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 29 

1. Introduction 30 

Brazil, Russia Federation, India, Indonesia, China and South Africa, six of very promising emerging 31 

national economies, constitute the BRIICS1. The BRIICS not only have significant impacts on global 32 

affairs due to their rapid economic growth, huge population, and large foreign reserves (Chang, 2015; 33 

Wang et al., 2016a; Zaman et al., 2016), but also play a crucial role in the global carbon emissions 34 

mitigation (Azevedo et al., 2018; Dong et al., 2017; Nassani et al., 2017). According to the statistics of 35 

British Petroleum (BP), the carbon dioxide (CO2) emissions of the BRIICS members reached 14,110 36 

million tonnes (Mt) in 2013, which was about two times compared with the CO2 emissions of the BRIICS 37 

members in 2000 (see Fig.1). Moreover, the BRIICS members have emitted over 40% of world carbon 38 

emissions every year since 2009 (BP, 2018).  39 

The substantial carbon emissions have posed a tremendous environmental challenge for the BRIICS 40 

(Azevedo et al., 2018; Sebri and Ben-Salha, 2014; Shahbaz et al., 2016). So far the BRIICS have mainly 41 

attempted to mitigate environmental degradation from two aspects: (1) to accelerate the development of 42 

renewable energy. Renewable energies are cleaner than traditional fossil energies because they emit fewer 43 

greenhouse gas from the perspective of the life cycle assessment (Asdrubali et al., 2015; Odeh and 44 

Cockerill, 2008). As shown in Fig.1, the renewables energies’ consumption in BRIICS kept increasing, as 45 

it raised from 180.7 million tonnes of oil equivalent (Mtoe) in 2000 to 437.3 Mtoe in 2013 with an annual 46 

growth rate of approximate 7.03%. Besides, the percentage of renewables in energy consumption mix of 47 

the BRIICS also kept increasing (see Fig.1). (2) to advance efficiency-enhancing technologies. 48 

Technological innovation, especially environmental-related patents can enhance energy efficiency, thus 49 

reduce carbon emissions (Voigt et al., 2014; Wurlod and Noailly, 2018). The governments of the BRIICS 50 

                                                        
Abbreviations: BP, British Petroleum; BRIICS, Brazil, Russia Federation, India, Indonesia, China and South 

Africa; CEPC, CO2 emissions per capita; Choi, Choi's modified P Unit-Root; CO2, carbon dioxide; DCP, 

domestic credit to private sector; DET, development of environmental-related patents; EKC: Environmental 

Kuznets Curve; EXP, exports; FDI, foreign direct investment; Fisher, Maddala-Wu Unit-Root ;GDP, gross 

domestic production; LLC, Levin-Lin-Chu Unit-Root; Mt: million tonnes; Mtoe, million tonnes of oil 

equivalent; OECD, Organization for Economic Cooperation and Development; OLS, ordinary least square; 

RES: renewable energy supply; SIC, Schwarz information criterion; TWh, terawatt-hours; VECM, vector error 

correction model. 
1 The BRIICS originates from the BRICS (namely Brazil, Russia Federation, India, China and South Africa). 

Typically, the BRICS members are the representatives of the emerging markets. However, Indonesia has 

developed very well recently, and has expressed strong interest in joining the BRICS. Moreover, the OECD 

Environment Database that we use proposes the concept of the BRIICS. Therefore, we choose the BRIICS to 

investigate the impacts of renewable energy, environmental patents and other variables on carbon emission in 

this paper. 
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association encourage the development of environmental patents. Consequently, the number of 51 

environmental patents of the BRIICS kept increasing except for 2013 (see Fig.1). Although there is a slight 52 

decrease in the development of environmental patents in 2013 in the BRIICS, the ratio of the 53 

environmental patents developed by the BRIICS to the world’s total environmental patents kept increasing 54 

from 2% in 2000 to 6.5% in 2013. 55 

 56 

 57 
Fig. 1. BRIICS’s carbon emissions, energy consumption mix and environmental patents from 2000-2013. 58 

Note: Data are obtained from BP (2018) and the OECD Environment database. 59 
 60 

Although the renewable energy consumption and the quantity of environmental patents have 61 

increased during the past year in the BRIICS, the CO2 emissions of the BRIICS countries still raise. 62 

Therefore, an investigation, which explores the impacts of renewable energy and environmental patents 63 

on carbon emissions, should be conducted to help the BRIICS association to enact climate change policies. 64 

Moreover, the traditional panel regression methods applied in the previous literature are usually based on 65 

conditional mean methods. Unlike them, we apply the fixed-effect panel quantile regression method 66 

proposed by Koenker (2004). As far as we know, no empirical studies have applied the fixed-effect panel 67 

quantile regression method to study the carbon emissions issues in the BRIICS countries. Given these 68 

motivations, this study investigates the impacts of renewable energy and environmental patents on carbon 69 

emission of the BRIICS association by using the annual data from 2000 to 20132.  70 

This study contributes to the related literature from two aspects: Firstly, it applies the fixed-effect 71 

panel quantile regression method to investigate the impacts of renewable energy supply, environmental 72 

patents and other control variables on CO2 emissions in the BRIICS countries. By applying this method, 73 

                                                        
2 The data for environmental patents are available up to 2013. 
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the problems caused by the overlook of individual heterogeneity and distributional heterogeneity can be 74 

solved; moreover, the different effects of the determinant factors across the CO2 emissions quantiles can 75 

be captured. Secondly, it examines the impacts of environmental patents on CO2 emissions. When 76 

exploring the decisive factors of CO2 emissions, the existing literature focuses on economic growth, energy 77 

consumption, renewable energy consumption, foreign direct investment, natural gas and so on, but 78 

previous studies neglect technology. To fill this gap, this paper investigates the impacts of environmental 79 

patents on carbon emissions. 80 

The remainder of this paper is arranged as follows. Section 2 summarizes the related literature. 81 

Section 3 presents the data and empirical methodology adopted in this study. Section 4 describes the 82 

empirical results. Section 5 discusses the meaning of these results. Section 6 concludes this paper and 83 

provide relevant policy recommendations. 84 

2. Literature review  85 

2.1 The carbon emission and its decisive factors 86 

The first proposition about the relationship between carbon emission and its decisive factors is 87 

proposed by Kuznets (1955), and the proposition is the Environmental Kuznets Curve (EKC) hypothesis. 88 

In the EKC hypothesis, an inverse U-sharped relationship between CO2 emissions and economic growth 89 

(usually depicted by gross domestic production, GDP) was proposed by Kuznets. Later on, several scholars 90 

explored the effects of the economic growth on CO2 emissions and tested the validity of the EKC 91 

hypothesis via empirical studies, such as Selden and Song (1994), Holtz-Eakin and Selden (1995) and 92 

Dinda and Coondoo (2006). 93 

Several other determinant factors may affect carbon emissions. These factors include electricity 94 

consumption (Cowan et al., 2014), energy consumption (Antonakakis et al., 2017; Wang et al., 2016b), 95 

natural gas consumption (Dong et al., 2018; Li and Su, 2017), renewable energy consumption (Cheng et 96 

al., 2018; Gozgor, 2018; Sarkodie and Adams, 2018), nuclear energy consumption (Baek, 2016), 97 

agriculture (Jebli and Youssef, 2017; Liu et al., 2017a), foreign direct investment (Sarkodie and Strezov, 98 

2019; Zhu et al., 2016), trade openness (Hu et al., 2018; Piaggio et al., 2017), transport service (Nassani 99 

et al., 2017), lag of carbon emission (Azevedo et al., 2018), urbanization (Wang et al., 2016a), finance 100 

(Nassani et al., 2017) and so on. 101 
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These studies explored different determinant factors of carbon emissions, and provided related policy 102 

recommendations: (1) to promote the development of renewable energy. Wang et al. (2016b) and Dong et 103 

al. (2018)suggested that China should develop renewable energy to reduce emissions. Sarkodie and Adams 104 

(2018) recommended that South Africa should diversify its energy portfolio by developing renewable 105 

energy. (2) to develop sustainable agriculture. Liu et al. (2017a) suggested that the 4 selected ASEAN 106 

countries should develop sustainable agriculture in mitigate CO2 emissions. (3) to promote the 107 

development of the service industry. Sarkodie and Adams (2018) and Wang et al. (2016a) proposed that 108 

the governments should shift their economies to a service-oriented economy. 109 

However, the development of environmental patents, which benefits carbon emissions reduction, is 110 

usually neglected in previous studies. Few empirical studies examine the influences of environmental 111 

patents on carbon emissions by applying econometric methods. Voigt et al. (2014) studied the effects of 112 

technology improvement on the reduction of energy intensity, but they applied Logarithmic mean Divisia 113 

index decomposition method. Wurlod and Noailly (2018) investigated the contribution of environmental 114 

patents to the decrease of carbon emissions by estimating a translog cost function, which is based on the 115 

industry’s production function. Unlike them, we applied the fixed-effect panel quantile regression method 116 

to evaluate the impacts of environmental patents for the BRIICS countries. 117 

2.2 The methodologies applied in studies about the carbon emissions and its decisive factors 118 

The methodologies employed in previous literature is usually based on conditional mean methods, 119 

such as ordinary least square (OLS) (Azevedo et al., 2018), panel fully modified OLS (Hu et al., 2018), 120 

dynamic OLS (Hu et al., 2018), panel fixed-effect regression (Nassani et al., 2017), vector error correction 121 

model (VECM) (Dong et al., 2018; Liu et al., 2017a; Piaggio et al., 2017), autoregressive distributed lag 122 

model (Gozgor, 2018; Sarkodie and Adams, 2018), bootstrap panel causality (Cowan et al., 2014), panel 123 

vector autoregression (Antonakakis et al., 2017), and vector auto-regression (Li and Su, 2017). 124 

Regarding the carbon emission of the BRICS countries, several scholars applied different 125 

econometric methods to explore the impacts of different determinant variables. Azevedo et al. (2018) 126 

divided the BRICS countries into two groups and applied the OLS method to investigate the impacts of 127 

the lag of carbon emissions. They found that individual heterogeneity existed in the BRICS members. 128 

Wang et al. (2016a) applied a panel Granger causality method proposed by Canning and Pedroni (2008) 129 

to study the relationship between urbanization and carbon emissions. Cowan et al. (2014) applied bootstrap 130 
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panel causality methodology to explore the causal effect of electricity consumption on carbon emissions. 131 

Dong et al. (2017) employed a VECM to investigate the relationship among CO2 emissions, renewable 132 

energy and natural gas consumptions. Nassani et al. (2017) used panel fixed-effect regression method to 133 

examine the impacts of finance, transport, energy and growth factors. Sebri and Ben-Salha (2014) applied 134 

the autoregressive distributed lag model and VECM to investigate the causal relationship among economic 135 

growth, renewable energy consumption, carbon emissions and trade openness. In summary, previous 136 

studies about the BRICS countries usually employed the conditional mean method and did not investigate 137 

the impacts of environmental patents on carbon emissions. 138 

However, conditional mean methods can only provide the mean estimation results for the whole panel, 139 

and fail to provide a whole picture about the relationship between carbon emissions and related decisive 140 

factors. Moreover, conditional mean methods neglect the individual heterogeneity and distributional 141 

heterogeneity of the panel data (Koenker, 2004; Sarkodie and Strezov, 2019; Zhu et al., 2016); therefore, 142 

they may lead to biased regression results because they ignore both the individual heterogeneity and 143 

distributional heterogeneity (Cheng et al., 2018; Zhu et al., 2016). Unlike the conditional mean methods, 144 

the panel quantile regression method can estimate the coefficients for different quantiles. Only a few 145 

studies applied panel quantile regression methods (Cheng et al., 2018; Sarkodie and Strezov, 2019; Zhu et 146 

al., 2016). Cheng et al. (2018) concentrated on the impacts of non-fossil energy, while Sarkodie and 147 

Strezov (2019) and Zhu et al. (2016) focused on the impacts of foreign direct investment. Unlike them, in 148 

order to thoroughly investigate the impacts of renewable energy supply, environmental patents and other 149 

control variables by considering the individual heterogeneity and distributional heterogeneity, we employ 150 

the panel quantile regression method proposed by Koenker. 151 

3. Data and Methodology  152 

3.1. Data 153 

To investigate the impacts of renewable energy supply, environmental patents and other variables on 154 

the CO2 emissions, we collect data from the World Development Indicators (World Bank, 2018) and the 155 

Organization for Economic Cooperation and Development (OECD) Environment Database (OECD, 2018) 156 

from 2000 to 2013 for the BRIICS members. The sample size is 84. Appendix A summarized the seven 157 

variables used in this study, namely CO2 emissions per capita (denoted by CEPC), renewable energy 158 
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supply (denoted by RES), development of environment-related technologies (denoted by DET), GDP per 159 

capita (denoted by GDP), exports of goods and services (denoted by EXP), foreign direct investment 160 

(denoted by FDI) and domestic credit to private sector (denoted by DCP).  161 

CO2 emissions per capita (CEPC) represents the units of CO2 emissions from the combustion of 162 

primary energy (such as coal, crude oil, natural gas and other fuels) divided by population. Fig. 1a depicts 163 

the time series of the CEPC (after logarithm) for the six BRIICS countries. The CEPC of Russia is the 164 

highest among the six BRIICS countries, while India produces the lowest CEPC. Fig.1a indicates that the 165 

distributions of CEPC in different countries are diverse. 166 

Renewable energy supply (RES) is denoted as the ratio of renewable energy supply to the aggregate 167 

primary energy supply. Renewable energies include geothermal, solar energy, combustible renewables, 168 

wind and so on. Fig. 1b reveals the time series of the RES (after logarithm) for the six BRIICS countries. 169 

Overall, Brazil, Indonesia and India have higher RES than China, Russia and South Africa. According to 170 

OECD environmental database, the average ratio of renewable energy supply to the primary energy supply 171 

in Brazil was approximate 42.0% from 2000 to 2013, the ratios in Indonesia and India were about 35.7% 172 

and 31.3%, respectively. However, the ratios of renewable energy supply in China, Russia and South 173 

Africa were much less, and were only about 13.7%, 2.73% and 10.9%, respectively. 174 

Development of environment-related technologies (DET) represents creative activity. Specifically, it 175 

depicts the patent which belongs to environment-related technological domains, including environmental 176 

management, water-related adaptation, and climate change mitigation technologies. Patent counts are used 177 

to represent the innovative activity in previous literature (Hagedoorn and Cloodt, 2003; Popp, 2005; 178 

Wurlod and Noailly, 2018). The number of environment-related inventions is expressed as items per 179 

million residents (higher-value inventions/million persons). Fig. 1c shows the time series of the DET (after 180 

logarithm) for the six BRIICS countries. As shown in Fig. 1d, the DET in Russia and South Africa was 181 

kept at a high level during our sample period, while the DET in China and India was at a low level initially 182 

but kept increasing rapidly. 183 

GDP per capita (GDP) measures a country’s economic wealth of the population of a nation and is 184 

expressed at constant 2010 USD PPP prices. GDP per capita also implies the economic growth of a nation. 185 

Moreover, economic growth is widely recognized as an essential factor for CO2 emission in previous 186 

research (Kuznets, 1955; Sarkodie and Strezov, 2019; Selden and Song, 1994). Fig. 1d shows the series 187 

of the GDP (after logarithm) for the six BRIICS countries. Russia is the wealthiest country, while India is  188 
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 189 

    
(a) carbon emission per capita (b) renewable energy supply (c) development of environmental patents (d) GDP per capita 

   

 

(e) exports of goods and services (f) foreign direct investment (g) domestic credit to private sector  

Fig.2. The trends of the CEPC, RES, DET, GDP, EXP, FDI and DCP in the six BRIICS countries over 2000–2013 (after logarithm). 190 
 191 
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the poorest county among BRIICS. 192 

Exports of goods and services (EXP) denotes the total value of all goods and services which are sold 193 

to the other countries. The EXP is used to reveal the role of international trade in a nation; it influences a 194 

nation’s carbon emissions (Hu et al., 2018; Piaggio et al., 2017). Therefore, it is used as a control variable 195 

in this study. Fig. 1e reveals the time series of the EXP (after logarithm) for the BRIICS countries. As 196 

shown in Fig. 1e, the EXP is very important for the BRIICS countries as the EXP accounted a large percent 197 

in their GDP. 198 

Foreign direct investment (FDI) measures the inward investment volumes provided by non-resident 199 

investors. It affects the carbon emissions of a nation: (1) In the pollution heaven hypothesis, the FDI may 200 

aggravate the carbon emissions as the host countries welcome any kinds of investment, including the 201 

investment which may cause serious pollutions. (2) In the halo effect hypothesis, the FDI may mitigate 202 

the carbon emissions because the host countries can introduce environmental-friendly technologies 203 

(Sarkodie and Strezov, 2019; Zhu et al., 2016). Considering the impacts of the FDI, we use it as another 204 

control variable in this study. The time series of the FDI (after logarithm) for the six BRIICS countries are 205 

depicted in Fig. 1f. Overall, the fluctuation of the FDI flows is large. Compared with India, Indonesia and 206 

South Africa, Brazil, Russia and China have more FDI volumes. 207 

Domestic credit to private sector (DCP) represents the value of domestic funds lent to the private 208 

sector by financial corporations, representing a country's domestic financial investment. Following 209 

Nassani et al. (2017), we use DCP as another control variable in our study. The time series of the DCP 210 

(after logarithm) is depicted in Fig. 1g. The DCP in China and South Africa is larger than the DCP in other 211 

BRIICS countries. 212 

Before conducting the empirical analysis, all variables are transformed into natural logarithms. Table 213 

1 presents a summary of the statistical description for the seven variables, including the minimum value, 214 

maximum value, 25th quantile, 75th quantile, mean value, standard deviation, skewness, kurtosis and 215 

Jarque–Bera test. The skewness values and the kurtosis values in Table 1 indicate that all the seven 216 

variables are not normally distributed. Moreover, the results of Jarque–Bera statistical test also imply that 217 

these series depart from normal distributions (except GDP). Overall, the results imply that the OLS method 218 

is not suitable for these series, providing supports for the panel quantile regression methods we apply. 219 

Table 1. Summary statistics. 220 
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Variable ln(CEPC) ln(RES) ln(DET) ln(GDP) ln(EXP) ln(FDI) ln(DCP) 

Minimum 6.7503  0.8810  0.0000  7.8572  2.3212  0.5844  -0.8911  

Maximum 9.3257  3.8243  0.9933  10.0771  3.7856  6.3016  2.1949  

1. Quartile 7.3095  2.3657  0.0930  8.6724  3.0341  3.8345  1.4214  

3. Quartile 8.9534  3.5636  0.5466  9.4570  3.4184  5.1977  1.8642  

Mean 8.0527  2.7877  0.3232  9.0775  3.1700  4.5080  1.6039  

Stdev 0.8736  0.9531  0.2560  0.5848  0.3604  1.0055  0.4019  

Skewness 0.1455  -0.7992  0.4457  -0.3491  -0.8179  -0.5551  -3.2555  

Kurtosis -1.6084  -0.6456  -0.9565  -0.7481  -0.3934  1.2901  16.661  

Jarque–Bera 8.9859∗∗∗  10.481∗∗∗  5.7624∗∗  3.4512  10.089∗∗∗  11.274∗∗∗  1181.8∗∗∗  

*significant at 10% level 

**significant at 5% level 

***significant at 1% level 

3.2. Panel quantile regression 221 

In this subsection, we briefly introduce a fixed-effect panel quantile regression model proposed by 222 

Koenker (2004). Fixed-effect and separate disturbance terms are considered in this panel quantile 223 

regression model. This panel quantile regression method is different from another panel quantile 224 

regression method applied by Sarkodie and Strezov (2019). The panel quantile method applied by Sarkodie 225 

and Strezov does not consider the fixed-effect and assumes a non-separable disturbance term in the model. 226 

In general, the conditional mean regression method can provide unbiased results if the error follows 227 

the normal distribution. However, the normality assumption is hardly satisfied in empirical studies. As 228 

mentioned in Section 3.1, the variables in this study do not conform to the normality assumption. In this 229 

case, the conditional mean regression may yield biased coefficients, or fails to provide reliable 230 

relationships (Ren et al., 2019; Zhu et al., 2016). Moreover, individual heterogeneity is also neglected in 231 

the conditional mean regression method. Therefore, in order to overcome these shortcomings of the 232 

conditional mean regression method, the quantile regression method is proposed by Koenker and Bassett 233 

(1978), and is adopted by many scholars. 234 

The fixed-effects panel quantile model is expressed as: 235 

 𝑄𝑌𝑖,𝑡(𝜏|𝑋𝑖,𝑡) = 𝛼(𝜏)′𝑋𝑖,𝑡 + 𝛽𝑖 , 𝑖 = 1,… ,𝑁, 𝑡 = 1,… , 𝑇 (1) 236 

where 𝑌𝑖,𝑡  denotes the dependent variables (CEPC), 𝑋𝑖,𝑡  represents the independent variables (RES, 237 

DET, GDP, EXP, FDI and DCP), 𝛼(𝜏) denotes the unknown coefficients, 𝛽𝑖 represents the unobserved 238 

individual effects. 𝑖 denotes the BRIICS countries, 𝑡 denotes the year. Specifically, the model in this 239 

paper is: 240 
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𝑄𝑌𝑖,𝑡(𝜏|𝑋𝑖,𝑡) = 𝛼1,𝜏RES𝑖,𝑡 + 𝛼2,𝜏DET𝑖,𝑡 + 𝛼3,𝜏GDP𝑖,𝑡+𝛼4,𝜏EXP𝑖,𝑡 + 𝛼5,𝜏FDI𝑖,𝑡 + 𝛼6,𝜏DCP𝑖,𝑡 + 𝛽𝑖 , 241 

𝑖 = 1,… ,𝑁, 𝑡 = 1,… , 𝑇   (2) 242 

The main problem about estimating model (2) is that traditional linear approaches are unfeasible in 243 

the quantile regression model. To address such problems, Koenker (2004) introduced a penalty term in the 244 

minimization process, which can eliminate unobserved fixed-effects3. Compared with other methods, this 245 

method has two advantages: (1) it can control the variability caused by a lot of estimated individual 246 

coefficients; (2) it can effectively reduce the number of estimated parameters. Following Koenker, we 247 

estimate Equation (2) by using the specific model as follows:  248 

argmin
𝛼

∑∑∑𝑤𝑘𝜌𝜏𝑘{𝑌𝑖,𝑡 − 𝛼1,𝜏RES𝑖,𝑡 − 𝛼2,𝜏DET𝑖,𝑡 − 𝛼3,𝜏GDP𝑖,𝑡−𝛼4,𝜏EXP𝑖,𝑡 − 𝛼5,𝜏FDI𝑖,𝑡

𝑇

𝑡=1

𝑁

𝑖=1

𝐾

𝑘=1

249 

− 𝛼6,𝜏DCP𝑖,𝑡 − 𝛽𝑖} + 𝜇∑|𝛽𝑖|

𝑁

𝑖=1

 250 

𝑖 = 1,… ,𝑁, 𝑡 = 1,… , 𝑇   (3) 251 

where 𝜌𝜏(𝑦) = y(𝜏 − 𝟏𝑦<0) is the traditional check function, 𝟏𝐴 is the indicator function of set A. 𝑌𝑖,𝑡 252 

denotes the carbon dioxide emission per capita in country i at time t. K is the index for quantiles, and 𝑤𝑘 253 

(which equals to 1 𝐾⁄ ) is the weight of k-th quantile, controlling the relative importance of different 254 

quantiles in this estimation (Alexander et al., 2011; Lamarche, 2011; Zhu et al., 2016). 𝜇 is the tuning 255 

parameter to control the individual effects. Like Damette and Delacote (2012) and Zhu et al. (2016), we 256 

assume that 𝜇 equals to 1 in this paper. 257 

4. Empirical results and discussion 258 

4.1. Panel unit root test  259 

Before estimating the coefficients, we use several panel unit root tests to check whether the variables 260 

are stationary. To be specific, these tests consist of the Levin-Lin-Chu Unit-Root (denoted as LLC) Test 261 

(Levin et al., 2002), Choi's modified P Unit-Root (represented by Choi) Test (Choi, 2001), Maddala-Wu 262 

Unit-Root (denoted as Fisher) Test (Maddala and Wu, 1999), Hadri Test (Hadri, 2000), and IPS test (Im 263 

                                                        

3 Koenker (2004) consider 𝑁 = 5 in the finite sample behavior of the penalized quantile regression and 

get accurate estimator. In this research, our sample contains 6 countries (𝑁 = 6), which is similar to the 

monte carlo simulation in Koenker (2004). 
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et al., 2003). The results of these panel unit root tests are listed in Table 2, and the results indicate that all 264 

the variables are stationary at levels. Therefore, these is no need to conduct these tests at first difference 265 

and to conduct cointegration test. We conduct the panel regression model and panel quantile regression 266 

model at levels. 267 

 

Table 2. Results of panel unit root tests. 268 

Variable ln(CEPC) ln(RES) ln(DET) ln(GDP) ln(EXP) ln(FDI) ln(DCP) 

LLC -4.2301∗∗∗ -2.8789∗∗∗ -3.273∗∗∗ -2.8576∗∗∗ -2.9053∗∗∗ -3.4056∗∗∗ -2.4639∗∗∗ 

Choi 12.465∗∗∗ 2.5694∗∗∗ 10.751∗∗∗ 2.4332∗∗∗ 13.399∗∗∗ 4.8911∗∗∗ 16.828∗∗∗ 

Fisher 65.96∗∗∗ 38.128∗∗∗ 64.67∗∗∗ 93.651∗∗∗ 77.643∗∗∗ 35.961∗∗∗ 94.438∗∗∗ 

Hadri  15.521∗∗∗ 13.197∗∗∗ 12.013∗∗∗ 9.414∗∗∗ 5.8102∗∗∗ 14.508∗∗∗ 14.664∗∗∗ 

IPS -2.329∗∗∗ -2.2827∗∗∗ -3.3844∗∗∗ -3.4959∗∗∗ -3.5094∗∗∗ -3.518∗∗∗ -3.3758∗∗∗ 

Note: The maximum number of lags is set to four. The Schwarz information criterion (SIC) is used to select 

the lag length. 

*significant at 10% level 

**significant at 5% level 
***significant at 1% level 

4.2. Panel regression results  269 

To compare the OLS regression method with the panel quantile regression method, this paper first 270 

conducts three conditional mean regression methods – the pooled OLS model, the OLS one-way fixed-271 

effect model and the OLS two-way fixed-effect model. The regression results are presented in Table 3, 272 

indicating almost all the coefficients in our model are statistically significant at 10% level. 273 

Table 3. OLS regression results 274 

Variable Pooled OLS OLS one-way fixed-effect OLS two-way fixed-effect 

Intercept 2.0864∗∗∗ 4.6812∗∗∗ 7.3437∗∗∗ 
 (0.4554) (0.9362) (1.5119) 

ln(RES) -0.5382∗∗∗ -0.4787∗∗∗ -0.5967∗∗∗ 
 (0.0274) (0.1128) (0.1317) 

ln(DET) 0.1712 0.1290∗ 0.2638∗∗∗ 
 (0.1137) (0.0712) (0.0900) 

ln(GDP) 0.6396∗∗∗ 0.5152∗∗∗ 0.2703∗∗ 
 (0.0461) (0.0842) (0.1336) 

ln(EXP) 0.1682∗∗∗ 0.1071∗∗∗ 0.0940∗∗ 
 (0.0581) (0.0372) (0.0469) 

ln(FDI) -0.1160∗∗∗ 0.0059 0.0029 
 (0.0255) (0.0129) (0.0157) 

ln(DCP) 0.4034∗∗∗ -0.0957∗∗ -0.1209∗∗ 
 (0.0340) (0.0419) (0.0460) 

Figures in parentheses are standard error. 

*significant at 10% level 

**significant at 5% level 

***significant at 1% level 
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 275 

The relationships between RES and CEPC in the three conditional mean regression models are 276 

presented in Table 3. In these three models, RES has a negative impact on carbon emissions: one more 277 

unit of RES reduces CEPC by 0.5382, 0.4787 and 0.5967 unit, respectively. The results imply that 278 

renewable energy is beneficial for carbon mitigation. This effect is also observed by Nassani et al. (2017) 279 

and Dong et al. (2017), who confirm that renewable energy can reduce carbon emissions in BRICS. 280 

Moreover, the results also coincide with Liu et al. (2017a), who confirms that renewable energy can reduce 281 

carbon emission in Indonesia. 282 

The impact of DET on CO2 emissions is positive in the three conditional mean regression models 283 

(see Table 3). Specifically, one more unit of DET increases CEPC by 0.1712 unit in the pooled OLS model, 284 

but the impact is not significant. However, in the OLS one-way fixed-effect model and OLS two-way 285 

fixed model, one more unit of DET significantly increases CEPC by 0.129 and 0.2638 unit, respectively. 286 

Thus, we find an increasing effect of DET on the CEPC in the three conditional mean regression model, 287 

indicating that the development of environmental patents increases carbon emissions in the BRIICS 288 

countries. 289 

Moreover, the positive impacts of GDP and EXP on carbon emission are evidenced in Table 3. These 290 

results are supported by Dong et al. (2017), who prove that GDP has a positive impact on carbon emission 291 

in BRICS, but contrary to Hu et al. (2018), who confirm a negative impact of exports on carbon emission 292 

in 25 developing countries including the six BRIICS countries. 293 

With regards to FDI and DCP, the results of the three conditional mean regression method are mixed. 294 

To be specific, a significant negative effect of FDI on the CO2 emissions is observed in the pooled OLS 295 

model, while an insignificant positive impact of FDI on the carbon emissions is presented in the OLS one-296 

way and two-way fixed-effect model. As for DCP, a significant positive impact is evidenced in the pooled 297 

OLS model, while a significant negative impact is provided in the OLS one-way and two-way fixed-effect 298 

model. One possible explanation for the inconsistent results is that the OLS method neglects the individual 299 

heterogeneity and distributional heterogeneity in the panel data (Cheng et al., 2018; Zhu et al., 2016). 300 

Therefore, the panel quantile regression method should be used to provide a more explicit relationship 301 

between carbon emissions and the decisive factors. 302 

4.3. Panel quantile regression results  303 
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In this subsection, we use the panel quantile regression method to reflect the limitation of the 304 

conditional mean regression method. The heterogeneous impacts of RES, DET, GDP, EXP, FDI and DCP 305 

on the CEPC are estimated with the fixed-effect panel quantile regression method and presented in Table 306 

4 and Fig. 3. The results are reported for the 5th, 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, 90th and 307 

95th percentiles of the conditional carbon dioxide emission per capita. The regression results in Table 4 308 

and Fig. 3 reveal that the impacts of various factors on CEPC are heterogeneous. 309 

The impact of renewable energy supply on carbon dioxide emission per capita is heterogeneous and 310 

significant at 1% level. The ln(RES) row of Table 4 demonstrates that RES decreases CEPC in all quantiles, 311 

but the impacts of RES on CEPC are asymmetric through different quantiles. To be specific, the 312 

coefficients of RES have a decreasing trend in different quantiles, from -0.419 in the 10th quantile to -313 

0.601 in the 95th quantile. In other words, the mitigation impacts of RES on CEPC increase across the 314 

quantiles. The aggregate effect4 of RES on CPEC is consistent with the conditional mean regression 315 

results in Table 3. 316 

The impact of the development of environmental patents on CO2 emission per capita is heterogeneous. 317 

In the ln(DET) row of Table 4, CEPC increases with a promotion in the development of environmental 318 

patents. Moreover, the impacts of DET on CEPC have an increasing trend. The coefficients of ln(DET) 319 

increase from 0.0284 in the 5th quantile to 0.3395 in the 80th quantile, then decrease slightly, and reduce 320 

to 0.2518 in the 95th quantile. However, only the coefficient in the 95th quantile is significant. The 321 

aggregate weight of DET on CEPC agrees with the conditional mean regression results in Table 3.  322 

The impact of GDP per capita on carbon emission per capita is clearly heterogeneous and significant 323 

at 1% level. The ln(GDP) row in Table 4 shows that GDP increases CEPC at all quantiles, but its impacts 324 

in different quantiles are different. To be specific, the coefficients of ln(GDP) first decrease from 0.76 in 325 

the 5th quantile to 0.6355 at the 60th quantile, and stabilize around 0.6. Nevertheless, the aggregate effect 326 

of GDP on CEPC is in line with the conditional mean regression results in Table 3. 327 

The effect of exports on carbon emissions per capita is heterogeneous. The ln(EXP) row in Table 4 328 

implies that CEPC asymmetrically increases with increasing exports across all quantiles. Specifically, the 329 

impacts are the strongest at the lower quantiles, which was about 0.39, then the impacts decrease from 330 

0.3964 in the 30th quantile to 0.1587 in the 70th quantile, and becomes stable in the upper tail of the 331 

                                                        

4 Aggregate effect (weight) denotes the aggregate impacts of the decisive factors across different CO2 quantiles. 
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conditional CEPC distribution. Moreover, the coefficients are significant for all quantiles except for 5th 332 

and 70th quantiles. The aggregate weight of EXP on CEPC agrees with the regression results in Table 3.  333 

The impact of foreign direct investment on carbon emissions per capita is heterogeneous. The 334 

regression results of the ln(FDI) row in Table 4 indicates that an increase in FDI can lead to a decrease in 335 

CPEC. Again, the impacts are asymmetric, the coefficients increase slightly at the lower quantiles, then 336 

decrease to -0.1329 in the 50th quantile, and increase thereafter. The negative impacts of FDI decrease 337 

slightly at the beginning, then accelerate until the 50th quantile, and decline from the 50th quantile. 338 

Moreover, the coefficients are non-significant at lower quantiles, then become significant at the high 339 

quantiles.The aggregate effect of FDI on CEPC is inconsistent with the results in Table 3. 340 

The impact of domestic financial development on CO2 emissions per capita is heterogeneous and 341 

significant at 1% level. The ln(DCP) row in Table 4 shows that CEPC increases with increasing domestic 342 

credit to the private sector, but the impacts have a declining trend. Specifically, the coefficients decrease 343 

from 0.5346 in the 5th quantile to 0.3471 in the 95th quantile.The aggregate weight of DCP on CEPC is 344 

consistent with the results of OLS regression in Table 3. 345 

In brief, by comparing the results of the three OLS methods and the fixed-effect panel quantile 346 

regression method, we conclude that the panel quantile regression with fixed-effects can provide a 347 

complete relationship about the effects of RES, DET, GDP, EXP, FDI and DCP on CEPC in six BRIICS 348 

countries. These regression results reveal that the decisive factors have clear heterogeneous impacts on 349 

CEPC. In particular, RES reduces CEPC with the strongest effect in the 95th quantile. DET accelerates 350 

CEPC, but only significantly affects the CEPC at the upper tail of the conditional distribution. GDP 351 

enhances CEPC with the strongest effect in the 5th quantile. EXP increases CEPC with an asymmetric 352 

inverted U-sharped impact. FDI declines CEPC, but only significantly influences the CEPC at the medium 353 

and upper of the conditional distribution. DCP raises CEPC with gradually decreasing impacts along with 354 

all the quantiles. 355 

We proceed with a robustness check to further test the validity of the regression results. The 356 

robustness check mainly considers different values for µ. To be specific, we conduct the panel quantile 357 

regression by using different µ, namely 0.1, 0.9 and 2.0. The results are presented in Table 5, in which we 358 

only present the results of RES, GDP and EXP to save space. The results of the three different µ are 359 

consistent with the results presented in Table 4. Therefore, the robustness check indicates our results are 360 

robust and reliable. 361 
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 362 

  

(a) RES (b) DET 

  

(c) GDP (d) EXP 

  
(e) FDI (f) DCP 

Fig. 3. Change in panel quantile regressions coefficients.  363 
Notes: Shaded areas correspond to 95% confidence intervals of quantile estimation. The red dashed line represents the 364 

corresponding OLS estimate with its 95% confidence interval (blue dashed line). 365 
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 366 

Table 4. Panel quantile regression results. 367 

Coefficients Quantiles 
 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 

Intercept -0.5419 -0.7001 -0.1690 0.2270 1.1885 2.0278 2.2388∗∗∗ 2.9352∗∗∗ 2.9294∗∗∗ 2.9701∗∗∗ 2.8134∗∗∗ 
 (-0.3442) (-0.4818) (-0.1177) (0.1673) (0.9139) (1.7609) (2.2010) (3.1136) (3.4353) (3.6308) (3.1453) 

ln(RES) -0.4417∗∗∗ -0.4190∗∗∗ -0.4401∗∗∗ -0.4427∗∗∗ -0.4920∗∗∗ -0.5305∗∗∗ -0.5551∗∗∗ -0.5867∗∗∗ -0.5685∗∗∗ -0.6009∗∗∗ -0.6010∗∗∗ 
 (-5.7749) (-5.8596) (-5.4527) (-5.1478) (-5.8316) (-6.6135) (-7.4367) (-8.2871) (-8.7747) (-10.5518) (-10.2368) 

ln(DET) 0.0284 0.0678 0.0631 0.1593 0.2042 0.2393 0.2183 0.2199 0.3395 0.2808∗ 0.2518∗ 
 (0.1154) (0.2612) (0.2546) (0.6403) (0.8304) (1.0312) (1.0034) (1.1058) (1.9015) (1.9799) (1.9604) 

ln(GDP) 0.7600∗∗∗ 0.7489∗∗∗ 0.7031∗∗∗ 0.6927∗∗∗ 0.6721∗∗∗ 0.6355∗∗∗ 0.6369∗∗∗ 0.5922∗∗∗ 0.5866∗∗∗ 0.5963∗∗∗ 0.6208∗∗∗ 
 (7.9756) (7.5731) (5.7719) (5.2564) (4.9596) (4.9570) (5.5207) (5.8033) (6.6935) (7.4132) (6.8680) 

ln(EXP) 0.3343 0.3858∗ 0.3856 ∗∗ 0.3964∗∗ 0.3068∗ 0.2417∗ 0.2078∗ 0.1587 0.1770∗∗ 0.1668∗∗ 0.1449∗∗ 
 (1.9097) (2.4131) (2.4995) (2.7154) (2.2951) (2.0785) (2.2311) (1.9374) (2.5645) (2.5636) (2.6523) 

ln(FDI) -0.0804∗ -0.0647 -0.0596 -0.0822 -0.1126 -0.1329∗ -0.1283∗ -0.1289∗∗ -0.1258∗∗ -0.1059∗ -0.0961 
 (-2.0532) (-1.3131) (-1.0450) (-1.4440) (-1.8606) (-2.2425) (-2.3167) (-2.5133) (-2.5080) (-1.9856) (-1.5786) 

ln(DCP) 0.5346∗∗∗ 0.5254∗∗∗ 0.5149∗∗∗ 0.4619∗∗∗ 0.4165∗∗∗ 0.3958∗∗∗ 0.3862∗∗∗ 0.3809∗∗∗ 0.3608∗∗∗ 0.3499∗∗∗ 0.3471∗∗∗ 
 (4.3342) (4.5772) (5.9860) (6.2217) (5.7807) (5.8924) (6.4363) (6.8034) (7.3925) (8.6033) (8.9825) 

Note: Numbers in the parentheses represent t-statistics. 

*significant at 10% level 

**significant at 5% level 

***significant at 1% level 
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 369 

Table 5. Robustness analysis: Alternative values of µ. 370 

 Variable Quantiles 
  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 

µ = 0.1 ln(RES) -0.4396 -0.4214 -0.4392 -0.4397 -0.4971 -0.5347 -0.5526 -0.5842 -0.5673 -0.5991 -0.5968 
  (0.0022) (0.0022) (0.0023) (0.0024) (0.0010) (0.0004) (0.0002) (0.0001) (0.0001) (0.0000) (0.0000) 
 ln(GDP) 0.7636 0.7489 0.7045 0.6830 0.6823 0.6412 0.6270 0.5854 0.5877 0.5939 0.6207 

  (0.0003) (0.0005) (0.0014) (0.0024) (0.0023) (0.0026) (0.0016) (0.0010) (0.0008) (0.0006) (0.0005) 

 ln(EXP) 0.3468 0.3896 0.3939 0.4137 0.2998 0.2386 0.2186 0.1659 0.1785 0.1726 0.1509 
  (0.1460) (0.1101) (0.1063) (0.0663) (0.1315) (0.1689) (0.1410) (0.1225) (0.0456) (0.0378) (0.0413) 

µ = 0.9 ln(RES) -0.4417 -0.4190 -0.4401 -0.4427 -0.4920 -0.5305 -0.5551 -0.5867 -0.5685 -0.6009 -0.6010 
  (0.0020) (0.0023) (0.0029) (0.0030) (0.0018) (0.0007) (0.0004) (0.0002) (0.0001) (0.0001) (0.0001) 
 ln(GDP) 0.7600 0.7489 0.7031 0.6927 0.6721 0.6355 0.6369 0.5922 0.5866 0.5963 0.6208 
  (0.0002) (0.0002) (0.0011) (0.0020) (0.0023) (0.0024) (0.0013) (0.0008) (0.0006) (0.0005) (0.0002) 
 ln(EXP) 0.3343 0.3858 0.3856 0.3964 0.3069 0.2417 0.2078 0.1587 0.1770 0.1668 0.1449 
  (0.1262) (0.0824) (0.0866) (0.0584) (0.1001) (0.1173) (0.0951) (0.1223) (0.0616) (0.0375) (0.0607) 

µ = 2 ln(RES) -0.4427 -0.4179 -0.4405 -0.4443 -0.4896 -0.5286 -0.5572 -0.5853 -0.5690 -0.6018 -0.6030 
  (0.0012) (0.0013) (0.0017) (0.0020) (0.0009) (0.0004) (0.0002) (0.0001) (0.0001) (0.0000) (0.0000) 
 ln(GDP) 0.7583 0.7489 0.7025 0.7017 0.6674 0.6309 0.6444 0.5929 0.5861 0.5974 0.6208 
  (0.0003) (0.0004) (0.0014) (0.0015) (0.0020) (0.0019) (0.0009) (0.0005) (0.0004) (0.0004) (0.0004) 
 ln(EXP) 0.3285 0.3840 0.3818 0.3822 0.3101 0.2447 0.1983 0.1608 0.1763 0.1641 0.1421 
  (0.1282) (0.0832) (0.0985) (0.0739) (0.1004) (0.1245) (0.1357) (0.1134) (0.0545) (0.0392) (0.0452) 

Note: Numbers in the parentheses represent p-value. 
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 372 

5. Discussion 373 

5.1. The analysis of renewable energy supply and carbon emissions per capita 374 

All regression results reveal that renewable energy supply has a negative impact on carbon 375 

emissions per capita. This result is consistent with Dong et al. (2017) and Nassani et al. (2017), who 376 

find that renewable energy consumption is negatively related to CO2 emissions. Moreover, this 377 

finding is also similar to Hu et al. (2018) who find that increasing share of renewable energy 378 

contributes to carbon emission reduction in 25 developing countries, which includes the BIIRCS 379 

countries. The life cycle CO2 emissions of renewable energy are much fewer than the counterpart 380 

of fossil energy (Dong et al., 2017). Moreover, all BRIICS countries are promoting the development 381 

of renewable energy. Specifically, the renewable energy production in the BRIICS countries had 382 

increased from 19.72 terawatt-hours (TWh) in 2000 to 300.67 TWh, with an average annual growth 383 

rate of approximate 23.31%. The rapid development of renewable energy strengthens the reduction 384 

effect of renewable energy on carbon emissions. Due to these two reasons, the expansion of 385 

renewable energy can greatly reduce the carbon emissions in the BRIICS countries.  386 

With respect to the heterogeneous impacts of RES, the regression results indicate that the 387 

negative impact of RES is greater for high CEPC quantiles than the counterpart for low CEPC 388 

quantiles. The possible reason may be that the RES has a diminishing marginal effect on CEPC. To 389 

be specific, the high quantiles of CEPC represent the samples with high CEPC. A typical sample is 390 

the Russia Federation. In Russia, the RES only accounted for a small portion of the total energy 391 

supply because oil and gas are very abundant. Meanwhile, the low quantiles depict the samples with 392 

low carbon emissions per capita, like Brazil. Renewable energy takes a crucial position in Brazil’s 393 

energy supply mix. Compared with the Russia Federation, Brazil has already seen the rapid 394 

development of renewable energy. The related equipment and technology are very sophisticated, 395 

even the scale economies in the renewable energy sector may be achieved. However, as the 396 

development of renewable energy sector is still at the early stage in Russia, the most advanced 397 

equipment and techniques can be imported and applied in Russia due to the halo effect of FDI (this 398 

supposition is supported by the negative impacts of FDI). Therefore, the reduction effects of RES 399 

are greater for Russia than that for Brazil. Moreover, along with the development of the renewable 400 
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energy industry, the economies of scale may even enlarge the difference of renewable energy’ 401 

negative impacts. 402 

5.2. The analysis of environmental patents and carbon emissions per capita 403 

Although not all the regression results are statistically significant, all results reveal that the 404 

development of environmental patents has a positive impact on carbon emissions per capita. The 405 

results are counterintuitive. A possible explanation is the lack of environmental regulation. 406 

Environmental regulation, especially market-based regulation, is proved to have significant positive 407 

impacts on the improvement of eco-efficiency (including carbon reduction) (Ren et al., 2018; Zhao 408 

et al., 2015). Moreover, it significantly promotes the development of technologic innovation (Guo 409 

et al., 2017). Thus, environmental regulation is crucial because it is the linkage between carbon 410 

mitigation and technological innovation and can bring environmental-related patents to the market. 411 

Environmental regulation, or the government interface, is recognized as an important policy to make 412 

sure the environmental-related patents can be properly applied (Wang et al., 2012). Apart from the 413 

lack of environmental regulation, there are other factors that impede the diffusion of sophisticated 414 

technologies related to carbon mitigation, like the restriction of technology transmission, the high 415 

application fees of patents and the intellectual property rights (Mensah et al., 2018). In summary, 416 

the obstacles which prohibit the carbon mitigation technologies from being applied all over the 417 

world is the main reason that causes the positive impacts of environmental-related patents on carbon 418 

emissions. 419 

5.3. The analysis of economic growth and carbon emissions per capita 420 

All the regression results indicate that GDP per capita has a positive impact on carbon 421 

emissions per capita. The results are similar to the results of Dong et al. (2017), Hu et al. (2018) and 422 

Sarkodie and Strezov (2019), but contrary to the results of Liu et al. (2017b). The positive impacts 423 

imply that a raise in GDP per capita will lead to more CEPC. The results can be explained by EKC. 424 

According to the EKC hypothesis, economic growth enhances carbon emissions during the 425 

industrialization process of an economy. Specifically, industrialization needs massive natural 426 

resources, especially energy. Excessive consumption of natural resources could cause the ecological 427 
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deficit and serious environmental problems (Sarkodie and Strezov, 2019). While as the economy 428 

continues to grow, the country will experience a period of post-industrialization. In the post-429 

industrial period, environmental protection awareness, laws and regulations and economic structure 430 

towards the tertiary sector could result in a reduction in carbon emissions. 431 

These six BRIICS countries are developing countries and still experience the industrialization 432 

period. The secondary sector, especially the industrial sector, is still one of the driven forces of 433 

economic development in the BRIICS countries. According to the World Bank database, the value 434 

added of industry (including construction) accounted for more than 21.22% of the total GDP in 2013 435 

for the BRIICS countries. Specifically, the value added of industry take more than 40% in China 436 

and Indonesia. During the process from developing countries to developed countries, economic 437 

growth would deteriorate the carbon emissions. This supposition is also supported by the positive 438 

impacts of domestic credit to the private sector on carbon emissions. 439 

5.4. The analysis of exports and carbon emissions per capita 440 

All the regression results reveal that exports have a positive impact on carbon emission per 441 

capita in the BRIICS countries. Our results are contrary to that of Hu et al. (2018), who found a 442 

negative impact of EXP on carbon emissions for 25 developing countries. The possible explanation 443 

is that the BRIICS countries are still located at the low position at the global production chain due 444 

to the lack of sophisticated technology and elaborate design, thus they only manufacture or assemble 445 

products which are designed by other countries (like China, Indonesia and India), or export natural 446 

resources (like Russia and South Africa). During the manufacture process of industrial products and 447 

the exploration process of natural resources, CO2 is emitted in the BRIICS countries, while the 448 

produced products or natural resources are used by the importers (this issue is called the embodied 449 

carbon dioxide emission) (Chen and Chen, 2011; Meng et al., 2018). This kind of export would 450 

cause serious damage to the environment of the BRIICS countries. Therefore, an increase in EXP 451 

in the BRIICS countries would lead to more carbon emissions. 452 

5.5. The analysis of foreign direct investment and carbon emissions per capita 453 

The regression results indicate that foreign direct investment (FDI) has a negative impact on 454 
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carbon emission per capita. The results are consistent with Sarkodie and Strezov (2019), who 455 

investigated the FDI’s impact on carbon emissions in developing countries. Besides, the results are 456 

also supported by Atici (2012) and Zhu et al. (2016), who found FDI has a negative impact on 457 

carbon emissions in the Association of Southeast Asian Countries (which includes Indonesia). The 458 

negative impacts of FDI on the carbon emissions can be explained by the halo effect hypothesis. As 459 

the governments in the BRIICS association pays more attention to environmental problems, they 460 

encourage foreign investors to disseminate their specialized technologies and practical management 461 

skills in the BRIICS countries. Moreover, transnational corporations also tend to transfer their 462 

technologies and management skills to the companies in the host countries, and help them to 463 

mitigate the negative impacts of carbon emissions. Therefore, FDI has a negative impact on carbon 464 

emissions. 465 

5.6. The analysis of domestic credit to the private sector and carbon emissions per capita 466 

The regression results imply that domestic credit to the private sector has a negative impact on 467 

carbon emission per capita. The results are supported by Nassani et al. (2017), who demonstrated 468 

that DCP deteriorated environmental quality in the BRICS countries. One possible explanation is 469 

that the BRIICS members are still experiencing the period of industrialization. Therefore, the 470 

secondary sector plays a crucial role in economic development. However, the development of 471 

secondary sector relied on energy. Meanwhile, the fossil energy accounted for a large proportion in 472 

the primary energy supply mix in the BRIICS countries. Moreover, the DCP is usually applied in 473 

the secondary sector in the BRIICS countries. Therefore, a rise in DCP could lead to larger carbon 474 

emissions. 475 

6. Conclusions and policy recommendations 476 

This study examines the effects of six determinant variables (namely renewable energy supply, 477 

development of environmental patents, economic growth, exports, foreign direct investment and 478 

domestic credit to the private sector) on the CO2 emissions per capita from 2000 to 2013 for the 479 

BRIICS countries. In order to gauge the potential heterogeneous effect between carbon emissions 480 

and its determinant factors, fixed-effect panel quantile regression method is applied in this study. 481 
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The regression results clearly show that the effects of different decisive factors are heterogeneous 482 

across the quantiles. The main findings are shown in Fig. 4. Possible explanations about the 483 

relationship between the six variables and carbon emission per capita are also presented in Fig.4.  484 

 485 

 486 
Fig. 4. Relationships between RES, DET, GDP, EXP, FDI, DCP and CEPC. 487 

Compared with the extant studies about the CO2 emissions of developed countries, some of the 488 

conclusions are similar. Renewable energy can reduce CO2 emissions. Baek (2016) and Cheng et 489 

al. (2018) demonstrated that renewable energy can significantly reduce CO2 emissions in USA and 490 

EU 28 countries, respectively. However, some of the conclusions in this paper are inconsistent with 491 

studies on developed countries: (1) Innovation is crucial to the reduction of CO2 emissions in 28 492 

OECD countries (Mensah et al., 2018). The result is contrary to our conclusions about the 493 

environmental patents. (2) GDP has negative impacts on CO2 emissions in EU 28 countries (Cheng 494 

et al., 2018). The result is not consistent with the conclusions about GDP. 495 

Compared with traditional mean regression methods, the fixed-effect panel quantile method 496 

allows us to gauge the heterogenous impacts of RES, DET, GDP, EXP, FDI and DCP on CEPC. 497 

Specifically, (1) Renewable energy supply reduces carbon emissions per capita, with the strongest 498 

effect in the 95th quantile. (2) Development of environmental patents accelerate carbon emissions 499 

per capita, but only significantly affects the CO2 emissions per capita at the upper tail of the 500 

conditional distribution. (3) GDP per capita enhances CO2 emissions per capita, with the strongest 501 

effect in the 5th quantile. (4) Exports increase carbon emissions per capita with an asymmetric 502 

inverted U-sharped impact. (5) Foreign direct investment declines carbon emissions per capita, but 503 
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only significantly influences the carbon emissions per capita at the medium and upper of the 504 

conditional distribution. (6) Domestic credit to private sectors raises carbon emissions per capita 505 

with gradually decreasing impacts along with all the quantiles. 506 

Based on the findings above, we propose the following policy recommendations: (1) 507 

development of renewable energy. Although the process of industrialization needs plenty of natural 508 

resources, especially energy, the BRIICS countries can accelerate the development of renewable 509 

energy. The development of renewable energy can not only satisfy the energy need of the 510 

industrialization, but also mitigate carbon emissions. (2) Promulgation of environmental regulations. 511 

The BRIICS countries should promulgate environmental regulations to break down the obstacles 512 

which prohibit patents from fully applied in the secondary sectors. Moreover, the BRIICS countries 513 

should issue other policies which can stimulate the invention of environmental-related patents and 514 

accelerate the diffusion of these patents. (3) Adjustment of economic structure. The BRIICS 515 

countries should continue their transition from extensive economies to intensive economies. The 516 

BRIICS countries have realized that they should adjust their economic structure towards energy-517 

intensive industry and service and promote the development of high technology. This strategy can 518 

not only maintain the development of their economies, but also change their roles in the global 519 

supply chain. Moreover, it can reduce carbon emissions. (4) Foreign capital inducement. The 520 

BRIICS countries should continue to introduce environmentally-friendly foreign investment and 521 

high technologies which are related to carbon reduction, such as carbon capture and storage. 522 
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Appendix A 527 

Appendix A. Description of variables. 528 
Abbreviation Variable name Units 

CEPC CO2 emissions per capita kg/person 

RES Renewable energy supply % (of total primary energy 

supply) 

DET Development of environment-related technologies items /person 

GDP GDP per capita 2010 USD/person 
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EXP Exports of goods and services % (of GDP) 

FDI Foreign direct investment 2010 USD/person 

DCP Domestic credit to private sector % (of GDP) 
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