. These could

be anything from how often each player won, to how many times a weapon was

used, to how long it took someone to solve a puzzle. We call these values ‘metrics’.

Metrics are how the game communicates with the algorithms. An example of a list

of metrics (with one element) can be seen in Figure 4.2.

To assess the success of a set of changes, a method of quantifying how close they

are to optimal is needed. This is done by comparing the metrics generated after

play to what the designer has deemed as optimal metrics. These comparisons are

what the specification language defines as “evaluators”. Each evaluator assesses a

42 Chapter 4. Balance Specification Language

" metr i cs " : [
{

"name " : " S_E−Track 6 . S_Resul ts . S _ Q u a l i f i c a t i o n s .
S_Rank . S_1 . A_best lap time . T_val " ,

" type " : " Double "
}

]

FIGURE 4.2: Sample of the specification language presenting metrics
for TORCS

" eva lua tors " : [
{

"name " : " LapTimeDirtTrack " ,
" type " : " AverageEvaluator " ,
" metr ic " : " S_E−Track 6 . S_Resul ts . S _ Q u a l i f i c a t i o n s .

S_Rank . S_1 . A_best lap time . T_val " ,
" t a r g e t " : 70 ,
" weight " : " 1 0 0 " ,
" enabled " : t rue

}
]

FIGURE 4.3: Sample of the specification language presenting a list
with a single evaluator for TORCS

single metric, but a metric can be assessed by multiple evaluators. An example of an

evaluator can be seen in Figure 4.3.

Each evaluator has access to three values: a target optimal (Target) value, an

optional extra parameter, used by some evaluators (OptionalParam), and a weight

(Weight), used to define relative importance. They are passed a list of values (Values)

that can be as small as a single element.

Similarly to parameters, evaluators can be marked as enabled or disabled.

4.3.1 Available Evaluators

• The simplest evaluator is the “average” evaluator. It receives the list of values

of a metric, gathered in one or multiple games, computes the average of those

values, then compares the result to the given desired value. The resulting score

is the absolute difference between the optimal value and the average of the

4.3. Evaluating Success 43

metric, multiplied by the weight. Formally:

EvalAvg = |Mean(Values)− Target| ×Weight (4.2)

An example of such an evaluator could be that, after making changes to a car’s

engine, the designer wants it to achieve, on average, a 5 second faster lap when

driving a given race track 20 times in a row.

• Another evaluator is the “median” evaluator. It is used identically to the pre-

vious one, except the mean is replaced by the median of the metric being eval-

uated. Formally:

EvalMedian = |Median(Values)− Target| ×Weight (4.3)

This evaluator could be used, for example, when a designer wants an agent to

achieve a given median score, in situations where the edge cases are very high

or very low, skewing the average.

• The “standard deviation” evaluator computes the standard deviation of a list

of values, then compares it to the desired value. The resulting score is the

absolute difference between the optimal value and that standard deviation,

multiplied by the weight, that is:

EvalStdDev = |StandardDeviation(Values)− Target| ×Weight (4.4)

This can be used in scenarios where a certain consistency of results is wanted,

such as wanting scores achieved by an AI agent to be as close as chosen by the

designer.

• The “at least proportion” evaluator compares a list of values to see how many

of them are above a given value (passed via the OptionalParam argument), then

compares that number to the desired value. The number of elements above

the threshold is stored as a proportion of the total numbers in the list in Ratio.

Should the ratio be higher than or equal to the target value, the score is 0 (a per-

fect result). Otherwise, the resulting score is the absolute difference between

44 Chapter 4. Balance Specification Language

the target value and the average of the metric, multiplied by the weight. The

function can be represented as:

EvalAtLeast =


0 if Ratio ≥ Target

(Target− Ratio)×Weight otherwise
(4.5)

Ratio =
1

n
×∑

i
δ(Si ≥ OptionalParam) (4.6)

An example of this evaluator could be that a designer would want players

to collect at least 50 coins each level, with no upper limit. Score would be

penalised should fewer coins be found.

• The “at most proportion” evaluator is identical to the previous one, except the

desired value represents the upper limit, instead of the lower limit.

EvalAtMost =


(Ratio− Target)×Weight if Ratio ≥ Target

0 otherwise
(4.7)

4.3.2 Final Score

After having calculated the result for each enabled evaluator, the final score is simply

the sum of all the results. Similarly to other work in the area, lower values are better,

with a total score of 0 representing a perfect solution.

The reason behind using a simple weighted sum instead of more complex multi-

objective approaches, such as those utilised by Gravina and Loiacono [148], is its

simplicity. While the sum could allow for some objectives to dominate others and

stop the underlying algorithm from exploring the search space more efficiently, it

is a lot easier to explain and visualise. A straightforward system where someone

untrained in machine learning optimisation can easily change the numbers and un-

derstand their impact is much more likely to be used outside of research.

4.4. Communicating with the Games 45

{
" metr i cs " : {

" S_E−Track 6 . S_Resul ts . S _ Q u a l i f i c a t i o n s . S_Rank . S_1 . A_best
lap time . T_val " : " 7 8 . 3 3 " ,
" S_Dir t 3 . S_Resul ts . S _ Q u a l i f i c a t i o n s . S_Rank . S_1 . A_lap

times . T_val " : [" 6 3 . 9 6 " , " 6 4 . 1 2 " , " 6 5 . 5 1 " , " 6 3 . 9 9 " ,
" 6 4 . 9 9 "]

}
}

FIGURE 4.4: Sample of JSON data sent by a game describing the re-
quested metrics after completing play

4.4 Communicating with the Games

While parameters and metrics are how the algorithms and games trade information

from a logical point of view, a bridge is required to actually pass the digital data. Our

framework currently defines a method that invokes an external command (such as

running an executable or a script), as well as a distributed solution using message

queues.

When invoking the external command, the game designer has access to sev-

eral variables, such as: a comma separated list of the parameter values, a path to

the JSON specification file and a random seed (a value that can be used to make it

such that random number generators return the same sequence of numbers, valu-

able when attempting to replicate results). The external command responsible of

applying the relevant changes to the game’s parameters, then launch the game (or

games) and record the required metrics.

The message queue solution simply sets the ‘value’ property of each enabled

parameter, then sends the entire new JSON file to the message queue server. It is then

distributed to a bridge script or application, as described in the previous paragraph,

for playing. Once done, the bridge returns a JSON file with the appropriate metrics

and their values. This assumes the bridge can read the JSON file and apply the

appropriate changes. An example of the metrics a game could return can be seen in

Figure 4.4.

These are not the only ways one could balance their game. Should the default

options not suffice, a “custom” section is available for a designer to define extra

46 Chapter 4. Balance Specification Language

parameters that are relevant to them. These could include such elements as how

many games to run for each set of changes, or which maps to be used for a scenario.

4.5 Extended Backus-Naur Notation

This notation is an extension of the one originally created by Crockford for the ap-

plication/json media type [149].

TABLE 4.1: Extended Backus-Naur Notation for the specification lan-
guage used in defining balance tasks.

1 JSON-text ::== begin-object cat-name value-separator cat-

params value-separator cat-metrics value-

separator cat-evals value-separator cat-ga

value-separator cat-bridge value-separator

cat-custom end-object

2 begin-array ::== ws ‘[’ ws

3 begin-object ::== ws ‘{’ ws

4 end-array ::== ws ‘]’ ws

5 end-object ::== ws ‘}’ ws

6 name-separator ::== ws ‘:’ ws

7 value-separator ::== ws ‘,’ ws

8 ws ::== *(%x20 / %x09 / %x0A / %x0D) (Whitespace)

9 value ::== false / null / true / object / array / number /

string

10 false ::== ‘false’

11 null ::== ‘null’

12 true ::== ‘true’

13 object ::== begin-object [member *(value-separator mem-

ber)] end-object

14 member ::== string name-separator value

15 array ::== begin-array [value *(value-separator value)]

end-array

16 number ::== [minus] int [frac] [exp]

4.5. Extended Backus-Naur Notation 47

17 decimal-point ::== ‘.’

18 digit1-9 ::== ‘1’-’9’

19 e ::== ‘e’ / ‘E’

20 exp ::== e [minus / plus] 1*DIGIT

21 frac ::== decimal-point 1*DIGIT

22 int ::== zero / (digit1-9 *DIGIT)

23 minus ::== ‘-’

24 plus ::== ‘+’

25 zero ::== ‘0’

26 string ::== quotation-mark *char quotation-mark

27 char ::== unescaped / escape (%x22 / %x5C / %x2F /

%x62 / %x66 / %x6E / %x72 / %x74 / %x75

4HEXDIG)

28 escape ::== ‘\’

29 quotation-mark ::== ‘”’

30 unescaped ::== %x20-21 / %x23-5B / %x5D-10FFFF

31 cat-name ::== “name” name-separator value

32 cat-params ::== “parameters” name-separator begin-array [

param *(value-separator param)] end-array

33 param ::== begin-object [param-property name-separator

value *(value-separator param-property name-

separator value)] end-object

34 param-property ::== “name” | “rangeMin” | “rangeMax” |

“rangeAccuracy” | “minimise” | “weight” |

“custom” | “enabled” | “listsize”

35 cat-metrics ::== “metrics” name-separator begin-array [metric

*(value-separator metric)] end-array

36 metric ::== begin-object “name” name-separator value

value-separator “type” name-separator metric-

type end-object

37 metric-type ::== “Double” | “List”

48 Chapter 4. Balance Specification Language

38 cat-evals ::== “evaluators” name-separator begin-array [

evaluator *(value-separator evaluator)]

end-array

39 evaluator ::== begin-object [eval-property name-separator

value *(value-separator eval-property name-

separator value)] end-object

40 eval-property ::== “name” | “metric” | “target” | “type” |

“weight” | “enabled” | “optionalparam”

41 cat-ga ::== “gaparams” name-separator begin-object

[member *(value-separator member)]

end-object

42 cat-bridge ::== “bridge” name-separator begin-object [bridge-

property name-separator value *(value-

separator bridge-property name-separator

value)]

43 bridge-property ::== “executable” | “password” | “port” | “queue-

name” | “server” | “type” | “username” |

“amqpurl”

44 cat-custom ::== “custom” name-separator begin-object [mem-

ber *(value-separator member)] end-object

49

Chapter 5

Genetic Algorithms for Video

Game Parameter Balance

5.1 Introduction

As described in Chapter 2, there is untapped potential in exploring automated game

balancing. This research, if successful, could prove valuable for both academia and

game studios.

As a result of surveying the existing few approaches, as well as achieving a better

understanding of various machine learning algorithms, the first methodology con-

sidered is to use genetic algorithms to search the balance space. This requires several

elements: one or more games to test this on, a method of representing balance tasks,

a measure of assessing success and an appropriate adaptation of genetic algorithms.

For this work we made use of 3 games: Ms. Pac-Man, StarCraft and TORCS. Most

of the preliminary work was done on Ms. Pac-Man, with the other 2 acting as signif-

icantly different games to test the versatility of our approach.

This chapter describes the environments and methodologies adopted for each

one of the 3 games used in the experiments. All were done using the specification

language described in chapter 4.

50 Chapter 5. Genetic Algorithms for Video Game Parameter Balance

5.2 Ms. Pac-Man Experiments

5.2.1 Environment

For the Ms. Pac-Man experiments, the game’s rules were altered slightly as follows.

Instead of aiming for a high score, the game is “won” once the player achieves 1500

points. As a result, players can have a win-rate associated to their performance

alongside their average score and performance can be evaluated based on that.

Even with a deterministic agent, the stochastic nature of the game leads to the

scores to be very varied. As a result a number of games have to be played for each

individual, storing all the scores the agent achieved. Any scores above or equal to

1500 are counted as a win, while any scores below that are considered losses. That

represents the individual’s win-rate. The method of choosing the number of games

to be played for each individual is described later on in this section.

For these experiments, to see if this method is applicable to the game, a quick

rules-based agent was used, as it can represent a lower-level human player and

many more games can be simulated in a short amount of time. This rules-based

agent is a greedy-random agent based on work done by Thompson et al. [150], with

modifications by Shelton [151].

As shown in Figure 5.1 that reports the result of 10,000 game simulations, given

this change to the game’s mechanics, the rule-based agent “wins” the game only

19.6% of the time. The distribution of these scores presented in the figure was gen-

erated using the Parzen window method, using a Gaussian kernel estimator.

Given this win-rate of 19.6%, which would mean the agent wins the game ap-

proximately 1 in 5 times, we decided, as game designers, to aim at making the game

easier. An easier game would allow the agent to achieve a higher win-rate. For the

purposes of these experiments we decided that a win-rate of 50% (or 0.5) would be

the target, as that would make the game a lot easier for the agent, but still challeng-

ing to some degree.

The elements of the game to be changed are the speeds at which the entities in

the game move. For the PacMan, there is only one speed to change, as there are no

elements in the game that modify it. However, when the PacMan eats a power pill,

the ghosts have their speed temporarily changed. In the base version of the game,

5.2. Ms. Pac-Man Experiments 51

0 2000 4000 6000 8000
0

0.0002

0.0004

0.0006

0.0008

Fn
(x

; S
)

FIGURE 5.1: Distribution of scores achieved by a rule-based agent in
Ms. Pac-Man (see text). The area highlighted in red represents scores

above 1500.

that new speed is slower, but we removed this constraint from the balancing process.

As a result, there are 2 speeds to alter for each of the 4 ghosts. All parameters can be

seen in Table 5.1. For simplicity, all parameters were considered equal in importance,

thus given the same weight C∆ (see Section 4.2). The reason a numeric value is

not stated in the above mentioned table is due to the fact that we experiment with

different values of C∆.

TABLE 5.1: Ms. Pac-Man parameters to be changed, their displace-
ment ranges and their decimal accuracy

Parameter Min Max Accuracy Weight
∆1 PacMan’s speed -3 +5 100 C∆
∆2 First Ghost’s chase speed -3 +5 100 C∆
∆3 Second Ghost’s chase speed -3 +5 100 C∆
∆4 Third Ghost’s chase speed -3 +5 100 C∆
∆5 Fourth Ghost’s chase speed -3 +5 100 C∆
∆6 First Ghost’s flee speed -3 +5 100 C∆
∆7 Second Ghost’s flee speed -3 +5 100 C∆
∆8 Third Ghost’s flee speed -3 +5 100 C∆
∆9 Fourth Ghost’s flee speed -3 +5 100 C∆

52 Chapter 5. Genetic Algorithms for Video Game Parameter Balance

TABLE 5.2: Ms. Pac-Man metrics used in evaluation alongside their
desired values and weights

Name Desired Evaluator Weight
W Win-rate achieved by the agent 0.5 Average CW

Sum of parameter
∆P absolute displacements 0 Minimise C∆

Fitness Evaluation

From a game designer’s standpoint, the end goal is to control two features: how

often the main agent wins and how big the changes are to the original game pa-

rameters. Smaller changes to the original game parameters are required due to the

desire to improve the existing version of the game as opposed to generating wildly

different variations. Both metrics can be seen in Table 5.2.

So, fitness is a multi-objective function of the win-rate and the absolute differ-

ence between the default game parameters and the newly evolved ones. The closer

the win-rate is to the desired one, the better the fitness. Also, the smaller the dif-

ference between the original parameters and the evolved parameters, the better the

fitness, as it is preferred to have incremental changes rather than big ones. This is

the immediate result of wanting to optimise an existing game rather than creating a

new one from existing mechanics.

Formally, the fitness function can be written as:

Fitness = W + ∆P (5.1)

W = |WR−DWR| × CW (5.2)

∆P =
n

∑
i=0
|∆i| × C∆ (5.3)

In the win-rate optimisation function W, WR = Win-Rate (from 0 to 1), DWR = de-

sired win-rate and CW = win-rate bias factor. In the parameter optimisation function

∆P, ∆i = difference between the original ith parameter and the evolved ith parameter

and C∆ = parameter weight.

For the remainder of this chapter, DWR = 0.5, as the desired win rate is 50%. Our

approach considers smaller fitness values to be better, with 0 representing a perfect

5.2. Ms. Pac-Man Experiments 53

TABLE 5.3: Genetic algorithm parameter sets tested for Ms. Pac-Man
when testing mutation rates. As a result of crossover, mutation and

elitism percentages adding up to 100%, reinitialisation is not used

Pop. Size Crossover Mutation Mutation Rate Elitism
50 40% 40% 5% 20%
50 40% 40% 10% 20%
50 40% 40% 20% 20%
50 40% 40% 30% 20%
50 40% 40% 40% 20%
50 40% 40% 50% 20%

solution.

The reason ∆P can be simplified to a sum multiplied by C∆ in Equation 3 that

all parameters have the same weight for these experiments. Should the designer

consider some parameters more valuable to minimise than others, then that could

be reflected in the fitness function.

Genetic Algorithm

The evolutionary algorithm employed is a variant of a generational GA with two-

point crossover, a specialised mutation operator and elitism. If the crossover per-

centage, mutation percentage and elitism do not add up to 100%, the remaining

amount is used to generate new individuals through reinitialisation [152].

The mutation operator was applied with a (per allele) mutation rate of 50%

(meaning that on average 50% of the elements of an individual would be mutated).

At each application of the operator, a displacement is randomly generated within

the range of acceptable values for that allele (as presented in Figure 5.1) and added

to the corresponding parameter value.

Experiments used tournament selection with a tournament size of 6.

Each evolved vector was constrained to only contain values between those pre-

sented in Table 5.1. Values outside of these ranges are not realistic for the tested

scenario.

Several batches of experiments were undertaken. The first batch explored the

impact of the mutation rate on performance and the various configurations of pa-

rameters can be seen in Table 5.3. The second batch tested whether reinitialisation

54 Chapter 5. Genetic Algorithms for Video Game Parameter Balance

TABLE 5.4: Genetic algorithm parameter sets tested for Ms. Pac-Man
when testing impact of reinitialisation

Pop. Size Crossover Mutation Elitism Reinitialisation
50 40% 40% 20% 0%
50 30% 30% 20% 20%
100 40% 40% 20% 0%
100 30% 30% 20% 20%

TABLE 5.5: Genetic algorithm parameter sets tested for Ms. Pac-Man
when testing performance variation of population size

Pop. Size Crossover Mutation Elitism
10 40% 40% 20%
20 40% 40% 20%
50 40% 40% 20%
100 40% 40% 20%
200 40% 40% 20%

was beneficial, using the best configuration found in the previous batch as a starting

point. Values tested can be seen in Table 5.4. The final batch looked at how dif-

ferent population sizes altered GA performance. Each one of those is presented in

Table 5.5.

Each GA run would evolve until a total of 2000 individuals were evaluated. This

was the budget allocated for each run.

Choosing Weights

Selecting the values for the weights is very important, as they will define how the

solution space is explored.

For these particular experiments, where there are only 2 weights (C∆ and CW), it

is obvious there is only one degree of freedom in the fitness function. As a result we

can define Ratio = CW
C∆

, give C∆ a constant value, then write CW = Ratio ∗ C∆.

By changing Ratio, we can observe how the fitness landscape would change rela-

tive to the different values the metrics can have. A way of looking at weight selection

is to explore how much of a change in each collected metric would be needed to al-

ter the fitness of an individual by a certain amount. Given values for Ratio, one can

easily glance at the relative value of each evaluator.

5.2. Ms. Pac-Man Experiments 55

TABLE 5.6: Amount by which metrics have to change to increase their
respective fitness objective by 100 in the Ms. Pac-Man game balancing
experiment, with respect to several configurations of CW and C∆, as

well as what the fitness of the parameter set of only 0s would be

Ratio CW C∆ WR change ∆P change Baseline fitness
1 100 100 ±100% ±1 30.4
2 200 100 ±50% ±1 60.8
5 500 100 ±20% ±1 152.0

10 1000 100 ±10% ±1 304.0
20 2000 100 ±5% ±1 608.0
50 5000 100 ±2% ±1 1520.0

Looking at the changes in metrics required to increase fitness by a same amount,

available in Table 5.6, it can help a designer decide how much importance they want

to give each of the 2 objectives. The baseline fitness described is the fitness an indi-

vidual proposing no changes to the game (thus having all zeroes for its parameters)

would achieve.

Visual graphics can further elaborate on the impact the weights have on the fit-

ness score. Figure 5.2 shows the fitness spread when changing the Ratio, over all

possible values of the winrate (WR), when ∆P = 7.

At a glance, it looks like values for Ratio below 5 are not entirely realistic, as they

put very little relative value on the win-rate. It is reasonable to assume that most

solutions will try to minimise displacements to parameters instead of minimising

the win-rate objective almost every run, not actually solving the problem presented.

The flipside would seem true for very high values of Ratio. One of the experi-

ments presented later in this section attempts to explore these cases.

Once a designer has chosen the weights for the various objectives, a baseline

fitness value can be computed. This is the fitness the unchanged version of the game

achieves. For these experiments, it can be seen that the vanilla version of the game

has a ∆P objective fitness score of 0, while the W objective is dependent on the ratio

and the WR = 0.196 described earlier in the chapter , as well as DWR = 0.5. The

value of the total baseline fitness score, for each of the tested configurations, can be

found in Table 5.6.

56 Chapter 5. Genetic Algorithms for Video Game Parameter Balance

0
0.2

0.4 0.6 0.8 1
5

10

15

20
10

15

WR

CW
C∆

Fi
tn

es
s

FIGURE 5.2: A mapping of fitness values depending on the win-rate
metric (WR), which is dependent on the actual simulation, and the
Ratio. This shows how much the ratio impacts the gap between good

individuals (with WR close to 0.5) and bad individuals

Selecting the Number of Games Played

When choosing the number of games to play several factors must be considered. The

immediate problem with selecting a high value for this is the proportional increase

in computation time. Twice as many games results in twice as much time required

to achieve the same number of evaluations.

On the flipside, choosing a small number can result in unreliable results. The

variance between scores able to be achieved, especially by automated agents, is high

(see Figure 5.1). A balance must be found between computation time and variance.

The more scores are sampled, the lower the standard error of the mean is. Fig-

ure 5.3 shows both the formulaic standard deviation of expected means, as well as an

empirical representation of the standard deviations of Ms. Pac-Man scores sampled

at different game counts.

The immediate and obvious observation from Figure 5.3 is that the more games

are sampled, the smaller the variance in scores is. In a perfect scenario, a variance

of 0 means that even a smaller sample is equivalent to something close to the ‘true’

result represented by the 10000 original scores and the fitness value they achieve.

Choosing the number of games to be played for an experiment is yet another

5.2. Ms. Pac-Man Experiments 57

0 100 200 300 400 500 600 700 800 900 1,000
0

100

200

300

400

500

Games Sampled

Sc
or

e
St

an
da

rd
D

ev
ia

ti
on

Standard error of the mean of scores
Empirical standard deviation of the mean of scores

FIGURE 5.3: Comparison between the standard error of the mean of
scores, as calculated mathematically, and the empirical standard error
of scores when looking at actual Ms. Pac-Man scores, relative to the

number of games sampled each time

variable the designer can then alter. If time is less valuable than accuracy, a high

value is advised. Otherwise, a smaller value should be assigned.

For the experiments presented further in this section, the number of games cho-

sen was 100. The standard error of the mean is 148, an overall acceptable value given

our tasks. Of course, at this time, this is a subjective choice between accuracy and

computation time and this one gives a good balance.

5.2.2 Experiments

The designer requirement for all experiments was to make the game easier for a

novice player, but not too much easier than the original version. Considering the

original win-rate of 19.67%, we wanted the game to be won around 50% of the time.

This meant DWR = 0.5.

Three experimental studies were performed:

• An exploratory study used the following configuration of parameters: Popula-

tion size of 100, a crossover proportion of 40%, a mutation proportion of 40%,

a mutation rate of 50%, elitism of 20%, CW = 1000 and C∆ = 100.

58 Chapter 5. Genetic Algorithms for Video Game Parameter Balance

50 100 150 200 250 300 350 400 450

FIGURE 5.4: Boxplot of best individual fitnesses in each of the 10
Ms. Pac-Man runs

• The second study sought to find the relationship between mutation rate, pop-

ulation size, reinitialisation ratio and fitness over time. Configurations were

chosen from Table 5.3. Weights were set to CW = 1000 and C∆ = 100, as pre-

liminary analysis highlighted them as good enough.

• Finally, a study on the impact of various values for the objective weights was

done. This used the optimal configuration of GA parameters from the second

experiment. Configurations were chosen from Table 5.6.

All experiments except for the exploratory study were the result of 50 runs for

each configuration tested. Each of the 50 runs had the same starting seed between

experiments.

5.2.3 Results

Exploratory Run

A total of 10 runs were done. The best parameters generated by each run, as well as

the fitness components, can be seen in Table 5.7. Each run had other good solutions,

but here we will focus on only the ones with the best fitness.

The ∆P values (see Equation 5.1) of the best individuals in each run averaged

188.2 (±117.77), with a median of 158.5 (see also box-plot in Figure 5.4). The win-

rate component W (see Equation 5.1) of the fitness function was optimal in 6 of 10

best-of-run individuals.

It is worth noting that 8 out of the 10 runs managed to find suggestions that

have better fitness than the baseline configuration’s fitness. This means these are

suggestions that fit the requirements better than leaving parameters as they were.

5.2. Ms. Pac-Man Experiments 59

TA
B

L
E

5.
7:

M
s.

Pa
c-

M
an

ex
pe

ri
m

en
tr

es
ul

ts
,w

it
h

th
e

be
st

so
lu

ti
on

in
bo

ld
an

d
th

e
de

fa
ul

t,
un

ch
an

ge
d,

ve
rs

io
n

at
th

e
bo

tt
om

.
G

re
en

hi
gh

lig
ht

in
g

re
pr

es
en

ts
bi

g
ch

an
ge

s
by

ad
di

ng
to

th
e

or
ig

in
al

va
lu

e,
re

d
hi

gh
lig

ht
in

g
re

pr
es

en
ts

bi
g

ch
an

ge
s

by
su

bt
ra

ct
in

g
fr

om
th

e
or

ig
in

al
va

lu
e,

w
hi

le
co

lo
ur

s
in

-b
et

w
ee

n
re

pr
es

en
ts

m
al

le
r

in
te

ns
it

y
ch

an
ge

s

R
un

S P
ac

M
an

S G
1

S G
2

S G
3

S G
4

F G
1

F G
2

F G
3

F G
4

∆
P

W
in

-r
at

e
1

+
0.

58
+

0.
52

−
0.

16
−

0.
34

−
0.

43
+

0.
01

+
0.

04
+

0.
01

−
0.

09
21

8
50

/1
00

2
+

0.
83

+
0.

76
−

0.
43

+
0

+
0.

03
−

0.
09

−
0.

01
−

0.
03

+
0.

37
25

5
50

/1
00

3
−

0.
43

−
0.

27
−

0.
11

−
0.

27
−

0.
02

−
0.

02
+

0
−

0.
03

−
0.

04
11

9
51

/1
00

4
+

0.
07

+
0.

01
+

0.
02

−
0.

16
+

0.
06

−
0.

05
+

0
+

0.
06

−
0.

09
51

50
/

10
0

5
+

1.
64

+
1.

23
+

0.
23

−
0.

16
+

0.
06

−
0.

02
+

0
−

0.
06

+
0

33
9

50
/1

00
6

+
1.

6
+

1.
21

−
0.

3
−

0.
2
−

0.
47

−
0.

03
−

0.
25

+
0.

04
+

0
40

9
50

/1
00

7
+

0.
05

−
0.

01
+

0.
41

−
0.

22
+

0.
02

−
0.

01
+

0.
06

+
0.

01
+

0.
04

84
47

/1
00

8
+

0.
74

+
0.

65
−

0.
23

+
0.

02
−

0.
01

+
0

+
0.

04
−

0.
16

−
0.

06
19

1
50

/1
00

9
+

0.
31

+
0.

27
+

0.
27

+
0.

02
−

0.
03

+
0.

03
+

0.
2
−

0.
06

−
0.

06
12

6
40

/1
00

10
−

0.
04

−
0.

03
+

0.
06

+
0.

22
−

0.
1

+
0.

03
+

0.
35

+
0.

01
−

0.
07

90
48

/1
00

60 Chapter 5. Genetic Algorithms for Video Game Parameter Balance

Some of the best individuals made minor changes to the game’s mechanics, but

these changes resulted in a much easier game for the rules-based agent. In general,

the GA found 4 different methods of balancing the game towards the required de-

signer metric.

The first strategy (runs 1, 2, 5, 6 and 8) is to make the main player and one ghost

faster (up to 30% faster), while barely altering the other ghosts. This is a worthy

avenue to take by a designer, but might not be the best one available due to physical

reaction time differences between AI agents and humans.

The second strategy (runs 3 and 10) is to slow everyone down slightly. The ghosts

are slowed down less than the player, which seems to allow for more points to be

gathered, thus winning the game more often. It is very likely the average score

would decrease, should we return to the original version of the game, but that is a

side effect of the new goal.

The third strategy, found in run 4, is very mild tweaks to all values. Surprisingly,

this fits the requirements very well, while changing the game the least out of all

the presented options. This would likely be the solution a designer would be most

interested in. However, some might find the changes too small and consider the run

lucky, which it very well might have been. Another 100 games were run with this

configuration, with a new random seed, to double check the results. The new win-

rate was, this time, only 42% (with 42 wins out of 100 games), however that is still

much higher than the original 19.67% reported with the original parameters, and

quite close to the 50% desired. This shows that even small changes can impact the

difficulty of a game in unexpected ways.

Lastly, in runs 7 and 9, various variations of speeding up both the player and

some of the ghosts were used, although there was no obvious pattern that would

warrant further exploration. Their fitness is not great either and can thus be consid-

ered unsuccessful runs.

Given this array of suggestions, a designer can run diagnostics with different AI

agents or human testers and assess the value of the ones they found most interest-

ing. These can be further adjusted manually or the fitness function can be altered to

reflect a better understanding of the task.

The results were very good and resulted in a conference publication [1].

5.2. Ms. Pac-Man Experiments 61

Testing GA Parameter Configurations

Once the exploratory study yielded good results, further optimisations to the GA

parameters were sought in a second set of experiments. All the configurations tested

can be found in Table 5.3, Table 5.4 and Table 5.5.

The main goal of these runs was to observe how quickly and effectively good

solutions are found, as opposed to observing and analysing the suggestions given.

These runs would allow us to choose potentially better default values for experi-

ments in other games.

The parameters of the GA that were varied included the mutation rate, reinitial-

isation and population size.

Mutation Rate Results can be seen in Figure 5.5. Through the first 500 evaluations,

results are very similar. Differences appear beyond those first 500, with some rates

proving objectively worse than others.

The best performing configurations were the ones with mutation rates of 10%

and 20%. All other configurations had much worse results overall, despite all other

parameters being identical.

The worst result, by far, was the one where mutation was very aggressive, at

a rate of 50%, followed closely by 40%. Interesting is the fact that the next worst

configuration was the one where the mutation rate was too low, at 5%.

When comparing results using a Wilcoxon Signed Rank test, the configurations

with mutation rates of 10% and 20% were significantly better than the others, with

results available in Table 5.8. While neither was statistically better than the other, the

results using the mutation rate of 20% were, on average, slightly better. The p-value

was also closer to significance when comparing to the results with a mutation rate

of 10%.

TABLE 5.8: Wilcoxon Signed Rank test when comparing various mu-
tation rates

Rate compared to 5% 10% 20% 30% 40% 50%
10% 4.32E-06 - 0.905 0.027 3.40E-11 2.11E-15
20% 1.05E-08 0.095 - 0.004 5.38E-10 0

62 Chapter 5. Genetic Algorithms for Video Game Parameter Balance

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

400

600

800

1,000

1,200

1,400

Total evaluations

Fi
tn

es
s

Mutation Rate = 5%
Mutation Rate = 10%
Mutation Rate = 20%
Mutation Rate = 30%
Mutation Rate = 40%
Mutation Rate = 50%

FIGURE 5.5: Average best fitness values achieved after a given num-
ber of evaluations by the GA runs in the Ms. Pac-Man experiment,
when comparing GA configurations with various rates of mutation

Based on these results, for the remainder of the experiments, a value of 20% was

chosen for the mutation rate.

Reinitialisation Afterwards we considered whether reinitialisation was valuable

or not. This is the operation where random new individuals are generated and

added to the population, with the goal of maintaining diversity. Figure 5.6 shows

that there are no benefits to having it present for this experiment. Both with a popu-

lation size of 50 and 100, using a reinitialisation proportion of 20% did not improve

the results in relevant ways. Quite the opposite, with reinitialisation bringing worse

fitnesses at almost every data point.

It is possible that, if applied with a smaller rate, reinitialisation could be better.

We did not explore this possibility because differences were relatively small in any

case. Following this, the decision to remove it from future experiments was taken.

Population Size The configurations presented in Table 5.5 were used, with a mu-

tation rate of 20%, as resulting from the previous experiments.

5.2. Ms. Pac-Man Experiments 63

0 500 1,000 1,500 2,000

400

600

800

1,000

1,200

1,400

Total evaluations

Fi
tn

es
s

Pop 50 - Rein 20
Pop 50 - Rein 0

Pop 100 - Rein 20
Pop 100 - Rein 0

FIGURE 5.6: Average best fitness values achieved after a given num-
ber of evaluations by the GA runs in the Ms. Pac-Man experiment,
when comparing GA configurations with and without reinitialisation

Looking at the results in Figure 5.7 it can be seen that the bigger the population,

the longer it takes to reach good results. However, the bigger the population, the

better the results given the budget of 2000 evaluations, with one exception. The

runs where the population size was set to 200 barely managed to achieve equivalent

results to the runs with population size 100 within budget, presenting worse results,

on average, before the final few generations. It is likely, with a higher budget, that

they would catch up and possibly further improve results.

Overall, the best results were those with population sizes 50 and 100. These gave

good results at every stage of their runs.

Testing Different Values for Weights for Fitness Components

Looking at the results from the previous studies, the best configuration proved to be

the one where the population size was set to 50, with no reevaluation and a mutation

rate of 20%. This was the chosen configuration to then test the values of different

weights for fitness components. The configurations tested were those presented in

Table 5.6. For each configuration, 50 runs were done.

64 Chapter 5. Genetic Algorithms for Video Game Parameter Balance

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
200

400

600

800

1,000

1,200

1,400

1,600

1,800

Total evaluations

Fi
tn

es
s

Pop 10
Pop 20
Pop 50
Pop 100
Pop 200

FIGURE 5.7: Average best fitness values achieved after a given num-
ber of evaluations by the GA runs in the Ms. Pac-Man experiment,

when comparing different population sizes

One of the marks of success is whether each configuration manages to find sug-

gestions that have a better fitness than the baseline fitness, as well as how fast those

suggestions are found. Failure to find a better individual means that, for that pair of

weights, there is no solution better than no changes.

All results are presented in Figure 5.8. As expected, when minimising changes

to the parameters is extremely important (i.e., ratio values of 5 and less), parameter

sets that fit the requirements better than making no changes are virtually impossible

to find.

It is interesting to note how the ratio value of 10, chosen for the preliminary

experiment, behaves. While in that study most results managed to be better than

the status quo, with more runs the average is actually worse. This is likely a sign

that, still, the parameter weight is too high compared to the win-rate weight. On

the flip-side, a value of 50 for the ratio results in pretty much any move towards the

desired win-rate to be considered significantly better than the baseline.

These results highlight an interesting conundrum for multi-objective optimisa-

tion. On one hand, investing a lot of time running multiple GA configurations is

required to allow one to better understand their problem and what parameters are

5.2. Ms. Pac-Man Experiments 65

0
500

1,000
1,500

2,000
1

2
5

10
20

50

0

500

1,000

1,500

2,000

Total evaluations

Weight Ratio

A
ve

ra
ge

Be
st

Fi
tn

es
s

FIGURE 5.8: Average best fitness values achieved after a given num-
ber of evaluations by the GA runs in the Ms. Pac-Man experiment,
when comparing various objective weights. Dashed green lines rep-
resent the baseline fitness for each respective value of the weight ra-

tio. Orange ranges represent the confidence thresholds

better for various weights. However, industrial use cases might not have the time or

desire to deeply analyse so many abstract concepts relating to their game or product.

Some of the analysis presented in Section 5.2.1 did hint at this and could help in

pre-emptively selecting good values. Some trial and error will, however, always be

required when looking for fast suggestions to existing problems.

66 Chapter 5. Genetic Algorithms for Video Game Parameter Balance

5.3 StarCraft Experiments

5.3.1 Environment

The StarCraft environment, being immensely more computationally taxing, was ex-

plored in much less detail than the Ms. Pac-Man one. Very similar algorithms and

considerations were used as with the Ms. Pac-Man experiments. This use case is a

much more realistic scenario, as it highlights how a designer would be pushed to go

with the results of a first, or at most second, batch of runs, due to the time consider-

ations.

Beyond the tools used to interact with the game, described in Section 3.2, no

changes were made to the game mechanics or rules.

There is one Zerg (one of the playable factions in the game) AI agent, called

ZZZKBot, written by Chris Coxe [153], that has a very high win-rate against most

other AI agents and intermediate or novice human players [154]. Prior knowledge

of ZZZKBot’s strategy, or an experienced player, are required to successfully defend

against it. The designer aim was to change the game to make this AI bot no longer

dominant.

ZZZKBot employs the 4-pool zergling rush strategy. What this strategy entails is

not critical to the understanding of this chapter, but is given for those curious. The

Zerg player makes their cheapest offensive units (the zergling) in bulk as quickly as

possible, sending them to attack the opponent as soon as they are complete. This

is a very aggressive strategy that, if not explicitly defended against, will result in

success. If, however, the initial onslaught is pushed back, the Zerg player has greatly

diminished chances of victory, as they have ignored any economic growth. In most

games, in the standard version of the game, the Zerg AI rushes to the first military

building (the Spawning Pool) which then allows them to train zerglings en-masse.

By the time the first wave of zerglings arrives at the Terran opponent, there should

be minimal resistance. The Terran SCVs have to defend, while the first marine is

being trained. A failed defence will mean the Zerg player overwhelms the base.

As a result, the important units in StarCraft for this study are:

5.3. StarCraft Experiments 67

TABLE 5.9: Original StarCraft parameters

Health Attack Minerals Time to
Cost Train

Marine 40 6 50 24s
SCV 60 5 50 20s
Zergling 35 5 50 28s

• the Terran SCV, the basic worker of the Terran faction. They are weak in com-

bat, but are the only resource-gathering unit.

• the Terran Marine, the cheapest military unit available to the Terran faction.

They are efficient in multiple numbers, attack from range and move at a

medium speed.

• the Zerg Zergling, the cheapest military unit available to the Zerg faction. They

are efficient in multiple numbers, attack from melee range and are fast.

The game’s relevant parameters, for this study, are how strong the marine, SCV

and zergling units are, in regards to their available hit points (how hard they are to

kill), their attack damage (how strong their attacks are), the amount of time it takes

to train one of each, and how many minerals they cost to train (Table 5.9). Of course,

there are many more units whose defence and attack could be evolved, but were not

valuable for this niche scenario. The ranges the parameters can have, as well as the

accuracies and chosen weights can be seen in Table 5.10.

From a design perspective, one extra point of damage is more important than

one extra point of health, as health is a finite resource, while damage is dealt re-

peatedly for as long as the unit is alive. Similarly, build time and mineral cost are

more relevant than health. As a result, the health changes of the 3 units have a lower

weight compared to the other parameters.

Fitness Evaluation

For each parameter set, the map was created, then a number of games were run in

sequence, storing the results (win or loss) of the Zerg AI and the duration of each

game. For these experiments the number of games chosen was 10. The Zerg AI

played against the game’s highest difficulty Terran player.

68 Chapter 5. Genetic Algorithms for Video Game Parameter Balance

TABLE 5.10: Parameters chosen and their ranges for StarCraft

Description Min Max Accuracy C∆i
Change Change

A1 Terran Marine Attack -4 +26 100 100
A2 Terran SCV Attack -4 +26 100 100
A3 Zerg Zergling Attack -4 +26 100 100
H1 Terran Marine Health -30 +30 100 50
H2 Terran SCV Health -30 +30 100 50
H3 Zerg Zergling Health -30 +30 100 50
M1 Terran Marine Mineral Cost -25 +25 100 100
M2 Terran SCV Mineral Cost -25 +25 100 100
M3 Zerg Zergling Mineral Cost -25 +25 100 100
B1 Terran Marine Build Time -20 +20 100 100
B2 Terran SCV Build Time -20 +20 100 100
B3 Zerg Zergling Build Time -20 +20 100 100

TABLE 5.11: StarCraft metrics to be used in evaluation alongside their
desired values and weights

Name Desired Evaluator Weight
W Win-rate achieved by ZZZKBot DWR Average CW = 10000

Sum of parameter
∆P absolute displacements 0 Minimise C∆i

Similar to the Ms. Pac-Man experiments, the end goal was to control two fea-

tures: how often the main agent wins and how big the changes are to the original

game parameters. The smaller the changes are to the original game parameters, the

less likely it is that the game’s players would become dissatisfied with the changes.

These metrics can be seen in Table 5.11. The desired win-rate is not given a value yet

as we have sought a couple of experiments, each with a different value for it.

As a result, fitness is a multi-objective function of the win-rate and the absolute

difference between the default game parameters and the newly evolved ones. The

closer the win-rate is to the desired one, the better the fitness. Also, the smaller the

difference between the original parameters and the evolved parameters, the better

the fitness, as it is preferred to have incremental changes rather than big ones. This

is the immediate result of wanting to optimise an existing game rather than creating

a new one from existing mechanics.

The objective of optimising the win-rate could be further split into multiple game

5.3. StarCraft Experiments 69

scenarios, each one dealing with different AI agents or maps, but we decided to keep

it straightforward and focus on methodology by using only two AI agents (ZZZKBot

and the default StarCraft Terran AI).

Formally, the fitness function can be written as:

Fitness = W + ∆P (5.4)

W = |WR−DWR| × CW (5.5)

∆P =
n

∑
i=0

(|∆i| × C∆i) (5.6)

In the win-rate optimisation function W, WR = Win-Rate (from 0 to 1) and DWR =

desired win-rate, CW = win-rate bias factor. In the parameter optimisation function

∆P, ∆i = difference between the original ith parameter and the evolved ith parameter

and C∆i = parameter weight.

We consider smaller fitness values to be better, with 0 representing a perfect so-

lution.

5.3.2 Experiments

Two experiments were exploratory studies done in parallel with the Ms. Pac-Man

one.

The first one had the purpose of assessing whether a GA can completely nullify

the ZZZKBot AI’s strategy, thus achieve 0% win-rate. Intuition says that pushing the

Zergling’s attack damage as low as possible, or, alternatively, increasing the SCVs

attack high enough, would be sufficient to neutralize the Zerg AI strategy. If the

GA arrived at a similar conclusion, it would be a sanity check for its ability to alter

the game appropriately. The baseline fitness (where all game parameters are set to

0, thus proposing no changes to the existing game) is 10000 and will be used to

compare results.

The second exploratory experiment required the search for changes to the game

that made the ZZZKBot AI’s strategy only successful 50% of the time. This is a very

complex task, and there is no immediately obvious solution to it. It is also very

likely that there might be multiple ways of achieving this goal, and these could be

70 Chapter 5. Genetic Algorithms for Video Game Parameter Balance

TABLE 5.12: Suggested changes to StarCraft parameters to minimise
ZZZKBot’s win-rate

Health Attack Minerals Time to
Cost Train

Marine +2 +2 +0 -1s
SCV +0 -1 +0 +0s
Zergling -29 +0 -1 +0s

found by different GA runs. The reason behind choosing 50% as the target win-rate

is due to a desire to remove a dominant strategy from the pool of available tactics.

By removing the dominant strategy, the game should once again allow for multiple

strategies to be viable. The baseline fitness (where all parameters are set to 0) was

5000 and was used to assess results.

Finally, once a good set of parameters was computed in the second exploratory

experiment, the corresponding version of StarCraft was played by people of varying

skills, to assess its viability with respect to the original version. Players had to play

as the Terran race and face ZZZKBot in two best of 3 series, one with the original

parameters, and one with a parameter set identified by the GA, then describe which

parameter set they considered the fairest and most entertaining to play with, as well

as any strategic considerations that they made as a result of the changes.

Finally, the second exploratory experiment was ran again with the optimised GA

parameter configuration found in the Ms. Pac-Man experiments. The assumption

was that the results would be on par, if not better, than the exploratory ones.

5.3.3 Results

Completely Nullifying the ZZZKBot

For StarCraft a single run was done, with the objective of completely disabling the

ZZZKBot’s strategy. This was done just as a test of the much more complex version

of our system required by the game, with the parameters described in the previous

section, DWR = 0.0 and CW = 400.

The best set of parameters computed is presented in Table 5.12. This individual

had a W of 0, which means ZZZKBot lost all 10 of the games it played, and a ∆P

5.3. StarCraft Experiments 71

of 2050. With these parameters, the game’s default Terran AI agents consistently

defeat ZZZKBot, while also diverging from the game’s default parameters by a small

amount, as was required.

This result is in line with one of the intuitive solutions a game designer would

come up with to solve the task. While, for this example, the Marine and SCV pa-

rameters did not require many, if any, changes, it highlights the GA’s ability to come

to the same conclusion and focus on changing the relevant unit parameters only, in

this case the zergling’s health.

Preliminary Balancing of the ZZZKBot Strategy

In this experiment 10 runs were done, each with a different seed, with DWR = 0.5,

C∆ = 1 and CW = 400.

Given the complex setup, each generation required approximately 20 minutes

to complete on a 16-core computing cluster. Consequently, each run took approxi-

mately 17 hours. Results can be seen in Table 5.13.

The ∆P values of the best individuals in each run averaged 3985 (±722.7), with

a median of 4025 (see also box-plot in Figure 5.9). The win-rate component of the

fitness function consistently achieved the optimal value, as a result of having won 5

out of 10 games.

With all of the evolved parameter sets, the game’s default Terran AI agent has a

chance to defend against ZZZKBot in approximately 50% of their encounters. The

difference between the default parameters and the computed ones is generally sub-

stantial in most runs. Each run consistently managed to optimise the win-rate objec-

tive W of the fitness function.

Looking at the results, there is an immediate observation to be made: every sin-

gle run considered at least one (usually two) of the parameters H1 A1 (the Terran

Marine’s health and attack damage) and H3 (the Zerg Zergling’s health) as requiring

major changes. The Terran unit’s attack is increased by a generous amount, while the

Zerg unit’s health requires some decrease. Sometimes these changes are partnered

with significant increases to the Marine’s health. The GA also considers parameters

A2, A2, M3 and B3 as requiring virtually no change.

72 Chapter 5. Genetic Algorithms for Video Game Parameter Balance

TA
B

L
E

5.
13

:M
ai

n
St

ar
C

ra
ft

ex
pe

ri
m

en
tr

es
ul

ts
,w

it
h

be
st

in
di

vi
du

al
(s

)i
n

bo
ld

.G
re

en
hi

gh
lig

ht
in

g
re

pr
es

en
ts

bi
g

ch
an

ge
s

by
ad

di
ng

to
th

e
or

ig
in

al
va

lu
e,

re
d

hi
gh

lig
ht

in
g

re
pr

es
en

ts
bi

g
ch

an
ge

s
by

su
bt

ra
ct

in
g

fr
om

th
e

or
ig

in
al

va
lu

e,
w

hi
le

co
lo

ur
s

in
-b

et
w

ee
n

re
pr

es
en

t
sm

al
le

r
in

te
ns

it
y

ch
an

ge
s

R
un

H
1

A
1

M
1

B 1
H

2
A

2
M

2
B 2

H
3

A
3

M
3

B 3
∆

P
1

+
17

+
12

+
10

+
5

+
0
−

1
−

3
+

0
−

3
+

0
+

2
+

0
42

00
2

+
4

+
3

+
7

+
0
−

2
−

3
−

2
+

2
−

19
−

3
−

1
−

1
34

50
3

+
12

+
22

−
3

+
4
−

18
+

0
+

3
+

0
−

4
+

0
+

0
+

1
50

00
4

+
12

+
8

−
1

+
1
−

5
+

4
+

1
−

4
−

9
−

1
+

5
+

3
41

00
5

+
13

+
9

−
2
−

1
+

2
+

0
+

13
−

4
−

12
+

2
+

3
−

3
50

50
6

+
4

+
20

−
1
−

3
+

1
−

1
−

1
+

0
+

0
−

3
−

4
+

3
38

50
7

+
3

+
9

+
4
−

2
+

1
+

2
+

0
+

1
−

9
+

1
−

1
+

0
26

50
8

−
1

+
10

+
3
−

5
+

0
+

2
−

1
+

3
−

11
−

3
+

0
+

1
34

00
9

+
3

+
8

+
4

+
1

+
8

+
4

+
0

+
0
−

14
+

0
−

7
+

3
39

50
10

+
2

+
20

−
3
−

7
+

6
+

1
+

4
−

7
+

0
−

1
+

0
+

0
42

00

5.3. StarCraft Experiments 73

Interestingly, a couple of runs (1 and 3) also suggested increasing the build time

for the Terran Marines (B1). They were also the runs that had the biggest improve-

ments to that unit’s health and attack proposed.

The results of each run are similar to each other, all presenting the same general

suggestions to the designer. This could prompt a look at the deeper mechanics of

the game should the magnitude of the changes be too high for implementation.

Overall these results show that our approach was successful, as the different GA

runs did not just give us different avenues to solving the task that fit the require-

ments but also made the strategies designers can choose when balancing their games

clear.

Testing Results with Human Players Five people, one with thousands of hours of

experience in the game, 2 with intermediate experience and 2 novices, were asked to

play between 2 and 6 games each of StarCraft against ZZZKBot, half of those games

using the vanilla parameters and the other half using the evolved parameters from

run 7. Using ChaosLauncher and BWAPI, the whole setup was automated. Players

were asked to play to the best of their abilities, advising them that the games would

be short and that one map had some parameters modified compared to the other, as

well as that they would play against a fairly aggressive Zerg player. Results can be

seen in Figure 5.10.

The novice players consistently lost in both versions of the game, but, after re-

alising they could defend with the workers, often found it easier to survive slightly

longer on the evolved map that gave their SCV workers a slight increase in attack

power. This does highlight the fact that balancing the game against the insane diffi-

culty computer opponent means weaker players do not benefit as much from minor

changes in their favour. This is worth considering for the future, as a multi-objective

fitness evaluation can be used to balance against multiple difficulties at once, each

potentially having its own requirements and target optimal values. Of course, it is

2,600 2,800 3,000 3,200 3,400 3,600 3,800 4,000 4,200 4,400 4,600 4,800 5,000

FIGURE 5.9: Boxplot of ∆P fitness component for all 10 StarCraft runs

74 Chapter 5. Genetic Algorithms for Video Game Parameter Balance

Experienced Intermediate Novice
0

20

40

60

80

100

66

33

0

66 66

0

Player Ability

W
in

%

Vanilla
Evolved

FIGURE 5.10: Win-rate % after human play-testing

also representative of how humans do attempt to adapt to changes and make use of

them to their advantage through trial and error.

The intermediate players took better advantage of the changes, successfully de-

fending using both workers and an alternate strategy on the modified map, but find-

ing it more challenging on the vanilla version of the game. They reported that the

stronger workers were something beneficial, but also stated that they could have

won more reliably on the unchanged map were they able to micro-manage their

units more effectively, an ability that requires a lot of practice.

The experienced player did not make any use of the stronger workers, opting to

always use an optimal strategy that involved marines and a bunker (a building that

allows marines to shoot from safety until it is destroyed) in all scenarios. They still

lost a game on both versions of the map due to positioning mistakes, but reliably

showcased how one could beat the Zerg rush strategy and keep a healthy economy

to eventually win the game. This is as expected, as the employed Zerg strategy, while

very strong, is not a dominant one when playing against high-level opponents.

This is purely exploratory qualitative data, as the sample was very low and the

experiment was not designed to allow for control. It can be useful for preparing

future experiments concerning this sort of work.

Balancing ZZZKBot Using Optimised GA Parameters

The previous experiment was rerun using the updated parameters, as found in Sec-

tion 5.2.3. A total of 10 runs were done, each one paired to one from the exploratory

study.

5.3. StarCraft Experiments 75

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

0.2

0.4

0.6

0.8

1

·104

Total evaluations

Fi
tn

es
s

Exploratory GA parameters
Optimised GA parameters

FIGURE 5.11: Average best fitness values achieved after a given num-
ber of evaluations by the GA runs in the StarCraft experiment, when
comparing the results of the exploratory GA parameters to the results

of the optimised GA parameters. Lower values are better.

As expected as a result of the Ms. Pac-Man experiments, the different GA param-

eters resulted in better results faster. These can be observed in Figure 5.11. The ∆P

values of the best individuals in each run averaged 3245 (±564.9), with a median of

3175. To confirm this, a Wilcoxon Signed Rank test was applied to the best results of

each paired run. The result was p = 0.0078, a highly significant value.

The solution space, however, was not particularly different from the one pre-

sented in Section 5.3.3. Most of the proposed changes were optimised versions of

the results already presented in Table 5.13. The biggest variation is when some runs

figured out they can decrease the build time of Terran Marines and, as a result, re-

quire smaller improvements to their health and attack. Overall, however, the same

strategies were suggested.

76 Chapter 5. Genetic Algorithms for Video Game Parameter Balance

TABLE 5.14: Parameters chosen and their original values for TORCS

Description Original
PM Car Mass 600 kg
PD Drag Coefficient 0.6
PC Clutch Inertia 0.115 kg.m2

PL Steering Lock 21 deg
PS Steering Speed 360 deg/s
PR Rear Differential Ratio 5.5
PB Brake Pressure 24000 kPa
PA1 Front Anti-Roll Bar Spring 0 lbs/in
PA2 Rear Anti-Roll Bar Spring 0 lbs/in

5.4 TORCS Experiments

5.4.1 Environment

Many elements of the game could be changed for balancing purposes, from the lay-

out of the tracks, to the technical specifications of the cars, to the way artificial agents

drive in the game. For this experiment we decided to look at changing the perfor-

mance of a single vehicle in the game, the car1-ow1.

After discussing this with an experienced engineer from the car racing industry,

the elements of the car chosen for tweaking (the parameters) were: the total mass of

the car (PM), the drag coefficient (PD), the clutch inertia value (PC), the steering speed

(PS), the steering lock (PL), the rear differential ratio (PR), the maximum pressure

applicable by the breaking system (PB), the front anti-roll bar spring value (PA1), and

the rear anti-roll bar spring value (PA2). The original values for these parameter can

be seen in Table 5.14. As before, displacements from the default values to these car

parameters are what the GA evolves. The ranges these parameter displacements

could take, as well as the decimal accuracy they can have, can be seen in Table 5.15.

The car is driven by one of the game’s default driver agents, berniw. To collect

metrics, the car was driven on 3 different tracks, one for each distinct type available

in the game (dirt, oval and road). The values gathered were the lap times achieved

on each one. As designers seeking to balance the car itself, the goal was to improve

the car’s performance on the road track (achieve a better lap time), decrease its per-

formance on the oval track (achieve a worse lap time), but maintain its performance

5.4. TORCS Experiments 77

TABLE 5.15: Parameters chosen and their ranges for TORCS

Description Min Change Max Change Acc C∆i
PM Car Mass -300 kg 300 kg 100 0.5
PD Drag Coefficient -0.15 0.15 10−2 1000
PC Clutch Inertia -0.05 kg.m2 0.05 kg.m2 10−4 3000
PL Steering Lock -15 deg 20 deg 100 7.5
PS Steering Speed -300 deg/s 0 deg/s 100 0.5

Rear
PR Differential Ratio -5 5 10−1 30
PB Brake Pressure -19000 kPa 19000 kPa 100 0.005

Front Anti-Roll
PA1 Bar Spring 0 lbs/in 5000 lbs/in 100 0.025

Rear Anti-Roll
PA2 Bar Spring 0 lbs/in 5000 lbs/in 100 0.025

TABLE 5.16: Times achieved by the vanilla version of the car on each
track, alongside the desired times

Track Original Time Desired Time
Road 78.33s 70.00s
Oval 26.95s 32.00s
Dirt 63.93s 64.00s

on the dirt track (maintain its previous lap time). The performance of the original

version of the car, as well as the desired new values, can be seen in Table 5.16.

Fitness Evaluation

The first objective is minimisation of all 9 parameters, or applying the least displace-

ment possible to the car properties. The second objective is achieving the desired

performance on the road track, for which we used an average evaluator comparing

the appropriate metric to the desired value, as seen in Table 5.16. The third objective

is the same as before, except looking at the times achieved on the oval track. The last

objective is treated identically, except the relevant metric is the time to complete the

dirt track. All objectives can be seen listed in Table 5.17.

Formally, the fitness function can be written as:

Fitness = TR + TO + TD + ∆P (5.7)

78 Chapter 5. Genetic Algorithms for Video Game Parameter Balance

TABLE 5.17: TORCS metrics to be used in evaluation alongside their
desired values and weights

Name Desired Evaluator Weight
TR Time on Road map DR = 70 Average WR = 70
TO Time on Oval map DO = 70 Average WO = 70
TD Time on Dirt map DD = 70 Average WD = 70

Sum of parameter
∆P absolute displacements 0 Minimise Various Weight∆i

TR = |TimeR −DR| ×WR (5.8)

TO = |TimeO −DO| ×WO (5.9)

TD = |TimeD −DD| ×WD (5.10)

∆P =
n

∑
i=0
|∆i| × C∆i (5.11)

In these functions, TimeR is the time achieved on the road map, TimeO is the time

achieved on the oval map, TimeD is the time achieved on the dirt map. DR, DO and

DD are the desired values for each of the road, oval and dirt map, respectively. ∆i is

the displacement of the ith parameter, while C∆i is that parameter’s weight.

For these experiments, each value for Target was taken from Table 5.16, all the

evaluator Weight values were set to 70, while all parameter Weight∆i were set to the

values in Table 5.15. As a result, all of the evaluators have similar importance. This

results in all four main objectives having similar relevance to the final fitness score.

Running the game with unchanged parameters gives a fitness value of 941.5.

This will be considered the baseline for comparing suggestions from the GA.

TORCS is not stochastic and, as a result, no more than 1 game needed to be

played for each individual. Each game consisted of running a single race of one lap

on each of the 3 tracks and reporting the times achieved on each one.

Genetic Algorithm

The best GA configuration from the Ms. Pac-Man experiments in Section 5.2.3 were

used to generate suggestions for balancing TORCS. This was the one where elitism

5.4. TORCS Experiments 79

was applied to 20% of the population, mutation was applied to 40% of the popula-

tion, at a rate of 20%, and crossover was applied to 40% of the population.

Population size was 100, with a tournament size of 6. Experiments ran until 2000

evaluations of the fitness function were used.

5.4.2 Experiment

The main experiment involved changing the parameters of the targeted car until its

performance on all 3 tracks was as desired, as described previously.

A total of 20 runs were done, each with a different seed for the random number

generator.

5.4.3 Results

Looking at the results in Table 5.18 we see quite a few valuable pieces of informa-

tion. The most important one is that each run manages to produce suggestions that

improve the fitness of the reference (no changes) configuration. This was despite the

penalty brought on by having a non-zero parameter fitness objective.

Beyond that, the thing that immediately jumps out is the fact that the car’s mass

(PM) is always greatly reduced. This makes sense, as that would give it a significant

speed boost on most tracks, which is valuable for one of the objectives.

The GA decided not to change most of the other parameters much, as it would

have, most likely, resulted in worse fitnesses. It is very likely that higher displace-

ments would have had a negative effects on the fitness as a result of the minimisation

requirement. Any minor improvements to times would be offset by the penalty of

changing the value.

The one interesting exception is the steering lock (PL). This parameter was mostly

ignored in all runs except the 3 best performing ones. In those 3 runs, the biggest

change towards decreasing it proved best. This resulted in the car driving much

slower on the oval track, as needed, while impacting the other two tracks much less

than expected.

80 Chapter 5. Genetic Algorithms for Video Game Parameter Balance

This suggests that we are dealing with a multi-modal fitness landscape with a

narrow global optimum and a much wider local optimum, as the other 17 runs did

not hone onto this area of the search space.

The majority of runs managed to successfully improve the car’s times on the

dirt track from 78 seconds to approximately 70 seconds, with an example visible in

Figure 5.12. Maintaining performance on the road track seemed slightly harder to

achieve, with that particular fitness objective proving harder to minimise. However,

even harder to minimise was decreasing the car’s performance on the oval track.

While all runs managed to slow the car down on that track, the magnitude was not

as high as required.

These are all results that designers will find useful, as they offer valuable insight

into the relationships between the various parameters. They could then start a new

series of game balancing runs, where some of the changes suggested by a few of the

runs are implemented, while new parameters and evaluators are added to the mix.

5.4. TORCS Experiments 81

TA
B

L
E

5.
18

:E
xp

er
im

en
tr

es
ul

ts
,w

it
h

th
e

be
st

so
lu

ti
on

in
bo

ld
an

d
th

e
de

fa
ul

t,
un

ch
an

ge
d,

ve
rs

io
n

at
th

e
bo

tt
om

.G
re

en
hi

gh
lig

ht
in

g
re

pr
es

en
ts

bi
g

ch
an

ge
s

by
ad

di
ng

to
th

e
or

ig
in

al
va

lu
e,

re
d

hi
gh

lig
ht

in
g

re
pr

es
en

ts
bi

g
ch

an
ge

s
by

su
bt

ra
ct

in
g

fr
om

th
e

or
ig

in
al

va
lu

e,
w

hi
le

co
lo

ur
s

in
-b

et
w

ee
n

re
pr

es
en

ts
m

al
le

r
in

te
ns

it
y

ch
an

ge
s

R
un

P M
P D

P C
P L

P S
P R

P B
P A

1
P A

2
Fi

tn
es

s
1

−
21

3
+

0
+

0.
00

34
−

14
−

24
+

0
+

1,
31

8
+

24
9

+
12

9
73

5.
12

2
−

19
2
−

0.
01

+
0.

00
06

+
0
−

22
+

0.
5

+
2,

20
6

+
74

8
+

16
2

82
7.

96
3

−
20

7
+

0
−

0.
00

23
+

1
−

35
+

0.
6
−

74
1

+
23

+
50

3
80

0.
67

4
−

18
8
−

0.
03

+
0.

00
09

+
0
−

50
+

0.
7
−

1,
51

9
+

33
2

+
19

2
83

7.
25

5
−

27
1

+
0

+
0.

00
41

−
1
−

64
+

1
+

6,
01

3
+

10
7

+
28

3
85

3.
79

6
−

22
3
−

0.
01

−
0.

00
86

+
0
−

20
+

0.
8
−

4,
34

2
+

16
3

+
20

9
82

6.
77

7
−

19
0

+
0

+
0.

00
35

+
0
−

27
+

0.
5

+
10

4
+

11
5

+
82

6
82

6.
4

8
−

19
0

+
0.

01
+

0.
00

02
+

1
−

4
+

0.
9

+
6,

84
1

+
1,

09
1

+
36

84
7.

08
9

−
23

9
+

0.
02

−
0.

00
87

+
0
−

11
+

0.
8

+
4,

78
4

+
46

6
+

12
1

83
4.

57
10

−
22

3
+

0
+

0.
00

98
−

1
−

25
+

0.
7

+
15

+
33

4
+

73
81

1.
23

11
−

18
0
−

0.
01

+
0.

00
22

+
1
−

12
+

0.
7

−
3

+
20

0
+

37
4

82
3.

4
12

−
17

6
−

0.
01

+
0.

00
17

+
1
−

78
+

0.
6
−

10
3

+
14

4
+

15
3

83
5.

5
13

−
20

8
−

0.
01

+
0.

00
24

−
15

−
26

+
0.

6
−

2,
82

6
+

36
7

+
80

0
69

5.
52

14
−

21
9

+
0.

01
+

0.
00

77
+

1
−

13
+

0.
8
−

41
7

+
42

+
35

5
80

7.
07

15
−

19
8
−

0.
03

−
0.

00
28

+
0
−

14
−

2.
7

+
5,

58
1

+
73

+
47

85
4.

53
16

−
21

1
+

0.
01

−
0.

00
18

+
0
−

13
+

0.
8
−

22
8

+
84

2
+

19
8

80
6.

02
17

−
18

4
+

0
−

0.
00

14
+

0
−

1
+

0.
7

+
6,

49
2

+
13

+
53

7
81

6.
45

18
−

21
9
−

0.
01

−
0.

00
02

+
3
−

58
+

0.
6
−

65
2

+
22

8
+

24
5

84
7.

14
19

−
23

0
+

0.
03

+
0.

00
93

−
14

−
9

+
0.

9
+

94
0

+
36

2
+

11
0

63
5.

44
20

−
23

3
+

0.
01

−
0.

00
96

−
1

−
3

+
0.

8
−

1,
76

7
+

66
7

+
17

1
81

5.
88

R
ef

+
0

+
0

+
0

+
0

+
0

+
0

+
0

+
0

+
0

94
1.

5

82 Chapter 5. Genetic Algorithms for Video Game Parameter Balance

FIGURE 5.12: Visual representation of the times achieved at various
checkpoints by the unchanged car (Car 1) compared to the best per-
forming car, according to the requirements, (Car 2, from run 19) on

the dirt track

5.5. Discussion 83

5.5 Discussion

For the purpose of the StarCraft experiments, only a subset of the game’s parame-

ters was taken in consideration. Other available variables, such as the build times

and costs of the Terran Barracks or the Zerg Spawning Pool (the buildings required

to actively train the units considered), as well as the attributes of other beasts in

the campaign, could have also been evolved. GAs have no major issues optimis-

ing problems with many more than 12 variables [155][156] and would not find the

extra parameters overly problematic. Better hardware or access to a game’s source

code would also greatly increase the speed of fitness evaluation, allowing for more

individuals in a population, more games to be played, or more generations to be

run.

The results do show a lot of promise, as the methodology proposed could not

only be useful in balancing a game itself, but, as seen after testing with human play-

ers, could aid in calibrating the performance of other intelligent agents to displaying

a desired level of skill and expertise. Instead of evolving the game parameters, one

could evolve the AI parameters and run a virtually unchanged set of fitness tests,

optimising it to behave at a required level.

For performance, the bottleneck was in no way related to the length of the arrays,

but in playing out the games themselves for the fitness evaluation. Better hardware

or access to a game’s source code would also greatly increase the speed of an eval-

uation, allowing for more individuals in a population, more games to be played,

or more generations to be run. This was made obvious by the difference between

the StarCraft experiment and the other two. While a single StarCraft individual in

the population took up to a minute to evaluate, a TORCS individual would need

around 6 seconds, while the evaluation of a Ms. Pac-Man individual would complete

in under a second.

The main challenges are still the fact that a good understanding of genetic al-

gorithms is required to optimise its performance, as different configurations yield

different results. However, except in the case of very bad configurations, the GA

will converge towards desirable solutions eventually.

84 Chapter 5. Genetic Algorithms for Video Game Parameter Balance

5.6 Summary

By using genetic algorithms we were able to successfully present suggestions for

game changes in three vastly different games. These suggestions were automatically

developed, with human input only during the designing phase of the experiments.

As a result, supervision was not needed during the various trials attempted by the

algorithm.

Each game (Ms. Pac-Man, StarCraft and TORCS) proved to have its own chal-

lenges, but the same methodology was successful every time. This is reassuring, as

it lends credibility to the claim that this approach could be valuable in other games

as well, or even in other fields.

This chapter also tackled the challenge of multiple fitness objectives. While for

the benefit of less technically experienced users our approach was to simplify this by

using a simple weighted sum, there is much that could be improved in the future.

Overall, this work has further proven the validity of using machine learning ap-

proaches to game design to complement game developers.

85

Chapter 6

Fitness Approximation for Faster

GA-Based Game Balancing

6.1 Introduction

The previous chapter highlighted one big problem with balancing games through

the use of GAs: the high number of games the GA needs to play to achieve desirable

results. While in some cases this is not a big problem, for some games, such as Star-

Craft, this can result in experiments that run for days, or even weeks. Reducing the

time it takes to achieve acceptable suggestions is, as a result, extremely important.

For the task of balancing games, when utilising computationally cheap agents to

play the game, such as a trained neural network, a finite state machine or a random

agent, evaluating a game variation is mostly dependent on how quickly the game

itself takes to run. A lightweight agent results in fasters runs of the game. How-

ever, expensive agents, such as those utilising Monte-Carlo Tree Search, can take

anywhere between several seconds or even minutes to complete even a single game.

This is due to a common practice with such agents where they utilise as much as pos-

sible of a given maximum time limit they have, such as 40ms per frame in games

attempting to run at 25 frames per second [130]. This results in code that needs to

run in real time instead of being able to be sped up during simulation, which results

in very long simulation times. When using these agents, the game mechanics are no

longer the most demanding aspect of the entire simulation.

One method of achieving good solutions within a given budget that we already

covered was to find “optimal” parameters for the GA. However, there is no promise

86 Chapter 6. Fitness Approximation for Faster GA-Based Game Balancing

that the ones found of Ms. Pac-Man, that proved to be better than ones chosen arbi-

trarily for TORCS and StarCraft as well, would work in other games. A more task-

agnostic method is required to potentially work on multiple games.

As described in Section 2.2.4, a lot of work has already been done on surrogate

models and fitness prediction. Our approach for this work takes inspiration from

those methodologies and brings forward a novel way of combining various machine

learning technologies to speed up GA-based game balance.

We set out a pipeline that involves developing a surrogate model from online

data generated by the GA as it is running, testing the model every generation, then

applying it to new GA individuals before they are evaluated using the expensive

fitness function. These models can save the GA from evaluating some individuals,

achieving better results faster.

We test this pipeline using a neural network on a couple of standard problems:

the OneMax problem and the Trap problem, as defined in Section 2.2.2. Afterwards,

we add two more machine learning algorithms to the models available and test this

approach on Ms. Pac-Man, TORCS and StarCraft.

6.2. Pipeline 87

6.2 Pipeline

6.2.1 Approximator Integration

Normally, a GA generation has all individuals that were newly generated evaluated

and their fitnesses saved for future operations. We mine this valuable data, as it

could help map the parameters that we are evolving to the fitness values, assuming

there is any relationship between them.

At the end of each GA generation, all the individuals that were evaluated by

running games are passed to the approximator. These individuals are stored in the

approximator’s data set, for use during model generation.

The data set acts as a queue with a maximum capacity. Whenever a new indi-

vidual is added to the data set, if there are more individuals than a given maximum

(NMax) in it, the oldest one is removed.

During a generation, after the population goes through elitism, crossover and

mutation, the new population is passed to the approximator. This population has

individuals that have not been evaluated yet and, as a result, do not have a fitness

value.

Using a subset of the data set described earlier (80% for all these experiments),

the approximator generates (or trains) its model of the fitness landscape, mapping

the parameters to either the fitness objectives or a fitness class (more details on the fit-

ness class in Section 6.2.3). The model generation is only done if there is a minimum

number of individuals in the data set (NMin). For simplicity, in all the experiments in

this chapter, both NMin and NMax are set to 200.

The reason a minimum number of individuals (NMin) is present is to allow the

model generation to actually have a fair amount of data to use. The maximum num-

ber of individuals (NMax) is valuable to stop the algorithm from having an infinite

upper limit in theoretical memory usage.

The remaining subset of the data set (20% for all the experiments presented) is

used to validate the approximator’s model, resulting in an accuracy value. This

accuracy is computed differently depending on the underlying model used, but the

result is expected to be a value less than, or equal, to 100%. Should the accuracy be

above a given threshold (AccMin), the approximator is allowed to predict the fitness

88 Chapter 6. Fitness Approximation for Faster GA-Based Game Balancing

function GA_Generation (population , approximator) :
approximator . updateExamples (population)
approximator . learnModelFromExamples ()

median <− medianFitness (population)

population . e l i t i s m ()
population . crossover ()
population . mutation ()
population . r e i n i t i a l i s a t i o n ()

i f approximator . accuracy >= AccMin then :
foreach ind iv idua l in population :

f <− approximator . p r e d i c t (ind iv idua l)
i f f >= PredMin then :

ind iv idua l . f i t n e s s <− f

population . eva lua te Indiv idua lsWithoutF i tness ()

FIGURE 6.1: Pseudo-code for the integration of an approximator in a
GA run

values of any new individuals in the population. Otherwise, the approximator

does not get used at all for that generation. AccMin can be any value between 0%

(the predictor gets used all the time) and 100% (the predictor only gets used when

it achieves perfect accuracy on the validation set). Choosing the value of AccMin is

one of the considerations presented later on in the chapter.

When applied to an individual, the approximator receives that individual’s pa-

rameter vector and returns a prediction on the fitness. If the approximator is a clas-

sifier, the expected output is mapped from the resulting class and will be covered in

a later section. If the predicted fitness is worse than a given threshold based on the

previous generation’s fitnesses (PredMin), it is accepted and no time consuming eval-

uation is done for that individual. 1 Values PredMin could have include the median

of the previous generation, the first quartile, the average or an arbitrary hard-coded

value. Good values for PredMin are explored in more depth later on in the chapter.

However, if the predicted fitness is better than the prediction threshold (PredMin),

a normal evaluation of that individual is done regardless. The reason we evaluate

these individuals is to better assess incremental changes to already good individuals

1For the purpose of these experiments, we evaluate each individual regardless of it having been
predicted or not, but do not replace an approximator’s prediction with the actual simulation results.
Instead, we use this evaluation to calculate the number of false negatives generated by the system.

6.2. Pipeline 89

and to, potentially, further improve on the generation’s average fitness. Integration

of an approximator into the normal run of a GA is presented in Figure 6.1 and Fig-

ure 6.2.

Because the approximator is only considered during evaluation, it does not in-

terfere with any other GA optimisations that an experiment designer would want to

implement.

It is also worth mentioning that individuals whose fitness was predicted are not

added to the approximator’s data set.

For these experiments we implemented 3 different approximators: a neural net-

work (NN), a C4.5 decision tree classifier (C4.5), and a k-nearest neighbours (k-NN)

classifier. These are described in the next three sub-sections.

6.2.2 Neural Network

The neural network employed for these experiments is a feed-forward neural net-

work with a single hidden layer, using the sigmoid activation function. The training

is done via backpropagation [157]. This is a simple, yet powerful and fast, neural

network that, while rarely the best option for every task, is a safe choice for many

situations [158][159][160].

Choosing the network’s topology is important when using neural networks

[161]. The number of input neurons is equal to the number of game parameters

the GA is evolving. The number of output neurons is equal to how many fitness ob-

jectives are being tracked, with any parameter minimisation fitness objective being

independently tracked.

When training the neural network with the data described in the previous sec-

tion, some manipulation has to be done. The inputs and outputs are normalized

to be within the 0 to 1 range. For input data, this is straightforward, as the ranges

parameters could have is already known, as they are defined by the experiment de-

signer.

90 Chapter 6. Fitness Approximation for Faster GA-Based Game Balancing

A
cc

ur
ac

y
>

75
P

re
di

ct
io

n(
In

di
v)

>
M

ed
ia

n(
G

en
−

1)
Fi

tn
es

s
=

P
re

di
ct

io
n(

In
di

v)

Fi
tn

es
s
=

E
va

lu
at

io
n(

In
di

v)

Tr
ue

Tr
ue Fa

ls
e

Fa
ls

e

FI
G

U
R

E
6.

2:
D

ia
gr

am
of

th
e

pr
ed

ic
to

r
lo

gi
c

w
it

hi
n

th
e

G
A

in
di

vi
du

al
ev

al
ua

ti
on

6.2. Pipeline 91

TABLE 6.1: The mapping of fitness values to classifier classes

Fitness Class Fitness Min Fitness Max
Class 0 0 FirstQuartile(Fitnesses)-1
Class 1 FirstQuartile(Fitnesses) Median(Fitnesses)-1
Class 2 Median(Fitnesses) ThirdQuartile(Fitnesses)-1
Class 3 ThirdQuartile(Fitnesses) Infinity

This normalisation is defined as follows:

Normalise(Val) = (Val − RangeMin)/(RangeMax − RangeMin) (6.1)

Outputs are maintained in a different manner, as only the minimum values are

known beforehand (RangeMin = 0). This is due to lower fitness values being con-

sidered better, with 0 representing a perfect result. The maximum values are tracked

by comparing the current maximum values for each output to the ones received

from the GA every generation. Should there be output values higher than the ones

on record, the ones on record are replaced with the new values. While not a perfect

solution due to its stochasticity, this allows the algorithm to adapt to various tasks

without prior knowledge.

The accuracy of the neural network is computed by applying the predictor to

the validation data, then comparing the outputs to the known correct values. The

approach used is the Square Loss function, also known as the Euclidean loss.

6.2.3 C4.5 Decision Trees

C4.5 decision trees [68] is a classification algorithm often used in machine learning

due to its transparency. It analyses training data and builds an effective decision

tree. It described in slightly more detail in Section 2.3.2.

Because this is a classification algorithm, we had to be able to assign classes to

GA individuals, regardless of the game being optimised. The sum of all fitness ob-

jectives is taken, which represents the final fitness of an individual, then compared

to the first quartile, median, and third quartile of the previous generation’s fitness

values. Depending on these comparisons, a fitness class from 0 to 3 is assigned to

that individual. This mapping can be seen in Table 6.1.

92 Chapter 6. Fitness Approximation for Faster GA-Based Game Balancing

Once the data set has all the fitnesses mapped to fitness classes, the C4.5 model

can be generated using the training set, then validated on the validation set. The

model is generated anew every generation, as the relevant statistics used to map the

fitness to a class change over time.

Validation is done by using the model to predict the class of individuals in the

validation set, then comparing the result to the actual class of that individual. The

accuracy value is, just as with the neural network approximator, calculated by using

the Square Loss function.

Should the resulting model have a high enough accuracy (defined during the

start of the experiment), it is then used to predict that generation’s unevaluated in-

dividuals as described previously. However, the prediction is a class instead of a

fitness value. As a result, a second mapping, from fitness class to fitness value, has

to be done. For simplicity, for each class except class 3, the fitness value assigned

is the value of Fitness Max in Table 6.1. For individuals classified as class 3, they

receive a fitness value equal to ThirdQuartile(Fitnesses) + 1. This may be very close

to an individual of class 2, however the alternative, infinity, seemed less desirable.

6.2.4 k-Nearest Neighbours

The k-nearest neighbours algorithm [69] is a non-parametric method commonly ap-

plied for classification and regression. It is described in more detail in Section 2.3.3.

The reason behind choosing it for this task is due to the likelihood of similar solu-

tions belonging to the same fitness class. Very close parameter sets have a higher

chance to result in the same gameplay changes, thus also have very close fitness.

Apart from the model being generated and used for classification, everything is

done in the exact same way as with the C4.5 algorithm. Mapping the fitness values

of the data set to the classes (see Table 6.1) and then back to fitness values, as well as

calculating the validation error, are done identically.

For these experiments, the value of k was chosen to be 3, while the number of

classes we used to split fitnesses in was the same as the one chosen for C4.5 decision

trees (4).

6.3. Standard Fitness Function Experiments 93

6.3 Standard Fitness Function Experiments

6.3.1 OneMax

We made use of the OneMax implementation described in the literature review in

Section 2.2.2.

This experiment is here to highlight how many evaluations are required to

achieve a perfect result rather than focusing on the actual time spent running the

computations, making OneMax a good choice due to its extremely low computa-

tional footprint. It is also a sanity test for our algorithm to assess whether it can

handle a linear fitness environment.

6.3.2 Trap

The second problem employed was the Trap implementation described in the liter-

ature review in Section 2.2.2. This is a significantly more challenging problem than

OneMax due to its deceptive landscape. For this experiment, N = 16, a = 100,

b = 75 and l = 65535.

Training an approximator on randomly sampled data is very likely to result in

a network that does not know of the global optimum peak at location X = 0. It is

expected that the best result would almost always be Fitness = 25 at X = 65535.

We will run several several experiments with various values for Z. This is done

to assess how our algorithm handles increasingly more deceptive fitness landscapes.

We do not expect our optimisations to be particularly successful in this scenario.

Similarly to OneMax, Trap is a very cheap evaluation and we only consider how

many evaluations were required to achieve the best fitness possible.

6.3.3 Genetic Algorithm

The evolutionary algorithm employed is very similar to the one employed in Chap-

ter 5. It is a variant of a generational GA with two-point crossover (applied with a

rate of 35%), a specialised mutation operator (applied with a per-individual rate of

35% and described later) and elitism (applied to the top 15% of the population). The

94 Chapter 6. Fitness Approximation for Faster GA-Based Game Balancing

TABLE 6.2: Neural network neuron count per layer

Experiment Input Hidden Output
OneMax 50 18 1

Trap 16 18 1

final 15% of the each generation is randomly sampled from the search space through

reinitialisation [152].

The mutation operator for both OneMax and Trap involves a bit flip for each

allele mutated. It was applied with a (per allele) mutation rate of 5% for OneMax

and Trap (meaning that on average 5% of the elements of an individual would be

mutated).

The population size was 20 for both experiments. All experiments used tourna-

ment selection, with a tournament size of 3. Experiments ran until a perfect solution

was evolved or 500 generations passed, whichever happened first.

6.3.4 Neural Network

For these experiments, the number of hidden layer neurons was chosen arbitrarily

to be 18 respectively. The exact structures can be seen in Table 6.2.

The network is trained using data generated by the GA. Every time the GA does

the evaluation of an individual, the parameters and fitness values are given to the

predictor for storage in the data set.

Training of the neural network is only done if there is a minimum number of

individuals in the data set (NMin), as described in Section 6.2.1.

6.3.5 Experiments

For each function (OneMax and Trap), we ran 30 runs normally, without the approxi-

mator, and then the same number of runs with the approximator. To better compare

results, we paired each run without a approximator to one with a approximator.

Each pair had the same starting populations and random seeds.

For the OneMax experiments we used a value of N = 50.

6.3. Standard Fitness Function Experiments 95

During the trap experiment, we looked at 3 different values of Z: Z = 10000,

Z = 4000 and Z = 1000.

From each experiment we collected several metrics:

• average fitness per generation

• best fitness per generation

• fitness evaluations done per generation, as this value when using the approxi-

mator can be less than the population size

6.3.6 OneMax Results

We kept track of how many fitness calculations the GA was doing. In the experiment

without an approximator, it was always 20 calculations in the first generation, plus

17 for every generation onwards (out of 20 individuals, 3 persist through elitism and

don’t need evaluation). Each run ended when it reached a best fitness value of 0 or

500 generations passed, whichever happened first.

Every run, with and without an approximator, managed to achieve a perfect

solution within 100 generations. As a result, the important metric is how many

evaluations of the fitness function were required to achieve that perfect solution.

Figure 6.3 shows a boxplot of the number of evaluations required by the GA

to achieve the perfect solutions. Without an approximator, the mean number of

evaluations required was 953.9, with a median of 904 and a standard deviation of

270.5. With the approximator, the mean number of evaluations required was 487.1,

with a median of 485.5 and a standard deviation of 167.7.

Using the approximator proved to be the better choice in almost every single run,

with markedly fewer evaluations required. The average number of evaluations to

achieve each fitness can be seen in Figure 6.4.

Doing a two sample Wilcoxon Signed Rank test on the resulting iterations, with

the null hypothesis that the second sample was worse than the first gives us a p value

of p = 8.2× 10−7, which is a highly significant result and confirms our assumption

that using the approximator would result in fewer evaluations of the OneMax func-

tion.

96 Chapter 6. Fitness Approximation for Faster GA-Based Game Balancing

No approximator With approximator
200

400

600

800

1,000

1,200

1,400

1,600

1,800

FIGURE 6.3: Boxplots for number of fitness evaluations required to
achieve perfect fitness in OneMax w/o and w/ an approximator

The number of fitness calculations is, on average, 47.7% smaller with the approx-

imator than the version without it.

6.3.7 Trap Results

For the trap experiment, we expected that the results would depend on the initial

sampling and that, especially for the hardest scenario (Z = 1000), the approximator

would be prone to overfitting the deceptive peak, as it is the one most likely to

provide the most samples for training.

All runs were paired, starting with the same random seed and populations, as

in the OneMax experiment. The GA was allowed to run for up to 500 generations

before it was terminated.

For all values of Z, the GA without a approximator achieved a perfect fitness of

0.

As expected, the quality of the approximator proved to heavily depend on the

initial population, as well as the randomly generated individuals in the first few

generations. The number of runs that failed to achieve a perfect solution can be seen

in Table 6.3.

6.3. Standard Fitness Function Experiments 97

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800

0

5

10

15

Total real evaluations

Fi
tn

es
s

Without approximator
With approximator

FIGURE 6.4: Total evaluations required to achieve a perfect fitness in
OneMax, w/o and w/ the neural network approximator

TABLE 6.3: Number of runs that failed to get a perfect solution (out
of 30) for Trap

Z = 10000 Z = 4000 Z = 1000
None 0 0 0

Approximator 7 14 28

For Z = 10000, to achieve success, it took the GA without an approximator 389.5

evaluations on average. In the 23 runs in which the GA with the approximator suc-

cessfully achieved a perfect fitness (Runss), the average number of evaluations re-

quired was 227.7 (Ns). Doing a two sample Wilcoxon Signed Rank test on these

results, with the null hypothesis that the second sample was worse than the first,

gives us value of p = 0.006, a significant value. The 7 runs that failed to achieve a

perfect fitness (Runs f) required an average of 567.4 evaluations (N f).

For Z = 4000, the GA without a approximator achieved a perfect solution, on

average, in 487.5 evaluations. In the 16 runs in which the GA with the approximator

successfully achieved a perfect fitness (Runss), the average number of evaluations

required was 212.2 (Ns). Doing a two sample Wilcoxon Signed Rank test on the

successful runs, with the null hypothesis that the second sample was worse than the

98 Chapter 6. Fitness Approximation for Faster GA-Based Game Balancing

Z = 10000 Z = 4000

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800
Z = 10000 without approximator

Z = 10000 with approximator
Z = 4000 without approximator

Z = 4000 with approximator

FIGURE 6.5: Boxplots for number of iterations required to achieve
perfect fitness in Trap without and with a approximator.

first, gives us a p value of p = 0.01, a significant value. The 14 runs that failed to

achieve a perfect fitness required an average of 394 evaluations (N f).

For the hardest task, where Z = 1000, it is interesting to note that, with the ap-

proximator, the number of evaluations never went above 1000 and averaged at 346.5

with a median of 265. The GA without an approximator GA needed, on average,

1997 evaluations to achieve a perfect solution. Unfortunately, the GA with the ap-

proximator failed to find the global peak in almost every run. In the 2 successful

runs, the average number of evaluations was Ns = 257.5. In the 28 unsuccessful

runs, the average number of evaluations was N f = 352.9.

Let us assume that p is the probability of solving the problem in one run, which

we can estimate from actual runs as p = Runss/TotalRuns, where Runss is the num-

ber of successful runs. Let us further assume that Ns is the average number of fitness

evaluations spent when the problem got solved, and N f is the number of fitness eval-

uations spent when the problem was not solved. We can, as a result, calculate [162]

the cost (in terms of fitness evaluations) of solving the problem as seen here:

E =
pNs + (1− p)N f

p
(6.2)

6.3. Standard Fitness Function Experiments 99

E represents the expected number of fitness evaluations one needs to spend to

achieve one 100% correct solution. So, for Z = 10000, we have E = 400.4. For

Z = 4000 we have E = 557.0. For Z = 1000 we have E = 5198.1, which indicates

that the hardest problem is approximately 10 times harder than the other two.

Boxplots of the number of evaluations required to achieve the perfect fitness for

Z = 10000 and Z = 4000 can be seen in Figure 6.5.

100 Chapter 6. Fitness Approximation for Faster GA-Based Game Balancing

6.4 Ms. Pac-Man Experiments

6.4.1 Environment

For the Ms. Pac-Man experiments, the game’s rules were altered in a similar fashion

to the studies done in Section 5.2 of Chapter 5, with an additional fitness metric. Not

only is the number of “wins” (scores over 1500 points) counted, but also what the

average score was. This is another measure of difficulty and can allow a designer to

further optimise their goal.

The requirement to change the parameters by as little as possible was also kept,

with the same value ranges as in Table 5.1.

The same deterministic agent described in Section 5.2.1 was used to simulate

gameplay. The number of games played per simulation was also kept at 50.

Fitness Evaluation

The same pipeline was used as the one presented in Chapter 5, with changes to the

evaluators as described previously.

Weights were chosen based on the results of experiments done in the previous

chapter and the updated parameter list reported in Table 6.4. The updated metrics

list, including the new element to the fitness function, can be seen in Table 6.5.

Formally, the fitness function for this set of experiments can be written as:

Fitness = W + M + ∆P (6.3)

TABLE 6.4: Ms. Pac-Man parameters to be changed, their displace-
ment ranges and their decimal accuracy

Parameter Min Max Accuracy Weight
∆1 PacMan’s speed -3 +5 100 100
∆2 First Ghost’s chase speed -3 +5 100 100
∆3 Second Ghost’s chase speed -3 +5 100 100
∆4 Third Ghost’s chase speed -3 +5 100 100
∆5 Fourth Ghost’s chase speed -3 +5 100 100
∆6 First Ghost’s flee speed -3 +5 100 100
∆7 Second Ghost’s flee speed -3 +5 100 100
∆8 Third Ghost’s flee speed -3 +5 100 100
∆9 Fourth Ghost’s flee speed -3 +5 100 100

6.4. Ms. Pac-Man Experiments 101

TABLE 6.5: Ms. Pac-Man metrics to be used in evaluation alongside
their desired values and weights for the approximator experiments

Name Desired Evaluator Weight
W Win-rate achieved by the agent 0.5 Average CW = 5000
M Average score achieved by the agent 1500 Average CM = 1

Sum of parameter
∆P absolute displacements 0 Minimise W∆ = 100

W = |WR−DWR| × CW (6.4)

M = |Scores−DMean| × CM (6.5)

∆P =
n

∑
i=0
|∆i| ×W∆ (6.6)

In the functions W and ∆P, everything is identical to the experiments presented in

Section 5.2. In the average score optimisation function M, Scores is a list of point

scores achieved by the agent, Scores = the average value of Scores, DMean = desired

mean and CM = average score bias factor.

Genetic Algorithm

The same genetic algorithm as the one described in Section 5.2.1 was used.

To test the value of the approximators in various scenarios, we made use of two

parameter sets for the GA. One set was among the ones performing less than opti-

mally, as that is a likely scenario for someone using these algorithms without much

GA experience. The second set was the best performing one resulting from exper-

iments in Section 5.2.3 from the previous chapter and was used as a benchmark

for comparing between runs with unoptimised GA parameters and approximators,

and what could be considered the optimised GA parameters without approxima-

tors. Both sets used a population size of 100, a tournament size of 6 and elitism

of 20%. The differing parameters, with regards to what settings are used in each

configuration, can be seen in Table 6.6.

102 Chapter 6. Fitness Approximation for Faster GA-Based Game Balancing

TABLE 6.6: Genetic algorithm parameter sets tested for Ms. Pac-Man
approximator experiments

Config Crossover Mutation Mutation Rate Reinit
Unoptimised 30% 30% 50% 20%

Optimised 40% 40% 20% 0%

Choosing the Approximator’s Accuracy Threshold

As described in Section 6.2.1, the approximator’s accuracy threshold AccMin can be

any value between 0% and 100%. Instinct and experience warrant a high value, as

a low value can result in many false predictions. However, too high and the system

rarely, if ever, gets used, as it might have problems achieving that accuracy given the

search space.

For each combination of GA parameter set and game, we also tried three values

for AccMin. The values tested were 0.60, 0.75 and 0.85. This was to assess the impact

of this variable on the algorithms. We believe that any higher, or lower, value would

not bring much benefit to the algorithm.

Choosing the Approximator’s Prediction Acceptance Threshold

Similarly to the accuracy threshold, the approximator also makes use of a predic-

tion threshold (PredMin), where a prediction is only kept if the fitness predicted is

worse than a given value. This value could be a constant chosen at the beginning of

the experiment, but that would require a lot of prior knowledge on both the fitness

landscape of the problem and the trajectory of the GA. Instead, we have chosen to

have the approximator set this value based on the previous generation’s fitnesses.

Increasing this threshold should result in fewer predictions being accepted, while

decreasing it would result in a much more aggressive approximator and fewer indi-

viduals having their real fitness evaluated. To test this, we also tried three different

values for PredMin: the first quartile of the previous generation, the median of the

previous generation, as well as the third quartile of the previous generation.

6.4. Ms. Pac-Man Experiments 103

6.4.2 Experiments

For each combination of value tested for approximator accuracy threshold and pre-

diction acceptance threshold, we ran 20 GA runs without an approximator, and then

the same number of runs with each of the 3 approximators. All of these runs were

using the unoptimised GA parameter set and were paired, such that the ith run of

each experiment had the same random seed and starting populations.

For all the experiments both NMin and NMax (the minimum number of individ-

uals stored in the approximator’s data set before being applied and the maximum

number stored respectively) were set to 200.

From each experiment we collected several metrics:

• average fitness per generation

• best fitness per generation

• fitness evaluations done per generation, as this value can be less than the pop-

ulation size when using the approximator

• false negatives generated by the approximator. These are instances where

the approximator assigned an individual a fitness worse than the prediction

threshold, however the real result would have been better than it (and should

have been evaluated instead of keeping the prediction)

Afterwards we took one of the better performing approximator configurations

and ran 20 runs for each of the 3 approximators on the optimal GA parameter set to

see how performance changed in this scenario.

Finally, we compared results from approximator runs on the unoptimised GA

to the vanilla optimised GA ones. This was to see if using the approximator could

possibly counteract the effects of suboptimal GA parameters.

6.4.3 Results

Data

Data on which the results described are based on is available in Appendix C.

104 Chapter 6. Fitness Approximation for Faster GA-Based Game Balancing

TABLE 6.7: Average run times when using each of the 3 machine
learning algorithms as approximators, compared to using no approx-

imator, in the Ms. Pac-Man experiments.

Experiment Average run time
Ms. Pac-Man Base 15s / run
Ms. Pac-Man C45 17s / run

Ms. Pac-Man Neural Network 19s / run
Ms. Pac-Man KNN 17s / run

Overview of Runs on Unoptimised GA Configuration

The immediate thing to notice is that the runtimes were very similar between runs

without an approximator and those with one. The runs using approximators took

marginally more time, in absolute terms, to use the same evaluation budget as the

runs without approximators. This can be seen in Table 6.7. This highlights that the

approximators themselves add very little to the computation, which is dominated

by the fitness evaluation.

These algorithms for fitness approximation can have various use cases. Some

might benefit from better results faster, while others will be willing to wait a long

time for more accurate results.

Something that required immediate analysis was to see how runs behaved when

comparing their best fitnesses generation by generation, ignoring any time saved by

skipping evaluations. Most of the times, comparing the same two generations be-

tween runs with and without predictors showed the ones using predictors behaving

slightly worse, as can be seen in Figure 6.6. However this does not tell the entire

story regarding performance.

To better assess the quality of the evolved results, we kept track of the best fit-

nesses achieved at every time point, by every run. Snapshots were taken every 20

evaluations, comparing the best fitnesses for each run with, and without, the rele-

vant approximator. This allowed for statistical significance to be calculated, using

the two sample Wilcoxon Signed Ranked test, with the null hypothesis that the ap-

proximator yielded worse results, for each of those snapshots. The final result is a

plot of statistical significance (p value) over total evaluations.

An example of the statistical significance graph can be seen in Figure 6.7, where

6.4. Ms. Pac-Man Experiments 105

0 5 10 15 20 25 30 35 40 45
800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

2,400

Generation

Fi
tn

es
s

Without approximator
With C45

FIGURE 6.6: Average best fitness values achieved after a given
number of generations by the GAs without and with the C4.5 de-
cision trees approximator, with AccMin = 0.75 and PredMin =

Median(FitnessesGen−1), in the Ms. Pac-Man experiment

both the relationship between best fitness and total evaluations used can be seen,

as well as the aforementioned statistical significance at every time point. This data

is comparing the unoptimised Ms. Pac-Man GA results without an approximator to

its counterpart where a neural network approximator, with an accuracy threshold

AccMin = 0.75 and a prediction threshold PredMin of median, was used.

We tracked the percentage of time that the best fitness with the approximator is

statistically different (p <= 0.05 with the Wilcoxon Signed Rank Test) from the best

fitness without it for different segments of time. The 2000 evaluation budget was

split in 4 segments: the early quarter (0 to 500 evaluations), the middle-early quarter

(501 to 1000 evaluations), the middle-late quarter (1001 to 1500 evaluations) and the

late quarter (1501-2000 evaluations).

Another important element is the number of predictions made by each approxi-

mator, as well as how often they were wrong (false positives). These results can be

seen in Table 6.8.

These results allow us to gain more insight into the changes the GA behaviour

experiences when using the various approximators.

106 Chapter 6. Fitness Approximation for Faster GA-Based Game Balancing

TABLE 6.8: Average number of predictions made by each approxima-
tor configuration tested in the Ms. Pac-Man experiments, as well as

the average number of false negatives generated as a result.

Approx AccMin PredMin Predictions False negatives
NN 60 First 2568.9 1.45%
NN 60 Median 1586 4.97%
NN 60 Third 106.45 8.45%
NN 75 First 2035.3 1.78%
NN 75 Median 1333.15 5.00%
NN 75 Third 93.95 6.60%
NN 85 First 390.15 2.92%
NN 85 Median 103.95 6.16%
NN 85 Third 10.4 3.37%
C45 60 First 5395.75 6.06%
C45 60 Median 1851.65 13.46%
C45 60 Third 722.9 0.00%
C45 75 First 4241.85 5.44%
C45 75 Median 1691.2 13.19%
C45 75 Third 631.05 0.00%
C45 85 First 700.9 4.02%
C45 85 Median 540.15 13.97%
C45 85 Third 181.6 0.00%
KNN 60 First 4292.1 4.29%
KNN 60 Median 1383.65 7.34%
KNN 60 Third 441.7 0.00%
KNN 75 First 1758.15 3.36%
KNN 75 Median 866.75 7.00%
KNN 75 Third 232.4 0.00%
KNN 85 First 44.3 2.48%
KNN 85 Median 41.85 9.20%
KNN 85 Third 8.75 0.00%

6.4. Ms. Pac-Man Experiments 107

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
500

1,000

1,500

2,000

2,500

Total real evaluations

Fi
tn

es
s

Without approximator
With NN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.05

Si
gn

ifi
ca

nc
e

Statistical significance

FIGURE 6.7: Average best fitness values achieved after a given
number of evaluations by the GAs without and with the neu-
ral network approximator, with AccMin = 0.75 and PredMin =
Median(FitnessesGen−1), in the Ms. Pac-Man experiment. Significance
of difference between the paired results is also plotted. Lower values

are better

Performance of Various Approximators

Neural Networks The neural network approximator behaved admirably, manag-

ing significant quality increases for the same computational cost under most config-

urations. This can be seen from the aggregate results in Table 6.9. Particularly, when

the prediction threshold was set to median and the accuracy threshold was not too

high, the results were significantly better at all points fairly early in each run.

At no point were runs using the neural network approximator worse than runs

without it, as made clear by the results. The worst scenario was with the prediction

threshold set to third quartile and the highest accuracy threshold (0.85), where the

use of the approximator brought no advantage or disadvantage compared to not

using it.

Further optimising the neural network structure or architecture could very likely

further improve results.

108 Chapter 6. Fitness Approximation for Faster GA-Based Game Balancing

TABLE 6.9: Percentage of time that the neural network approximator
proved to be significantly better, or worse, than using no approxima-
tor in the Ms. Pac-Man experiments, based on approximator configu-
ration, followed by the segment in which performance proved best.

Significantly Significantly Best
AccMin PredMin better (%) worse (%) segment(s)

0.60 FirstQuart 47% 0% Middle-early
0.60 Median 82% 0% Middle-late and late
0.60 ThirdQuart 15% 0% Middle-late
0.75 FirstQuart 42% 0% Middle-early
0.75 Median 81% 0% Middle-late and late
0.75 ThirdQuart 14% 0% Middle-late
0.85 FirstQuart 21% 0% Middle-early
0.85 Median 17% 0% Middle-early
0.85 ThirdQuart 0% 0% N/A

TABLE 6.10: Percentage of time that the C4.5 decision tree approxi-
mator proved to be significantly better, or worse, than using no ap-
proximator in the Ms. Pac-Man experiments, based on approximator
configuration, followed by the segment in which performance proved

best.

Significantly Significantly Best
AccMin PredMin better (%) worse (%) segment(s)

0.60 FirstQuart 53% 0% Middle-early
0.60 Median 58% 0% Middle-early
0.60 ThirdQuart 50% 0% Middle-late
0.75 FirstQuart 69% 0% Middle-early, middle-late
0.75 Median 75% 0% Middle-late
0.75 ThirdQuart 40% 0% Middle-late
0.85 FirstQuart 6% 0% Middle-early, middle-late
0.85 Median 22% 0% Middle-late
0.85 ThirdQuart 8% 2% Middle-early

6.4. Ms. Pac-Man Experiments 109

TABLE 6.11: Percentage of time that the k-nearest neighbour approx-
imator proved to be significantly better, or worse, than using no ap-
proximator in the Ms. Pac-Man experiments, based on approximator
configuration, followed by the segment in which performance proved

best.

Significantly Significantly Best
AccMin PredMin better (%) worse (%) segment(s)

0.60 FirstQuart 50% 0% Middle-early
0.60 Median 85% 0% Middle-early to late
0.60 ThirdQuart 57% 1% Middle-late
0.75 FirstQuart 34% 0% Middle-late
0.75 Median 44% 0% Middle-late and late
0.75 ThirdQuart 46% 0% Late
0.85 FirstQuart 0% 0% N/A
0.85 Median 0% 0% N/A
0.85 ThirdQuart 0% 0% N/A

C4.5 Decision Trees Looking at the results in Table 6.10, the C4.5 decision trees

behaved quite differently. Significantly better results appeared earlier, in the middle-

early quarter of evaluations (more data is available in Appendix C.1). However,

results eventually converged with the ones that did not use an approximator in the

late quarter (1501 to 2000 evaluations).

On average, runs using the decision trees approximators were also significantly

better more often compared to those using the neural network approximators (35.5%

average for neural networks compared to 42.3% average for decision trees). The

best performing configuration, however, was slightly worse (82% best for neural

networks compared to 75% for decision trees).

The results in the early quarter were also much better with decision trees com-

pared to neural networks. All this marks decision trees as great for achieving good

results fast, at least for this task.

The configuration where AccMin = 0.85 and PredMin set as the third quartile

resulted in a couple of snapshots where the runs with the decision tree approximator

were significantly worse than without. This entire configuration proved to be weak

overall at improving performance.

k-Nearest Neighbours Using the k-nearest neighbour algorithm as the approxima-

tor had results more similar to the neural network than the decision trees. These can

110 Chapter 6. Fitness Approximation for Faster GA-Based Game Balancing

TABLE 6.12: Average proportion of time in which each combination
of approximator and accuracy threshold was statistically significant,
regardless of prediction threshold, in the Ms. Pac-Man experiments.

Average proportion
Approximator AccMin of significance (%)

NN 0.60 48.0%
NN 0.75 45.6%
NN 0.85 12.6%
C45 0.60 53.6%
C45 0.75 61.3%
C45 0.85 12.0%

KNN 0.60 64.0%
KNN 0.75 41.3%
KNN 0.85 0.0%

be seen in Table 6.11. However, it had the best late quarter (1501 to 2000 evaluations)

results of the 3 machine learning algorithms.

The combination of KNN, AccMin = 0.60 and PredMin set as the third quartile

resulted in the second configuration in which, at one evaluation snapshot, the fit-

nesses with the approximator were significantly worse than without. However, the

following quarters were entirely dominated by the approximator runs.

It also had the configuration with the highest period of time significant (at 85%

of the time) when AccMin = 0.60 and PredMin set to median. Except for the early seg-

ment, all time snapshots showed significantly better results with the approximator

than without.

Given these results, this approximator seems best suited for runs with a higher

budget, as the best results appear after more generations compared to the other 2.

Performance of Using Various Accuracy Thresholds

Looking at an average of the results observed in the previous sections, and available

in Table 6.12, it is immediately obvious that an accuracy threshold of 0.85 is too high.

This is the result of the approximators being unable to reach that high of an accuracy

often enough to get used at all.

The other two values of the threshold were much better, with AccMin = 0.60

being only slightly better than 0.75. There was no obvious relation between this

6.4. Ms. Pac-Man Experiments 111

TABLE 6.13: Average proportion of time in which each combination
of approximator and prediction threshold was statistically significant,
regardless of prediction threshold, in the Ms. Pac-Man experiments, as

well as average predictions computed.

Average proportion
Approximator PredMin of significance (%) Predictions

NN First 36.6% 1664.78
NN Median 60.0% 1007.70
NN Third 9.6% 210.80
C45 First 42.6% 3446.17
C45 Median 51.6% 1361.00
C45 Third 32.6% 511.85

KNN First 28.0% 2031.52
KNN Median 43.0% 764.08
KNN Third 34.3% 227.62

threshold and which segment the approximator yielded best results in (i.e. using

one value over another affecting the quality of results in middle-late stage of the

GA).

Given these results, there might be other values that would be valuable to ex-

plore, some potentially lower than 0.5 accuracy. These could be worth exploring in

future work.

Performance of Using Various Prediction Thresholds

Looking at the results in Table 6.13 shows that the number of predictions went down

as the prediction threshold went up. This was unsurprising, as a majority of new

individuals in a population inhabit the area between the first quartile and median of

fitnesses.

Having the prediction threshold as median or first quartile proved to be much

better than having it set to third quartile, with both more predictions and better

fitnesses over time. Overall, having this threshold set to median had the best results

when comparing GA performance. Despite producing more predictions, having the

prediction threshold set to the first quartile did not result in the top proportion of

significance.

However it is interesting to note that having the threshold set as third quartile

resulted in almost no false negatives, exception being a small number of them when

112 Chapter 6. Fitness Approximation for Faster GA-Based Game Balancing

TABLE 6.14: In the Ms. Pac-Man approximator experiments using the
optimised GA parameters: percentage of time that using the approx-
imator resulted in significantly better results; the average number of
predictions generated by the approximator each run and the average

percentage of which were false negatives.

Approximator % Significant Predictions False Negatives
Neural Network 0% 9.6 28.6%

C45 2% 610.6 10.1%
KNN 0% 206.1 8.7%

the neural network was used as approximator. This can be seen in Table 6.8.

Overview of Runs on the Optimised GA Configuration

The configuration chosen for the approximators was the one with AccMin = 0.75 and

PredMin set to median. This one proved to be one of the better ones and would be a

good benchmark for testing our approach on the GA with optimised parameters.

A brief look at the results in Table 6.14 show that the approximators did not

impact the performance of the GA by much, if at all, in either direction. The results

were virtually never significantly better or worse with any of the 3 configurations.

This means that having optimal GA parameters results in not needing the added

complexity of the approximators. Further results can be seen in Figure 6.8.

It is also interesting to note that the number of predictions plummeted drastically

compared to when approximators were applied to the unoptimised GA. We believe

this is due to a couple of factors.

Firstly, due to the optimisation of the GA, it converges faster to better solutions.

This gives the approximator less time to bring its own improvements, as the GA

hones onto better areas of the search space sooner, despite being sampled at the

same rate.

Secondly, exploring the search space faster results in a harder environment for

the approximators to map. New information about the relationships between pa-

rameters is being discovered and, as a result, approximator accuracy suffers.

This is a reassuring result, as one of the initial plans for this methodology was not

only to improve performance, but, more importantly, not to hamper performance.

6.4. Ms. Pac-Man Experiments 113

200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

1,000

1,200

1,400

1,600

1,800

Total real evaluations

Fi
tn

es
s

Without approximator
With NN
With C45

With KNN

FIGURE 6.8: Average best fitness values achieved after a given
number of evaluations by the GAs without and with each of
the tested approximators, with AccMin = 0.75 and PredMin =
Median(FitnessesGen−1), in the Ms. Pac-Man experiment with the op-

timised GA parameter set. Lower values are better.

The approximator did not negatively impact the GA run, even when the GA’s pa-

rameters were optimised, something extremely valuable.

Comparing Approximators on Unoptimised GA Parameter Set to Optimised GA

Parameter Set

It was interesting to compare the runs with approximators on the unoptimised GA

parameter set to the set of runs without an approximator, but with the optimised GA

parameter set. First of all, comparing the unoptimised runs, without any approxi-

mators, directly to the optimised one showed clear dominance by the optimised ones

70% of the time.

Most approximator runs, with the exception of a select few for each approxi-

mator type, proved to be worse than simply running the GA with an optimised

parameter set.

There were, however, 5 exceptions (out of 27): 3 of them using various configu-

rations of C4.5 decision trees, and one for each of the other 2 approximators. While

the improvements were minimal, they were present. This is likely caused by the

114 Chapter 6. Fitness Approximation for Faster GA-Based Game Balancing

approximators being used in avoiding weak individuals that would have been gen-

erated by the unoptimised GA, individuals that the optimised one would not have

created in the first place.

This is reassuring, as this shows that in a time-critical scenario, optimised pa-

rameters could be ignored in favour of an approximator.

6.5. TORCS Experiments 115

6.5 TORCS Experiments

6.5.1 Environment

The environment is virtually identical to the one described in Section 5.4.1. The only

addition to this is the presence of approximators in some configurations.

Similarly, the GA employed is the same one used in the Ms. Pac-Man experi-

ments. Its structure and parameters are described in more detail in Section 6.4.1.

No changes were required due to the flexibility of the balance specification language

used.

6.5.2 Experiments

An identical setup to the one in the previous section, with Ms. Pac-Man experiments,

was used. We ran 20 GA runs without an approximator, and then the same number

of runs with each combination of approximator, accuracy threshold and prediction

threshold. All runs were paired, such that the ith run of each experiment had the

same random seed and starting populations. The same metrics were collected.

Afterwards we took one of the better performing approximator configurations

and ran 20 runs for each of the 3 approximators on the optimal GA parameter set to

see how performance changed in this scenario.

Finally, we compared results from approximator runs on the unoptimised GA

to the vanilla optimised GA ones. This was to see if using the approximator could

possibly counteract the effects of inefficient GA parameters.

6.5.3 Results

Data

Data on which the results described are based on is available in Appendix C.

Overview of Runs on Unoptimised GA Configuration

Just as with the Ms. Pac-Man experiments, run times were not heavily affected by the

presence of an approximator. The average times for each configuration can be seen

in Table 6.15.

116 Chapter 6. Fitness Approximation for Faster GA-Based Game Balancing

TABLE 6.15: Average run times when using each of the 3 machine
learning algorithms as approximators, compared to using no approx-

imator, in the TORCS experiments.

Experiment Average run time
TORCS Base 5m40s / run
TORCS C45 5m42s / run

TORCS Neural Network 5m46s / run
TORCS KNN 5m42s / run

The data collection was done in a very similar manner as done with the Ms. Pac-

Man experiments. Results, however, painted a very different picture.

The results for all approximators can be seen in Table 6.16. The immediately

obvious observation is the fact that neural networks barely, if at all, managed to be

employed. In most runs they did not achieve the required accuracy even once.

Performance of Various Approximators

Neural Networks As mentioned previously, the neural networks did not make a

single prediction in any run of any of the configurations where it was the approxi-

mator of choice. This resulted in GA runs that, with or without the approximator,

behaved identically. These results can be seen in Table 6.17.

Further analysis of the results highlighted the reason behind this behaviour. In-

dividuals with extremely bad fitnesses, while correctly identified by trained neural

networks as undesirable, were assigned fitness values fairly far from the real values.

This resulted in failing the validation tests, even when the accuracy threshold was at

its lowest (AccMin = 0.60), due to the accuracy being calculated based on the differ-

ence between true answer and predicted answer, rather than an individual’s fitness

class.

While the neural network was accurately mapping the relationships between pa-

rameters and fitness for individuals below the third quartile of fitnesses, the wide

spread of bad individuals caused it to never be used.

C4.5 Decision Trees The C4.5 decision tree approximator was, however, successful

in providing improved results over the vanilla GA.

6.5. TORCS Experiments 117

TABLE 6.16: Average number of predictions made by each approxi-
mator configuration tested in the TORCS experiments, as well as the

average number of false negatives generated as a result.

Approx AccMin PredMin Predictions False negatives
C45 60 First 5214.65 192.20
C45 60 Median 1950.70 144.70
C45 60 Third 728.85 0.00
C45 75 First 4557.00 174.00
C45 75 Median 1907.20 139.25
C45 75 Third 715.95 0.00
C45 85 First 2421.60 87.50
C45 85 Median 1211.00 119.40
C45 85 Third 455.00 0.00
KNN 60 First 4692.50 353.95
KNN 60 Median 1733.80 405.20
KNN 60 Third 659.65 0.00
KNN 75 First 2635.85 135.65
KNN 75 Median 1265.80 281.40
KNN 75 Third 492.30 0.00
KNN 85 First 46.60 1.05
KNN 85 Median 31.30 7.80
KNN 85 Third 15.65 0.00
NN 60 First 0.00 0.00
NN 60 Median 0.00 0.00
NN 60 Third 0.00 0.00
NN 75 First 0.00 0.00
NN 75 Median 0.00 0.00
NN 75 Third 0.00 0.00
NN 85 First 0.00 0.00
NN 85 Median 0.00 0.00
NN 85 Third 0.00 0.00

TABLE 6.17: Percentage of time that the neural network approximator
proved to be significantly better, or worse, than using no approxima-
tor in the TORCS experiments, based on approximator configuration,

followed by the segment in which performance proved best.

Significantly Significantly
AccMin PredMin better (%) worse (%)

0.60 FirstQuart 0% 0%
0.60 Median 0% 0%
0.60 ThirdQuart 0% 0%
0.75 FirstQuart 0% 0%
0.75 Median 0% 0%
0.75 ThirdQuart 0% 0%
0.85 FirstQuart 0% 0%
0.85 Median 0% 0%
0.85 ThirdQuart 0% 0%

118 Chapter 6. Fitness Approximation for Faster GA-Based Game Balancing

TABLE 6.18: Percentage of time that the C45 decision tree approxima-
tor proved to be significantly better, or worse, than using no approxi-
mator in the TORCS experiments, based on approximator configura-

tion, followed by the segment in which performance proved best.

Significantly Significantly Best
AccMin PredMin better (%) worse (%) segment(s)

0.60 FirstQuart 31% 0% Middle-early
0.60 Median 32% 0% Middle-early
0.60 ThirdQuart 34% 0% Middle-early
0.75 FirstQuart 26% 0% Early
0.75 Median 32% 0% Middle-early
0.75 ThirdQuart 29% 0% Middle-early
0.85 FirstQuart 22% 0% Early
0.85 Median 28% 0% Middle-early
0.85 ThirdQuart 43% 2% Middle-early

Table 6.18 presents the performance results from each configuration. It showed

the best results exclusively in the first two segments, early and middle-early, with a

good proportion of the time showing significantly better results.

Just as the runs on Ms. Pac-Man, this highlights the value this approximator can

bring when better suggestions are needed faster.

While in Ms. Pac-Man experiments a high accuracy threshold resulted in fewer

improvements, this time there did not seem to be any dominant configuration, with

all of them presenting good results overall.

One configuration (AccMin = 0.85 and PredMin set to Third Quartile), while pre-

senting the best results overall out of all configurations, also had 2 observations

where the results were significantly worse than without an approximator. This is

not problematic, but it is worth mentioning.

k-Nearest Neighbours Table 6.19 presents the performance results from each con-

figuration in detail.

Results were fairly mixed when using the k-nearest neighbours algorithm. Most

configurations brought more improvements than damage, but there were many

points at which the use of this approximator was less desirable than leaving the

GA as default.

6.5. TORCS Experiments 119

TABLE 6.19: Percentage of time that the k-nearest neighbour approx-
imator proved to be significantly better, or worse, than using no ap-
proximator in the TORCS experiments, based on approximator con-
figuration, followed by the segment in which performance proved

best.

Significantly Significantly Best
AccMin PredMin better (%) worse (%) segment(s)

0.60 FirstQuart 17% 28% Early
0.60 Median 25% 6% Middle-early
0.60 ThirdQuart 9% 2% Early
0.75 FirstQuart 16% 0% Middle-early
0.75 Median 43% 0% Middle-late
0.75 ThirdQuart 8% 14% Middle-early
0.85 FirstQuart 0% 0% N/A
0.85 Median 0% 0% N/A
0.85 ThirdQuart 0% 0% N/A

One entire subset of configurations, where the accuracy threshold was set to 85%,

proved to not get used at all. This is due to the approximator never being able to

achieve that prediction accuracy.

Several other configurations, however, had ups and downs. Most of them be-

haved admirably in the early and middle-early segments, however dipped slightly

in the middle-late and late segments.

Performance of Using Various Accuracy Thresholds

Aggregate results can be seen in Table 6.20.

Overall, there was a fairly clear sign that an accuracy threshold set too high could

cause issues with the algorithm, however too low and it might also lose effective-

ness.

While C4.5 decision trees managed to present good results across the board, k-

nearest neighbours preferred lower values, with the sweet spot most likely around

70-75%. Neural networks, of course, did not manage any measure of success with

any of the configurations tested.

120 Chapter 6. Fitness Approximation for Faster GA-Based Game Balancing

TABLE 6.20: Average proportion of time in which each combination
of approximator and accuracy threshold was statistically significant,

regardless of prediction threshold, in the TORCS experiments.

Average proportion
Approximator AccMin of significance (%)

NN 0.60 0.0%
NN 0.75 0.0%
NN 0.85 0.0%
C45 0.60 32.3%
C45 0.75 29.0%
C45 0.85 31.0%

KNN 0.60 17.0%
KNN 0.75 22.3%
KNN 0.85 0.0%

TABLE 6.21: Average proportion of time in which each combination
of approximator and prediction threshold was statistically significant,
regardless of prediction threshold, in the TORCS experiments, as well

as average predictions computed.

Average proportion
Approximator PredMin of significance (%) Predictions

NN First 0.0% 0.0
NN Median 0.0% 0.0
NN Third 0.0% 0.0
C45 First 26.3% 4064.08
C45 Median 30.7% 1689.64
C45 Third 35.3% 633.27

KNN First 11.0% 2458.32
KNN Median 22.7% 1010.30
KNN Third 5.7% 389.20

Performance of Using Various Prediction Thresholds

Similarly to the Ms. Pac-Man results, the higher the prediction threshold, the lower

the number of predictions made, for identical reasons.

This time, however, there were no false negatives when using the third quartile

as the threshold at all in any of the configurations. This result requires potential

further investigation, as that could prove very desirable, as mentioned in the last

section.

While all 3 thresholds had similar results overall, using median proved to be

much better with k-nearest neighbours, while being almost as good as using third

6.5. TORCS Experiments 121

TABLE 6.22: In the TORCS approximator experiments using the op-
timised GA parameters: percentage of time that using the approxi-
mator resulted in significantly better results; the average number of
predictions generated by the approximator each run and the average

percentage of which were false negatives

Approximator % Significant Predictions False Negatives
Neural Network 0% 13.5 5.6%

C45 27% 995.2 8.1%
KNN 2% 854.2 7.3%

quartile in C4.5 decision trees.

Overview of Runs on the Optimised GA Configuration

Compared to the Ms. Pac-Man experiments, there did not seem to be any one or

two dominant configurations for the approximators. As a result, the configuration

chosen for the approximators was the one with AccMin = 0.75 and PredMin set to

median, identical to the previous section, as it had the most consistently good results

across both games tested.

Despite the seemingly harder task, the approximators managed to bring signifi-

cant improvements even on the optimised GA parameter set. Particularly, the C4.5

decision trees proved effective at further improving the quality of the GA. This can

be seen in Table 6.22 and Figure 6.9.

The other two approximators brought minimal, if any, improvements to the GA.

They did not, however, negatively impact performance.

Comparing Approximators on Unoptimised GA Parameter Set to Optimised GA

Parameter Set

Similar to the previous section, comparing results between runs with approxima-

tors on an unoptimised GA and no approximator on an optimised GA proved very

interesting.

This time there was no one approximator configuration that was entirely better

than the optimised GA. Most configurations behaved worse than the optimised GA,

with one exception: the C45 decision trees with AccMin = 0.60 and PredMin set to

first quartile. It managed to be better than the optimised GA 23% of the time, but in

122 Chapter 6. Fitness Approximation for Faster GA-Based Game Balancing

200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
700

750

800

850

900

950

1,000

1,050

Total real evaluations

Fi
tn

es
s

Without approximator
With C45

With KNN

FIGURE 6.9: Average best fitness values achieved after a given
number of evaluations by the GAs without and with the neu-
ral network approximator, with AccMin = 0.75 and PredMin =
Median(FitnessesGen−1), in the TORCS experiment with the opti-

mised GA parameter set. Lower values are better.

the early segments it was worse 5% and in the middle-late segments it was worse

3% of the time.

Most decision tree configurations were better than the optimised GA in the

middle-early segments, but ended up being always worse towards the late seg-

ments. This is in line with the newly formed expectation that the decision trees

are very good at hastening the early generations of a GA run. K-nearest neighbour

and neural network configurations were almost never better.

6.6. StarCraft Experiment 123

6.6 StarCraft Experiment

6.6.1 Introduction

To further assess the findings of the research done on Ms. Pac-Man and TORCS, an

additional experiment was run, on StarCraft. This was done to compare the results

from Section 5.3.3 in Chapter 5 with a new set of runs with an identical GA configu-

ration, but also using the best approximator configuration overall.

The approximator configuration chosen was the one with a C4.5 decision tree,

AccMin = 0.75 and PredMin = Median.

Given the extremely expensive computational cost of running StarCraft experi-

ments, only 10 runs were done, to mimic the limitations of the previous experiments

with the game.

6.6.2 Results

Results proved interesting and can be seen in Figure 6.10. The approximator runs

were significantly better only 1% of the time, but never significantly worse. Average

fitness values were about 10% lower in middle-early and middle-late segments, but

never enough to result in significance. This is likely due to the small number of data

points (10 runs).

It is worth mentioning again that run times were virtually identical between the

two configurations, especially now that the approximator’s percentage of computa-

tional time used was infinitesimally small compared to the percentage of time used

by the game.

124 Chapter 6. Fitness Approximation for Faster GA-Based Game Balancing

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

0.2

0.4

0.6

0.8

1

1.2
·104

Total evaluations

Fi
tn

es
s

Without approximator
With C4.5

0

0.2

0.4

0.6

0.8

1

0.05
Si

gn
ifi

ca
nc

e

Statistical significance

FIGURE 6.10: Average best fitness values achieved after a given num-
ber of evaluations by the GAs without and with the C4.5 approxi-
mator, with AccMin = 0.75 and PredMin = Median(FitnessesGen−1),
in the StarCraft experiment. Significance of difference between the

paired results is also plotted. Lower values are better

6.7. Discussion and Conclusion 125

6.7 Discussion and Conclusion

Our goal is to create tools and techniques that are usable by industry. For this we

need good accuracy, but also much greater speed and scalability. This method of

combining GAs and other machine learning algorithms brings significant benefits

in these respects. While the graphs might not look impressive, the statistical anal-

ysis proves the ability of this approach to further optimise on already efficient ap-

proaches.

By using an approximator to predict the fitness of individuals in a GA popula-

tion, then evaluating only the predicted best, we have managed to allow the GA to

explore more individuals in the same amount of time. This has proven highly effec-

tive, regardless of algorithm, for Ms. Pac-Man, with only one approximator having

difficulties in TORCS. Results are promising and optimisations to our methodology

should bring further speed improvements.

It is valuable to note how there is no single best approximator. While the neural

network was very effective in the Ms. Pac-Man experiment, it failed to bring im-

provements in the TORCS experiment. However, both k-nearest neighbours and

C4.5 decision trees were able to be very valuable for both tasks.

Scalability represents the ability of an algorithm to work well on progressively

larger scale problems, delivering more or less the same advantages on them. One

could argue that the standard OneMax and Trap problems are at the bottom of the

scale, Ms. Pac-Man a level above, TORCS yet another level above, and StarCraft an-

other. To some degree, both C4.5 decision trees and k-nearest neighbours managed

to deliver good results at most scales.

Given the very small impact on overall performance, with high potential upside

and minimal downside, it is very fair to say that our approximators are valuable in

speeding up game balance suggestions, as well as other similar areas.

The speed increase could be higher if the approximators were reused between

runs. It is something worth looking into in future research, as those outside

academia that would benefit from this would likely want to run multiple runs as

quickly as possible and reusing data can be extremely valuable.

The quality of approximations could be further improved by potentially using a

126 Chapter 6. Fitness Approximation for Faster GA-Based Game Balancing

committee approach, where multiple models are created in parallel and the majority

decision is taken. This is an avenue of research that could be very interesting to test.

It would have been possible to only have 2 classes for approximators where this

is relevant: individuals worse than the median and individuals better than the me-

dian. However, we decided to have 4 classes to offer slightly more granularity to the

algorithm. Exploring whether changing this is valuable could be something done in

future work.

One area that we are interested in further assessing is how the training data the

predictor uses is managed. While it is purely rolling at this point, it can result in

approximators that overfit areas of the landscape and fail to correctly predict indi-

viduals of interest. An idea worth following is curated lists, where the data is split

in categories, each category accepting and removing entries based on given require-

ments. These requirements could have one category keep the best fitnesses ever

generated by the GA, with another storing the worst fitnesses.

Should the approximator represent an accurate simulation of the fitness land-

scape, the designer would be left with a model capable of reasonably predicting the

fitness of other, custom parameter sets. This approximator would be another tool

available to the designer to assess any changes they would want to apply to their

games before they go through the much more expensive task of doing AI-driven

plays or, even more costly, human player driven plays. Assessing the possibility of

this becoming a reality is work worth attempting in the future.

On the topic of fitness classification, we made use of 4 classes. It would be in-

teresting to explore how more (or fewer) classes would influence the quality of the

algorithms it was used in.

The fact that the unoptimised runs with an approximator managed to, at times,

achieve or surpass the performance of an optimised GA run is also worth mention-

ing again. Being able to present good suggestion fast, despite suboptimal GA pa-

rameters, can be extremely valuable when the tools are used by people unfamiliar

with such machine learning algorithms.

Overall, this is an optimisation that can benefit the creation of tools for use in

games design, while also having potential for use outside the digital entertainment

sector.

6.8. Summary 127

6.8 Summary

By combining GAs with other machine learning algorithms, we were able to signifi-

cantly improve GA performance. While this has been shown on game balance tasks

in 2 different games, Ms. Pac-Man and TORCS, with a short experiment on StarCraft

as a sanity check, instinct says this is not an optimisation exclusive to games.

Mapping parameter vectors to metric vectors can be applied to a variety of differ-

ent problems. Potentially saving precious computational time can lead to problems

getting valuable good results faster. Unless the problem itself is very cheap compu-

tationally, attaching a decision tree algorithm or a simple neural network will rarely

be damaging.

129

Chapter 7

Other Applications of Automated

Balancing

7.1 Introduction

Chapter 5 focused on the exploration of automated game design balance using ge-

netic algorithms. This chapter expands on that work and presents several other

applications of the algorithms described in there.

The first set of experiments (Section 7.2) continues the work done in Chapter 5

by taking all the resulting knowledge and understanding of the methodology and

applying it to a commercial strategy video game, ComPet.

The second scenario (Section 7.3) proposed is a departure from game design and

a short exploration of game agent development. That section begs the question

whether the methodology and specification languages developed can aid in auto-

mated agent design, altering the behaviour of an artificial player towards desired

goals.

130 Chapter 7. Other Applications of Automated Balancing

7.2 Commercial Application of Automated Game Balance

with ComPet

7.2.1 Introduction

Work done on Ms. Pac-Man, StarCraft and TORCS proved that automated game de-

sign balance is not limited to just one genre or small games. MindArk, developers of

several highly successful commercial games, after initial discussions, proved inter-

ested in the research and its potential impact. Their question was straightforward:

can these algorithms aid them in better balancing the pacing of their newest game,

ComPet?

The game itself was presented in detail in Section 3.4. As described there, devel-

opers wanted players to spend more time enjoying the player versus player (PvP)

element of the game and to use the campaign mode as a motivation to improve the

power of their pets. This meant that balance is closely tied to the pacing of the game

and allowed us to come up with some interesting metrics, described later in this

section.

7.2.2 Environment

While the gauntlet described in Section 3.4 and presented in Appendix A is a con-

densation of the game’s campaign mode, the combat between pets and beasts is

based on the game’s actual code and is an accurate representation of combat in the

game.

We designed a gauntlet that would have the player go through 9 beasts, each

with varying skills and strengths (see Table 7.1). The beasts chosen for this exper-

iment were the same as the first 9 beasts created for the actual game and would

represent a player’s first few hours playing the game.

The main designer expectation is that after 3 of the gauntlet’s beasts, the player

would be unable to progress for a while, prompting them to gain any missing ex-

perience in PvP mode. There is another similar challenge with the 8th beast in the

series. This experience could also be gained by fighting previously defeated beasts

7.2. Commercial Application of Automated Game Balance with ComPet 131

repeatedly. As a result, to simulate the PvP repetitiveness, our algorithm used fight-

ing previous beasts for experience gathering.

The pet the player was given at the start of this gauntlet was level 1, with the

default abilities a pet of that level would have in the actual game. The rate at which

it gained attribute points was also predicated by the game’s pace, so as to be realistic.

To get an idea of the current state of the campaign, we simulated an unchanged

version of this game 100 times. The results are presented in Table 7.2. The main met-

rics collected were the number of attempts required to defeat the beast in question

and how many times, on average, did the pet manage to eventually beat the beast

during a gauntlet run before the maximum number of battles (150 for these experi-

ments) was exceeded. The values collected highlight the relative difficulty of the 9

beasts, with the 4th, 8th and 9th proving particularly difficult, requiring more than

20 attempts to beat on average. The last were also not always successfully defeated

before the budget of 150 battles was exhausted.

The designers looking at the results decided the difficulty levels of Ricktick and

Thomas Short-Tail were too high and would need to be reduced, while keeping the

rest of the beasts at current levels. The number of attempts it takes to defeat them

and how often they are beaten every run would represent the metrics by which suc-

cess is measured. All the metrics considered, alongside the desired values and their

importance (Weight), are listed in Table 7.3. The weights were chosen by the design-

ers according to what they considered more important.

Elements of the game that were proposed for change were the health, endurance

TABLE 7.1: ComPet beasts in the experiment gauntlet

Name Level Health Ferocity Endurance
Angel 1 21 0 15
Starbright 1 24 15 25
Jethro 2 29 25 15
Ricktick 3 41 15 20
Forage 3 46 30 6
Harold 4 48 32 30
Fierce Frank 5 45 70 12
Thomas Short-Tail 5 58 15 20
Brutal Bill 6 80 15 50

132 Chapter 7. Other Applications of Automated Balancing

TABLE 7.2: ComPet metrics collected on the gauntlet playing the un-
changed version of the game

Name Defeated After # Attempts Wins Per Run
Angel 1 1
Starbright 1.5 1
Jethro 10 1
Ricktick 20 1
Forage 1.5 1
Harold 5 1
Fierce Frank 7 1
Thomas Short-Tail 30 0.2
Brutal Bill 20 0.1

TABLE 7.3: ComPet metrics to be used in evaluation alongside their
desired values and weights

Metric Name Desired Value Weight
M1 Defeated Ricktick after # attempts 10 5
M2 Defeated Forage after # attempts 1.5 1
M3 Defeated Harold after # attempts 5 1
M4 Defeated Fierce Frank after # attempts 7 1
M5 Defeated Thomas Short-Tail after # attempts 15 5
M6 Defeated Brutal bill after # attempts 20 1
M7 # Wins per Run against Thomas Short-Tail 1 10

and ferocity of two beasts in the gauntlet (Ricktick and Thomas Short Tail’s), as well

as, for analysis purposes, the cooldown of one of Thomas Short-Tail’s abilities (Vam-

piric Bite). This meant the evolution of 7 parameters (see Table 7.4): Ricktick’s Health

(RH), his Ferocity (RF), his Endurance (RE), Thomas Short Tail’s Health (TH), his

Ferocity (TF), his Endurance (RE), as well as the cooldown for Vampiric Bite (VC).

Fitness Evaluation

The same methodology as the one presented in Chapter 5 was used. This meant

using the same GAs as described there, as well as the specification language from

Chapter 4.

As opposed to the Ms. Pac-Man and StarCraft experiments, favouring small

changes to existing parameters was not required in the ComPet experiment. The

most important aspect was having the final metrics achieve the designer-set values.

7.2. Commercial Application of Automated Game Balance with ComPet 133

TABLE 7.4: ComPet parameters to be changed, their displacement
ranges, their decimal accuracy and their weight in the fitness eval-

uation

Parameter Variable Min Max Accuracy Weight
Vampiric Bite Cooldown VC +0 +2 100 0
Ricktick’s Health RH -20 +20 100 0
Ricktick’s Ferocity RF -10 +10 100 0
Ricktick’s Endurance RE -10 +10 100 0
Thomas Short Tail’s Health TH -30 +30 100 0
Thomas Short Tail’s Ferocity TF -10 +10 100 0
Thomas Short Tail’s Endurance TE -10 +10 100 0

As a result, for each of the metrics, the closer they are to the desired values, the better

the fitness should be.

Formally, the fitness function for ComPet can be written as:

FitnessComPet =
m

∑
i=1
|Mi − DMi| × Ci (7.1)

where m = number of metrics considered for comparison (7 for this experiment), Mi

= value of metric i from the games played with the evolved version of the game,

DMi = desired value for the metric i, and Ci = weight or importance given to that

metric.

As before, the GA considers smaller fitness values to be better, with 0 represent-

ing a perfect solution.

Genetic Algorithm

The best GA configuration from the Ms. Pac-Man experiments in Section 5.2 were

used to generate suggestions for balancing ComPet. This was the one where elitism

was applied to 20% of the population, mutation was applied to 40% of the popula-

tion, at a rate of 20%, and crossover was applied to 40% of the population.

Population size was 100, with a tournament size of 6. Experiments ran until 2000

evaluations of the fitness function were used.

134 Chapter 7. Other Applications of Automated Balancing

7.2.3 Experiment

The main experiment involved balancing a section of the ComPet campaign to fit

the designer’s requirements. The goal, following the requirements and discussion

presented in Section 7.2.2, was to find good changes to the proposed parameters, in

respect to the metrics presented in Table 7.3.

7.2.4 Results

In this experiment 10 runs were done, each with a different seed. This took a lot

of computational effort, as the simulations took a significant time to complete each

game. Each generation took approximately 11 minutes to complete.

The results of the experiment are split into two table: the parameter changes rec-

ommended by the best individual in each run shown in Table 7.5, and the individual

components of the multi-objective fitness function being presented in Table 7.6.

Looking at the results, particularly parameters RH, RF and RE in Table 7.5 and

the impact on objective fitness M1 in Table 7.6, the immediate observation is that

changing the beast Ricktick can be done in a variety of ways. Most runs did not,

on average, require big changes to Ricktick’s statistics, suggesting that that partic-

ular beast is not too far from a balanced state and requires only small adjustments.

Indeed, the few runs where Ricktick received very big changes resulted in worse

fitnesses for that particular objective (M1).

The interesting results come when analysing the suggestions for beast Thomas

Short-Tail. The runs were evenly split between two major strategies: to weaken the

beast by making its main attack usable less often, but increase its other statistics

(mostly health), or the exact opposite, where no change is made to the cooldown of

that ability, but penalties are given to health, ferocity and/or endurance.

These two strategies are also obvious when visualising the 10 runs as a graph. By

using Euclidean distance to find the similarity between the best individuals evolved

in each run and feeding the resulting values into an algorithm such as GMap [163]

to display the run results as a graph, then a similarity map can be generated, such

as the one in Figure 7.1. Such a visual tool can further allow a designer to analyse

multiple run results and observe patterns in the suggestions.

7.2. Commercial Application of Automated Game Balance with ComPet 135

TABLE 7.5: Main ComPet experiment results, highlighting the changes
recommended by each run. Green highlighting represents big
changes by adding to the original value, red highlighting represents
big changes by subtracting from the original value, while colours in-
between represent smaller intensity changes. Each column (except
Run) represents the displacement to one of the evolved parameters

Run VC RH RF RE TH TF TE
1 +1 −2 +3 +3 +16 −9 −5
2 +1 +5 +3 −7 +16 +6 −5
3 +1 +5 +10 +2 +10 +10 +10
4 +1 −7 +10 +0 +30 +10 −6
5 +0 +2 +6 −1 −11 +5 −6
6 +0 +2 +5 −1 −14 −2 +8
7 +0 +2 −4 +7 −15 +5 −5
8 +0 −11 +10 +7 −11 −1 −5
9 +0 +3 −10 +0 −14 −6 −4
10 +1 −7 +10 −10 +7 +10 −4

TABLE 7.6: Main ComPet experiment results, highlighting the indi-
vidual fitness objectives and scores achieved by each run. Columns,
except Run, represent the fitness objectives described in Table 7.3. The
bolded row represents the run with the best fitness achieved out of all

runs

Run M1 M2 M3 M4 M5 M6 M7 Fitness
1 2 0.5 1 3.6 1.25 3.33 6 17.68
2 1.25 0 0.25 0.5 1.25 12.66 6 21.91
3 6.25 0.5 0.5 2 0 7.25 6 22.5
4 4 0.25 0.5 2.5 5 3.5 6 21.75
5 3 0.3 0.6 3 3 5.75 5 20.65
6 2 0.75 0.5 1 3.75 1.33 6 15.33
7 5 0.3 3.4 2.4 1 2 5 19.1
8 5 5.3 0.6 2 0 1 5 18.9
9 2 0.7 1 1.2 3 5.75 5 18.65
10 0 0.1 0.8 2.4 1 12.6 5 21.9

For this set of runs, one of the immediate conclusions was that increasing the

cooldown of Vampiric Bite (parameter VC) would not result in desirable results.

Decreasing it is not an option, as a value less than 1 does not make sense within the

game. This parameter could now be omitted in future runs.

It is also worth noting how some fitness objectives, particularly M1 (number of

attempts required to defeat Ricktick) and M6 (number of attempts required to defeat

Brutal Bill), were much harder to optimise compared to the rest (see Table 7.6). The

second one is most likely due to the fact that by making the previous fight simpler,

it allowed a weaker pet to arrive at the Brutal Bill fight, increasing the number of

136 Chapter 7. Other Applications of Automated Balancing

FIGURE 7.1: Similarity map representing the Euclidean distance be-
tween the 10 ComPet run parameter change suggestions, with colour-
coded clusters highlighting the 2 main balancing strategies proposed

attempts required before success. These would require additional analysis from the

designer, as different experiments or parameter sets might be necessary to achieve

the goals.

Metric M7 (number of wins on average against Thomas Short Tail) had the

most consistent results, however nowhere near optimal. This points towards more

changes being required before the goal of getting a win every run is achievable with

the current parameter constraints.

Every other metric was much easier to maintain at desired values, with minor

exceptions, such as metric M5 in the best run (run 6) being quite far from 0.

These are all results that the designer will find useful, as they offer valuable in-

sight into the relationships between the various parameters. The designers behind

ComPet decided to apply the results from run 6 with slight tweaks of their own, as

they were closest to what they were hoping to achieve. They also planned on design-

ing more experiments in the future, while also providing valuable feedback on how

these algorithms could be even better for commercial use. This included a clear call

for simpler tools and better explained pipelines for receiving balance suggestions,

mentioning that the specification language was a step in the right direction and that

going further would be a win for both academia and industry.

7.2. Commercial Application of Automated Game Balance with ComPet 137

The underlying algorithms (be they GAs, particle swarm optimisers, hill

climbers or some other optimisation technique), while important, were not their

highest priority. Most valuable were the suggestions offered to them and how well

explained they were. The presence of quantifiable metrics and easy visualisation

was beneficial to understanding the algorithm’s suggestions.

138 Chapter 7. Other Applications of Automated Balancing

7.3 Evolving Game Agents with Diverse Behaviours

7.3.1 Introduction

Motivation

Balancing games towards designer requirements has been described in detail in pre-

vious chapters. However, other elements beyond game mechanics can be tweaked

and optimised to offer a more rewarding gaming experience to players. This sec-

tion looks at using the techniques and tools previously presented to change not the

parameters of a game, but the parameters of an agent playing a game to create a

version of that agent that behaves in a designer-specified manner.

Game developers often offer varying levels of difficulty for the computer-

controlled opponents present in their games. These are elements that require a lot of

trial and error to get right. By using simple variations of the techniques presented in

previous chapters to alter parameters or values within an agent and using the met-

rics generated from playing games with said agents, it is possible to generate new

and interesting variations to said agents that fit a game developer’s requirements.

These new agents can be used to automatically collect game metrics faster than hu-

man play is able to, can be added as opponents for multiplayer games, or can aid in

the goal of balancing game mechanics by acting as proxy human players of arbitrary

skill levels, as required by the developers.

We will demonstrate this using Ms. Pac-Man. We have made one small change to

the rules of the game: the PacMan has no extra lives. Once the PacMan has touched

a ghost that is not scared, the game ends and the score is recorded. The reasoning

behind this was to streamline the experiment by focusing on getting as many points

as possible without being eliminated.

Existing Ms. Pac-Man Agents

There have been many agents developed to play Ms. Pac-Man, many described in

Section 3.1. All of these agents have attempted to be as good as possible at playing

Ms. Pac-Man. This work, while it could be applied in the same manner, does not

have the same aims. The novelty comes from the flexibility this technique presents

7.3. Evolving Game Agents with Diverse Behaviours 139

and how it puts the game designers first and works towards their vision, regardless

of what it might be, instead of continuing the trend of attempting to “solve” a game

by creating a perfect agent. The scenario we chose for this section aims to be realistic

and interesting in the context of Ms. Pac-Man.

It is also important to note that this is not the same as dynamic agent skill scaling,

a technique that allows an AI agent to adapt to the opponent’s skill level and offer

a challenging, but not overpowering difficulty, as highlighted by several researchers

[99] [164]. This is design of an agent’s behaviour in the stages before the release of a

game, resulting in an agent of predictable, and static, skill.

We decided to use a neural network for playing the game, with its framework

based on work by Lucas [131], with changes to it presented in Section 7.3.2. The

reason behind using a neural network is the ability it has to discover, or evolve,

interesting characteristics and rules that might not have been obvious to a designer

beforehand. These same techniques could be used with evolving rules in a rule-

based agent or the parameters of MCTS agents, but neural networks were a good

choice for balancing simplicity of use to simulation speed.

We did not compare the results achieved by our approach to the results described

by Lucas as they were both done on two different implementations of Ms. Pac-Man,

as well as their goals are completely different. Lucas sought to create agents that

played the game as well as possible exclusively, while we aim to define designer

constraints wherever possible and generate agents fulfilling them.

While research is being done on controlling the ghosts in the game [165], it is

less fleshed out than the alternative of altering the PacMan itself. This allows us to

quickly compare our resulting agents to a couple of existing artificial agents, namely

the rule-based implementation and an MCTS implementation.

Table 7.7 presents the average scores and standard deviations of said scores

achieved by the rule-based agent and the MCTS agent, with two extra rows present-

ing what will be targeted for evolution. Given the performance of the previously

mentioned agents, it would seem there is a large gap between the rule-based agent,

which could be considered ‘easy’ difficulty (comparable to a player of basic skill),

and the MCTS one, the ‘hard’ difficulty (comparable to a player of advanced skill).

To better cover the spectrum of challenge, a designer might want to create an agent

140 Chapter 7. Other Applications of Automated Balancing

TABLE 7.7: Average scores, and their standard deviation, achieved by
a rule-based agent and MCTS over 1000 games, as well as the desired

values for the evolved agents

Agent Average Score Standard Deviation
Rule-based 1067 1376

MCTS 2482 1641
Desired New Agent 1 1750 1000
Desired New Agent 2 1750 100

that is in-between those two, as a ‘medium’ difficulty offering. Attempting to evolve

an agent that achieves 1750 points on average is very close to the mid-point between

the two existing agents and this will be the goal of a couple of the experiments.

7.3.2 Methodology

Pipeline

The same pipeline as the one described in Section 5.2.1 was used, with one major

change: instead of changing the game parameters, the evolved vector is passed to

the constructor of the neural network agent described in the next paragraph. This

initialises the network using those values, as each value in the vector represents a

different weight in the network. A number of games is then played with that agent

to collect the relevant metrics.

Neural Network Agent

The agent we designed, based on work by Lucas [131], makes use of a neural net-

work as an evaluator of nodes (accessible points on the map) the PacMan should

go towards. While Lucas’ approach only tested for the immediate 2 to 4 neighbour

nodes the PacMan could go to at any given point, our approach tests every single

node on the map. All the valid nodes are considered and evaluated by the network,

then the one with the highest score is marked as the destination. This is another crit-

ical difference to Lucas’ work: while his approach meant that there was no pathfind-

ing required, as the best node would already be a neighbouring valid destination,

our approach requires some way of getting the PacMan towards the desired node.

7.3. Evolving Game Agents with Diverse Behaviours 141

FIGURE 7.2: Structure of the neural network used to score each node

For the previously mentioned pathfinding the agent makes use of the A* algo-

rithm [166] to find the shortest route to the chosen destination. With the shortest

route to the chosen node found, the PacMan starts moving on that route until given

new instruction. This process is repeated every few frames, each time possibly giv-

ing the PacMan a new route and direction to take.

The A* algorithm considers empty spaces as costing 10, spaces with pills or pel-

lets to cost only 5 (thus being more desirable), spaces with chasing ghosts to cost

2000, while spaces with fleeing ghosts to cost only 1.

Choosing the network’s topology is one of the main tasks when working with

neural networks [161]. The one employed for these experiments is a feed-forward

neural network with an input layer of 12 neurons, a single hidden layer with 4 neu-

rons and one output layer with one neuron. The structure can be seen in Figure 7.2.

As a result of this structure, there are 57 weights to evolve (this also accommodates

for the biases for each hidden and output neuron). The activation function used is

the sigmoid activation function.

For each node 12 features are considered and used as inputs to the neural net-

work: the distance from the node to the PacMan; whether the node in question is a

junction or not (1 for yes, -1 for no); for each ghost the distance from it to the node,

as well as whether that ghost is hunting or hunted; the distance between the near-

est power pill and the node; and finally the distance between the nearest small pill

and the node. All distances are calculated by taking the shortest path in the maze

between the two positions considered. All these features are relevant to the state of

142 Chapter 7. Other Applications of Automated Balancing

TABLE 7.8: Features chosen for evaluating each node

Feature Min Max Name
Distance Node to Pacman 0 100 i1

Is Junction Node -1 (false) 1 (true) i2
Distance Node to Ghost 1 0 100 i3

Is Ghost 1 Hunting -1 (false) 1 (true) i4
Distance Node to Ghost 2 0 100 i5

Is Ghost 2 Hunting -1 (false) 1 (true) i6
Distance Node to Ghost 3 0 100 i7

Is Ghost 3 Hunting -1 (false) 1 (true) i8
Distance Node to Ghost 4 0 100 i9

Is Ghost 4 Hunting -1 (false) 1 (true) i10
Distance Node to Nearest Power Pill 0 100 i11

Distance Node to Nearest Pellet 0 100 i12

the game and can greatly impact the desirability of going to a node. They can have

values as described in Table 7.8. Should the feature be unavailable for a node (for

example: there are no power pills left for there to be a nearest power pill distance),

it reverts to being set the maximum value possible.

The output is a single value representing the neural network’s evaluation of the

node, or simply put: a score. The higher the score, the better it is for the PacMan to

go to the evaluated node.

Genetic Algorithm

The representation used was an array of the 57 weights and biases within the neural

network. Each element was a real value constrained to be between -5 and 5. These

constraints are there to allow for smoother behaviour in the active neurons of the

network, to promote generalisation, as the tasks at hand are focused on prediction

and scoring, not on classification.

The evolutionary algorithm employed is a variant of a generational GA with two-

point crossover [25] (applied with a rate of 35%), a specialised mutation operator

(applied with a per-individual rate of 35%) and elitism (applied to the top 15% of

the population). The final 15% of the each generation is randomly sampled from the

search space through reinitialisation [152]. This is similar to the approach used in

Chapter 5.

7.3. Evolving Game Agents with Diverse Behaviours 143

The mutation operator was applied with a (per allele) mutation rate of 0.5 (mean-

ing that on average 50% of the elements of an individual would be mutated). At

each application of the operator, a displacement is randomly generated by a random

number generator within the range of acceptable values (between -5 and 5) for that

allele and added to the corresponding parameter value.

The experiment used tournament selection, with a tournament size of 6. The

population size was 50, with no more than 50 generations for each run. For each

experiment, we did 10 runs using the configuration described above, each with a

new random seed.

Fitness Evaluation

For each individual the array in an individual was decoded, a neural network was

initialised with the given values, then 50 games were played with this new agent,

storing all the scores the agent achieved. All the scores would represent the agent’s

skill level.

Our GA considers smaller fitness values to be better, with 0 representing a perfect

solution.

Formally, the fitness function f can be written as:

f = fs + fd (7.2)

fs = |Mean(S)−DS| (7.3)

fd = |StdDev(S)−DD| (7.4)

Where fs represents the mean score component and fd represents the standard de-

viation component. In the component fs, S is the array of scores achieved by the

individual, Mean(S) is the average of those scores, and DS is the desired average

score to be achieved. In the component fd, StdDev(S) is the standard deviation of the

scores, and DD is the desired standard deviation to be achieved.

Experiments

We performed three experiments with Ms. Pac-Man.

144 Chapter 7. Other Applications of Automated Balancing

The first experiment we ran was to generate an agent that is as strong as possible.

This meant the aim of the evaluation was to score as many points as possible. The

reason behind this was to see what the upper limit of this approach is and to replicate

results by other researchers. The value of DS was set to 6000, as that is a high enough

value with a very low probability of being achieved. For this experiment, the fd

element of the fitness function is completely ignored, as there is no desired standard

deviation to target.

The second experiment involved a designer-led requirement to have an agent

that would behave better than the rules-based agent presented in Table 7.7, but not

by a massive margin. The desired value of DS was set to 1750, as described earlier

in Section 7.3.1. This agent should still have very good games and very bad games,

an element highlighted by the relatively high standard deviation of DD = 1000.

The third experiment is almost identical to the second one, with the major dif-

ference being the targeted standard deviation of DD = 100, instead of 1000. This,

instinctively, is a much more difficult task given the stochastic nature of the game

and the results documented for the other two agents used for comparison (see Ta-

ble 7.7). Such a low standard deviation would represent a highly consistent agent,

something that can be valuable when analysing and balancing games.

7.3.3 Results

Experiment 1: The Strongest Neural Network Evolved

The 10 runs each resulted in agents that would play the game at a much better level

than the rules-based agent and its average of 1067 points and even better most times

than the MCTS agent, which achieved only 2482 points on average. The best per-

forming agent, from run 2, averaged 2804.2 points. On average, the best agents gen-

erated by the 10 runs achieved 2602 points, with a median of 2607.1 and a standard

deviation of 90.82. The results are individually documented in Table 7.9.

These results represent the upper limit that can be achieved with this architecture

and methodology. Knowing what this upper limit of our approach is, we could then

decide on a value for DS for the second and third experiment. Choosing 1750 was

based on two factors: it is a value smaller than 2479.6 (the worst of the results for this

7.3. Evolving Game Agents with Diverse Behaviours 145

TABLE 7.9: Experiment results for the experiment attempting to gen-
erate as good a player as possible given the architecture evolved, with

the best performing run in bold

Run Mean(S) StdDev(S) f
1 2,625.0 1,063.0 3,375.0
2 2,804.2 1,182.0 3,195.8
3 2,644.0 1,027.0 3,356.0
4 2,603.2 943.1 3,396.8
5 2,611.0 1,149.0 3,389.0
6 2,479.6 666.4 3,520.4
7 2,575.6 1,100.0 3,424.4
8 2,621.4 1,090.0 3,378.6
9 2,572.8 980.1 3,427.2

10 2,482.4 776.1 3,517.6

experiment), thus theoretically achievable, and it would be a value close to the mid-

point between the two agents we compared in Section 7.3.1, representing another

tier of skill that we did not have tapped.

Using the Wilcoxon Signed Rank Test with the null hypothesis that the median

of the results is lower than 1750 (our desired score for the second experiment), we

achieve a p-value of 0.0009765625. Every single run managed to achieve an agent

significantly better than the one we are attempting to evolve in the second experi-

ment.

Due to the black box nature of neural networks, it is hard to compare between

the various agents generated by each run without simply observing their behaviour.

There is a similar behaviour being evolved in all 10 runs. The PacMan attempts to

find the best path to each power pill, sometimes taking a short detour to eat a ghost

or two on the way. Once it has eaten all 4 power pills, it is simply playing to avoid the

ghosts. Without more information, such as previous locations and decisions taken,

it is unable to evolve any better strategies, as it is playing frame to frame.

Experiment 2: A Balanced Neural Network with High Variance

The results of the second experiment are individually documented in Table 7.10.

This experiment had two objectives to evolve towards, and almost every single run

managed to find a solution within 3% of the desired values of DS = 1750 and DD =

1000, with the notable exception of run 1.

146 Chapter 7. Other Applications of Automated Balancing

TABLE 7.10: Experiment results for the second experiment, where an
agent is evolved to fit given the designer requirements of DS = 1750

and DD = 1000, with the best performing run in bold

Run Mean(S) StdDev(S) fs fd f
1 1,750.4 885.2 0.4 114.8 115.2
2 1,742.0 998.1 8.0 1.9 9.9
3 1,744.0 988.5 6.0 11.5 17.5
4 1,753.4 981.6 3.4 18.4 21.8
5 1,763.8 1,001.4 13.8 1.4 15.2
6 1,751.2 1,009.6 1.2 9.6 10.8
7 1,749.2 1,009.1 0.8 9.1 9.9
8 1,748.6 1,003.5 1.4 3.5 4.9
9 1,750.2 999.0 0.2 1.0 1.2

10 1,740.4 1,007.0 9.6 7.0 16.6

On average, the best agents generated by the 10 runs achieved a mean fitness

of 22.3, with a median of 13 and a standard deviation of 33.21. While the target

score seemed easier to achieve, successfully managing the standard deviation re-

quirements as well is moderately surprising and welcome.

After running the best agent from each run, it is fairly clear how they managed

to achieve the scores they did. As opposed to the previous experiment, these agents

are a lot more aggressive with their positioning, staying close to the ghosts, but not

so close to get caught. This allows them to get the required amount of points fairly

reliably, but also gets them killed quicker as they get stuck between two chasing

ghosts. It is definitely an interesting strategy that results in more exciting agents

that also fit the requirements.

Experiment 3: A Balanced Neural Network with Low Variance

On average, the best agents generated by the 10 runs achieved a fitness of 358.12,

with a median of 355.2 and a standard deviation of 66.99. The results are individu-

ally documented in Table 7.11.

Just as the previous experiment, achieving the target score is extremely easy.

However, with such a small target standard deviation, it was much harder to find

agents that fit the requirement. This is in no small part due to the heavily stochastic

nature of the game. Even the highly skilled MCTS agent had really bad games and

really good games. It is still impressive to see our approach manage to get quite

close to what some would call a consistent agent.

7.3. Evolving Game Agents with Diverse Behaviours 147

TABLE 7.11: Experiment results for the third experiment, where an
agent is evolved to fit a different set of designer requirements of DS =

1750 and DD = 100, with the best performing run in bold

Run Mean(S) StdDev(S) fs fs f
1 1,739.2 388.3 10.8 288.3 299.1
2 1,739.0 442.6 11.0 342.6 353.6
3 1,727.4 360.6 22.6 260.6 283.2
4 1,610.0 326.1 140.0 226.1 366.1
5 1,772.2 434.6 22.2 334.6 356.8
6 1,743.6 355.4 6.4 255.4 261.8
7 1,658.4 346.7 91.6 246.7 338.3
8 1,691.0 469.4 59.0 369.4 428.4
9 1,745.0 521.7 5.0 421.7 426.7

10 1,763.8 553.4 13.8 453.4 467.2

Of course, the best run achieved an average score that might be considered lucky,

despite the low standard deviation of the scores. To double check the results, we ran

that particular agent for another 50 games. The new results did not stray too far from

the original results, achieving an average score of 1782.2, with a standard deviation

of 366.6. This is close to the original values and within expected ranges.

Looking at some of the behaviours evolved, there seems to be less aggression.

The PacMan aims to collect all power pills while ignoring fleeing ghosts. It stays

as far as it can from all 4 ghosts, which proves to work in its favour to consistently

achieve the points needed.

It is also worth mentioning that we do not supply an agent’s current score as an

input, so the GA is unable to evolve agents with behaviours that make them end

the game when reaching the desired number of points while playing as well as they

can.

148 Chapter 7. Other Applications of Automated Balancing

7.4 Discussion

7.4.1 Industrial Applications

By integrating a specification language and a bridge with an existing genetic algo-

rithm developed in academia, we were able to demonstrate applicability in industry

through a cooperation with MindArk and their commercial product, ComPet. The

successful application of these techniques to a commercial game in development is

reassuring, as the goal is for them to be valuable in the real world, helping the de-

velopment of games. A lot of valuable feedback was received from MindArk during

the placement there, and much of it is reflected in this thesis.

Having already used this methodology in industry, the benefits are obvious: less

time spent explaining research and more time spent solving immediate problems.

The researcher has a clear goal, to develop algorithms that solve balance problems,

while the game designer needs only present their problem using a simple language.

While each run, regardless of strategy evolved, presented the best result as a list

of numeric changes, there are potentially better ways of presenting this informa-

tion. Replacing the numbers with slightly broader suggestions (such as replacing a

+16 to Thomas Short-Tail’s Health with “Significantly increase Thomas Short-Tail’s

Health”) can make results a lot easier to interpret by designers. Presenting the re-

sults in a less spartan manner can make it much more likely that the algorithm is

usable by people with less technical training. Displaying balance suggestion us-

ing fuzzy language can ease designers into the process of implementing automated

game balancing into their pipeline.

This successful use of research in an industrial context is a sign that not only is

there need for more research on the topic, but that also there can be demand for it in

the real world, given proper presentation and tools.

7.4.2 Evolving Game Agents

This work presents a useful tool for game designers to use in their quest to turn

their vision of a game into reality as accurately and easily as possible. It does, in

no way, replace human designers as they still need to define the requirements and

double-check the results of the automated system.

7.4. Discussion 149

An immediate use for this work is to generate agents of various skills for games,

and this is particularly valuable for cases where no pre-existing agent exists. These

could then be used to balance games to fit designer requirements, using the method-

ology described in Chapter 5, which requires the availability of automated agents.

By applying the balancing technique first to agents, then using the resulting AI play-

ers to play the game, a wider variety of designer tasks can be fulfilled, at a fraction

of the effort and cost.

The experiments described in this section focused on evolving behaviours for

the PacMan character, the one controlled by the player. However, this methodology

could just as well be applied to non-player characters, such as enemies or allies in

games. Also, given the positive results we reported on the flexibility of the neural

network, it would seem possible to design artificial agents that could control multi-

ple entities in a game at once.

In addition, more objectives, such as time alive, number of ghosts eaten, or num-

ber of pellets collected, could be added to the evaluation to further customise the

behaviour of the resulting agent. This is extremely important to highlight, as be-

haviour can be defined by more than just scores and their variance. More metrics

can allow for finer tuning of the resulting agents, within the limitations of the game.

An obvious idea for improving the agent we described and developed involves

adding extra inputs to represent the state of the game, and decisions taken, at previ-

ous ticks in the game. This recurrence could give the neural network memory and

could unlock new strategies to be evolved.

It would also be interesting to evolve the weights for the A* algorithm used, the

ones defining the cost of going to a node, alongside the neural network itself. This

would further unlock strategies for a designer to use.

Of course it would be desirable to alter the architecture of the agent itself. Us-

ing emergent tangled graph representation [167], for example, a technique that has

proven to have a very high performance ceiling, would allow for even more flexibil-

ity from a designer’s requirements and expectations.

Less important, but definitely very exciting, was the fact that the evolved best

agents were able to achieve better results than MCTS, an algorithm considered ex-

tremely good at playing Ms. Pac-Man, at a tiny fraction of its computational cost.

150 Chapter 7. Other Applications of Automated Balancing

Further improving the structure of the neural network would most definitely bring

further incremental improvements. Adding memory could potentially greatly im-

prove performance, as the current version lacks both memory and a forward model,

something the MCTS agent has, yet still managed to beat it.

This has further shown that GAs are viable tools for use in game design, com-

plementing human intuition and offering valuable techniques for future problem-

solving in game design and beyond.

7.5 Summary

The previously presented two scenarios are fairly different from one another. One is

an industrial application of game design balance, another attempts to evolve artifi-

cial intelligence with various behaviours.

However, both solutions share the same underlying GA and specification lan-

guage to solve their respective requirements. This is testament to the flexibility of

our approach, as well as the versatility of the concept of “balance”. By abstracting

a balance task as numbers to change and numbers to aim for, one can theoretically

solve a number of problems, in many different fields.

151

Chapter 8

Conclusions and Future Work

The methodology presented in Chapter 5, optimised in Chapter 6, then applied in

two further scenarios in Chapter 7, proved successful in dealing with a wide variety

of tasks, most of them related to games balance.

The area of automated game balancing is being explored in depth at this point in

time by many researchers and this can only benefit the games development world.

Manual testing will, most likely, never be obsolete, but designers will be able to focus

on much more interesting tasks while letting computational intelligence do the less

exciting elements of balance.

This thesis has further shown that GAs are viable tools for use in game design,

complementing human intuition and offering a route to future problem-solving of

complex scenarios.

While much of this research aimed to produce results worthy of use in industry,

and, to some extent, a significant portion of it was exactly that, there is still a lot

to improve in future work. The partnership with MindArk on ComPet was a par-

ticularly valuable opportunity to better understand how to bridge the gulf between

industry and academia. The specification language presented in Chapter 4 and used

throughout this entire thesis may seem simplistic, but it is critical to remember that

simplicity will allow for mainstream adoption of academic research in industry and

potential for further growth. Tighter cooperation between industry and academia

can only benefit both.

The work done on approximators (Chapter 6) proved to be of much value, with

many interesting results highlighting much more potential in this field. Mixing

different machine learning algorithms with the goal of emphasising each of their

152 Chapter 8. Conclusions and Future Work

strengths and mitigate some of the weaknesses proved quite powerful.

While no obvious “winner” emerged among the tested approximators, there is

likely much that could be improved in the methodology, as well as other approxi-

mator models to test.

This work also proved of interest to other research areas. The task-agnostic ap-

proach, while only tested on toy problems and games, could easily be valuable in

other fields. As long as one can present the problem as a list of numbers, then map it

to either a fitness class (the fuzzy approach) or a fitness value (the exact approach),

then GA use can be enhanced by other ML methods.

It was also a pleasant surprise to see the methodology developed being able to

tackle agent generation as well. Not only did the evolved agents from Section 7.3

successfully achieve the required balance goals, the ones generated during the search

for the best agent possible beat some top-of-the-line agents quite handily. With a

better network structure and more features, such as memory, it is very likely that

results could be even better.

Overall, this thesis succeeded in its goals of identifying problems within game

design, particularly related to game balance, present viable methods of mitigating

those problems, then start the conversation and implementation of approaches to

bridge the gap between academia and industry. The optimisations to GAs in general

were a valuable process that happened to bring more value to the game balance

research.

There are still many challenges ahead for those that will continue research in this

field. While some industrial cooperation was achieved during the research reported

in this thesis, it was minimal. And despite the tests done on several different games,

some of which real commercial games, in several different genres, they were not

comprehensive. They do not promise that this work will translate at the same level

of performance for other games.

153

Appendix A

ComPet Example Gauntlet

This document is an XML file describing the beasts one would have to fight to com-

plete the campaign designed for the ComPet experiment in Section 7.2.

<ComPetGauntlet>

<RetryCount >0</RetryCount>

<GrindAfterFailureCount >2</GrindAfterFailureCount >

<MaximumBattlesTotal >150</MaximumBattlesTotal>

<GainXPOverTime>true </GainXPOverTime>

<NumberOfRuns>10</NumberOfRuns>

<PlayerPets >

<ComPetPet>

<BeastID>DefaultPetBalanced </BeastID>

<Health >20</Health>

<Mojo>30</Mojo>

<Endurance>15</Endurance>

<Feroci ty >15</ Feroci ty >

<HealthPerLevel >7.5 </ HealthPerLevel >

<MojoPerLevel>2</MojoPerLevel>

<EndurancePerLevel >0.75 </ EndurancePerLevel >

<FerocityPerLevel >2.5 </ FerocityPerLevel >

<Experience >0</Experience >

<Level >1</Level >

< A b i l i t i e s >

154 Appendix A. ComPet Example Gauntlet

<Abil i tyPair >

<AbilityID >1000</AbilityID >

</Abil i tyPair >

<Abil i tyPair >

<AbilityID >270</AbilityID >

<UseFromLevel>1</UseFromLevel>

<UseUntilLevel >2</UseUntilLevel >

</Abil i tyPair >

<Abil i tyPair >

<AbilityID >20</AbilityID >

<UseFromLevel>3</UseFromLevel>

<UseUntilLevel >7</UseUntilLevel >

</Abil i tyPair >

<Abil i tyPair >

<AbilityID >220</AbilityID >

<UseFromLevel>3</UseFromLevel>

<UseUntilLevel >7</UseUntilLevel >

</Abil i tyPair >

</A b i l i t i e s >

</ComPetPet>

</PlayerPets >

<Beasts >

<ComPetPet>

<BeastID >102</BeastID>

</ComPetPet>

<ComPetPet>

<Enabled>true </Enabled>

<BeastID>Level1BeastWHeal </BeastID>

<Health >21</Health>

Appendix A. ComPet Example Gauntlet 155

<Mojo>15</Mojo>

<Endurance>15</Endurance>

<Feroci ty >10</ Feroci ty >

<Level >1</Level >

< A b i l i t i e s >

<Abil i tyPair >

<AbilityID >1000</AbilityID >

</Abil i tyPair >

<Abil i tyPair >

<AbilityID >2000</AbilityID >

</Abil i tyPair >

</A b i l i t i e s >

</ComPetPet>

</Beasts >

</ComPetGauntlet>

157

Appendix B

Diplomatic Turn-Based Strategy

Games

B.1 Introduction

As we mentioned in Section 3.5, there was some work done on exploring the area of

believable diplomatic agents. This Appendix presents the results of that work.

B.2 A Description of DTBG

For the purpose of this article, a game that used to run up until 6 years ago, but

sadly went down due to the developers disappearing, called Genesis 1 , will be de-

scribed. Genesis had each player in control of a single town, capable of expanding it

with various military and economic buildings, of recruiting armies and researching

improvements to its economy and units. The game world was split in systems, each

system with 5 planets, each housing 20 players. The game would support hundreds

of players at once. A simple screenshot of how Genesis used to look can be seen in

Figure B.1.

The game had two major factions: good and evil, each with a number of different

races available. Players of opposing factions could not be directly allied with each

other, as a way to facilitate conflict. Each planet, as a result, housed 10 players of the

1Due to its age and lack of marketing, most references to Genesis have disappeared. A few remain,
at http://www.gamespot.com/genesis-2006/ and http://www.gamesindustry.biz/articles/genesis-
new-mmo-game-launch

http://www.gamespot.com/genesis-2006/
http://www.gamesindustry.biz/articles/genesis-new-mmo-game-launch
http://www.gamesindustry.biz/articles/genesis-new-mmo-game-launch

158 Appendix B. Diplomatic Turn-Based Strategy Games

good faction, and 10 players of the evil faction, creating the game’s original motiva-

tion: the desire to be the stronger faction when access to the entire system of planets

was available.

Victory would only be achieved once one single player would successfully reach

the end of the research tree and constructed a particular building, then successfully

defended it against the rest of the world for 3 full days. On their own, a player would

never be able to succeed. Successfully arriving to the end-game building would

mean the player has no military resources at all. An amazing result of this is the

fact that, even though they would not win in the traditional sense of the term, many

players would choose to support that single player in their quest to the finish line,

defending them and taking some indirect victory from the achievement. Of course,

multiple such groups would form, all with the same goal: be the group supporting

the eventual winner.

The greatest pull to this sort of game, as well as its differentiating feature, is its

meta-game and social aspect. By interacting with a number of people larger than

the usual MMO, players must understand and cooperate with their friends or ene-

mies differently, often making compromises for the good of more, or the opposite,

gaining personal benefit at the cost of others. In a long-term game, for example,

grudges against players could escalate into war between groups, something usually

not possible in the more linear MMO environments.

The social aspect also helps create bonds of friendship and camaraderie that

could help lead to a group’s victory, or, just as important, a more enjoyable game

experience during a round. Tapping into what makes humans form these links with

others offers great potential for even more innovative video game mechanics, mak-

ing use of what, for example, attracts people to board games.

B.3 Conflicts as a Gameplay Mechanic

Most games have mechanics that allow players to either move closer to a desired

end-state or balance state [12]. However, Genesis allowed only one player to offi-

cially “win” the game, leaving hundreds of players as nothing but second place.

The assumption many would make is that once a player is close to victory, the rest

B.3. Conflicts as a Gameplay Mechanic 159

FIGURE B.1: Genesis planet view. Every little tower is a different
player

will turn on them and deny them the chance to win. Given the immense number of

players, this creates a loop and victory is never achieved by anyone, as any military

resources expended during one denial can be recuperated by the time it is needed

again.

As mentioned previously, players would team up for the indirect achievement of

supporting another potential victor. Why this develops the way it does is something

worth looking into in more depth, as during the many rounds experienced in Genesis,

rarely did betrayal happen. When it did happen, it was either extremely subtle and

unnoticed until it was too late for the receiving party, or harsh treatment was exerted

on the acting party. This group interaction is very exciting, as it does mimic society

in a manner. Players want to be accepted in their group, even if success might favour

someone else.

The separation of players in planets and systems created a fascinating diplomatic

dynamic. Conflict would exist for the first stage of the game, the planet stage, be-

tween 10 evil players and 10 good players. The 10 players in each group would

form a camaraderie in their common desire to prove superior. Most often, one of the

10 would assume leadership. Once the whole system was available, 80 more play-

ers entered the fray, 40 evil, 40 good. The logical evolution was, usually, to merge

the 5 alliances of each faction. This is where the first major conflict of interest would

arise, as players can grow attached to even the name of their small group, most often

having to lose it in the merge. Not only that, but for the purpose of administration,

160 Appendix B. Diplomatic Turn-Based Strategy Games

only one player could be official leader, regardless of how decision making was done

internally. This caused other debates and, sometimes, conflict.

All of this internal conflict had to be solved quickly, as the opponents were al-

ways in a similar situation, hoping to take advantage of weaknesses during this

transition period, striving to be more efficient than their enemies. A lot of compro-

mise would happen purely for the sake of hastening the process of union between

the 50 players of their faction.

B.4 Discussing Potential Player Types

Each new entry in the video game world brings a different type of players with it.

Properly identifying the various groups that might emerge and catering to all their

requirements is critical in maintaining a balanced community. This is also important

for AI research, as, at the time of writing, no one AI can “pretend” to be any type of

human. AIs try to emulate certain personalities and play styles, inspired by human

behaviour itself.

Bartle [168] described MMORPG players as falling into 4 categories: explorers,

killers, achievers and socialisers. Most of these would readily apply to DTBGs, but

their aims and “engines” behave differently.

This chapter aims to provide a very simple and broad assumption of the player

types emerging in this genre, as experienced personally during the playing of Gene-

sis.

Of course, a player can be part of multiple of these representations at once, in

varying percentages, by choice or by group necessity.

The identified player types are leaders, followers, diplomats, aggressors, war-

riors and strategists.

B.4.1 Leaders (Socializers / Achievers)

The players that want to directly influence the path of their group and the interac-

tions between different groups, that want to be figures of authority among the many

players in the game, are called Leaders. They share qualities of both socializers and

achievers. They will be happy to interact with members of their group, to know

B.4. Discussing Potential Player Types 161

who they are leading and what each of them enjoys. But their end goal is to take

that group of people as far as possible up the achievement ladder, preferably the

victory itself.

B.4.2 Followers (Explorers)

Followers play the game to discover what interactions will emerge between them-

selves and the environment, between their group and the environment, between

groups themselves. They will happily be led by others and follow orders given for

the experience of the game and the various storylines that emerge. They are most

often the players that eventually end up supporting the candidates for winning the

game.

This is the class of players that would, at a first glance, be the easiest to emulate

with an AI. Their social interaction requirements (such as forums or public chat) are

minimal, while their desire to come up with better alternatives to what their leaders

are saying is close to none. They are very similar, in behaviour, to individuals in

a swarm, following those around them and rarely questioning the decision of the

group.

B.4.3 Diplomats (Socializers / Explorers)

Diplomats are very similar to Leaders in many respects, except for their end game

desire. Diplomats don’t particularly want to win as much as they want to see what

they can discover or do while interacting with other players, be they allies or ene-

mies. The questions diplomats ask themselves is how far can they drag negotiations

in their favour, or who can they talk to for even greater opportunities to success.

B.4.4 Aggressors (Socializers / Killers)

These players are similar to diplomats, but they will use conversation to create in-

game conflict, or war. Their end goal is to cause a war in their favour, preferring

trial by combat over peace by words. Sometimes, however, they will attempt to stir

controversy in other groups, to benefit their own. They are rare, or alternatively hard

to identify, due to others choosing not to trust their kind.

162 Appendix B. Diplomatic Turn-Based Strategy Games

B.4.5 Warriors (Killers)

They will eagerly forgo the chance to be the winners of the game for the opportunity

to have a large army and help in the success of their group through military action.

This player type is very similar to the Follower type, but differs greatly in what

motivates them. Warriors want a big army and a chance to use it profitably.

B.4.6 Strategists (Explorers / Achievers)

By manipulating the resources available to their group, both military and diplo-

matic, strategists want to discover as many great ways to push the game in their

favour and to achieve new strategic heights. Their desire is to outsmart their oppo-

nents and find novel ways of maximizing their group’s power.

B.5 Game Design Space

By defining and opening a new game genre, both researchers and game designers

receive access to a new world of possible research and products. The DTBG design

space is, at a glance, quite broad. It’s only inherent requirement is that many people

have to interact in a meta-game environment to further their gameplay goals. This

creates many possibilities for building new experiences, something greatly beneficial

to the industry and to the furthering of ludology [169].

Alongside the social requirement, elements that designers could ‘play’ with dur-

ing their design of a new game or game variation include:

1. Having an economy that players must maintain, through orders involving

buildings, research, trading and/or espionage.

2. Having a military that players must build and use in conquering, depriving of

resources or weakening of opposing forces.

3. Having a group structure to push players into social, military or economic

factions.

4. The presence of a ranking system to differentiate players in different cate-

gories.

B.6. Discussion 163

5. The existence of a dynamic or static narrative to support the gameplay ele-

ments of the game.

6. Having player statuses to define their position in the game’s “world order”.

7. Whether players can be removed from the game completely through military,

economic or diplomatic means.

These are but few of the parameters the DTBG genre would have to creating

new and exciting game worlds and all of them mesh really well with the presence

of many players. Not only that, but each of these elements allows for even more

research. For example, the military aspects of a game could be tweaked in real time

by an AI algorithm, to further improve the experience of players.

Each new game in the genre would allow for different player types to emerge, as

it is definitely possible that some of the ones defined in the previous section might

not have room to exist in the different game environment created.

B.6 Discussion

A lot of the work defining video game genres started just slightly over a decade ago

[170] and some would argue it is nowhere near as complete as artistic mediums such

as movies or music. The world of video games is ever expanding and becoming part

of every day society.

This game genre would create new ways for game design to evolve, for psychol-

ogy, sociology and politics research to gather data to further human insight in social

behaviour, as well as a wonderful test-bed for artificial intelligence research. One

can only imagine, at this point, what an AI that leads humans would behave like.

Research in this genre would eventually make that a reality.

On a broad scope, creating a complete AI for a game like this would be a merging

of many other areas of research, such as natural language processing, data analysis

and prediction, emotion detection, and more. This could prove to be a great chal-

lenge, but is something that the game genre itself allows leeway. There is no direct

feature, beyond the ability for people to chat, that the genre relies on exclusively.

164 Appendix B. Diplomatic Turn-Based Strategy Games

By removing various game elements, such as a requirement for economy, or the

presence of military, AI researchers could focus on particular elements of DTBG and,

as a result, create new games in the genre, or better understand how some features

influence game design and human behaviour.

165

Appendix C

Aggregate Data for Approximator

Experiments

C.1 Introduction

This appendix contains aggregate results from the approximator experiments with

Ms. Pac-Man and TORCS from Chapter 6.

166 Appendix C. Aggregate Data for Approximator Experiments

TA
B

L
E

C
.1

:R
es

ul
ts

w
he

n
co

m
pa

ri
ng

be
tw

ee
n

ap
pr

ox
im

at
or

ru
ns

w
it

h
th

e
un

op
ti

m
al

G
A

pa
ra

m
et

er
se

ta
nd

bo
th

op
ti

m
al

an
d

un
op

ti
-

m
al

G
A

ru
ns

,i
n

th
e

M
s.

Pa
c-

M
an

ex
pe

ri
m

en
ts

.B
et

te
r

an
d

w
or

se
va

lu
es

re
pr

es
en

tt
he

pe
rc

en
ta

ge
of

ti
m

e
th

at
th

e
se

co
nd

co
nfi

gu
ra

ti
on

pr
ov

ed
si

gn
ifi

ca
nt

ly
be

tt
er

,o
r

w
or

se
re

sp
ec

ti
ve

ly
,t

ha
n

th
e

fir
st

co
nfi

gu
ra

ti
on

Fi
rs

t
Se

co
nd

Be
tt

er
W

or
se

A
na

ly
si

s

O
pt

im
al

U
no

pt
im

al
0%

70
%

Eq
ua

li
n

qu
ar

te
r

0.
W

or
se

80
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

2.
W

or
se

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

O
pt

im
al

C
45

A
cc

60
-F

ir
st

11
%

31
%

Be
tt

er
23

%
of

th
e

ti
m

e
in

qu
ar

te
r

0.
Be

tt
er

19
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

W
or

se
23

%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

O
pt

im
al

C
45

A
cc

60
-M

ed
ia

n
4%

43
%

Be
tt

er
9%

of
th

e
ti

m
e

in
qu

ar
te

r
0.

Be
tt

er
7%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

W
or

se
73

%
of

th
e

ti
m

e
in

qu
ar

te
r

2.
W

or
se

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

O
pt

im
al

C
45

A
cc

60
-T

hi
rd

0%
2%

Eq
ua

li
n

qu
ar

te
r

0.
Eq

ua
li

n
qu

ar
te

r
1.

W
or

se
7%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

Eq
ua

li
n

qu
ar

te
r

3.

O
pt

im
al

C
45

A
cc

75
-F

ir
st

10
%

0%
Be

tt
er

9%
of

th
e

ti
m

e
in

qu
ar

te
r

0.
Be

tt
er

30
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

Eq
ua

l
in

qu
ar

te
r

2.
Eq

ua
li

n
qu

ar
te

r
3.

O
pt

im
al

C
45

A
cc

75
-M

ed
ia

n
0%

0%
Eq

ua
li

n
qu

ar
te

r
0.

Be
tt

er
7%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

Eq
ua

li
n

qu
ar

te
r

2.
Eq

ua
li

n

qu
ar

te
r

3.

O
pt

im
al

C
45

A
cc

75
-T

hi
rd

0%
46

%
Eq

ua
li

n
qu

ar
te

r
0.

W
or

se
19

%
of

th
e

ti
m

e
in

qu
ar

te
r

1.
W

or
se

65
%

of
th

e
ti

m
e

in

qu
ar

te
r

2.
W

or
se

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

C.1. Introduction 167

O
pt

im
al

C
45

A
cc

85
-F

ir
st

0%
43

%
Eq

ua
li

n
qu

ar
te

r
0.

W
or

se
65

%
of

th
e

ti
m

e
in

qu
ar

te
r

1.
W

or
se

84
%

of
th

e
ti

m
e

in

qu
ar

te
r

2.
W

or
se

23
%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

O
pt

im
al

C
45

A
cc

85
-M

ed
ia

n
0%

68
%

Eq
ua

li
n

qu
ar

te
r

0.
W

or
se

73
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

2.
W

or
se

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

O
pt

im
al

C
45

A
cc

85
-T

hi
rd

0%
70

%
Eq

ua
li

n
qu

ar
te

r
0.

W
or

se
80

%
of

th
e

ti
m

e
in

qu
ar

te
r

1.
W

or
se

10
0%

of
th

e
ti

m
e

in

qu
ar

te
r

2.
W

or
se

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

O
pt

im
al

K
N

N
A

cc
60

-F
ir

st
6%

12
%

Be
tt

er
23

%
of

th
e

ti
m

e
in

qu
ar

te
r

0.
Eq

ua
l

in
qu

ar
te

r
1.

W
or

se
3%

of
th

e
ti

m
e

in

qu
ar

te
r

2.
W

or
se

42
%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

O
pt

im
al

K
N

N
A

cc
60

-M
ed

ia
n

8%
0%

Eq
ua

li
n

qu
ar

te
r

0.
Be

tt
er

30
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

Eq
ua

li
n

qu
ar

te
r

2.
Eq

ua
li

n

qu
ar

te
r

3.

O
pt

im
al

K
N

N
A

cc
60

-T
hi

rd
0%

13
%

Eq
ua

li
n

qu
ar

te
r

0.
W

or
se

50
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

Eq
ua

li
n

qu
ar

te
r

2.
Eq

ua
li

n

qu
ar

te
r

3.

O
pt

im
al

K
N

N
A

cc
75

-F
ir

st
0%

64
%

Eq
ua

li
n

qu
ar

te
r

0.
W

or
se

57
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

2.
W

or
se

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

O
pt

im
al

K
N

N
A

cc
75

-M
ed

ia
n

0%
67

%
Eq

ua
li

n
qu

ar
te

r
0.

Eq
ua

li
n

qu
ar

te
r

1.
W

or
se

7%
of

th
e

ti
m

e
in

qu
ar

te
r

2.
Eq

ua
li

n

qu
ar

te
r

3.

O
pt

im
al

K
N

N
A

cc
75

-T
hi

rd
0%

59
%

Eq
ua

li
n

qu
ar

te
r

0.
W

or
se

73
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

W
or

se
92

%
of

th
e

ti
m

e
in

qu
ar

te
r

2.
W

or
se

69
%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

168 Appendix C. Aggregate Data for Approximator Experiments

O
pt

im
al

K
N

N
A

cc
85

-F
ir

st
0%

70
%

Eq
ua

li
n

qu
ar

te
r

0.
W

or
se

80
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

2.
W

or
se

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

O
pt

im
al

K
N

N
A

cc
85

-M
ed

ia
n

0%
70

%
Eq

ua
li

n
qu

ar
te

r
0.

W
or

se
80

%
of

th
e

ti
m

e
in

qu
ar

te
r

1.
W

or
se

10
0%

of
th

e
ti

m
e

in

qu
ar

te
r

2.
W

or
se

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

O
pt

im
al

K
N

N
A

cc
85

-T
hi

rd
0%

70
%

Eq
ua

li
n

qu
ar

te
r

0.
W

or
se

80
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

2.
W

or
se

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

O
pt

im
al

N
N

A
cc

60
-F

ir
st

4%
31

%
Be

tt
er

4%
of

th
e

ti
m

e
in

qu
ar

te
r

0.
Be

tt
er

11
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

W
or

se
23

%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

O
pt

im
al

N
N

A
cc

60
-M

ed
ia

n
0%

0%
Eq

ua
li

n
qu

ar
te

r
0.

Eq
ua

li
n

qu
ar

te
r

1.
Eq

ua
li

n
qu

ar
te

r
2.

Eq
ua

li
n

qu
ar

te
r

3.

O
pt

im
al

N
N

A
cc

60
-T

hi
rd

0%
69

%
Eq

ua
li

n
qu

ar
te

r
0.

W
or

se
76

%
of

th
e

ti
m

e
in

qu
ar

te
r

1.
W

or
se

10
0%

of
th

e
ti

m
e

in

qu
ar

te
r

2.
W

or
se

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

O
pt

im
al

N
N

A
cc

75
-F

ir
st

1%
35

%
Eq

ua
l

in
qu

ar
te

r
0.

Be
tt

er
3%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

W
or

se
38

%
of

th
e

ti
m

e
in

qu
ar

te
r

2.
W

or
se

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

O
pt

im
al

N
N

A
cc

75
-M

ed
ia

n
0%

0%
Eq

ua
li

n
qu

ar
te

r
0.

Eq
ua

li
n

qu
ar

te
r

1.
Eq

ua
li

n
qu

ar
te

r
2.

Eq
ua

li
n

qu
ar

te
r

3.

O
pt

im
al

N
N

A
cc

75
-T

hi
rd

0%
69

%
Eq

ua
li

n
qu

ar
te

r
0.

W
or

se
76

%
of

th
e

ti
m

e
in

qu
ar

te
r

1.
W

or
se

10
0%

of
th

e
ti

m
e

in

qu
ar

te
r

2.
W

or
se

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

O
pt

im
al

N
N

A
cc

85
-F

ir
st

0%
60

%
Eq

ua
li

n
qu

ar
te

r
0.

W
or

se
65

%
of

th
e

ti
m

e
in

qu
ar

te
r

1.
W

or
se

10
0%

of
th

e
ti

m
e

in

qu
ar

te
r

2.
W

or
se

73
%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

C.1. Introduction 169

O
pt

im
al

N
N

A
cc

85
-M

ed
ia

n
0%

67
%

Eq
ua

li
n

qu
ar

te
r

0.
W

or
se

69
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

2.
W

or
se

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

O
pt

im
al

N
N

A
cc

85
-T

hi
rd

0%
70

%
Eq

ua
li

n
qu

ar
te

r
0.

W
or

se
80

%
of

th
e

ti
m

e
in

qu
ar

te
r

1.
W

or
se

10
0%

of
th

e
ti

m
e

in

qu
ar

te
r

2.
W

or
se

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

U
no

pt
im

al
C

45
A

cc
60

-F
ir

st
53

%
0%

Be
tt

er
52

%
of

th
e

ti
m

e
in

qu
ar

te
r

0.
Be

tt
er

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

Be
tt

er
61

%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

Eq
ua

li
n

qu
ar

te
r

3.

U
no

pt
im

al
C

45
A

cc
60

-M
ed

ia
n

58
%

0%
Be

tt
er

38
%

of
th

e
ti

m
e

in
qu

ar
te

r
0.

Be
tt

er
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

1.
Be

tt
er

84
%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

Be
tt

er
7%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

U
no

pt
im

al
C

45
A

cc
60

-T
hi

rd
50

%
0%

Be
tt

er
23

%
of

th
e

ti
m

e
in

qu
ar

te
r

0.
Be

tt
er

80
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

Be
tt

er
88

%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

Be
tt

er
7%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

U
no

pt
im

al
C

45
A

cc
75

-F
ir

st
69

%
0%

Be
tt

er
42

%
of

th
e

ti
m

e
in

qu
ar

te
r0

.B
et

te
r1

00
%

of
th

e
ti

m
e

in
qu

ar
te

r1
.B

et
te

r1
00

%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

Be
tt

er
34

%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

U
no

pt
im

al
C

45
A

cc
75

-M
ed

ia
n

75
%

0%
Eq

ua
li

n
qu

ar
te

r
0.

Be
tt

er
96

%
of

th
e

ti
m

e
in

qu
ar

te
r

1.
Be

tt
er

10
0%

of
th

e
ti

m
e

in

qu
ar

te
r

2.
Be

tt
er

53
%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

U
no

pt
im

al
C

45
A

cc
75

-T
hi

rd
40

%
0%

Be
tt

er
9%

of
th

e
ti

m
e

in
qu

ar
te

r
0.

Be
tt

er
73

%
of

th
e

ti
m

e
in

qu
ar

te
r

1.
Be

tt
er

76
%

of

th
e

ti
m

e
in

qu
ar

te
r

2.
Eq

ua
li

n
qu

ar
te

r
3.

U
no

pt
im

al
C

45
A

cc
85

-F
ir

st
6%

0%
Eq

ua
li

n
qu

ar
te

r
0.

Be
tt

er
11

%
of

th
e

ti
m

e
in

qu
ar

te
r

1.
Be

tt
er

11
%

of
th

e
ti

m
e

in

qu
ar

te
r

2.
Eq

ua
li

n
qu

ar
te

r
3.

170 Appendix C. Aggregate Data for Approximator Experiments

U
no

pt
im

al
C

45
A

cc
85

-M
ed

ia
n

22
%

0%
Eq

ua
li

n
qu

ar
te

r
0.

Be
tt

er
26

%
of

th
e

ti
m

e
in

qu
ar

te
r

1.
Be

tt
er

38
%

of
th

e
ti

m
e

in

qu
ar

te
r

2.
Be

tt
er

23
%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

U
no

pt
im

al
C

45
A

cc
85

-T
hi

rd
8%

2%
Eq

ua
li

n
qu

ar
te

r
0.

Be
tt

er
11

%
of

th
e

ti
m

e
in

qu
ar

te
r

1.
W

ild
re

su
lt

s
in

qu
ar

te
r

2.

Be
tt

er
11

%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

U
no

pt
im

al
K

N
N

A
cc

60
-F

ir
st

50
%

0%
Be

tt
er

52
%

of
th

e
ti

m
e

in
qu

ar
te

r
0.

Be
tt

er
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

1.
Be

tt
er

46
%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

Eq
ua

li
n

qu
ar

te
r

3.

U
no

pt
im

al
K

N
N

A
cc

60
-M

ed
ia

n
85

%
0%

Be
tt

er
38

%
of

th
e

ti
m

e
in

qu
ar

te
r0

.B
et

te
r1

00
%

of
th

e
ti

m
e

in
qu

ar
te

r1
.B

et
te

r1
00

%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

Be
tt

er
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

U
no

pt
im

al
K

N
N

A
cc

60
-T

hi
rd

57
%

1%
Be

tt
er

14
%

of
th

e
ti

m
e

in
qu

ar
te

r
0.

W
ild

re
su

lt
s

in
qu

ar
te

r
1.

Be
tt

er
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

2.
Be

tt
er

73
%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

U
no

pt
im

al
K

N
N

A
cc

75
-F

ir
st

34
%

0%
Be

tt
er

14
%

of
th

e
ti

m
e

in
qu

ar
te

r
0.

Be
tt

er
57

%
of

th
e

ti
m

e
in

qu
ar

te
r

1.
Be

tt
er

65
%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

Eq
ua

li
n

qu
ar

te
r

3.

U
no

pt
im

al
K

N
N

A
cc

75
-M

ed
ia

n
44

%
0%

Eq
ua

li
n

qu
ar

te
r

0.
Be

tt
er

80
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

Be
tt

er
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

2.
Be

tt
er

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

U
no

pt
im

al
K

N
N

A
cc

75
-T

hi
rd

46
%

0%
Eq

ua
li

n
qu

ar
te

r
0.

Be
tt

er
23

%
of

th
e

ti
m

e
in

qu
ar

te
r

1.
Be

tt
er

61
%

of
th

e
ti

m
e

in

qu
ar

te
r

2.
Be

tt
er

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

U
no

pt
im

al
K

N
N

A
cc

85
-F

ir
st

0%
0%

Eq
ua

li
n

qu
ar

te
r

0.
Eq

ua
li

n
qu

ar
te

r
1.

Eq
ua

li
n

qu
ar

te
r

2.
Eq

ua
li

n
qu

ar
te

r
3.

U
no

pt
im

al
K

N
N

A
cc

85
-M

ed
ia

n
0%

0%
Eq

ua
li

n
qu

ar
te

r
0.

Eq
ua

li
n

qu
ar

te
r

1.
Eq

ua
li

n
qu

ar
te

r
2.

Eq
ua

li
n

qu
ar

te
r

3.

C.1. Introduction 171

U
no

pt
im

al
K

N
N

A
cc

85
-T

hi
rd

0%
0%

Eq
ua

li
n

qu
ar

te
r

0.
Eq

ua
li

n
qu

ar
te

r
1.

Eq
ua

li
n

qu
ar

te
r

2.
Eq

ua
li

n
qu

ar
te

r
3.

U
no

pt
im

al
N

N
A

cc
60

-F
ir

st
47

%
0%

Be
tt

er
42

%
of

th
e

ti
m

e
in

qu
ar

te
r

0.
Be

tt
er

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

Be
tt

er
46

%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

Eq
ua

li
n

qu
ar

te
r

3.

U
no

pt
im

al
N

N
A

cc
60

-M
ed

ia
n

82
%

0%
Be

tt
er

33
%

of
th

e
ti

m
e

in
qu

ar
te

r
0.

Be
tt

er
96

%
of

th
e

ti
m

e
in

qu
ar

te
r

1.
Be

tt
er

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

Be
tt

er
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

U
no

pt
im

al
N

N
A

cc
60

-T
hi

rd
15

%
0%

Eq
ua

li
n

qu
ar

te
r

0.
Be

tt
er

19
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

Be
tt

er
30

%
of

th
e

ti
m

e
in

qu
ar

te
r

2.
Be

tt
er

11
%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

U
no

pt
im

al
N

N
A

cc
75

-F
ir

st
42

%
0%

Be
tt

er
33

%
of

th
e

ti
m

e
in

qu
ar

te
r

0.
Be

tt
er

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

Be
tt

er
34

%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

Eq
ua

li
n

qu
ar

te
r

3.

U
no

pt
im

al
N

N
A

cc
75

-M
ed

ia
n

81
%

0%
Be

tt
er

4%
of

th
e

ti
m

e
in

qu
ar

te
r

0.
Be

tt
er

84
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

Be
tt

er
10

0%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

Be
tt

er
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

U
no

pt
im

al
N

N
A

cc
75

-T
hi

rd
14

%
0%

Eq
ua

li
n

qu
ar

te
r

0.
Be

tt
er

19
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

Be
tt

er
26

%
of

th
e

ti
m

e
in

qu
ar

te
r

2.
Be

tt
er

11
%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

U
no

pt
im

al
N

N
A

cc
85

-F
ir

st
21

%
0%

Be
tt

er
9%

of
th

e
ti

m
e

in
qu

ar
te

r
0.

Be
tt

er
42

%
of

th
e

ti
m

e
in

qu
ar

te
r

1.
Be

tt
er

23
%

of

th
e

ti
m

e
in

qu
ar

te
r

2.
Be

tt
er

7%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

U
no

pt
im

al
N

N
A

cc
85

-M
ed

ia
n

17
%

0%
Be

tt
er

4%
of

th
e

ti
m

e
in

qu
ar

te
r

0.
Be

tt
er

26
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

Be
tt

er
15

%
of

th
e

ti
m

e
in

qu
ar

te
r

2.
Be

tt
er

19
%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

U
no

pt
im

al
N

N
A

cc
85

-T
hi

rd
0%

0%
Eq

ua
li

n
qu

ar
te

r
0.

Eq
ua

li
n

qu
ar

te
r

1.
Eq

ua
li

n
qu

ar
te

r
2.

Eq
ua

li
n

qu
ar

te
r

3.

172 Appendix C. Aggregate Data for Approximator Experiments

TA
B

L
E

C
.2

:
R

es
ul

ts
w

he
n

co
m

pa
ri

ng
be

tw
ee

n
ap

pr
ox

im
at

or
ru

ns
w

it
h

th
e

un
op

ti
m

al
G

A
pa

ra
m

et
er

se
ta

nd
bo

th
op

ti
m

al
an

d
un

op
-

ti
m

al
G

A
ru

ns
,i

n
th

e
TO

R
C

S
ex

pe
ri

m
en

ts
.

Be
tt

er
an

d
w

or
se

va
lu

es
re

pr
es

en
t

th
e

pe
rc

en
ta

ge
of

ti
m

e
th

at
th

e
se

co
nd

co
nfi

gu
ra

ti
on

pr
ov

ed
si

gn
ifi

ca
nt

ly
be

tt
er

,o
r

w
or

se
re

sp
ec

ti
ve

ly
,t

ha
n

th
e

fir
st

co
nfi

gu
ra

ti
on

Fi
rs

t
Se

co
nd

Be
tt

er
W

or
se

A
na

ly
si

s

O
pt

im
al

U
no

pt
im

al
0%

69
%

W
or

se
57

%
of

th
e

ti
m

e
in

qu
ar

te
r0

.W
or

se
19

%
of

th
e

ti
m

e
in

qu
ar

te
r1

.W
or

se
10

0%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

O
pt

im
al

C
45

A
cc

60
-F

ir
st

23
%

2%
W

ild
re

su
lt

s
in

qu
ar

te
r

0.
Be

tt
er

50
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

W
or

se
3%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

Eq
ua

li
n

qu
ar

te
r

3.

O
pt

im
al

C
45

A
cc

60
-M

ed
ia

n
20

%
37

%
W

ild
re

su
lt

s
in

qu
ar

te
r

0.
Be

tt
er

61
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

W
or

se
38

%
of

th
e

ti
m

e

in
qu

ar
te

r
2.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

O
pt

im
al

C
45

A
cc

60
-T

hi
rd

5%
14

%
W

ild
re

su
lt

s
in

qu
ar

te
r

0.
Be

tt
er

15
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

W
or

se
19

%
of

th
e

ti
m

e

in
qu

ar
te

r
2.

W
or

se
19

%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

O
pt

im
al

C
45

A
cc

75
-F

ir
st

17
%

45
%

W
ild

re
su

lt
s

in
qu

ar
te

r
0.

W
ild

re
su

lt
s

in
qu

ar
te

r
1.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

2.
W

or
se

73
%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

O
pt

im
al

C
45

A
cc

75
-M

ed
ia

n
17

%
41

%
W

ild
re

su
lt

s
in

qu
ar

te
r

0.
Be

tt
er

61
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

W
or

se
53

%
of

th
e

ti
m

e

in
qu

ar
te

r
2.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

O
pt

im
al

C
45

A
cc

75
-T

hi
rd

5%
45

%
W

ild
re

su
lt

s
in

qu
ar

te
r

0.
Be

tt
er

15
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

W
or

se
69

%
of

th
e

ti
m

e

in
qu

ar
te

r
2.

W
or

se
92

%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

C.1. Introduction 173

O
pt

im
al

C
45

A
cc

85
-F

ir
st

4%
45

%
W

or
se

9%
of

th
e

ti
m

e
in

qu
ar

te
r

0.
Be

tt
er

15
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

W
or

se
69

%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

O
pt

im
al

C
45

A
cc

85
-M

ed
ia

n
4%

43
%

W
or

se
19

%
of

th
e

ti
m

e
in

qu
ar

te
r

0.
Be

tt
er

15
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

W
or

se
53

%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

O
pt

im
al

C
45

A
cc

85
-T

hi
rd

4%
43

%
W

or
se

19
%

of
th

e
ti

m
e

in
qu

ar
te

r
0.

Be
tt

er
15

%
of

th
e

ti
m

e
in

qu
ar

te
r

1.
W

or
se

53
%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

O
pt

im
al

K
N

N
A

cc
60

-F
ir

st
14

%
62

%
W

ild
re

su
lt

s
in

qu
ar

te
r

0.
W

ild
re

su
lt

s
in

qu
ar

te
r

1.
W

or
se

10
0%

of
th

e
ti

m
e

in

qu
ar

te
r

2.
W

or
se

92
%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

O
pt

im
al

K
N

N
A

cc
60

-M
ed

ia
n

4%
55

%
W

or
se

14
%

of
th

e
ti

m
e

in
qu

ar
te

r
0.

W
ild

re
su

lt
s

in
qu

ar
te

r
1.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

2.
W

or
se

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

O
pt

im
al

K
N

N
A

cc
60

-T
hi

rd
0%

52
%

W
or

se
33

%
of

th
e

ti
m

e
in

qu
ar

te
r

0.
W

or
se

3%
of

th
e

ti
m

e
in

qu
ar

te
r

1.
W

or
se

69
%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

O
pt

im
al

K
N

N
A

cc
75

-F
ir

st
0%

34
%

W
or

se
42

%
of

th
e

ti
m

e
in

qu
ar

te
r

0.
W

or
se

11
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

W
or

se
69

%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

W
or

se
11

%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

O
pt

im
al

K
N

N
A

cc
75

-M
ed

ia
n

0%
50

%
W

or
se

47
%

of
th

e
ti

m
e

in
qu

ar
te

r
0.

W
or

se
15

%
of

th
e

ti
m

e
in

qu
ar

te
r

1.
W

or
se

38
%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

O
pt

im
al

K
N

N
A

cc
75

-T
hi

rd
0%

65
%

W
or

se
47

%
of

th
e

ti
m

e
in

qu
ar

te
r

0.
W

or
se

19
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

W
or

se
92

%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

174 Appendix C. Aggregate Data for Approximator Experiments

O
pt

im
al

K
N

N
A

cc
85

-F
ir

st
0%

66
%

W
or

se
57

%
of

th
e

ti
m

e
in

qu
ar

te
r0

.W
or

se
19

%
of

th
e

ti
m

e
in

qu
ar

te
r1

.W
or

se
10

0%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

W
or

se
88

%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

O
pt

im
al

K
N

N
A

cc
85

-M
ed

ia
n

0%
69

%
W

or
se

57
%

of
th

e
ti

m
e

in
qu

ar
te

r0
.W

or
se

19
%

of
th

e
ti

m
e

in
qu

ar
te

r1
.W

or
se

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

O
pt

im
al

K
N

N
A

cc
85

-T
hi

rd
0%

69
%

W
or

se
57

%
of

th
e

ti
m

e
in

qu
ar

te
r0

.W
or

se
19

%
of

th
e

ti
m

e
in

qu
ar

te
r1

.W
or

se
10

0%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

O
pt

im
al

N
N

A
cc

60
-F

ir
st

0%
69

%
W

or
se

57
%

of
th

e
ti

m
e

in
qu

ar
te

r0
.W

or
se

19
%

of
th

e
ti

m
e

in
qu

ar
te

r1
.W

or
se

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

O
pt

im
al

N
N

A
cc

60
-M

ed
ia

n
0%

69
%

W
or

se
57

%
of

th
e

ti
m

e
in

qu
ar

te
r0

.W
or

se
19

%
of

th
e

ti
m

e
in

qu
ar

te
r1

.W
or

se
10

0%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

O
pt

im
al

N
N

A
cc

60
-T

hi
rd

0%
69

%
W

or
se

57
%

of
th

e
ti

m
e

in
qu

ar
te

r0
.W

or
se

19
%

of
th

e
ti

m
e

in
qu

ar
te

r1
.W

or
se

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

O
pt

im
al

N
N

A
cc

75
-F

ir
st

0%
69

%
W

or
se

57
%

of
th

e
ti

m
e

in
qu

ar
te

r0
.W

or
se

19
%

of
th

e
ti

m
e

in
qu

ar
te

r1
.W

or
se

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

O
pt

im
al

N
N

A
cc

75
-M

ed
ia

n
0%

69
%

W
or

se
57

%
of

th
e

ti
m

e
in

qu
ar

te
r0

.W
or

se
19

%
of

th
e

ti
m

e
in

qu
ar

te
r1

.W
or

se
10

0%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

O
pt

im
al

N
N

A
cc

75
-T

hi
rd

0%
69

%
W

or
se

57
%

of
th

e
ti

m
e

in
qu

ar
te

r0
.W

or
se

19
%

of
th

e
ti

m
e

in
qu

ar
te

r1
.W

or
se

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

C.1. Introduction 175

O
pt

im
al

N
N

A
cc

85
-F

ir
st

0%
69

%
W

or
se

57
%

of
th

e
ti

m
e

in
qu

ar
te

r0
.W

or
se

19
%

of
th

e
ti

m
e

in
qu

ar
te

r1
.W

or
se

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

O
pt

im
al

N
N

A
cc

85
-M

ed
ia

n
0%

69
%

W
or

se
57

%
of

th
e

ti
m

e
in

qu
ar

te
r0

.W
or

se
19

%
of

th
e

ti
m

e
in

qu
ar

te
r1

.W
or

se
10

0%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

O
pt

im
al

N
N

A
cc

85
-T

hi
rd

0%
69

%
W

or
se

57
%

of
th

e
ti

m
e

in
qu

ar
te

r0
.W

or
se

19
%

of
th

e
ti

m
e

in
qu

ar
te

r1
.W

or
se

10
0%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

W
or

se
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

U
no

pt
im

al
C

45
A

cc
60

-F
ir

st
31

%
0%

Be
tt

er
52

%
of

th
e

ti
m

e
in

qu
ar

te
r

0.
Be

tt
er

61
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

Eq
ua

li
n

qu
ar

te
r

2.
Be

tt
er

11
%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

U
no

pt
im

al
C

45
A

cc
60

-M
ed

ia
n

32
%

0%
Be

tt
er

47
%

of
th

e
ti

m
e

in
qu

ar
te

r
0.

Be
tt

er
80

%
of

th
e

ti
m

e
in

qu
ar

te
r

1.
Eq

ua
li

n

qu
ar

te
r

2.
Eq

ua
li

n
qu

ar
te

r
3.

U
no

pt
im

al
C

45
A

cc
60

-T
hi

rd
34

%
0%

Be
tt

er
38

%
of

th
e

ti
m

e
in

qu
ar

te
r

0.
Be

tt
er

96
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

Eq
ua

li
n

qu
ar

te
r

2.
Eq

ua
li

n
qu

ar
te

r
3.

U
no

pt
im

al
C

45
A

cc
75

-F
ir

st
26

%
0%

Be
tt

er
52

%
of

th
e

ti
m

e
in

qu
ar

te
r

0.
Be

tt
er

50
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

Eq
ua

li
n

qu
ar

te
r

2.
Eq

ua
li

n
qu

ar
te

r
3.

U
no

pt
im

al
C

45
A

cc
75

-M
ed

ia
n

32
%

0%
Be

tt
er

47
%

of
th

e
ti

m
e

in
qu

ar
te

r
0.

Be
tt

er
80

%
of

th
e

ti
m

e
in

qu
ar

te
r

1.
Eq

ua
li

n

qu
ar

te
r

2.
Eq

ua
li

n
qu

ar
te

r
3.

U
no

pt
im

al
C

45
A

cc
75

-T
hi

rd
29

%
0%

Be
tt

er
33

%
of

th
e

ti
m

e
in

qu
ar

te
r

0.
Be

tt
er

80
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

Eq
ua

li
n

qu
ar

te
r

2.
Eq

ua
li

n
qu

ar
te

r
3.

176 Appendix C. Aggregate Data for Approximator Experiments

U
no

pt
im

al
C

45
A

cc
85

-F
ir

st
22

%
0%

Be
tt

er
47

%
of

th
e

ti
m

e
in

qu
ar

te
r

0.
Be

tt
er

42
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

Eq
ua

li
n

qu
ar

te
r

2.
Eq

ua
li

n
qu

ar
te

r
3.

U
no

pt
im

al
C

45
A

cc
85

-M
ed

ia
n

28
%

0%
Be

tt
er

38
%

of
th

e
ti

m
e

in
qu

ar
te

r
0.

Be
tt

er
73

%
of

th
e

ti
m

e
in

qu
ar

te
r

1.
Eq

ua
li

n

qu
ar

te
r

2.
Eq

ua
li

n
qu

ar
te

r
3.

U
no

pt
im

al
C

45
A

cc
85

-T
hi

rd
43

%
0%

Be
tt

er
38

%
of

th
e

ti
m

e
in

qu
ar

te
r

0.
Be

tt
er

73
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

Eq
ua

li
n

qu
ar

te
r

2.
Eq

ua
li

n
qu

ar
te

r
3.

U
no

pt
im

al
K

N
N

A
cc

60
-F

ir
st

17
%

28
%

Be
tt

er
52

%
of

th
e

ti
m

e
in

qu
ar

te
r

0.
W

ild
re

su
lt

s
in

qu
ar

te
r

1.
W

or
se

88
%

of
th

e
ti

m
e

in
qu

ar
te

r
2.

Eq
ua

li
n

qu
ar

te
r

3.

U
no

pt
im

al
K

N
N

A
cc

60
-M

ed
ia

n
25

%
6%

Be
tt

er
38

%
of

th
e

ti
m

e
in

qu
ar

te
r

0.
Be

tt
er

61
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

Eq
ua

li
n

qu
ar

te
r

2.
W

or
se

22
%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

U
no

pt
im

al
K

N
N

A
cc

60
-T

hi
rd

9%
2%

Be
tt

er
23

%
of

th
e

ti
m

e
in

qu
ar

te
r

0.
Be

tt
er

11
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

Eq
ua

li
n

qu
ar

te
r

2.
W

or
se

7%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

U
no

pt
im

al
K

N
N

A
cc

75
-F

ir
st

16
%

0%
Eq

ua
li

n
qu

ar
te

r
0.

Be
tt

er
65

%
of

th
e

ti
m

e
in

qu
ar

te
r

1.
Eq

ua
li

n
qu

ar
te

r
2.

Eq
ua

li
n

qu
ar

te
r

3.

U
no

pt
im

al
K

N
N

A
cc

75
-M

ed
ia

n
43

%
0%

Eq
ua

li
n

qu
ar

te
r

0.
Be

tt
er

65
%

of
th

e
ti

m
e

in
qu

ar
te

r
1.

Be
tt

er
10

0%
of

th
e

ti
m

e
in

qu
ar

te
r

2.
Be

tt
er

7%
of

th
e

ti
m

e
in

qu
ar

te
r

3.

U
no

pt
im

al
K

N
N

A
cc

75
-T

hi
rd

8%
14

%
Eq

ua
li

n
qu

ar
te

r
0.

Be
tt

er
30

%
of

th
e

ti
m

e
in

qu
ar

te
r

1.
Eq

ua
li

n
qu

ar
te

r
2.

W
or

se

57
%

of
th

e
ti

m
e

in
qu

ar
te

r
3.

C.1. Introduction 177

U
no

pt
im

al
K

N
N

A
cc

85
-F

ir
st

0%
0%

Eq
ua

li
n

qu
ar

te
r

0.
Eq

ua
li

n
qu

ar
te

r
1.

Eq
ua

li
n

qu
ar

te
r

2.
Eq

ua
li

n
qu

ar
te

r
3.

U
no

pt
im

al
K

N
N

A
cc

85
-M

ed
ia

n
0%

0%
Eq

ua
li

n
qu

ar
te

r
0.

Eq
ua

li
n

qu
ar

te
r

1.
Eq

ua
li

n
qu

ar
te

r
2.

Eq
ua

li
n

qu
ar

te
r

3.

U
no

pt
im

al
K

N
N

A
cc

85
-T

hi
rd

0%
0%

Eq
ua

li
n

qu
ar

te
r

0.
Eq

ua
li

n
qu

ar
te

r
1.

Eq
ua

li
n

qu
ar

te
r

2.
Eq

ua
li

n
qu

ar
te

r
3.

U
no

pt
im

al
N

N
A

cc
60

-F
ir

st
0%

0%
Eq

ua
li

n
qu

ar
te

r
0.

Eq
ua

li
n

qu
ar

te
r

1.
Eq

ua
li

n
qu

ar
te

r
2.

Eq
ua

li
n

qu
ar

te
r

3.

U
no

pt
im

al
N

N
A

cc
60

-M
ed

ia
n

0%
0%

Eq
ua

li
n

qu
ar

te
r

0.
Eq

ua
li

n
qu

ar
te

r
1.

Eq
ua

li
n

qu
ar

te
r

2.
Eq

ua
li

n
qu

ar
te

r
3.

U
no

pt
im

al
N

N
A

cc
60

-T
hi

rd
0%

0%
Eq

ua
li

n
qu

ar
te

r
0.

Eq
ua

li
n

qu
ar

te
r

1.
Eq

ua
li

n
qu

ar
te

r
2.

Eq
ua

li
n

qu
ar

te
r

3.

U
no

pt
im

al
N

N
A

cc
75

-F
ir

st
0%

0%
Eq

ua
li

n
qu

ar
te

r
0.

Eq
ua

li
n

qu
ar

te
r

1.
Eq

ua
li

n
qu

ar
te

r
2.

Eq
ua

li
n

qu
ar

te
r

3.

U
no

pt
im

al
N

N
A

cc
75

-M
ed

ia
n

0%
0%

Eq
ua

li
n

qu
ar

te
r

0.
Eq

ua
li

n
qu

ar
te

r
1.

Eq
ua

li
n

qu
ar

te
r

2.
Eq

ua
li

n
qu

ar
te

r
3.

U
no

pt
im

al
N

N
A

cc
75

-T
hi

rd
0%

0%
Eq

ua
li

n
qu

ar
te

r
0.

Eq
ua

li
n

qu
ar

te
r

1.
Eq

ua
li

n
qu

ar
te

r
2.

Eq
ua

li
n

qu
ar

te
r

3.

U
no

pt
im

al
N

N
A

cc
85

-F
ir

st
0%

0%
Eq

ua
li

n
qu

ar
te

r
0.

Eq
ua

li
n

qu
ar

te
r

1.
Eq

ua
li

n
qu

ar
te

r
2.

Eq
ua

li
n

qu
ar

te
r

3.

U
no

pt
im

al
N

N
A

cc
85

-M
ed

ia
n

0%
0%

Eq
ua

li
n

qu
ar

te
r

0.
Eq

ua
li

n
qu

ar
te

r
1.

Eq
ua

li
n

qu
ar

te
r

2.
Eq

ua
li

n
qu

ar
te

r
3.

U
no

pt
im

al
N

N
A

cc
85

-T
hi

rd
0%

0%
Eq

ua
li

n
qu

ar
te

r
0.

Eq
ua

li
n

qu
ar

te
r

1.
Eq

ua
li

n
qu

ar
te

r
2.

Eq
ua

li
n

qu
ar

te
r

3.

179

Bibliography

[1] M. Morosan and R. Poli, “Automated Game Balancing in Ms PacMan and
StarCraft using Evolutionary Algorithms”, in Applications of Evolutionary
Computation, G. Squillero and K. Sim, Eds., Springer, Cham, 2017, pp. 377–
392, ISBN: 978-3-319-55849-3. DOI: 10.1007/978-3-319-55849-3_25. [On-
line]. Available: http://link.springer.com/10.1007/978-3-319-55849-
3_25.

[2] ——, “Speeding Up Genetic Algorithm-based Game Balancing using Fitness
Predictors”, in Proceedings of the Genetic and Evolutionary Computation Confer-
ence Companion, ser. GECCO ’17, New York, NY, USA: ACM, 2017, pp. 91–92,
ISBN: 978-1-4503-4939-0. DOI: 10.1145/3067695.3076011. [Online]. Available:
http://doi.acm.org/10.1145/3067695.3076011.

[3] ——, “Evolving a Designer-Balanced Neural Network for Ms PacMan”,
in 2017 9th Computer Science and Electronic Engineering (CEEC), Sep. 2017,
pp. 100–105. DOI: 10.1109/CEEC.2017.8101607.

[4] ——, “Online-Trained Fitness Approximators for Real-World Game Bal-
ancing”, in Applications of Evolutionary Computation, K. Sim and P. Kauf-
mann, Eds., vol. 10784 LNCS, Cham: Springer International Publishing, 2018,
pp. 292–307, ISBN: 978-3-319-77538-8. DOI: 10.1007/978-3-319-77538-8_21.

[5] A. Iacob, M. Morosan, F. Sepulveda, and R. Poli, “Genetic Optimisation of
BCI Systems for Identifying Games Related Cognitive States”, in Proceedings
of the Genetic and Evolutionary Computation Conference Companion, ACM, 2018,
pp. 237–238.

[6] M. Morosan and R. Poli, “Lessons from Testing an Evolutionary Automated
Game Balancer in Industry”, in 2018 IEEE Games, Entertainment, Media Con-
ference (GEM) (2018 IEEE GEM), Galway, Ireland, Aug. 2018.

[7] G. Mountain, Tactics in Fable Legends, 2015. [Online]. Available: http : / /
gwaredd . github . io / nuclai _ mcts / root / index . html (visited on
09/02/2017).

[8] C. Kerr, DeepMind wants to answer the big ethical questions posed by AI, 2017.
[Online]. Available: https : / / www . gamasutra . com / view / news / 307008 /
DeepMind_wants_to_answer_the_big_ethical_questions_posed_by_AI.
php (visited on 11/06/2017).

[9] R. Cohen, “History and genre”, Neohelicon, vol. 13, no. 2, pp. 87–105, 1986.

[10] D. Clearwater, “What Defines Video Game Genre? Thinking about Genre
Study after the Great Divide”, Loading..., vol. 5, no. 8, pp. 29–49, 2011. [On-
line]. Available: http://journals.sfu.ca/loading/index.php/loading/
article/viewArticle/67.

[11] A. Tychsen and M. Hitchens, “Game Time: Modeling and Analyzing Time in
Multiplayer and Massively Multiplayer Games”, Games and Culture, vol. 4,
no. 2, pp. 170–201, 2009, ISSN: 1555-4120. DOI: 10.1177/1555412008325479.

http://dx.doi.org/10.1007/978-3-319-55849-3_25
http://link.springer.com/10.1007/978-3-319-55849-3_25
http://link.springer.com/10.1007/978-3-319-55849-3_25
http://dx.doi.org/10.1145/3067695.3076011
http://doi.acm.org/10.1145/3067695.3076011
http://dx.doi.org/10.1109/CEEC.2017.8101607
http://dx.doi.org/10.1007/978-3-319-77538-8_21
http://gwaredd.github.io/nuclai_mcts/root/index.html
http://gwaredd.github.io/nuclai_mcts/root/index.html
https://www.gamasutra.com/view/news/307008/DeepMind_wants_to_answer_the_big_ethical_questions_posed_by_AI.php
https://www.gamasutra.com/view/news/307008/DeepMind_wants_to_answer_the_big_ethical_questions_posed_by_AI.php
https://www.gamasutra.com/view/news/307008/DeepMind_wants_to_answer_the_big_ethical_questions_posed_by_AI.php
http://journals.sfu.ca/loading/index.php/loading/article/viewArticle/67
http://journals.sfu.ca/loading/index.php/loading/article/viewArticle/67
http://dx.doi.org/10.1177/1555412008325479

180 BIBLIOGRAPHY

[12] M. Sicart, “Game Studies - Defining Game Mechanics”, Game Stud., vol. 8,
pp. 1–15, 2008, ISSN: 16047982. [Online]. Available: http://gamestudies.
org/0802/articles/sicart.

[13] T. H. Apperley, “Genre and Game Studies: Toward a Critical Approach to
Video Game Genres”, Simulation & Gaming, vol. 37, no. 1, pp. 6–23, 2006, ISSN:
1046-8781, 1552-826X. DOI: 10.1177/1046878105282278. [Online]. Available:
http://sag.sagepub.com/content/37/1/6.short.

[14] I. Schreiber, Game Balance Concepts, 2010. [Online]. Available: https : / /
gamebalanceconcepts.wordpress.com/2010/07/07/level-1-intro-to-
game-balance/.

[15] A. Cincotti, H. Iida, A. Cincotti, and H. Iida, “Outcome Uncertainty and In-
terestedness in Game-playing: A Case Study Using Synchronized Hex”, New
Mathematics and Natural Computation (NMNC), vol. 02, no. 02, pp. 173–181,
2006, ISSN: 1793-7027.

[16] T. Mahlmann, J. Togelius, and G. N. Yannakakis, “Evolving Card Sets To-
wards Balancing Dominion”, 2012 IEEE Congress on Evolutionary Computation,
pp. 1–8, 2012.

[17] K. Burgun, Understanding Balance in Video Games, 2011. [Online]. Available:
http://www.gamasutra.com/view/feature/134768/.

[18] D. Sirlin, Balancing Multiplayer Games, 2009. [Online]. Available: http : / /
www . sirlin . net / articles / balancing - multiplayer - games - part - 1 -
definitions.

[19] M. Beyer, A. Agureikin, A. Anokhin, C. Laenger, F. Nolte, J. Winterberg, M.
Renka, M. Rieger, N. Pflanzl, M. Preuss, and V. Volz, “An Integrated Process
for Game Balancing”, IEEE Conference on Computational Intelligence and Games,
2016.

[20] A. M. Turing, “I.—Computing Machinery and Intelligence”, Mind, vol. LIX,
no. 236, pp. 433–460, Oct. 1950, ISSN: 0026-4423. DOI: 10.1093/mind/LIX.
236.433. [Online]. Available: https://academic.oup.com/mind/article-
lookup/doi/10.1093/mind/LIX.236.433.

[21] N. A. Barricelli, “Symbiogenetic Evolution Processes Realized by Artificial
Methods”, Methodos, vol. 9, no. 35-36, pp. 143–182, 1957.

[22] ——, “Numerical Testing of Evolution Theories, Part II Preliminary Tests
of Performance”, Symbiogenesis and Terrestrial Life, Acta Biotheoretica, vol. 16,
pp. 99–126, 1962.

[23] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT
press, 1992.

[24] D. Whitley, “A Genetic Algorithm Tutorial”, Statistics and Computing, vol. 4,
no. 2, pp. 65–85, Jun. 1994, ISSN: 0960-3174. DOI: 10.1007/BF00175354. [On-
line]. Available: http://link.springer.com/10.1007/BF00175354.

[25] D. E. Goldberg et al., Genetic Algorithms in Search Optimization and Machine
Learning. Addison-wesley Reading Menlo Park, 1989, vol. 412.

[26] R. L. Haupt, S. E. Haupt, and S. E. Haupt, Practical Genetic Algorithms. Wiley
New York, 1998, vol. 2.

http://gamestudies.org/0802/articles/sicart
http://gamestudies.org/0802/articles/sicart
http://dx.doi.org/10.1177/1046878105282278
http://sag.sagepub.com/content/37/1/6.short
https://gamebalanceconcepts.wordpress.com/2010/07/07/level-1-intro-to-game-balance/
https://gamebalanceconcepts.wordpress.com/2010/07/07/level-1-intro-to-game-balance/
https://gamebalanceconcepts.wordpress.com/2010/07/07/level-1-intro-to-game-balance/
http://www.gamasutra.com/view/feature/134768/
http://www.sirlin.net/articles/balancing-multiplayer-games-part-1-definitions
http://www.sirlin.net/articles/balancing-multiplayer-games-part-1-definitions
http://www.sirlin.net/articles/balancing-multiplayer-games-part-1-definitions
http://dx.doi.org/10.1093/mind/LIX.236.433
http://dx.doi.org/10.1093/mind/LIX.236.433
https://academic.oup.com/mind/article-lookup/doi/10.1093/mind/LIX.236.433
https://academic.oup.com/mind/article-lookup/doi/10.1093/mind/LIX.236.433
http://dx.doi.org/10.1007/BF00175354
http://link.springer.com/10.1007/BF00175354

BIBLIOGRAPHY 181

[27] C. Di Chio, S. Cagnoni, C. Cotta, M. Ebner, A. Ekárt, A. I. Esparcia-Alcazar,
C.-K. Goh, J. J. Merelo, F. Neri, M. Preuß, J. Togelius, and G. N. Yannakakis,
Eds., Applications of Evolutionary Computation, ser. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, vol. 6024, ISBN:
978-3-642-12238-5. DOI: 10.1007/978-3-642-12239-2. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-12239-2.

[28] C. Di Chio, A. Agapitos, S. Cagnoni, C. Cotta, F. F. de Vega, G. A. Di Caro,
R. Drechsler, A. Ekárt, A. I. Esparcia-Alcázar, M. Farooq, W. B. Langdon, J. J.
Merelo-Guervós, M. Preuss, H. Richter, S. Silva, A. Simões, G. Squillero, E.
Tarantino, A. G. B. Tettamanzi, J. Togelius, N. Urquhart, A. Ş. Uyar, and G. N.
Yannakakis, Eds., Applications of Evolutionary Computation, ser. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
vol. 7248, ISBN: 978-3-642-29177-7. DOI: 10.1007/978-3-642-29178-4. [On-
line]. Available: http://link.springer.com/10.1007/978-3-642-29178-4.

[29] R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza, A field guide to genetic
programming. Lulu.com, 2008.

[30] J. R. Koza, “Introduction to Genetic Programming”, in Advances in Genetic
Programming, 1994, pp. 21–42, ISBN: 0-262-58133-7. DOI: doi : 10 . 1145 /
1388969.1389057. [Online]. Available: http://www.genetic-programming.
com/jkpdf/aigp1994intro.pdf.

[31] M. Sipper, “Evolving Game-Playing Strategies with Genetic Programming”,
ERCIM News, vol. 64, pp. 28–29, 2008. [Online]. Available: http : / / www .
ercim.eu/publication/Ercim_News/enw64/EN64.pdf.

[32] F. Fernandez-de-Vega, G. G. Gil, J. A. G. Pulido, and J. L. Guisado, “Control
of Bloat in Genetic Programming by Means of the Island Model”, in Parallel
Problem Solving from Nature - PPSN VIII, vol. 3242, 2004, pp. 263–271, ISBN:
3-540-23092-0. DOI: doi:10.1007/b100601.

[33] R. I. McKay, N. X. Hoai, P. A. Whigham, Y. Shan, and M. O’neill, “Grammar-
based Genetic Programming: A Survey”, Genetic Programming and Evolvable
Machines, vol. 11, no. 3-4, pp. 365–396, 2010, ISSN: 13892576. DOI: 10.1007/
s10710-010-9109-y.

[34] L. Brandy, Using Genetic Algorithms to Find Starcraft 2 Build Orders, 2010. [On-
line]. Available: http://lbrandy.com/blog/2010/11/using- genetic-
algorithms-to-find-starcraft-2-build-orders/.

[35] K. O. Stanley, B. Bryant, and R. Miikkulainen, Evolving Neural Network Agents
in the NERO Video Game, 2005. [Online]. Available: ftp://www.cs.utexas.
edu/pub/neural-nets/papers/stanley.cig05.pdf (visited on 09/25/2015).

[36] D. B. Fogel, “Blondie24: Playing at the Edge of AI”, in Blondie24, ser. The
Morgan Kaufmann Series in Artificial Intelligence, Morgan Kaufmann, 2002,
pp. 273–298, ISBN: 9781558607835. DOI: 10.1016/B978-155860783-5/50016-
7. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/B9781558607835500167.

[37] J. Žegklitz and P. Pošík, “Model Selection and Overfitting in Genetic Pro-
gramming: Empirical Study”, p. 8, Apr. 2015. arXiv: 1504.08168. [Online].
Available: http://arxiv.org/abs/1504.08168.

[38] C. U. Lim, R. Baumgarten, and S. Colton, “Evolving Behaviour Trees for the
Commercial Game DEFCON”, in European Conference on the Applications of
Evolutionary Computation, Springer, vol. 6024 LNCS, 2010, pp. 100–110.

http://dx.doi.org/10.1007/978-3-642-12239-2
http://link.springer.com/10.1007/978-3-642-12239-2
http://dx.doi.org/10.1007/978-3-642-29178-4
http://link.springer.com/10.1007/978-3-642-29178-4
http://dx.doi.org/doi:10.1145/1388969.1389057
http://dx.doi.org/doi:10.1145/1388969.1389057
http://www.genetic-programming.com/jkpdf/aigp1994intro.pdf
http://www.genetic-programming.com/jkpdf/aigp1994intro.pdf
http://www.ercim.eu/publication/Ercim_News/enw64/EN64.pdf
http://www.ercim.eu/publication/Ercim_News/enw64/EN64.pdf
http://dx.doi.org/doi:10.1007/b100601
http://dx.doi.org/10.1007/s10710-010-9109-y
http://dx.doi.org/10.1007/s10710-010-9109-y
http://lbrandy.com/blog/2010/11/using-genetic-algorithms-to-find-starcraft-2-build-orders/
http://lbrandy.com/blog/2010/11/using-genetic-algorithms-to-find-starcraft-2-build-orders/
ftp://www.cs.utexas.edu/pub/neural-nets/papers/stanley.cig05.pdf
ftp://www.cs.utexas.edu/pub/neural-nets/papers/stanley.cig05.pdf
http://dx.doi.org/10.1016/B978-155860783-5/50016-7
http://dx.doi.org/10.1016/B978-155860783-5/50016-7
http://www.sciencedirect.com/science/article/pii/B9781558607835500167
http://www.sciencedirect.com/science/article/pii/B9781558607835500167
http://arxiv.org/abs/1504.08168
http://arxiv.org/abs/1504.08168

182 BIBLIOGRAPHY

[39] D. Perez, M. Nicolau, M. O’Neill, and A. Brabazon, “Evolving Behaviour
Trees for the Mario AI Competition using Grammatical Evolution”, in Appli-
cations of Evolutionary Computation, vol. 6624 LNCS, 2011, pp. 123–132, ISBN:
978-3-642-20525-5. DOI: 10.1007/978-3-642-20525-5_13.

[40] D. A. Savic and G. A. Walters, “Genetic Algorithms for Least-Cost Design
of Water Distribution Networks”, en, Journal of Water Resources Planning and
Management, vol. 123, no. 2, pp. 67–77, Mar. 1997, ISSN: 0733-9496. DOI: 10.
1061 / (ASCE) 0733 - 9496(1997) 123 : 2(67). [Online]. Available: http : / /
ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9496(1997)123:2(67).

[41] B. L. Miller and D. E. Goldberg, “Genetic Algorithms, Selection Schemes, and
the Varying Effects of Noise”, Evolutionary Computation, vol. 4, no. 2, pp. 113–
131, Jun. 1996. DOI: 10.1162/evco.1996.4.2.113. [Online]. Available: http:
//www.mitpressjournals.org/doi/10.1162/evco.1996.4.2.113.

[42] A. Wright, J. Rowe, and J. Neil, “Analysis of the Simple Genetic Algorithm
on the Single-peak and Double-peak Landscapes”, in Proceedings of the 2002
Congress on Evolutionary Computation. CEC’02, vol. 1, IEEE, 2002, pp. 214–219,
ISBN: 0-7803-7282-4. DOI: 10.1109/CEC.2002.1006236. [Online]. Available:
http://ieeexplore.ieee.org/document/1006236/.

[43] K. Deb and D. E. Goldberg, “Analyzing Deception in Trap Functions”, in,
vol. 2, 1993, pp. 93–108. DOI: 10.1016/B978- 0- 08- 094832- 4.50012- X.
[Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
B978008094832450012X.

[44] N. Nedjah and L. d. M. Mourelle, “Evolutionary Multi-objective Optimisa-
tion: A Survey”, International Journal of Bio-Inspired Computation, vol. 7, no.
1, p. 1, 2015, ISSN: 1758-0366. DOI: 10.1504/IJBIC.2015.067991. [Online].
Available: http://www.inderscience.com/link.php?id=67991.

[45] X.-S. Yang, “Bat Algorithm for Multi-objective Optimisation”, International
Journal of Bio-Inspired Computation, vol. 3, no. 5, pp. 267–274, 2011.

[46] J. E. Fieldsend, R. M. Everson, and S. Singh, “Using Unconstrained Elite
Archives for Multi-objective Optimisation”, 2003.

[47] A. K. Dubey and V. Yadava, “Multi-objective Optimisation of Laser Beam
Cutting Process”, Optics & Laser Technology, vol. 40, no. 3, pp. 562–570, 2008.

[48] R. P. C. Moreira, E. F. Wanner, F. V. C. Martins, and J. F. M. Sarubbi, “The
Menu Planning Problem: A Multiobjective Approach for Brazilian Schools
Context”, in Proceedings of the Genetic and Evolutionary Computation Conference
Companion, ACM, 2017, pp. 113–114.

[49] S. Giarola, A. Zamboni, and F. Bezzo, “Spatially Explicit Multi-objective Op-
timisation for Design and Planning of Hybrid First and Second Generation
Biorefineries”, Computers & Chemical Engineering, vol. 35, no. 9, pp. 1782–1797,
2011.

[50] R. Marler and J. Arora, “Survey of Multi-objective Optimization Methods
for Engineering”, Structural and Multidisciplinary Optimization, vol. 26, no. 6,
pp. 369–395, Apr. 2004, ISSN: 1615-147X. DOI: 10.1007/s00158-003-0368-6.
[Online]. Available: http://link.springer.com/10.1007/s00158- 003-
0368-6.

http://dx.doi.org/10.1007/978-3-642-20525-5_13
http://dx.doi.org/10.1061/(ASCE)0733-9496(1997)123:2(67)
http://dx.doi.org/10.1061/(ASCE)0733-9496(1997)123:2(67)
http://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9496(1997)123:2(67)
http://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9496(1997)123:2(67)
http://dx.doi.org/10.1162/evco.1996.4.2.113
http://www.mitpressjournals.org/doi/10.1162/evco.1996.4.2.113
http://www.mitpressjournals.org/doi/10.1162/evco.1996.4.2.113
http://dx.doi.org/10.1109/CEC.2002.1006236
http://ieeexplore.ieee.org/document/1006236/
http://dx.doi.org/10.1016/B978-0-08-094832-4.50012-X
http://linkinghub.elsevier.com/retrieve/pii/B978008094832450012X
http://linkinghub.elsevier.com/retrieve/pii/B978008094832450012X
http://dx.doi.org/10.1504/IJBIC.2015.067991
http://www.inderscience.com/link.php?id=67991
http://dx.doi.org/10.1007/s00158-003-0368-6
http://link.springer.com/10.1007/s00158-003-0368-6
http://link.springer.com/10.1007/s00158-003-0368-6

BIBLIOGRAPHY 183

[51] N. B. Urquhart, “Evaluating the Performance of an Evolutionary Tool for Ex-
ploring Solution Fronts”, in International Conference on the Applications of Evo-
lutionary Computation, Springer, 2018, pp. 523–537.

[52] Y. Jin, “A Comprehensive Survey of Fitness Approximation in Evolutionary
Computation”, Soft Computing, vol. 9, no. 1, pp. 3–12, 2005, ISSN: 1432-7643.
DOI: 10.1007/s00500-003-0328-5.

[53] M. Bhattacharya, “Evolutionary Approaches to Expensive Optimisation”,
Arxiv - Computers & Society, vol. 2, no. 3, pp. 53–59, 2013, ISSN: 21654069. DOI:
10.14569/IJARAI.2013.020308.

[54] B. Johanson and R. Poli, “GP-Music: An Interactive Genetic Programming
System for Music Generation with Automated Fitness Raters”, Tech. Rep.,
1998.

[55] B. Jin, Yaochu and Sendhoff, “Reducing Fitness Evaluations using Cluster-
ing Techniques and Neural Network Ensembles”, Genetic and Evolutionary
Computation–GECCO 2004, pp. 688–699, 2004, ISSN: 03029743. DOI: 10.1007/
978-3-540-24854-5_71.

[56] D. R. Carvalho and A. A. Freitas, “A Hybrid Decision Tree/Genetic Algo-
rithm Method for Data Mining”, Information Sciences, vol. 163, no. 1, pp. 13–
35, 2004, ISSN: 0020-0255. DOI: https://doi.org/10.1016/j.ins.2003.
03.013. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0020025503004146.

[57] K. Deb, A. Sinha, P. J. Korhonen, and J. Wallenius, “An Interactive Evolution-
ary Multiobjective Optimization Method Based on Progressively Approxi-
mated Value Functions”, IEEE Transactions on Evolutionary Computation, vol.
14, no. 5, pp. 723–739, Oct. 2010, ISSN: 1089-778X. DOI: 10.1109/TEVC.2010.
2064323. [Online]. Available: http : / / ieeexplore . ieee . org / document /
5585740/.

[58] P. K. S. Nain and K. Deb, “A Multi-Objective Optimization Procedure with
Successive Approximate Models”, [Online]. Available: http://www.iitk.
ac.in/kangal.

[59] J. Dias, H. Rocha, B. Ferreira, and M. d. C. Lopes, “A Genetic Algorithm
with Neural Network Fitness Function Evaluation for IMRT Beam Angle
Optimization”, Central European Journal of Operations Research, vol. 22, no. 3,
pp. 431–455, Sep. 2014. DOI: 10.1007/s10100-013-0289-4. [Online]. Avail-
able: http://link.springer.com/10.1007/s10100-013-0289-4.

[60] F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage
and Organization in the Brain.”, Psychological review, vol. 65, no. 6, pp. 386–
408, Nov. 1958, ISSN: 0033-295X. [Online]. Available: http://www.ncbi.nlm.
nih.gov/pubmed/13602029.

[61] J. J. Weng, N. Ahuja, and T. S. Huang, “Learning Recognition and Segmenta-
tion of 3-D Objects from 2-D Images”, in Computer Vision, 1993. Proceedings.,
Fourth International Conference on, IEEE, 1993, pp. 121–128.

[62] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory”, Neural Com-
putation, vol. 9, no. 8, pp. 1735–1780, 1997. DOI: 10.1162/neco.1997.9.8.
1735. [Online]. Available: https://doi.org/10.1162/neco.1997.9.8.1735.

[63] S. Behnke, Hierarchical Neural Networks for Image Interpretation. Springer, 2003,
vol. 2766.

http://dx.doi.org/10.1007/s00500-003-0328-5
http://dx.doi.org/10.14569/IJARAI.2013.020308
http://dx.doi.org/10.1007/978-3-540-24854-5_71
http://dx.doi.org/10.1007/978-3-540-24854-5_71
http://dx.doi.org/https://doi.org/10.1016/j.ins.2003.03.013
http://dx.doi.org/https://doi.org/10.1016/j.ins.2003.03.013
http://www.sciencedirect.com/science/article/pii/S0020025503004146
http://www.sciencedirect.com/science/article/pii/S0020025503004146
http://dx.doi.org/10.1109/TEVC.2010.2064323
http://dx.doi.org/10.1109/TEVC.2010.2064323
http://ieeexplore.ieee.org/document/5585740/
http://ieeexplore.ieee.org/document/5585740/
http://www.iitk.ac.in/kangal
http://www.iitk.ac.in/kangal
http://dx.doi.org/10.1007/s10100-013-0289-4
http://link.springer.com/10.1007/s10100-013-0289-4
http://www.ncbi.nlm.nih.gov/pubmed/13602029
http://www.ncbi.nlm.nih.gov/pubmed/13602029
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

184 BIBLIOGRAPHY

[64] Y. Liu and X. Yao, “Evolutionary Design of Artificial Neural Networks with
Different Nodes”, in Proceedings of IEEE International Conference on Evolution-
ary Computation, IEEE, 1996, pp. 670–675, ISBN: 0-7803-2902-3. DOI: 10.1109/
ICEC.1996.542681. [Online]. Available: http://ieeexplore.ieee.org/
document/542681/.

[65] J. Schaffer, D. Whitley, and L. Eshelman, “Combinations of Genetic Algo-
rithms and Neural Networks: A Survey of the State of the Art”, in [Pro-
ceedings] COGANN-92: International Workshop on Combinations of Genetic Al-
gorithms and Neural Networks, IEEE Comput. Soc. Press, 1992, pp. 1–37, ISBN:
0-8186-2787-5. DOI: 10.1109/COGANN.1992.273950. [Online]. Available: http:
//ieeexplore.ieee.org/document/273950/.

[66] D. Floreano and F. Mondada, “Automatic Creation of an Autonomous Agent:
Genetic Evolution of a Neural Network Driven Robot”, in From Animals to
Animats 3: Proceedings of the Third International Conference on Simulation of
Adaptive Behavior, The MIT Press, 1994, pp. 421–430.

[67] K. O. Stanley and R. Miikkulainen, “Evolving Neural Networks Through
Augmenting Topologies”, Evolutionary computation, vol. 10, no. 2, pp. 99–127,
2002.

[68] J. R. Quinlan, “C4.5: Programming for Machine Learning”, Morgan Kauff-
mann, vol. 38, 1993.

[69] N. S. Altman, “An Introduction to Kernel and Nearest-neighbor Nonpara-
metric Regression”, The American Statistician, vol. 46, no. 3, pp. 175–185, 1992.

[70] G. Yannakakis and J. Togelius, “A Panorama of Artificial and Computational
Intelligence in Games”, IEEE Transactions on Computational Intelligence and
AI in Games, no. c, pp. 1–1, 2014, ISSN: 1943-068X. DOI: 10.1109/TCIAIG.
2014.2339221. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=6855367.

[71] G. N. Yannakakis, “Game AI Revisited”, in Proceedings of the 9th Conference
on Computing Frontiers, 2012, pp. 285–292, ISBN: 978-1-4503-1215-8. DOI: 10.
1145/2212908.2212954. [Online]. Available: http://doi.acm.org/10.1145/
2212908.2212954.

[72] G. Smith, J. Whitehead, and M. Mateas, “Tanagra: A Mixed-initiative Level
Design Tool”, in FDG ’10 - Proceedings of the Fifth International Conference on the
Foundations of Digital Games, 2010, pp. 209–216, ISBN: 9781605589374. DOI: 10.
1145/1822348.1822376. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1822376.

[73] A. Liapis, G. N. Yannakakis, and J. Togelius, “Sentient Sketchbook:
Computer-aided Game Level Authoring”, in Proceedings of the 8th Interna-
tional Conference on the Foundations of Digital Games (FDG 2013), 2013, pp. 213–
220. [Online]. Available: http : / / www . fdg2013 . org / program / papers /
paper28_liapis_etal.pdf.

[74] Q. X. Q. Xiong and X.-y. H. X.-y. Huang, “Speed Tree-Based Forest Simulation
System”, Electrical and Control Engineering (ICECE), 2010 International Confer-
ence on, 2010. DOI: 10.1109/iCECE.2010.738.

[75] J. Togelius, “A Procedural Critique of Deontological Reasoning”, in Proceed-
ings of DiGRA 2011 Conference: Think Design Play, 2011.

http://dx.doi.org/10.1109/ICEC.1996.542681
http://dx.doi.org/10.1109/ICEC.1996.542681
http://ieeexplore.ieee.org/document/542681/
http://ieeexplore.ieee.org/document/542681/
http://dx.doi.org/10.1109/COGANN.1992.273950
http://ieeexplore.ieee.org/document/273950/
http://ieeexplore.ieee.org/document/273950/
http://dx.doi.org/10.1109/TCIAIG.2014.2339221
http://dx.doi.org/10.1109/TCIAIG.2014.2339221
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6855367
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6855367
http://dx.doi.org/10.1145/2212908.2212954
http://dx.doi.org/10.1145/2212908.2212954
http://doi.acm.org/10.1145/2212908.2212954
http://doi.acm.org/10.1145/2212908.2212954
http://dx.doi.org/10.1145/1822348.1822376
http://dx.doi.org/10.1145/1822348.1822376
http://dl.acm.org/citation.cfm?id=1822376
http://dl.acm.org/citation.cfm?id=1822376
http://www.fdg2013.org/program/papers/paper28_liapis_etal.pdf
http://www.fdg2013.org/program/papers/paper28_liapis_etal.pdf
http://dx.doi.org/10.1109/iCECE.2010.738

BIBLIOGRAPHY 185

[76] C. Browne and F. Maire, “Evolutionary Game Design”, English, IEEE Trans-
actions on Computational Intelligence and AI in Games, vol. 2, no. 1, pp. 1–16,
Mar. 2010, ISSN: 1943-068X. DOI: 10.1109/TCIAIG.2010.2041928. [Online].
Available: http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=
5404867.

[77] B. Bouzy and B. Helmstetter, “Monte-Carlo Go Developments”, in Advances
in Computer Games, H. J. Herik, H. Iida, and E. A. Heinz, Eds., Boston, MA:
Springer US, 2004, pp. 159–174, ISBN: 978-1-4757-4424-8. DOI: 10.1007/978-
0-387-35706-5. [Online]. Available: http://link.springer.com/10.1007/
978-0-387-35706-5.

[78] G. Chaslot, J. T. Saito, J. W. H. M. Uiterwijk, B. Bouzy, and H. J. van den Herik,
“Monte-Carlo Strategies for Computer Go”, in Belgian/Netherlands Artificial
Intelligence Conference, 2006.

[79] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, “Monte-Carlo Tree Search: A
New Framework for Game AI.”, AIIDE, pp. 216–217, 2008. [Online]. Avail-
able: http://www.aaai.org/Papers/AIIDE/2008/AIIDE08-036.pdf.

[80] S. Branavan, D. Silver, and R. Barzilay, Non-Linear Monte-Carlo Search in Civ-
ilization II. [Online]. Available: http://people.csail.mit.edu/regina/my_
papers/civ_ijcai2011.pdf (visited on 03/31/2015).

[81] N. Sephton, P. I. Cowling, E. Powley, and N. H. Slaven, “Heuristic Move
Pruning in Monte Carlo Tree Search for the Strategic Card Game Lords of
War”, 2014.

[82] B. Cowley, “Player Profiling and Modelling in Computer and Video Games”,
PhD thesis, 2009, p. 299. [Online]. Available: http://www.researchgate.net/
publication/253240709_Player_Profiling_and_Modelling_in_Computer_
and_Video_Games.

[83] K. P. Sycara, “Negotiation Planning: An AI Approach”, European Journal of
Operational Research, vol. 46, no. 2, pp. 216–234, May 1990, ISSN: 03772217.
DOI: 10.1016/0377-2217(90)90133-V. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/037722179090133V.

[84] C. M. Jonker, K. V. Hindriks, P. Wiggers, and J. Broekens, Negotiating Agents,
en, Sep. 2012. DOI: 10.1609/aimag.v33i3.2421. [Online]. Available: http:
//www.aaai.org/ojs/index.php/aimagazine/article/view/2421.

[85] J. Long, N. R. Sturtevant, M. Buro, and T. Furtak, Understanding the Success
of Perfect Information Monte Carlo Sampling in Game Tree Search, 2010. [Online].
Available: http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/
viewFile/1876/1942 (visited on 09/25/2015).

[86] F. Kolbe, “Goal Oriented Task Planning for Autonomous Service Robots”,
PhD thesis, 1990, p. 100. DOI: 10.1007/BF03192151. [Online]. Available: http:
//users.informatik.haw-hamburg.de/~kolbe_j/thesis/RGOAP-Felix_
Kolbe-Masterthesis-2013.pdf.

[87] J. Orkin, “Three States and a Plan: The AI of FEAR”, Game Developers Con-
ference, vol. 2006, no. 1, pp. 1–18, 2006, ISSN: 00099104. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.8551&
rep=rep1&type=pdf.

http://dx.doi.org/10.1109/TCIAIG.2010.2041928
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=5404867
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=5404867
http://dx.doi.org/10.1007/978-0-387-35706-5
http://dx.doi.org/10.1007/978-0-387-35706-5
http://link.springer.com/10.1007/978-0-387-35706-5
http://link.springer.com/10.1007/978-0-387-35706-5
http://www.aaai.org/Papers/AIIDE/2008/AIIDE08-036.pdf
http://people.csail.mit.edu/regina/my_papers/civ_ijcai2011.pdf
http://people.csail.mit.edu/regina/my_papers/civ_ijcai2011.pdf
http://www.researchgate.net/publication/253240709_Player_Profiling_and_Modelling_in_Computer_and_Video_Games
http://www.researchgate.net/publication/253240709_Player_Profiling_and_Modelling_in_Computer_and_Video_Games
http://www.researchgate.net/publication/253240709_Player_Profiling_and_Modelling_in_Computer_and_Video_Games
http://dx.doi.org/10.1016/0377-2217(90)90133-V
http://www.sciencedirect.com/science/article/pii/037722179090133V
http://www.sciencedirect.com/science/article/pii/037722179090133V
http://dx.doi.org/10.1609/aimag.v33i3.2421
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2421
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2421
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/viewFile/1876/1942
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/viewFile/1876/1942
http://dx.doi.org/10.1007/BF03192151
http://users.informatik.haw-hamburg.de/~kolbe_j/thesis/RGOAP-Felix_Kolbe-Masterthesis-2013.pdf
http://users.informatik.haw-hamburg.de/~kolbe_j/thesis/RGOAP-Felix_Kolbe-Masterthesis-2013.pdf
http://users.informatik.haw-hamburg.de/~kolbe_j/thesis/RGOAP-Felix_Kolbe-Masterthesis-2013.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.8551&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.8551&rep=rep1&type=pdf

186 BIBLIOGRAPHY

[88] C. García-García, L. Torres-López, V. Larios-Rosillo, and H. Luga, “A GOAP
Architecture for Emergency Evacuations in Serious Games”, in 11th Interna-
tional Conference on Intelligent Games and Simulation, GAME-ON 2010, 2010,
pp. 10–12, ISBN: 9789077381588. [Online]. Available: http://www.scopus.
com/inward/record.url?eid=2-s2.0-84877933845&partnerID=40&md5=
e0b403a616252005ac6406c35eacff98.

[89] P. Bjarnolf, “Threat Analysis Using Goal-Oriented Action Planning : Planning
in the Light of Information Fusion”, Information FUsion, p. 68, 2008. [Online].
Available: http://his.diva-portal.org/smash/record.jsf?pid=diva2:
2228&dswid=7514.

[90] G. J. Olsder and G. P. Papavassilopoulos, “A Markov Chain Game with Dy-
namic Information”, Journal of Optimization Theory and Applications, vol. 59,
no. 3, pp. 467–486, Dec. 1988, ISSN: 0022-3239. DOI: 10.1007/BF00940310.
[Online]. Available: http://link.springer.com/10.1007/BF00940310.

[91] M. J. Nelson and M. Mateas, “Recombinable Game Mechanics for Automated
Design Support”, Proceedings of the 4th Artificial Intelligence and Interactive Dig-
ital Entertainment Conference, vol. 4, pp. 84–89, 2008. [Online]. Available: http:
//www.aaai.org/Papers/AIIDE/2008/AIIDE08-014.pdf.

[92] M. Ebner, J. Levine, S. M. Lucas, T. Schaul, T. Thompson, and J. Togelius, To-
wards a Video Game Description Language, Nov. 2013. [Online]. Available: http:
//strathprints.strath.ac.uk/45278/1/dagstuhl_vgdl.pdf.

[93] T. Schaul, “A Video Game Description Language for Model-based or Interac-
tive Learning”, English, in 2013 IEEE Conference on Computational Inteligence
in Games (CIG), IEEE, Aug. 2013, pp. 1–8, ISBN: 978-1-4673-5311-3. DOI: 10.
1109/CIG.2013.6633610. [Online]. Available: http://ieeexplore.ieee.
org/articleDetails.jsp?arnumber=6633610.

[94] N. Shaker, J. Togelius, G. N. Yannakakis, B. Weber, T. Shimizu, T. Hashiyama,
N. Sorenson, P. Pasquier, P. Mawhorter, G. Takahashi, G. Smith, and R. Baum-
garten, “The 2010 Mario AI Championship: Level Generation Track”, En-
glish, IEEE Transactions on Computational Intelligence and AI in Games, vol.
3, no. 4, pp. 332–347, Dec. 2011, ISSN: 1943-068X. DOI: 10 . 1109 / TCIAIG .
2011 . 2166267. [Online]. Available: http : / / ieeexplore . ieee . org /
articleDetails.jsp?arnumber=6003769.

[95] M. M. Kate Compton, “Procedural Level Design for Platform Games”, [On-
line]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.501.9465.

[96] E. J. Hastings, R. K. Guha, and K. O. Stanley, “Automatic Content Generation
in the Galactic Arms Race Video Game”, IEEE Transactions on Computational
Intelligence and AI in Games, vol. 1, no. 4, pp. 245–263, 2009, ISSN: 1943068X.
DOI: 10.1109/TCIAIG.2009.2038365.

[97] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,
D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K.
Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the Game of Go with
Deep Neural Networks and Tree Search”, Nature, vol. 529, no. 7587, pp. 484–
489, Jan. 2016, ISSN: 0028-0836. DOI: 10.1038/nature16961. [Online]. Avail-
able: http://dx.doi.org/10.1038/nature16961.

http://www.scopus.com/inward/record.url?eid=2-s2.0-84877933845&partnerID=40&md5=e0b403a616252005ac6406c35eacff98
http://www.scopus.com/inward/record.url?eid=2-s2.0-84877933845&partnerID=40&md5=e0b403a616252005ac6406c35eacff98
http://www.scopus.com/inward/record.url?eid=2-s2.0-84877933845&partnerID=40&md5=e0b403a616252005ac6406c35eacff98
http://his.diva-portal.org/smash/record.jsf?pid=diva2:2228&dswid=7514
http://his.diva-portal.org/smash/record.jsf?pid=diva2:2228&dswid=7514
http://dx.doi.org/10.1007/BF00940310
http://link.springer.com/10.1007/BF00940310
http://www.aaai.org/Papers/AIIDE/2008/AIIDE08-014.pdf
http://www.aaai.org/Papers/AIIDE/2008/AIIDE08-014.pdf
http://strathprints.strath.ac.uk/45278/1/dagstuhl_vgdl.pdf
http://strathprints.strath.ac.uk/45278/1/dagstuhl_vgdl.pdf
http://dx.doi.org/10.1109/CIG.2013.6633610
http://dx.doi.org/10.1109/CIG.2013.6633610
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6633610
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6633610
http://dx.doi.org/10.1109/TCIAIG.2011.2166267
http://dx.doi.org/10.1109/TCIAIG.2011.2166267
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6003769
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6003769
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.501.9465
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.501.9465
http://dx.doi.org/10.1109/TCIAIG.2009.2038365
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature16961

BIBLIOGRAPHY 187

[98] D. Perez, S. Samothrakis, J. Togelius, T. Schaul, S. Lucas, A. Couetoux, J. Lee,
C.-U. Lim, and T. Thompson, “The 2014 General Video Game Playing Com-
petition”, IEEE Transactions on Computational Intelligence and AI in Games, no.
c, pp. 1–1, 2015, ISSN: 1943-068X. DOI: 10.1109/TCIAIG.2015.2402393. [On-
line]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=7038214.

[99] J. K. Olesen, G. N. Yannakakis, and J. Hallam, “Real-time Challenge Balance
in an RTS Game Using rtNEAT”, English, in 2008 IEEE Symposium on Com-
putational Intelligence and Games, CIG 2008, IEEE, Dec. 2008, pp. 87–94, ISBN:
9781424429745. DOI: 10.1109/CIG.2008.5035625. [Online]. Available: http:
//ieeexplore.ieee.org/articleDetails.jsp?arnumber=5035625.

[100] M. Sipper, Evolved to Win. Lulu, 2011. [Online]. Available: http://www.lulu.
com/.

[101] S. Polberg, M. Paprzycki, and M. Ganzha, “Developing Intelligent Bots for
the Diplomacy Game”, 2011 Federated Conference on Computer Science and In-
formation Systems (FedCSIS), pp. 589–596, 2011.

[102] S. Fisher, Working With Conflict: Skills and Strategies for Action. Zed Books,
2000, vol. 4, p. 185, ISBN: 1856498379. [Online]. Available: https://books.
google.com/books?id=YCPEoKBlS54C&pgis=1.

[103] P. Hingston, “A Turing Test for Computer Game Bots”, English, IEEE Trans-
actions on Computational Intelligence and AI in Games, vol. 1, no. 3, pp. 169–186,
Sep. 2009, ISSN: 1943-068X. DOI: 10.1109/TCIAIG.2009.2032534. [Online].
Available: http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=
5247069.

[104] E. Haller and T. Rebedea, “Designing a Chat-bot that Simulates an Historical
Figure”, in Proceedings - 19th International Conference on Control Systems and
Computer Science, CSCS 2013, 2013, pp. 582–589, ISBN: 978-1-4673-6140-8. DOI:
10.1109/CSCS.2013.85.

[105] S. Cagnoni, A. B. Dobrzeniecki, R. Poli, and J. C. Yanch, “Genetic Algorithm-
based Interactive Segmentation of 3D Medical Images”, Image and Vision Com-
puting, vol. 17, no. 12, pp. 881–895, 1999.

[106] D. S. Linden and E. E. Altshuler, “Automating Wire Antenna Design using
Genetic Algorithms”, Microwave Journal, vol. 39, no. 3, pp. 74–81, 1996.

[107] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-based
Procedural Content Generation: A Taxonomy and Survey”, IEEE Transactions
on Computational Intelligence and AI in Games, vol. 3, no. 3, pp. 172–186, 2011,
ISSN: 1943068X. DOI: 10.1109/TCIAIG.2011.2148116.

[108] M. Cook, “A Vision For Continuous Automated Game Design”, Jul. 2017.
arXiv: 1707.09661. [Online]. Available: http://arxiv.org/abs/1707.09661.

[109] C. Bauckhage, K. Kersting, R. Sifa, C. Thurau, A. Drachen, and A. Canossa,
“How Players Lose Interest in Playing a Game: An Empirical Study Based
on Distributions of Total Playing Times”, English, in 2012 IEEE Conference on
Computational Intelligence and Games (CIG), IEEE, Sep. 2012, pp. 139–146, ISBN:
978-1-4673-1194-6. DOI: 10.1109/CIG.2012.6374148. [Online]. Available:
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6374148.

http://dx.doi.org/10.1109/TCIAIG.2015.2402393
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7038214
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7038214
http://dx.doi.org/10.1109/CIG.2008.5035625
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=5035625
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=5035625
http://www.lulu.com/
http://www.lulu.com/
https://books.google.com/books?id=YCPEoKBlS54C&pgis=1
https://books.google.com/books?id=YCPEoKBlS54C&pgis=1
http://dx.doi.org/10.1109/TCIAIG.2009.2032534
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=5247069
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=5247069
http://dx.doi.org/10.1109/CSCS.2013.85
http://dx.doi.org/10.1109/TCIAIG.2011.2148116
http://arxiv.org/abs/1707.09661
http://arxiv.org/abs/1707.09661
http://dx.doi.org/10.1109/CIG.2012.6374148
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6374148

188 BIBLIOGRAPHY

[110] B. Shen, StarCraft - Beyond WarCraft in Space, 2003. [Online]. Available: http:
/ / web . stanford . edu / group / htgg / sts145papers / bshen _ 2003 _ 1 . pdf
(visited on 09/25/2015).

[111] J. Juul, “Zero-Player Games”, in The Philosophy of Computer Games Conference
2012, 2012, pp. 1–11. [Online]. Available: https://blip.tv/arsgames/8439_
staffan-bjork-5948058.

[112] V. Volz, G. Rudolph, and B. Naujoks, “Demonstrating the Feasibility of Au-
tomatic Game Balancing”, Mar. 2016. arXiv: 1603.03795. [Online]. Available:
http://arxiv.org/abs/1603.03795.

[113] H. Chen, Y. Mori, and I. Matsuba, “Solving the Balance Problem of On-Line
Role-Playing Games Using Evolutionary Algorithms”, Journal of Software En-
gineering and Applications, vol. 05, no. 08, pp. 574–582, 2012, ISSN: 1945-3116.
DOI: 10.4236/jsea.2012.58066. [Online]. Available: http://www.scirp.
org/journal/PaperDownload.aspx?DOI=10.4236/jsea.2012.58066.

[114] J. Liu, J. Togelius, D. Pérez-Liébana, and S. M. Lucas, “Evolving game skill-
depth using general video game ai agents”, in 2017 IEEE Congress on Evolu-
tionary Computation (CEC), Jun. 2017, pp. 2299–2307. DOI: 10.1109/CEC.2017.
7969583.

[115] J. I. E. Ramos, R. A. Vázquez, and D. F. México, “Locating Seismic-sense Sta-
tions through Genetic Algorithms”, in Proceedings of the GECCO, vol. 11, 2011,
pp. 941–948.

[116] S. Preble, M. Lipson, and H. Lipson, “Two-dimensional Photonic Crystals
Designed by Evolutionary Algorithms”, Applied Physics Letters, vol. 86, no. 6,
p. 61 111, 2005.

[117] O. E. David, H. J. van den Herik, M. Koppel, and N. S. Netanyahu, “Genetic
Algorithms for Evolving Computer Chess Programs”, Evolutionary Computa-
tion, IEEE Transactions on, vol. 18, no. 5, pp. 779–789, 2014.

[118] OpenAI Five Benchmark: Results. [Online]. Available: https://blog.openai.
com/openai-five-benchmark-results/ (visited on 08/22/2018).

[119] T. L. Taylor, Raising the Stakes: E-Sports and the Professionalization of Computer
Gaming. MIT Press, 2012, p. 336, ISBN: 0262300478. [Online]. Available: https:
//books.google.com/books?id=CiL8aPrSeKcC&pgis=1.

[120] D. Lee and L. J. Schoenstedt, “Comparison of eSports and Traditional Sports
Consumption Motives.”, en, ICHPER-SD Journal of Research, vol. 6, no. 2,
pp. 39–44, Nov. 2010, ISSN: ISSN-1930-4595. [Online]. Available: http : / /
eric.ed.gov/?id=EJ954495.

[121] G. Cheung and J. Huang, “Starcraft from the Stands: Understanding the
Game Spectator”, in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, ACM, 2011, pp. 763–772.

[122] J. Rambusch, P. Jakobsson, and D. Pargman, Exploring E-sports : A Case Study
of Game Play in Counter-Strike, eng, 2007. [Online]. Available: http://www.
diva-portal.org/smash/record.jsf?pid=diva2%3A25495&dswid=-1723.

[123] T. Weiss and S. Schiele, “Virtual Worlds in Competitive Contexts: Analyzing
eSports Consumer Needs”, in Electronic Markets, vol. 23, 2013, pp. 307–316.
DOI: 10.1007/s12525-013-0127-5.

http://web.stanford.edu/group/htgg/sts145papers/bshen_2003_1.pdf
http://web.stanford.edu/group/htgg/sts145papers/bshen_2003_1.pdf
https://blip.tv/arsgames/8439_staffan-bjork-5948058
https://blip.tv/arsgames/8439_staffan-bjork-5948058
http://arxiv.org/abs/1603.03795
http://arxiv.org/abs/1603.03795
http://dx.doi.org/10.4236/jsea.2012.58066
http://www.scirp.org/journal/PaperDownload.aspx?DOI=10.4236/jsea.2012.58066
http://www.scirp.org/journal/PaperDownload.aspx?DOI=10.4236/jsea.2012.58066
http://dx.doi.org/10.1109/CEC.2017.7969583
http://dx.doi.org/10.1109/CEC.2017.7969583
https://blog.openai.com/openai-five-benchmark-results/
https://blog.openai.com/openai-five-benchmark-results/
https://books.google.com/books?id=CiL8aPrSeKcC&pgis=1
https://books.google.com/books?id=CiL8aPrSeKcC&pgis=1
http://eric.ed.gov/?id=EJ954495
http://eric.ed.gov/?id=EJ954495
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A25495&dswid=-1723
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A25495&dswid=-1723
http://dx.doi.org/10.1007/s12525-013-0127-5

BIBLIOGRAPHY 189

[124] C. Souza, A. Kirillov, M. D. Catalano, and A. Contributors, The Accord.NET
Framework, 2014. DOI: 10.5281/zenodo.1029480. [Online]. Available: http:
//accord-framework.net.

[125] L. Shelton, PacmanAI-MCTS. [Online]. Available: https : / / github . com /
LoveDuckie/PacmanAI-MCTS.

[126] M. Morosan, PacMan-CSharp. [Online]. Available: https : / / github . com /
mihail-morosan/PacMan-CSharp.

[127] H. V. Seijen, J. Romoff, M. Fatemi, R. Laroche, T. Barnes, J. Tsang, and M.
Maluuba, “Hybrid Reward Architecture for Reinforcement Learning”, in Ad-
vances in Neural Information Processing Systems, 2017, pp. 5392–5402.

[128] L. L. DeLooze and W. R. Viner, “Fuzzy Q-learning in a Nondeterministic
Environment: Developing an Intelligent Ms. Pac-Man Agent”, in 2009 IEEE
Symposium on Computational Intelligence and Games, IEEE, Sep. 2009, pp. 162–
169, ISBN: 978-1-4244-4814-2. DOI: 10.1109/CIG.2009.5286478. [Online].
Available: http://ieeexplore.ieee.org/document/5286478/.

[129] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous Methods for Deep Reinforcement Learn-
ing”, in Proceedings of The 33rd International Conference on Machine Learning,
M. F. Balcan and K. Q. Weinberger, Eds., ser. Proceedings of Machine Learn-
ing Research, vol. 48, New York, New York, USA: PMLR, 2016, pp. 1928–1937.
[Online]. Available: http://proceedings.mlr.press/v48/mniha16.html.

[130] T. Pepels, M. H. M. Winands, and M. Lanctot, “Real-Time Monte Carlo Tree
Search in Ms Pac-Man”, IEEE Transactions on Computational Intelligence and AI
in Games, vol. 6, no. 3, pp. 245–257, Sep. 2014, ISSN: 1943-068X. DOI: 10.1109/
TCIAIG.2013.2291577. [Online]. Available: http://ieeexplore.ieee.org/
document/6731713/.

[131] S. Lucas, “Evolving a Neural Network Location Evaluator to Play Ms. Pac-
Man”, IEEE Symposium on Computational Intelligence and Games, pp. 203–210,
2005.

[132] J. Schrum and R. Miikkulainen, “Evolving Multimodal Behavior with Modu-
lar Neural Networks in Ms. Pac-Man”, in Proceedings of the 2014 conference on
Genetic and evolutionary computation - GECCO ’14, New York, New York, USA:
ACM Press, 2014, pp. 325–332, ISBN: 9781450326629. DOI: 10.1145/2576768.
2598234. [Online]. Available: http://dl.acm.org/citation.cfm?doid=
2576768.2598234.

[133] M. Wittkamp, L. Barone, and P. Hingston, “Using NEAT for Continuous
Adaptation and Teamwork Formation in Pacman”, in 2008 IEEE Symposium
On Computational Intelligence and Games, IEEE, Dec. 2008, pp. 234–242, ISBN:
978-1-4244-2973-8. DOI: 10.1109/CIG.2008.5035645. [Online]. Available:
http://ieeexplore.ieee.org/document/5035645/.

[134] F. Mourato, M. P. dos Santos, and F. Birra, “Automatic Level Generation for
Platform Videogames using Genetic Algorithms”, in Proceedings of the 8th In-
ternational Conference on Advances in Computer Entertainment Technology - ACE
’11, New York, New York, USA: ACM Press, 2011, p. 1, ISBN: 9781450308274.
DOI: 10.1145/2071423.2071433. [Online]. Available: http://dl.acm.org/
citation.cfm?doid=2071423.2071433.

[135] StarCraft AI, the StarCraft BroodWar Resource for custom AIs. [Online]. Avail-
able: http://www.starcraftai.com/.

http://dx.doi.org/10.5281/zenodo.1029480
http://accord-framework.net
http://accord-framework.net
https://github.com/LoveDuckie/PacmanAI-MCTS
https://github.com/LoveDuckie/PacmanAI-MCTS
https://github.com/mihail-morosan/PacMan-CSharp
https://github.com/mihail-morosan/PacMan-CSharp
http://dx.doi.org/10.1109/CIG.2009.5286478
http://ieeexplore.ieee.org/document/5286478/
http://proceedings.mlr.press/v48/mniha16.html
http://dx.doi.org/10.1109/TCIAIG.2013.2291577
http://dx.doi.org/10.1109/TCIAIG.2013.2291577
http://ieeexplore.ieee.org/document/6731713/
http://ieeexplore.ieee.org/document/6731713/
http://dx.doi.org/10.1145/2576768.2598234
http://dx.doi.org/10.1145/2576768.2598234
http://dl.acm.org/citation.cfm?doid=2576768.2598234
http://dl.acm.org/citation.cfm?doid=2576768.2598234
http://dx.doi.org/10.1109/CIG.2008.5035645
http://ieeexplore.ieee.org/document/5035645/
http://dx.doi.org/10.1145/2071423.2071433
http://dl.acm.org/citation.cfm?doid=2071423.2071433
http://dl.acm.org/citation.cfm?doid=2071423.2071433
http://www.starcraftai.com/

190 BIBLIOGRAPHY

[136] BWAPI, “BWAPI”, [Online]. Available: https://bwapi.github.io/.

[137] MasterOfChaos, “Chaoslauncher”, 2011. [Online]. Available: https : / /
github.com/mihail-morosan/Chaoslauncher.

[138] L. Zezula, StormLib. [Online]. Available: https://github.com/ladislav-
zezula/StormLib.

[139] B. G. Weber, M. Mateas, and A. Jhala, “Applying Goal-Driven Autonomy to
StarCraft.”, in AIIDE, 2010.

[140] N. Justesen and S. Risi, “Learning Macromanagement in Starcraft from Re-
plays using Deep Learning”, ArXiv preprint arXiv:1707.03743, 2017.

[141] D. Churchill and M. Buro, “Incorporating Search Algorithms into RTS Game
Agents”, in AI and Interactive Digital Entertainment Conference, AIIDE (AAAI),
2012.

[142] N. Justesen and S. Risi, “Continual Online Evolutionary Planning for In-game
Build Order Adaptation in StarCraft”, in Proceedings of the Genetic and Evolu-
tionary Computation Conference, ACM, 2017, pp. 187–194.

[143] P. Garcia-Sanchez, A. Tonda, A. M. Mora, G. Squillero, and J. Merelo, “To-
wards Automatic StarCraft Strategy Generation Using Genetic Program-
ming”, in 2015 IEEE Conference on Computational Intelligence and Games (CIG),
IEEE, Aug. 2015, pp. 284–291, ISBN: 978-1-4799-8622-4. DOI: 10.1109/CIG.
2015 . 7317940. [Online]. Available: http : / / ieeexplore . ieee . org /
document/7317940/.

[144] B. Wymann, TORCS. [Online]. Available: http://torcs.sourceforge.net/.

[145] MindArk, Compet Game, 2018. [Online]. Available: https : / / competgame .
com/.

[146] Metaheuristics in the Large, 2018. [Online]. Available: http://www.mitlware.
org/.

[147] J. Swan, S. Adriaensen, M. Bishr, E. K. Burke, J. A. Clark, P. De Causmaecker,
J. Durillo, K. Hammond, E. Hart, C. G. Johnson, Z. A. Kocsis, B. Kovitz, K.
Krawiec, S. Martin, J. J. Merelo, L. L. Minku, E. Ozcan, G. L. Pappa, E. Pesch,
P. García-Sánchez, A. Schaerf, K. Sim, J. E. Smith, T. Stützle, S. Voß, S. Wagner,
and X. Yao, “A Research Agenda for Metaheuristic Standardization”, in MIC
2015: The XI Metaheuristics International Conference, 2015. [Online]. Available:
http://www.cs.nott.ac.uk/~pszeo/docs/publications/research-
agenda-metaheuristic.pdf.

[148] D. Gravina and D. Loiacono, “Procedural Weapons Generation for Unreal
Tournament III”, in 2015 IEEE Games Entertainment Media Conference (GEM),
IEEE, Oct. 2015, pp. 1–8, ISBN: 978-1-4673-7452-1. DOI: 10.1109/GEM.2015.
7377225. [Online]. Available: http : / / ieeexplore . ieee . org / document /
7377225/.

[149] D. Crockford, The application/json Media Type for JavaScript Object Notation
(JSON), 2006. [Online]. Available: http://www.ietf.org/rfc/rfc4627.txt
(visited on 07/02/2018).

[150] T. Thompson, L. McMillan, J. Levine, and A. Andrew, “An Evaluation of the
Benefits of Look-ahead in Pac-Man”, in IEEE Symposium Computational Intel-
ligence and Games, 2008, IEEE, 2008, pp. 310–315, ISBN: 9781424429738. DOI:
10.1109/CIG.2008.5035655.

https://bwapi.github.io/
https://github.com/mihail-morosan/Chaoslauncher
https://github.com/mihail-morosan/Chaoslauncher
https://github.com/ladislav-zezula/StormLib
https://github.com/ladislav-zezula/StormLib
http://dx.doi.org/10.1109/CIG.2015.7317940
http://dx.doi.org/10.1109/CIG.2015.7317940
http://ieeexplore.ieee.org/document/7317940/
http://ieeexplore.ieee.org/document/7317940/
http://torcs.sourceforge.net/
https://competgame.com/
https://competgame.com/
http://www.mitlware.org/
http://www.mitlware.org/
http://www.cs.nott.ac.uk/~pszeo/docs/publications/research-agenda-metaheuristic.pdf
http://www.cs.nott.ac.uk/~pszeo/docs/publications/research-agenda-metaheuristic.pdf
http://dx.doi.org/10.1109/GEM.2015.7377225
http://dx.doi.org/10.1109/GEM.2015.7377225
http://ieeexplore.ieee.org/document/7377225/
http://ieeexplore.ieee.org/document/7377225/
http://www.ietf.org/rfc/rfc4627.txt
http://dx.doi.org/10.1109/CIG.2008.5035655

BIBLIOGRAPHY 191

[151] L. Shelton, “Implementation of High-level Strategy Formulating AI in Ms
Pac-Man”, Tech. Rep., 2013. [Online]. Available: http://lucshelton.com/
assets/Uploads/Dissertation-Main-Copy.pdf.

[152] H. G. Cobb and J. J. Grefenstette, “Genetic Algorithms for Tracking Chang-
ing Environments”, in Proceedings of the 5th International Conference on Genetic
Algorithms, 1993, pp. 523–530, ISBN: 1-55860-299-2. DOI: 10.1.1.48.6501.
[Online]. Available: http://dl.acm.org/citation.cfm?id=657576.

[153] C. Coxe, ZZZKBot, 2015. [Online]. Available: https : / / github . com /
chriscoxe/ZZZKBot.

[154] AIIDE, 2015 AIIDE StarCraft AI Competition Report, 2015. [Online]. Available:
http : / / www . cs . mun . ca / ~dchurchill / starcraftaicomp / report2015 .
shtml.

[155] L. Davis, Handbook of genetic algorithms. CUMINCAD, 1991.

[156] T. Back, D. B. Fogel, and Z. Michalewicz, Handbook of Evolutionary Computa-
tion. IOP Publishing Ltd., 1997.

[157] Hecht-Nielsen, “Theory of the Backpropagation Neural Network”, in Inter-
national Joint Conference on Neural Networks, IEEE, 1989, 593–605 vol.1. DOI:
10.1109/IJCNN.1989.118638. [Online]. Available: http://ieeexplore.
ieee.org/document/118638/.

[158] K. Hornik, M. Stinchcombe, and H. White, “Multilayer Feedforward Net-
works are Universal Approximators”, Neural Networks, vol. 2, no. 5, pp. 359–
366, 1989. DOI: 10.1016/0893-6080(89)90020-8.

[159] H. B. Demuth, M. H. Beale, O. De Jess, and M. T. Hagan, Neural Network
Design, 2nd. USA: Martin Hagan, 2014.

[160] K. Vora, S. Yagnik, and M. Scholar, A Survey on Backpropagation Algorithms for
Feedforward Neural Networks, 2015.

[161] S. Lawrence, C. L. Giles, and A. C. Tsoi, “What Size Neural Network Gives
Optimal Generalization ? Convergence Properties of Backpropagation”, Net-
works, no. UMIACS-TR-96-22 and CS-TR-3617, pp. 1–37, 1996, ISSN: 0885-
6125. DOI: 10.1023/A:1010884214864.

[162] A. Bogomolny, Number of Trials to First Success, 2014. [Online]. Available:
http://www.cut- the- knot.org/Probability/LengthToFirstSuccess.
shtml (visited on 02/05/2017).

[163] E. R. Gansner, Y. Hu, and S. Kobourov, “GMap: Visualizing Graphs and Clus-
ters as Maps”, in 2010 IEEE Pacific Visualization Symposium (PacificVis), IEEE,
Mar. 2010, pp. 201–208, ISBN: 978-1-4244-6685-6. DOI: 10.1109/PACIFICVIS.
2010 . 5429590. [Online]. Available: http : / / ieeexplore . ieee . org /
document/5429590/.

[164] C. H. Tan, K. C. Tan, and A. Tay, “Dynamic Game Difficulty Scaling Using
Adaptive Behavior-Based AI”, IEEE Transactions on Computational Intelligence
and AI in Games, vol. 3, no. 4, pp. 289–301, Dec. 2011, ISSN: 1943-068X. DOI:
10.1109/TCIAIG.2011.2158434. [Online]. Available: http://ieeexplore.
ieee.org/document/5783334/.

[165] P. R. Williams, D. Perez-Liebana, and S. M. Lucas, “Ms. Pac-Man Versus
Ghost Team CIG 2016 Competition”, in Computational Intelligence and Games
(CIG), 2016 IEEE Conference on, 2016, pp. 420–427.

http://lucshelton.com/assets/Uploads/Dissertation-Main-Copy.pdf
http://lucshelton.com/assets/Uploads/Dissertation-Main-Copy.pdf
http://dx.doi.org/10.1.1.48.6501
http://dl.acm.org/citation.cfm?id=657576
https://github.com/chriscoxe/ZZZKBot
https://github.com/chriscoxe/ZZZKBot
http://www.cs.mun.ca/~dchurchill/starcraftaicomp/report2015.shtml
http://www.cs.mun.ca/~dchurchill/starcraftaicomp/report2015.shtml
http://dx.doi.org/10.1109/IJCNN.1989.118638
http://ieeexplore.ieee.org/document/118638/
http://ieeexplore.ieee.org/document/118638/
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1023/A:1010884214864
http://www.cut-the-knot.org/Probability/LengthToFirstSuccess.shtml
http://www.cut-the-knot.org/Probability/LengthToFirstSuccess.shtml
http://dx.doi.org/10.1109/PACIFICVIS.2010.5429590
http://dx.doi.org/10.1109/PACIFICVIS.2010.5429590
http://ieeexplore.ieee.org/document/5429590/
http://ieeexplore.ieee.org/document/5429590/
http://dx.doi.org/10.1109/TCIAIG.2011.2158434
http://ieeexplore.ieee.org/document/5783334/
http://ieeexplore.ieee.org/document/5783334/

192 BIBLIOGRAPHY

[166] S. J. Russell, P. Norvig, and E. Davis, Artificial Intelligence : A Modern Ap-
proach, 3rd ed. Upper Saddle River NJ: Prentice Hall, 2010, p. 1132, ISBN:
9780136042594. [Online]. Available: https://www.worldcat.org/title/
artificial-intelligence-a-modern-approach/oclc/359890490.

[167] S. Kelly and M. I. Heywood, “Emergent Tangled Graph Representations for
Atari Game Playing Agents”, in, Springer, Cham, Apr. 2017, pp. 64–79. DOI:
10 . 1007 / 978 - 3 - 319 - 55696 - 3 _ 5. [Online]. Available: http : / / link .
springer.com/10.1007/978-3-319-55696-3_5.

[168] R. Bartle, “Hearts, Clubs, Diamonds, Spades: Players who Suit MUDs”, Jour-
nal of MUD Research, vol. 1, no. 1, p. 19, 1996. DOI: 10.1007/s00256-004-
0875-6. [Online]. Available: http://mud.co.uk/richard/hcds.htm.

[169] M. Mateas, Build It to Understand It: Ludology Meets Narratology in Game Design
Space, May 2005. [Online]. Available: http://summit.sfu.ca/item/254.

[170] M. J. P. Wolf, “Genre and the Video Game”, in The Medium of the Video
Game, 2002, ch. 6, ISBN: 978-0292791503. [Online]. Available: http://www.
robinlionheart.com/gamedev/genres.xhtml.

https://www.worldcat.org/title/artificial-intelligence-a-modern-approach/oclc/359890490
https://www.worldcat.org/title/artificial-intelligence-a-modern-approach/oclc/359890490
http://dx.doi.org/10.1007/978-3-319-55696-3_5
http://link.springer.com/10.1007/978-3-319-55696-3_5
http://link.springer.com/10.1007/978-3-319-55696-3_5
http://dx.doi.org/10.1007/s00256-004-0875-6
http://dx.doi.org/10.1007/s00256-004-0875-6
http://mud.co.uk/richard/hcds.htm
http://summit.sfu.ca/item/254
http://www.robinlionheart.com/gamedev/genres.xhtml
http://www.robinlionheart.com/gamedev/genres.xhtml

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Motivations
	Objectives
	Achievements
	List of Publications
	Thesis Outline

	Literature Review
	Game Design
	Research on Game Genres and Mechanics
	Definitions of Balance

	Genetic Algorithms
	Genetic Programming
	Synthetic Problems
	OneMax
	Trap Function

	Multi-objective Optimisation
	Surrogate Models and Fitness Prediction

	Machine Learning Algorithms
	Neural Networks
	Decision Trees
	k-Nearest Neigbours

	Games and Computational Intelligence
	Monte-Carlo Tree Search
	Goal Oriented Action Planning
	Automated Game Design
	Solving Games
	Believable Agents

	Balance Through the Use of Computational Intelligence
	e-Sports
	Code

	Games Targeted During the Research
	Ms. Pac-Man
	Introduction
	Interfacing with Ms. Pac-Man
	Research on Ms. Pac-Man

	StarCraft
	Introduction
	Interfacing with StarCraft
	Research on StarCraft

	TORCS
	Introduction
	Interfacing with TORCS

	ComPet
	Introduction
	Interfacing with ComPet

	Genesis Dei

	Balance Specification Language
	Introduction
	Describing Elements to be Changed
	Evaluating Success
	Available Evaluators
	Final Score

	Communicating with the Games
	Extended Backus-Naur Notation

	Genetic Algorithms for Video Game Parameter Balance
	Introduction
	Ms. Pac-Man Experiments
	Environment
	Fitness Evaluation
	Genetic Algorithm
	Choosing Weights
	Selecting the Number of Games Played

	Experiments
	Results
	Exploratory Run
	Testing GA Parameter Configurations
	Testing Different Values for Weights for Fitness Components

	StarCraft Experiments
	Environment
	Fitness Evaluation

	Experiments
	Results
	Completely Nullifying the ZZZKBot
	Preliminary Balancing of the ZZZKBot Strategy
	Balancing ZZZKBot Using Optimised GA Parameters

	TORCS Experiments
	Environment
	Fitness Evaluation
	Genetic Algorithm

	Experiment
	Results

	Discussion
	Summary

	Fitness Approximation for Faster GA-Based Game Balancing
	Introduction
	Pipeline
	Approximator Integration
	Neural Network
	C4.5 Decision Trees
	k-Nearest Neighbours

	Standard Fitness Function Experiments
	OneMax
	Trap
	Genetic Algorithm
	Neural Network
	Experiments
	OneMax Results
	Trap Results

	Ms. Pac-Man Experiments
	Environment
	Fitness Evaluation
	Genetic Algorithm
	Choosing the Approximator's Accuracy Threshold
	Choosing the Approximator's Prediction Acceptance Threshold

	Experiments
	Results
	Data
	Overview of Runs on Unoptimised GA Configuration
	Performance of Various Approximators
	Performance of Using Various Accuracy Thresholds
	Performance of Using Various Prediction Thresholds
	Overview of Runs on the Optimised GA Configuration
	Comparing Approximators on Unoptimised GA Parameter Set to Optimised GA Parameter Set

	TORCS Experiments
	Environment
	Experiments
	Results
	Data
	Overview of Runs on Unoptimised GA Configuration
	Performance of Various Approximators
	Performance of Using Various Accuracy Thresholds
	Performance of Using Various Prediction Thresholds
	Overview of Runs on the Optimised GA Configuration
	Comparing Approximators on Unoptimised GA Parameter Set to Optimised GA Parameter Set

	StarCraft Experiment
	Introduction
	Results

	Discussion and Conclusion
	Summary

	Other Applications of Automated Balancing
	Introduction
	Commercial Application of Automated Game Balance with ComPet
	Introduction
	Environment
	Fitness Evaluation
	Genetic Algorithm

	Experiment
	Results

	Evolving Game Agents with Diverse Behaviours
	Introduction
	Motivation
	Existing Ms. Pac-Man Agents

	Methodology
	Pipeline
	Neural Network Agent
	Genetic Algorithm
	Fitness Evaluation
	Experiments

	Results
	Experiment 1: The Strongest Neural Network Evolved
	Experiment 2: A Balanced Neural Network with High Variance
	Experiment 3: A Balanced Neural Network with Low Variance

	Discussion
	Industrial Applications
	Evolving Game Agents

	Summary

	Conclusions and Future Work
	ComPet Example Gauntlet
	Diplomatic Turn-Based Strategy Games
	Introduction
	A Description of DTBG
	Conflicts as a Gameplay Mechanic
	Discussing Potential Player Types
	Leaders (Socializers / Achievers)
	Followers (Explorers)
	Diplomats (Socializers / Explorers)
	Aggressors (Socializers / Killers)
	Warriors (Killers)
	Strategists (Explorers / Achievers)

	Game Design Space
	Discussion

	Aggregate Data for Approximator Experiments
	Introduction

	Bibliography

