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Abstract. Assuming known algebraic expressions for multivector inver-

ses in any Clifford algebra over an even dimensional vector space Rp′,q′ ,
n′ = p′ + q′ = 2m, we derive a closed algebraic expression for the multi-
vector inverse over vector spaces one dimension higher, namely over Rp,q,
n = p+q = p′+q′+1 = 2m+1. Explicit examples are provided for dimen-
sions n′ = 2, 4, 6, and the resulting inverses for n = n′ + 1 = 3, 5, 7. The
general result for n = 7 appears to be the first ever reported closed al-
gebraic expression for a multivector inverse in Clifford algebras Cl(p, q),
n = p + q = 7, only involving a single addition of multivector products
in forming the determinant.
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1. Introduction

The inverse of Clifford algebra multivectors is useful for the instant solution
of multivector equations, like AXB = C, which gives with the inverses of A
and B the solution X = A−1CB−1, A,B,C,X ∈ Cl(p, q). Furthermore the
inverse of geometric transformation versors is essential for computing two-
sided spinor- and versor transformations as X ′ = V −1XV , where V can in
principle be factorized into a product of vectors from Rp,q, X ∈ Cl(p, q).

* This paper is dedicated to the Turkish journalist Dennis Yücel, who is since 14.
Feb. 2017 a political prisoner in the Silivri prison, west of Istanbul, without having been

formally charged before a legal court even at the time of writing this paper (Jan. 2018).
His immediate and unconditional release is being hoped for. [7]
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Previous work on the multivector inverse include [3, 12, 6] for dimen-
sions n = p + q < 6, and recently [2] for dimension n = 6. For vector space
dimensions n = 1 to 5, [6] exclusively employed compact signature indepen-
dent abstract algebra computations. Multivector determinants1 for n = 1
to 5 were also studied in [9, 10] (calling them norm functions). For n = 6,
[2] employed extensive symbolic computer algebra computations. The current
paper is the first to report: (1) A general method to construct the multivector
inverse for any Clifford algebra with n = p+q = 2m+1 from the known mul-
tivector inverse of Clifford algebras over vector spaces of one dimension less,
i.e. from the multivector inverse in Clifford algebras with n′ = p+q−1 = 2m.
(2) Applying this new method, we show for the first time how to directly con-
struct the multivector inverse for Clifford algebra multivectors in any Cl(p, q),
n = p + q = 7, that can be applied without intermediate use of matrix iso-
morphisms, and involves only a single addition of multivector products in
forming the determinant. The latter fact promises to increase the speed and
accuracy of numerical computations of multivector inverses for n = 7, as well
as the speed of symbolic multivector inverse computations.

The paper is structured as follows. Section 2 reviews certain properties
of Clifford algebras, needed in the remainder of the paper. Section 3 shows
explicit examples for constructing compact multivector inverse expressions in
Clifford algebras Cl(p, q), n = p+q = 3, 5, 7, based on known algebraic multi-
vector inverse expressions in Clifford algebras Cl(p′, q′), n′ = p′+ q′ = 2, 4, 6.
Section 4 explains the general method for constructing compact multivector
inverse expressions in Clifford algebras Cl(p, q), n = p + q = 2m + 1, as-
suming known algebraic multivector inverse expressions in Clifford algebras
Cl(p′, q′), n′ = p′ + q′ = 2m for any value of m ∈ N. Finally, Section 5
concludes the paper, followed by acknowledgments and references.

2. Preliminaries

For an introduction to Clifford algebra we refer to the popular textbook [8], or
to a tutorial, like [4]. A software package, which we used for verifying all our
examples, that combines multivector computations and matrix computations,
is the Clifford Multivector Toolbox [11] for MATLAB. In the following we
state some important facts about complex numbers C, hyperbolic numbers
(split complex numbers), and Clifford algebras Cl(p, q) over quadratic vector
spaces Rp,q.

For complex numbers a+ib ∈ C, a, b ∈ R, we define complex conjugation
as

cc(a+ ib) = a− ib, (1)

which allows to compute the square of the modulus of a complex number as

|a+ ib|2 = (a+ ib)cc(a+ ib) = (a+ ib)(a− ib) = a2 + b2. (2)

1We thank an anonymous reviewer for this interesting reference.
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For hyperbolic (split complex) numbers, with hyperbolic unit u, u2 = 1, we
define hyperbolic conjugation as

hc(a+ ub) = a− ub, (3)

which allows to compute the square of the modulus of a hyperbolic number
as

|a+ ub|2 = (a+ ub)hc(a+ ub) = (a+ ub)(a− ub) = a2 − b2. (4)

Complex numbers can be represented by 2× 2 real matrices as(
a b
−b a

)
. (5)

The real determinant of this matrix is identical to the square of the modulus

det

(
a b
−b a

)
= a2 + b2. (6)

Similarly, hyperbolic numbers can be represented by 2× 2 real matrices as(
a b
b a

)
. (7)

The real determinant of this matrix is also identical to the square of the
modulus

det

(
a b
b a

)
= a2 − b2. (8)

In this paper we employ reversion Ã, grade involution gi(A) = Â, Clif-

ford conjugation A =
˜̂
A =

̂̃
A, and selective grade wise involutions mā,b̄,c̄(. . .)

(negations of grades a, b, c, specified as indexes with overbars ā, b̄, c̄). Using
the grade extraction operator 〈. . .〉k, 0 ≤ k ≤ n, we can express these involu-
tions as

Ã =

k=n∑
k=0

(−1)k(k−1)/2〈A〉k,

Â =

k=n∑
k=0

(−1)k〈A〉k,

A =

k=n∑
k=0

(−1)k(k+1)/2〈A〉k,

mā,b̄,c̄(A) = A− 2〈A〉a − 2〈A〉b − 2〈A〉c. (9)

We apply the following Clifford algebra isomorphisms [8] for even sub-
algebras Cl+(p, q),

Cl(p, q) ∼= Cl+(p, q + 1), Cl(p, q) ∼= Cl+(q + 1, p). (10)

Furthermore, the center Z of a Clifford algebra Cl(p, q), over the odd dimen-
sional vector space Rp,q, n = p+ q = 2m+ 1, is non-trivial

Z = {1, I = e1e2 . . . en}. (11)
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That means every Clifford algebra Cl(p, q), n = p+ q = 2m+ 1, can be split
into its even subalgebra and the central pseudoscalar I times another copy
of the even subalgebra

Cl(p, q) = Cl+(p, q)⊕ Cl−(p, q) = Cl+(p, q)⊕ Cl+(p, q)I. (12)

Therefore every A ∈ Cl(p, q), n = p + q = 2m + 1, can be represented with
the help of two elements 〈A〉+, 〈B〉+ ∈ Cl+(p, q) from its even subalgebra as

A = 〈A〉+ + 〈A〉− = 〈A〉+ + 〈B〉+I, (13)

where 〈B〉+ is the dual of 〈A〉−,

〈B〉+ = 〈A〉∗− = 〈A〉−I−1. (14)

That in turn means, that every A ∈ Cl(p, q), n = p + q = 2m + 1, can be
written as an element of the even subalgebra Cl+(p, q) with complex (for
I2 = −1) or hyperbolic (for I2 = +1) coefficients.

For the case of I2 = −1, the multivector A can be represented as a 2×2
matrix with entries from its even subalgebra(

〈A〉+ 〈B〉+
−〈B〉+ 〈A〉+

)
. (15)

The determinant of the above matrix is

det

(
〈A〉+ 〈B〉+
−〈B〉+ 〈A〉+

)
= det〈A〉+ det〈A〉+ + det〈B〉+ det〈B〉+. (16)

For the case of I2 = +1, the multivector A can also be represented as a 2× 2
matrix with entries from its even subalgebra(

〈A〉+ 〈B〉+
〈B〉+ 〈A〉+

)
. (17)

The determinant of the above matrix is in this case

det

(
〈A〉+ 〈B〉+
〈B〉+ 〈A〉+

)
= det〈A〉+ det〈A〉+ − det〈B〉+ det(〈B〉+. (18)

This shows, that knowing the determinants of the two components 〈A〉+,
〈B〉+ ∈ Cl+(p, q), permits easily to compute the determinant of the original
full multivector A ∈ Cl(p, q).

Note, that because every Clifford algebra Cl(p, q) is isomorphic to some
ring of real square matrices [8], every left inverse multivector is also right
inverse.

3. Multivector inverse for Clifford algebras over
n = 3, 5, 7-dimensional vector spaces from multivector
inverse for Clifford algebras over n′ = 2, 4, 6-dimensional
vector spaces

Based on the even subalgebra based complex (or hyperbolic) representation
of multivectors ∈ Cl(p, q), n = p + q = 2m + 1, given in (13), we now
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demonstrate with the help of examples for n = 3, 5, 7, how the known inverse
of multivectors in lower dimensional Clifford algebras isomorphic to Cl+(p, q),
naturally leads to closed form algebraic expressions for the multivector inverse
in Cl(p, q), n = p+ q = 2m+ 1, itself.

3.1. Multivector inverse for Clifford algebras over 3-dimensional vector spaces
from multivector inverse for Clifford algebras over 2-dimensional vector
spaces

The isomorphisms (10) for Clifford algebras over 3-dimensional vector spaces
are the following2

Cl+(3, 0) ∼= Cl+(0, 3) ∼= Cl(0, 2) ∼= H,
Cl+(2, 1) ∼= Cl+(1, 2) ∼= Cl(2, 0) ∼= Cl(1, 1). (19)

Moreover the pseudoscalar I = e1e2e3 = e123 squares to −1 for Cl(3, 0) and
Cl(1, 2); while it squares to +1 for Cl(2, 1) and Cl(0, 3), respectively.

As a first example for the complex case, we take in the Clifford algebra
Cl(3, 0) with I2 = −1:

A = 1 + 2e1 + 3e2 + 4e3 + 5e23 + 6e31 + 7e12 + 8I

= 1 + 8I + (5− 2I)e23 + (6− 3I)e31 + (7− 4I)e12. (20)

Replacing I → i, we isomorphically map A to Ac in the complexified even
subalgebra Cl+(3, 0)

Ac = 1 + 8i+ (5− 2i)e23 + (6− 3i)e31 + (7− 4i)e12. (21)

As an example for the hyperbolic case, we take in the Clifford algebra Cl(2, 1)
with I2 = +1:

B = 1 + 2e1 + 3e2 + 4e3 + 5e23 + 6e31 + 7e12 + 8I

= 1 + 8I + (5 + 2I)e23 + (6 + 3I)e31 + (7− 4I)e12. (22)

Replacing I → u, we isomorphically map B to Bh in the hyperbolically com-
plexified even subalgebra Cl+(2, 1)

Bh = 1 + 8u+ (5 + 2u)e23 + (6 + 3u)e31 + (7− 4u)e12. (23)

Under the assumption, that in the lower dimensional Clifford algebra, iso-
morphic by (19) to the even subalgebra Cl+(p, q) of Cl(p, q), n = p + q =
2m + 1 = 3, the inverse of a general multivector is known, we can therefore
derive an inverse for every multivector in Cl(p, q), n = p + q = 3, as well,
provided that its determinant is non-zero. We further illustrate this by way
of example. By (19) the even subalgebra Cl+(3, 0) ∼= Cl(0, 2), the quater-
nions. The inverse of a non-zero a = a0 + a1e23 + a2e31 + a3e12 ∈ Cl+(3, 0),
a0, a1, a2, a3 ∈ R, can therefore be specified as

a−1 =
ã

aã
, (24)

2Note, that these isomorphisms do partially change the grades of basis elements. For

example in Cl+(3, 0) ∼= Cl(0, 2), two basis bivectors of Cl+(3, 0) are mapped to vectors in
Cl(0, 2), and only one basis bivector is mapped to the bivector in Cl(0, 2).
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where we use the reverse3 ã. Note, that the scalar aã ∈ R represents the
determinant of a, e.g., in the complex matrix representation of a in the matrix
ringM(2,C). Now we compute the denominator aã of this inverse by inserting
the full multivector Ac = 1 + 8i+ (5− 2i)e23 + (6− 3i)e31 + (7− 4i)e12 from
the first example (21) above and obtain

y = AcÃc = (1 + 8i+ (5− 2i)e23 + (6− 3i)e31 + (7− 4i)e12)

(1 + 8i− (5− 2i)e23 − (6− 3i)e31 − (7− 4i)e12)

= (1 + 8i)2 + (5− 2i)2 + (6− 3i)2 + (7− 4i)2 = 18− 96i. (25)

Please note, that on purpose, we have not applied the reversion operation to
the complex unit i, only to the bivectors ẽ23 = −e23, ẽ31 = −e31, ẽ12 = −e12.
In this way, we have obtained a complex scalar (25). We apply complex
conjugation4 to this scalar to finally get the real determinant of A ∈ Cl(3, 0)
of (21) (and due to the isomorphism (19) also the determinant of (20)) as

z = det(A) = y cc(y) = AcÃc cc(AcÃc)

= (18− 96i) (18 + 96i) = 9540. (26)

This allows us to establish the inverse of A ∈ Cl(3, 0) of (20) in two steps as
follows

A−1
c =

Ãc cc(y)

z

=
(1 + 8i− (5− 2i)e23 − (6− 3i)e31 − (7− 4i)e12) (18 + 96i)

9540
(27)

=
−750 + 240i+ (−282− 444i)e23 + (−396− 522i)e31 + (−510− 600i)e12

9540
.

Finally isomorphically mapping back i → I, Ac → A, and multiplying out
Ie23 = e123e23 = −e1, etc., we obtain the desired inverse of A of (20) as

A−1 =

−750 + 444e1 + 522e2 + 600e3 − 282e23 − 396e31 − 510e12 + 240e123

9540
. (28)

We can similarly apply our method to our second example of (22) of
the even subalgebra Cl+(2, 1) ∼= Cl(2, 0), see (19). The inverse of a non-zero

3Note, that using the reverse, means to stay in Cl(3, 0), but to not apply reversion

to the pseudoscalar I, respectively to i. If we would use the isomorphism to quaternions

H, then instead of reverse, quaternion conjugation would have to be used. If we would
use the isomorphism to Cl(0, 2), then Clifford conjugation (combining reverse with grade

involution) would have to be used.
4Note, that in (26), we could already use the back isomorphism i→ I, and then instead

of using complex conjugation, simply use grade involution to change in the second factor

I → Î = −I. This very same method could also be applied to (31). The advantage being,

that grade involution can always be applied to this effect, independent of the positive or
negative square of I.
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b = b0 + b1e23 + b2e31 + b3e12 ∈ Cl+(2, 1), b0, b1, b2, b3 ∈ R, can therefore be
specified as

b−1 =
b̃

bb̃
, (29)

again using the reverse b̃, bb̃ ∈ R. Now we compute the denominator bb̃ of
this inverse by inserting the full multivector Bh = 1 + 8u+ (5 + 2u)e23 + (6 +
3u)e31 + (7− 4u)e12 from the second example (23) above and obtain

y = BhB̃h = (1 + 8u+ (5 + 2u)e23 + (6 + 3u)e31 + (7− 4u)e12)

(1 + 8u− (5 + 2u)e23 − (6 + 3u)e31 − (7− 4u)e12) (30)

= (1 + 8u)2 − (5 + 2u)2 − (6 + 3u)2 + (7− 4u)2 = (56− 96u).

Please note again, that on purpose, we have not applied the reversion op-
eration to the hyperbolic unit h, only to the bivectors e23, e31, e12. In this
way, we have obtained a hyperbolic scalar. We apply hyperbolic conjugation
to this scalar to finally get the real determinant of B ∈ Cl(2, 1) of (23) (and
due to the isomorphism (19) also the determinant of (22)) as as

z = det(B) = y hc(y) = BhB̃h hc(BhB̃h)

= (56− 96u)(56 + 96u) = −6080. (31)

This allows us to establish the inverse of B ∈ Cl(2, 1) of (22) in two steps as
follows

B−1
h =

B̃h hc(y)

z

=
(1 + 8u− (5 + 2u)e23 − (6 + 3u)e31 − (7− 4u)e12) (56 + 96u)

−6080

=
(1 + 8u− (5 + 2u)e23 − (6 + 3u)e31 − (7− 4u)e12) (7 + 12u)

−760

=
103 + 68u+ (−59− 74u)e23 + (−78− 93u)e31 + (−1− 56u)e12

−760
.

(32)

Finally isomorphically mapping back u → I, Bh → B, and multiplying out
Ie23 = e123e23 = +e1, etc., we obtain the desired inverse of B of (22) as

B−1 =
103− 74e1 − 93e2 + 56e3 − 59e23 − 78e31 − e12 + 68e123

−760
. (33)
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3.2. Multivector inverse for Clifford algebras over 5-dimensional vector spaces
from multivector inverse for Clifford algebras over 4-dimensional vector
spaces

The isomorphisms (10) for the six Clifford algebras over n = p + q = 5-
dimensional vector spaces are the following

Cl+(5, 0) ∼= Cl+(0, 5) ∼= Cl(0, 4),

Cl+(4, 1) ∼= Cl+(1, 4) ∼= Cl(4, 0) ∼= Cl(1, 3),

Cl+(3, 2) ∼= Cl+(2, 3) ∼= Cl(3, 1) ∼= Cl(2, 2). (34)

Moreover the central pseudoscalar5 I = e1e2e3e4e5 = e12345 squares to −1
for Cl(0, 5), Cl(2, 3) and Cl(4, 1); while it squares to +1 for Cl(5, 0), Cl(3, 2)
and Cl(1, 4), respectively.

A general multivector Cl(p, q), n = p+ q = 5, can be represented grade
wise as

A = α+GI +B + CI + F + βI = α+ βI +B + CI + F +GI (35)

= α+B + F + (β + C +G)I = 〈A〉+ + (〈A〉−I−1)I = 〈A〉+ + 〈A〉∗−I,

with even grade dual of the odd part 〈A〉∗− = 〈A〉−I−1, scalars α, β ∈ R,
bivectors B,C ∈ Cl2(p, q), and 4-vectors F,G ∈ Cl4(p, q), such that vector
GI ∈ Rp,q, and trivector CI ∈ Cl3(p, q). Expressed as above, A ∈ Cl(p, q),
p + q = 5 takes the form of a complex (or hyperbolic) scalar6 α + βi plus a
complex (or hyperbolic) bivector B + Ci plus a complex (or hyperbolic) 4-
vector F +Gi. And both 〈A〉+, 〈A〉∗− ∈ Cl+(p, q). Via the isomorphisms (34),
we can isomorphically map the even part7 〈A〉+ = α + B + F to a Clifford
algebra Cl(p, q − 1) or Cl(q, p − 1) of a four-dimensional (n′ = p + q − 1 =
5− 1 = 4) vector space.

Assuming any known inverse formula for multivectors of non-zero deter-
minant in Cl(p, q−1) or Cl(q, p−1), we can compute the inverse of the even
grade part 〈A〉+. The determinant of 〈A〉+ will be real, but if we replace the
coefficients by complex (respectively hyperbolic) numbers, the determinant
will be complex (or hyperbolic). The product of this determinant with its
complex (or hyperbolic) conjugate will produce a real number, which is iden-
tical to the determinant of the full multivector A ∈ Cl(p, q), p + q = 5, and
therefore leads (if non-zero) to an inverse for the full multivector A ∈ Cl(p, q),

5We thank Prof. Jacques Helmstetter for pointing out the important role of the non-
trivial center in Clifford algebras over n = p + q = 5-dimensional vector spaces.

6Here we apply the isomorphism to the complexified even subalgebra Cl+(p, q), where
i now stands both for the complex imaginary unit (case I2 = −1) and the hyperbolic unit

(case I2 = +1).
7Correspondingly, the full multivector A is mapped to the complexified (hyperbolic

complexified) isomorphic algebra.
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p + q = 5. The even subalgebra Cl+(p, q) of Cl(p, q), p + q = 5, has the fol-
lowing even grade element basis

{1,
E1 = e12, E2 = e13, E3 = e14, E4 = e15,

e23, e24, e25, e34, e35, e45,

e1234, e1235, e1245, e1345, e2345} (36)

which can be rewritten, even basis blade by even basis blade, in terms of the
isomorphic lower dimensional Clifford algebra (34), generated from the basis
{E1, E2, E3, E4}, as (s = −e2

1 = ±1, depending on the square of e1)

{1,
E1, E2, E3, E4,

sE12, sE13, sE14, sE23, sE24, sE34,

sE1E23 = sE123, sE1E24 = sE124, sE1E34 = sE134, sE2E34 = sE234,

E12E34 = E1234}. (37)

That means, that the even multivector 〈A〉+ = α+B+F can be represented
isomorphically in two ways

〈A〉+ = α1 +B12e12 +B13e13 +B14e14 +B15e15

+B23e23 +B24e24 +B25e25 +B34e34 +B35e35 +B45e45

+ F1234e1234 + F1235e1235 + F1245e1245 + F1345e1345

+ F2345e2345

= α1 +B12E1 +B13E2 +B14E3 +B15E4

+ sB23E12 + sB24E13 + sB25E14 + sB34E23 + sB35E24 + sB45E34

+ sF1234E123 + sF1235E124 + sF1245E134 + sF1345E234

+ F2345E1234. (38)

With respect to the 16 = 24-dimensional blade basis

{1,
E1, E2, E3, E4,

E12, E13, E14, E23, E24, E34,

E123, E124, E134, E234,

E1234} (39)

of Cl(p, q − 1) or Cl(q, p − 1), n′ = p + q − 1 = 4, isomorphic by (34), to
Cl+(p, q), we now compute from 〈A〉+ the real scalar (see [6])

〈A〉+〈A〉+m3̄,4̄(〈A〉+〈A〉+) ∈ R. (40)

Replacing the coefficients of 〈A〉+ in (40) now by complex (respectively hy-
perbolic) coefficients

α→ α+ iβ, Bjk → Bjk + iCjk, Fjklm → Fjklm + iGjklm, (41)
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where 1 ≤ j < k ≤ 5, k < l < m ≤ 5, that is replacing 〈A〉+ → Ac =
〈A〉+ + 〈A〉∗−i in (40), we instead obtain a complex (hyperbolic) scalar

y = AcAc m3̄,4̄(AcAc), (42)

where it is very important to notice, that any involution is not applied to
the complex (or hyperbolic) imaginary unit i. This complex (or hyperbolic)
scalar (42) can now be turned into the real determinant z of A ∈ Cl(q, p) by
grade involution gi(. . .), after isomorphically mapping back i→ I,

z = det(A) = y ŷ = y gi (y) , (43)

where grade involution maps I → Î = gi(I) = −1. The determinant z yields
an expression for the full inverse of A ∈ Cl(q, p), p+ q = 5,

A−1 =
Am3̄,4̄(AA) ŷ

z
(44)

Note again that, in the above expressions, Clifford conjugation (overline),
and the involution m3̄,4̄ are solely applied with the respect to the complex
(or hyperbolic) expression of A in the 16-dimensional basis (39), arising from
the even subalgebra isomorphism (34). Clifford conjugation (overline), and
the involution m3̄,4̄, thus do not affect the pseudoscalar I.

As concrete example we take in Cl(5, 0) the multivector

A = 1 + 2I + (3 + 4I)e12 + (5 + 6I)e1234

= 1 + 6Ie1234 + 3e12 + 4Ie12 + 5e1234 + 2I

= 1 + 6e5 + 3e12 − 4e345 + 5e1234 + 2e12345

= 1 + 2I + (3 + 4I)E1 − (5 + 6I)E123. (45)

Replacing in (45) I → u, we obtain the isomorphic hyperbolic coefficient mul-
tivector Ah in hyperbolic complexified Cl(0, 4) ∼= Cl+(5, 0), with E1, E123 ∈
Cl(0, 4), as

Ah = 1 + 2u+ (3 + 4u)E1 − (5 + 6u)E123. (46)

Note that here E2
1 = e2

12 = −1, E2
123 = (−e1234)2 = 1, and u2 = 1. The

hyperbolic scalar determinant of Ah of (46) can be computed step by step
via

AhAh = (1 + 2u+ (3 + 4u)E1 − (5 + 6u)E123)

(1 + 2u+ (3 + 4u)E1 − (5 + 6u)E123)

= (1 + 2u+ (3 + 4u)E1 − (5 + 6u)E123)

(1 + 2u− (3 + 4u)E1 − (5 + 6u)E123)

= 91 + 88u− (34 + 32u)E123, (47)

and further as hyperbolic scalar

y = AhAh m3̄,4̄(AhAh)

= (91 + 88u− (34 + 32u)E123)(91 + 88u+ (34 + 32u)E123)

= (91 + 88u)2 − (34 + 32u)2 = 13845 + 13840u. (48)
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Finally, after isomorphically mapping back u→ I, and by using grade invo-
lution gi(. . .) = .̂ . ., we can compute the real determinant of A ∈ Cl(p, q),
p+ q = 5, of (45) as

z = det(A) = y ŷ = (13845 + 13840I)(13845− 13840I) = 138425. (49)

And the inverse of Ah of (46) is therefore

A−1
h =

Ahm3̄,4̄(AhAh) ŷ

z

=
1

138425
(1 + 2u− (3 + 4u)E1 − (5 + 6u)E123)

(91 + 88u+ (34 + 32u)E123)(13845− 13840u)

=
1

138425
(−14315 + 13370u+ (38395− 44660u)E1

+(−26530 + 28840u)E23 + (9415− 18270u)E123) . (50)

Replacing u→ I = e12345, and using E1 = e12, IE1 = −e345, E23 = E2E3 =
e13e14 = −e34, IE23 = −Ie34 = e125, E123 = E1E23 = −e12e34 = −e1234,
IE123 = −Ie1234 = −e5, we obtain the correct full multivector inverse of
A ∈ Cl(p, q), p+ q = 5, i.e. of (45), as

A−1 =
1

138425
(−14315 + 13370I + 38395E1 − 44660IE1 − 26530E23

+ 28840IE23 + 9415E123 − 18270IE123)

=
1

138425
(−14315 + 18270e5 + 38395e12 + 26530e34 + 28840e125

+ 44660e345 − 9415e1234 + 13370e12345)

=
1

27685
(−2863 + 3654e5 + 7679e12 + 5306e34 + 5768e125

+ 8932e345 − 1883e1234 + 2674e12345). (51)

3.3. Multivector inverse for Clifford algebras over 7-dimensional vector spaces
from multivector inverse for Clifford algebras over 6-dimensional vector
spaces

The isomorphisms (10) for the eight Clifford algebras over n = p + q = 7-
dimensional vector spaces are the following

Cl+(7, 0) ∼= Cl+(0, 7) ∼= Cl(0, 6),

Cl+(6, 1) ∼= Cl+(1, 6) ∼= Cl(6, 0) ∼= Cl(1, 5),

Cl+(5, 2) ∼= Cl+(2, 5) ∼= Cl(5, 1) ∼= Cl(2, 4),

Cl+(4, 3) ∼= Cl+(3, 4) ∼= Cl(4, 2) ∼= Cl(3, 3). (52)

Moreover the central pseudoscalar I = e1e2e3e4e5e6e7 = e1234567 squares to
−1 for Cl(7, 0), Cl(5, 2), Cl(3, 4) and Cl(1, 6); while it squares to +1 for
Cl(0, 7), Cl(2, 5), Cl(4, 3) and Cl(6, 1), respectively.
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A general multivector A ∈ Cl(p, q), p+ q = 7, can be represented grade
wise as

A = α+GI +B + CI + F +HI + J + βI

= α+ βI +B +HI + F + CI + J +GI

= α+B + F + J + (β +H + C +G)I

= 〈A〉+ + (〈A〉−I−1)I = 〈A〉+ + 〈A〉∗−I, (53)

with even grade dual of the odd part 〈A〉∗− = 〈A〉−I−1, scalars α, β ∈ R,
bivectors B,H ∈ Cl2(p, q), 4-vectors F,C ∈ Cl4(p, q), and 6-vectors J,G ∈
Cl6(p, q) such that vector GI ∈ Rp,q, trivector CI ∈ Cl3(p, q), and 5-vector
HI ∈ Cl5(p, q). Expressed as above, A ∈ Cl(p, q), p + q = 7, takes the form
of a complex (or hyperbolic) scalar8 α + βi plus a complex (or hyperbolic)
bivector B+Hi plus a complex (or hyperbolic) 4-vector F+Ci plus a complex
(or hyperbolic) 6-vector J + Gi. And both 〈A〉+, 〈A〉∗− ∈ Cl+(p, q). Via the
isomorphisms (52), we can isomorphically map the even part9 〈A〉+ = α +
B+F +J to a Clifford algebra Cl(p, q−1) or Cl(q, p−1) of a six-dimensional
(n′ = p+ q − 1 = 7− 1 = 6) vector space.

Assuming any known inverse formula for multivectors of non-zero deter-
minant in Cl(p, q−1) or Cl(q, p−1), we can compute the inverse of the even
grade part 〈A〉+. The determinant of 〈A〉+ will be real, but if we replace the
coefficients by complex (respectively hyperbolic) numbers, the determinant
will be complex (or hyperbolic). The product of this determinant with its
complex (or hyperbolic) conjugate will produce a real number, which is iden-
tical to the determinant of the full multivector A ∈ Cl(p, q), p + q = 7, and
therefore leads (if non-zero) to an inverse for the full multivector A ∈ Cl(p, q),
p + q = 7. The even 26 = 64-dimensional subalgebra Cl+(p, q) of Cl(p, q),
p+ q = 7, has the following 64-dimensional even grade element basis

{1,
E1 = e12, E2 = e13, E3 = e14, E4 = e15, E5 = e16, E6 = e17,

e23, e24, e25, e26, e27, e34, e35, e36, e37, e45, e46, e47, e56, e57, e67,

e1234, e1235, e1236, e1237, e1245, e1246, e1247, e1256, e1257, e1267,

e1345, e1346, e1347, e1356, e1357, e1367, e1456, e1457, e1467, e1567,

e2345, e2346, e2347, e2356, e2357, e2367, e2456, e2457, e2467, e2567,

e3456, e3457, e3467, e3567, e4567,

e123456, e123457, e123467, e123567, e124567, e134567,

e234567}, (54)

8Here we apply the isomorphism to the complexified even subalgebra Cl+(p, q), where
i now stands both for the complex imaginary unit (case I2 = −1) and the hyperbolic unit

(case I2 = +1).
9Correspondingly, the full multivector A is mapped to the complexified (hyperbolic

complexified) isomorphic algebra.
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which can be rewritten, using the isomorphisms (52), even basis blade by
even basis blade, in terms of the isomorphic lower dimensional Clifford al-
gebra, generated from the basis {E1, E2, E3, E4, E5, E6}, as (s = −e2

1 = ±1,
depending on the square of e1)

{1,
E1, E2, E3, E4, E5, E6

sE12, sE13, sE14, sE15, sE16, sE23, sE24, sE25, sE26, sE34, sE35, sE36,

sE45, sE46, sE56,

sE123, sE124, sE125, sE126, sE134, sE135, sE136, sE145, sE146, sE156,

sE234, sE235, sE236, sE245, sE246, sE256, sE345, sE346, sE356, sE456,

E1234, E1235, E1236, E1245, E1246, E1256, E1345, E1346, E1356, E1456,

E2345, E2346, E2356, E2456, E3456,

E12345, E12346, E12356, E12456, E13456, E23456,

sE123456}. (55)

That means, that the even multivector 〈A〉+ = α+B + F + J can be repre-
sented isomorphically in two ways

〈A〉+ = α1

+B12e12 +B13e13 +B14e14 +B15e15 +B16e16 +B17e17 +B23e23

+B24e24 +B25e25 +B26e26 +B27e27 +B34e34 +B35e35 +B36e36

+B37e37 +B45e45 +B46e46 +B47e47 +B56e56 +B57e57 +B67e67

+ F1234e1234 + F1235e1235 + F1236e1236 + F1237e1237 + F1245e1245

+ F1246e1246 + F1247e1247 + F1256e1256 + F1257e1257 + F1267e1267

+ F1345e1345 + F1346e1346 + F1347e1347 + F1356e1356 + F1357e1357

+ F1367e1367 + F1456e1456 + F1457e1457 + F1467e1467 + F1567e1567

+ F2345e2345 + F2346e2346 + F2347e2347 + F2356e2356 + F2357e2357

+ F2367e2367 + F2456e2456 + F2457e2457 + F2467e2467 + F2567e2567

+ F3456e3456 + F3457e3457 + F3467e3467 + F3567e3567 + F4567e4567

+ J123456e123456 + J123457e123457 + J123467e123467 + J123567e123567

+ J124567e124567 + J134567e134567

+ J234567e234567 (56)
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or alternatively as

〈A〉+ = α1 +B12E1 +B13E2 +B14E3 +B15E4 +B16E5 +B17E6

+ sB23E12 + sB13E24 + sB25E14 + sB26E15 + sB27E16 + sB34E23

+ sB35E24 + sB36E25 + sB37E26 + sB45E34 + sB46E35 + sB47E36

+ sB56E45 + sB57E46 + sB67E56

+ sF1234E123 + sF1235E124 + sF1236E125 + sF1237E126 + sF1245E134

+ sF1246E135 + sF1247E136 + sF1256E145 + sF1257E146 + sF1267E156

+ sF1345E234 + sF1346E235 + sF1347E236 + sF1356E245 + sF1357E246

+ sF1367E256 + sF1456E345 + sF1457E346 + sF1467E356 + sF1567E456

+ F2345E1234 + F2346E1235 + F2347E1236 + F2356E1245 + F2357E1246

+ F2367E1256 + F2456E1345 + F2457E1346 + F2467E1356 + F2567E1456

+ F3456E2345 + F3457E2346 + F3467E2356 + F3567E2456 + F4567E3456

+ J123456E12345 + J123457E12346 + J123467E12356 + J123567E12456

+ J124567E13456 + J134567E23456

+ sJ234567E123456. (57)

With respect to the 64-dimensional blade basis (55) of Cl(p, q − 1) or
Cl(q, p− 1), p+ q− 1 = 6, we now compute from 〈A〉+ of (57) the real scalar
(see [2])

〈A〉+〈̃A〉+
(

1
3 〈A〉+〈̃A〉+ m1̄,4̄,5̄(〈A〉+〈̃A〉+〈A〉+〈̃A〉+) (58)

+ 2
3m4̄(m4̄(〈A〉+〈̃A〉+) m1̄,4̄,5̄(m4̄(〈A〉+〈̃A〉+)m4̄(〈A〉+〈̃A〉+)))

)
∈ R.

Replacing the coefficients of 〈A〉+ in (58) now by complex (respectively hy-
perbolic) coefficients

α→ α+ iβ, Bjk → Bjk + iHjk, Fjklm → Fjklm + iCjklm

Jjklmst → Jjklmst + iGjklmst, (59)

where 1 ≤ j < k ≤ 7, k < l < m ≤ 7, m < s < t ≤ 7, that is replacing
〈A〉+ → Ac = 〈A〉++〈A〉∗−i in (58), we instead obtain a complex (hyperbolic)
scalar

y = AcÃc

(
1
3AcÃc m1̄,4̄,5̄(AcÃcAcÃc)

+ 2
3m4̄(m4̄(AcÃc) m1̄,4̄,5̄(m4̄(AcÃc)m4̄(AcÃc)))

)
, (60)

where it is very important to notice, that any involution is not applied to the
complex (hyperbolic) unit i. Note, that for obtaining the scalar y of (60),
only a single addition of multivector products is needed. This complex (or
hyperbolic) scalar (60) can now be turned into the real determinant z of
A ∈ Cl(q, p) by grade involution gi(. . .), after isomorphically mapping back
i→ I,

z = det(A) = y ŷ = y gi(y), (61)
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where grade involution maps I → Î = gi(I) = −I. The determinant z yields
an expression10 for the full inverse of A ∈ Cl(q, p), n = p + q = 7, if we
simultaneously apply the isomorphism for all basis elements (55) back from
Cl(0, 6) to (54) in Cl+(7, 0),

A−1 =
1

z
Ã
(

1
3AÃm1̄,4̄,5̄(AÃAÃ)

+ 2
3m4̄(m4̄(AÃ) m1̄,4̄,5̄(m4̄(AÃ) m4̄(AÃ)))

)
gi(y) . (62)

Note again that, in the above expressions, reversion (tilde), and the involu-
tions m4̄, m1̄,4̄,5̄, are solely applied with the respect to the complex (or hyper-
bolic) expression Ac for A in the 64-dimensional basis (55), arising from the
even subalgebra isomorphism11 (52). Reversion (tilde), and the involutions
m4̄, m1̄,4̄,5̄, thus do not affect the pseudoscalar I.

As concrete example for n = 7 we take the following multivector A ∈
Cl(7, 0),

A = 1 + 2I + (3 + 4I)e12 + (5 + 6I)e1234 + (7 + 8I)e123456

= 1 + 8Ie123456 + 3e12 + 6Ie1234 + 5e1234 + 4Ie12 + 7e123456 + 2I

= 1− 8e7 + 3e12 + 6e567 + 5e1234 − 4e34567 + 7e123456 + 2e1234567

= 1 + 2I + (3 + 4I)E1 − (5 + 6I)E123 + (7 + 8I)E12345. (63)

Replacing in (63) I → i, we obtain the isomorphic complex coefficient mul-
tivector Ac in complexified Cl(0, 6) ∼= Cl+(7, 0), with E1, E123, E12345 ∈
Cl(0, 6), as

Ac = 1 + 2i+ (3 + 4i)E1 − (5 + 6i)E123 + (7 + 8i)E12345. (64)

Note that here E2
1 = e2

12 = −1, E2
123 = (−e1234)2 = 1, E2

12345 = e2
123456 = −1,

E2
2345 = +1, and i2 = −1. The complex scalar determinant of Ac in (64) can

be computed step by step as follows. We first compute

AcÃc = (1 + 2i+ (3 + 4i)E1 − (5 + 6i)E123 + (7 + 8i)E12345)

(1 + 2i+ (3 + 4i)E1 − (5 + 6i)E123 + (7 + 8i)E12345)∼

= (1 + 2i+ (3 + 4i)E1 − (5 + 6i)E123 + (7 + 8i)E12345) (65)

(1 + 2i+ (3 + 4i)E1 + (5 + 6i)E123 + (7 + 8i)E12345)

= 30− 192i+ (−10 + 20i)E1 + (22− 104i)E2345 + (−18 + 44i)E12345.

Next we compute

m4̄(AcÃc) (66)

= 30− 192i+ (−10 + 20i)E1 − (22− 104i)E2345 + (−18 + 44i)E12345.

10We choose below the notation gi(y) = ŷ for the grade involution, convenient for long

expressions as in (75).
11To be able to correctly apply all necessary involutions, actually appears to be the

main necessity of switching to the even subalgebra basis (55).
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Squaring AcÃc we obtain

AcÃcAcÃc

= (30− 192i+ (−10 + 20i)E1 + (22− 104i)E2345 + (−18 + 44i)E12345)

(30− 192i+ (−10 + 20i)E1 + (22− 104i)E2345 + (−18 + 44i)E12345)

= −44384− 14112i+ (15440 + 10720i)E1

+ (−37216− 13088i)E2345 + (19536E12345 + 12512i)E12345, (67)

and squaring m4̄(AcÃc) we likewise obtain

m4̄(AcÃc) m4̄(AcÃc)

= (30− 192i+ (−10 + 20i)E1 − (22− 104i)E2345 + (−18 + 44i)E12345)

(30− 192i+ (−10 + 20i)E1 − (22− 104i)E2345 + (−18 + 44i)E12345)

= −44384− 14112i− (1280 + 640i)E1

+ (40016 + 16288i)E2345 + (12096 + 6592i)E12345. (68)

We further compute

AcÃc m1̄,4̄,5̄(AcÃcAcÃc)

= (30− 192i+ (−10 + 20i)E1 + (22− 104i)E2345 + (−18 + 44i)E12345)

m1̄,4̄,5̄(−44384− 14112i+ (15440 + 10720i)E1

+ (−37216− 13088i)E2345

+ (19536E12345 + 12512i)E12345)

= (30− 192i+ (−10 + 20i)E1 + (22− 104i)E2345 + (−18 + 44i)E12345)

(−44384− 14112i− (15440 + 10720i)E1 − (−37216− 13088i)E2345

− (19536E12345 + 12512i)E12345)

= −3132096 + 5351808i+ (−4772160 + 5054720i)E1

− (9920 + 1695360i)E2345 + (−3657024 + 3660032i)E12345, (69)

and similarly

m4̄(AcÃc) m1̄,4̄,5̄(m4̄(AcÃc) m4̄(AcÃc))

= (30− 192i+ (−10 + 20i)E1 − (22− 104i)E2345 + (−18 + 44i)E12345)

m1̄,4̄,5̄ (−44384− 14112i− (1280 + 640i)E1 + (40016 + 16288i)E2345

+(12096 + 6592i)E12345)

= (30− 192i+ (−10 + 20i)E1 − (22− 104i)E2345 + (−18 + 44i)E12345)

(−44384− 14112i+ (1280 + 640i)E1 − (40016 + 16288i)E2345

−(12096 + 6592i)E12345)

= −1948896 + 4689408i+ (3276000− 3553600i)E1

+ (−2085280 + 3020160i)E2345 + (422496− 92608i)E12345. (70)
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Therefore, negating grade four we find

m4̄

(
m4̄(AcÃc) m1̄,4̄,5̄(m4̄(AcÃc)m4̄(AcÃc))

)
= −1948896 + 4689408i+ (3276000− 3553600i)E1

+ (2085280− 3020160i)E2345 + (422496− 92608i)E12345. (71)

Next we compute

1
3AcÃc m1̄,4̄,5̄(AcÃcAcÃc) + 2

3m4̄(m4̄(AcÃc) m1̄,4̄,5̄(m4̄(AcÃc)m4̄(AcÃc)))

= 1
3 (−3132096 + 5351808i+ (−4772160 + 5054720i)E1

−(9920 + 1695360i)E2345 + (−3657024 + 3660032i)E12345)

+ 2
3 (−1948896 + 4689408i+ (3276000− 3553600i)E1

+(2085280− 3020160i)E2345 + (422496− 92608i)E12345)

= −2343296 + 4910208i+ (593280− 684160i)E1

+ (1386880− 2578560i)E2345 + (−937344 + 1158272i)E12345. (72)

Then, we get the complex scalar y as

y = AcÃc

(
1
3AcÃc m1̄,4̄,5̄(AcÃcAcÃc)

+ 2
3m4̄(m4̄(AcÃc) m1̄,4̄,5̄(m4̄(AcÃc)m4̄(AcÃc)))

)
= (30− 192i+ (−10 + 20i)E1 + (22− 104i)E2345 + (−18 + 44i)E12345)

(−2343296 + 4910208i+ (593280− 684160i)E1

+(1386880− 2578560i)E2345 + (−937344 + 1158272i)E12345.)

= 661143552 + 439640064i. (73)

Moreover, after isomorphically mapping back i → I, and by using grade
involution gi(. . .) = .̂ . ., we can compute the real determinant of our A ∈
Cl(7, 0), i.e. of (63), as

z = det(A) = yŷ = (661143552 + 439640064I)(661143552− 439640064I)

= 630394182225100800. (74)
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And the inverse of Ac of (64), is therefore with real determinant z = det(A)
of (74), and complex scalar y of (73),

A−1
c =

1

z
Ãc

(
1
3AcÃc m1̄,4̄,5̄(AcÃcAcÃc)

+ 2
3m4̄(m4̄(AcÃc) m1̄,4̄,5̄(m4̄(AcÃc)m4̄(AcÃc)))

)
ŷ

=
(

1 + 2i+ (3 + 4i)E1 − (5 + 6i)E123 + (7 + 8i)E12345

)
(
− 2343296 + 4910208i+ (593280− 684160i)E1

+ (1386880− 2578560i)E2345 + (−937344 + 1158272i)E12345

)
gi
(
661143552 + 439640064i

) 1

630394182225100800

=
1

630394182225100800

(
− 874159543418880− 92043073290240i

+ (−23804470933585920 + 27958127744778240i)E12345

+ (3239175106068480− 3198061888143360i)E1

+ (3109867062558720− 1579168211927042i)E2345

+ (−4736241279959039 + 3017033546465278i)E23

+ (−7619749069455360 + 5226413209681920i)E45

+ (−22612009376808960 + 25039610519224320i)E123

+ (−12803600406282240 + 12872900731207680i)E145

)
. (75)

Replacing i → I = e1234567, and using E1 = e12, IE1 = −e34567, E23 =
E2E3 = e13e14 = −e34, IE23 = −Ie34 = e12567, E123 = E1E23 = −e12e34 =
−e1234, IE123 = −Ie1234 = −e567, E45 = −e56, IE45 = −Ie56 = e12347,
E145 = −e1256, IE145 = −Ie1256 = −e347, E2345 = e3456, IE2345 = e127,
E12345 = e123456, IE12345 = Ie123456 = −e7, we finally obtain the correct full
multivector inverse of A ∈ Cl(7, 0), i.e. of (63), as

A−1 =
1

630394182225100800

(
− 874159543418880− 27958127744778240e7

+ 3239175106068480e12 + 4736241279959039e34

+ 7619749069455360e56 − 1579168211927042e127

− 12872900731207680e347 − 25039610519224320e567

+ 22612009376808960e1234 + 12803600406282240e1256

+ 3109867062558720e3456 + 5226413209681920e12347

+ 3017033546465278e12567 + 3198061888143360e34567

− 23804470933585920e123456 − 92043073290240e1234567

)
. (76)
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4. Multivector inverse for Clifford algebras over
2m+ 1-dimensional vector spaces from multivector inverse
for Clifford algebras over 2m-dimensional vector spaces

The general case proceeds in the same way as the examples for n = 3, 5, 7
vector space dimensions, given above. Assume that for Clifford algebras
Cl(p′, q′), n′ = 2m = p′+q′, the algebraic expression for computing a general
multivector inverse12 is known

X−1 =
f(X)

detX
, ∀X ∈ Cl(p′, q′), n′ = 2m = p′ + q′, det(X) 6= 0, (77)

involving the determinant det(X) = Xf(X) as denominator of X−1, the
multivector f(X) being a product of involutions of X (or sum of products of
involutions).

For illustration, we give the expressions for f(X) used in the examples
of Section 3, based on (24), (40) (without the leftmost leading factor X), and
(58) (without the leftmost leading factor X):

X̃ for n′ = 2,

Xm3̄,4̄(XX) for n′ = 4,

X̃
(

1
3XX̃ m1̄,4̄,5̄(XX̃XX̃) + 2

3m4̄(m4̄(XX̃) m1̄,4̄,5̄(m4̄(XX̃)m4̄(XX̃)))
)

for n′ = 6. (78)

We can always split a multivector A ∈ Cl(p, q), n = 2m + 1 = p + q =
p′ + q′ + 1, into its even and odd parts, and rewrite the odd part as the dual
of an even multivector

A = 〈A〉+ + 〈A〉− = 〈A〉+ + 〈A〉∗−I, (79)

where the central pseudoscalar I = e1e2 . . . en will either have negative or
positive square. The even subalgebra Cl+(p, q), n = 2m + 1 = p + q + 1,
is by the isomorphism (10), isomorphic to some Clifford algebra Cl(p′, q′),
n′ = n − 1 = 2m = p′ + q′. By the above assumption (77), the multivector
inverse for 〈A〉+, det(〈A〉+) 6= 0, is known in Cl(p′, q′), n′ = 2m = p′ + q′,

〈A〉−1
+ =

f(〈A〉+)

det(〈A〉+)
, det(〈A〉+) = 〈A〉+f(〈A〉+). (80)

Our next step is always to replace the real even multivector 〈A〉+ in (80) by
a complex even multivector 〈A〉+ → Ac = 〈A〉+ + 〈A〉∗−i, i2 = −1, in the case
of I2 = −1, or alternatively by a hyperbolic even multivector 〈A〉+ → Ah =
〈A〉+ + 〈A〉∗−u, u2 = +1, in the case of I2 = +1. This will change the real

12Experience, algebraic, symbolic and numerical computations for n′ < 7 have shown,
that there is good reason to conjecture, that these general multivector inverses have alge-

braic expressions, which depend only on the dimension of the vector space, but not on the
details of the signature indexes p, q, see [3, 12, 6, 2].
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determinant det(〈A〉+) to a complex (or hyperbolic) determinant

det(〈A〉+) → y = det(Ac,h)

= Ac,hf(Ac,h) ∈ R⊕ Ri or R⊕ Ru, (81)

where it is important to note, that any involutions involved in computing
f(Ac,h), are not applied to the complex imaginary unit i (or the hyperbolic
unit u). With the help of complex (or hyperbolic) conjugation, we can turn
the complex (or hyperbolic) determinant y = det(Ac,h) of (81) into a higher
order real determinant z = det(A) of A ∈ Cl(p, q), n = 2m+ 1 = p+ q + 1,

z = det(A) =

{
det(Ac) cc(det(Ac)), I2 = −1,
det(Ah) hc(det(Ah)), I2 = +1,

(82)

where, after back replacement i→ I (u→ I), isomorphically mapping Ac,h →
A = 〈A〉+ + 〈A〉∗−I, the grade involution gi(. . .) precisely has the effect of
complex (or hyperbolic) conjugation, i.e. gi(I) = −I. By construction z =
det(A) will have the multivector Ac,h itself as first factor Ac,h on the left,
see (81) and (82). Removing this first factor, we get for det(A) 6= 0, the final
expression for the inverse of Ac,h, as

A−1
c,h =

{
f(Ac) cc(y)/z, I2 = −1,
f(Ah) hc(y)/z, I2 = +1.

(83)

This then gives the full inverse for A ∈ Cl(p, q), n = n′+ 1 = p+ q = 2m+ 1,
for z = det(A) 6= 0, by replacing i → I (u → I), and back substituting
the isomorphism (10) from the Clifford algebra basis Cl(p′, q′), n′ = 2m =
p′ + q′ = n − 1 to the even subalgebra of the Clifford algebra Cl+(p, q),
n = p+ q = n+ 1.

A−1 =
f(A) ŷ

z
, (84)

Note again that, in the above expression, any involutions in f(A), are solely
applied with the respect to the isomorphic complex (or hyperbolic) expres-

sion Ac,h for A in the 2n
′

= 2(n−1)-dimensional basis, arising from the even
subalgebra isomorphism (10). The involutions applied in f(. . .), thus do not
affect the pseudoscalar I. If the determinant det(A) in (82) turns out to be
zero, then A ∈ Cl(p, q), n = 2m + 1 = p + q + 1, is a zero divisor and has
no inverse. As pointed out in Section 2, the inverse multivector of (83), is at
the same time always left- and right inverse.

If in Clifford algebras Cl(p′, q′), n′ = 2m = p′ + q′, the algebraic ex-
pression for computing a general multivector inverse is instead of (77) given
as

X−1 =
g(X)

detX
, ∀X ∈ Cl(p′, q′), n′ = 2m = p′ + q′, det(X) 6= 0, (85)

involving the determinant det(X) = g(X)X as denominator of X−1, the
multivector g(X) being a product of involutions of X (or sum of products of
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involutions), then the corresponding expression for the inverse ofA ∈ Cl(p, q),
n = 2m+ 1 = p+ q + 1 becomes

A−1 =
ŷ g(A)

z
,

y = det(Ac,h) = g(Ac,h)Ac,h,

z = det(A) =

{
cc(det(Ac)) det(Ac), I2 = −1,
hc(det(Ah)) det(Ah), I2 = +1.

(86)

5. Conclusion

Assuming known algebraic expressions for multivector inverses in any Clifford
algebra over an even dimensional vector space Rp′,q′ , n′ = p′ + q′ = 2m, we
were able to derive a closed algebraic expression for the multivector inverse
over vector spaces one dimension higher, namely over Rp,q, n = p + q =
p′ + q′ + 1 = 2m + 1. Explicit examples were given for dimensions n′ =
2, 4, 6, and the resulting inverses for n = n′ + 1 = 3, 5, 7. The general result
for n = 7 appears to be the first ever reported closed algebraic expression
for a multivector inverse in Clifford algebras Cl(p, q), n = p + q = 7, only
involving a single addition in forming the multivector determinant, as in the
denominator of (62). The compact form of this expression is advantageous
for increasing speed and accuracy of numeric computations, and speed of
symbolic computations. Furthermore, the octonion product can be expressed
in Cl(0, 7) as product of paravectors (scalars plus vectors) multiplied by (1−
e124 − e235 − e346 − e457 − e561 − e672 − e713), finally followed by projection
to paravectors (grades zero and one), see Chapter 23.3 of [8]. The compact
expression for the multivector inverse also valid in Cl(0, 7), which we have
derived, may therefore also prove useful for symbolic and numeric octonion
algebra computations.

With the result of this paper, it becomes possible to make a step from
compact algebraic expressions for multivector inverses in Clifford algebras
over even (n = 2m) dimensional spaces to similarly compact expressions for
inverses of multivectors in Clifford algebras over spaces one dimension higher
(n = 2m + 1). It would be most desirable to find a similar step from mul-
tivector inverses in Clifford algebras over odd dimensional vector spaces to
multivector inverses in Clifford algebras over vector spaces one dimension
higher (and thus even dimensional). Then one would have a complete induc-
tive ladder for efficiently computing multivector inverses in Clifford algebras
of any dimension.

We thank R. Ab lamowicz for pointing out that with the help of the
characteristic polynomial of a multivector M the inverse can be computed as
well, which is e.g. implemented in the Clifford package for Maple [1]. For this
method first the characteristic polynomial coefficients have to be computed
from det(λ−M), in the case of square matrices det(λE−AM ), where E is the
unit matrix, and AM is the matrix isomorphic to M in an Nth order square
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matrix representation. Clifford algebras Cl(p, q), p+ q = 7 are isomorphic13

to complex 8 × 8 square matrices, pairs of real 8 × 8 matrices or pairs of
quaternionic 4× 4 matrices, see Table 1 in Chapter 16.4 of [8]. The constant
coefficient of the characteristic polynomial is ±det(M), the other terms form
a polynomial −MPN−1(M), where PN−1(M) is a polynomial of the order
N − 1. Therefore PN−1(M) divided by det(M) gives the inverse M−1. In the
case of Cl(p, q), p+ q = 7, N would be at least 8, the characteristic polyno-
mial would first have to be computed, and all powers of M up to the order of
N − 1 = 7. From a numerical viewpoint of computational cost and accuracy,
the method (86) for n′ = 6 also involves the computation of the determinant,
but we can avoid to first compute the characteristic polyonomial coefficients
and their use for obtaining the multivector or isomorphic matrix polynomial
PN−1(M). Moreover, the conjugations we use only involve switching signs of
certain grade parts, which is very fast and introduces no alteration to numer-
ical values. We therefore expect that even in different software environments
our approach for the case Cl(p, q), p+q = 7, should be faster and numerically
more accurate.

E. H. would like to urge readers to apply the knowledge communicated
in this paper in accordance with the Creative Peace License [5].
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