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Abstract 

In this paper, we present two Neural Network based techniques, an adaptive evolutionary 

Multilayer Perceptron (aDEMLP) and an adaptive evolutionary Wavelet Neural Network 

(aDEWNN). The two models are applied to the task of forecasting and trading the SPDR 

Dow Jones Industrial Average (DIA), the iShares NYSE Composite Index Fund (NYC) and 

the SPDR S&P 500 (SPY) exchange traded funds (ETFs). We  benchmark their performance 

against two traditional MLP and WNN architectures, a Smooth Transition Autoregressive 

model (STAR), a moving average convergence/divergence model (MACD) and a random 

walk model. We show that the proposed architectures present superior forecasting and trading 

performance compared to the benchmarks and are free from the limitations of the traditional 

Neural Networks such as the data snooping bias and the time-consuming and biased 

processes involved in optimizing their parameters. 
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1. INTRODUCTION 

The need for forecasting techniques that are able to capture stock market patterns and 

produce profitable trading signals are the driving force behind numerous research papers and 

monographs in financial forecasting. Since the editorials of Charles Dow, several researchers 

and practitioners have developed forecasting methods that appear able to produce profitable 

trading signals. However, critics argue that these results are not genuine and they attribute the 

good performance of forecasting models to data snooping and to luck (see for exampleYang 

et. al. (2008) and Yang et. al. (2010)).   

In this respect, Artificial Neural Networks (NNs) have become a popular tool in most fields 

of finance with a wide range of applications ranging from stock market forecasting to 

bankruptcy and sales prediction (see Andrawis et al. (2011)).  Their ability to capture the 

discontinuities, the nonlinearities and the high complexity found in datasets such as financial 

time series is well documented in the literature (De Gooijer and Hyndman (2006) and Zhang 

et. al. (1998)).  However, their practical limitations and the contradictory empirical evidence 

around their forecasting powers are creating scepticism among practitioners. The selection of 

their parameters, their architecture and their inputs are based to some extent on the 

practitioner’s knowledge or on statistical algorithms (see, amongst others, White (1989), 

Zapranis and Refenes (1999) and Terasvirta et. al. (2005)) which are either only limited to 

the specific architecture of each network or they only search the potential space via a linear 

approach, which limits their effectiveness. In financial applications, these shortcomings have 

led practitioners to alienate NNs, as in one respect their optimization procedures require 

expertise and, to an extent, time-consuming experiments,  whilst their forecasts usually suffer 

from data snooping biases. 



The aim of this paper is threefold: First, we introduce two NN hybrid techniques; an adaptive 

evolutionary Multilayer Perceptron (aDEMLP) and an adaptive evolutionary Wavelet Neural 

Network (aDEWNN). Second, we demonstrate the forecasting and trading superiority of the 

aforementioned NNs over a set of benchmarks that dominate the relevant literature. Third, we 

show that the proposed models are free from any data snooping bias (an effect that might 

explain the contradictory empirical evidence on previous NNs applications in forecasting).  

Overall, the proposed models are able to exploit the superior forecasting power associated 

with the non-linear nature of NNs, while avoiding a complicated and objective NN training 

procedure.  

The combination of ADE with NNs is not new. A handful of applications exist in other 

aspects of science (see for example, Ilonen et.al. (2003) and Chauhan et.al. (2009)). This 

study is the first application of hybrid NN and ADE algorithms in financial forecasting and 

trading. Additionally, compared to previous studies the proposed models of this study are 

fully adaptive. The ADE algorithm is applied in all steps of the NNs optimization and is not 

limited in the training procedure.  

All models are applied to the task of forecasting and trading on the DIA, NYC and SPY ETFs 

from 2 January 2004 to 31 December 2012. Their performance is benchmarked against 

traditional MLP and WNN architectures, autoregressive moving average models (ARMA), a 

Smooth Transition Autoregressive Model (STAR) and a random walk model. In the 

aDEMLP and aDEWNN models, the selection of inputs,  parameter optimization and 

architecture are generated through adaptive Differential Evolution (aDE) algorithms which 

require no practitioner Along similar lines, data snooping occurs when a dataset is used more 

than once for purposes of inference or model selection (White (2000)). In financial 

forecasting applications, data snooping may show superior trading performance which is only 

due to chance. The data snooping bias unfortunately dominates NN financial applications, 



which is caused by the complexity and the large number of parameters that need to be 

optimized in NNs (Zhang and Hu (1998)). In the aDEMLP and aDEWNN architecture, the 

process of the simultaneous optimization of the NN’s structure, parameters and inputs in a 

single optimization procedure averts the data snooping effect and excludes any bias from the 

estimation procedure. 

Several studies have considered the data snooping effect in trading applications. Brock et. al. 

(1992) study two trading rules (a moving average and a trading range break) on the Dow 

Jones Index from 1897 to 1986. The authors, in order to mitigate the data snooping,  utilize a 

very long data series and attach importance to the robustness of results across various non-

overlapping sub-periods for statistical inference. Sullivan et. al. (1999) study 7,846 simple 

trading rules (filters, moving averages, trading range breaks, and channel breakouts),  and 

argue that is possible to find profitable trading strategies that are free from data snooping on 

the DJIA and the S&P 500 indices. The same technical trading rules were studied by Qi and 

Wu (2006) for the FX market. The authors apply White’s (2000) Reality Check (RC) and 

their results indicate that the profitability of their strategies is stronger over the period 1974 to 

1985 but is relatively weak from 1986 to1998. Allen and Karjalainen (1999) use a Genetic 

Algorithm (GA) for the application of technical trading rules on the S&P 500 index and thus 

avoid the data snooping effect. Nevertheless, after considering transaction costs, their rules 

do not earn consistent excess returns over a simple buy-and-hold strategy. Marshall et. al. 

(2008) studied 15 major commodity futures series with over 7,000 trading rules. They found 

no evidence of profitability from their trading strategies after considering the data snooping 

bias. Finally, Harris and Yilmaz (2009) used kernel regression and a high pass filter to 

identify and trade the non-linear trend of several monthly exchange rates, arguing that the 

small set of moving average rules that they use as benchmarks, protect their conclusions from 

the data snooping bias.   



In general, the aforementioned papers consider linear, naive technical models as trading rules. 

However, in more complex, non linear algorithms, the estimation procedures  increase the 

chance of producing results that suffer from estimation biases. More specifically, in the field 

of Artificial Intelligence and financial forecasting, only a handful of applications consider the 

data snooping bias. Fernandez-Rodriguez et. al. (2000) forecast and trade the general index of 

the Madrid Stock Market with NNs. They argue that the long out-of-sample period protects 

their forecasts from the data snooping effect although they do not apply any formal statistical 

test to verify this argument. Jasic and Wood (2004) trade with NNs the S&P 500, DAX, 

TOPIX and FTSE stock market indices,  using a large testing set and scrutinizing the results 

with multiple performance measures, thus reducing the exposure of the models to selection 

bias. However, no formal statistical test is applied to verify the validity of their results. Yang 

et. al. (2008) employ a NN and other regression techniques to examine the potential 

martingale behaviour of Euro exchange rates in the context of out-of-sample forecasts. Their 

results indicate that, while a martingale behaviour cannot be rejected for Euro exchange rates 

with major currencies such as the Japanese yen, British pound, and US dollar, there is 

nonlinear predictability in terms of economic criteria with respect to several smaller 

currencies (such as the Australian dollar, the Canadian dollar and the Swiss franc). In their 

application, the data snooping bias was considered with the RC test. Huck (2010) applies 

NNs and a multi-criteria decision making method in a S&P 100 stock pair trading application 

with positive results, Bekiros (2010) developed a hybrid neurofuzzy system which accurately 

forecasts the direction of the market for 10 of the most prominent stock indices of the US, 

Europe and Southeast Asia, while Wang et. al. (2012) use GA-NN hybrid models to 

successfully forecast the SZII index. However, all the previous three applications do not 

provide any formal statistical test on possible biases on their results and rely on the 

subjectivity of their optimization procedure. Sermpinis et. al. (2012) avoid the data snooping 



approach with a semi adaptive NN algorithm and Yang et. al. (2010) study the predictability 

of eighteen stock indices with NNs and linear models. Their models demonstrate low 

predictability when the data snooping bias was considered. Gradojevic and Gencay (2013) 

apply a fuzzy logic algorithm to reduce the uncertainty embedded in trading strategies. The 

validity of their trading application is verified through a robustness check applied to their 

fuzzy logic model.   

It is worth noting that the previous NN trading applications either discovered the data 

snooping bias in their results (Yang et. al. (2008) and Yang et. al. (2010)) or conducted a 

simple robustness check on their model, but failed to directly test for the data snooping bias 

(Gradojevic and Gencay (2013)). The semi-adaptive NN procedure of Sermpinis et. al. 

(2012) still requires some experimentation from the practitioner while Fernandez-Rodriguez 

et. al. (2000), Jasic and Wood (2004), Bekiros (2010), Huck (2010) and Wang et. al. (2012) 

fail to provide convincing evidence through a formal statistical test. Sullivan et. al. (1999) 

and Marshall et. al. (2008) explore a large universe of trading strategies which might prove  a 

useful academic application on market efficiency, but lacks realism. This is because investors 

are likely to indentify a handful of profitable trading strategies in-sample and apply them out-

of-sample rather than explore the utility of trading strategies that perform badly in the in-

sample period. Lastly, it is worth noting the drawback of the RC test which dominates the 

aforementioned literature. The RC test loses power dramatically when many poor models are 

included in the same test (Hsu et. al. 2010).  This is problematic in applications such as in 

Marshall et. al. (2008) when a large universe of trading strategies is explored, or when some 

strategies greatly underperform on their forecasting task.  

The remainder of the paper is organised as follows: Section 2 describes the dataset used for 

this research and Section 3 provides a brief overview of NNs and explains the aDE 

algorithms, the aDEMLP and aDEWNN models and the benchmark models. The statistical 



and trading evaluation of the proposed models against their benchmarks comprises Section 4 

while Section 5 provides some concluding remarks.  

 

2. Dataset 

In this study, we apply the two NN models to the task of forecasting and trading the 

logarithmic returns of the DIA, NYC and the SPY ETFs, which are designed to replicate the 

Dow Jones Industrial Average, the NYSE Composite and S&P 500 stock market indices 

respectively. In general, ETFs offer investors the opportunity to trade stock market indices 

with very low transaction costs.1 The summary statistics of the three return series are 

presented in Table 1 below. 

 

***Insert Table 1 here*** 

 

As anticipated, the three returns series exhibit skewness and high kurtosis. The Jarque-Bera 

statistic confirms that the three return series are non-normal at the 99% confidence level. 

The proposed models will be evaluated through two forecasting exercises. The periods from 2 

January 2004 to 31 December 2008 and 2 January 2006 to 31 December 2010 will act as 

initial in-samples and the periods from 2 January 2009 to 31 December 2010 and 2 January 

2011 to 31December 2012 will act as out-of-sample periods respectively. That is, the first 

forecasting exercise will include the effects of the recent financial crisis. The parameters of 

the forecasting models will be optimized during the in-sample periods and their performance 

will be validated in the unknown, out-of-sample datasets. This estimation will be rolled 

forward every three months. For example, initially the models will be trained from 

                                                           
1 The transaction costs for the three ETFs tracking their respective benchmarks do not exceed 0.5% per annum 

for medium size investors (see, for instance, www.interactive-brokers.com). 



02/01/2004 to 31/12/2008 and validated from 02/01/2009 to 31/03/2009. Then, the in-sample 

period will be rolled forward over three months (01/04/2004 to 31/03/2009), the parameters 

of the forecasting models will be re-estimated and their performance will be validated from 

01/04/2009 to 31/06/2009. These rolling forward estimations are conducted eight times for 

each forecasting exercise. This is done because, in real world trading environments, 

quantitative traders update the parameters of their trading strategies frequently in order to 

capture any structural breaks in their estimations. 

This training approach is expected to limit the effect of the current economic turbulence on 

our estimations and will therefore increase the performance of our models. Also, the 

relationship between the dependent and the independent variables in our models is allowed to 

time-vary and the rolling forward estimation limits the data snooping bias of our statistical 

benchmarks and adds further validity to the forecasting and trading exercise.  

 

3. Forecasting Models 

3.1 Neural Networks Framework 

Neural networks exist in several forms in the literature. This study focuses on the Multi-

Layer Perceptron (MLP), which is the most popular NN architecture, and the Wavelet Neural 

Network (WNN), which is a NN architecture designed to overcome convergence limitations 

of the MLP Neural Networks.  

 

 

 

3.1.1 MLP 

A standard MLP neural network has three layers and this setting is adapted in the present 

paper as well. The first layer  is referred to as the input layer (the number of its nodes 



corresponds to the number of explanatory variables) and the last layer is referred to as the 

output layer (the number of its nodes corresponds to the number of response variables). An 

intermediary layer of nodes which is also referred to as the hidden layer, separates the input 

from the output layer and its number of nodes defines the amount of complexity the model is 

capable of fitting. In addition, the input and hidden layer contain an extra node, called the 

bias node. The latter has a fixed value of one and serves the same function as the intercept in 

traditional regression models. Normally, each node in one layer has connections to all the 

other nodes in the next layer. The network processes information as follows: the input nodes 

contain the values of the explanatory variables. Since each node connection represents a 

weight factor, the information reaches a single hidden layer node as the weighted sum of its 

inputs. Each node of the hidden layer passes the information through a sigmoid function and 

on to the output layer if the estimated value is above a threshold. The training of the network 

(which is the adjustment of its weights in the way that the network maps the input value of 

the training data to the corresponding output value) starts with randomly initialized weights 

and proceeds by applying a learning algorithm  referred to as the backpropagation of errors 

(Shapiro (2000)). The learning algorithm simply tries to find those weights which minimize  

error function. Since networks with sufficient hidden nodes are able to learn the training data 

(as well as their outliers and their noise) by rote it is crucial to stop the training procedure at 

the right time to prevent overfitting (this is called ‘early stopping’). This is usually achieved 

by dividing the in-sample dataset into two subsets respectively called the training and test 

sets which are used for simulating the available data to fit and tune the model. The network 

parameters are then estimated by fitting the training data using the abovementioned iterative 

procedure (backpropagation of errors). The iteration length is optimised by maximising a 

fitness function in the test dataset. Finally, the predictive value of the model is evaluated by 

applying it to the validation dataset (i.e. the out-of-sample dataset).  



 

3.1.2 WNN 

WNNs are a generalized form of radial basis function feed forward neural networks. Similar 

to simple MLPs they represent a three-layered architecture with only one hidden layer.  In 

contrast to simple MLPs, WNNs use radial wavelets as activation functions to the hidden 

layer whilst using the linear activation function in the output layer. The information 

processing of a WNN is performed as follows. Suppose x=[x1,...xd] to be the input signal, 

where d is the inputs dimensionality, then the output of its j-th hidden neuron is estimated 

using Equation (1). 
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Where jiji td ,, ,
is the wavelet activation function (one of Mexican Hat, Morlet and Gaussian 

wavelet) of the j-th hidden node and di,j and ti,j are the scaling and translational vectors 

respectively. The output of the WNN is computed by estimating the weighted sum of the 

outputs of each hidden neuron using the weights that connect them with the output layer. The 

learning process involves the approximation of the scaling and translational vectors which 

should be used for the hidden layer and of the weights that connect the hidden layer with the 

output. For the approximation of the scaling vector, we used the methodology proposed by 

Zhang and Benveniste (1982) and for the approximation of the translational vectors, we used 

the k-means algorithm (Zainuddin and Pauline (2010)) with k being the number of hidden 

nodes. The weight vector W can easily be computed analytically by computing the following 

equation: 
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(3) 

 

The matrix Ψ is estimated using Equation (1) and the elements of the input, scaling and 

translational vectors. This deterministic method for the weights of a WNN is its stronger 

advantage against MLP NNs which use the backpropagation algorithm for this task and thus 

face the problems of low speed and becoming trapped in local optimal solutions.  

 

3.2 Neural Network Parameterization 

In order to apply a NN to a specific problem, the practitioner needs to parameterize the NN 

architecture. First, the numbers and the nature of the inputs need to be selected and the 

number of hidden nodes in the hidden layer along with the learning rate and the momentum 

(how fast the NN “learns”) need to be chosen. Moreover, the nature of the activation 

functions which are to be used for the hidden and output layers should be selected. In case of 

sigmoid functions, the parameter which determines the gradient of the sigmoid function 

should also be optimized. These characteristics are crucial for the performance of a NN and 

its forecasting capability.  

In the literature, the selection of these parameters comes is estimated using trial and error, 

linear statistical procedures or semi-adaptive non-linear algorithms in subsets of the in-

sample period (see, amongst others, White (1989), Zapranis and Refenes (1999) and 

Terasvirta et. al. (2005)). These procedures require some knowledge of NN modelling from 

the practitioner (as experimentation can be unlimited) and are not widely studied. Overfitting 



of the algorithms, data snooping effects and the overestimation of the results are common 

issues in over- and under-trained NNs. In this paper instead, we apply evolutionary 

optimization algorithms to optimize the parameters of MLP and WNN models. These 

algorithms were developed for this purpose and are designed to be fully adaptive. In order to 

achieve better convergence behavior, the parameter values are adapted during an evolutionary 

process. The adaptive nature of the proposed NN optimization procedures aims to eradicate 

the dangerous and time-consuming trial and error parameterization approach that leads to 

overfitting and data snooping problems and to introduce algorithms that require no 

knowledge of NN modeling from the practitioner.  

 

3.3 Adaptive Differential Evolution  

The differential evolution (DE) algorithm is currently one of the most powerful and 

promising stochastic real parameter optimization algorithms (Das and Suganthan (2011)). As 

all evolutionary algorithms, it starts with a set of randomly generated solutions to the 

examined optimization problem and then it iteratively applies selection, mutation and 

crossover operators until termination criteria are reached. In contrast to genetic algorithms, 

DE is mainly based on a specific mutation operator which perturbs population individuals 

with the scaled differences of randomly selected and distinct population members. This 

mutation operator provides DE with very strong exploitation properties regarding its 

optimization capabilities. Moreover, DE is able to handle continuous gene representation. 

Thus, candidate solutions are represented as strings of continuous variables comprising 

feature and parameter variables. In order to compute the discrete values to optimize (for 

example, the size of the hidden layer) the continuous values were rounded. This property of 

DE enables the silent evolution of its genomes as it differentiates genotype from phenotype. 

Thus, the values of its genes may be altered slightly without affecting the discrete values 



extracted from them. An explanation for this property is that even if the continuous values 

which are stored in the genes of the DE algorithm are slightly altered, this does not 

necessarily mean that this variation with be projected in the discrete values that they encode. 

Another difference between the DE and the classical GA algorithm is that the DE operators 

are applied in a different order. In particular, the mutation operator is initially applied to all 

the chromosomes of the population, then the crossover operator is implemented and finally 

the produced solution is subjected to a selection mechanism. This selection mechanism is not 

a probabilistic one as in the Roulette Wheel Selection mechanism of the GAs, but allows the 

new solution to become a member of the population only if it surpasses the initial solution 

when comparing the fitness values.  

The basic flowchart of the proposed DE algorithm when applied to the optimization of the 

structure and the parameters of the artificial neural networks is presented in Figure 1. 

 

*** insert Figure 1 here*** 

 

The parameters which were optimized with DE were: the size of the hidden layer, the 

activation functions of the hidden and output layers and the momentum and learning rates 

parameters. In case of optimizing the WNNs, the parameters that were optimized were the 

number of hidden nodes and the activation functions in this layer (as the activation function 

for the output layer in WNNs is always the linear one). In both cases, DE also searches for 

the optimal feature subset that should be used as inputs in the NNs. This pool of potential 

predictors (a number of variables that might be related with the forecasting problem) is 

consisted by the first fifteen autoregressive lags of the variables presented in Table 2. 

 

*** insert Table 2 here*** 



 

The DE algorithm will select the optimal set of inputs for the NNs from the 180 potential 

predictors. The parameterization procedure is repeated each time we roll forward our 

estimation. 

As indicated in Figure 1, after the initialization of a population of random solutions 

(population size equal to 30 was used), we estimated their fitness values. The fitness function 

(see Equation (4) below) which would be deployed for both hybrid approaches is specifically 

designed for financial forecasting purposes2.  The higher the fitness (estimated by using the 

proposed fitness function) of a specific model, the better it is considered to be.  

 

Fitness = annualized return – 10* RMSE -0.001*#selected _inputs (4) 

 

The purpose of Equation (4) is twofold. First, it aims to bring a balance between financial 

profitability and statistical accuracy. The root mean squared error factor is multiplied by 10 

so it is on the same level with the annualised return3. The second goal is to reduce the 

complexity of the extracted prediction models (see the last part of Equation (6)). The factor is 

multiplied by 0.001 as in this application the small algorithm complexity is of minor 

importance compared to the financial profitability and the statistical accuracy goals.  

The next step of the proposed hybrid method is the application of the mutation and crossover 

operators to produce new solutions. 

                                                           
2 The financial performance of the proposed models is slightly worse when you consider as fitness function the 

RMSE. The ranking of our best models in trading terms remains the same.  

3 For example for the ADE-WNN model and the DIA series during the 01/07/2004 to 31/03/2011 estimation, the 

annualized return’s highest value found experimentally in-sample was 0.4 while the minimum value found for 

the RMSE was 0.05.  



The mutation operator which is used in our proposed wrapper method: for every population 

member Xi, initially selects three random distinct members of the population (X1,i , X2,i , X3,i) 

and produces a donor vector using the Equation (5): 

 

Vi = X1,i + F *(X2,i –X3,i) (5) 

 

Where F is called the mutation scale factor. 

We apply a binomial crossover operator which combines every member of the population Xi 

with its corresponding donor vector Vi to produce the trial vector Ui, as outlined in Equation 

(6). 
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Where 
]1,0[, jirand

 is a uniformly distributed random number and Cr is the crossover 

rate.  

Next, every trial vector Ui is evaluated and if it suppresses the corresponding member of the 

population Xi, it subsequently takes its position in the population. It is noteworthy that in 

contrast to other meta-heuristic approaches, the population of our approach only improves 

over the course of  the evolutionary process following the principles of the selection operator 

in  the Differential Evolution method. 

The most important control parameters of a DE algorithm are the mutation scale factor F and 

the crossover rate Cr.  Parameter F controls the size of the differentiation quantity which is 

going to be applied to a candidate solution from the mutation operator. Parameter Cr 

determines the number of genes which are expected to change in a population member. 



Several approaches have been developed to control these parameters during the evolutionary 

process of the DE algorithm (see Das and Suganthan (2011)). In our adaptive DE version, we 

deployed one of the most recent promising approaches (Qin et. al. (2009)), which for every 

iteration, it a random value for the F parameter selected from a uniform distribution with 

mean of 0.5 and standard deviation of 0.3 and a random value for the parameter Cr from a 

uniform distribution with mean Crm and standard deviation of 0.1. Crm is initially set to 0.5. 

During the evolutionary process, the Crm is replaced with values that have generated 

successful trial vectors. Thus, this approach replaces the sensitive user-defined parameters F 

and Cr with less sensitive parameters, ie their mean values and their standard deviations.  

The termination criterion is a combination of the maximum number of iterations and a 

convergence criterion. The maximum number of iterations was set to 100 and the 

convergence criterion is satisfied when the mean population fitness is less than 5% away 

from the best population fitness for more than five consecutive iterations.  

 

3.4 Benchmarks 

The performance of the aDE-MLP and aDE-WNN models is benchmarked against traditional 

MLP and WNN architectures, a Smooth Transition Autoregressive model (STAR), moving 

average convergence/divergence models (MACD), a naïve strategy and a random walk 

model.  

The random walk model takes the form of the sum of the in-sample mean plus an error term 

that follows the standard normal distribution.  The MACD model combines two moving 

averages with different moving average lengths. Positions are taken if the moving averages 

intersect. If the short-term moving average intersects the long-term moving average from 

below, a ‘long’ position is taken. Conversely, if the long-term moving average is intersected 



from above, a ‘short’ position is taken.4 We select the MACD models that present the highest 

trading performance in the in-sample period. STARs, initially proposed by Chan and Tong 

(1986) are extensions of the traditional autoregressive models (ARs). The STAR combines 

two AR models with a function that defines the degree of non-linearity (smooth transition 

function). The general two-regime STAR specification is the following: 

 

1 2
ˆ (1 ( , , )) ( , , )t t t t t tY F z F z u          

 
(7) 

 

Where: 

 
ˆ
tY
 the forecasted value at time t 

 ,0 ,1 ,( , ,... ), 1,2i i i i p i    
 and ,0 ,1 ,, ,...i i i p  

the regression coefficients of the 

two AR models  

 
(1, )t t  

 with 1( ,..., )t t t pY Y  
 

 

 
0 ( , , ) 1tF z   

 the smooth transition function  

 
, 0t t dz Y d 

 the lagged endogenous transition variable 

 ζ the parameter that defines the smoothness of the transition between the two 

regimes 

 λ the threshold parameter 

 ut  the error term 

In this paper, we follow the steps of Lin and Terasvitra (1994) in order to determine when the 

series is best modeled as a Logistic STAR or an Exponential STAR process. The 

                                                           
4A ‘long’ position implies buying the ETF at the current price, while a ‘short’ position implies selling the ETF at 

the current price. 



specification of the STAR and the MACD models are determined in the in-sample period. 

These specifications are updated every three months by rolling forward the estimations.   

In addition to the above technical and statistical models, the aDE-MLP and aDE-WNN are 

benchmarked against traditional and semi adaptive MLP and WNN. The traditional MLP and 

WNN models are trained with the trial and error approach that is described in section 3.2 and 

dominates the finance literature (see amongst others Fernandez-Rodriguez et. al. (2000), Jasic 

and Wood (2004), Wang et. al. (2012 and Sermpinis et. al. (2012)). The semi adaptive MLP 

and WNN models apply the aDE algorithm only to select the appropriate set of the NN’s 

inputs (hereafter s-MLP and s-WNN). The rest of the NN parameters are optimized with the 

usual trial and error approach (using the in-sample dataset). Such semi-adaptive NN (with 

less efficient optimization algorithms) approaches have recently be presented in the literature 

with promising results (see Mingming and Jinliang (2012) and Sermpinis et. al. (2012)).  

 

4. Empirical Results 

4.1 Statistical Performance 

In Table 3, we present the statistical performance of all models for the out-of-sample period.5 

For the Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Theil-U 

statistics, the lower the output, the better the forecasting accuracy of the model concerned. 

The Pesaran-Timmermann (PT) test (1992) examines whether the directional movements of 

the real and forecast values are in step with one another. The null hypothesis is that the model 

under study has no power on forecasting the ETF return series. The HLN statistic suggested 

by Harvey et. al. (1997) has as null hypothesis the equivalence in forecasting accuracy 

between two forecasting models. The HLN test is applied in order to verify that a forecasting 

                                                           
5 The statistical ranking of our models is identical in the in-sample and out-of-sample sub-periods. The in-

sample statistical performance of our models is not presented for the sake of space and is available upon request.  



model is statistically different to the RW. The PT test follows the standard normal 

distribution, while the HLN test follows the Student’s t -distribution with n-1 degrees of 

freedom (where n is the number of forecasts).  

 

*** insert Table 3 here*** 

 

From Table 3, we note that the NNs architectures clearly outperform their benchmarks for all 

the statistical measures retained. The MLP architectures seem slightly more accurate for the 

DIA returns, while the WNN models for the NYC and SPY series. The PT statistics 

demonstrate the inability of the RW, MACD and STAR models to accurately forecast the 

directional change of the three series under study. The HLN statistics indicate that our NN 

forecasts are statistically different to an RW model at the 1% confidence level.  In contrast, 

the MACD and the ARMA models present a disappointing performance as they seem unable 

to outperform the RW benchmark. In general, the statistical accuracy of our models is worse 

in the first forecasting exercise.  

 

4.2 Trading Performance 

In Table 4, we present the trading performance of our models6 after transaction costs while 

their in-sample performance is presented in Appendix A.1.  

 

***Insert Table 4 here*** 

 

We note that after transaction costs, the aDEWNN model outperforms its benchmark in terms 

of annualized return and information ratio. aDEWNN is closely followed by the WNN and 

                                                           
6 The computational of cost of our proposed models (ADEMLP and ADEWNN) is approximately ten minutes 

with a modern PC for a single simulation. In our simulations, we used Matlab R2010a and a PC with Intel 

Processor I7 and 4GB RAM. 



the s-WNN algorithms with drop of 1.5% of the average annualized return. The MLP models 

seem unable to produce profitable signals with the same magnitude as the WNNs and present 

smaller trading performance. The profitability of the RW, STAR and MACD models is 

disappointing with information ratios that do not exceed 0.38 after transaction costs. The 

maximum drawdown (the essence of risk for an investor in financial markets) of the NNs 

models is considerably lower than their statistical/technical benchmarks. In line with the 

statistical performance of our models, we note that the trading results of the new models have 

substantially improved in the second forecasting exercise. This can be explained by the 

uncertainty that dominated the financial markets during 2009 and 2010. It was therefore 

anticipated that this uncertainty would affect our results and worsen the forecasting 

performance of our models.  

 

4.3 Data Snooping 

In trading applications, it is important to be able to identify genuine profitable trading 

strategies as model profitability may be attributed to luck and its performance might not be 

generalized. This bias is difficult to avoid in complicated non-linear models such as in NNs 

where their parameterization requires extensive experimentation.  In order to test if our 

proposed models forecasts suffer from data snooping, we created four groups of forecasting 

models. The first group includes all nine models under study. The second group includes the 

simple MLP and WNN architectures and the RW, MACD and STAR models. The third group 

consists of the s-MLP, s-WNN, RW, MACD and STAR models while the fourth group is 

made up of the aDEMLP and the aDEWNN models and the three technical/statistical 

benchmarks. In order to test for the data snooping bias we apply the Hansen (2005) test 

(SPA) to the four groups. The SPA test is built upon the RC test and the implementation of 

the two tests is similar. The SPA test is less conservative as it avoids the least favourable 



configuration, i.e., the configuration that is least favourable to the alternative (Hsu et. al. 

(2010)). In other words, the SPA test is more powerful and less sensitive to poor and 

irrelevant alternatives. The null hypothesis is that the benchmark is not inferior to any 

alternative forecast. As a benchmark we use a buy-and-hold strategy. For more details on the 

SPA test see Hansen (2005). As a performance measurement to the SPA test we apply the 

Sharpe ratio while the characteristics of our SPA test are the same as in Neuhierl and 

Schlusche (2011).7 The SPA p-values for the out-of-sample period are presented in Table 5 

below.  

 

***Insert Table 5 here*** 

 

From Table 5, we note that nominal p-values are significant for all groups suggesting that the 

best-performing rules significantly outperform the buy-and-hold strategy. However, after 

correcting for data snooping, the results are insignificant for the groups that contain the 

traditional and the semi-adaptive NNs. For the fourth group, that contains the two fully 

adaptive NNs and the three statistical/technical benchmarks, the results remain significant at 

the 5% confidence level for all three return series.   

 

5. Conclusions  

In this paper, a data snooping-free computational framework which deploys an adaptive 

Differential Evolution approach to optimize the MLP and WNN parameters and their inputs 

was introduced. Compared to the limited literature of hybrid NN and ADE models, this is 

their first application in financial forecasting and trading while the proposed models are fully 

adaptive. 

                                                           
7  The smoothing parameter is set to 0.5 and the number of bootstraps to 1000. 



The experimental results proved that the proposed models provided profitable strategies 

which outperformed, in terms of sharp ratio, a buy-and-hold strategy even when the data 

snooping effect was corrected.  In contrast, classical NN and semi adaptive approaches failed 

to significantly outperform the benchmark models when the data snooping effect was 

corrected even if they outperformed it initially. Comparing the WNN based approaches with 

the MLP, the former outperformed the latter. This finding may be attributed to their simpler 

training algorithm which is not based to the backpropagation procedure that suffers from 

overfitting and probabilities of becoming trapped in local optimal solutions. 

These results should contribute towards convincing academics and practitioners of the utility 

of complex non linear regression models, such as hybrid NNs, in finance, forecasting and 

trading. The introduced algorithm transforms the NN optimization into a fully adaptive 

procedure capable of providing accurate forecasts free of the biases that dominate the related 

literature.   
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Table 1 

Summary Statistics 

 DIA NYC SPY 

Mean 0.01% 0.02% 0.01% 

Median 0.05% 0.06% 0.07% 

Maximum 10.64% 11.90% 10.71% 

Minimum -8.78% -8.61% -9.52% 

St. Deviation 1.19% 1.37% 1.30% 

Skewness 0.02 -0.12 -0.27 

Kurtosis 13.38 12.10 12.91 

JB p-value 0.00 0.00 0.00 
DIA refers to the SPDR Dow Jones Industrial Average, NYC refers to the 

IShares NYSE Composite Index Fund and SPY refers to the SPDR 

S&P500 Exchange Traded Fund 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                           

 

Table 2 

Potential predictors 

DIA NYC SPY 

EUR/USD USD/GBP USD/JPY 

Gold Bullion Silver Brent Oil 

Copper FTSE 100 Nikkei 225 

DIA refers to the SPDR Dow Jones Industrial Average, NYC refers to the IShares NYSE Composite 

Index Fund and SPY refers to the SPDR S&P500 Exchange Traded Fund 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3 

Out-of-sample statistical performance 

Period ETF  RW MACD STAR MLP WNN s-MLP s-WNN aDEMLP aDEWNN 

2/1/2009 -31/12/2010 DIA RMSE 1.182 0.143 0.105 0.090 0.095 0.088 0.094 0.082 0.085 

MAE 0.866 0.105 0.091 0.062 0.067 0.065 0.068 0.061 0.064 

Theil-U 0.970 0.797 0.766 0.618 0.654 0.605 0.642 0.584 0.611 

PT 0.04 0.06 0.32 3.79** 3.94** 3.90** 4.07** 4.10** 4.21** 

HLN - 0.19 0.77 3.63** 3.49** 3.58** 3.73** 3.85** 3.92** 

NYC 

 

RMSE 1.249 0.176 0.095 0.088 0.086 0.080 0.082 0.077 0.076 

MAE 0.884 0.138 0.081 0.068 0.064 0.062 0.069 0.060 0.063 

Theil-U 0.921 0.842 0.756 0.690 0.703 0.683 0.692 0.675 0.677 

PT 0.29 0.44 1.28 4.09** 4.16** 4.02** 4.16** 4.37** 4.41** 

HLN - 0.15 1.46 3.55** 3.70** 3.64** 3.91** 3.85** 4.09** 

SPY 

 

RMSE 1.178 0.136 0.105 0.097 0.092 0.094 0.086 0.088 0.085 

MAE 0.840 0.095 0.084 0.076 0.073 0.072 0.067 0.069 0.066 

Theil-U 0.977 0.849 0.825 0.674 0.638 0.665 0.630 0.657 0.622 

PT 0.12 0.24 1.16 4.52** 4.71** 4.63** 4.90** 4.87** 5.11** 

HLN - 0.74 0.90 3.64** 3.95** 4.14** 4.33** 4.50** 4.66** 

2/1/2011 -31/12/2012 DIA RMSE 1.035 0.086 0.078 0.053 0.058 0.055 0.059 0.058 0.060 

MAE 0.822 0.062 0.067 0.047 0.049 0.047 0.048 0.050 0.047 

Theil-U 0.989 0.815 0.878 0.571 0.597 0.582 0.561 0.564 0.571 

PT 0.07 0.05 0.45 4.42** 4.66** 4.63** 4.81** 4.82** 4.85* 

HLN - -0.38 1.15 3.16** 3.33** 3.22** 3.42** 3.54** 3.58** 

NYC RMSE 0.999 0.095 0.079 0.064 0.072 0.068 0.067 0.063 0.057 

MAE 0.805 0.089 0.069 0.055 0.061 0.056 0.059 0.052 0.046 

Theil-U 0.987 0.846 0.719 0.686 0.672 0.692 0.680 0.613 0.600 

PT 1.12 0.35 1.58 5.21** 5.10** 5.13** 5.19** 5.20** 5.15** 

HLN - -1.58 0.30 3.95** 3.87** 3.81** 3.86** 3.98** 3.90** 

SPY RMSE 0.992 0.112 0.118 0.088 0.076 0.086 0.075 0.072 0.068 

MAE 0.787 0.077 0.078 0.069 0.058 0.064 0.055 0.058 0.053 

Theil-U 0.983 0.807 0.858 0.632 0.610 0.620 0.601 0.603 0.598 

PT 0.18 0.17 0.15 5.12** 5.81** 5.46** 5.69** 5.58** 5.78** 

HLN - -1.02 0.89 4.12** 4.76** 4.46** 5.82** 4.74** 4.98** 
DIA refers to the SPDR Dow Jones Industrial Average, NYC refers to the IShares NYSE Composite Index Fund and SPY refers to the SPDR S&P500 Exchange Traded 

Fund. RMSE refers to Root Mean Squared Error, MAE to Mean Absolute Error, Theil-U to Theil’s U statistic, PT to the Pesaran-Timmermann statistic and HNL to the 

Harvey, Leybourne and Newbold test. The construction of the forecasting models is discussed in the main text. ** denote rejection of the null hypothesis of no forecasting 

power at the 1% confidence interval. 



 

Table 4 

Out-of-sample trading performance 

Period ETF  RW MACD STAR MLP WNN s-MLP s-WNN aDEMLP aDEWNN 

2/1/2009 -31/12/2010 DIA InfoRatio 0.04 0.06 0.15 0.78 0.81 0.80 0.81 0.81 0.83 

AnnualRet 0.60% 0.83% 1.97% 9.61% 10.18% 10.01% 10.22% 10.16% 10.67% 

MaxDraw -30.14% -29.39% -31.55% -19.72% -18.60% -19.53% -19.40% -18.03% -18.80% 

NYC InfoRatio 0.11 0.13 0.16 0.63 0.67 0.65 0.66 0.70 0.71 

AnnualRet 1.52% 1.90% 2.18% 8.90% 9.44% 9.17% 9.30% 9.79% 9.83% 

MaxDraw -31.22% -25.71% -26.53% -18.35% -17.88% -19.21% -18.16% -18.49% -18.04% 

SPY InfoRatio -0.02 0.18 0.22 0.68 0.86 0.73 0.82 0.74 0.81 

AnnualRet -0.44 2.58% 3.71% 10.01% 12.59% 10.80% 12.33% 10.92% 12.25% 

MaxDraw -30.10% -24.19% -25.48% -20.79% -21.39% -22.94% 21.40% -20.07% -21.38% 

2/1/2011 -31/12/2012 DIA InfoRatio 0.13 0.01 0.19 0.97 1.09 0.98 1.07 0.99 1.24 

AnnualRet 2.47% 0.12% 3.48% 17.02% 19.05% 17.24% 18.80% 17.29% 20.46% 

MaxDraw -33.96% -22.63% -23.51% -18.94% -16.75% -17.19% -13.75% -16.91% -16.05% 

NYC InfoRatio 0.33 0.15 0.38 0.91 0.92 0.99 1.01 0.95 1.08 

AnnualRet 6.43% 2.89% 6.92% 17.69% 17.77% 19.05% 19.46% 18.26% 20.17% 

MaxDraw -30.56% -32.74% -30.83% -25.97% -24.42% -22.34% -20.43% -19.85% -17.92% 

SPY InfoRatio -0.05 -0.23 0.06 0.53 0.85 0.56 0.82 0.57 0.90 

AnnualRet -1.07 -4.27% 1.14% 9.96% 16.13% 10.49% 15.44% 10.56% 16.86% 

MaxDraw -40.58% -34.68% -30.04% -26.73% -25.99% -26.90% -24.67% -28.39% -20.18% 

DIA refers to the SPDR Dow Jones Industrial Average, NYC refers to the IShares NYSE Composite Index Fund and SPY refers to the SPDR S&P500 Exchange Traded Fund. ** denote 

rejection of the null hypothesis of no forecasting power at the 1% confidence interval.InfoRatio refers to Information Ration, AnnualRet to Annulalized Return and MaxDraw to Maximum 

Drawdown. The construction of the forecasting models is discussed in the main text. 



 

 

Table 5 

SPA p-values 

Period  Models Nominal p-value SPA-c 

2/1/2009 -31/12/2010 DIA All 0.011* 0.145 

RW, MACD, STAR, MLP, WNN  0.011* 0.133 

RW, MACD, STAR, s-MLPs, WNN 0.007 0.056 

RW, MACD, STAR, aDEMLP, aDEWNN 0.006 0.039* 

NYC All 0.015* 0.158 

RW, MACD, STAR, MLP, WNN  0.015* 0.114 

RW, MACD, STAR, s-MLPs, WNN 0.009** 0.069 

RW, MACD, STAR, aDEMLP, aDEWNN 0.005** 0.044* 

SPY All 0.012* 0.140 

RW, MACD, STAR, MLP, WNN  0.011* 0.109 

RW, MACD, STAR, s-MLPs, WNN 0.007** 0.041* 

RW, MACD, STAR, aDEMLP, aDEWNN 0.003** 0.032* 

2/1/2011 -31/12/2012 DIA All 0.010* 0.176 

RW, MACD, STAR, MLP, WNN  0.009** 0.107 

RW, MACD, STAR, s-MLPs, WNN 0.008** 0.083 

RW, MACD, STAR, aDEMLP, aDEWNN 0.006** 0.040* 

NYC All 0.016* 0.241 

RW, MACD, STAR, MLP, WNN  0.016* 0.172 

RW, MACD, STAR, s-MLPs, WNN 0.012* 0.155 

RW, MACD, STAR, aDEMLP, aDEWNN 0.007** 0.042* 

SPY All 0.013* 0.134 

RW, MACD, STAR, MLP, WNN  0.012* 0.119 

RW, MACD, STAR, s-MLPs, WNN 0.007** 0.076 

RW, MACD, STAR, aDEMLP, aDEWNN 0.002** 0.024* 
DIA refers to the SPDR Dow Jones Industrial Average, NYC refers to the IShares NYSE Composite Index Fund and SPY refers to the SPDR S&P500 

Exchange Traded Fund. SPA-c refers to the consistent p-value of Hansen (2005)’s SPA and the nominal p-values are obtained by applying the SPA testing 

procedures to the best strategy, without correcting for data-snooping biases. The construction of the forecasting models is discussed in the main text. * denote 

rejection of the null hypothesis at the 5% confidence interval and ** denote rejection of the null hypothesis at the 1% confidence interval.  

 



 

Appendix A1 

In sample trading performance 

Period ETF  RW MACD STAR MLP WNN s-MLP s-WNN aDEMLP aDEWNN 

2/1/2009 -31/12/2010 DIA InfoRatio 0.03 0.21 0.42 1.44 1.53 1.48 1.46 1.55 1.58 

AnnualRet 0.44% 3.48% 6.68% 22.95% 24.57% 23.82% 23.55% 24.99% 25.40% 

MaxDraw -33.74% -30.17% -28.44% -15.72% -16.03% -15.95% -16.68% -15.60% -15.29% 

NYC InfoRatio 0.07 0.34 0.52 1.60 1.73 1.71 1.82 1.76 1.83 

AnnualRet 1.08% 4.82% 7.67% 23.23% 25.16% 24.70% 26.22% 25.49% 26.53% 

MaxDraw -35.04% -28.31% -29.48% -16.88% -15.94% -14.57% -15.90% -16.43% -15.60% 

SPY InfoRatio -0.17 0.34 0.32 1.48 1.60 1.51 1.55 1.51 1.57 

AnnualRet -2.61% 5.02% 4.88% 21.73% 23.39% 22.31% 22.79% 22.12% 23.06% 

MaxDraw -36.70% -29.85% -27.60% -15.11% -16.37% -15.03% -16.74% -16.20% -16.55% 

2/1/2011 -31/12/2012 DIA InfoRatio 0.10 0.57 0.64 2.09 2.31 1.98 2.25 2.14 2.23 

AnnualRet 1.77% 6.42% 7.31% 31.02% 37.16% 29.11% 35.15% 32.41% 34.96% 

MaxDraw -39.65% -20.02% -18.52% -16.13% -17.89% -18.20% -17.51% -17.35% -19.41% 

NYC InfoRatio 0.36 0.62 0.83 1.89 2.25 2.11 2.29 2.34 2.30 

AnnualRet 4.41% 8.19% 10.01% 27.41% 33.31% 29.91% 34.36% 35.72% 34.93% 

MaxDraw -32.91% -28.19% -20.03% -20.14% -23.91% -26.18% -19.02% -18.13% -18.14% 

SPY InfoRatio 0.21 0.51 0.73 2.03 2.44 2.35 2.59 2.61 2.65 

AnnualRet 3.92% 5.88% 8.01% 24.04% 30.96% 28.74% 32.73% 33.13% 34.79% 

MaxDraw -37.97% -29.19% -24.91% -22.31% -20.00% -21.19% -18.01% -17.06% -16.62% 
DIA refers to the SPDR Dow Jones Industrial Average, NYC refers to the IShares NYSE Composite Index Fund and SPY refers to the SPDR S&P500 Exchange Traded Fund. ** denote 

rejection of the null hypothesis of no forecasting power at the 1% confidence interval.InfoRatio refers to Information Ration, AnnualRet to Annulalized Return and MaxDraw to Maximum 

Drawdown. The construction of the forecasting models is discussed in the main text. 



Figure 1 

 Flowchart of the proposed methodology 

 

This figure presents the basic flowchart of the proposed DE algorithm when applied to optimizing the structure 

and the parameters of the artificial neural networks presented in the main text. 



 

 


