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Abstract 

Most modern computer systems are connected to the Internet. This brings 

many opportunities for revenue generation via e-commerce and information 

sharing, but also threats due to the exposure of these systems to malicious 

adversaries. Therefore, almost all organisations deploy security tools to 

improve overall detection capabilities. However, all security tools have 

limitations: they may fail to detect attacks, fail to uncover all vulnerabilities or 

generate alarms for non-malicious traffic or non-vulnerable code. Using 

terminology from signalling theory, we can state that security tools suffer from 

two types of failures: failure to correctly label a malicious event as malicious 

(False Negatives); and failure to correctly label a non-malicious event as non-

malicious (False Positive). These failures may vary from one tool to another, 

since security tools are diverse in their weaknesses as well as their strengths. 

Therefore, an obvious design paradigm when deploying these defences is 

Diversity or Defence in Depth: the expectation is that employing multiple tools 

increases the chance of detecting malicious behaviour. This thesis presents 

research to assess the benefits (or harm) from using diversity. This thesis 

begins with a literature review on defence in depth, diversity and fault 

tolerance while identifying areas for further research.  This review is followed 

by the presentation of the overall methodology that we have used to perform 

the diversity assessment for three types of defence tools namely AntiVirus 

(AV) products, Intrusion Detection Systems (IDS) and Static Analysis Tools 

(SAT). The context of this project is inspired by the EPSRC D3S1 project in 

the Centre for Software Reliability (CSR) at the City, University of London as 

well as the previous work on diversity conducted at the same centre, but also 

elsewhere in the world.  This thesis presents the results using the well-known 

metrics for binary classifiers: Sensitivity and Specificity; and assesses the 

various forms of adjudication that may be used: 1-out-of-N (1ooN – raise an 

                                            

1 http://www.city.ac.uk/news/2015/march/researchers-at-citys-centre-for-software-reliability-are-the-
recipients-of-a-563,089 
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alarm as long as ANY of the defences do so), N-out-of-N (NooN – raise an 

alarm only if ALL the defences do so), majority voting (raise an alarm where 

a MAJORITY of the defences do so) or optimal adjudication (raise an alarm 

in such a way that it minimises the overall loss to the system from a failure).  

The first study compares the detection capabilities of nine different AV 
products. Additionally, for each vendor, the detection capabilities of the 
version of the product that is available for free in the VirusTotal2 platform are 
compared with the full capability version of that product that is available from 
the same vendor’s website. Counterintuitively, the free version of AVs from 
VirusTotal performed better (in most cases) than the commercial versions 
from the same vendor. 

The second study compares the detection capabilities of IDS when 
deployed in a combined configuration. The functionally diverse combinations 
are shown to increase the true positive rate significantly while experiencing 
smaller increases in false positive rate. 

The third study analyses the improvements and deteriorations of using 
diverse SATs to detect web vulnerabilities. The largest improvements in 
sensitivity, with the least deterioration in specificity was observed with the 
1ooN configurations, in NooN configurations there is an improvement in 
specificity compared with individual systems, and there is a deterioration in 
sensitivity. 

Finally, the benefits of “optimal adjudication” were also investigated: 
the result shows that the total loss that can result from the two types of failures 
considered (False Positives and False Negatives) can be significantly 
reduced with optimal adjudication configurations compared with more 
conventional methods of adjudication such as 1ooN, NooN or majority voting.  

 In conclusion, using diverse security protection tools is shown to be  
beneficial to improving the detection capability of three different families of 
products and optimal adjudication techniques can help balance the benefits 
of improved detection while lowering the false positive rates. 
 
 

                                            
2 VirusTotal is a web service providing online malware analysis based on several AV products, 

available at https://www.virustotal.com/   
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1.1 Context of the research 

An important part of design for security is defence in depth, consisting of 
“layers” of defence that reduce the probability of successful attacks. Guidance 
documents now advocate defence in depth as an obvious need3; but their 
qualitative guidance ignores the decision problems. Crucially, these questions 
concern diversity: defences should be diverse in their weaknesses. Any attack 
that happens to defeat one defence should with high probability be stopped or 
detected by another one. Ultimately, diversity and defence in depth are two 
facets of the same defensive design approach. Another term used in the 
literature is defence in breadth: the difference between the two is often (either 
explicitly or implicitly) understood to be that defence in depth is applying 
diversity between the layers and the defence in breadth across the same 
layer. In this thesis we mainly use the terms diversity and defence in depth, 
and unless explicitly stated otherwise, we use them interchangeably.  

The important questions are not about defence in depth and diversity 
being "a good idea", but about whether a set of specific defences would 
improve security more than another set; and about – if possible – quantifying 
the security gains. 

The security community is aware of diversity as potentially valuable (e.g. 
references in (Littlewood & Strigini, 2004) and (Garcia et al., 2014)). 
Discussion papers argue the general desirability of diversity among network 
elements, like communication media, network protocols, operating systems 
etc. Research projects studied distributed systems using diverse off-the-shelf 
products for intrusion tolerance (e.g. the U.S. projects Cactus, HACQIT 
(Reynolds et al., 2002) and SITAR4; the EU MAFTIA project5). New uses of 
diversity appear every now and then, e.g., diverse AV software in a 
commercial E-mail scanner6 and “in the cloud” (Oberheide, Cooke and 
Jahanian, 2008), metrics for effectiveness of defence in depth7, etc. 

                                            
3 https://www.iad.gov/iad/library/ia-guidance/archive/defense-in-depth.cfm  

4 http://www.cs.arizona.edu/cactus/ , http://people.ee.duke.edu/~kst/sitar.html 

5 http://research.cs.ncl.ac.uk/cabernet/www.laas.research.ec.org/maftia/  

6 http://www.gfi.com/products-and-solutions/email-and-messaging-solutions/gfi-
mailessentials/specifications/up-to-five-AV-engines 

7 http://ids.cs.columbia.edu/sites/default/files/law2011-aldr-final2.pdf 
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But there has been only sparse research (e.g. Gupta, 2003; Singh et al., 
2003) on how to choose among alternative layered defences; occasionally, 
unsuitable models appear relying on the naive assumption of independent 
failures (Wang et al., 2011). Official guidance shows trust in defence in depth 
but glosses over the need for quantification. For example, justifications like 
“Even the best available Information Assurance products have inherent 
weaknesses... it is only a matter of time before an adversary will find an 
exploitable vulnerability”8 ignore the probabilistic nature of security. What 
matters is not that adversaries will eventually break through – this applies to 
layered defences too! It is how soon they are likely to break through. Added 
layers of defence postpone that moment, directly by requiring extra steps, and 
indirectly by allowing for detection and defensive steps. But by how much? 
Thus the main outcomes of the research we present in this thesis will be 
methods for measuring security to drive rational decisions, and quantitative 
assessment of diversity with widely used security tools. 

1.2 Aims and objectives 

We note from our review of diversity in security (cf. Chapter 2) that 
although there is plentiful literature on defence in depth models and some 
literature on mitigation strategies, there is insufficient research on assessing 
the benefits (and harm) of defence in depth. In this research we address this 
gap by presenting results from three empirical studies with different types of 
defence. At a high level, our aim is to analyse: 

• the variety of architectural options about how diverse security controls 
are assembled and their responses combined (“adjudication”). For 
instance, a security architecture may have multiple defences: the 
adjudication can be such as to make this architecture a “1-out-of-N” 
system (successful at stopping attacks if just one of the N “layers’” 
succeeds), or weaker but less likely to report “false alarms” – blocking 
non-hostile activities (e.g. if it only treats an activity as an attack if a 
quorum of the defences flags it as such);  

the interplay between the risks of failing to react to true attacks and of false 
alarms (“false negative” and “false positive” failures, where "failure" may mean 
different things – penetration, lack of detection, etc. – depending on the 

                                            
8 www.nsa.gov/ia/_files/support/defenseindepth.pdf  
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function concerned). Receiver Operating Characteristic (ROC)  curves (Egan, 
1975) are often used to describe this trade-off for each detector and type of 
attack, but not fully studied for complex compositions of subsystems (Ulvila, 
Gaffney and Jr, 2003) 

We have conducted experiments with three types of defence tools: AV 
products, Intrusion Detection Systems (IDS) and Static Analysis Tools (SAT). 
We present the results using the well-known metrics for binary classifiers: 
namely Sensitivity and Specificity; and we assess the various forms of 
adjudication that may be used when configuring diverse tools: 1-out-of-N 
(raise an alarm as soon as ANY of the defences do so), N-out-of-N (raise an 
alarm only if ALL the defences do so),  majority voting (raise an alarm where 
a MAJORITY of the defences do so) or optimal adjudication (raise an alarm in 
such a way that it minimises the overall loss to the system from a failure).  
The main goals of our research are: 

1. Analyse the security benefits (or harm) of defence tools individually; 

presented in Chapters 4, 5, 6 and 7. 

2. Analyse the benefits (or harm) of the use of defence tools in diverse 

configurations; presented in Chapters 4, 5, 6, 7 and 8. 

3. Analyse the diversity that exists in the vulnerabilities of different 

applications – three web applications in Chapter 6 and a content 

management system with many plugins presented in Chapter 7. 

4. Analyse the benefits of “optimal adjudication” (Giandomenico and 

Strigini, 1990); presented in Chapter 8.  

5. Provide an analysis methodology for assessing the performance (in 

terms of lower false negative and false positive rates) of N-version 

diverse security decision support systems presented in Chapter 3. 

1.3 Contributions of the research 

The research presented in this thesis describes a number of novel 
analyses to help us quantify the possible benefits (and harm) of diversity for 
security, and hence help improve decision making for security. The main 
contributions are as follows: 
• An assessment of detection capabilities of different AV products from 

different vendors, and the different versions that those vendors provide 
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(i.e. the free version of the AV that is made available through services like 

VirusTotal and their commercial counterparts). We presented three types 

of analysis: 

• Analysis of the detection rate of full capability AV products compared 

to the detection rate provided by the free version of the same product. 

• Analysis of the detection time difference, in other words, if both AV 

products are able to detect the same malware, which version manages 

to detect the malware first and calculate the time difference between 

them. 

• Analysis of the labels that an AV version assigns to a given malware. 

The labels may be important to provide a security analyst with extra 

information on what type of malware they are dealing with, which may 

help them with the diagnosis. Analyses are achieved first by checking 

whether the labels assigned by the two versions of a given AV product 

were exactly the same, and second by analysing the classifications that 

the AV products used for these different types of malware.  

• An assessment of the performance of diverse IDS configurations: We 

used a previously published dataset (Elia et al., 2010) that used nine IDS 

configurations, when they were monitoring 3 web applications that were 

subjected to SQL injection attacks and benign crawling actions. We 

present the results using the well-established measures for binary 

classifiers: sensitivity, specificity and accuracy, and use ROCs to visualise 

the results. 

• An assessment of the performance of diverse Static Analysis Tool (SAT) 

configurations: We used a previously published dataset composed of five 

diverse SATs aimed to find SQL Injections (SQLi) and Cross-Site 

Scripting (XSS) vulnerabilities in 134 WordPress plugins (Nunes et al., 

2017). We present the results using ROCs, sensitivity and specificity, for 

all possible diverse combinations that can be constructed using these five 

SATs.  

• Assessing the benefits of optimal adjudication: Using the IDS and SAT 

datasets described above we evaluate the security tools in different 

adjudication setups (1ooN, NooN, majority voting and Optimal 
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adjudication), and quantify how much better optimal adjudication performs 

in reducing total loss, compared with the other adjudication setups.   

• We provide empirically-supported guidance on which combination of tools 

is better at detecting most vulnerabilities, and with low false alarms, 

depending on the requirements of the decision maker. 

• We provide an analysis method that may help other researchers with their 

analysis of diversity and defence in depth. This should prove useful to 

other researchers and organisations to assess diversity in their setups. 

In addition to the assessment work outlined above, we also designed, 
implemented and tested a tool for assessing diverse AV products called 
AVAMAT (presented in Chapter 5). This work was a joint effort with University 
of Maryland, with the author of this thesis being primarily involved in the design 
and testing of AVAMAT (implementation was done primarily at the University 
of Maryland).   

1.4 Thesis outline structure 

The second Chapter provides a review of literature in defence in depth 
for security, background on diversity research, as well as empirical and 
experimental studies for assessing diversity. The third Chapter present the 
analysis methodology that we have used in the thesis to assess the diversity 
with AV, IDS and SAT products. The fourth Chapter presents the results of 
analysis that compare the detection capabilities of full-capability AV products 
and signature-based AV products. The fifth Chapter presents AVAMAT: a tool 
for assessing full-capability diverse AV products. The sixth Chapter presents 
the analysis of a study in which we have assessed the detection capabilities 
of intrusion detection systems when deployed in diverse, defence in depth 
configurations. The seventh Chapter presents the result of an experiment in 
which five diverse SATs have been used to detect SQLi and XSS 
vulnerabilities in 132 plug-ins of the WordPress content management system. 
The eighth Chapter presents an analysis on the use of optimal adjudication 
with the SATs and IDSs and their comparison with the conventional forms of 
adjudication (namely 1-out-of-N, N-out-of-N and majority voting). Finally, 
Chapter 9 summarises the conclusions of the research and provisions for 
further work. 
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2.1 Background on fault tolerance, diversity and defence in 
depth 

A discussion on fault and intrusion tolerance usually begins with the 
definition of the “bad” events that the system designer wants to tolerate. The 
definitions of the terms fault (or bug), error and failure given in this section 
are based on (Avižienis et al., 2004). A failure is said to occur when the system 
stops performing its required functions. An error is an erroneous (defective) 
internal state in the system, which propagates through the system and causes 
the failure. A fault is the triggering condition which when activated causes an 
error. Therefore the event of the system failure lies in the end of a causal chain 
that begins with the activation of a fault under certain operating conditions 
followed by the propagation of an erroneous internal state through the system.  

The definitions of the fault tolerance terms and mechanisms defined in this 
section are based on (Lee and Anderson, 1990). A fault-tolerant system is a 
system that can continue in operation after some system faults have 
manifested themselves. Fault tolerance is therefore based on the premise that 
faults exist and that it is possible for the computer system to handle them 
without external interventions. The goal of fault tolerance is to ensure that 
system faults do not result in system failure. Fault tolerance can be achieved 
through both software and hardware, but throughout this thesis the software 
mechanisms will be discussed unless otherwise stated. Apart from (Lee and 
Anderson, 1990), other references which provide extensive coverage of 
software fault tolerance are (Bishop, 1995; Pullum, 2001). 

 The MAFTIA project9 extended the definitions of fault tolerance when 
reasoning about malicious events and hence tolerance mechanisms aimed at 
ensuring system security. So the fault-error-failure model described in 
(Avižienis et al., 2004) is further extended by the concepts of: attack – a 
malicious interaction fault, through which an attacker aims to deliberately 
violate one or more security properties (i.e. an intrusion attempt); 
vulnerability – a fault created during development of the system, or during 
operation, that could be exploited to create an intrusion; intrusion – a 
malicious, externally-induced fault resulting from an attack that has been 
successful in exploiting a vulnerability. This relationship between attack, 
vulnerability and intrusion is referred to as the AVI security model in MAFTIA 

                                            
9 http://research.cs.ncl.ac.uk/cabernet/www.laas.research.ec.org/maftia/  



-27- 

 

terminology (Verıssimo et al., 2003), and an intrusion-tolerant system is one 
that can continue in operation in the presence of vulnerabilities and attacks.  
The goal of intrusion tolerance is to ensure that system vulnerabilities and 
attacks do not result in successful intrusions (cf. analogy with the fault 
tolerance definition from the previous paragraph).   

 The central theme of this thesis is the use of diverse security products 
to increase the security of a system. Software design diversity is the 
phenomenon of bespoke development or reuse of multiple diverse versions 
of a software program (or existing product) from a common requirement 
specification with the goal of increasing the system reliability or availability. 
The intuitive underlying principle of design diversity is the simple longstanding 
belief that “two heads are better than one” and its advocacy for use with 
computer systems may be thought of as first being proposed by Charles 
Babbage(Babbage, 1982)10 although by computer he meant a person.  

The main reason for employing design diversity in software is due to 
software suffering from design faults (Littlewood et al., 2001) and not physical 
faults (such as wear-and-tear for example) which are hardware specific. A 
design fault in its simplest definition is a fault that is introduced in the software 
during its development (hence the word design in this context is used for the 
whole software development process). If non-diverse redundant copies of the 
same software product are used then these design faults will be simply 
replicated across the copies. Such replication of faulty software elements fails 
to enhance the fault tolerance of the system with respect to design faults.  

The ideal goal of employing design diversity is to achieve negative 
dependence between the failure modes of the software products (i.e. 
whenever one fails the other one does not). Independent failure modes of the 
channels that constitute the diverse system would also be highly desirable as 
they would enable an assessor to easily calculate the probability of failure of 
the diverse system: the product of the failure probabilities of the individual 
channels in the diverse system would give the failure probability of the diverse 
system. However virtually all of the experimental studies performed for 
measuring the benefits of design diversity (Chen &wiki Avizienis, 1995; Kelly 
& Avizienis, 1983; Knight & Leveson, 1986) have found faults, which cause 

                                            
10 The paper from Charles Babbage titled "On the Mathematical Powers of the Calculating Engine 

(Unpublished manuscript, December 1837)" can be found on the aforementioned edited book by 
Brian Randell.  
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coincident failures in more than one version with probability significantly higher 
than would be expected if the versions truly had independent failure modes.  

Additionally, in the context of security tools which rely on updates of 
rules/signatures to detect malicious events, the diversity in their behaviour 
may come from the diversity in their rules and the frequency with which the 
tool vendors update these rules. 

In summary, there is a lot of literature on design diversity: a more 
thorough review of the effectiveness of design diversity (both experimental 
results and probabilistic modelling) is given in (Littlewood et al., 2001); design 
aspects are discussed in (Strigini, 2005). Diversity for security is reviewed 
more thoroughly in (Littlewood and Strigini, 2004), and in a more recent study 
in diversity for security in (Garcia et al., 2014). But there has been only sparse 
research (e.g. Gupta, 2003; Singh et al., 2003) on how to choose among 
alternative layered defences. 

2.2 Assessment of a binary decision system 

A binary decision system (or a binary classifier) is a system which 
given some input (e.g. piece of code, network traffic etc.) produces an output 
selected from two (binary) choices: e.g. true or false, alarm or no alarm etc. 
For most of the assessment work we will present in this thesis, the inputs are 
divided into two categories, e.g. malicious or non-malicious, vulnerable or non-
vulnerable etc. In that context, if there are two outputs for each of these two 
inputs, then there can be four different categories of outcomes. Using an 
example of code, and the outputs from an SAT that labels the code as 
vulnerable or non-vulnerable, then these four categories are: 
• For code that is not vulnerable: 

• False Positive (FP): the binary decision system incorrectly 
determines that the code is vulnerable; 

• True Negative (TN): the binary decision system correctly 
determines that the code is not vulnerable. 

• For code that is vulnerable: 
• False Negative (FN): the binary decision system incorrectly 

determines that the code is not vulnerable; 
• True Positive (TP): the binary decision system correctly 

determines that the code is vulnerable. 
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From the four categories above, various measures can be calculated. A 
concise summary is given in Table 2-1 (Salako, 2018) below.  

Table 2-1 The various definitions from a binary decision system (Salako, 2018) 

 

Given the nature of the systems that are presented in this thesis (IDSs, 
AVs and SATs), the outputs of which can usually be classified as true or false, 
and the inputs are of two types (malicious or benign), then we looked into the 
best practice in assessment of these types of systems and the types of 
measures that are used in the literature. We found that ROC graphs are used 
extensively for visualising the performance of different systems, and the two 
axes in the ROC curve that are used more extensively are sensitivity and 
specificity (or sensitivity vs 1-specificity). In what follows we will give a more 
detailed description of ROC graphs, their origins and their applications.  

2.2.1 ROC background 
A Receiver Operating Characteristic (ROC) is a graphical plot for 

illustrating, organizing and choosing classifiers based on their performance. 
Decision makers plot the (ROC) curves for each system of interest when 
analysing the decisions of a binary classifier. ROC graphs are used in signal 
detection theory to represent the trade-off between false alarms and true 
alarms  (P. Egan, 1975; Swets, Dawes and Monahan, 2000). 

The first use of ROC was during World War II to analyse the signals of 
radars. ROC analysis was developed to overcome the minor radar 
discrepancies between different types of aircraft, mainly to correctly detect 
Axis (in this case Japanese) aircraft from radar signals (Hopley and 
Schalkwyk, 2011).  
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ROC graph is a two-dimensional graph, where the usual practice is for 
the X-axis to plot the false positive rate (FPR) and the Y-axis to plot the true 
positive rate (TPR). An ROC graph shows the relation between the benefits 
(in TP) with the costs (in FP). Figure 2-1 illustrates an ROC graph and the five 
points (A, B, C, D and E) represent different classifiers.  

 

Figure 2-1 ROC graph 

Each classifier provides a “FPR, TPR” pair corresponding to a single 
point in the ROC graph. The lower left corner (0, 0) represents the no positive 
classification, means no false positive error and no true positives also. In the 
upper right corner (1,1) represents the point where there are no false 
negatives, but also no true negatives (i.e. the system alerts for all demands). 
(0,1) is the optimal classification point (no false negatives and no false 
positives): in the ROC graph above system D is perfect. The ROC graph 
allows an analyst to visually compare the performance of the different 
classifiers. For example; classifiers on the left-hand side and close to the X-
axis can be conservative because they produced low true positive and few 
positive errors (FP). However, classifiers on the upper right-hand can be 
liberal because they produced high false positive rate and few true positive 
errors (TP). In the figure classifier A is more conservative than B.  

In this thesis we have primarily used sensitivity and specificity measures, 
as they tend to be the measures most commonly used in literature. Though 
the other measures listed in Table 2-1 above can be derived from the FP, TP, 
FN and TN counts which we provide in Chapters 6, 7 and 8. 
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2.2.2 Applications of ROC graph analysis 
ROC analysis for visualising the diagnostic systems behaviour (Swets, 

1988) is to a large extent based on the experience from the extensive literature 
in the medical decision making. ROC graphs are used extensively in the 
medical field. A few examples are: (Rangayyan et al., 1997) where ROC 
graphs are used to analyse the results of different cases (benign and 
malignant) mammogram scans for early diagnosis of breast cancer; in 
(Buscombe et al., 2001) ROC graph analysis was used to investigate if a 
combination of x-ray of mammography and scintimammography11 was more 
accurate than a single test alone for patients with suspected primary breast 
cancer; etc. 

In the computer science area ROC analysis is used extensively in the 
machine learning area. An example is in (Spackman, 1989) where ROC 
analysis was used to compare and evaluate different machine learning 
algorithms. The use of ROC graphs in machine learning field is particularly 
prominent  because of a need for a more holistic analysis than just using  
accuracy metric, which is considered a poor metric for measuring performance 
(Provost and Fawcett, 1997).  

2.3 Threats 

There are a multitude of threats that affect computer systems, from 
vulnerabilities in applications, to attacks from various adversaries (from script 
kiddies to nation states). In this thesis we have looked into malware, and 
attacks and vulnerabilities that affect web applications (including XSS and 
SQLi). We concentrated on these types of malware and attacks as they are 
the most prevalent types of threats that affect systems exposed to the Internet.  

2.3.1 Malware collection and analysis 
Malware, or malicious software, is any software or file that typically 

disrupts, damages, takes control of computer, gains unauthorised access to a 
computer system or gathers information from a computer. The malware can 
be categorized into types depending on the malware's method of operation 
(Aycock, 2006).  

Several dynamic malware analysis solutions exist on the Internet as 
online services. They offer a website and sometimes an API to submit 

                                            
11 Scintimammography is a type of breast imaging test that is used to detect cancer cells. 
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malware samples. A report of the observed behaviour is generated and 
provided to the user. The authors in (Bayer et al., 2006) introduced a tool to 
dynamically analyse the execution behaviour of Windows executable files 
which is called Anubis. This tool was made available online (Seclab, 2011). 
(Willems et al., 2007) introduced Malware Analysis CWSandbox 
(CWSandbox, 2013) which is currently available at (VMRay, 2014) and is 
another online service for malware analysis which later became the 
commercial solution called Threat Analyzer12. VMRay is another example of 
a commercial tool (VMRay, 2014). Malwr.com provides a public web interface 
for Cuckoo sandbox, a tool dedicated to malware dynamic analysis.  

Over the past several years, researchers and practitioners have used 
honeypots to learn about attacks, attackers and malware. These systems can 
be categorised as security tools whose value lies in being probed, attacked, 
or compromised (Spitzner, 2002). These carefully monitored systems allow 
security researchers to attract hackers, analyse their actions and profile them 
(Ramsbrock et al., 2007). Additionally they can also be used to collect the 
latest malware samples that attackers use.  Honeypot systems can be found 
at different scales: from a single host to more complex honeypot networks. 
These networks, also called honeynets, can be deployed on a few IP 
addresses within a local network. The project Leurre.com (Pouget, 2005), 
SGNET (Leita and Dacier, 2008) and the honeynet initiative from CAIDA 
(Vrable et al., 2005) are all examples of distributed honeypot networks that 
have been used in the past and deployed in different locations. Not all the data 
that is collected in the honeynets is necessarily harmful – for example, there 
may be test data that the attackers have uploaded, or malware may be 
“malformed” during the uploading process making the files innocuous. Hence 
experiment designers need to be careful to analyse and if necessary filter the 
data before using the collected data as malicious inputs in experiments.     

2.3.2 SQL Injection 
SQL Injection vulnerabilities exist due to user inputs that are not 

adequately validated (HTTP POST and GET variables, cookies, server 
variables, database values, etc.). In practice, when such inputs are not 
correctly sanitised, an attacker may be able to exploit them to maliciously 
inject new SQL commands and/or modify the logic of the existing ones. In this 
way, the attackers may read sensitive data from the database, modify it, and 

                                            
12 https://www.threattrack.com/malware-analysis.aspx 
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even execute administration commands (Barnett, 2015;  W3Schools, 2016;  
OWASP, 2017). According to several reports (IBM Security Solutions, 2013; 
Acunetix, 2015;  OWASP, 2017) SQL Injection attacks are considered one of 
the most dangerous types of attack for web applications and at the same time 
among the most common.  

Given the relevance of SQL injection attacks countermeasures have 
been investigated (Halfond et al., 2006). The best defence from SQL injection 
attacks is through preventive identification of vulnerabilities. However, the 
ubiquity of such vulnerabilities (IBM Security Solutions, 2013; Acunetix, 2015) 
shows that this approach is often disregarded due to time and resource 
constraints. For this reason, systems capable of runtime detection and 
prevention of intrusions have received a lot of attention (Buehrer, Weide and 
Sivilotti, 2005;  Halfond and Orso, 2005). In fact, a significant amount of 
research has been undertaken to create novel methods for detecting SQL 
Injection attacks (Lee et al., 2012; Sharma et al., 2012; Shar and Tan, 2013). 
However, security practitioners are still concerned with the effectiveness of 
IDSs (Richardson, 2011).  

2.3.3  Cross-site scripting (XSS) 
Cross-site scripting vulnerabilities appeared in 1996, in the first few 

years of the World Wide Web (Fogie et al., 2007). In 1999, Georgi Guninski 
(security researcher) was working on finding flaws in Internet Explorer’s (IE) 
security model. David Ross (security researcher at Microsoft) was influenced 
by the work of Georgi Guninski. Ross published the first paper on the cross-
site scripting vulnerabilities “Script Injection” (Fogie et al., 2007). Ross 
explained that the script content can be used to bypass the same security 
controls and the fault can exist on the server-side. In the XSS vulnerability the 
attacker can exploit the vulnerabilities by injecting malicious scripts in the new 
web page. The browser renders the page and executes the scripts in the 
victim’s machine as a trusted script which can hijack user sessions, deface 
web sites, or redirect the user to malicious sites (OWASP, 2017) 

2.3.4 Examples of SQLi and XSS vulnerabilities 
OWASP provides the top ten most critical web application security risks. 

SQLi and XSS vulnerabilities are in the list, and are particularly damaging 
(Halfond and Orso, 2005; OWASP, 2017). According to several reports (IBM 
Security Solutions, 2013; Acunetix, 2015;  OWASP, 2017) , SQL Injection 
attacks are considered one of the most dangerous types of attack for web 
applications and at the same time among the most common. An SQLi 
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vulnerability occurs when untrusted data flowing from Entry Points (EPs, e.g. 
user input) with inadequate input validation (i.e. inadequate analysis of the 
data against a predefined patterns) is used for constructing SQL queries. An 
attacker may explore these data flows and execute queries not expected by 
the application developer or may access sensitive data without proper 
authorisation (OWASP, 2017). These vulnerabilities occur whenever data 
input coming into applications from untrusted EPs is not validated, sanitised 
or escaped and flows through the application reaching Sensitive Sinks (SSs) 
(see Figure 2-2). An SS is a call of a function that exposes private data to 
external systems. An example for SQLi is the PHP mysql_query function, 
which executes an SQL query and returns the results. The PHP print function 
that outputs HTML/JavaScript to the browser is an example of an SS for XSS. 
XSS vulnerabilities occur whenever an application includes untrusted data in 
a new web page without proper validation, sanitisation or escaping (OWASP, 
2017). 

  

 
  

Figure 2-2 Data flow vulnerabilities 

To explain how SQLi vulnerabilities occur, and how they can be 
exploited, we use a PHP script example (Figure 2-3).  The script inserts 
contacts data (name and phone) in a database without any validation. In this 
script, there are two EPs, ($_POST array at lines 1 and 2) and one SS (line 4). 
The data flowing from the EPs to the SS are not validated, so there is one 
SQLi vulnerability in line 4.    

1 $name  = $_POST['name']; EP 
2 $phone = $_POST['phone']; EP 
3 $sql = "INSERT INTO Contacts (name, phone) 

VALUES ('$name', '$phone')"; 
4 $result = mysqli_query($connection, $sql); SS  

Figure 2-3 PHP code for inserting contacts in a database. 

The PHP script in Figure 2-4 shows an example of an XSS vulnerability. 
It searches contacts by name in the database and displays the results in an 
HTML page. The user provides the name (EP, line 1) to be searched through 
the $_GET array parameter. The script outputs the value of the parameter 
without any proper escaping (line 2). In this case, there is one reflected or first 
order XSS vulnerability. In reflected XSS the untrusted data coming from the 
user is immediately written back. The exploitation of this class of vulnerabilities 
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requires some kind of social engineering by the attacker to convince the victim 
to click in the crafted URL. In line 3, the script makes use of the same 
parameter ($name) to build the SQL query to be sent to the database server 
(line 4). In this case, there is also one SQLi vulnerability. Similarly to the data 
flowing from the user input, the database is also a source of untrusted data 
due to inappropriate validation when inserted in the database, as shown in 
Figure 2-3. In fact, any attacker can insert in the database malicious code 
instead of a valid contact name. Therefore, the PHP statement in line 7 is an 
EP in the application that retrieves untrusted data from the database. These 
data are outputted in lines 9 and 10 without any escaping, hence two stored 
or second order XSS vulnerabilities exist. This class of vulnerabilities is 
especially dangerous because it does not require any kind of social 
engineering to trick the victim and a single piece of malicious code stored in 
the database can be executed in the browser of all users visiting the website.  

1 $name = $_GET['name']; EP 
2 print("<h1>Your search for: $name</h1>"); SS   
3 $sql="SELECT * FROM Contacts where name like '%$name%'"; 
4 $result=mysqli_query($connection, $sql); SS 
5 echo '<table><tr><th>Name</th><th>Phone</th></tr>'; 
6 $n=0;   
7 while($row = mysqli_fetch_array($result)) {  EP   
8   echo '<tr>';   
9   echo '<td>' . $row[name] . '</td>'; SS  
10   echo "<td>{$row['phone']}</td>"; SS   
11   echo '<tr>'; $n++;   
12 } 
13 printf("Total records: %d", $n); SS 

Figure 2-4 PHP code for searching contacts in a database 

For a given class of vulnerability one line of code (LOC) is potentially 
vulnerable if it contains an SS function call with at least one parameter (Nunes 
et al., 2017). A vulnerable line of code (VLOC) is a LOC with an SS and a 
variable with data coming from EPs without any validation. A non-vulnerable 
line of code (NVLOC) is a LOC with an SS where all variables are sanitised  
(Rutar et al., 2004; Kiezun et al., 2009; Backes et al., 2017) Lines 2, 4, 9 and 
10 of the script in Figure 2-4 are examples of VLOCs and line 13 is an example 
of a NVLOC.   

2.4 Related work on assessing AntiVirus (AV) products 

AV products are one of the most widely used security protection 
systems. They are usually deployed as the last line of defence on desktop, 
laptop, tablet and smartphone devices for both home and business use. 
Studies that compare their detection capabilities are widely available13. 

                                            
13 av-comparatives.org/, av-test.org/, virusbtn.com/index 
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There are two major platforms that allow for suspicious files to be 
uploaded for scanning by multiple AV products, namely VirusTotal and 
Metadefender14.  

VirusTotal is an online service that hosts (at the time of writing) 56 
signature-based detection engines from different AV vendors. It is a service 
that is widely used by both academia and industry to submit and inspect 
malware samples. It also provides an Application Programming Interface (API) 
through which multiple malware samples can be submitted. 

Metadefender is also an online service that hosts (at the time of writing) 
42 signature-based detection engines. It provides a service similar to 
VirusTotal, and it also provides an API for submitting malware samples. 

Both of these services provide a valuable resource to malware 
researchers and the security community. But they have some limitations when 
it comes to more in depth analysis of AV detection capabilities: 

- Both platforms run signature-based detection engines of these AV 
products, rather than the full capability products that would run on an end-
point, making comparisons with full capability versions of these products 
difficult. Metadefender states the following on its “Statistics” page15 “ Please 
note that the detection data comes from Software Development Kit (SDK) 
and Command Line Interface (CLI) package versions of these anti-malware 
engines, using static analysis only, and not from endpoint desktop 
applications which may be capable of enhanced behavioural and other 
dynamic analysis, so detection results may differ significantly from 
commercial endpoint performance. The data below should not be used for 
comparing performance of desktop or server anti-malware applications”.  

VirusTotal states the following on its “About” page: “VirusTotal's AV engines 
are command-line versions, so depending on the product, they will not 
behave exactly the same as the desktop versions: for instance, desktop 
solutions may use techniques based on behavioural analysis and count 
with personal firewalls that may decrease entry points and mitigate 
propagation”. 

                                            
14 https://www.metadefender.com/  

15 https://www.metadefender.com/stats#!/1 
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- Both platforms are essentially “black box” testing platforms. In other words, 
the user submits a file, and gets a response on whether the file was 
detected as malicious, which AV products detected it as such, and the 
signature used for the detection. But they do not provide more detail about 
when the file was detected (e.g. “on entry” – before being downloaded on 
the endhost; after it was downloaded but without forcing a scan; only after 
a scan is performed), or on which operating system the AV product was 
running when it detected (or not) a file as malicious. This makes it more 
difficult to assess the potential damage that a file may cause on the end 
host before malware is actually detected, and whether it would have caused 
any damage at all on a given operating system (some malware could be 
malicious on one operating system, but innocuous on another).   

- Both platforms, on their free versions, put restrictions on the number of files 
that can be uploaded at any given time (which is reasonable to allow fair 
use). For researchers wishing to upload thousands of malware files on a 
daily basis, they need to pay a fee, which can run into several tens of 
thousands of dollars per year.  

Empirical analyses of the benefits of diversity with diverse AV products 
are rare. We know of three published studies that have looked at the problem.  

A study with a deployment of the Cloud-AV implementation in a 
university network over a six month period is given in (Oberheide, Cooke and 
Jahanian, 2008) . For the executable files observed in the study, the network 
overhead and the time needed for an AV product to make a decision are 
relatively low. This is because the processes running on the local host, during 
the observation period, could make a decision on the maliciousness of the file 
in more than 99% of the cases they examined a file. The authors acknowledge 
that the performance penalties could be much higher if more types of files than 
just executables are examined, or if the number of new files observed on the 
host is high (since the host will need to forward the files for examination to the 
network service more often). 

The work in (Bishop et al., 2011; Gashi et al., 2009) uses the VirusTotal 
service for the analysis. The analysed dataset is composed of 1599 malware 
samples collected by a real world honeypot deployment – SGNET (Leita and 
Dacier, 2008) SGNET is a distributed honeypot deployment for the 
observation of server-side code injection attacks. The dataset in (Bishop et 
al., 2011; Gashi et al., 2009) was collected in the period February to August 
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2008. Each sample in the SGNET dataset was resubmitted to VirusTotal on a 
daily basis for a period of no more than 30 days. Further results on diversity 
of AV products, with newer datasets and different data collection 
environments, were also presented in (Gashi et al., 2013). Since these studies 
are based on results obtained from interaction with VirusTotal, they suffer from 
the imitations highlighted earlier, namely that VirusTotal uses the signature 
based detection engines of these AV products, rather than the full capability 
versions; VirusTotal gives the results on whether an AV product detected a 
malware or not (and when it detects it, the signature that the AV product 
assigned to that malware), but does not tell us when the malware was 
detected, or on which operating system the AV product was running when the 
detection happened etc.   

2.5 Related work on assessing Intrusion Detection Systems 
(IDSs) 

A very extensive survey on evaluation of intrusion detection systems is 
presented in (Milenkoski et al., 2015). This survey analyses and systematises 
a vast number of research works in the field. The main features analysed in 
the survey are the workloads used to test the IDSs, the metrics utilised for the 
evaluation of the collected experimental data, and the used measurement 
methodology. The survey demonstrates that IDS evaluation is a key research 
topic and that one of the main benefits that IDS evaluation can bring is related 
with guidelines on how to improve IDS technologies. 

Several works try to provide a comprehensive analysis of IDSs for SQL 
injection (Tajpour et al., 2013), (Shrivastava and Tripathi, 2012). However 
differently from what is suggested in (Milenkoski et al., 2015), in most cases 
the comparison is limited to a review of the features and characteristics of the 
IDSs and does not deal with the actual verification of their real effectiveness 
by testing their capabilities.  

2.6 Related work on assessing diverse configurations of 
Static Analysis Tools (SATs) 

(Rutar, Almazan and Foster, 2004) studied five well-known SATs on a 
small set of Java programs with different sizes, and from various domains. 
They concluded that the results of each tool are highly correlated with the 
techniques used for finding bugs, and that no single tool can be considered 
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the best to detect defects. They proposed a meta-tool to automatically 
combine and correlate SAT outputs. This meta-tool is based on a set of scripts 
that combine the results of the various tools in a common format. The bugs 
found were not manually reviewed, thus, there is no distinction between TP 
and FP. The metric used to evaluate and compare the tools was the number 
of bugs that each SAT found.  

(Na et al., 2008) proposed an approach to merge the results of multiple 
SATs. The user specifies the programs to be analysed and chooses the 
classes of bugs to be scanned. After determining which tools can search for 
the specified class of bugs, it generated the necessary tool configurations, ran 
the tools, combined the outputs in a single report, and applied two prioritizing 
policies to rank the results. They used this approach to conclude that 
developers could benefit by using more than one SAT. However, neither were 
the SAT outputs classified as TP and FP nor did the authors propose any 
metric to evaluate the approach. The workload was composed of a small Java 
program that is not representative of real applications. Therefore, with such 
limited validation, it is very difficult to assess the strength and drawbacks of 
the solution.  

(Wang et al., 2008) proposed an approach that combines multiple SATs 
in a simple Web Service. The user has the possibility to upload the source 
code and auxiliary information such as the programming language and the 
classes of bugs to be scanned. The tools perform the analysis of the source 
code and the results are merged in such a way that the same defect is 
reported only once. The experiments were quite limited, having just a single 
Java test case, and the approach was evaluated in terms of the running time 
when combining two SATs, lacking the validation of the effectiveness of the 
vulnerability detection. 

The NSA Centre for Assured Software (CAS) specified a methodology, 
the CAS Static Analysis Tool Study Methodology, that measures and rates the 
effectiveness of SATs and combination of SATs in a standard and repeatable 
manner (NIST, 2018). The metrics used are Precision, Recall, F-Score, and 
Discrimination Rate (DR). A discrimination occurs if a SAT reports a 
vulnerability in the vulnerable test case (TP) and keeps quiet in the non-
vulnerable test case (TN). The CAS created a collection over 81,000 synthetic 
C/C++ and Java programs with known flaws, which was called the Juliet Test 
Suite (NIST, 2018). Each test case is a slice of artificial code having exactly 
one flaw and at least one non-flaw construct similar to the vulnerability. In 
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2011, the CAS conducted a study with the purpose of determining the 
capabilities of five SATs for C/C++ and Java (Britton, 2011). In this study, the 
authors proposed the combination of two SATs to show that adding a second 
SAT might complement the first one. However, the evaluation of the 
combinations is limited because it is based on the Recall and DR metrics. The 
Recall does not consider the number of FP reported, and the DR severely 
penalises the SATs that report both many vulnerabilities and many FP. 
Furthermore, they also evaluated the overall coverage (Recall) of four 
combinations of five different SATs. They concluded that the Recall increases 
as the number of tools increases.    

(Nunes et al., 2017) studied the problem of combining the outputs of 
diverse static analysis tools to detect web vulnerabilities. They argued that the 
use of two or more SATs might be helpful, as more vulnerabilities may be 
reported. However, the drawback is that the number of FPs may at the same 
time increase. Moreover, they claim that the acceptable/expected outcome of 
the static analysis process (in terms of TPs and FPs) depends on the software 
development scenario. They considered four software development scenarios 
with different goals and constraints, ranging from low budget to high-end (e.g. 
business critical) applications. For each scenario, they used one main metric 
to rank the combinations of the tools and a tiebreaker metric used only when 
there is a tie. For example, for the high-end scenario the main metric is the 
Recall and the tiebreaker metric is the Precision. In this scenario, the goal is 
to find the highest number of vulnerabilities at any cost. Therefore, the Recall 
metric captures this goal. They evaluated all 32 1-out-of-N adjudicator 
combinations of the outputs of five free SATs finding SQLi and XSS 
vulnerabilities in a workload composed by 134 WordPress plugins organised 
by scenarios. The results showed that the best solution depends on the class 
of the vulnerability and on the scenario. In fact, the best solution never 
includes all the SATs and in some cases, a single SAT performs better than 
the best combination of SATs. The approach is based on a considerable 
amount of software in production characterised in terms of vulnerable and 
non-vulnerable lines of code for a more precise classification of the outputs of 
the tools with respect to TP and FP. One limitation of this work is that all the 
combinations are based on 1-out-of-N adjudicator combinations. For instance, 
in the less stringent scenario, where the resources for vulnerability fixing are 
very low, every FP is an important cause of concern. In this case, N-out-of-N 
adjudicator combinations might increase the confidence of the results. For 
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instance, a potential vulnerability reported by more than one SAT has higher 
probability to be a true vulnerability than one reported only by one tool.  

2.7 Gaps in the Literature  

The previous sections gave an overview of the type of research in 
security in relation to design diversity and defence in depth. Few of the 
pervious works have provided empirical assessment of the benefits, or harm, 
resulting from defence in depth, or what adjudication mechanisms may be 
used when diverse systems are deployed. In particular, there is not enough 
research in previous studies on assessing the benefits of diversity and 
defence in depth for security of binary decision systems. The rest of the thesis 
provides details of the work done to address these gaps. 
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3.1 Introduction 

In this chapter we present the analysis methodology that we have used 
in the thesis to assess the diversity with AV, IDS and SAT products. The 
methodology we used was influenced by the objectives we set-out at the start 
of the thesis. Namely, to study: 

• the variety of architectural options about how diverse security controls 
are assembled and their responses combined (“adjudication”); 

• the interplay between the risks of failing to react to true attacks and of 
false alarms (“false negative” and “false positive” failures). 

For the first objective above, we studied the most common types of 
adjudications reported in the literature, namely 1-out-N, N-out-of-N and 
majority voting. Additionally we also applied the “optimal adjudication” 
function, which was described in the papers by (Giandomenico and Strigini, 
1990). For the second objective, we used the extensive prior work on the 
assessment of binary decisions systems (as referenced in Chapter 2 earlier) 
and used it to assess diversity in defence systems where the output from the 
defences can be reduced to a binary decision (e.g. true or false; alarm or no 
alarm etc).  

Note that we could not apply the method in full to all three studies. This 
is because for the AV products we only had data about malicious events 
(malware). Hence we can only measure the false negative rate. For the other 
two studies (namely IDSs and SATs) we applied the methodology in full.  

The rest of the chapter is organised as follows: section 3.2 outlines the 
method for assessing diversity for binary decision systems; section 3.3 
presents a justification for why the AVs, IDSs and SATs were chosen in the 
thesis; and finally section 3.4 concludes the chapter.  

3.2 Assessing diversity for binary decision systems 

The same as for any binary decision system, we can classify the 
decisions of a binary decision security defence system into four classes: 

- For benign inputs (e.g. benign crawling actions, non-vulnerable code, non-
malicious files etc): 

o False Positive (FP): the security defence system, incorrectly, 
determines that a benign input is malicious; 
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o True Negative (TN): the security defence system, correctly, 
determines that a benign input is not malicious. 

- For malicious input (e.g. attacks, vulnerable code, malicious software etc.): 

o False Negative (FN): the security defence system, incorrectly, 
determines that a malicious input is not malicious; 

o True Positive (TP): the security defence system, correctly, 
determines that a malicious input is malicious. 

In our work we extend the analysis from the viewpoint of diversity. We 
analysed all possible pairs, triplets,…, “N-plets”, that can be constructed with 
the N versions of the security defences that we study16. The decision that a 
N-version defence system would make on a given input will depend on how it 
does the voting/adjudication on the results it receives from each of the 
individual systems. We studied the following adjudication schemes: 

- 1-out-of-N (abbreviated 1ooN): an input is labelled as malicious as long as 
ANY one of the N versions in the defence system determines that the input 
is malicious;   

- N-out-of-N (abbreviated NooN): an input is labelled as malicious only if ALL 
the N versions in the defence system determine that the input is malicious; 

- r-out-of-N (abbreviated rooN17): an input is labelled malicious only if r out of 
the N versions in the defence system determine that the input is malicious; 

- Optimal adjudication: an input is labelled malicious according to a cost 
function (optimal adjudicator) that minimises the overall cost of failure. More 
on this in Chapter 8.  

In practice, each system is being asked whether a given input is 
malicious or not. Hence, we use the following conventional statistical 
measures of the performance of a binary classification test18: 

                                            
16 For AVs we decided to study the differences between versions of the product from the same vendor instead, as 

there has already been prior work in assessing diversity between products from different vendors, as we 
referenced in the previous chapter.  

17 Where r = (N/2)+1 when N is an even number; and r = ((N-1) / 2) +1 when N is an odd number.  

18 Very clear definitions with examples are provided in the following article: 
https://www.medcalc.org/manual/roc-curves.php  
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- Sensitivity (True Positive rate) – measures the performance of the 
security defence in detecting malicious inputs; 

- Specificity (True Negative rate) – measures the performance of the 
security defence in not raising alarms for benign inputs; 

- Accuracy – measures the combined performance of a security defence 
against malicious and benign inputs.    

There are many other measures that can be used. We already provided 
some of them in the Literature Review (specifically section 2.2). A review of 
these and similar measures in the context of security is provided in (Antunes 
and Vieira, 2015). We chose the measures above as they are the most widely 
used and most easily understood, as evidenced from their widespread use in 
both security and medical fields. In any case, all the other measures are easily 
derived from the FP, FN, TP and TN counts, which we provide in full for each 
study. So practitioners can derive the other measures of interest directly from 
the counts above.   

The analysis approach followed in this study provides an analyst with a 
useful methodology to help them with decision problems when configuring 
defence in depth architectures. Some of the problems for which we provide 
useful guidance are: 

- How to choose diverse systems from a pool of similar products to improve 
the overall system security? 

- If an organisation is already running a defence system and would like to 
add another that best complements the existing one (in terms of low false 
positives and low false negatives), which one should be chosen? 

- What are the trade-offs between false positives and false negatives when 
analysing diverse defence systems in different applications and different 
attack profiles? 

Our analysis methodology, though based on well-known and established 
techniques for analysing decision-based systems, should also prove useful to 
other researchers who need to analyse combinations of diverse protection 
systems (such as firewalls, or combinations of functionally different defences) 
etc.  
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Decision makers also plot the Receiver Operating Characteristic19 
(ROC) curves for each system of interest when analysing the decisions of a 
binary classifier. ROC curves are used to determine how a threshold should 
be set for a decision system to get an optimal configuration20 that maximises 
the TP and minimises the FP rates. However, since the systems in our case 
are already pre-configured, the ROC plots show only a point for each system. 
By showing all the points for the single and diverse systems in the same plot, 
we can visualise which systems are configured optimally for a given 
application. 

In summary, in our analysis we did the following for each study (and each 
application in the IDS and SAT studies): 

- We calculate the FP, FN, TP, TN counts for each diverse configuration; 

- We calculate the measures of interest (specificity, sensitivity and accuracy) 
or each diverse configuration, overall and by type of malicious input; 

- We generate the ROC plots showing all the diverse configurations and the 
individual defence systems, overall, by type of cconfiguration and by type 
of malicious input; 

- We calculate the differences in the measures of interest between diverse 
configurations and individual systems to measure the possible 
improvements or deteriorations from switching to a diverse system.  

3.3 Justification for choosing to study diversity with AVs, 
IDSs and SATs 

We have conducted experiments with three types of defence tools: AV 
products, Intrusion Detection Systems (IDS) and Static Analysis Tools (SAT). 
The main reasons for choosing to study these products are as follows: 

- Deployment in real systems: AV products and IDSs are some of the most 
widely used security defence tools in both personal computing and 
commercial/organisational settings. The practical advice from any 
operating system vendor when starting up a machine is to make sure that 
an AntiVirus product is installed before connecting to the interne (or 

                                            
19 https://www.medcalc.org/manual/roc-curves.php 

20 What is “optimal” for a give system will inevitably depend on the relative cost that the decision maker assigns to 
the FP and FN failures.  
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connecting some external device to the machine). Similarly, IDSs are 
widely used in organisations as another layer of defence to complement 
the defences that are deployed on the end hosts. SATs are used at a 
different stage of a system lifecycle (i.e. during its development), but can 
also be used to test existing code bases for potential vulnerabilities. As 
such they are also widely used for software developers for vulnerabilities, 
especially if that software will be exposed to the web.  

- The availability of multiple products in the same product family: since 
the primary aim of our research is the assess diversity, we chose product 
families that had multiple products from different vendors available for 
them, and for which there is a sufficient number of open source/freeware 
versions available. There are other product families for which there are 
multiple vendors, firewalls being the most clear example, but most of the 
products available in this family are prohibitively expensive for academic 
research.  

- The availability of datasets that facilitate assessment of diversity: one 
way in which we thought we could make a substantial contribution in 
research, in a time efficient manner, was to leverage the very good work 
done by other researchers and build on top of it. This has the advantage of 
fostering collaboration between different institutions, and also making sure 
that the work is reviewed from multiple sites, enabling a higher level of 
scrutiny of the results and hence leading to better quality of research. To 
this end we approached colleagues in Europe and US who had extensive 
data collection infrastructures, who had published the datasets so that the 
data had already been scrutinised by the community, but who had not 
analysed the data from a diversity perspective. The three datasets we used 
were extensive, very well documented, included multiple products and had 
research colleagues who were available to answer questions we had about 
the datasets, how they were collected etc. 

3.4 Conclusions 

In this chapter we presented the methodology that we have used to 
perform the diversity assessment with AV, IDS and SAT products. We will 
reference this methodology in the subsequent chapters where the results of 
the diversity assessment with these products are presented in more detail. As 
we mentioned, the entire methodology could not be applied to the all the 
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products, so we will make it clear in subsequent chapters which part of the 
methodology presented here applies in that context.   
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4.1 Introduction 

In this chapter we report results of an empirical analysis of the detection 
capabilities of nine AV products when they were subjected to 3605 malware 
samples collected on an experimental network over a period of 31 days in 
November-December 2013. We compared the detection capabilities of the 
version of the AV products that the vendors make available for free in 
VirusTotal versus the full capability products that they make available via their 
own website. The analysis has been done using externally observable 
properties of the AV products: namely whether they detect a given malware, 
and, if they detect it, what label they assign to that malware.  

The methodology we described in Chapter 3 could only be applied with 
respect to sensitivity assessment, since we only have malicious inputs 
(malware samples) that were sent to the AV products.  

The rest of the chapter is organised as follows: section 4.2 outlines the 
objectives of the study; section 4.3 describes how the data was collected; 
section 4.4 presents a summary of the results; section 4.5 presents a 
comparison of the detection capabilities of the two versions of AV from each 
vendor; section 4.6 visualises the dataset over the three dimensions of 
analysis (dates, malware and AV), section 4.7 presents an analysis over time; 
section 4.8 presents an analysis of the labels used by AVs for malware; and 
finally section 4.9 presents a discussion, conclusions and provisions for further 
work.  

4.2 Study objectives 

The main objective of this experiment is to compare the detection rates 
of full capability products versus the version that the vendors make available 
for free via VirusTotal, which can help security researchers, who may have 
results from experimentations with VirusTotal alone, to compare and improve 
their estimates. Analysis of the labels/signature that AV products assign to the 
malware that they detect are also presented. The labels may be helpful to 
researchers and administrators with diagnosing the type of malware they are 
dealing with in their systems, and to check whether knowledge gained from 
analysing labels assigned by AVs in full capability versions are transferable to 
the labels that they assign to their VirusTotal versions, and vice versa.   
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4.3 The experimental design   

Dionaea21, a low-interaction honeypot tool that emulates common 
Internet services, was deployed by the University of Maryland on a distributed 
honeypot architecture to collect the malware analyzed in this study. 1136 
public IP addresses have been used to implement Dionaea. These IP 
addresses are distributed across six different locations in four different 
countries: France, Germany, Morocco and the USA. The goal of the study is 
not to compare the malware collected on the different networks or locations. 
The goal is to study the detection capabilities for a malware set. The subnets 
do not have the same size and their configuration differs from one network to 
another. Note that none of the networks have the same security policy. 
Besides, these networks are not protected in the same way.  

The implemented configuration of Dionaea exposes different Internet 
services and protocols. For each of these services and protocols, Dionaea 
emulates vulnerabilities used to trap malware attempting to exploit them. 
Because of the nature of the vulnerabilities and protocols emulated, we mainly 
collect Windows Portable Executable (PE) files22.  

Binary files can be captured in different ways and they can have different 
formats. Only Microsoft Windows PE files were kept for this study. This format 
is easily identifiable and executable on any Windows operating system.  

Once a day, a Perl script fetches the malware and the information 
relative to their capture (stored in a SQLite database) from the different Linux 
virtual machines. This script then submits to VirusTotal the entire malware 
repository for analysis. When using the submission API, VirusTotal returns a 
scan key for each malware sample submitted. This scan key is composed of 
the binary’s SHA1 hash and the submission timestamp. The Perl program 
stores the different scan keys returned by the website to later retrieve the 
analysis reports.  

An additional Perl script is executed once all the malware has been 
submitted. This program uses the previously stored scan keys to fetch the 
analysis reports for all the malware in the repository. 

                                            
21 http://dionaea.carnivore.it 

22 https://docs.microsoft.com/en-us/windows/desktop/debug/pe-format  
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 Everyday a new database entry is created for each malware. This entry 
contains the information related to the VirusTotal submission. The AV 
product’s names, versions and the malware signature names are also 
uploaded in various tables and linked together with the file submission.  

9 AV products (AntiVir, AVG, Comodo, F-Secure, Kaspersky, McAfee, 
Microsoft, Sophos and Symantec) were deployed at the University for 
Business and Technology, Prishtina. The same malware samples collected in 
the experimental architecture described above were sent to these AV products 
on the same dates as when they were sent to VirusTotal. These AV products 
were chosen because:  

- they represent some of the most widely deployed AV products on the 
market; 

- experience of using them in the past in experiments. 

4.4 Summary results 

We start our analysis by describing some initial statistics of the data. As 
previously mentioned, our empirical analysis is with two versions (VirusTotal 
version and full capability version) of AV products of nine different vendors 
when they were subjected to 3605 malware samples collected in our 
experimental infrastructure, over a 31 day period (11-November-2013–11-
December-2013). Hence the inputs to our empirical analysis consist of a 
series of triplets {AVi*2, Malwarej, Dayk}: a given malware j is inspected on a 
given date k by two versions of a given AVi . For each of these triplets we 
observe a detection (stored as 0, or no failure), or no detection (stored as 1, 
or failure). For those triplets where we see a detection we also store the labels 
which a given AV version assigns to a given malware on a given date. 

We send malware to the two AV versions every day from the first date a 
malware is observed in the honeypots in our infrastructure until the last day of 
the observation period. However, the total number of triplets we observed was 
less than 3605 Malware * 31 Days * 9 AVs * 2 Versions. This is because: 

- Each day we observed new malware in the infrastructure and we could not 
send to VirusTotal a malware to be inspected by an AV product from an 
earlier date. 
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- Some of the AV products in VirusTotal are not active on certain dates for 
certain malware and hence we have no results for them, means they do not 
score neither zero nor one.  

In this analysis we use all the triplets {AVi*2, Malwarej, Dayk} for which 
we had observations from both versions of a given vendor allowing us to do a 
like-for-like comparison. Overall we had 958,972 * 2 such triplets, as shown in 
Table 4-1.  

Table 4-1 Counts of detections and non-detections 

Detection/Failure (DF) Full Capability (FC) VirusTotal (VT) 

DF=0 - No failure: Detection 944,718 946,375 

DF=1 - Failure: No Detection 14,254 12,597 

Total 958,972 958,972 

4.5 Comparison of the detection capabilities of the two 
versions from each vendor   

Table 3-2 shows the counts of demands (detected and undetected) for 
the full capability and VirusTotal versions of the nine vendor products in our 
study. A demand is a pair {Malwarej, Dayk} which links a given malware j and 
the date k to a given version of an AV that inspected it. The total number of 
demands for the vendors are comparable, apart from F-Secure for which we 
did not get responses for several days in VirusTotal.  

A surprising first observation is that for seven out of nine of these 
vendors, the version of their products that they had available in VirusTotal had 
a better detection rate compared with their full capability products (for each 
vendor we have highlighted in green which version gives the better detection 
rate).   

Additionally, we were interested in finding out what were the detection 
rates for the AV products when they first had to inspect a newly observed 
malware in our honeypots. Table 4-3 shows these results. The ordering is 
similar to Table 4-2 with the exception of Comodo which fails to detect more 
malware the first time it encounters it in the full capability version compared 
with the VirusTotal version. 
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Table 4-2 Detections and non-detections for all demands 

AV Name DFFC=0 DFFC=1 FRFC DFVT=0 DFVT=1 FRVT 

AntiVir 108,141 455 0.004190 108,171 425 0.003914 

AVG 108,051 61 0.000564 106,235 1877 0.017362 

Comodo 108,423 148 0.001363 108,101 470 0.004329 

F-Secure 91,339 1436 0.015478 91,383 1392 0.015004 

Kaspersky 106,348 2146 0.019780 106,380 2114 0.019485 

McAfee 103,969 4463 0.041159 106,392 2040 0.018814 

Microsoft 105,817 2560 0.023621 105,974 2403 0.022173 

Sophos 105,826 2612 0.024088 106,635 1803 0.016627 

Symantec 106,804 373 0.003480 107,104 73 0.000681 

FRFC : Failure Rate of Full Capability Products 

FRVT : Failures Rate of Virus Total Products 

Table 4-3 Detections and non-detections for the first inspection of a malware by an AV version in our 
experiment 

AV Name DFFC=0 DFFC=1 DFVT=0 DFVT=1 

AntiVir 3590 15 3591 14 

AVG 3603 2 3543 62 

Comodo 3600 5 3603 2 

F-Secure 3549 56 3550 55 

Kaspersky 3535 70 3536 69 

McAfee 3410 195 3538 67 

Microsoft 3526 79 3526 79 

Sophos 3459 146 3546 59 

Symantec 3535 70 3604 1 

DFFC : Detection Failures of Full Capability Products 

DFVT : Detection Failures of Virus Total Products 

 

The two preceding tables give a good overview of the detection 
capabilities of the versions separately. We then checked in more detail which 
demands are being detected in one version but not the other (and vice versa). 
Tables 4-4 and 4-5 give these numbers for all demands (Table 4-4) and for 
the first inspection of a given malware by a given AV version (Table 4-5). The 
total of the demands in the different columns of the two tables are as follows. 
First column: detected by both versions; second column: detected by the full 
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capability product but not by VirusTotal; third column: detected by VirusTotal 
but not by the full capability product; and the fourth column: failed to be 
detected by both versions. For three products (AntiVir, McAfee and Sophos) 
the number of malware that have been detected by the full capability version 
but not detected by VirusTotal version is zero. For these products there seems 
to be no gain in detection capability from using the full capability product. For 
AVG, we have the opposite observation: the full capability product detected 
everything that the signature based detection engine detects in VirusTotal and 
more. For the other five vendors, the detection capabilities of the two versions 
of the product seem complementary: one version detected some demands 
that the other one cannot, and vice versa.  

Table 4-4 Detections and non-detections for all demands on both versions 

AV Name 
DFFC=0  AND  

DFVT=0 

DFFC=0  AND  

DFVT=1 

DFFC=1  AND  

DFVT=0 

DFFC=1  AND  

DFVT=1 

AntiVir 108,141 0 30 425 

AVG 106,235 1,816 0 61 

Comodo 108,016 407 85 63 

F-Secure 91,337 2 46 1,390 

Kaspersky 106,334 14 46 2,100 

McAfee 103,969 0 2,423 2,040 

Microsoft 105,817 0 157 2,403 

Sophos 105,820 6 815 1,797 

Symantec 106,760 44 344 29 
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Table 4-5 Detections and non-detections for the first inspection of a malware by an AV version in our 
experiment – categorised by counts on both versions per vendor 

AV Name 
DFFC=0  AND  

DFVT=0 

DFFC=0  AND  

DFVT=1 

DFFC=1  AND  

DFVT=0 

DFFC=1  AND  

DFVT=1 

AntiVir 3,590 0 1 14 

AVG 3,543 60 0 2 

Comodo 3,600 0 3 2 

F-Secure 3,549 0 1 55 

Kaspersky 3,535 0 1 69 

McAfee 3,410 0 128 67 

Microsoft 3,526 0 0 79 

Sophos 3,459 0 87 59 

Symantec 3,575 0 29 1 

4.6 Visualising the dataset over the three dimensions (AV, 
MW, Dates) 

Next, we investigated more closely the overall distributions of the 
detection rates to analyse any patterns or anomalies in the detection 
capabilities of the different vendors. Figures 4-1, 4-2 and 4-3 show this 
visualisation. Each of the figures represents three dimensional plots, with the 
x and y axes representing any two of the three dimensions of interest 
(Malware, AV or Date), and the z axis (given by the intensity of the colour) 
represents the proportion of demands of the remaining third dimension that 
have detection failures. We will use Figure 4-1(a) for explanation: the x-axis 
contains the dates (ordered from start to finish) of the collection period; the y-
axis shows the malware (ordered by MD523 – same ordering preserved in 
parts (a) and (b) of the figure to make the visual comparison easier). A cell on 
the plot shows the proportion of full capability AV products that failed to detect 
a given malware on a given date. The colours of the cells represent the 
proportion of failures: white colour means none of the AV products failed to 
detect a given malware at a given date (i.e. they all detected the malware); 
black colour means missing data; the range from light green to dark red 
represents the failure rates from greater than 0 to 1 (in this case the failure 

                                            
23 The MD5 hash of the file is the unique identifier “signature”. 
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rate is given as a proportion of AV versions that failed to detect a given 
malware at a given date). Figure 4-1(b) shows the same plot for the VirusTotal. 
The cells in Figures 4-2 show the proportion of dates in which a given AV 
failed to detect a given malware, whereas Figure 4-3 shows the proportion of 
malware that failed to be detected by a given AV on a particular date. The 
colour encoding is the same. More analysis for Figures (4-1 and 4-2) are 
provided in Appendix A.  

Main observations from these plots: 

- Figure 4-1: it is visually clear that the full capability versions have a higher 
failure rate (due to the greater prevalence of non-white cells in Figure 4-1 
(a)). A number of malware have a high failure rate throughout the period for 
both setups (as is clear from the red lines that run across the data collection 
period).  

- Figure 4-2: There is some visible diversity in the “difficulty” of the malware 
across different vendors: we have red lines that run across several AV 
products (maximum six AVs for full capability products; maximum eight AVs 
for VirusTotal versions). The detection rates that we observed in Table 4-3 
are confirmed in the figure: Comodo and AVG have a lower number of 
coloured cells in part (a) of the figure compared with (b); vice versa for the 
others.   

- Figure 4-3: Only the VirusTotal version of Symantec has a perfect 
detection rate of all malware on a few dates of the experiment (as seen 
from the white gaps in Figure 4-3(b) for Symantec). The rest of the versions 
all fail on at least one malware. None of the full capability versions of AVs 
had a perfect detection rate on all the malware on any dates of the 
collection period. Comodo has a few days in the experimental period with 
a high failure rate in VirusTotal (as can be seen from the red areas in the 
top part of Figure 4-2(b) for Comodo). It is not clear why this is as VirusTotal 
is a black box for us. We can speculate that during this period Comodo was 
not updating its signature database in VirusTotal (or the update led to it 
failing to detect malware that it had detected in the past).   
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FIGURE 4-1(a)  

FIGURE 4-1(b) 
FIGURE 4-1 Date (x-axis), Malware (y-axis) and the proportion of AVs (given by the intensity of the colour in the plot) that fail to detect a malware on a 
given date. Figure 4-1(a) full capability versions; Figure 4-1(b) signature based detection engines as found in VirusTotal. 

 
FIGURE 4-2 (a) 

 
FIGURE 4-2 (b) 

FIGURE 4-2 AV (x-axis), Malware (y-axis) and the proportion of days (given by the intensity of the colour in the plot) that a given AV failed to detect a 
given Malware.  Figure 4-2(a) full capability versions; Figure 4-2(b) signature based detection engine as found in VirusTotal. 

 
FIGURE 4-3 (a) 

 
FIGURE 4-3(b) 

FIGURE 4-3 AV (x-axis), Dates (y-axis) and the proportion of Malware (given by the intensity of the colour in the plot)  that failed to be detected by a 
given AV on a given date. Figure 4-3(a) full capability versions; Figure 4-3 (b) signature based detection engines as found in VirusTotal. 
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4.7 Time lag analysis 

Apart from looking at the detection capabilities of the two versions of the 
AV vendors in our study, we also looked at which version first detected a 
malware and what is the time-lag between detections of malware by the two 
versions. The results are given in Table 4-6. The first column (Difference in 
Days) represents the time lag in days: a 0 value means that both versions 
detected a malware on the same day; a positive value gives the difference in 
days between the first date that a full capability version detected a malware 
and the first time it was detected by the VirusTotal version (e.g. a value of 2 
means the VirusTotal version detected the malware two days ahead of full 
capability); The subsequent columns to the column labelled as  “Difference in 
Days” then give the counts of malware for each vendor. We should be clear 
that this is the malware for which both AV versions of a given vendor 
eventually did detect the malware: what we are measuring here is the 
difference in the time it took each vendor to first detect it in our collection 
period. It is worth to mention that the full capability products in this experiment 
are turned on, therefore the AVs are always using the latest updates when 
inspecting a malware. Most of the malware is either detected on the same 
date or VirusTotal detects them a day earlier: this might be because of the 
slight delay with which we send the malware to the two versions (the malware 
are sent to the VirusTotal versions on average two hours earlier than it is sent 
to the full capability versions, which should give a slight advantage to the full 
capability versions as they would work with a signature ruleset which is 
“fresher” by two hours). Row A shows the count of undetected malware from 
both versions, row B shows the count of undetected malware by full capability 
but detected by VirusTotal, and row C shows the count of the detected 
malware by full capability but not detected by VirusTotal. As we can see, only 
AVG of VirusTotal could not detect 60 malware while the full capability version 
was able to detect them. 
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Table 4-6 Time lag between detections by the two versions of an AV vendor 

4.8 Difference in signature labels between full capability 
versions and VirusTotal versions  

As we have mentioned before, when we submit a malware sample to the 
two versions of an AV per vendor, we can only observe whether that version 
i) detects or fails to detect a given malware on a given date; ii) if it does detect 
it, what is the label that the AV assigns to the malware. So far the results we 
presented concern analysis regarding part i). In the next section we analyse 
the labels that an AV version assigns to a given malware. The labels may be 
important to provide a system administrator with extra information on what 
type of malware they are dealing with etc., which may help them with 
diagnosis.  

The first analysis we did was to check whether the labels assigned by 
the two versions of a given AV product were exactly the same. The first two 
columns of Table 4-7 show these results. Next, we analysed in more detail the 
labels that did not match, and checked whether there was a level of similarity 
between them. We observed two main categories: in some cases the full 
capability version just added further context to a label (see examples in Table 
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Ø A : Malware have not been detected by both versions 
Ø B : Malware have been detected by VT version but not detected by FC 
Ø C : Malware have been detected by FC version but not detected by VT 
Ø Difference in days: number of days that VT detected the same malware before the FC version from the same 

vendor. 
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4-8) or the labels were completely different. The main observations from this 
analysis are: 

- Microsoft is the only vendor which provides the same labels when detecting 
malware on both the full capability and VirusTotal versions; FSecure also 
has the same labels for all but one malware (which it identified differently 
on 23 days of our observation period);  

- Kaspersky uses a different way of labelling malware in its full capability 
versions compared with the VirusTotal version; 

- Four AV vendors (AntiVir, AVG, Comodo and Sophos) use mainly the same 
labels but add some extra information for the full capability version. 

Table 4-7 Signature label counter 

AV Name 
Matching 

Signature Labels 

Non Matching 

Signature Labels 

Non Matching 

Because of Extra Info 

Added to the Label 

Very different 

AntiVir 0 108,141 108,139 2 

AVG 0 106,235 105,384 851 

Comodo 0 108,016 106,349 1,667 

F-Secure 91,314 23 0 23 

Kaspersky 0 106,334 0 106,334 

McAfee 60,394 43,575 31 43,544 

Microsoft 105,817 0 0 0 

Sophos 0 105,820 105,635 185 

Symantec 106,323 437 16 421 

 

Table 4-8 Examples for signature label categorising 

Signature Label Category Vendor Name Full Version Signature Label Free Version Signature Label 

Matching Signature Labels F-Secure Worm:W32/Downadup.gen!A Worm:W32/Downadup.gen!A 
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Non Matching Because Of 

Extra Info Added To The Label 
Comodo 

NetWorm.Win32.Kido.A@132

026498 

 

NetWorm.Win32.Kido.A 

 

Totally Different McAfee W32/Conficker.worm.gen.a Artemis!01273BEC3497 
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We also analysed the classifications that some of the AV products used 
for these different types of malware. We concentrated on the full capability 
versions. We compared the classifications used by different AV vendors. We 
found that the vendors seem to be categorising and classifying the malware 
differently from each other. Table 4-9 shows an example of this for two of the 
products (AntiVir and AVG). We can see from this table that AntiVir classifies 
40,822 demands as Trojan horses, whereas AVG classifies 10,924 as such. 
Full results for all AVs are provided in Appendix A (section A-2)24. The lack of 
an interoperable standard for labelling the malware makes comparisons 
between vendors very difficult. This adds further confusion on diagnosis and 
recovery processes that a system administrator needs to perform when using 
diverse AVs (especially if they are used to the labelling and classification of 
malware by a different vendor than the one they need to administer presently). 

Table 4-9 Malware type classification 

 

 

 

 

 
 

 

4.9 Discussion, Conclusions and Limitations 

In this section we summarise the main observations we have made from 
our experiment and discuss the possible implications they may have on 
product selection and administration. 

Observation: Out of nine vendors in our study, only two of them had a 
full capability version which had a detection rate that was better than their 
VirusTotal counterpart. Implication: This suggests that for most of these 
products the free version they have in VirusTotal is perfectly suitable for 

                                            
24 The exception is Kaspersky. In our study the full capability version of Kaspersky labelled each 

detected malware by its MD5 value only, and gave no other label. So for Kaspersky we show the 
VirusTotal labels. 

AntiVir AVG 

Malware type Count Malware type Count 

Backdoor 377 Trojan horse / Backdoor 10,924 

Dropper 184 N/A 0 

Root kit 30 N/A 0 

Trojan horse 40,822 Trojan horse  1,208 

Virus 6,541 Virus 5,649 

Worm 60,187 “Virus identified –Worm” 88,464 
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malware detection and may even perform better compared with a full 
capability one.  

Observation: The full capability versions of some of these AV vendors 
detected a malware in some cases more than three weeks after their 
VirusTotal version had detected the same malware. Implication: This is a 
strange and counterintuitive observation. One would expect that the 
customers who have downloaded a paid version of a product would be served 
the signatures first. One possible explanation for this observation might be 
that the vendors are worried about false positives and want to first roll out a 
signature in VirusTotal. Only after they gain enough confidence that a file is 
indeed malicious do they roll it out to the full capability versions. 

Observation: We sent all the malware which at least one of the versions 
in our data collection had failed to detect in our observation period to the 
malwr.com site which reported that some of these malware are not exhibiting 
malicious behaviour when run on a sandboxed environment. Implication: All 
the malware collected in our study have been uploaded to our honeypots. By 
definition, any interaction with a honeypot implies malicious behaviour, as 
honeypots do not have any legitimate production value. Some of the files may 
be “malformed” during the uploading process by the attacker – in those 
instances it is not clear whether an AV product should detect the malware or 
not (most AV products do detect them as malicious as they recognise at least 
a partially malicious payload). Other files are encrypted and the dynamic 
analysis may not be able to execute them. There are some advanced malware 
that have the ability to be aware that they are in a test of a sandbox 
environment, therefore they remain benign and do not exhibit any malicious 
behaviour when under observation25.  

Observation: The signature based versions and full capability versions 
of the same AV vendors seem to assign different labels to the malware for 
Kaspersky and McAfee. For the others is seems to be mainly the same, with 
some extra information added in the label of the full capability version. 
Implication: This implies that for most of these products (with the exception 
of Kaspersky and McAfee), it is the signature based detection engine that is 
mainly responsible for labelling the malware, with some extra information 
provided from the other components of the AV system which are found on a 
                                            
25 A further discussion on the drawbacks of sandboxing for detecting advanced threats is here: 

https://www.darkreading.com/risk/the-pros-and-cons-of-application-sandboxing/d/d-id/1138452 
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full capability version. Hence the free VirusTotal versions of these products 
are useful for system administrators to get information on the malware, and 
for most they are not likely to differ from the full capability versions. 

Observation: There are differences between AV vendors in how they 
classify malware. For example, what may be a Trojan horse for one vendor, 
could be a worm for another. Implication: The lack of interoperability and 
consistency between vendors for labelling the malware adds further confusion 
on diagnosis and recovery processes that system administrators need to 
perform. The administrators may have experience with the labelling and 
classification of malware with a different vendor and that experience is not 
directly transferable to another vendor’s products. 

 The main conclusions we can draw from our analysis are: 

- For most vendors in our study (seven out of nine) the VirusTotal version 
has a better detection rate than their full capability version. This would imply 
that investment in the full capability version of an AV product may not be 
worthwhile.  

- Some of the full capability versions of the AV vendors in our study only 
detected some malware more than three weeks after the VirusTotal version 
of the same vendor has detected the same malware. This seems to imply 
that vendors for some malware are testing their detection signatures in their 
VirusTotal versions first before propagating them to the full capability 
versions, which may also explain the higher detection rates of the 
VirusTotal versions of some of these vendors. 

- There are differences between the vendors in the way in which they classify 
malware. This lack of consistency between the vendor malware 
classification schemes makes it more difficult for system administrators to 
transfer their malware analysis expertise from one vendor’s system to 
another. 

- Finally, we have tried to clearly position our work compared with related 
work. To the best of our knowledge this is the first study that has 
specifically compared the VirusTotal versions of AVs with full capability  
versions. 

 The main limitations of our conclusions, and provisions for further work: 

- The malware samples are Windows portable executable files. More files 
types would allow for more general conclusions.  
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- All our analysis so far has been with malware samples, which means we 
cannot get any measurements on false positive rates. 

- We have looked at nine vendors over a one-month period. A longer data 
collection time with more vendors may allow for stronger conclusions. 

- The malware are collected on honeypots that are distributed in three 
continents and were uploaded to our honeypots in the period that we 
stated. For the assessment of the diversity that exists in the AV products, 
and the different versions of the products from the same vendor,  one 
month of data is reasonably representative, We also note that the results 
we observed are consistent with previous studies that have assessed 
diversity with AV products (Bishop et al., 2011; Gashi et al., 2009), even 
though the primary focus of our research was in assessing the diversity 
that exists between different versions of the same product.   

- The dataset is collected via the Dionaea project, which biases the dataset 
towards self-propagating malware. These malware are not necessarily 
representative of the overall malware population, which mainly propagates 
"passively" via drive-by exploits or social engineering attacks.  
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(5) AVAMAT: AN ANTIVIRUS AND MALWARE ANALYSIS 
TOOL  
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This chapter presents the AVAMAT tool that can be used to analyse the malware 

detection capabilities of existing AV (AV) products on different operating systems. 

Most sections in this chapter have been published in: 

- Pasha Shahegh, Tommy Dietz, Michel Cukier, Areej Algaith, Attila Brozik, Ilir 
Gashi: “AVAMAT: AntiVirus and Malware Analysis Tool”. NCA 2017: 365-368  
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5.1 Introduction 

While working with the VirusTotal and exploring the MetaDefender 
platforms, we noted several limitations of these platforms (cf. discussion in 
section 2.4). To overcome these limitations a tool called AV and Malware 
Analysis Tool (AVAMAT) was built: a multi-purpose tool that can be used for 
analysing different malware and AV product capabilities running on different 
operating systems. Currently AVAMAT supports eight full capability AV 
products (i.e. the full versions of AV products, rather than just signature based 
detection engines), namely: AVG, Comodo, F-Secure, Kaspersky, FProt, 
Trend, Avira and Emisoft. These AV products are run, where available, on 
three versions of the Microsoft Windows operating systems: XP26, 7 and 8. 
The candidate contributed in all the discussion regarding the inception, 
requirements and design of the tool. The candidate also analysed the data 
from test reports shared by the developers at the University of Maryland, and 
provided detailed bug reports, which helped with the tool debugging. The 
candidate also contributed towards the writing of the paper that resulted from 
this work, specifically the tool design and testing sections, as well as providing 
comments on several versions during the paper writing process. The 
implementation of the AVAMAT tool was done at the University of Maryland. 
It was difficult to delineate the precise contribution of the candidate compared 
to those of the other collaborators on this part of the work. For this reason, we 
will only summarise the AVAMAT tool here, as it relates to the work that the 
candidate performed and leave the details of the tool itself out of the thesis – 
the interested reader can find out the details in the published paper.  

The rest of the chapter is organised as follows: section 5.2 outlines the 
objectives of the study; section 5.3 describes the AVAMAT architecture; 
section 5.4 shows some results with AVAMAT; section 5.5 describes lessons 
learnt with AVAMAT; and finally section 5.6 presents a discussion, 
conclusions and provisions for further work.    

 

 

                                            
26 Avira and Emisoft AVs no longer support XP, so we could not run those products on XP.  
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5.2 Study objectives 

AVAMAT was built to enable a researcher to: 

- analyse the diversity of detection capabilities between different AV software 
on different operating systems. Being able to analyse the same malware 
on machines with the same AV yet different operating system allows us to 
investigate the operating system’s effect on AV and malware behaviour. 
And analysing the detection capabilities of different AV products allows us 
to compare the benefits of combining multiple diverse AV products in a 
diverse defence in depth setup.   

- analyse when an AV product detects a malware it encounters. We classify 
the detection in four stages depending on when a malware is detected: on 
entry; after a short wait; on a full scan; or after malware execution. This 
allows us to, for example, better classify whether the malware will be 
detected and prevented from running on the end-host machine, or whether 
the malware would run first before being executed, hence potentially 
requiring a clean-up and full scan of the machine. Again, we will analyse 
the diversity that exists in these classifications between different AV 
products and different OSs.  

In the rest of the chapter we describe AVAMAT in more detail.  

5.3 AVAMAT architecture 

The AVAMAT architecture is built on top of open-source software and 
uses custom-developed scripts to allow us to test whether an AV a, running 
on a given OS o, detects a given malware m on a given date d, and, if it detects 
it, when does it do so. We will use the shorthand VM(a,o) to refer to a given 
virtual machine that runs an AV a on an OS o. There are four main 
components of AVAMAT: 

Skeleton: interfaces with custom-developed scripts on each VM(a,o). 
The skeleton chooses the specific script on VM(a,o). Once selected, the 
skeleton uses the functions in the custom-developed script to perform an 
analysis on malware m;  

Updaters: at the start of each experimental campaign, updates the OS 
and AV with the latest updates and patches available for each VM(a,o);  
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Snapshot Manager: at the start of each experimental campaign, takes 
a snapshot of each virtual machine VM(a,o); after the virtual machine is 
finished inspecting a given malware m it reverts back to the last snapshot 
(ensuring that all malware in a given experimental campaign are executed by 
the same AV a and OS o);    

Experiment Scheduler: the administrator of the experiment can specify 
how many times an experimental campaign should be repeated. This may be 
important to allow, for example, assessment of the capability of an AV product 
to continue detecting a malware or for testing how long it takes for an AV 
product to detect a malware it has not detected in the past.  For each repetition 
of the experiment:  

- We run the Updaters once for each VM(a,o);  

- We run the Snapshot manager to take a snapshot of each VM (a,o) once 
at the start of the experiment (i.e. before sending any malware to it). We 
then revert back to this clean snapshot of a given VM(a,o) after each 
malware m is inspected by that VM(a,o);  

- We run the Skeleton once after each malware m is sent to a VM(a,o).   

- Figure 5-1 shows the AV products and OSs currently supported in AVAMAT 
(so each coloured box represents one VM(a,o)). 

 
Figure 5-1 The AV products and OSs currently supported in AVAMAT. Each box is one virtual machine (we refer to 

a box as VM(a,o)). Avira and Emisoft no longer support Windows XP versions, hence they are missing from the 
figure above ;Windows XP on left-side of box.  

5.4 Some results with AVAMAT 

AVAMAT is currently a prototype. In what follows we show some 
examples of analysis using results obtained from testing AVAMAT. The 
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malware we used during testing have been collected from research honeypots 
from the University of Maryland.  

Figure 5-2 shows a 3D plot of the detection capabilities of Comodo AV, 
running on Windows 7 OS, when subjected to 5,855 malware (y-axis) over a 
seven day period (x-axis). The different colours on the plot show the stages 
of detection (light green means detected on entry (the best possibility); dark 
green for detecting after 10 seconds; dark blue for detecting on scan; orange 
for detecting on execution), failure to detect that malware at all (red), or 
missing data (black). Since this data was collected during the testing of 
AVAMAT, it was useful for us to debug when malware were not being sent to 
the tool (as is evident in day 5). But for research purposes it is useful to 
analyse when the different malware are being detected by the AV product, 
and what risk the machine is exposed to if the malware is not detected 
immediately on entry. 

Figure 5-3 is a 3D plot showing the rate of malware detection (z-axis) by 
the different VM(a,o) (y-axis) 27 per stage of detection (x-axis; non-detection 
is step 1111). This graph illustrates the type of analysis we can do with results 
from AVAMAT to show the diversity that exists in malware detection, and 
stages of malware detection, between the different AV products and different 
OSs. For example the rate of malware detection by diverse 20 systems in the 
first step (x-axis 0: on entry) equals 0.8 but for the last step (x-axis 1111: non-
detection) almost equals zero. 

                                            
27 Note that this analysis does not have all 22 VM(a,o) in the y-axis, as not all of them were 

operational when this part of testing was performed.  
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Figure 5-2 3D plot of the detection capabilities of Comodo, running on Windows 7 OS, when 
subjected to 5855  malware (y-axis) over a 7 day period (x-axis) 

 

 

Figure 5-3  3D plot showing the rate of malware detection (z-axis) by the different VM(a,o) (y-axis) per 
stage of detection (x-axis; non-detection is step 1111) 

 

5.5 Lessons learnt 

AVAMAT is being built to overcome the limitations of existing malware 
testing platforms, such as VirusTotal and Metadefender, that do use multiple 
AV products, but only their command line interfaces that have limited 
functionality. These platforms also do not provide details on when an AV 
product actually detected the malware (on entry, on scan, once malware 
executes, etc.). AVAMAT enables researchers to analyse different malware 
and AV product capabilities running on different OSs. Currently AVAMAT 
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supports eight full capability AV products (i.e. the full versions of AV products, 
rather than just signature based detection engines) that are run, where 
available, on three versions of the Microsoft Windows OS: XP, 7 and 8. We 
have chosen the Windows platform because the majority of malware samples 
collected from our previous experiments with honeypots were Windows 
executable files. Moreover, based on the literature surveyed, we found that 
Windows is the most “target-rich” environment for malware samples. We have 
used XP, 7 and 8 as these were the most popular Windows versions when we 
started work on AVAMAT. However, support for Windows 10 is also planned 
in the future versions of AVAMAT. 

AVAMAT allows running experimental campaigns to help answer 
research questions such as the following (the list is not exhaustive): 

- What are the differences in the detection capabilities of different AV 
products? 

- Are there differences in detection capabilities depending on which OS 
platform the AV product runs? 

- Are there differences by type of malware the AV products inspect? 

- Do the AV products continue to detect a malware over time, or are there 
cases of regressions in detection behaviour?  

- How do we combine multiple AV products to improve detection capabilities 
against malware? 

- What are the false positive rates of AV products when subjected to benign 
files? Are there differences in these rates: by OS platform? By type of file? 
Etc.   

Once the product is ready for wider release, there are two options of 
making the tool publicly available for other researchers to use: 

- Release the code so that users can build their own version of AVAMAT, 
with their own AV products and licenses in their own environments; 

- Provide an API through which users can submit malware samples for 
analysis to AVAMAT (similar to the way in which VirusTotal and 
Metadefender can be used). This is the preference of the authors, as is to 
make the tool free for use. But there are inevitable infrastructure costs for 
deploying a tool such as this, so the exact deployment and use model for 
AVAMAT remains to be decided.  
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5.6 Discussion, Conclusions and Further Work  

We presented AVAMAT: AV and Malware Analysis Tool - a tool for 
analyzing the malware detection capabilities of AV (AV) products running on 
different operating system (OS) platforms. Even though similar tools are 
available, such as VirusTotal and MetaDefender, they have several limitations 
which motivated us to create of our own tool. With AVAMAT analyses of  
stages of inspection than an AV on a given OS detects a malware is possible. 
This allows a researcher to run experimental campaigns to answer various 
research questions, ranging from the detection capabilities of AVs on OSs, to 
optimal ways in which AVs could be combined to improve malware detection 
capabilities. 

Current work and future enhancement for AVAMAT include: 

- Building support for more AV products; 

- Building support for more operating systems; 

- Improving the code so that it is more modular, enabling easier 
maintenance;  

- Producing a user manual and demonstration for use of the tool; 

- Building a front-end extension (or a separate tool that connects to 
AVAMAT) for analysing data obtained from AVAMAT. 
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(6) DIVERSITY WITH INTRUSION DETECTION SYSTEMS  
(IDSs) 
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This chapter presents results of analysing the performance of diverse Intrusion 

Detection Systems (IDSs) configurations. Most sections in this chapter have been 

published in: 

Areej Algaith, Ivano Alessandro Elia, Ilir Gashi, Marco Vieira: “Diversity with 
intrusion detection systems: An empirical study”. NCA 2017: pp: 19-23 
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6.1 Introduction 

In this chapter we provide empirical results on the assessment of 
diversity with Intrusion Detection Systems (IDSs). We utilise a dataset 
published by (Elia et al., 2010), who have helpfully made their data publicly 
available28. An attack injection methodology was used, consisting of injecting 
realistic vulnerabilities in three web applications (MyReferences, phpBB and 
TikiWiki) and sending attacks that attempt to exploit those vulnerabilities. In 
order to protect these web applications, four diverse IDS products were 
deployed (Apache Scalp, Anomalous Character Distribution (ACD) monitor, 
GreenSQL and Snort). Some of these IDSs were configured in different ways 
(depending, for example, on the rulesets they used and the threshold for 
identifying malicious requests), which produced nine different IDS 
configurations in total. While the authors in Elia et al. (2010) performed various 
analyses to assess the performance of the IDSs individually, they did not 
explore whether the different IDS products could be combined to improve the 
performance. This is the focus of our research and in this chapter we report 
our analysis and main conclusions.  

We apply in full the methodology we described in Chapter 3. Namely, we 
calculate the FP, FN, TP, TN counts for each diverse configuration; we 
calculate the measures of interest (specificity, sensitivity and accuracy) or 
each diverse configuration, overall and by type of attack; we generate the 
ROC plots showing all the diverse configurations and the individual defence 
systems, overall, by type of configuration and by type of malicious input; we 
calculate the differences in the measures of interest between diverse 
configurations and individual systems to measure the possible improvements 
or deteriorations from switching to a diverse system.  

The rest of the Chapter is organised as follows: section 6.2 outlines the 
objectives of the study; section 6.3 describes the dataset; section 6.4 provides 
the results for single version systems; section 6.5 presents the results from 
analysing two-version diverse systems; section 6.6 presents results from 
analysing diverse systems with more than two versions; and finally section 6.7 
presents a discussion, conclusions and provisions for further work. 

                                            
28 Full dataset is available from: https://goo.gl/MDOhsw 
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6.2 Study objectives  

Compared with the previous chapters, where we only had malicious 
inputs, in this chapter we present results from assessing diversity when both 
malicious and benign inputs have to be considered by security protection 
tools. We first did an analysis of the simplest possible diverse configuration: 
i.e. a two-version system, before we expanded it to consider configurations 
with more systems (up to N). With two version systems, there are two possible 
configurations of the voter/adjudicator:  

- One-out-of-two (1oo2): the system flags an input as malicious (i.e. raises 
an alarm) as long as either one of the two IDSs flags that input as malicious. 

- Two-out-of-two (2oo2): the system flags an input as malicious (i.e. raises 
an alarm) only if both of the IDSs flag that input as malicious. 

- Since we have nine different IDS product configurations, we can construct 
36 distinct two-version IDS combinations (9C2 = 36). In practice, each 
system is being asked whether a given input29 is malicious or not. Hence, 
we used the  sensitivity, specificity and accuracy measures as described in 
Chapter 3.    

We analysed these measures for each of the 36 combinations of IDSs 
in the context of each of the three web applications (MyReferences, phpBB 
and TikiWiki). Additionally, we classified and analysed the results by: 

- Type of IDS, i.e. whether an IDS is primarily configured to monitor for 
attacks at the Application, Database or Network levels; 

- Type of attacks, distinguishing between HTML POST and HTML GET 
attacks. 

We then extended this analysis to consider diversity with a larger value 
of N( triplets, quadruples etc.)    

6.3 Dataset, IDSs, and web applications 

The data used for the diversity analysis presented here is the result of 
the experimental campaign conducted by the authors of Elia et al. (2010). 

                                            
29 The 4 IDSs (and the 9 configurations that ensue from their use) are targeting different types of web-

traffic, from 3 web applications. In reality the IDS is subjected to different type of attacks not only 
SQLi, though SQLi attacks are some of the most prominent, as discussed in Chapter 2.    
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Their campaign aimed at testing a set of IDSs in terms of their capability of 
detecting SQL Injection attacks. In order to produce realistic SQL Injection 
attacks to test the IDSs a Vulnerability and Attack Injection technique was 
used. This technique allowed the authors of Elia et al. (2010) to introduce 
realistic vulnerabilities in the code of a web application by code mutation 
(Vulnerability injection) and afterwards to automatically exploit those 
vulnerabilities by performing SQL injection attacks (Attack Injection). The 
injected vulnerabilities were considered realistic because they were based on 
an extensive field study on real web application vulnerabilities (Fonseca et al., 
2014). 

The vulnerability and attack injection tool30 used in Elia et al. (2010) runs 
on an Ubuntu virtual machine, configured to inject vulnerabilities in a set of 
three web applications. The IDSs under test were deployed in the same virtual 
machine, and exposed to attacks generated by the attack injector and to non-
malicious interactions carried out through a web crawler. In the remainder of 
this section, we briefly introduce the IDSs and web applications used in Elia 
et al. (2010).  

6.3.1 Intrusion Detection Systems 
The experimental setup in Elia et al. (2010) includes four different IDSs, 

some of which were tested using different configurations, leading to a total of 
nine distinct deployments. The IDSs tested in these experiments are 
composed of both well-known security tools and implementation of detection 
approaches proposed in research papers. The tested IDSs are also diverse in 
terms of both detection approach (anomaly-based, signature-based) and 
monitored layer (application level, database level, network level). Table 6-1 
outlines the details. 

Table 6-1 Classification of the Types of IDSs in our Study 

Tool 
Architectural Level 

monitored 
Detection Approach Data Source 

ACD Application Anomaly Based Apache Log 

Apache Scalp Application Signature Based Apache Log 

Snort  Network Signature Based Network Traffic 

GreenSQL Database Signature Based SQL Proxy Traffic 

 

                                            
30 https://github.com/JoseCarlosFonseca/Vulnerability-and-Attack-Injector  
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The Anomalous Character Distribution (ACD) monitor is an anomaly-
based tool that works at the application level. It analyses the Apache access 
log using the detection approach described in Kruegel and Vigna (2003), 
which is based on the character distribution in the URLs of the HTTP requests 
sent to the web application. The user must define the deviation threshold that 
separates the requests identified as malicious from those considered benign. 
In Elia et al. (2010) the configurations of threshold values were: 1, 3, 10, 30, 
and 100. In the rest of the analysis here we refer to these IDSs configurations 
as ACD1, ACD3, ACD10, ACD30 and ACD100, and in the graphs we assign 
them labels 1A-5A respectively (“A” being a shorthand for “Application” type 
IDS). 

GreenSQL (version 1.2.2) is an IDS that focuses on the detection of 
attacks targeting a database. The experiments were performed on the open 
source version of the tool31 (a commercial version of the tool). It was deployed 
as a proxy standing between the front-end and back-end of the web 
applications in order to monitor the SQL communications. It evaluates each 
SQL query by associating a risk-scoring matrix defining the probability of it 
being malicious. In our graphs we assigned this IDS the label 6D (“D” standing 
for “Database” IDS). 

Apache Scalp (version 0.4)32  is another Apache access log analyser. 
It uses a signature-based approach that compares the requested URLs in the 
access log against a set of attack signatures for web application attacks like 
SQL Injection, Cross Site Scripting, Cross Site Request Forgery and Path 
Traversal, etc. In Elia et al. (2010) the authors considered only the signatures 
for SQL injection attacks. In the rest of the analysis in this chapter we refer to 
this IDSs as SCALP sqlia, and in the graphs we assigned it the label 7A. 

Snort (version 2.8.4.1)33 is a signature based network level IDS. In 
practice, Snort is a network sniffer and thus has access to both the HTTP and 
SQL traffic. The detection approach is based on a very large set of attack 
signatures (the Snort Rules) maintained by the community. These signatures 
are then evaluated against the network traffic collected by the sniffer. The 
users are allowed to customise their set of Snort rules. In Elia et al. (2010) the 
                                            
31 https://github.com/larskanis/greensql-fw  

32 https://code.google.com/archive/p/apache-scalp/ 

33 https://www.snort.org/  
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analysis was performed using two configurations: using only the official 
community rule set; and using a set of experimental Customised Rules (later 
identified with CR) provided in Mookhey and Burghate (2004). In our graphs 
we assigned these two configurations the labels 8N and 9N (“N” standing for 
“Network” IDS). 

6.3.2 Web applications 
The experimental setup in Elia et al. (2010) includes three web 

applications: MyReferences, TikiWiki, and phpBB, which allowed the authors 
to assess IDS performance with different types of applications (MyReferences 
is small; TikiWiki and phpBB are large open source projects).  

- MyReferences is a publications and bibliographic references management 
web application. The application was developed by the authors of Elia et 
al. (2010). It provides functionality for managing (editing, querying and 
displaying) documents and publications metadata (title, authors, year of 
publication, etc.). 

- TikiWiki34 is a groupware/CMS (Content Management System) platform 
that allows collaborative contribution over the website contents in a wiki 
style. It is one the most widely used applications of this type.  

- phpBB35 is a one of the most widely used open-source forum solutions.  

Table 6-2 shows the total number of benign demands (labelled below as 
Crawling actions) and successful attacks36 (i.e. attacks that exploited a 
vulnerability) for each application, as reported in Elia et al. (2010). Each of the 
nine IDS37 configurations got to inspect the same traffic for each application.  
These data form the basis of our analysis. 
 

                                            
34 https://tiki.org  

35 https://www.phpbb.com/  

36 The authors state that they had some attacks that, when sent to the applications, were “unsuccessful”, 
i.e. they did not lead to an exploit of the vulnerability, and others that were “Successful”. In this 
study we only consider the successful attacks , since we were uncertain on how to classify the 
behaviour of an IDS if it does not raise an alarm for an attack that is not successful.  

37 Including the functionally diverse IDSs 
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Table 6-2 The counts of crawling actions traffic and successful attacks traffic per web application 

Web Application IDS 
Crawling 

Actions 

Successful 

Attack 

MyReferences 9 45 136 

phpBB 9 97 245 

TikiWiki 9 80 76 

6.4 Analysis of single version systems  

Table 6-3 presents the nine configurations of the IDSs and the labels we 
will use to refer to them in the graphs in the rest of this chapter. Next to them 
we also note the specificity and sensitivity for each of the three applications. 
The authors of Elia et al. (2010) already presented these classifications, and 
the results for each IDS individually.  

Table 6-3 The nine distinct IDS deployments 
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1A ACD1 0.89 0.76 0.93 0.37 0.49 0.48 

2A ACD3 0.61 0.84 0.22 0.68 0.24 0.75 

3A ACD10 0.35 1 0.07 0.99 0.20 0.99 

4A ACD30 0.27 1 0.04 1 0.20 1 

5A ACD100 0.10 1 0.02 1 0.00 1 

6D GREENSQL 0.12 1 0.63 1 1 1 

7A SCALP sqlia 0.25 0.91 0 1 0.21 1 

8N SNORT 2.8 0 1 0 1 0 1 

9N 
SNORT 2.8 plus 

CR 
0.59 1 1 1 0.5000 1 

In our work we extend the analysis from the viewpoint of diversity. We 
analysed all possible pairs, triplets etc., that can be constructed with the 9 
IDS38. 

                                            
38 Including the functionally diverse see examples in Table 6-4 to 6-6 
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6.5 Diversity analysis for two version systems  

In this section we present the results of our analysis:  

- Summary results and analysis for each application: FP, TN, FN, TP rates, 
ROC plots, and differences in the sensitivity, specificity and accuracy for 
each application, categorised by type of IDS combination;  

- Analysis by type of attack: differences in sensitivity by type of attack (i.e. 
GET and POST attacks) for each application; 

- Differences in sensitivity, specificity and accuracy between diverse and 
single IDS systems for each application; 

- Averages: averages for sensitivity, specificity and accuracy for individual 
systems and the different types of IDS configurations, for each application.  

6.5.1 Overall summary and analysis by type of IDS combination 
Table 6-4 shows the full results for the MyReferences application. The 

table should be read as follows: the first column shows the label we assign to 
a particular combination (the label is meant to be short but meaningful: so 1-
2 AA means a combination of IDS 1A and IDS 2A from Table 6-4 etc.); the 
second and third columns show the two IDS systems in that combination; and 
the subsequent columns show the FP, TN, FN and TN values for: the first 
system in the pair; the second system in the pair; the 1oo2 system and the 
2oo2 system configurations. In the table we have highlighted cases where the 
diverse combination does better (green cells) than the best single system in 
that pair, or worse (red cells) than the worst single system in that pair. In cases 
where there is no improvement compared with the best single version (or no 
deterioration compared with the worst single system) we do not highlight any 
cells in a row. We also show the specificity and sensitivity values for each pair 
for the 1oo2 and 2oo2 cases.  
The table is split into two sections:  
- The first 16 rows show all the combinations that can be built when the two 

individual systems in the pair are of the same type (so Application-only (AA) 
– first 15 rows; or Network-only (NN) – the 16th row). We only have one DB 
IDS so we cannot build any DB-only pair). We labelled these as 
“Functionally redundant” pairs.  

- The remaining 20 rows are for the pairs of IDSs that are of different types 
(e.g. Application and Network (AN) – 12 pairs; Application and Database 
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(AD) – 6 pairs: and Database and Network (DN) – 2 pairs). We labelled 
these as “Functionally diverse” pairs. 

 We have also built these tables for the other two applications phpBB 
and TikiWiki see Tables 6.5 and 6.6. 

From the results in the table we can already see some patterns 
emerging: the 1oo2 systems are better at detecting attacks (higher TP and 
lower FN rates), compared with best individual systems; on the other hand, 
2oo2 systems are better at correctly labelling benign traffic (higher TN and 
lower FP rates). This is to be expected as:  

- 1oo2 systems will in all cases perform: 

- better or equal to the best single system in the pair for malicious 
traffic, as any alarm from any of the two systems will lead to an alarm 
in a 1oo2 system;  

- equal or worse than the worst single system in the pair for benign 
traffic, as any alarm from either single system for benign traffic will 
be incorrectly labelled as malicious.  

- 2oo2 systems will in all cases perform: 

- better or equal to the best single system for benign traffic as the 
2oo2 system only raises an alarm for benign traffic if both the single 
systems in the pair raise an alarm; 

- equal or worse than the worst single system in the pair for malicious 
traffic, as the 2oo2 system will only label an attack as malicious if 
both the single systems in the pair label it as such. 

What is important is how much better, or how much worse, would a 
diverse pair perform in these setups, and the results in Table 6-4 already give 
us some indications about this. But looking at these numbers in isolation 
makes it difficult to make a decision about the overall system performance. 
The ROC plots help with this.  
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Table 6-4 Counts of detections and failures for benign traffic (False Positive and True Negative) and 
for legitimate attack (False Negative and True Positive) for each IDS and for the 36 

combinations of 2-version systems 1oo2 and 2oo2 for MyReferences and  taking into account 
the type of IDS 
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1-2 AA 1A 2A 11 7 15 3 34 38 30 42 15 53 15 53 121 83 121 83 0.89 0.61 0.67 0.93 
1-3 AA 1A 3A 11 0 11 0 34 45 34 45 15 89 15 89 121 47 121 47 0.89 0.35 0.76 1 
1-4 AA 1A 4A 11 0 11 0 34 45 34 45 15 99 15 99 121 37 121 37 0.89 0.27 0.76 1 
1-5 AA 1A 5A 11 0 11 0 34 45 34 45 15 123 15 123 121 13 121 13 0.89 0.10 0.76 1 
1-7 AA 1A 7A 11 4 13 2 34 41 32 43 15 102 8 109 121 34 128 27 0.94 0.20 0.71 0.96 
2-3 AA 2A 3A 7 0 7 0 38 45 38 45 53 89 53 89 83 47 83 47 0.61 0.35 0.84 1 
2-4 AA 2A 4A 7 0 7 0 38 45 38 45 53 99 53 99 83 37 83 37 0.61 0.27 0.84 1 
2-5  AA 2A 5A 7 0 7 0 38 45 38 45 53 123 53 123 83 13 83 13 0.61 0.10 0.84 1 
2-7  AA 2A 7A 7 4 11 0 38 41 34 45 53 102 46 109 83 34 90 27 0.66 0.20 0.76 1 
3-4 AA 3A 4A 0 0 0 0 45 45 45 45 89 99 89 99 47 37 47 37 0.35 0.27 1 1 
3-5 AA 3A 5A 0 0 0 0 45 45 45 45 89 123 89 123 47 13 47 13 0.35 0.10 1 1 
3-7 AA 3A 7A 0 4 4 0 45 41 41 45 89 102 73 118 47 34 63 18 0.46 0.13 0.91 1 
4-5 AA 4A 5A 0 0 0 0 45 45 45 45 99 123 99 123 37 13 37 13 0.27 0.10 1 1 
4-7 AA 4A 7A 0 4 4 0 45 41 41 45 99 102 82 119 37 34 54 17 0.40 0.13 0.91 1 
5-7 AA 5A 7A 0 4 4 0 45 41 41 45 123 102 89 136 13 34 47 0 0.35 0 0.91 1 
8-9 NN 8N 9N 0 0 0 0 45 45 45 45 136 56 56 136 0 80 80 0 0.59 0 1 1 
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1-8 AN 1A 8N 11 0 11 0 34 45 34 45 15 136 15 136 121 0 121 0 0.89 0 0.76 1 
1-9 AN 1A 9N 11 0 11 0 34 45 34 45 15 56 5 66 121 80 131 70 0.96 0.51 0.76 1 
2-8 AN 2A 8N 7 0 7 0 38 45 38 45 53 136 53 136 83 0 83 0 0.61 0.00 0.84 1 
2-9 AN 2A 9N 7 0 7 0 38 45 38 45 53 56 10 99 83 80 126 37 0.93 0.27 0.84 1 
3-8 AN 3A 8N 0 0 0 0 45 45 45 45 89 136 89 136 47 0 47 0 0.35 0 1 1 
3-9 AN 3A 9N 0 0 0 0 45 45 45 45 89 56 28 117 47 80 108 19 0.79 0.14 1 1 
4-8 AN 4A 8N 0 0 0 0 45 45 45 45 99 136 99 136 37 0 37 0 0.27 0.00 1 1 
4-9 AN 4A 9N 0 0 0 0 45 45 45 45 99 56 36 119 37 80 100 17 0.74 0.13 1 1 
5-8 AN 5A 8N 0 0 0 0 45 45 45 45 123 136 123 136 13 0 13 0 0.10 0 1 1 
5-9 AN 5A 9N 0 0 0 0 45 45 45 45 123 56 43 136 13 80 93 0 0.68 0 1 1 
7-8 AN 7A 8N 4 0 4 0 41 45 41 45 102 136 102 136 34 0 34 0 0.25 0 0.91 1 
7-9 AN 7A 9N 4 0 4 0 41 45 41 45 102 56 56 102 34 80 80 34 0.59 0.25 0.91 1 
1-6 AD 1A 6D 11 0 11 0 34 45 34 45 15 120 12 123 121 16 124 13 0.91 0.10 0.76 1 
2-6 AD 2A 6D 7 0 7 0 38 45 38 45 53 120 47 126 83 16 89 10 0.65 0.07 0.84 1 
3-6 AD 3A 6D 0 0 0 0 45 45 45 45 89 120 73 136 47 16 63 0 0.46 0 1 1 
4-6 AD 4A 6D 0 0 0 0 45 45 45 45 99 120 83 136 37 16 53 0 0.39 0 1 1 
5-6 AD 5A 6D 0 0 0 0 45 45 45 45 123 120 107 136 13 16 29 0 0.21 0 1 1 
6-7 DA 6D 7A 0 4 4 0 45 41 41 45 120 102 93 129 16 34 43 7 0.32 0.05 0.91 1 
6-8 DN 6D 8N 0 0 0 0 45 45 45 45 120 136 120 136 16 0 16 0 0.12 0 1 1 
6-9 DN 6D 9N 0 0 0 0 45 45 45 45 120 56 48 128 16 80 88 8 0.65 0.06 1 1 
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Table 6-5 Counts of detections and failures for benign traffic (False Positive and True Negative) and 
for legitimate attack (False Negative and True Positive) for each IDS and for the 36 

combinations of 2-version systems 1oo2 and 2oo2 for phpBB and  taking into account the type 
of IDS 

    FP TN FN TP Sensitivity Specificity 
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1-2 AA 1A 2A 
61 31 61 31 36 66 36 66 16 192 16 192 229 53 229 53 0.93 0.22 0.37 0.68 

1-3 AA 1A 3A 61 1 61 1 36 96 36 96 16 227 16 227 229 18 229 18 0.93 0.07 0.37 0.99 
1-4 AA 1A 4A 61 0 61 0 36 97 36 97 16 234 16 234 229 11 229 11 0.93 0.04 0.37 1.00 
1-5 AA 1A 5A 61 0 61 0 36 97 36 97 16 239 16 239 229 6 229 6 0.93 0.02 0.37 1.00 
1-7 AA 1A 7A 61 0 61 0 36 97 36 97 16 245 16 245 229 0 229 0 0.93 0.00 0.37 1.00 
2-3 AA 2A 3A 31 1 31 1 66 96 66 96 192 227 192 227 53 18 53 18 0.22 0.07 0.68 0.99 
2-4 AA 2A 4A 31 0 31 0 66 97 66 97 192 234 192 234 53 11 53 11 0.22 0.04 0.68 1.00 
2-5  AA 2A 5A 31 0 31 0 66 97 66 97 192 239 192 239 53 6 53 6 0.22 0.02 0.68 1.00 
2-7  AA 2A 7A 31 0 31 0 66 97 66 97 192 245 192 245 53 0 53 0 0.22 0.00 0.68 1.00 
3-4 AA 3A 4A 1 0 1 0 96 97 96 97 227 234 227 234 18 11 18 11 0.07 0.04 0.99 1.00 
3-5 AA 3A 5A 1 0 1 0 96 97 96 97 227 239 227 239 18 6 18 6 0.07 0.02 0.99 1.00 
3-7 AA 3A 7A 1 0 1 0 96 97 96 97 227 245 227 245 18 0 18 0 0.07 0.00 0.99 1.00 
4-5 AA 4A 5A 0 0 0 0 97 97 97 97 234 239 234 239 11 6 11 6 0.04 0.02 1.00 1.00 
4-7 AA 4A 7A 0 0 0 0 97 97 97 97 234 245 234 245 11 0 11 0 0.04 0.00 1.00 1.00 
5-7 AA 5A 7A 0 0 0 0 97 97 97 97 239 245 239 245 6 0 6 0 0.02 0.00 1.00 1.00 
8-9 NN 8N 9N 0 0 0 0 97 97 97 97 245 0 0 245 0 245 245 0 1.00 0.00 1.00 1.00 
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1-8 AN 1A 8N 61 0 61 0 36 97 36 97 16 245 16 245 229 0 229 0 0.93 0.00 0.37 1.00 
1-9 AN 1A 9N 61 0 61 0 36 97 36 97 16 0 0 16 229 245 245 229 1.00 0.93 0.37 1.00 
2-8 AN 2A 8N 31 0 31 0 66 97 66 97 192 245 192 245 53 0 53 0 0.22 0.00 0.68 1.00 
2-9 AN 2A 9N 31 0 31 0 66 97 66 97 192 0 0 192 53 245 245 53 1.00 0.22 0.68 1.00 
3-8 AN 3A 8N 1 0 1 0 96 97 96 97 227 245 227 245 18 0 18 0 0.07 0.00 0.99 1.00 
3-9 AN 3A 9N 1 0 1 0 96 97 96 97 227 0 0 227 18 245 245 18 1.00 0.07 0.99 1.00 
4-8 AN 4A 8N 0 0 0 0 97 97 97 97 234 245 234 245 11 0 11 0 0.04 0.00 1.00 1.00 
4-9 AN 4A 9N 0 0 0 0 97 97 97 97 234 0 0 234 11 245 245 11 1.00 0.04 1.00 1.00 
5-8 AN 5A 8N 0 0 0 0 97 97 97 97 239 245 239 245 6 0 6 0 0.02 0.00 1.00 1.00 
5-9 AN 5A 9N 0 0 0 0 97 97 97 97 239 0 0 239 6 245 245 6 1.00 0.02 1.00 1.00 
7-8 AN 7A 8N 0 0 0 0 97 97 97 97 245 245 245 245 0 0 0 0 0.00 0.00 1.00 1.00 
7-9 AN 7A 9N 0 0 0 0 97 97 97 97 245 0 0 245 0 245 245 0 1.00 0.00 1.00 1.00 
1-6 AD 1A 6D 61 0 61 0 36 97 36 97 16 91 16 91 229 154 229 154 0.93 0.63 0.37 1.00 
2-6 AD 2A 6D 31 0 31 0 66 97 66 97 192 91 45 238 53 154 200 7 0.82 0.03 0.68 1.00 
3-6 AD 3A 6D 1 0 1 0 96 97 96 97 227 91 80 238 18 154 165 7 0.67 0.03 0.99 1.00 
4-6 AD 4A 6D 0 0 0 0 97 97 97 97 234 91 80 245 11 154 165 0 0.67 0.00 1.00 1.00 
5-6 AD 5A 6D 0 0 0 0 97 97 97 97 239 91 85 245 6 154 160 0 0.65 0.00 1.00 1.00 
6-7 DA 6D 7A 0 0 0 0 97 97 97 97 91 245 91 245 154 0 154 0 0.63 0.00 1.00 1.00 
6-8 DN 6D 8N 0 0 0 0 97 97 97 97 91 245 91 245 154 0 154 0 0.63 0.00 1.00 1.00 
6-9 DN 6D 9N 0 0 0 0 97 97 97 97 91 0 0 91 154 245 245 154 1.00 0.63 1.00 1.00 
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Table 6-6 Counts of detections and failures for benign traffic (False Positive and True Negative) and 
for legitimate attack (False Negative and True Positive) for each IDS and for the 36 

combinations of 2-version systems 1oo2 and 2oo2 for TikiWiki and  taking into account the 
type of IDS 

    
FP TN FN TP Sensitivity Specificity 
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1-2 AA 1A 2A 42 20 42 20 38 60 38 60 39 58 39 58 37 18 37 18 0.49 0.24 0.48 0.75 
1-3 AA 1A 3A 42 1 42 1 38 79 38 79 39 61 39 61 37 15 37 15 0.49 0.20 0.48 0.99 
1-4 AA 1A 4A 42 0 42 0 38 80 38 80 39 61 39 61 37 15 37 15 0.49 0.20 0.48 1.00 
1-5 AA 1A 5A 42 0 42 0 38 80 38 80 39 70 39 70 37 6 37 6 0.49 0.08 0.48 1.00 
1-7 AA 1A 7A 42 0 42 0 38 80 38 80 39 60 34 65 37 16 42 11 0.55 0.14 0.48 1.00 
2-3 AA 2A 3A 20 1 20 1 60 79 60 79 58 61 58 61 18 15 18 15 0.24 0.20 0.75 0.99 
2-4 AA 2A 4A 20 0 20 0 60 80 60 80 58 61 58 61 18 15 18 15 0.24 0.20 0.75 1.00 
2-5  AA 2A 5A 20 0 20 0 60 80 60 80 58 70 58 70 18 6 18 6 0.24 0.08 0.75 1.00 
2-7  AA 2A 7A 20 0 20 0 60 80 60 80 58 60 52 66 18 16 24 10 0.32 0.13 0.75 1.00 
3-4 AA 3A 4A 1 0 1 0 79 80 79 80 61 61 61 61 15 15 15 15 0.20 0.20 0.99 1.00 
3-5 AA 3A 5A 1 0 1 0 79 80 79 80 61 70 61 70 15 6 15 6 0.20 0.08 0.99 1.00 
3-7 AA 3A 7A 1 0 1 0 79 80 79 80 61 60 53 68 15 16 23 8 0.30 0.11 0.99 1.00 
4-5 AA 4A 5A 0 0 0 0 80 80 80 80 61 70 61 70 15 6 15 6 0.20 0.08 1.00 1.00 
4-7 AA 4A 7A 0 0 0 0 80 80 80 80 61 60 53 68 15 16 23 8 0.30 0.11 1.00 1.00 
5-7 AA 5A 7A 0 0 0 0 80 80 80 80 70 60 56 74 6 16 20 2 0.26 0.03 1.00 1.00 
8-9 NN 8N 9N 0 0 0 0 80 80 80 80 76 38 38 76 0 0 0 0 0.50 0.00 1.00 1.00 
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1-8 AN 1A 8N 42 0 42 0 38 80 38 80 39 76 39 76 37 0 37 0 0.49 0.00 0.48 1.00 
1-9 AN 1A 9N 42 0 42 0 38 80 38 80 39 38 20 57 37 38 56 19 0.74 0.25 0.48 1.00 
2-8 AN 2A 8N 20 0 20 0 60 80 60 80 58 76 58 76 18 0 18 0 0.24 0.00 0.75 1.00 
2-9 AN 2A 9N 20 0 20 0 60 80 60 80 58 38 31 65 18 38 45 11 0.59 0.14 0.75 1.00 
3-8 AN 3A 8N 1 0 1 0 79 80 79 80 61 76 61 76 15 0 15 0 0.20 0.00 0.99 1.00 
3-9 AN 3A 9N 1 0 1 0 79 80 79 80 61 38 31 68 15 38 45 8 0.59 0.11 0.99 1.00 
4-8 AN 4A 8N 0 0 0 0 80 80 80 80 61 76 61 76 15 0 15 0 0.20 0.00 1.00 1.00 
4-9 AN 4A 9N 0 0 0 0 80 80 80 80 61 38 31 68 15 38 45 8 0.59 0.11 1.00 1.00 
5-8 AN 5A 8N 0 0 0 0 80 80 80 80 70 76 70 76 6 0 6 0 0.08 0.00 1.00 1.00 
5-9 AN 5A 9N 0 0 0 0 80 80 80 80 70 38 34 74 6 38 42 2 0.55 0.03 1.00 1.00 
7-8 AN 7A 8N 0 0 0 0 80 80 80 80 60 76 60 76 16 0 16 0 0.21 0.00 1.00 1.00 
7-9 AN 7A 9N 0 0 0 0 80 80 80 80 60 38 38 60 16 38 38 16 0.50 0.21 1.00 1.00 
1-6 AD 1A 6D 42 0 42 0 38 80 38 80 39 0 0 39 37 76 76 37 1.00 0.49 0.48 1.00 
2-6 AD 2A 6D 20 0 20 0 60 80 60 80 58 0 0 58 18 76 76 18 1.00 0.24 0.75 1.00 
3-6 AD 3A 6D 1 0 1 0 79 80 79 80 61 0 0 61 15 76 76 15 1.00 0.20 0.99 1.00 
4-6 AD 4A 6D 0 0 0 0 80 80 80 80 61 0 0 61 15 76 76 15 1.00 0.20 1.00 1.00 
5-6 AD 5A 6D 0 0 0 0 80 80 80 80 70 0 0 70 6 76 76 6 1.00 0.08 1.00 1.00 
6-7 DA 6D 7A 0 0 0 0 80 80 80 80 0 60 0 60 76 16 76 16 1.00 0.21 1.00 1.00 
6-8 DN 6D 8N 0 0 0 0 80 80 80 80 0 76 0 76 76 0 76 0 1.00 0.00 1.00 1.00 
6-9 DN 6D 9N 0 0 0 0 80 80 80 80 0 38 0 38 76 38 76 38 1.00 0.50 1.00 1.00 
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Figure 6-1 shows the three ROC plots, one for each of the three 
applications (MyRefereces, phpBB and TikiWiki). On each plot we have the 
following: 

- The blue diamonds represent the single IDS system (and we have labelled 
them in the plot); 

- The orange squares represent the 1oo2 systems; 

- The green triangles represent the 2oo2 systems. 

The optimal system in a ROC plot is one that appears on the top left-
hand corner (i.e. one that has a true positive rate of 1 (it detects all attacks) 
and a false positive rate of 0 (it never raises an alarm for benign traffic)). We 
have one such system for phpBB and TikiWiki, but not for MyReferences (i.e. 
there were no IDSs with perfect performance for MyReferences).  From Figure 
5-1 in general we observe a lot of 1oo2 systems outperforming the individual 
IDS on the true positive rates, and 2oo2 systems outperforming individual IDS 
on the true negative rates. This is consistent across all three applications. 
Figure 6-2 gives ROCs per application again, but now we have split the points 
of the “functionally redundant” (subfigures a-c) and “functionally diverse” (sub-
figures d-f) pairs. Overall we see that the functionally diverse pairs are 
performing better than functionally redundant pairs (as evident by the higher 
number of 1oo2 systems (squares) appearing in the top half of the plot, and a 
higher number of 2oo2 systems (triangles) appearing on the left of the plot in 
subfigures d-f, compared with those in a-c). 

Next, we measured the differences in the Accuracy (Figure 6-3), 
Specificity (Figure 6-4) and Sensitivity (Figure 6-5) of the diverse systems 
versus the best individual IDS in those respective pairs. The goal is to 
understand how much better, or how much worse, a given diverse system 
performs compared with the best IDS in that pair. So we subtract from a given 
measure (accuracy, specificity or sensitivity) of a 1oo2 or 2oo2 system, the 
corresponding measure of the best individual IDS in the pair.  

We kept the ordering in the x-axis the same as in Table 6-4. Hence the 
leftmost 16 points in the x-axis are for the functionally redundant pairs, and 
the remaining ones for functionally diverse pairs. The y-axis shows the 
differences. A positive value means that the diverse system has a better 
performance than the best single IDS of the respective pair; a negative value 
means the performance of the pair is worse than the best single system of the 
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respective pair; and a zero value in the y-axis means the performance of the 
new diverse pair is the same as the best single system in the respective pair. 

In summary: 

- For accuracy: 1oo2 systems perform better overall for MyReferences and 
phpBB applications. The picture is less clear for TikiWiki, where 2oo2 
systems perform at least no worse than the best single IDS for most of the 
application-only IDSs, though for diverse pairs 1oo2 systems perform better 
or at least no worse than the best IDS in the pair. We should note that 
Accuracy may not be a fair measure for MyReferences and phpBB 
applications in the dataset we have used, as the traffic that is being 
inspected for these applications is attack intensive (hence favouring 1oo2 
configurations). The traffic sent to TikiWiki was more balanced between 
attacks and benign traffic and this is reflected in the smaller differences 
between 1oo2 and 2oo2 setups for that application in most cases. 

- Specificity: we would expect gains only in 2oo2 setups. For this dataset 
we only get improvements in some cases for MyReferences, and in all 
cases they are application-only setups. This is because the specificity of an 
individual system is already very high. We are much worse off for 1oo2 
setups, especially for some pairs of application-only 1oo2 systems.  

- Sensitivity: we see improvements in sensitivity of 1oo2 systems, 
especially for application-network (specifically of ACD IDSs with 9N – 
“Snort 2.8 plus CR”) and application-database pairs. Diversity in failure 
behaviour against malicious traffic, benefits 1oo2 setups considerably. 
2oo2 systems on the other hand perform very badly in most cases for 
sensitivity compared with the best individual IDS in the pair. 

 

 

 

 

 

 

 



-88- 

 

a)  

 

b)  

 

c)  

 

Figure 6-1 The ROC plot showing the individual IDSs, 1oo2 and 2oo2 configurations. charts a)-c) show the ROC for each application 

 

a)  

 

b)  

 

c)  

 

d)  

 

e)  

 

f)  

 

Figure 6-2 The  ROC plots showing the individual IDSs, 1oo2 and 2oo2 configurations: charts a)-c) the ROCs for each application when the 
pairs were functionally redundant;  charts d)-f) the ROCs for each application when the pairs were functionally diverse 
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a) 	

	

b) 	

	

c) 	

	

Figure 6-3 The accuracy difference of 1oo2 and 2oo2 configurations, compared with the best single system in the respective pair, 
charts a)-c) show these differences for each application when the pairs were functionally redundant or diverse 

a) 	

	

b) 	

	

c) 	

	

Figure 6-4 The specificity difference of 1oo2 and 2oo2 configurations, compared with the best single system in the respective pair, 
charts a)-c) show these differences for each application when the pairs were functionally redundant or diverse. 

 
a) 	

	

b) 	

	

c) 	

	

Figure 6-5 The sensitivity difference of 1oo2 and 2oo2 configurations, compared with the best single system in the respective pair,  
charts a)-c) show these differences for each application when the pairs were functionally redundant or diverse	
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6.5.2 Analysis by HTTP method 
The authors in Elia et al. (2010) also classified the attacks based on the 

HTTP method used to carry out the attack: through a GET  or a POST. We 
also analysed this aspect in Table 6-7, which gives the counts of successful 
attacks using GET and POST for each Web application.  

Table 6-7 The counts of successful attacks by using GET and POST attack method per web 
application 

Web Application GET Method POST Method 

MyReferences 99 37 

phpBB 77 168 

TikiWiki 33 43 

Since we are only dealing with attack traffic, we will concentrate on 
sensitivity differences only. These are given in Figure 6-6 Plots a)-c) of this 
figure give the differences in Sensitivity for GET attacks; whereas plots d)-f) 
give the differences in Sensitivity for POST attacks.  

It becomes clear from these difference plots that for these applications 
the gains in diversity (in the 1oo2 setups) are almost entirely from GET attacks 
(and this seems to be mainly for MyReferences and TikiWiki applications). We 
see no improvements in most cases for POST attacks.  This is likely due to 
the way some of these IDSs monitor the traffic. As reported in Elia et al. (2010) 
the Scalp and ACD IDSs monitor the Apache access log. Only the malicious 
payload of GET based attacks are stored in the access log, thus making POST 
based attacks almost undetectable by these tools and their variants. 

We should note that since the differences in improvements / 
deteriorations are between the 1oo2 / 2oo2 systems and the best system in a 
given pair, the results presented in figure 6-6 may seem at first glance to not 
be consistent with those in Figure 6-5. For example, for phpBB, we see no 
improvements compared with the best system in the pair when we look at the 
demands separately in Figure 6-6, but we did see improvements when we 
looked at all the demands in Figure 6-5. We checked the results and we found 
that for those pairs (usually ACD versions with GreenSQL) all the 
improvements in sensitivity for 1oo2 for GET demands were from ACD 
versions of the IDS. Whereas for POST demands the improvement were due 
to GreenSQL. So when we look at the demands separately we see no gain 
compared with the best system in the pair, but when we look at all demands 
we do see the gains.  



-91- 

 

a) 	

	

b) 	

	

c) 	

	

d) 	

	

e) 	

	

f) 	

	

Figure 6-6 The sensitivity  difference of 1oo2 and 2oo2 configurations compared with the best single system in the respective pair, charts 
a)-c) show these differences for each application when attacks  were Read (Get); whereas charts d-f), show them when they were 
Write (Post).  	

6.5.3 Differences over a single IDS setup  
So far the results are useful for a decision maker that is deciding which 

two IDSs to choose for a diverse setup. However, organisations may already 
be using an IDS, and costs of switching to a different pair of IDSs may be 
prohibitively high (in terms of licensing, re-training staff, etc.). For these 
organisations it may be useful to know which IDS B they should choose to run 
alongside their existing product A in a diverse 1oo2 or 2oo2 AB setup. Figure 
6-7 shows results for this type of comparison for MyReferences application. 
For each IDS, we show the improvements (positive values in the y-axis - 
shown in orange bars), or deterioration (negative values in the y-axis – shown 
in blue bars), in sensitivity  and specificity for 1oo2 (sub-figure a), and 2oo2 
(sub-figure b). Each IDS can be paired with eight other IDSs in our study. 
Using the left-most box in subfigure a) as an example, the first blue bar shows 
the deterioration in specificity that a user of ACD1 IDS would observe if they 
switched to a 1oo2 setup ACD1-ACD3. Since there is no corresponding 
orange bar it means there is no improvement in sensitivity for users of ACD1 
from switching to a 1oo2 ACD1-ACD3 configuration. Note that for users of 
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ACD3 the observation could be different, and indeed it is, as can be seen from 
the first stacked bar in the second dashed-line-box (ACD3): we can see that 
these users would see a sizeable sensitivity improvement from switching to a 
1oo2 setup (though a specificity deterioration as well). Whether this 
improvement in sensitivity would be worth it for the organisation that uses 
ACD3 would of course depend on the relative costs that this organisation 
places on false positives and false negatives. 

From Figure 6-7 we observe the following for 1oo2 setups: 

- For application-based IDSs, pairing with a functionally diverse IDS 
(“GreenSQL” or “Snort 2.8 plus Custom Rules”), in a 1oo2 setup brings 
considerable improvements in sensitivity at no cost to specificity.   

- For GreenSQL (database IDS) pairing with the functionally-diverse “Snort 
2.8 plus Custom Rules” in a 1oo2 setup brings considerable improvements 
in sensitivity at no cost to specificity. 

- The same is also true when pairing with the functionally-diverse anomaly-
based ACD with higher thresholds (ACD10, ACD30 and ACD100). When 
pairing with ACD1 and ACD3 and Scalp, there are improvements in 
sensitivity but there is also some deterioration in specificity.  

- For “Snort 2.8 plus Custom Rules” pairing with the functionally-diverse ACD 
with a higher threshold (ACD10, ACD30 and ACD100), or with GreenSQL 
leads to improvements in sensitivity at no cost to specificity. 

- The largest improvements in sensitivity from switching to a diverse 1oo2 
configuration would be observed by organisations that are using an 
anomaly-based application IDS with a high threshold value (ACD30, 
ACD100) and they are paired with another anomaly-based application IDS 
that has a low threshold value (ACD1 and ACD3 for example). But for these 
organizations it would be more cost effective to just use a single IDS with a 
lower threshold value, if sensitivity is their primary concern. 

In 2oo2 setups (part b) of Figure 6-8 we observe some improvements 
in specificity but these are in most cases far outweighed by the significant 
deteriorations in sensitivity. 

The observations above about functional diversity pairings are consistent 
also for the other two applications (phpBB and TikiWiki), as we can observe 
from the remaining Figures (6-9 to 6-12); for example in  phpBB all the 245 
attacks are detected by Snort 2.8 Plus Custom Rules, accordingly when 



-93- 

 

pairing any single functionally diverse IDS with Snort 2.8 Plus it improves 
sensitivity, see Figure (6-9).    
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Figure 6-7 Differences in sensitivity and specificity for a given system A when paired with another System B for MyReferences for a 1oo2 
configuration 

Figure 6-8 Differences in sensitivity and specificity for a given system A when paired with another System B for MyReferences for a 
2oo2 configuration 
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Figure 6-9 Differences in sensitivity and specificity for a given system A when paired with another System B for phpBB for a 1oo2 
configuration 

Figure 6-10 Differences in sensitivity and specificity for a given system A when paired with another System B  for phpBB for a 2oo2 
configuration 



-95- 

 

 

 

 

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A
C

D
3

A
C

D
1

0
A

C
D

3
0

A
C

D
1

0
0

G
R

E
E

N
S

Q
L

S
C

A
LP

 s
q

li
a

S
N

O
R

T
 2

.8
S

N
O

R
T

 2
.8

 P
lu

s
A

C
D

1
A

C
D

1
0

A
C

D
3

0
A

C
D

1
0

0
G

R
E

E
N

S
Q

L
S

C
A

LP
 s

q
li

a
S

N
O

R
T

 2
.8

S
N

O
R

T
 2

.8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
3

0
A

C
D

1
0

0
G

R
E

E
N

S
Q

L
S

C
A

LP
 s

q
li

a
S

N
O

R
T

 2
.8

S
N

O
R

T
 2

.8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
1

0
A

C
D

1
0

0
G

R
E

E
N

S
Q

L
S

C
A

LP
 s

q
li

a
S

N
O

R
T

 2
.8

S
N

O
R

T
 2

.8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
1

0
A

C
D

3
0

G
R

E
E

N
S

Q
L

S
C

A
LP

 s
q

li
a

S
N

O
R

T
 2

.8
S

N
O

R
T

 2
.8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

1
0

A
C

D
3

0
A

C
D

1
0

0
S

C
A

LP
 s

q
li

a
S

N
O

R
T

 2
.8

S
N

O
R

T
 2

.8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
1

0
A

C
D

3
0

A
C

D
1

0
0

G
R

E
E

N
S

Q
L

S
N

O
R

T
 2

.8
S

N
O

R
T

 2
.8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

1
0

A
C

D
3

0
A

C
D

1
0

0
G

R
E

E
N

S
Q

L
S

C
A

LP
 s

q
li

a
S

N
O

R
T

 2
.8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

1
0

A
C

D
3

0
A

C
D

1
0

0
G

R
E

E
N

S
Q

L
S

C
A

LP
 s

q
li

a
S

N
O

R
T

 2
.8

D
if

fe
re

n
ce

 in
 S

e
n

si
ti

v
it

y
a

n
d

 S
p

e
ci

fi
ci

ty
  

Differences in Sensitivity and Specificity for a given system A when Paired with another System B in a 1oo2 configuration for TikiWiki  

Sensitivity difference in a 1oo2 system Specificity difference in a 1oo2 system

ACD1 ACD3 ACD10 ACD30 ACD100 GREEN SQL SCALP sqalia SNORT 2.8 SNORT 2.8 Plus

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A
C

D
3

A
C

D
10

A
C

D
30

A
C

D
10

0
G

R
EE

N
SQ

L
SC

A
LP

 s
q

lia
SN

O
R

T 
2.

8
SN

O
R

T 
2.

8
 P

lu
s

A
C

D
1

A
C

D
10

A
C

D
30

A
C

D
10

0
G

R
EE

N
SQ

L
SC

A
LP

 s
q

lia
SN

O
R

T 
2.

8
SN

O
R

T 
2.

8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
30

A
C

D
10

0
G

R
EE

N
SQ

L
SC

A
LP

 s
q

lia
SN

O
R

T 
2.

8
SN

O
R

T 
2.

8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
10

A
C

D
10

0
G

R
EE

N
SQ

L
SC

A
LP

 s
q

lia
SN

O
R

T 
2.

8
SN

O
R

T 
2.

8
 P

lu
s

A
C

D
1

A
C

D
3

A
C

D
10

A
C

D
30

G
R

EE
N

SQ
L

SC
A

LP
 s

q
lia

SN
O

R
T 

2.
8

SN
O

R
T 

2.
8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

10
A

C
D

30
A

C
D

10
0

SC
A

LP
 s

q
lia

SN
O

R
T 

2.
8

SN
O

R
T 

2.
8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

10
A

C
D

30
A

C
D

10
0

G
R

EE
N

SQ
L

SN
O

R
T 

2.
8

SN
O

R
T 

2.
8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

10
A

C
D

30
A

C
D

10
0

G
R

EE
N

SQ
L

SC
A

LP
 s

q
lia

SN
O

R
T 

2.
8

 P
lu

s
A

C
D

1
A

C
D

3
A

C
D

10
A

C
D

30
A

C
D

10
0

G
R

EE
N

SQ
L

SC
A

LP
 s

q
lia

SN
O

R
T 

2.
8

D
if

fe
re

n
ce

 in
 S

e
n

si
ti

vi
ty

an
d

 S
p

e
ci

fi
ci

ty
  

Differences in Sensitivity and Specificity for a given system A when Paired with another System B in a 2oo2 configuration for TikiWiki  

Sensitivity difference in a 2oo2 system Specificity difference in a 2oo2 system

ACD1 ACD3 ACD10 ACD30 ACD100 GREEN SQL SCALP sqalia SNORT 2.8 SNORT 2.8 Plus

Figure 6-12 Differences in sensitivity and specificity for a given system A when paired with another System B  for TikiWiki for a 2oo2 
configuration 

Figure 6-11 Differences in sensitivity and specificity for a given system A when paired with another System B  for TikiWiki for a 1oo2 
configuration 
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6.5.4 Averages for different two-version diverse setups   
We conclude our analysis of two-version systems with a summary table 

(Table 6-8) showing the average Sensitivity, Specificity and Accuracy for 
single IDSs compared with these same averages for 1oo2 and 2oo2 
configurations. The averages are sub-divided by type of configurations and 
application. These results confirm the observations shown so far: 

- For 1oo2 systems: improvements in sensitivity compared with individual 
systems are around 40% on average for the three applications, but come 
with around 10% specificity deterioration on average. 

- For 1oo2 systems: the largest improvements in sensitivity, with the least 
deterioration in specificity are from functionally-diverse pairs of IDSs; 

- For 2oo2 systems: improvements in specificity compared with individual 
systems are around 10% on average for the three applications, but come 
with around 60% sensitivity deterioration on average; 

- For 2oo2 systems: the largest improvements in specificity, with the least 
deterioration in sensitivity, are from functionally-diverse pairs of IDSs 
(specifically Application & Database, and Network & Database). 
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Table 6-8 The average  sensitivity, specificity and accuracy for single IDS and the 1oo2 and 2002 
pairs, per type and per web application 

6.6 Diversity analysis for configurations with more than two 
versions 

So far we presented the results for two-version systems. We then 
expanded the analysis to consider all the possible combinations we can build 
with the 9 IDSs. We calculate the sensitivity and specificity for each of the 
diverse combinations with the nine IDSs, for three types of adjudication setups 
considered (namely 1ooN, simple Majority vote – e.g. 2-out-of-3, 3-out-of-5 
etc., and NooN). 

Figure 6-13 shows the ROC plots, one for each of the three web 
applications (MyRefereces, phpBB and TikiWiki). On each plot we have the 
following: 

- The green X symbols represent the single IDS system; 

- The orange squares represent the 1ooN systems; 

- The blue diamonds represent the NooN systems. 

Averages 

MyReferences PhpBB TikiWiki 
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Single System 0.32 0.91 0.63 0.32 0.89 0.49 0.32 0.91 0.63 

1o
o2

 

Overall 1oo2 0.51 0.83 0.68 0.56 0.80 0.63 0.51 0.83 0.68 

Functionally  

Redundant 

Application-only 0.33 0.76 0.55 0.39 0.70 0.48 0.33 0.76 0.55 

Network-only 0.50 1 0.76 1 1 1 0.50 1 0.76 

Functionally  

Diverse 

Application & Network 0.41 0.87 0.65 0.61 0.84 0.67 0.41 0.87 0.65 

Application  & Database 1 0.87 0.93 0.73 0.84 0.76 1 0.87 0.93 

Network & Database 1 1 1 0.81 1 0.87 1 1 1 

2o
o2

 

Overall 2oo2 0.13 0.99 0.57 0.09 0.99 0.34 0.13 0.99 0.57 

Functionally  

Redundant 

Application-only 0.13 0.98 0.57 0.04 0.98 0.31 0.13 0.98 0.57 

Network-only 0 1 0.51 0 1 0.28 0 1 0.51 

Functionally 

Diverse 

Application & Network 0.07 1 0.55 0.11 1 0.36 0.07 1 0.55 

Application  & Database 0.23 1 0.63 0.11 1 0.37 0.23 1 0.63 

Network & Database 0.25 1 0.63 0.31 1 0.51 0.25 1 0.63 
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- The green triangles with the black border represent the RooN (majority 
vote) systems, which were calculated for odd values of N, as they allow a 
simple majority vote to be calculated.   

The best system in an ROC plot is one that appears on the top right-
hand corner (i.e. one that has a true positive rate of 1 (it detects all attacks) 
and a false positive rate of 1 (it never raises an alarm for benign traffic)). From 
Figure 6-13 we observe a similar picture to what we have seen with two-
versions systems so far: 1ooN systems outperforming the individual IDS on 
sensitivity, and NooN systems outperforming individual IDS on specificity. 

   

N MyReferences PHBBB TikiWiki 
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Figure 6-13 The ROC plot showing the individual IDSs, 1ooN and NooN configurations for each application. 

6.6.1 Averages for different diverse setups   
Tables 6-9 to 6-11 below show the average sensitivity and specify for 

each application for each of the main adjudication setups. Figure 6-14 then 
shows three graphs (one for each application) that visualise the numbers from 
the preceding three tables. The results are consistent with what we observed 
so far: 
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- Improvements in sensitivity for 1ooN systems as we increase N. 

- Improvements in specificity for NooN systems as we increase N.  

- Deterioration in specificity for 1ooN systems as we increase N. 

- Deterioration in sensitivity for NooN systems as we increase N. 

The tables below allow us to calculate more precisely just what those 
improvements (or deteriorations are).  

Table 6-9 The averages of Sensitivity (TPR) and Specificity (1-FPR) for the combined IDSs, in 1ooN, 
RooN and NooN configurations, for MyReferences 

N TPR 1ooN 1-FPR 1ooN TPR RooN 1-FPR RooN TPR NooN 1-FPR NooN 
2 0.5727 0.8944   0.1315 0.9969 
3 0.7145 0.8463 0.2890 0.9907 0.0528 1 
4 0.8049 0.7991   0.0211 1 
5 0.8745 0.7593 0.2533 1 0.0071 1 
6 0.9194 0.7204   0.0015 1 
7 0.9485 0.6846 0.2504 1 0 1 
8 0.9649 0.6519   0 1 
9 0.9706 0.6222 0.2647 1 0 1 

Table 6-10 The averages of Sensitivity (TPR) and Specificity (1-FPR) for the combined IDSs, in 1ooN, 
RooN and NooN configurations, for PhpBB 

N TPR 1ooN 1-FPR 1ooN TPR RooN 1-FPR RooN TPR NooN 1-FPR NooN 
2 0.5604 0.7964     0.0890 0.9906 
3 0.7247 0.7086 0.2260 0.9719 0.0204 0.9999 
4 0.8288 0.6301     0.0048 1 
5 0.9159 0.5606 0.1415 0.9988 0.0016 1 
6 0.9595 0.5001     0.0003 1 
7 0.9822 0.4485 0 1 0 1 
8 0.9927 0.4055     0 1 
9 1 0.3711 0.0735 1 0 1 

Table 6-11 The averages of Sensitivity (TPR) and Specificity (1-FPR) for the combined IDSs, in 1ooN, 
RooN and NooN configurations, for TikiWiki 

N TPR 1ooN 1-FPR 1ooN TPR RooN 1-FPR RooN TPR NooN 1-FPR NooN 
2 0.5128 0.8326     0.1334 0.9924 
3 0.6430 0.7603 0.2523 0.9774 0.0739 1 
4 0.7404 0.6952     0.0471 1 
5 0.8205 0.6374 0.2221 0.9985 0.0279 1 
6 0.8830 0.5866     0.0160 1 
7 0.9722 0.5427 0.2127 1 0.0080 1 
8 0.9708 0.5056     0.0029 1 
9 1 0.4750 0.2237 1 0 1 
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6.6.2 Averages for functionally-redundant and diverse setups 
In the preceding section we gave the averages for any diverse 

configuration. Similarly to what was presented for two-versions systems, we 
also did an analysis of the functionally redundant and functionally diverse 
configurations. Since we have 9 IDS, but only 4 IDS function types, then we 
have differentiated the different “degrees” of diversity for systems with more 
than two-versions. 

Table 6-12 shows the average sensitivity, specificity and accuracy for 
single IDSs. This is the base reference. Tables 6-13, 6-14, 6-15 and 6-16 show 
averages for 1ooN, RooN and NooN configurations for each application for 
N=3, N=5, N=7 and N=9. We have subdivided these averages by the degree 
of diversity that exists between the types of IDS (A: Application, D: Database 
and N: Network), for each application. So for example AAD, means we have 
two IDSs of application type, and one IDS of Database type, in the three-
version configuration. For 3-version and 5-version systems, since we have 6 
Application level IDSs, we can still have functionally-redundant configurations 
(of application-only types). For 7-version and 9-version systems we can only 
have functionally-diverse configurations. In the tables, on each column, we 
highlight the best (green coloured cell) and worst (red coloured cell) 

Figure 6-14 Plots show the averages of TPR and 1-FPR for the combined IDSs, in 1ooN, RooN and NooN configurations for 
all the web applications 

 

MyReferences	 PHBBB	 TikiWiki	
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performing configuration on average for each application and each 
adjudication scheme.  

The results show that: 

- On the Sensitivity measure: 

- For 1ooN systems, the functionally diverse systems are always 
performing best on average in all cases; 

- For majority vote and NooN, the functionally redundant systems 
perform best on average for MyReferences in most cases. 

- On the Specificity measure: 

- Functionally diverse systems are always performing best on 
average in all cases, for all adjudicators.   

Table 6-12 the average sensitivity, specificity and accuracy for single IDS and per web application 
 MyReferences PhpBB TikiWiki 

IDS Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy 

Single System 0.45 0.94 0.1 0.32 0.89 0.49 0.32 0.91 0.63 

Table 6-13 The average sensitivity and specificity for (1oo3,2oo3 and 3oo3) per web application 

 MyReferences PhpBB TikiWiki 

 Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

IDS Combination 
Types 

1oo3 2oo3 3oo3 1oo3 2oo3 3oo3 1oo3 2oo3 3oo3 1oo3 2oo3 3oo3 1oo3 2oo3 3oo3 1oo3 2oo3 3oo3 

Overall 0.71 0.29 0.05 0.10 0.99 1.00 0.72 0.23 0.02 0.71 0.97 1.00 0.64 0.25 0.07 0.76 0.98 1.00 

Functionally 
redundant 0.76 0.38 0.10 0.00 0.99 1.00 0.73 0.24 0.02 0.60 0.95 1.00 0.59 0.24 0.11 0.67 0.96 1.00 

Fu
nc

tio
na

lly
 d

iv
er

se
 

Overall 0.71 0.26 0.03 0.87 0.99 1.00 0.78 0.27 0.02 0.75 0.98 1.00 0.72 0.27 0.07 0.79 0.99 1.00 

AAN 0.70 0.28 0.05 0.85 0.99 1.00 0.67 0.20 0.01 0.72 0.98 1.00 0.62 0.25 0.07 0.77 0.98 1.00 

AAD 0.74 0.31 0.05 0.84 0.99 1.00 0.73 0.17 0.02 0.70 0.96 1.00 0.56 0.20 0.05 0.76 0.97 1.00 

ANN 0.77 0.28 0.02 0.86 1.00 1.00 0.83 0.42 0.10 0.74 1.00 1.00 0.73 0.38 0.09 0.78 1.00 1.00 

NND 0.32 0.05 0.00 0.91 1.00 1.00 0.63 0.00 0.00 1.00 1.00 1.00 1.00 0.21 0.00 1.00 1.00 1.00 

fully 
diverse:ADN 0.65 0.17 0.01 0.91 1.00 1.00 0.81 0.27 0.01 0.81 1.00 1.00 0.82 0.29 0.05 0.85 1.00 1.00 
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Table 6-14 The average sensitivity and specificity for (1oo5,3oo5 and 5oo5) per web application 

 MyReferences PhpBB TikiWiki 

 Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

IDS Combination Types 1oo5 3oo5 5oo5 1oo5 3oo5 5oo5 1oo5 3oo5 5oo5 1oo5 3oo5 5oo5 1oo5 3oo5 5oo5 1oo5 3oo5 5oo5 

Overall 0.87 0.25 0.01 0.76 1.00 1.00 0.92 0.14 0.00 0.56 1.00 1.00 0.82 0.22 0.03 0.64 1.00 1.00 

Functionally redundant 0.89 0.35 0.04 0.67 1.00 1.00 0.81 0.06 0.00 0.42 0.99 1.00 0.50 0.21 0.05 0.52 0.99 1.00 

Fu
nc

tio
na

lly
 d

iv
er

se
 

Overall 0.87 0.25 0.01 0.76 1.00 1.00 0.92 0.15 0.00 0.57 1.00 1.00 0.84 0.22 0.03 0.64 1.00 1.00 

AAAAN 0.88 0.32 0.02 0.72 1.00 1.00 0.84 0.08 0.00 0.49 1.00 1.00 0.57 0.20 0.03 0.58 1.00 1.00 

AAAAD 0.84 0.32 0.00 0.72 1.00 1.00 0.89 0.06 0.00 0.49 1.00 1.00 1.00 0.23 0.07 0.58 1.00 1.00 

AAANN 0.93 0.25 0.00 0.76 1.00 1.00 1.00 0.09 0.00 0.54 1.00 1.00 0.67 0.16 0.00 0.62 1.00 1.00 

AAAND 0.84 0.21 0.00 0.79 1.00 1.00 0.93 0.19 0.00 0.61 1.00 1.00 0.98 0.25 0.03 0.68 1.00 1.00 

AANND 0.91 0.14 0.00 0.84 1.00 1.00 1.00 0.28 0.00 0.68 1.00 1.00 1.00 0.26 0.01 0.74 1.00 1.00 

Table 6-15 The average sensitivity and specificity for (1oo7,4oo7 and 7oo7) per web application 

 MyReferences PhpBB TikiWiki 

 Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

IDS Combination Types 1oo7 4oo7 7oo7 1oo7 4oo7 7oo7 1oo7 4oo7 7oo7 1oo7 4oo7 7oo7 1oo7 4oo7 7oo7 1oo7 4oo7 7oo7 

Fu
nc

tio
na

lly
 d

iv
er

se
 

Overall 0.95 0.25 0.00 0.68 1.00 1.00 0.98 0.06 0.00 0.45 1.00 1.00 0.93 0.21 0.01 0.54 1.00 1.00 

AAAAAND 0.93 0.28 0.00 0.67 1.00 1.00 0.96 0.06 0.00 0.42 1.00 1.00 1.00 0.23 0.02 0.52 1.00 1.00 

AAAAAAN 0.95 0.32 0.00 0.62 1.00 1.00 0.97 0.06 0.00 0.37 1.00 1.00 0.64 0.21 0.01 0.48 1.00 1.00 

AAAANND 0.96 0.20 0.00 0.72 1.00 1.00 1.00 0.06 0.00 0.49 1.00 1.00 1.00 0.21 0.00 0.58 1.00 1.00 

AAAAANN 0.96 0.28 0.00 0.67 1.00 1.00 1.00 0.06 0.00 0.42 1.00 1.00 0.71 0.18 0.00 0.52 1.00 1.00 

AAAAAAD 0.95 0.32 0.00 0.62 1.00 1.00 0.93 0.07 0.00 0.37 1.00 1.00 1.00 0.22 0.03 0.48 1.00 1.00 
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Table 6-16 the average sensitivity and specificity for (1oo9,5oo9 and 9oo9) per web application 

 MyReferences PhpBB TikiWiki 

 Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

IDS Combination Types 1oo9 5oo9 9oo9 1oo9 5oo9 9oo9 1oo9 5oo9 9oo9 1oo9 5oo9 9oo9 1oo9 5oo9 9oo9 1oo9 5oo9 9oo9 

AAAAAANND I 0.97 0.26 0.00 0.62 1.00 1.00 1.00 0.07 0.00 0.37 1.00 1.00 1.00 0.22 0.00 0.48 1.00 1.00 

6.7 Discussion, Conclusions and Limitations 

In this chapter we presented results of analysing the performance of 
diverse IDS configurations. The analysis is performed using a previously 
published dataset by the authors of (Elia et al., 2010), which used nine 
individual IDS configurations to monitor three web applications, that were 
subjected to SQL injection attacks and benign crawling actions. From the nine 
individual IDSs we built all the possible diverse pairs, triplets, quadruples etc., 
of IDSs. While analysing the results we considered three possible 
configurations of the adjudicator: 1-out-of-N (raise an alarm when any one of 
the IDS in the N configuration raise it); majority vote (raise an alarm only when 
a majority of the systems in an N configuration raise it; when N is even, we 
use the minimum number needed to reach a majority, e.g. 3oo4, 4oo6 etc) 
and N-out-of-N (raise an alarm only when all IDSs in the N configuration raise 
it). We presented the results using the well-established measures for binary 
classifiers: sensitivity, specificity and accuracy.  

The main conclusions from our analysis are:  

- For 1oo2 systems: improvements in sensitivity compared with individual 
systems are around 40% on average for the three applications, but come 
with around 10% specificity deterioration on average. The largest 
improvements in sensitivity, with the least deterioration in specificity are 
from functionally-diverse pairs of IDSs;  

- For 2oo2 systems: improvements in specificity compared with individual 
systems are around 10% on average for the three applications, but come 
with around 60% sensitivity deterioration on average; 

- For 1ooN systems: on average there is an improvement in sensitivity 
compared with individual IDS, and a deterioration in specificity ; 

- For NooN systems: specificity can be perfect in most setups, but with 
severe deterioration in sensitivity on average; 
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- Majority voting systems usually offer a compromise between the 
extremes of 1ooN and NooN setups, but for these setups they tended to 
negatively impact the sensitivity measures, with marginal gains in 
specificity. 

We also explored the level of “functional diversity” that exists in the IDSs 
and how that impacts the sensitivity and specificity measures. On average we 
found that the more functionally diverse the system is the better the sensitivity 
and specificity on average, though not in all cases.  

Apart from the results presented, we also provide a well-documented, 
step-by-step analysis methodology for assessing the performance of N-
version diverse security decision support systems. This should prove useful 
to other researchers and organisations to assess diversity in their setups.    

There are a few limitations of the dataset we have used which prevent 
us from making more generalised conclusions on the possible benefits of 
diversity with IDSs: 

- The dataset is from 2009, hence it may not accurately reflect the prevalence 
of current attacks. However, we should stress that we are matching like 
with like: i.e. attacks and IDSs at some snapshot in time, in this case 2009. 
And SQL Injection attacks still remain largely prevalent and topical for web 
applications today. Good datasets are difficult to find, but future work could 
involve analysis with more current attack mechanisms and IDS versions. 
This will allow comparison with our results and hence analyse diverse IDS 
performance over time; 

- The dataset is for web applications only. Ideally we would want datasets for 
a wider array of applications. However, web applications dominate the 
market, and because they are directly exposed to attackers, are the ones 
security engineers spend the most effort trying to protect;    

- The attacks are limited to SQL Injection. A wider array of attacks would be 
preferable. Though we should stress that SQL Injection attacks are some 
of the most dangerous and widely used attacks for database driven web 
applications, hence the focus on them is valid; 

- The data is generated by a vulnerability and attack injection tool and may 
not be representative of operational scenarios used by different 
organisations. Though we should stress that it is difficult to get operational 
datasets, as organisations rarely share them, so authors in (Elia et al., 
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2010) state that they took extra care to select attacks that were 
representative of those seen in the field; 

- Dataset for MyReferences and phpBB is dominated by attacks. As 
mentioned before, the accuracy measure is likely to be dominated by TP 
and FN in these circumstances. So we recommend using the sensitivity 
measures for these applications. 

- As we also mentioned for the AV study, we should emphasise that despite 
the limitations stated above our main aim is to assess diversity between 
tools in a particular snapshot in time. Our results show that diversity can be 
effective and we have quantified this effectiveness.  
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7.1 Introduction 

Static analysis tools are used to inspect software looking for 
vulnerabilities, without executing the code. Since they can cover all the source 
code effectively, they are a valuable tool to help security researchers to 
automate the task of discovering some type of vulnerabilities. However, as 
with any other binary decision system, SATs also suffer from false negative 
(FN) errors (missing vulnerabilities in the code they inspect) and false positive 
(FP) errors (incorrectly labelling code as containing a vulnerability when in fact 
it does not).  

There are many SATs available, and each one has its own strengths and 
weaknesses. Rather than using just one tool, several diverse SATs can be 
used for finding vulnerabilities to reduce the probability of vulnerabilities 
remaining undetected. However, for diversity to be effective, the SATs should 
be diverse in their design. This way, a vulnerability undetected by one SAT 
should, with high probability, be detected by another one, while at the same 
time not increasing prohibitively the number of false positives. The important 
questions are whether a specific set of SATs would improve vulnerability 
detection more than another set; quantifying these gains; and quantifying the 
false positives. 

We provide empirical results to help with the problem of deciding which 
combination of SATs to use. We present results of analysing the performance 
of diverse SAT configurations based on a previously published dataset (Nunes 
et al., 2017). The dataset consists of five SATs that were individually used to 
find two types of vulnerabilities, namely SQL Injection (SQLi) and Cross-Site 
Scripting (XSS), in 134 plugins of the WordPress Content Management 
System (CMS). WordPress powers 30% of the web and represents 60% of all 
CMSs. According to the Hacked Website Report, WordPress is the most 
infected CMS (Sucuri Remediation Group, 2017) it accounted for 74% of all CMS 
infections in Q3 of 2016, and 83% of all CMS infections in 2017. 

We apply in full the methodology we described in Chapter 3. Namely, we 
calculate the FP, FN, TP, TN counts for each diverse configuration with SAT 
tools; we calculate the measures of interest (specificity, sensitivity and 
accuracy) or each diverse configuration, overall and by type of vulnerability; 
we generate the ROC plots showing all the diverse configurations and the 
individual defence systems, overall, by type of configuration and by type of 
malicious input; we calculate the differences in the measures of interest 



-109- 

 

between diverse configurations and individual systems to measure the 
possible improvements or deteriorations from switching to a diverse system.  

The rest of the chapter is organised as follows: section 7.2 outlines the 
objectives of the study; section 7.3 describes the dataset; section 7.4 
describes the analysis methodology; section 7.5 presents the results from 
analysing diverse systems with the different configurations; section 7.6 
presents an analysis of the plug-ins in which the vulnerabilities were found; 
and finally section 7.7 presents a discussion, conclusions and provisions for 
further work. 

7.2 Study objectives  

In this study, we investigate all the possible diverse configurations that 
we can build with the five individual SATs: 10 diverse pairs, 10 diverse triplets, 
five diverse quadruples and one diverse quintet SAT system. We considered 
various configurations for the adjudicator: 1-out-of-N (raise an alarm for a 
vulnerability when any of N SATs in the diverse configuration does so); N-out-
of-N (raise an alarm for a vulnerability only when all N SATs in the diverse 
configuration do so); and simple majority (raise an alarm for a vulnerability 
when the majority of the N SATs in a diverse configuration do so).  

Results are presented using the well-established measures for binary 
classifiers: sensitivity (measures the performance of the SAT to find 
vulnerabilities) and specificity (measures the performance of the SAT to not 
raise false alarms). These measures capture the main requirements of 
practitioners when selecting SATs: a tool that finds most vulnerabilities without 
raising too many false alarms.    

We analysed the measures for all possible two-SAT, three-SAT, four-
SAT and five-SAT diverse configurations. We found that none of the SATs, or 
combinations of SATs, was able to find all the vulnerabilities in the target 
plugins. But, we found that some of the SATs exhibit considerable diversity in 
their ability to detect the types of vulnerabilities analysed. We then provide 
empirically supported guidance on which combination of SATs provide the 
most benefits in the ability to detect vulnerabilities, with a reduced false 
positive rate. Hence, this study provides a significant new contribution 
compared with the previous work in (Nunes et al., 2017) on which only 1-out-
of-N configurations were analysed. 1-out-of-N systems raise an alarm as long 
as any one of the SATs in the system raise an alarm. One limitation of these 
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configurations is the potential increase of FPs, which may be unacceptable in 
many situations. In the present work, we look at all the possible N-out-of-N 
and majority voting configurations. This way a security researcher has more 
evidence on the interplay between FPs and FNs in diverse SAT 
configurations.  

7.3 Dataset 

A standard way to evaluate and compare the effectiveness of SATs is to 
make them search for vulnerabilities in a set of applications (i.e. the workload), 
followed by the computation of the evaluation metrics. The workload strongly 
determines the results, so it should be representative of all applications. 
Unfortunately, this is very hard to attain. To make the problem treatable, the 
workload can be built for a particular domain. However, the selection of a set 
of representative applications in a given domain is still a difficult task. Another 
difficulty is the characterization of the applications in the workload (especially 
if they are real applications) concerning the vulnerable (VLOC) and non-
vulnerable (NVLOC) lines of code (LOC). Moreover, the computation of 
several evaluation metrics requires the outputs of all the tools to be classified 
into FP, FN (False Negatives), TP and TN (True Negatives). To compare the 
results of two or more SATs we need their outputs to be in a common format 
with detailed data about the vulnerabilities such as the LOC, the SS, the 
vulnerable variables, the chains of data/control dependencies of the 
vulnerable variables from the Entry points (EPs) to the Sensitive Sink (SS) to 
prove that the user input reaches the SS. Unfortunately, SATs report the 
vulnerabilities they find in different formats with varying degrees of detail. For 
example, some SATs report data in HTML pages and others in a GUI. 
Although these data are human readable, they need to be converted to a 
common format. To accomplish this in a seamless way (Nunes et al., 2017) 
developed a tool able to automate the process.    

The workload in (Nunes et al., 2017) builds on previous study (Na et al., 
2008). In that work (Na et al., 2008), the study proposed an approach to select 
applications based on public repositories of vulnerabilities that include 
confirmed vulnerabilities in real software. It applied this methodology to the 
domain of WordPress plugins and for SQLi and XSS vulnerabilities based on 
the online WPScan Vulnerability Database (WPVD) (wpvulndb, 2018). The 
workload is a set of 134 plugins composed of 4,975 PHP files, 1,339,427 LOC 
and where each plugin has at least one SQLi and/or one XSS VLOC (i.e. a 
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LOC with at least one vulnerable SS). As identifying all VLOCs and NVLOCs 
(i.e. a LOC with all SSs non-vulnerable) in the workload is a hard task that 
requires a thorough review by security experts, our approach to find more 
VLOCs than those present in the WPVD was based on searching for further 
vulnerabilities in the workload with one or more SATs, followed by a manual 
review to confirm if they are TPs or FPs. The merge of all TPs with the 
vulnerabilities of the WPVD becomes the list of VLOCs in the workload (which 
is, nevertheless, a best-effort subset of all of them). Therefore, the list of 
NVLOCs is obtained from all LOCs with a SS with at least one variable, 
excluding those that were reported by the tools and confirmed manually as 
TP. 

To detect the SQLi and XSS vulnerabilities in the plugins, the following 
five SATs were used: RIPS v0.55 (Dahse et al., 2014), Pixy v3.03(2007) 
(Jovanovic et al., 2006), phpSAFE (Na et al., 2008), WAP v2.0.1(Medeiros et 
al., 2014) and WeVerca v20150804 (Hauzar & Kofroň, 2015) 

RIPS performs static taint analysis and string analysis. RIPS and Pixy 
are two of the most referenced PHP SATs in the literature, but they are not 
ready for Object Oriented Programming (OOP) analysis. RIPS has been 
developed as open source until 2014, and only its recently released 
commercial version is able to fully analyse OOP code.  WAP, phpSAFE, and 
WeVerca are recent tools under active development and they are prepared for 
OOP code.  

Static analysis is a complex task, and the tools may be unable to fully 
process some files of the workload. Overall, phpSAFE was unable to analyse 
130 files, RIPS could not analyse 2179 files, Pixy did not process 1473 files, 
and WeVerca was not able to analyse a total of 20 files. To make the analysis 
comparable we consider only the results obtained from files that could be 
successfully analysed by all five tools. 

Overall, the plugins contain 713,456 LOC and 402,218 logical LOC 
(LLOC, i.e. commented and whitespace lines are excluded), as can be seen 
in Table 6-1. The counting of the LOC and LLOC was performed using the 
phploc39. WordPress plugin are constructed with the PHP language which 
allows a mixture of OOP (Object Oriented Programming) and POP (Procedure 
                                            
39 https://phar.phpunit.de/phploc.phar 
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Oriented Programming) code. The authors in (Nunes et al., 2017) provided a 
classification of vulnerable and non-vulnerable POP and OOP code in the 
plug-ins that they analysed. Examples are provided in the code extracts in the 
two figures below Figure (7-1) and (7-2) 

 
Figure 7-1 Example POP code in the analysed plugins. 

 

 
Figure 7-2 Example OOP code in the analysed plugins. 

In summary, (Nunes et al., 2017) considered a module to be OOP if that 
module had a definition of a class. However within the same module, there 
can be code, outside functions and methods of a class which would be POP. 
Hence a LoC in their classification is always either POP or OOP, but not both. 
But within a module there can be a mixture of OOP and POP LoCs. 

Since programming orientation may be relevant for the performance of 
the SATs, Table 7-1 also shows the LLOCs that are classified as POP code 
and those that are classified as OOP code40.  

 

 

 

                                            
40 A LOC cannot be categorised as both OOP or POP. 
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Table 7-1 Plugin Information 

 

Table 7-2 shows the VLOCs and NVLOCs for SQLi and XSS for the 
workload in Table 7-1. In this, we can see more XSS than SQLi data, but that 
is also usual in real life applications.  

Table 7-2 Dataset 

 

 

 

 

 

 

7.4 Analysis of single version systems 

Table 7-3 presents the five SATs, the labels (in brackets) we use to refer 
to them in the rest of the study, and the FP, TN, FN and TP counts 
respectively, for each of the two classes of vulnerabilities. Table 7-4 presents 
the sensitivity and specificity measures for each SAT. 

Table 7-3 The five SATs and the FP, TN, FN and TP counts 

SAT 
SQLi XSS 

FP TN FN TP FP TN FN TP 

phpSAFE (A) 53 6126 268 379 213 19682 2293 2056 

RIPS (B) 116 6063 465 182 454 19441 1469 2880 

WAP (C) 0 6179 492 155 25 19870 3964 385 

Pixy (D) 31 6148 583 64 172 19723 3313 1036 

WeVerca (E) 4 6175 608 39 24 19871 3488 861 

 
 
 

SQLi XSS 

  LLOC   LLOC 

Plug. Files POP OOP Plug. Files POP OOP 
117 2168 120917 46617 130 3401 175747 58937 

Vulnerability Code Type VLOC NVLOC Total 

SQLi POP 138 605 743 
 OOP 509 5574 6083 

 Total 647 6179 6826 
XSS POP 965 1370 2335 

 OOP 3384 18525 21909 

 Total 4349 19895 24244 
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Table 7-4 The five SATs and the sensitivity (sens.) and specificity (spec.) measures for each SAT 

SAT 
SQLi XSS 

Sens. Spec. Sens. Spec. 
phpSAFE (A) 0.586 0.991 0.473 0.989 

RIPS (B) 0.281 0.981 0.662 0.977 

WAP (C) 0.240 1.000 0.089 0.999 

Pixy (D) 0.099 0.995 0.238 0.991 

WeVerca (E) 0.060 0.999 0.198 0.999 

 

In the present study, we extend the analysis of (Nunes et al., 2017) from 
the viewpoint of diversity. From the five SAT configurations, we can build a 
total of:  

- 10 two-version combinations (5C2), 

- 10 three-version combinations (5C3), 

- 5 four-version combinations (5C4), and 

- 1 five-version combination (5C5).  

7.5 Results 

In this section, we present the results of our analysis of the diversity in 
the SAT tools.  

7.5.1 Visualising diversity 
We begin our analysis with a simple visualisation that shows the 

commonality and diversity of the tools on the vulnerable and non-vulnerable 
code. Figure 7-3 contains these plots for the two classes of vulnerabilities. We 
will use Figure 7-3(a) to illustrate what each plot shows: 

- The x-axis lists the five SAT tools; 

- The y-axis lists the VLOCs (647 in total for SQLi). 

A green cell in the plot shows for each SAT whether they detected the 
vulnerable code as such (i.e. the green cells represent true alarms (TPs); the 
white cells represent no alarms (in this case, FNs)). 

Figure 7-3(b) is the same but for the XSS vulnerabilities. Figures 7-3(c) 
and 7-3(d) are similar but in these plots we visualise the responses from SATs 
on code that was not vulnerable – NVLOC (hence an alarm is a false positive 
(FP) represented by a red coloured cell; no alarms are again represented as 
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white cells (in this case they are TNs)) for the SQLi and XSS vulnerabilities, 
respectively. In 7.3(c) and 7.3(d) we show only the NVLOCs on which at least 
one of the SATs reports an FP. 

From these plots, we can observe that there is noticeable diversity 
between some of the SATs (e.g. considerable diversity for both SQLi and XSS 
between phpSAFE and RIPS, as is evident by the limited overlap in their 
alarms in the graphs). 
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Vulnerability detected by SAT 

(a) SQLi (VLOC: 647) (b) XSS (VLOC: 4349) 

  

False alarm for non-vulnerabilities 

(c) SQLi (NVLOC: 6179, of which 200 in the y-axis below 

for NVLOCs with FPs for at least one of the SATs. The 

rest had no FPs on any SAT) 

(d) XSS (NV: 19, 895, of which 700 in the y-axis below for 

NVLOCs with FPs for at least one of the SATs. The rest 

had no FPs on any SAT) 

  

Figure 7-3  Diversity between SATs for SQL Injection and Cross Site Scripting (XSS)  

7.5.2 Sensitivity, specificity and ROCs for diverse SATs 
We then proceeded to calculate the sensitivity and specificity for each of 

the diverse combinations with the five SATs, for the three types of adjudication 
setups considered (namely 1ooN, simple Majority vote (2oo3, 3oo4 and 3oo5) 
and NooN). Table 7-5 presents the results of this analysis for all the possible 
two-version, three-version, four-version and five version combinations for 
SQLi. Table 7-6 shows the results for XSS. 

From Tables 7-5 and 7-6 we can see some patterns emerging: the 1ooN 
systems are better at finding vulnerabilities (better sensitivity), compared with 
the best individual SATs; on the other hand, NooN systems are better at 
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correctly labelling non-vulnerable code (higher specificity). This is to be 
expected since (similarly to what we also stated for the IDS systems in the 
preceding chapter): 

- 1ooN systems will in all cases perform: 

- better or equal to the best single SAT in the diverse combination N 
for vulnerable code, as any “alarm” from any of the N SATs systems 
will lead to an alarm in a 1ooN system;  

- equal or worse than the worst single SAT in the diverse combination 
N for non-vulnerable code, as any “alarm” from any single SAT will 
lead to this code being incorrectly labelled as vulnerable.  

- NooN systems will in all cases perform: 

- better or equal to the best single SAT for non-vulnerable code as the 
NooN system only raises an “alarm” for non-vulnerable code if ALL 
the SATs in the diverse configuration do so; 

- equal or worse than the worst single SAT system in the diverse 
configuration N for vulnerable code, as the NooN system will only 
label code as vulnerable if ALL the single SATs in the diverse 
configuration do so. 

- Majority voting setups usually balance out these extremes, as they are not 
as “trigger happy” as 1ooN setups in raising alarms, but also not as 
conservative as NooN setups in remaining silent.  

What is important to understand is how much better, or how much worse, 
would a diverse configuration perform in these setups, and the results in 
Tables 7-5 and 7-6 provide us with some interesting observations. 
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Table 7-5 Sensitivity (sens.) and specificity (Spec) for the 1ooN, Majority vote and NooN 
configurations for N between 2 and 5 for SQLi 

SQLi 
1ooN Majority NooN 

Sens. Spec. Sens. Spec. Sens. Spec. 

(a, b) 0.782 0.976 - - 0.085 0.996 

(a, c) 0.770 0.991 - - 0.056 1.000 

(a, d) 0.655 0.987 - - 0.029 0.999 

(a, e) 0.624 0.991 - - 0.022 1.000 

(b, c) 0.444 0.981 - - 0.077 1.000 

(b, d) 0.289 0.981 - - 0.091 0.995 

(b, e) 0.297 0.981 - - 0.045 0.999 

(c, d) 0.280 0.995 - - 0.059 1.000 

(c, e) 0.277 0.999 - - 0.023 1.000 

(d, e) 0.111 0.995 - - 0.048 0.999 

(a, b, c) 0.901 0.976 0.193 0.999 0.012 1.000 

(a, b, d) 0.787 0.976 0.153 0.998 0.026 0.999 

(a, b, e) 0.796 0.976 0.111 0.994 0.020 1.000 

(a, c, d) 0.784 0.987 0.138 0.999 0.003 1.000 

(a, c, e) 0.787 0.991 0.097 0.999 0.002 1.000 

(a, d, e) 0.668 0.987 0.056 0.998 0.022 1.000 

(b, c, d) 0.447 0.981 0.119 0.998 0.045 1.000 

(b, c, e) 0.457 0.981 0.102 0.994 0.022 1.000 

(b, d, e) 0.301 0.981 0.094 0.994 0.045 0.999 

(c, d, e) 0.292 0.995 0.083 0.998 0.023 1.000 

(a, b, c, d) 0.901 0.976 0.087 1.000 0.003 1.000 

(a, b, c, e) 0.913 0.976 0.051 1.000 0.002 1.000 

(a, b, d, e) 0.799 0.976 0.053 0.998 0.020 1.000 

(a, c, d, e) 0.796 0.987 0.045 1.000 0.002 1.000 

(b, c, d, e) 0.459 0.981 0.079 0.998 0.020 1.000 

(a, b, c, d, e)  0.913 0.976 0.094 0.998 0.000 1.000 
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Table 7-6 Sensitivity (sens. ) and specificity (spec) for the 1ooN, Majority vote and NooN 
configurations for N between 2 and 5 for XSS 

XSS 
1ooN Majority NooN 

Sens. Spec. Sens. Spec. Sens. Spec. 

(a, b) 0.963 0.970 - - 0.172 0.9963 

(a, c) 0.522 0.989 - - 0.040 0.9991 

(a, d) 0.631 0.982 - - 0.080 0.9985 

(a, e) 0.586 0.988 - - 0.084 0.9997 

(b, c) 0.687 0.977 - - 0.064 0.9990 

(b, d) 0.683 0.976 - - 0.218 0.9921 

(b, e) 0.733 0.977 - - 0.127 0.9989 

(c, d) 0.271 0.991 - - 0.056 0.9995 

(c, e) 0.251 0.998 - - 0.035 0.9998 

(d, e) 0.334 0.991 - - 0.102 0.9994 

(a, b, c) 0.981 0.970 0.208 0.996 0.034 0.9992 

(a, b, d) 0.967 0.970 0.342 0.989 0.064 0.9991 

(a, b, e) 0.986 0.970 0.309 0.995 0.037 0.9998 

(a, c, d) 0.655 0.982 0.113 0.998 0.032 0.9997 

(a, c, e) 0.613 0.988 0.133 0.999 0.013 0.9999 

(a, d, e) 0.681 0.982 0.189 0.998 0.039 0.9998 

(b, c, d) 0.702 0.976 0.236 0.991 0.051 0.9996 

(b, c, e) 0.751 0.977 0.169 0.998 0.029 0.9998 

(b, d, e) 0.747 0.976 0.257 0.991 0.095 0.9995 

(c, d, e) 0.357 0.990 0.143 0.999 0.025 0.9999 

(a, b, c ,d) 0.981 0.970 0.088 0.998 0.031 0.9997 

(a, b, c, e) 0.998 0.970 0.073 0.999 0.013 0.9999 

(a, b, d, e) 0.990 0.970 0.139 0.998 0.032 0.9999 

(a, c, d, e) 0.696 0.982 0.071 0.999 0.012 1.0000 

(b, c, d, e) 0.759 0.976 0.125 0.999 0.025 0.9999 

(a, b, c, d, e) 0.998 0.970 0.154 0.998 0.003 1.0000 

 

Sensitivity: Combining SATs phpSAFE (A), RIPS (B) and WAP (C) in a 
1ooN setup (meaning we identify code as vulnerable as soon as any one of 
these tools identifies it as such) gives very large gains in sensitivity for both 
SQL Injection and XSS. Sensitivity for the best of these tools for SQL injection 
is 0.56. 1oo3 configuration of these three tools (as listed in the row (a,b,c)) is 
0.9. Adding the remaining two SATs (Pixy and WeVerca) improves sensitivity 
a little bit more (to 0.91) in a 1oo5 setup (row (a,b,c,d,e)). For XSS, phpSAFE 
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(A) and RIPS (B) in a 1oo2 setup have a sensitivity score of 0.96 (individually 
RIPS (B) had the best sensitivity at 0.66). Combining all five tools in a 1oo5 
setup meant all the XSS vulnerabilities in the plugins we considered were 
detected. As we would expect, we see large deteriorations in sensitivity for 
NooN setups. We also observe poor sensitivity results for majority voting 
setups. 

Specificity: We see gains in specificity in NooN setups (meaning we 
only label code as vulnerable if all N tools in the setup agree that the code is 
vulnerable). Many configurations never raise false alarms in these 
configurations. However, they also have very poor sensitivity values. As 
expected, majority voting setups do better for sensitivity compared with NooN, 
but worse for specificity. 

ROC plots also help a decision maker to visualise these results and 
compare the performance of the different systems. Figure 7-4 shows the eight 
ROC plots, one for each vulnerability (SQLi and XSS), and for each 
configuration of N, 2≤N≤5. In addition to the 1ooN, simple majority (1oo3, 3oo4 
and 3oo5), and NooN setups that we showed in Tables 7-5. and 7-6, we also 
calculated the remaining voting setups (2oo4, 2oo5, 4oo5) not shown in those 
tables. 

The optimal system in an ROC plot is one that appears on the top right-
hand corner (i.e. one that has both sensitivity and specificity of 1, since it 
detects all vulnerabilities and never raises an alarm for code that does not 
contain vulnerabilities). We have no such system in the configurations in our 
examples. As we have seen from the results in Tables 7-5 and 7-6, most of 
the results in our configurations have extremes of high sensitivity (1ooN) or 
high specificity (NooN). The ROC plots make it easier to identify configurations 
that lie between these extremes.  

7.5.3 Averages for different diverse setups 
We conclude our analysis with a summary table (Table 7-7) showing the 

average Sensitivity and Specificity for non-diverse setups (abbreviated “1v” in 
the first row of the table) compared with the averages for the different diverse 
configurations. These results confirm the observations we have shown so far: 

- For 1ooN systems: more than 70% improvements in sensitivity on average 
in a 1oo2 setup compared with average individual SATs. More than three 
times the improvements in sensitivity on average on a 1oo5 setup 
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compared with individual SATs. However, this comes at a correspondingly 
high deterioration in specificity; 

- For NooN systems: almost perfect specificity can be achieved when using 
NooN setups (especially for configurations of N > 2). But this comes at a 
large deterioration in sensitivity;  

- Simple majority voting setups on average lead to a deterioration in 
sensitivity (of between 30-65%) but with some improvements in specificity.  
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Figure 7-4 -  ROC plots for the different diverse combinations and the two classes of 
vulnerabilities. 
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7.6 Analysis of the plugin 

In this section we present the results of our analysis by the plug-ins of 
WordPress that the SAT tools analysed. We did this to understand better the 
observed diversity in detection capabilities of the SAT tools. 

Figures 7-5(a) and (b) show the ordering of the plugins by total number of 
VLOCs (left to right, those with most VLOCs are on the left of the graph) for 
SQLi and XSS respectively. Figure 7-5(c) and 7-5(d) shows the sensitivity of 
each SAT for each of these plugins (the order in the x-axis of figures 7-5(c) 
and 7-5 (d) corresponds to the order in Figures 7-5(a) and 7-5(b) respectively). 
We see that there is considerable diversity in the sensitivity of the tools for the 
different plugins. For example, Figure 7-5 (d) shows a large cluster of orange 
diamonds (RIPS (B)) in the top left, which indicates that this tool was 
outperforming phpSAFE (A) on sensitivity for these plug-ins, even though 
phpSAFE was better on average overall. RIPS (B) for SQLi reports many 
vulnerabilities in the levelfourstorefront.8.1.14 plugin (S_P4) and the 
phpSAFE (A) reports none (we highlighted this plugin in Figure 7-5(c)). 
However, for the sendit.2.1.0 plugin (S_P7) the SAT phpSAFE reports many 

Table 7-7 Average Sensitivity and Specificity for each diverse version and each class of 
vulnerabilities 

 SQLi XSS 

SAT 
Configurations Sens. Spec. Sens. Spec. 

1v 0.25 0.99 0.33 0.99 
1oo2 0.45 0.99 0.57 0.98 
1oo3 0.62 0.98 0.74 0.98 
1oo4 0.77 0.98 0.89 0.97 
1oo5 0.91 0.98 0.99 0.97 
2oo2 0.05 0.99 0.10 0.99 
3oo3 0.02 0.99 0.04 0.99 
4oo4 0.01 1.00 0.02 0.99 
5oo5 0.00 1.00 0.003 0.99 
2oo3 0.11 0.99 0.21 0.99 
2oo4 0.17 0.99 0.32 0.99 
2oo5 0.21 0.99 0.43 0.99 
3oo5 0.09 0.99 0.15 0.99 
4oo5 0.04 1.00 0.06 0.99 
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VLOCs and the other SATs none. 
(a) SQLi Plugins 

 

(b) XSS Plugins 

 

___Total number of VLOCs                                                                         ___Total number of NVLOCs 

  
(c) SQLi Sensitivity of SAT per Plugin (d) XSS Sensitivity of SAT per Plugin 
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Figure 7-5 Vulnerable and non-vulnerable lines count per plugin and sensitivity measures, for SQLi and XSS. 
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7.7 Discussion, Conclusions and Limitations  

In this study, we presented results of analysing the performance of diverse 
Static Analysis Tools (SATs) configurations. The analysis is performed using 
a previously published dataset, where five SATs were used for finding two 
types of vulnerabilities, namely SQL Injections (SQLi) and Cross-Site Scripting 
(XSS), in 134 WordPress plugins. From the five individual SATs, we built 10 
diverse pairs, 10 diverse triplets, 5 diverse quadruples and one diverse quintet 
SAT system. When analysing the results, we considered various 
configurations of the adjudicator: 1ooN (raise an alarm for a vulnerability when 
any of N SATs in the diverse configuration do so); NooN (raise an alarm for a 
vulnerability only when all N SATs in the diverse configuration do so); and 
simple majority (raise an alarm for a vulnerability when the majority of the N 
SATs in a diverse configuration do so). We presented the results using the 
well-established measures for binary classifiers: sensitivity and specificity. 
The main conclusions from our analysis are: 

• For 1ooN systems: improvements in sensitivity compared with individual 
SAT are from 70% on average for 1oo2 systems, to more than 300% for 
1oo5 systems, but come with a corresponding specificity deterioration on 
average. The largest improvements in sensitivity, with the least 
deterioration in specificity are from combining phpSAFE with WAP SATs 
in a diverse 1oo2 configuration;  

• For NooN systems: specificity can be perfect in most setups, but with 
severe deterioration in sensitivity on average; 

• For simple majority voting setups: average deterioration in sensitivity 
(of between 30-65%) but with some improvements in specificity.  

For organisations primarily interested in detecting vulnerabilities (improved 
sensitivity) and that are willing to invest resources in sifting through alarms to 
separate out the false alarms from true alarms, diverse setups in a 1ooN 
adjudication setup can be very beneficial. In particular, phpSAFE, RIPS and 
WAP SATs exhibit considerable diversity in vulnerability detection. 

Work conducted by colleagues from Universities of  Coimbra and 
Polytechnic Institute of Guarda provided further insight into the observed 
diversity between the SAT tools. They found that some of the tools are better 
at detecting vulnerabilities in certain code constructs than others (for example 
the way in which they analyse arrays, control flow constructs etc.), which helps 
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explain the observed benefits in vulnerability detection overall that we 
presented in the previous sections.  

There are some limitations to the conclusions we can draw from the 
research and several provisions for further work:  

- Lack of sufficient automation for extracting the slices of code and deriving 
the test cases. Hence automating this process is further work. We found 
that using small test cases derived from the plugins is one helpful way to 
find strengths and weaknesses of the SATs;  

- The analysis is based on plug-ins of WordPress which are written in php. 
Hence the conclusions are limited primarily to web applications written in 
php. Using SATs to analyse vulnerabilities in code other that PHP, and with 
a wider range of applications than just WordPress plug-ins, is useful further 
work;  

- The conclusions are limited to SQLi and XSS vulnerabilities. Using SATs 
that can analyse different types of vulnerabilities other than SQLi and XSS 
would be more beneficial. However we should state that SQLi and XSS 
vulnerabilities are some of the most widely spread and most dangerous 
vulnerabilities, as evidenced from them being consistently ranked in the top 
10  most critical web application security risks by The Open Web 
Application Security Project (OWASP) in the last 5 years (OWASP, 2017). 

As we also mentioned for the AV and IDS studies in preceding chapters, we 
should emphasise that despite the limitations stated above our main aim is to 
assess diversity between tools in a particular snapshot in time. Our results 
show that diversity can be effective and we have quantified this effectiveness. 
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8.1 Introduction 

In this chapter we describe how an algorithm that ensures “optimal 
adjudication” – an adjudication function which deterministically combines the 
random outputs of several tools to give outputs that guarantee no other 
scheme can be shown to be quantifiably better – can be used with SATs and 
IDSs. The algorithm is the work of (Giandomenico & Strigini, 1990) and is 
based on the observation that if we have a criterion for choosing between two 
adjudication functions which one is better to deploy (given what we know 
about the replicas with which it will work, and our loss functions or the various 
kinds of erroneous adjudicated output), then we implicitly know how to specify 
an adjudicator function that is optimal with respect to that criterion. We 
illustrate that use of the optimal adjudication with the IDS and SAT datasets 
that we outlined in the preceding two chapters (namely, Chapters 6 and 7). 

The rest of the chapter is organised as follows: section 8.2 outlines the 
objectives of the study; section 8.3 describes the optimal adjudication function; 
section 8.4 illustrates the use of optimal adjudication with an example; section 
8.5 describes the analysis methodology; section 8.6 presents the results of 
the analysis of optimal adjudication and its comparison with other forms of 
adjudication (namely 1ooN, majority vote and NooN) for the two datasets; 
section 8.7 shows the average losses for each type of adjudicator (1ooN, 
majority vote, NooN and “optimal adjudicator”) when we treat each loss as 
equal, as well as when we assign different weights to the losses; and finally 
section 8.8 presents a discussion, conclusions and provisions for further work.  

8.2 Study objectives 

The commonly used solutions for adjudication are some variation of 
“voting”, the simplest being majority voting: if out of – say – three opinions, 
two are in agreement and disagree with the third one, then the two that agree 
are more likely to be correct than the third one. This is a reasonable 
assumption, for instance, in many cases of redundancy used against 
hardware failures and it yields a very effective design. These kinds of 
considerations are often behind the choice of voting as an adjudication 
function in diverse-redundant systems. However, for many applications of 
redundancy and diversity, including most security applications, these obvious 
considerations do not necessarily hold. Taking the example of attack sensors, 
we use diversity to give ourselves a chance that if one sensor cannot detect 
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a certain attack, another sensor might. We expect all sensors to have flaws – 
i.e., that they will not detect some zero-day attacks, or even known attacks for 
which the designers failed to specify a fully effective detection method, or even 
that the implementation of a good specification has some bugs. With luck, and 
as demonstrated in the empirical studies so far in this thesis, these 
weaknesses will not be common to all the sensors we deploy; likewise, among 
different sensors only some will raise an alarm on any given situation of 
innocuous traffic: diversity “works”. But some of the systematic errors will be 
common to more than one sensor. In principle, we could have two sensors 
that consistently fail to detect exactly the same attacks, while the third sensor 
correctly flags them; and thus, a 2-out-of-3 vote will produce a FN error. We 
will be no better off than if we had used that third sensor alone. Of course 
similar perverse alignments between errors may affect non-attacks as well, so 
that a 2-out-of-3 voter might also frequently produce FPs. Does this mean that 
diversity will not work in practice despite its intuitive attractiveness? Can we 
better realise its potential by more refined adjudication? To this effect we used 
a technique  called optimal adjudication outlined in a paper by (Giandomenico 
& Strigini, 1990) and applied it to the IDS and SAT datasets. We assessed 
how much better can optimal adjudication do compared with other 
conventional forms of adjudication we described so far (1ooN, majority voting 
or NooN) in reducing the total loss from the two types of failures (FPs and 
FNs).  

8.3 Optimal adjudication 

The optimal adjudication described in (Giandomenico & Strigini, 1990) 
is based on the observation that if we have a criterion for choosing between 
two adjudication functions which one is better to deploy (given what we know 
about the replicas with which it will work, and our loss functions or the various 
kinds of erroneous adjudicated output), then we implicitly know how to specify 
an adjudicator function that is optimal with respect to that criterion. For 
instance, a reasonable criterion is minimising expected loss. To assess the 
expected loss due to a certain adjudication function, we need the probability 
of each event of interest: e.g., probability of real attack and false negative 
output of the adjudicator, of no attack and false positive output, etc. If the 
adjudicator is specified to calculate a function of the outputs of all the replicas, 
it can be assessed – we can calculate the expected loss from one decision on 
the set of outputs of a certain set of replicas, and therefore we can compare 
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different adjudication functions and choose the best one – given the 
probabilities of each replica (each sensor in our case), pair of replicas, etc., 
giving a correct answer on each kind of input. 

The process of specifying an optimal adjudicator, as described in  
(Giandomenico & Strigini, 1990), is:  

1) for each possible combination of sub-component outputs to adjudicate 
– syndrome, assess the two probabilities of it occurring in the presence 
of an attack and in the presence of a non-attack situation (0,1);  

2) the adjudicator function is defined as a simple table, which for each 
syndrome will contain what output the adjudicator should issue if it 
receives that syndrome as input; 

3) to choose this specified adjudicated output, calculate the values of 
expected loss that would be associated with that particular syndrome if 
the adjudicator indicated “attack” and if it were to output “non-attack”; 
choose the output with lower expected loss.   

8.4 Illustration of the use of optimal adjudication 

This section illustrates the use of optimal adjudication described in 
(Giandomenico & Strigini, 1990) using a practical example with Intrusion 
Detection Systems. We will use an example with three IDSs, using actual 
numbers which we will present in more detail in next sections.  

Table 8-1 shows the eight possible syndromes of a three version system. 
We label the output from each IDS as either one (i.e. raises an alarm) or zero  
(i.e. no alarm raised). The syndromes are the input of the adjudication 
function.  

We then check each syndrome against the actual inputs to the IDSs. In 
our examples we have two types of inputs: Attacks (labelled as A) and non-
attacks (labelled as NA). Table 8-2 shows a small excerpt of this input table 
for some of the inputs. In this example we have a total of 136 Attack inputs, 
and 45 Non-Attack inputs. In this simple example we have assumed that the 
losses associated with False Positives (i.e. alarms raised for Non Attacks) and 
False Negatives (i.e. no alarms for Attacks) are the same. So, we associate a 
loss unit of 1 for each FP or FN error. 
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Now that we have a look up table for all inputs to the IDSs, the 
syndromes (i.e. the outputs of the IDSs), and the loss values for the two types 
of failures we can proceed with calculating the optimal adjudicated output. 

Table 8-1 The Syndromes of three IDSs. 

Output from 

SCALP sqlia 

 Output from  

SNORT 2.8 

 Output from 

SNORT 2.8 Plus 
Syndromes 

0 0 0 0 
0 0 1 1 
0 1 0 10 
0 1 1 11 
1 0 0 100 
1 0 1 101 
1 1 0 110 
1 1 1 111 

Table 8-2 The optimal adjudication lookup table for the three-version system of Table 8-1 

As we stated previously, we do this by first calculating the values of 
expected loss that would be associated with that particular syndrome if the 
adjudicator indicated “attack” and if it were to output “non-attack” and then 
choosing the output with lower expected loss. Table 8-2 shows these results 
for the example with the three IDSs. Let us explain the table in more detail: 

Syndromes à  

0 1 10
 

11
 

10
0 

10
1 

11
0 

11
1 

To
ta

l 

Attack 56 46 0 0 0 34 0 0 136 

Non-Attack 41 0 0 0 4 0 0 0 45 

Total Demands 97 46 0 0 4 34 0 0 181 

P(Syndrome) 0.54 0.25 0 0 0.02 0.19 0 0 1 

Adjudged Output 1 1 1 1 0 1 1 1  

P(attack|Si) 0.58 1 0 0 0 1 0 0  

P(fn | Si) 0 0 0 0 0 0 0 0  

P(fp | Si) 0.42 0 1 1 0 0 1 1  

Total Probability of FP Errors (sum of product of P(fp | Si) *  P(Syndrome) ) 0.227 

Total Probability of FN Errors (sum of product of P(fn | Si) *  P(Syndrome) ) 0 

Total probability of error:  Total Probability of FP Errors +  Total Probability of FN Errors 0.227 
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the first column represents syndrome 0: i.e. all three IDSs did not raise an 
alarm. From the lookup table we found that all three IDSs did not raise an 
alarm for 56 attacks, and 41 non-attacks. Raising an alarm would lead to 41 
FPs, but not raising an alarm would lead to 56 FNs. Since we associated the 
same loss value to both FNs and FPs, then we chose the output that 
minimises the overall loss: in this case (counterintuitively), when all three IDSs 
do not raise an alarm, the optimal choice for the adjudicator is to actually raise 
an alarm, as indicated by the “1” in the “Adjudged Output” row. We proceed 
to do the same for each of the other syndromes. When we have no data (as 
in examples for Syndromes 10, 11, 110 or 111) we can set the optimal 
adjudicator to either 1 or 0.  If we are more concerned about FNs, we would 
rather set it to 1 in those cases (i.e. in this case we are stating that even if we 
have not seen any inputs so far with that syndrome, if we do see them in the 
future, we would rather raise an alarm so that an administrator can investigate 
them). As we observe more inputs in the future, we would update the lookup 
table which could then lead the optimal adjudication outputs to also change. 

Based on the adjudged output then (Giandomenico & Strigini, 1990) also 
describe how to calculate the total probability of FP errors, and the total 
probability of FN errors. These may be smaller or larger than other forms of 
adjudication for a given system, but the total probability of error for the system 
(the sum of these two errors) will always be smallest for the optimal 
adjudicator. In the example above, we correctly labelled all attacks as such 
(i.e. we have 0 FNs) but have failed to correctly label 41 non-attacks as such 
(i.e. we have 41 FPs) out of a total of 181 demands. So, 41 / 181 is = 0.227 .  

8.5 Analysis methodology  

Using the method of calculating the probability of errors illustrated in the 
previous section we proceeded to calculate these probabilities for the optimal 
adjudicator for all the possible combinations of diverse systems for both IDSs 
and SATs. In this chapter we show the total probability of error for all four 
adjudicators (1ooN, majority vote, NooN and “optimal adjudication”), for the 
two studies (IDSs and SATs) and all their corresponding applications (3 for 
IDSs and 2 for SATs) to enable us to compare the different options.  

In summary, we did the following: 

- We calculated the FP, FN, TP, and TN counts for each diverse 
configuration (as previously explained in Chapter 3);  
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- We calculated the total probability of error for each configuration and each 
adjudicator, as explained in section 8.4; 

- We calculated the average total probability of error for each configuration 
and each adjudicator. 

In the rest of this chapter we will present the results.  

8.6 Results of the analysis of optimal adjudication with the 
two datasets 

Figures 8-1 and 8-2 below show the total probability of error calculated 
for the different types of adjudicators we are studying (1ooN, simple majority 
vote, NooN and optimal adjudicator), for the two datasets (IDS and SATs) for 
each of the applications (three for IDSs and two for SATs). To enable a fair 
comparison, we chose the N values that allow for a simple majority vote to be 
calculated and where we have more than one diverse IDS system (i.e. N=3, 
5, and 7 for the IDS; N=3 for the SATs). Tables 8-3 and 8-4 show the total 
probability of errors for the 9-version IDS and 5-version SAT for each of the 
adjudicators, for each application (since there is a single such system that we 
can calculate there was no need to draw a graph).  

As expected, we can observe that the “optimal adjudicator” always 
performs best, or equally best compared with any of the other adjudicators. In 
some cases it can outperform the other adjudicators by a large amount.  
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Figure 8-1 Total loss probability of the diverse IDSs for the three applications, for N=3, 5 and 7.  

 

 

 

 

___1OON       ___ NOON      ___ ROON        _ _ _ ADJ 

MyReferences phpBB TikiWiki 
N=3,   9C3= 84 

   
N=5,  9C5 = 126 

   
N=7,   9C7 = 36 

   

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 10 19 28 37 46 55 64 73 82

To
ta

l p
ro

ba
bi

lit
y 

of
 e

rr
or

s

Diverse IDSs 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 10 19 28 37 46 55 64 73 82

To
ta

l p
ro

ba
bi

lit
y 

of
 e

rr
or

s

Diverse IDSs 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 9 17 25 33 41 49 57 65 73 81

To
ta

l p
ro

ba
bi

lit
y 

of
 e

rr
or

s

Diverse IDSs 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 14 27 40 53 66 79 92 10
5

11
8

To
ta

l p
ro

ba
bi

lit
y 

of
 e

rr
or

s

Diverse IDSs 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 14 27 40 53 66 79 92 10
5

11
8

To
ta

l p
ro

ba
bi

lit
y 

of
 e

rr
or

s

Diverse IDSs 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 14 27 40 53 66 79 92 10
5

11
8

To
ta

l p
ro

ba
bi

lit
y 

of
 e

rr
or

s
Diverse IDSs 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 5 9 13 17 21 25 29 33

To
ta

l p
ro

ba
bi

lit
y 

of
 e

rr
or

s

Diverse IDSs 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 5 9 13 17 21 25 29 33

To
ta

l p
ro

ba
bi

lit
y 

of
 e

rr
or

s

Diverse IDSs 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 5 9 13 17 21 25 29 33

To
ta

l p
ro

ba
bi

lit
y 

of
 e

rr
or

s

Diverse IDSs 



 

-135- 

 

 

	 SQLi	 XSS	

N=3, 

  5C3= 10 

 

 
	 	

 

Table 8-3 – Total loss probability of the diverse 9-version IDSs for each application 

 MyReferences phpBB TikiWiki 

1oo9 0.116 0.178 0.525 

5oo9 0.552 0.664 0.776 

9oo9 0.751 0.716 1 

Optimal Adjudication 0.055 0 0 

 

Table 8-4 - Total loss probability of the diverse 5-version SATs for each application 

 SQLi XSS 

1oo5 0.033 0.025 

3oo5 0.088 0.153 

5oo5 0.499 0.499 

Optimal Adjudication 0.029 0.025 

8.7 “Weighted loss” analysis 

The total probabilities of error we have shown do not discriminate 
between the different loss values that an organisation may associate with an 
FP or an FN error. For example the loss that an organisation associates with 
an FN error may be 10 times higher than for an FP error. We did a simple 
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Figure 8-2 Total loss probability of the diverse SATs for the two applications, for N=3. 
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experiment where we associate different loss “weights” to different errors and 
compare how much better does an optimal adjudicator perform compared with 
the other adjudicators as we vary the weights (or in other words by how much 
the optimal adjudicator can reduce total loss compared with the other 
adjudicators). 

Figure 8-3 shows the average losses (y-axis) for all the possible 3-
version, 5-version, 7-version and 9-version IDS systems, for each application. 
Each row in the table shows a different weight for the FPs and FNs: the first 
row, shows the examples where we weigh the losses with same weight; and 
the other rows show the weight we associate with FPs and FNs. Figure 8-5 
shows a similar table for the SATs (3-version and 5-version). 

We observe that the ordering of the best systems, as well as the gains 
from optimal adjudication can vary depending on the losses associated with 
the different errors. The average added losses compared with optimal 
adjudication for the 1ooN, majority voting and NooN setups are given in the 
stacked-bar charts in Figures 8-4 for IDSs  and  Figures 8-6 for SATs (for each 
application, respectively). So these figures provide an organisation with 
measures on the savings they could make by reducing losses due to FP or 
FN errors if they switch from a conventional adjudicator (1oon, majority vote 
or NooN) to an optimal adjudicator setup.  
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Y-axes: The averages of weighted losses; X-axes: Number of  IDSs (N=3,5,7,9) 
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Figure 8-3 The average loss per diverse IDS setup for each application (where N=3,5, 7 and 9) 
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Y-axes: The averages of weighted losses; X-axes: Number of  IDS s(N=3,5,7,9) 
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Figure 8-4 The average loss difference between the optimal adjudication function and the other 
diversty IDS setups ( 1ooN,majority vote and NooN) for each application. For N=3, 5, 7 and 9. 
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Y-axes: The averages of weighted losses; X-axes: 
Number of  SATs (N=3 and 5) 
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Figure 8-5 The average loss per SAT diverse setup for each application (where N=3 and 5) 
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Y-axes: The averages of weighted losses; 
X-axes: Number of  SATs (N=3, and 5) 
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Figure 8-6 The average loss difference between the optimal adjudication function and the other 
diverse SAT setup (1ooN,majority vote and NooN) for each application. 
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8.8 Discussion, Conclusions and Limitations 

We applied the optimal adjudication function from (Giandomenico & 
Strigini, 1990) in a practical security context with IDS and SAT datasets that 
we outlined in the preceding two chapters (namely, Chapters 5 and 6), and 
we show the gains that an organisation can obtain from switching from a 
“conventional” adjudicator (such as 1ooN, majority vote or NooN) to an 
“optimal adjudicator”. While the preceding chapters showed the gains/or 
penalties from using diversity with binary decision systems, in this chapter we 
show the relative gains from optimal adjudication between different diverse 
setups. We also show how these gains change as the relative costs of the two 
types of failures vary in different scenarios. 

A limitation of optimal adjudication is that we need to have labelled data 
on past failures before we decide what is the “optimal” setup. But this is true 
of any other adjudication scheme. We can blindly decide to use 1ooN, but we 
will not know if this is working well until we see the results. 

As future work, it will be useful to apply the optimal adjudicator scheme 
to other types of datasets and systems to analyse the potential gains that may 
be obtained. In terms of engineering further work it will be interesting to have 
a version of an optimal adjudicator implemented for a working security system 
that uses multiple channels. This is currently planned as work in progress by 
other colleagues from City working on the EU DiSIEM project1.  

   

                                            
1 http://disiem-project.eu/  



 

-142- 

 

(9) CONCLUSIONS AND FUTURE WORK 

 
 

(9) CONCLUSIONS AND FUTURE WORK ............................................ 142 

9.1 Introduction ................................................................................ 143 

9.2 Summary of conclusions ............................................................ 143 

9.3 Review of aims and objectives ................................................... 145 

9.4 Provisions for further work ......................................................... 146 

9.5 Final remarks ............................................................................. 147 

 
 
  



 

-143- 

 

9.1 Introduction 

Each of the chapters had their own Conclusions sections. The purpose 
of this chapter is to link and summarise those conclusions into a single 
coherent chapter, review the aims and objectives of the research and 
summarise the provisions for further work.     

9.2 Summary of conclusions 

We presented research that helps us quantify the possible benefits (and 
harm) of diversity for security, and hence help improve decision making for 
security. We conducted experiments with three types of defence tools: AV 
products, Intrusion Detection Systems (IDS) and Static Analysis Tools (SAT). 
We presented the results using well-known metrics for binary classifiers: 
namely Sensitivity and Specificity; we assessed the various forms of 
adjudication that may be used when configuring diverse tools: 1-out-of-N 
(raise an alarm as soon as ANY of the defences do so), N-out-of-N (raise an 
alarm only if ALL the defences do so),  majority voting (raise an alarm where 
a MAJORITY of the defences do so) or optimal adjudication (raise an alarm in 
such a way that it minimises the overall loss to the system from a failure).  

The main conclusions are as follows: 
• For the study with AV products: 

• For most vendors in our study (seven out of nine) the VirusTotal 
version has a better detection rate than their full capability version. 
This suggests that for most of these products the free version they 
have in VirusTotal is perfectly suitable for malware detection and 
may even perform better compared with a full capability one;  

• Some of the full capability versions of the AV vendors only detected 
some of the malware more than three weeks after the VirusTotal 
version of the same vendor has detected the same malware. This 
seems to imply that vendors for some malware are testing their 
detection signatures in their VirusTotal versions first before 
propagating them to the full capability versions, which may also 
explain the higher detection rates of the VirusTotal versions of some 
of these vendors; 
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• There are differences between the vendors in the way in which they 
classify malware. This lack of consistency between the vendor 
malware classification schemes makes it more difficult for system 
administrators to transfer their malware analysis expertise from one 
vendor’s system to another; 

• The lack of a platform for assessing full capability products 
motivated research on building AVAMAT, in collaboration with 
researchers at the University of Maryland. A prototype of the tool 
has been built and is currently being further tested and improved.  

• For the study with IDSs: 

• For 1ooN systems: improvements in sensitivity compared with 
individual IDS, with a corresponding specificity deterioration on 
average; 

• For NooN systems: specificity can be perfect in most setups, but 
with severe deterioration in sensitivity on average; 

• Majority voting systems usually offer a compromise between the 
extremes of 1ooN and NooN setups, but for these setups they 
tended to negatively impact the sensitivity measures, with marginal 
gains in specificity; 

• The more “functionally diverse” a system is the better the sensitivity 
and specificity on average, though not in all cases.  

• For the study with SATs: 

• For 1ooN systems: improvements in sensitivity compared with 
individual SAT are from 70% on average for 1oo2 systems, to more 
than 300% for 1oo5 systems, but come with a corresponding 
specificity deterioration on average; 

• For NooN systems: specificity is perfect in most setups, but with 
severe deterioration in sensitivity; 

• For simple majority voting setups: average deterioration in 
sensitivity (of between 30-65%) but with improvements in 
specificity; 

• For organisations primarily interested in detecting vulnerabilities  
and that are willing to invest resources in analysis alarms to 
separate out the false alarms from true alarms, diverse setups in a 
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1ooN adjudication setup can be very beneficial. In particular, we 
found phpSAFE, RIPS and WAP SATs exhibit considerable 
diversity in vulnerability detection; 

• Further analysis of the code in the plugins reveals the source of 

diversity in the SAT behaviour: some of the tools are better at 

detecting vulnerabilities in certain code constructs than others (for 

example the way in which they analyse arrays, control flow 

constructs etc.).  

• The study with “Optimal adjudication”: 

• The gains that an organisation can obtain from switching from a 

“conventional” adjudicator (such as 1ooN, majority vote or NooN) to 

an “optimal adjudicator” can be significant;  

• Hence we show not only the gains (or penalties) from using diversity 

with binary decision systems, but also the relative gains from 

optimal adjudication between different diverse setups.  

Throughout the thesis we noted that there are limits to the conclusions 
that we can draw from some of the analysis due to the size, type and age of 
datasets, the type of applications used, the tools used etc. Despite these 
limitations the results we have presented should serve as enough justification 
for any organisation that wishes to try diversity in their setup. Additionally we 
have presented a well-documented, step-by-step analysis methodology for 
assessing the performance of N-version diverse security decision support 
systems. This should prove useful to other researchers and organisations to 
assess diversity in their setups.  

9.3 Review of aims and objectives 

In the Introduction of the thesis we stated that the two main Aims and 
Objectives of the research are to analyse: 

1. the variety of architectural options about how diverse security controls 
are assembled and their responses combined (“adjudication”);  

2. the interplay between the risks of failing to react to true attacks and of 
false alarms (“false negative” and “false positive” failures, where 
"failure" may mean different things – penetration, lack of detection, etc. 
– depending on the function concerned). 
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The research we have presented in the five main chapters of this thesis 
(Chapters 4-8) demonstrate analysis of the adjudication options for combining 
diverse systems (hence fulfilling objective 1 above), and the interplay between 
the false positives and false negatives with three different widely used 
categories of security products, namely AntiVirus products, Intrusion 
Detection Systems and Static Analysis Tools (hence fulfilling objective 2 
above). Additionally, as stated previously, we presented an analysis 
methodology for assessing the performance of N-version diverse security 
decision support systems. 

9.4 Provisions for further work 

There are several provisions for further work. We will outline these per 
study that we did: 
• For the AV study: 

• Conduct a study with more files types than just portable executable 

files;  

• Extend the analysis with benign files to enable measurements of 

false positive rates for AV products; 

• A longer data collection time with more vendors; 

• Further improvements of AVAMAT and building support for more 

products and operating systems. 

• For the IDS study: 

• Perform the study with a more recent dataset; 

• Extend the analysis with more IDS products; 

• Use a wider array of applications and types of attacks. 

• For the SAT study: 

• Extend the analysis with more SATs; 

• Use a wider array of applications and types of vulnerabilities. 

• For Optimal Adjudication study: 

• Apply the optimal adjudicator scheme to other types of datasets and 

systems to analyse the potential gains that may be obtained;  
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• Build an optimal adjudicator for a working security system that uses 

multiple channels (e.g. Security Information and Event 

Management (SIEM) systems). 

We should also note that the thesis mainly deals with the problem of 
vulnerability/attack/”failure” etc., detection. There are other stages of fault 
tolerance that we have not looked at in more depth, in particular diagnosis and 
recovery. The datasets in our research were already labelled. In an 
operational context, the operators would need to spend time sifting through 
alarms and diagnosing the true alarms, as well as noting any attacks that have 
penetrated through the defences while not being caught by the defences. 
Machine learning algorithms may be able to help with this labelling, but they 
come with their own problems of diagnosis. Recovery is another concern 
when we are implementing an end-to-end solution: we need to be able to 
recover the state of the end-system that we are protecting. Standard forward 
or backward error recovery techniques may work in some contexts, but 
nevertheless they need to be studied further depending on the context where 
the system will be deployed. 

Finally, we note that the studies we did were for one family of systems 
at a time (i.e. we had datasets for AVs, for IDSs and SATs separately). Most 
organisations deploy these systems in a defence in depth infrastructure. We 
note that the methodology we have presented in this thesis can also be used 
to assess the gains or losses from multiple systems in a diverse defence-in-
depth setting. The main difficulty for the experimenter will be on deciding the 
level of granularity for the “demand”/”input” to the different systems that allows 
for an easy like-for-like comparison between different defences. If the 
granularity is too fine (e.g. at the network packet level) it may not make sense, 
for example,  to assess AV products at that level. If it is done at the application 
layer, then some network level defences (network IDSs and Firewalls) may 
not provide alerts at that level. So the experimenter would need to decide on 
the right level of granularity to group the demands. And then the rest of the 
analysis can proceed with the same methodology we presented in this thesis.  

9.5 Final remarks  

Defence in depth is an important part of design for security. Defences 
should be diverse in their weaknesses and attacks that defeat one defence 
should with high probability be stopped or detected by another one. There is 
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no need to emphasise that diversity is a "a good idea": the security community 
is well aware of that. But there is a need to assess whether, for example, a 
set of specific defences would improve security more than another set; and to 
quantifying the security gains. We hope that the research we present in this 
thesis will go some way to providing a method for measuring diversity for 
security to drive rational decisions, and quantify the benefits (and harm) from 
diversity with widely used security tools. We have presented a well-
documented, step-by-step analysis methodology for assessing the 
performance of N-version diverse security decision support systems. This 
should prove useful to other researchers and organisations to assess diversity 
in their setups. To the best of our knowledge a comprehensive method, with 
illustrations using several different tools and multiple datasets has not been 
presented before.  
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Appendix A (Supporting Chapter 4 of the thesis) 

This appendix provides further details to support the analysis provided 
in Chapter 4 of the thesis.   

Appendix A-1: Analysing the Dataset over the Three 
Dimensions (AV, Malware, Dates) 

Appendix A. Table   1 Analysis for Figure 4-1 (a). Each cell represents the number of malware in 
each of the failure rate categories, for that date: Full Capability products. 

FC: MW-Date 

Date -1 FR=0 0>FR> 
0.25 

0.25>=FR> 
0.50 

0.50>=FR> 
0.75 

0.75>=FR> 
1.0 FR=1 

11/11/2013 2060 1400 109 14 22 0 0 
12/11/2013 68 3263 201 18 55 0 0 
13/11/2013 68 3262 204 17 54 0 0 
14/11/2013 67 3261 206 13 58 0 0 
15/11/2013 68 3327 140 22 48 0 0 
16/11/2013 67 3318 149 19 52 0 0 
17/11/2013 66 3321 146 23 49 0 0 
18/11/2013 59 3325 150 25 46 0 0 
19/11/2013 59 3326 149 13 58 0 0 
20/11/2013 56 3339 139 14 57 0 0 
21/11/2013 51 3329 154 14 57 0 0 
22/11/2013 46 3342 146 17 54 0 0 
23/11/2013 41 3343 150 23 48 0 0 
24/11/2013 41 3344 150 17 53 0 0 
25/11/2013 35 3384 116 21 49 0 0 
26/11/2013 31 3351 153 20 50 0 0 
27/11/2013 26 3365 143 13 58 0 0 
28/11/2013 26 3358 149 17 55 0 0 
29/11/2013 17 3451 66 20 51 0 0 
30/11/2013 17 3444 73 23 48 0 0 
01/12/2013 14 3448 73 17 53 0 0 
02/12/2013 8 3457 70 23 47 0 0 
03/12/2013 24 3453 58 19 51 0 0 
04/12/2013 12 3463 61 22 47 0 0 
05/12/2013 4 3469 62 19 51 0 0 
06/12/2013 4 3457 72 23 49 0 0 
07/12/2013 0 3463 70 23 49 0 0 
08/12/2013 0 3451 82 23 49 0 0 
09/12/2013 0 3458 75 27 45 0 0 
10/12/2013 2 3444 85 27 47 0 0 
11/12/2013 8 3448 76 18 55 0 0 

 

Appendix A. Table 1,2,3 and 4 represent the analysis for Figure 4-2 (a), 
4-2 (b) 4-3 (a) and 4-3 (b): the three-dimensional plots (Malware, AV or Date) 
in the thesis: Appendix A. Table 1 and 3 for the FC products and Appendix A. 
Table 2 and 4 for the VT products. 

Using Table Appendix A. Table 1 as illustration: the first column shows 
the date in which the AVs inspected the malware samples; the second gives 
the count of malware that were not inspected by the malware in a given date 
(missing data). The rest of the columns show the failure rate range for a given 
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date; for example, there are 109 malware with failure rate greater than zero 
and less than 0.25 in the first date of the experiment (11/11/2013) (meaning 
between 0 and 25% of the AVs failed to detect them) 

Appendix A. Table   2 Analysis for Figure 4-1 (b). Each cell represents the number of malware in 
each of the failure rate categories, for that date: VirusTotal products. 

VT: MW -Date 

Date -1 FR=0 0>FR> 
0.25 

0.25>=FR> 
0.50 

0.50>=FR> 
0.75 

0.75>=FR> 
1.0 FR=1 

11/11/2013 2060 1501 9 3 32 0 0 
12/11/2013 68 3444 24 6 62 1 0 
13/11/2013 68 3444 24 7 60 2 0 
14/11/2013 67 3450 19 6 62 1 0 
15/11/2013 68 3452 17 9 58 1 0 
16/11/2013 67 3452 17 6 62 1 0 
17/11/2013 66 3453 17 7 61 1 0 
18/11/2013 59 3459 18 6 62 1 0 
19/11/2013 59 3460 17 6 62 1 0 
20/11/2013 56 3463 17 6 62 1 0 
21/11/2013 51 3465 20 6 62 1 0 
22/11/2013 46 3473 17 6 62 1 0 
23/11/2013 41 3478 17 6 62 1 0 
24/11/2013 41 3477 18 6 62 1 0 
25/11/2013 35 3478 23 8 59 2 0 
26/11/2013 31 3486 19 9 59 1 0 
27/11/2013 26 3492 18 6 62 1 0 
28/11/2013 17 3502 17 6 62 1 0 
29/11/2013 17 3502 16 8 62 1 0 
30/11/2013 17 3498 21 7 60 2 0 
01/12/2013 14 3502 20 7 61 1 0 
02/12/2013 8 3510 17 9 60 1 0 
03/12/2013 24 3423 89 6 61 2 0 
04/12/2013 12 3394 130 7 61 1 0 
05/12/2013 4 3511 21 8 60 1 0 
06/12/2013 4 3478 54 7 60 2 0 
07/12/2013 0 3498 38 8 60 1 0 
08/12/2013 0 3466 70 9 59 1 0 
09/12/2013 0 3436 100 6 61 2 0 
10/12/2013 2 3477 57 8 59 2 0 
11/12/2013 8 3511 17 6 61 2 0 

 

Appendix A. Table   3 Analysis for Figure 4-2 (a) 

FC : MW- AV 

AV name FR=0 0>FR> 
0.25 

0.25>=FR> 
0.50 

0.50>=FR> 
0.75 

0.75>=FR> 
1.0 FR=1 

avg 3603 0 0 0 0 2 
antivir 3590 0 0 0 0 15 

comodo 3598 2 0 0 0 5 
F-Secure 3520 30 1 0 0 54 

Kaspersky 3534 0 0 1 0 70 
McAFee 2637 858 0 4 22 84 
Microsoft 3470 49 7 0 0 79 
Sophos 3456 71 0 0 3 75 

Symantec 3557 29 8 2 8 1 
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Appendix A. Table   4 Analysis for Figure 4-2(b) 

 

 

 

 

 
  

VT : MW- AV 

AV name FR=0 0>FR> 
0.25 

0.25>=FR> 
0.50 

0.50>=FR> 
0.75 

0.75>=FR> 
1.0 FR=1 

avg 3543 0 0 0 0 62 
antivir 3591 0 0 0 0 14 

comodo 3214 389 0 0 0 2 
F-Secure 3548 2 1 0 0 54 

Kaspersky 3523 13 0 0 0 69 
McAFee 3537 1 0 0 0 67 
Microsoft 3526 0 0 0 0 79 
Sophos 3540 6 0 0 0 59 

Symantec 3559 45 0 0 0 1 
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Appendix A-2: Malware Classification 

In this section we show more details about how each AV labelled the 
malware (full capability versions of the AV for each AV except for Kaspersky 
for which we used VirusTotal as the full capability version of Kaspersky labelled 
each detected malware by its MD5 value only). We counted the malware labels 
by classes of malware associated by the AV. 
Appendix A. Table   5 Examples of how antivirus products classify malware differently.  These tables 
provide further details to support the analysis provided in Table 4-9 in Chapter 4 

Colour Code: 
Back Door 

Virus 
Worm 
Trojan 

Virus identified - Worm 
Trojan Horse - BackDoor 

Worm -Trojan 
Other 

 

AntiVir 
Malware Type Counter 

back-door program 377 
DR/dropper 184 
JS/ Java script virus 31 
RKIT root kit 30 
TR/ Trojan 40,822 
W32/Windows virus 6,510 
Worm.Conficker.Gen virus 62 
WORM/ worm 60,125 

TOTAL 108,141 
 

AVG 
Malware Type Counter 

Found Win32 152 
Trojan horse  1,208 
Trojan horse BackDoor. 10,924 
Virus found 3,865 
Virus identified -Worm 88,464 
Virus identified Win32 1,622 

TOTAL 106,235 
 

Comodo 
Malware Type Counter 

.UnclassifiedMalware 3 
ApplicUnsaf.Win32 29 
Backdoor.Win32  453 

MalCrypt.Indus!@ 90 

Malware 1,302 

NetWorm.Win32.Allaple.GEN 89,901 

NetWorm.Win32.Trojan.Conficker 154 

Packed.Win32.MUPX.Gen 118 

Suspicious 362 
TrojWare.Win32  7,148 

Virus.Win32. 876 

Worm.Win32  7,580 

TOTAL 108,016 

 

 

F-secure 
Malware Type Counter 

Backdoor. 363 
Gen:Heur.Zygug.6 26 
Gen:Malware.Heur. 46 
Gen:Trojan. 166 
Gen:Variant. 546 
Generic.Malware. 225 
Generic.Sdbot. 28 
GenPack:Generic.Malware. 23 
GenPack:Generic.Mydoom. 51 
GenPack:Trojan.Inject. 28 
IRC-Worm.Generic.20088 77 
MemScan:Trojan.Generic. 53 
Net-Worm:W32/ 15,651 
Suspicious:W32/Malware!Gemini 15 
Trojan 2,989 
Win32.Virut.M 282 
Win32.Worm.Downadup.Gen 2,805 
Worm: 67,963 

TOTAL 91,337 
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McAfee 
Malware Type Counter 

Artemis! 3,981 
BackDoor- 212 
Downloader.a!qr 774 
Dropper-FED! 30 
Generic 619 
New 12 
PWS-Zbot.gen.PMz 876 
Ransom-AAY.gen.l 60 
RDN/Generic.bfg!a 1,081 
RDN/Sdbot.worm!bp 178 
RemAdm-ProcLaunch 30 
Trojan-FDCW!8342B1216DCC 29 
VBObfus.da 28 
W32/Autorun.worm!qq 149 
W32/Conficker.gen 30 
W32/Conficker.worm 76,553 
W32/HAMweq.worm 19,327 

TOTAL 103,969 
 
 

Microsoft 

Malware Type Counter 

Backdoor:Win32/ 577 

Exploit:Win32/ 272 

PWS:Win32/Zbot 31 

Trojan:Win32/ 2,040 

VirTool:Win32/ 514 

Virus:Win32/Parite.B 2,862 

Worm:Win32/Allaple.A 99,521 

TOTAL 105,817 
 

 

Symantec 
Malware Type Counter 

Infostealer 61 
Packed.Generic 241 
Spyware 118 
Suspicious 335 
Trojan  3,841 
W32 99,013 

TOTAL 103,609 

Sophos 
Malware Type Counter 

Mal/ 80,379 
'Troj/Agent-AAXV'. 3,279 
'W32/Allaple 22,009 
or 153 

TOTAL 105,820 
 

Kaspersky (VirusTotal version) - see footnote 18 
Malware Type Counter 

Backdoor.Win32 3,297 

Email-Worm.Win32.Updater.n 180 

HEUR:Trojan.Win32.Generic 993 

HEUR:Worm.Win32.Generic 30 

IM-Worm.Win32.Steckt.ae 30 

Net-Worm.Win32.Agent.bk 94,704 

Packed.Win32.Krap.hm 69 

Trojan-Downloader.Win32.Agent.cuxe 5,458 

Virus.Win32.Virut.n 1,359 

Worm.Win32.AutoRun.edpn 214 

TOTAL 106,334 
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Appendix B (Supporting Chapter 6 of the thesis) 

This appendix provides further details to support the analysis provided 
in Chapter 6 of the thesis.   

Appendix B-1 – Heatmaps  

Heatmaps of detections and failures for successful attacks and benign 
traffic for Single IDS (the figure below show a detailed  result of Table 6-2 in 
Chapter 6). 

Appendix B. Figure 1 The heatmaps for successful attacks and benign traffic for each application 

(a) The Heatmaps below show the successful and fail to detect with legitimate attacks for each 
application. 

 

MyReferences (SA: 136 Demands) phpBB (SA: 245 Demands) TikiWiki (SA: 76 Demands) 

 

 

 

(b) The Heatmaps below show the false alarm and the silent one with benign traffic for each application  

 

MyReferences (CA: 45 Demands) phpBB (CA: 97 Demands) TikiWiki (CA: 80 Demands) 
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In  Appendix B. Figure 1: (a) the first column shows the output result of 
the nine IDSs when subjected to attacks through My References web 
applications (the first row represents the name of the IDSs: 
ACD1,ACD3,ACD10, ACD30, ACD100, GreenSQL, SCALP scalia, SNORT 2 
and SNORT 2.8 followed by the results of each IDS; the pink for failed to 
detect attack and the grey for successfully determining the attack). The 
second and the third table for the result of the same nine IDSs when subjected 
to attacks through phpBB web applications. Part (b) shows the result of the 
nine IDSs when subjected to benign traffic through  My References (the first 
table in b) , then  phpBB web application (the second table in b) , then  TikiWiki 
(the third table in b), each cell in table represents the result of the IDS, the 
pink cells for falsely rising alarm and the grey for correctly determines that a 
benign input is not malicious. 

    Main observations from Appendix B. Figure 1: none of  the IDSs in 
MyReferences web-application are able detect all the successful attacks. 
However, for phpBB web-application Snort plus special rule, manages to 
detect all the successful attacks, while in TikiWiki web-application GreenSQL 
mange to detect all the successful attacks. ACD1, ACD3 and Scalp Sqlia give 
false alarms in Myreferences.  ACD1, ACD3 and ACD10 give false alarms in 
phpBB and TikiWiki.   
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Appendix B-2 Demands Difficulties  
In relation to the sections 6.5 and 6.6 from Chapter 6: we present here  

the results of our analysis by the difficulty of the demands that the IDS flags 
as malicious or benign. The more IDSs fail to correctly classify a demand, the 
more “difficult” the demand is. Figure Appendix B. Figure 2 shows the difficulty 
for each type of demand and each application.  

 
a) Attack difficulty for each application 

MyReferences  

(SA: 136 Demands) 

phpBB  

(SA: 245 Demands) 

TikiWiki  

(SA: 76 Demands) 

   
b) Crawling action (benign demand) difficulty for each application.  

MyReferences  

(CA: 45 Demands) 

phpBB  

(CA: 97 Demands) 

TikiWiki  

(CA: 80 Demands) 

   

Appendix B. Figure 2 Demand difficulties of attack (a) and benign traffic (b) for each application. 

Using the first graph from the left-side in Appendix B. Figure 3 (a) as 
an illustration: x-axis: ordered list of demands (from left to right: those that 
caused the least number of IDSs to fail to those that caused the most), y-axis: 
count of IDSs affected by a given demand. The y-axis is shown cumulatively. 
So we see that 54% of the demands caused 6 or less IDSs to fail.  
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Main results from Appendix B. Figure 2 

• There are 7 IDSs in Myreferences that fail to detect a large 
proportion of attacks. A small proportion of attacks are also 
“difficult” on all nine IDSs in MyReferences.  

• In phpBB there are a large proportion of attacks not detected by 
6 IDSs  

 

Appendix B-3: Diversity Analysis (Distribution of TPR and 1-FPR: 
ordered by TPR: further analysis for section 6.6 from Chapter 6) 

The graphs below show the TPR and 1-FPR rates of each diverse 
systems for each adjudicator for N=2 to N=9. 
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N=4, 

9C4 = 126 

 

   

N=5, 

9C5 = 126 

 

   

N=6, 

9C6 = 84 

 

   

N=7, 

9C7 = 36 
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Appendix B. Figure 3 The TPR and 1-FPR Distribution Plots showing the combined IDSs, in  1ooN, 
RooN and NooN configurations. for each application ordered by TPR of 1ooN (so 
the x-value remains the same for each of the 6 lines on the plot). The x-axes 
represents the diverse IDSs for each configuration N. 

   

  

N=8, 

 9C8 = 9 

 

   

0

0.2

0.4

0.6

0.8

1

97531

Th
e 

TP
R 

an
d 

1-
FP

R

The diverse IDS identifier

0

0.2

0.4

0.6

0.8

1

97531

Th
e 

TP
R 

an
d 

1-
FP

R

The diverse IDS identifier

0

0.2

0.4

0.6

0.8

1

97531

Th
e 

TP
R 

an
d 

1-
FP

R

The diverse IDS identifier



 

-168- 

 

The figure below shows, the same analysis as in the previous figure, but 
the order in the X-axis is no longer preserved (i.e. we show the ordering of 
each adjudicator on each measure independently).  
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N=6, 
9C6 = 

84 
 

   
N=7, 
9C7 = 

36 
 

   
N=8, 
9C8 = 

9 
 

   

Appendix B .Figure 4 The TPR and 1-FPR Distribution Plots showing the combined IDSs, in  1ooN, 
RooN and NooN configurations. for each application ordered from low to high value. So each line is 
ordered from the best (left) to the worst (right), hence the actual value in the x-axis is not meaningful 
(though the proportion is).    
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Appendix C (Supporting Chapter 8 of the thesis) 

This appendix provides further details to support the analysis provided 
in Chapter 8 of the thesis.   

Appendix C-Figures 1, 2 and 3 (for IDSs), 4 and 5 (for SATs)  are the 
loss values associated with the all diverse systems from which the averages 
in Figure 8-3 (for IDS) and 8-5 (for SATs) in Chapter 8 of the thesis are 
derived. 
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 MyReferences   

W1(FP)=1, W2(FN)=9 W1(FP)=3, W2(FN)=7 W1(FP)=7, W2(FN)=3 W1(FP)=9, W2(FN)=1 

 N=3   

    

 N=5   

    

 N=7   

    

Appendix C-Figure 1 The weighted total loss (FP losses and FN losses) per diverse system 
configurations (1ooN, majority vote, NooN and optimal adjudication) for (MyReferences, N=3, 5 and 7) 
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 phpBB   

W1(FP)=1, W2(FN)=9 W1(FP)=3, W2(FN)=7 W1(FP)=7, W2(FN)=3 W1(FP)=9, W2(FN)=1 

 N=3   

    

 N=5   

    

 N=7   

    

Appendix C-Figure 2  The weighted total loss (FP losses and FN losses) per diverse system 
configurations (1ooN, majority vote, NooN and optimal adjudication) for (phpBB, N=3, 5 and 7) 
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 TikiWiki   

W1(FP)=1, W2(FN)=9 W1(FP)=3, W2(FN)=7 W1(FP)=7, W2(FN)=3 W1(FP)=9, W2(FN)=1 

 N=3   

    

 N=5   

    

 N=7   

    

Appendix C-Figure 3 The weighted total loss (FP losses and FN losses) per diverse system 
configurations (1ooN, majority vote, NooN and optimal adjudication) for (TikiWiki, N=3, 5 and 7) 
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X-axes: SAT diverse systems 
Y-axes: Total loss 
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 N=2   

    
 N=3   

    
 N=4   

    

Appendix C-Figure 4 The weighted total loss (FP losses and FN losses) per diverse system 
configurations (1ooN, majority vote, NooN and optimal adjudication) for (SQLi, N=2, 3 and 4)  
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X-axes: SAT diverse systems 

Y-axes: Total loss 

W1(FP)=1, W2(FN)=9 W1(FP)=3, W2(FN)=7 W1(FP)=7, W2(FN)=3 W1(FP)=9, W2(FN)=1 
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Appendix C-Figure 5 The weighted total loss (FP losses and FN losses) per diverse system 
configurations (1ooN, majority vote, NooN and optimal adjudication) for (XSS, N=2, 3 and 4) 
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